
Image Interpolation and Denoising for

Freeview Imaging Systems

Yu Mao

Doctor of Philosophy

Department of Informatics

School of Multidisciplinary Sciences

SOKENDAI (The Graduate University for

Advanced Studies)

Image Interpolation and Denoising for Freeview

Imaging Systems

Yu Mao

A dissertation submitted to the Department of Informatics
School of Multidisciplinary Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at
SOKENDAI(The Graduate University for Advanced Studies)

September 2016

2

Abstract

Using texture and depth maps of a single reference viewpoint, freeview imaging
systems can synthesize a novel viewpoint image by depth-image-based rendering
(DIBR)–translating texture pixels of the reference view to a virtual view, where
synthesized pixel locations are derived from the associated depth pixel values.
Browsing 3D scenes via a freeview imaging system creates a feeling of motion par-
allax, which is the most important source of 3D perception of human. Comparing
to Computer Graphics technologies that can also provide 3D video contents, the
advantage of freeview video is realness, which makes freeview video technology
unreplaceable. However, the current freeview video system is far from satisfying.

In this thesis, via the means of solving the image interpolation and denoising
problems with better quality via Graph Signal Processing(GSP), improvements are
made to the freeview video system by enabling more interesting and attractive
functionality, and yet reduce the application’s energy consumption, making it af-
fordable on modern smart devices. To accomplish the above achievements, we
solved the problems from both the content consumer side and the content pro-
ducer side. Especially, on the content consumer side, we improved the current
system by proposing a z-dimensional movement extension. Lacking z-movements
is causing users’ unnatural feeling during watching. We made efforts to develop
the z-dimensional mapping scheme and use GSP to solve the expansion hole problem
– a patch of pixels sampled from an object surface in the reference view will be
scattered to a larger spatial area, during a large z-movement into the scene. Second,
on the content producer side, a depth image restoration scheme from sparse sensed
samples is proposed to help save the energy of portable freeview video recording
devices. Especially, we proposed quadtree decomposition and node-wise linear
prediction model and the GSP-based residual restoration. The proposed image
restoration algorithms in both applications outperformed the existing techniques
in their specific area respectively. The z-dimensional image synthesized by the
proposed scheme got up to 4.01 dB gain over a naive modification of VSRS 3.5, the
current standard software of freeview video technology. And the reconstructed
depth images by the proposal outperformed the results from the state-of-art LARK
and BM3D techniques significantly by up to 1.26dB and 1.13dB respectively. Fur-
ther, for the application of z-dimensional DIBR using sparse sensed depth image,
the proposed schemes can work jointly and achieved up to 7.39 dB gain over
traditional approach.

3

4

Acknowledgments

It would not have been possible to write this thesis without the help and support

of the kind people around me.

First, I’d like to thank Prof. Yusheng Ji for patiently giving me the support

and guidance to archieve acedemic goals in the five year of study. And I’d like to

thank Prof. Gene Cheung’s for his tiredless effort in helping me with my research

activities.

I also want to thank the other professors in my commitee, Prof. Noboru Sone-

hara, Prof. Imari Sato, Prof. Michihiro Koibuchi, Prof. Akira Kubota, for all the

constructive advices and guidance I got from them.

I would also like to thank all members of Prof. Gene Gheung’s lab and Prof.

Yusheng Ji’s lab. We often discuss research problems, give possible idea to each

other and improve the qualities of our papers.

Last but not least, I would like to thank my family, and my friends, who have

supported me throughout entire process.

5

6

Contents

1 Introduction 15

1.1 Freeview Imaging System and Its Applications 15

1.1.1 Applications . 16

1.2 Motivation . 17

1.3 Contribution . 18

1.4 Organization . 19

2 Background 21

2.1 Interactive Freeview Video Streaming System and its Applications . 21

2.1.1 Scene Capturing . 22

2.1.2 Interactive View Switching . 24

2.1.3 View Synthesis . 26

2.1.4 System Analysis . 27

2.2 Image Interpolation and Denoising . 30

2.2.1 Inverse Imaging Problems . 30

2.2.2 Related Works . 30

2.2.3 MAP Formulation . 31

2.2.4 Graph-based Image Processing 32

2.2.5 Metrics for image reconstruction quality 34

3 The Construction of z-dimensional DIBR-synthesized Images 37

3.1 Introduction . 37

3.2 DIBR for z-dimensional movement . 40

7

3.2.1 z-dimensional Mapping . 41

3.2.2 Likelihood – Rounding Noise in DIBR-mapped pixels 42

3.3 Expansion Holes . 44

3.3.1 Definition . 44

3.3.2 Identification . 46

3.4 Adaptive Kernel . 46

3.4.1 Patch Selection via Adaptive Kernel 47

3.4.2 Kernel Packing . 49

3.5 Graph Construction . 50

3.6 MAP Formulation . 51

3.7 Algorithm Development . 52

3.7.1 Lagrangian Relaxation . 52

3.7.2 Iterative reweighted Least Square Algorithm 52

3.7.3 Selection of Smoothing Parameters 54

3.8 Experiment and Results . 56

3.8.1 Experimental Setup . 56

3.8.2 Experimental Comparison . 59

3.9 Chapter Summary . 68

4 Joint Depth Image Denoising and Interpolation via Graph Signal Pro-

cessing 73

4.1 Introduction . 73

4.2 Graph Signal Processing via Densely Constructed Graph 74

4.3 Image Model . 74

4.3.1 Image Model for Piecewise Smooth Images 74

4.3.2 Piecewise Linear Function Approximation 75

4.4 Adaptive Kernel . 77

4.5 Graph Construction . 77

4.5.1 Residual reconstruction with a Dense Graph Laplacian Reg-

ularizer . 79

8

4.6 MAP Formulation . 80

4.7 Experiment and Results . 82

4.7.1 Depth Image Interpolation . 82

4.7.2 z-dimensional DIBR with Interpolated Depth Images 84

4.8 Chapter Summary . 85

5 Conclusion and Future Work 89

5.1 Main Contributions . 89

5.2 Discussion . 90

5.3 Perspectives and Future Directions . 91

9

10

List of Figures

2-1 Interactive freeview streaming system and the example of how the

system present the requested virtual view, V j = (2.2, 1),Vi = (2, 2) . . 21

2-2 Projection of a 3D voxel onto an image plane using a pinhole camera

model. 24

2-3 Texture / depth image pair from the same camera viewpoint. 25

2-4 DIBR for x-dimensional camera movement. 28

3-1 Examples of disocclusion and expansion holes: a) camera-captured color

map; b) z-dimensional DIBR-synthesized view, where disocclusion holes

are larger contiguous empty regions next to foreground object boundaries,

and expansion holes are smaller empty regions on the surfaces of foreground

objects; c) synthesized view with expansion holes filled by our proposed

scheme. 39

3-2 Interactive free view streaming system and the example of how the

system present the requested virtual view, V j = (2.2, 1),Vi = (2, 2) . . 40

3-3 DIBR for z-dimensional camera movement. 42

3-4 Fitting noise models to DIBR noise distribution for Art and Dolls 43

3-5 Expansion holes and disocclusion holes in the output image of DIBR 45

3-6 Examples of depth layers and corresponding histogram: a) pixels in a depth

block are classified into depth layers and empty pixels; b) corresponding

histogram of depth values for the block; c)the first depth layer separated

from the second depth layer; d) reconstructed depth block. 46

11

3-7 Illustration of patch selection via adaptive kernel. An ellipse is

elongated perpendicular to the principal gradient, so that similar

pixels are selected for pixel interpolation. 48

3-8 Illustration of choosing next kernel center pixel 49

3-9 Example of DIBR-synthesized far-camera color and depth images 57

3-10 PSNR comparison of DIBR synthesized pixels using different methods for different

QPs when compressing reference views. 61

3-11 PSNR comparison of completed expansion holes using different methods for dif-

ferent QPs used when compressing reference views. 64

3-12 Visual evaluation of synthesized images for Art with QP = 4 67

3-13 Visual evaluation of synthesized images for Dollswith QP =4 68

3-14 Visual evaluation of synthesized images for Moebius with QP = 4 . . 69

3-15 Visual evaluation of synthesized images for Laundry with QP = 4 . . 70

3-16 Final output images for z-movement DIBR for art 70

3-17 Final output images for z-movement DIBR for dolls 71

4-1 An example of the compressively sensed signal, its prefiltered image

and the output of quadtree decomposition. It is shown that while

the quality of the prefiltered image is far from satisfying, the general

structure of the image can be roughly estimated. 75

4-2 Ground truth, sensed signal and the visual comparison between

LARK, BM3D and our proposal for sequence New Tsukuba 1. 83

4-3 Ground truth, sensed signal and the visual comparison between

LARK, BM3D and our proposal for sequence New Tsukuba 3. 84

4-4 Ground truth, sensed signal and the visual comparison between

LARK, BM3D and our proposal for sequence Flowers. 85

12

List of Tables

1 Selected notations . 14

3.1 PSNR gain of IRLS over UL2A for different QPs 59

3.2 PSNR comparison of DIBR synthesized pixels using different meth-

ods given compressed reference views 60

3.3 PSNR comparison for completed expansion holes using different

methods, given compressed reference views at QP = 4 62

3.4 PSNR comparison for completed expansion holes using different

methods, given compressed reference views at QP = 16 63

3.5 SSIM comparison for synthesized images, reference view compression QP

= 4 . 65

3.6 3DSwIM comparison for synthesized images, reference view compression

QP = 4 . 66

4.1 PSNR and SSIM comparison of restored images using different techniques . 82

4.2 PSNR and SSIM comparison of synthesized images using different

techniques . 86

13

Table 1: Selected notations

f focal length of the camera
Q voxel in the 3D space

Vi,V j view points
V0,V1,V2 view points
x, z0, z1, z2 x−, z− coordinates of the view

points
P0,P1,P2 projections of Q on the image

plane

α0
horizontal distance between Q

and the primary axis of the camera

γ0
depth distance between Q

and the aperture of the camera
(u0, v0), (u1, v1), (u2, v2) coordinates of the projected pixels

on the image plane

µG, σ
mean and standard deviation of

Gaussian distribution
µL, l mean and scale parameter of

Laplace distribution
p target pixel to optimize
R analysis window defined around p

Sw[p] structural tensor on p
∆x,∆y image gradients along x− and y−

axes
Cp coordinates of pixel p in the image
λ1, λ2 eigen-values of the structural

tensor
a, b long axis and short axis of the

ellipse
ρ elongation factor to define the

ellipse
φ scaling factor to define the ellipse
Ip intensity value of pixel p
s available pixels in the selecting

ellipse
so ground truth signal in the

selecting ellipse
ŝ signal reconstructed by our

formulation

14

Chapter 1

Introduction

1.1 Freeview Imaging System and Its Applications

The free-viewpoint video technology provides the functionality for users to inter-

actively select a viewpoint of the 3D scene. It is an enhancement to multi-viewpoint

video technology where the video scene from multiple viewpoints are captured,

compressed and played back. In contrast to the limited available view points that

is captured in a multi-viewpoint system, a free-viewpoint video system does not

impose that the selected viewpoint corresponds to an existing camera viewpoint.

In another word, beyond the restriction of showing an event only from the view-

point of the cameras, freeview video technology allows a free navigation within

the 3D video scene.

Freeview video systems relies on a partial 3D geometric description of the scene.

The geometry of is typically described by a depth map, or disparity map, that spec-

ifies the per-pixel distance between a votex in the 3D space and the camera [1]. 1

Traditionally A depth image can be estimated from two images by identifying cor-

responding pixels in the multiple views, i.e., point-correspondences, that represent

the same 3D scene point. Using this format, low-complexity DIBR view synthesis

procedure such as 3D warping [2] can be used to create credible virtual view im-

1As there is a unique mutual translation between depth map and disparity map, we will not
distinguish in the rest of this thesis.

15

ages, with the aid of inpainting algorithms to complete disocclusion holes [3–5].

While the conventional approach [6] transmits two (or more) pairs of color and

depth maps from neighboring viewpoints for synthesis of an intermediate virtual

view, recently, the authors in [7, 8] have shown that transmission of a single color-

depth map pair can be more rate-distortion (RD) optimal, if the resulting larger

disocclusion holes can be properly filled.

1.1.1 Applications

As the free-viewpoint video system provides the ability for users to interactively

select any viewpoint at the same distance of the placed camera(s), it breaks the

restriction of showing an event only from the viewpoint of the camera, but instead,

allows a free angle changing within the 3D video Interesting applications include

the selection of an arbitrary viewpoint for visualizing and analyzing sports or

dynamic art (e.g., dance) actions. In such an application the head movement of the

user can be captured by sensers and then the system will synthesize the video from

the corresponding view point and present it to the user.

For details, considering the case of a live broadcast of a football match, it is often

necessary for the audience to change view angle to see a player’s movements which

could be obstructed by another player. By rendering an appropriate viewpoint of

the playing field, the player’s movements can be well displayed in the virtual

view. Free-viewpoint video technologies also simplify video training activities.

For example, the training of dynamic activities such as martial arts or dancing can

be simplified by allowing the trainee to select a viewpoint of the scene. Also, by

deploying real-time freeview video streaming systems, we can realize telepresence,

which is particularly useful in scenarios such as teleconferencing.

16

1.2 Motivation

The freeview video system is a promising application for entertainments. It is

proposed to provide motion parallax – shifted viewpoint images of the scene for

observation corresponds to the assumptive head motion of the user – in order to

allow the user to form a depth percetion of the scene, thus a much richer and

more interesting using experience. However, several shortcomings must be solved

before it becomes a real option of the future form of entertainments.

First, z-dimensional movements is not supported. As described in Section 1.1,

to create this motion parallax visual effect on a conventional 2D display, freeview

imaging systems can capture images from different viewpoints of the same 3D scene

using multiple closely spaced cameras. The user is then able to request views at a

certain viewpiont to be rendered interactively on a 2D display. While the current

DIBR can effiently synthesize image corresponding to the x-dimensional (left and

right) viewpoint movements, it doesn’t include solution for z-dimensional move-

ments (forward and backward). The missing ability to respond to z-dimensional

viewpoint movements will result unnatural experiences, especially in the scenarios

where the request of the viewpionts are generated by the users’ head movements.

Second, the acquisition of the contents – video with 3D description of the scene

– is hard and expensive. As freeview videos grant people the freedom to choose

their own viewpoint to observe the contents, it is not likely that it will be shared

by many people on a single device at the same time. This characteristic indicates

that the future market of the technology would not be in the movie industry, where

the expensive cost of creating the contents can be leveraged by the great amount of

audiences who pay to watch it but will be in personal video sharing: each content

is created and watched by individuals. Thus, making it easier to create freeview

videos becomes a very important point in promote the application of the freeview

video technology. One possible solution is to make the sensors work in sparse sens-

ing mode, where less laser emission is required, resulting less energy consumption.

A depth image interpolation operation will then be need to construct the full depth

17

image based on the sparse samples.

In this research, to overcome the above shortcomings of the freeview video

technology. While the above two aspects comes from very different parts of the

system, they share the same core problem of image interpolation and denoising.

And we solved the problems by the same theory – GSP. Especially, to extend the

current freeview image system to include z-dimensional movements, I first targeted

on designing a z-dimensional image mapping scheme that is compatible with the

existing standards and conventions on z-dimensional image synthesis, and then

use GSP-based method to interpolate missing pixels. And for the second part I

tried to use GSP theory to solve the problem of interpolation and denoising of

sparsely sensed depth image, so sparse sensing mode can be enable on portable

devices to save energy.

1.3 Contribution

During the research, I first proposed construction of novel z-dimensional DIBR-

synthesized images in addition to the traditional x-dimensional DIBR applications.

using the same popularized color-plus-depth representation, I propose to con-

struct in addition novel images as observed from virtual viewpoints closer to the

3D scene, enabling a new dimension of view navigation. To construct this new

image type, I first perform a new DIBR pixel-mapping for z-dimensional camera

movement. I then identify expansion holes—a new kind of missing pixels unique

in z-dimensional DIBR-mapped images—using a depth layering procedure. To fill

expansion holes I formulate a patch-based maximum a posteriori (MAP) problem,

where the patches are optimally spaced using diamond tiling. Leveraging on re-

cent advances in graph signal processing (GSP), I define a graph-signal smoothness

prior to regularize the inverse problem. Finally, I design a fast iterative reweighted

least square (IRLS) algorithm to solve the posed problem efficiently. Experimen-

tal results show that our z-dimensional synthesized images outperform images

rendered by a naïve modification of VSRS 3.5 by up to 4.01dB.

18

Further, to make the capture of freeview image / video possible via commodity

devices energy-efficient, I tackle the technical challenge of fast restoration of depth

images such as depth images given sparse, noisy pixel samples. I treat the depth

images as a piecewise-smooth(PWS) image – an image with mostly smooth surfaces

interrupted by discontinuities on the boundaries between foreground objects and

background, and proposed an image model to serve the purpose of restoration. The

processing operations that are performed locally on a pixel patch (thus amenable to

parallel implementation) without the expensive cost of global search like nonlocal

means (NLM), thus, is fast. Further, algorithms that require a variable number of

iterations depending on characteristics of the current target pixel patch to satisfy

an exit condition is also not desirable. With these stringent conditions, many

state of the art image restoration algorithms become unsuitable for our application

needs. Leveraging on recent advances in graph signal processing (GSP), I propose

a joint denoising / interpolation scheme for PWS image restoration. I first pre-filter

an image to obtain initial pixel estimates at each 2D grid pixel location. I then

detect strong edges via spectral clustering I decompose an image into a quadtree

representation, where each leaf represents a smooth image patch. Each patch is

first coarsely approximated via 2D linear regression, then finely enhanced via a

local graph - based filtering operation. Better image quality from our scheme is

over LARK and BM3D is observed via experiments.

1.4 Organization

The outline of the thesis is as follows. I first present the background in Chapter 2.

The z-dimensional image reconstruction via DIBR is presented in Chapter 3. Then

the joint denoising and interpolation for sparse sensed depth images are presented

in Chapter 4. And finally, the summary and future work are presented in Chapter 5.

19

20

Chapter 2

Background

2.1 Interactive Freeview Video Streaming System and

its Applications

Free viewpoint Image system offers compelling interactive experience by allowing

users to switch to any viewing angle. Freeview Image System consists of three

components: A camera array that captures the scene, a server that calculates and

encodes the captured images into pre-designed representations and a client that in-

teracts with the server and reconstructs the images. An illustration of conventional

Freeview Image System is shown in Fig. 2-1.

As in conventional free viewpoint TV systems [9], we assume that a 1D array

Camera Array

Scene

Server

Captured pictures

I. Request virtual view: (2.2,2)

Current view in buffer: (3,2)

Capture the scene

1. Compress, store the captured image

2. Synthesize additional views

3. Respond to client request

clients

1. Request the server for an

adequate reference view

2. Do DIBR to synthesize virtual view

II. Send the best reference view(2,2)

Internet

III. Synthesize view (2.2, 2)

using the received view (2,2)

Figure 2-1: Interactive freeview streaming system and the example of how the
system present the requested virtual view, V j = (2.2, 1),Vi = (2, 2)

21

of closely spaced cameras along the horizontal x-axis is used to capture a 3D scene

from different viewpoints.

Then the representation of the 3D scene is computed on the server based on the

captured images, such as 3D mesh, sprites, color-plus-depth, etc. Among all the

possible representations, we focus on the color-plus-depth representation [1, 10], as

it is adaptive to any different scenarios and has a bounded complexity in synthesize

the images to be presented to the user. The color-plus-depth representation consists

of several color-depth image pairs, where the depth image contains the per-pixel

depth information, i.e. the distance between the camera and the pixel in the 3D

space.

The depth images can be computed via a stereo-matching algorithm [11] based

on the captured images. Alternatively, depth sensors like Microsoft Kinect or Intel

Realsense can capture both color and depth images simultaneously. Then both

color and depth images are compressed and stored at a server using standard

coding tools like MVC and 3D-HEVC [12, 13].

2.1.1 Scene Capturing

In this section we discuss the acquisition of the depth map. In a freeview system,

multiple cameras capture the same scene. To further allow free-viewpoint syn-

thesis, besides the texture images captured by the cameras, a signal is needed to

describe the geometric structure of the 3D scene as previously discussed. In the

texture + depth representation, the depth of a color pixel can be calculated via

stereo matching–estimating the pixel-correspondences across the captured multi-

view images. By assigning a depth value to each pixel of the captured texture

image and combining those depth values into an image, a depth image is created.

The calculation of depth by estimating stereo matching is an difficult task in many

situations. For example, the pixel value of a votex in the 3D space can vary ac-

cross the captured images due to the change of illumination across the views or

the differences in the camera settings. The signal ambiguity while identifying the

22

potentially corresponding points. This results in an unreliable identification of

the point-correspondences and thus inaccurate depth values. For the purpose of

research, relatively accurate depth images had been captured in laboratories using

expensive professional cameras with carefully designed illustration. However, it

is not realistic for daily usage.

On the other hand, recent technology advances has brought to us the affordable

active depth sensor such Microsoft Kinect and Intel Realsense. These sensors

consist of an infrared laser projector combined with a monochrome CMOS sensor,

which captures video data in 3D under any ambient light conditions. Nevertheless,

the actively sensed depth images also suffer from the limited accuracy and can

hardly be directly used for the purpose of creating freeview video. Further, though

portable version of depth sensor are now available on some mobile devices, their

usability is restricted by the considerable energy consumption.

We now formulate the image capturing process using the popular pinhole camera

model [14].

Pinhole camera model

The optical system can be simplified as a pinhole camera model, shown in Fig. 2-2.

In the figure, the camera’s aperture is denoted by V0 and serves as the center of the

camera system. The focal length—the distance between the aperture and the image

plane—is denoted by f . The image plane is orthogonal to the system’s principal axis,

which indicates the camera’s viewing direction and goes through V0.

A 3D coordinate system is established using V0 as its origin. γ0 is the “depth"

distance between a voxel in the 3D scene and V0—a projected component onto the

principal axis. α0 is the horizontal distance between the voxel and the principal

axis. Given this coordinate system, in Fig. 2-2 a voxel Q in the 3D space with a

particular color intensity is projected through V0 onto the image plane as pixel P0.

Note that the image projected by a pinhole camera is flipped upside down and left

to right; in the sequel we revert this inversion to present the captured image more

naturally. An example of the inverted captured image is shown in Fig. 2-3(a).

23

Figure 2-2: Projection of a 3D voxel onto an image plane using a pinhole camera
model.

In the inverted image plane, pixel P0’s 2D coordinates in the captured image are

denoted by (u0, v0), where u0 can be computed using similar triangles:

u0 = α0

f

γ0

(2.1)

The vertical coordinate v0 can be computed using the same procedure.

The described mapping procedure from voxels in 3D space to pixels on a 2D

image plane retains color information as observed from a particular camera view-

point. The same procedure can also be used to capture a depth image, where

each 3D voxel Q now reflects its depth value γ0 (or its reciprocal, disparity, 1/γ0).

Fig. 2-3(b) shows a captured depth image from the same viewpoint.

2.1.2 Interactive View Switching

In interactive freeview video streaming system [15, 16], the scene will be browsed

via conventional 2D display, so there exists an asymmetry between data available at

the server and data consumption at the client. Specifically, while the server contains

24

u p
0

v0

0

(a) texture image

u p
0

v0

0

(b) depth image

Figure 2-3: Texture / depth image pair from the same camera viewpoint.

coded 3D data that can synthesize a large number of views, a client can observe

only one viewpoint of the 3D scene at a time rendered on a 2D display. Thus,

the client will periodically request new views for observation, and in response the

server must transmit appropriate data for rendering of the requested views.

More specifically, in a conventional interactive freeview video streaming system

[15, 16], given a set of color-plus-depth image pairs at camera-captured viewpoints

X = {1, . . . ,N} at some fixed z-coordinate z0 relative to the 3D scene, a client can

select any viewpoint x between leftmost view 1 and rightmost view N to observe

the scene. A virtual view x, 1 < x < N and x < Z
+, can be synthesized using color

and depth image pairs of the nearest left and right camera-captured views ⌊x⌋ and

⌈x⌉ via DIBR [6] (to be discussed in detail). Thus, when a client requests virtual view

x, color and depth map pairs at one or both camera-captured viewpoints ⌊x⌋ and

⌈x⌉ (an RD decision based on bandwidth cost and synthesized view quality [7, 8])

will be transmitted to the client. On the other hand, client side collect the view

switch commands from the user. The view switch requests can be either input

from conventional input devices such as keyboards and mouses, or generated by

analyzing the users head and eye movements, which can be recorded by various

devices, from a simple RGB camera to very sophisticated eye trackers.

25

2.1.3 View Synthesis

We now discuss Depth Image Based Rendering(DIBR)–the conventional image

synthesis process corresponding to the color-plus-image representation. DIBR

takes one or more color-depth images pairs as input and then map the pixels in the

color image into the image to be synthesized. The new coordinates of the pixels

is calculated via geometrics based on the movement of the view point, the depth

value of the pixel and a set of camera parameter discussed in 2.1.1.

Pixel Mapping by DIBR

We formulate the conventional DIBR process, i.e., synthesis of a new horizontally

shifted viewpoint image given texture and depth map pair of the original captured

camera view. In Fig. 2-4(a), we show the top view of the previously described

optical system, allowing us to focus on the geometric relationships among objects on

the x-z plane. A virtual camera with aperture V1 = (x0−∆x, z0) is located at distance

∆x from the reference camera with aperture V0, resulting in a corresponding shift

in the principal axis. The location of the image plane remains the same, though the

center also moves from V0 to V1. The previously projected pixel P0 = (u0, v0) in the

old image plane can now be translated to a location P1 in the new image plane as

follows. First, pixel P0 is back-projected to position Q in the 3D space, and then is

re-projected to location P1 = (u1, v0) in the new image plane. Again using similar

triangles, we can calculate u1:

u1 = α1

f

γ0
= α0

f

γ0
+ (α1 − α0)

f

γ0
= u0 − ∆x

f

γ0
(2.2)

Thus, given the x-dimensional camera movement by ∆x, the new horizontal

coordinate u1 can be computed using f and γ0. Further, for x-dimensional camera

movement there is no change in the vertical coordinate. The original and syn-

thesized images after x-dimensional camera movement are shown in Fig. 2-4(b)

and (c) respectively, where the pixels of the sculpture’s eye are highlighted. Note

that multiple pixels from the old image plane with different depth values may be

26

mapped to the same pixel location in the new image. In this case, we keep the pixel

with the shallowest depth, as foreground objects occlude background objects.

Missing Pixels after Mapping

In Fig. 2-4(c), we can find holes in the synthesized virtual view, i.e., a pixel location

in the virtual view that has no corresponding pixel in the reference view. There are

three kinds of holes. The first is disocclusion holes, which are spatial locations that

are occluded by foreground object(s) in the reference view, but become exposed in

the virtual view. Disocclusion holes are large continuous areas appearing between

foreground and background. There have been many depth-based image inpainting

techniques proposed to complete disocclusion holes [3–5].

The second kind is out-of-view holes, which appear at the left or right boundaries

of the image. They exist because the image’s field of view has changed due to the

x-dimensional camera movement. The out-of-view holes are filled using the same

method as disocclusion holes.

The last kind of holes, known as rounding holes, appear when an object covers a

slightly larger spatial area in the synthesized image due to the change of viewpoints.

This change in size is typically very small during x-dimensional camera movement,

and rounding holes are filled using simple local interpolation methods, such as

bilinear interpolation [6].

Finally, we note that in practice a pixel (u0, v0) in the reference view is copied to

the nearest integer position to (u1, v0), i.e. (u0+round(∆u), v0), on the 2D image grid of

the virtual view. This rounding process introduces errors in the synthesized view.

We will study the error due to this rounding process in a later section.

2.1.4 System Analysis

In this section, we discuss the evaluation of free viewpoint video systems.

27

Q

V0V1

Image plane

principal axis
P1

P
0

1

1

(a) movement

u p
0

v0

0

(b) reference

P
0 P1

u

v =v 0 1

1

u 0

(c) synthesized

Figure 2-4: DIBR for x-dimensional camera movement.

Quality of the Synthesized Images

As a video system, the most important evaluation metric of free viewpoint video

system is the quality of output images. The objective evaluation is performed by

comparing the images synthesized at a certain point A using the information of the

texture and structure from another point B with the ground truth image taken by

a camera at point A. Better synthesis algorithm will synthesize the images more

similar to the ground truth.

Valid Viewpoint Domain

Another evaluation metrics of free viewpoint video system is the possible range

of viewpoints. The idea of free viewpoint video system comes from the multi-

viewpoint video systems, where the structural information of the scene is not

available, thus, only provides the images captured by the cameras. In another

word, multi-viewpoint video system cannot provide continuous view switch, mak-

ing it more functional than entertaining. By exploiting the structural information,

free viewpiont system can provide smooth view switches, which allows more in-

teresting applications such as telepresence/virtual reality by synthesize the images

corresponding to the user’s head movements to be implemented. However, the

conventional free viewpiont video system is still far from satisfying as it can only

generate images from the view points at the distance to the scene, making it unable

to respond to all the complex head movements. In this research, the problem is solve

28

as the system proposed provides the functionality of synthesizing z-dimensional

images, thus can respond to any head movements.

Scene-Capturing Component

Despite the client side, the performance of the scene-capturing component should

also be considered. Capturing freeview videos used to be very expensive and ex-

hausting, as the expensive professional-level cameras need to be carefully placed

in pre-designed positions, which is required by the stereo matching algorithms.

Recently, the depth sensors on portable devices brought to us by the latest tech-

nology advances freed us from the camera arrays, providing a much more usable

scene-capturing method for freeview videos. However, the depth sensors cost a

lot of energy as their actively emit lasers when working. On the other hand, the

battery capacity has been a problem for smart portable devices ever since their

invention and there seems no solution that can be reached in the near future. It is

predictable that the energy cost will become the bottleneck of these devices. In this

research, we tried to solve the problem by providing a depth interpolation scheme

which can recover the depth image from sparsely sensed samples – less samples

means less active sensing, thus, less energy consumption.

Other Aspects

Another main component of the system is the server, which compresses and stores

the captured information and respond the requests from the client side. There is rich

literature on the compression [17–20] and streaming [21–23] of freeview/multiview

videos. As this research doesn’t focus on this part, corresponding discussions are

not provided here.

29

2.2 Image Interpolation and Denoising

2.2.1 Inverse Imaging Problems

Inverse Imaging Problems are a set of problems that aims at reconstructing the

image from limited samples and have been a fundamental and yet active topic in

the field of signal processing. The samples are often noisy and contain incomplete

information about the target parameter or data due to physical limitations of the

measurement devices. In the literature, the signal degrading process are expressed

by the following equation:

Ys = S(H ∗ Z) +Ns (2.3)

, where Z is the original signal, its convolution with the blurring matrix H are sam-

pled by the sampling grid S, further the samples Ys often contains some additive

noise, which is denoted by Ns. Inverse problems are then aimed at the reconstruc-

tion of original signal Z from the observation Ys. A inverse problem following the

above generic formulation involves too much uncertainty and is hard to solve, thus

people often focus on one specific aspect of the model to make the problem clear and

solvable, which divides the inverse problems into three categories: interpolation,

deblurring and denoising. People can apply the methods from the above categories

sequentially to solve practical problems. However, having these categories does

not mean that the problems have to be studied separately. In the contrast, we are

never short of examples of research that involve two or even more factors. And in

this chapter, we tackle the joint interpolation and denoising problem for a special

category of images – the depth images.

2.2.2 Related Works

There are many works targeting at solving the image interpolation and/or denois-

ing. For example, kernel regression are a set of versatile methods, that can solve

joint interpolation and denoising problems. Especially recent research about adap-

tive kernel regression LARK [24], has gained much fame for its ability to reconstruct

30

the image from very limited noisy samples. The problem we are trying to solve

is similar to that in the LARK paper, despite that we focus on a more However,

LARK has some restrictions that is hard to overcome. First, it adopts an iterative

processing progress on the signal without a clear terminating rule, and is thus

potentially slow. Second, its performance on edge or conner area is not satifying.

In the specific problem of reconstructing the depth maps from sparse and noisy

samples, we are able to develop solution for the joint task of denosing and inter-

polation without leveraging on iterations, and thus is faster. Further, the image

reconstruction performance, especially on edge area are improved. There

2.2.3 MAP Formulation

The image restoring techniques employed in thesis follows the maximum a posteri-

ori probability (MAP) formulation. MAP method is a natural extension of Fisher’s

method of maximum likelihood (ML), from a Bayesian perspective.

With the distribution of the observations s known as f (s|so) with the ground

truth signal denoted by so as a parameter, ML estimations predict the most possible

signal ŝo by maximizing the likelihood function:

ŝML = argmaxso f (s|so) (2.4)

However, as the image restring problems are often ill-posed, ML estimation

cannot yield satisfying results. To solve the problem, we need to assume a prior

distribution p(so) of so. Then the posterior probability of s is given as posterior(s) =

f (s|so)p(so) by Bayesian’s theorem, thus the MAP estimation is given by:

ŝMAP = argmaxso f (s|so)p(so) (2.5)

MAP employs an augmented optimization objective which incorporates a prior

distribution over the quantity one wants to estimate and can therefore be seen as

a regularization of ML estimation. Obviously, the prior probability function p(so)

31

plays as a key factor of the estimation. We will discuss the prior used in this

research in the next section.

2.2.4 Graph-based Image Processing

In this research the prior used in the MAP estimation is derived using GSP. GSP is

the study of signals that live on structured data kernels described by graphs [25],

leveraging on spectral graph theory [26] for frequency analysis of graph-signals.

Graph-signal priors have been derived for inverse problems such as denoising [27–

29], interpolation [30], bit-depth enhancement [31] and de-quantization [32]. The

common idea among these works is the assumption that the desired graph-signal

is smooth with respect to a properly chosen graph G that reflects the structure of

the signal. Typically one assumes that the appropriate graph G is known a priori

as available side information, or can be discovered from noisy and / or partial

observations of the signal. In this work, we assume the latter case and construct

a suitable graph G from available DIBR-synthesized pixels for joint denoising /

interpolation of pixels in a target patch.

Graph Laplacian Smoothness Prior

We now introduce the Graph Laplacian Smoothness Prior. First, we overview the

basic concepts in graph signal processing (GSP) and graph spectral analysis [25]. As

done in [25], we will focus on undirected graphs with non-negative edge weights.

A weighted undirected graph G = {V,E,W} consists of a finite set of vertices V
with cardinality |V| = N, a set of edges E connecting vertices, and a weighted

adjacency matrix W. W is a real N × N symmetric matrix, where Wi, j ≥ 0 is the

weight assigned to the edge (i, j) connecting vertices i and j, i , j. Wi, j = 0 means

vertices i and j are not connected, i.e., (i, j) < E.

Given a defined graph G, the degree matrix D is a diagonal matrix whose i-th

diagonal element is the sum of all elements in the i-th row of W, i.e., Di,i = Σ
N
j=1

Wi, j.

32

The combinatorial graph Laplacian L (graph Laplacian for short) is then:

L = D −W (2.6)

Because L is a real symmetric matrix, there exists a set of eigenvectors φi with

corresponding real eigenvalues λi that decompose L, i.e.,

ΦΛΦ
T =

∑

i

λiφiφ
T
i = L (2.7)

where Λ is a diagonal matrix with eigenvalues λi ordered from smallest to largest

on its diagonal, and Φ is an eigenvector matrix with corresponding eigenvectors

φi as its columns. It can be shown that L is positive semi-definite [25], i.e. xTLx ≥ 0,

∀x ∈ R
N, which implies that the eigenvalues are non-negative, i.e. λi ≥ 0. The

eigenvalues can be interpreted as frequencies of the graph; thus using ΦT as a

transform, any input graph-signal x can be decomposed into its graph frequency

components viaΦTx, where αi = φ
T
i
x is the i-th frequency coefficient. ΦT is called

the graph Fourier transform (GFT) [33].

The expression xTLx—called the graph Laplacian regularizer [29]—captures the

total variation of the signal x with the respect to the graph G [34]:

xTLx =
1

2

∑

(i, j)∈E
Wi, j (xi − x j)

2. (2.8)

In words, xTLx is small if connected nodes xi and x j have similar values for each

edge (i, j) ∈ E, or if the weight Wi, j is small.

xTLx can alternatively be expressed in terms of graph frequencies λi:

xTLx =
∑

i

λiα
2
i (2.9)

Thus a small xTLx means that the energy of signal x is mostly concentrated in

the low graph frequencies—smooth with respect to the defined graph. We will

employ the Laplacian regularizer xTLx—i.e., the desired signal is mostly smooth

with respect to a defined graph—as our image prior in the subsequent section.

33

2.2.5 Metrics for image reconstruction quality

Digital image reconstruction quality assessment – how similar is the ground truth

and the reconstructed image from partial and/or noisy samples – has been an

active topic ever since the beginning of the study of digital image processing.

Ideally, image reconstruction quality should be evaluated by human viewers, as

the images are aimed to be browsed by human eyes. however, it is not feasible to

have viewers to evaluate all the images, given the tremendous number of images

and the slow speed of human assessment. Numerous metrics has been proposed

to automate the image assessment procedure. Among the metrics, Peak signal-to-

noise ratio (PSNR) is most straight forward and yet most widely used to evaluate

the image reconstruction. PSNR is most easily defined via the mean squared error

(MSE). Given a m × n ground truth image I pixels and its reconstruction K, MSE is

defined as:

MSE(I,K) =
1

mn

n
∑

i=1

m
∑

j+1

(I(i, j) − K(i, j))2 (2.10)

and the PSNR(in dB) is defined as:

PSNR(I,K) = 10 log10(
2552

MSE(I,K)
) = 20 log10 255 − 10 log10 MSE(I,K) (2.11)

as we can see from the definition, PSNR and MSE come from the idea of calculat-

ing the absolute difference between two images. Despite PSNR’s popularity, it has

also received many critics as it sometimes be inconsistent with human perception.

Lots of effort has been paid to develop human-perception-consistent metrics. And

the Structural Similarity(SSIM) [35] index is among the most successful propos-

als. It considers image degradation as perceived change in structural information,

while also incorporating important perceptual phenomena, including both lumi-

nance masking and contrast masking terms. Structural information is the idea

that the pixels have strong inter-dependencies especially when they are spatially

close. These dependencies carry important information about the structure of the

34

objects in the visual scene. Luminance masking is a phenomenon whereby image

distortions (in this context) tend to be less visible in bright regions, while contrast

masking is a phenomenon whereby distortions become less visible where there is

significant activity or “texture” in the image.

The SSIM value is calculated on various windows of an image. The measure

between w(I) and w(K) – I and K with the window w– is as following:

SSIM(w(I),w(K)) =
(2µw(I)µw(K) + c1)(2σw(I)w(K) + c2)

(µ2
w(I)
+ µ2

w(K)
+ c2)(σ2

w(I)
+ σ2

w(K)
+ c2)

(2.12)

where µw(I) and µw(K) are the averages of the two windows, σw(I) and sigmaw(K)

are the variances and σw(I)w(K) is the covariance. c1 and c2 are division stabillizer.

The SSIM between K and I is then calculated by averaging over the windows.

There are other metrics that adapts to special scenarios such as 3DSwIM for

DIBR synthesized images and some more metrics that has finer models of human

visual perception. However, the detailed discussion is beyond the scope of this

thesis.

35

36

Chapter 3

The Construction of z-dimensional

DIBR-synthesized Images

3.1 Introduction

The promise of free viewpoint video [9] is to provide users the freedom to choose

any vantage point from which to construct a viewpoint image for observation of

a 3D scene. To enable free viewpoint, a conventional multiview imaging system

contains an array of horizontally spaced cameras to capture color maps (conven-

tional RGB images) and depth maps (per-pixel distance between objects in the 3D

scene and the capturing camera) from different viewpoints—a format called color-

plus-depth [1]. The captured images are subsequently encoded at the sender using

standardized multiview coding tools such as 3D-HEVC [13].

At the receiver, a novel image from a virtual viewpoint—a horizontally shifted

camera angle from the captured views—can be synthesized using depth-image-based

rendering (DIBR) techniques such as 3D warping [6]. In a nutshell, DIBR maps each

color pixel in a reference view to a 2D grid location in the virtual view, using

disparity information provided by the corresponding depth pixel. Due to occlusion

(visible spatial areas in the virtual view that are occluded by foreground objects in

the reference view), there are missing pixels in the virtual view called disocclusion

37

holes. They are subsequently completed using inpainting algorithms designed

specifically for disocclusion hole filling [3–5]. For small camera movement from

reference to virtual view along the x-dimension (camera moving left or right), this

DIBR view synthesis plus inpainting approach works reasonably well [9], and is

the conventional approach in the free view synthesis literature.

In immersive applications such as teleconferencing, a sitting viewer observes

rendered images on a 2D display, where the image viewpoints are interactively

adjusted according to the tracked locations of the viewer’s head as he shifts left

or right [36]. The resulting motion parallax effect can greatly enhance the viewer’s

depth perception in the 3D scene [37]. To enable this interactive view navigation

in streaming systems over networks, previous works have optimized strategies for

coding of color and depth maps [15, 16], error resilience [38], packet scheduling [39,

40], caching [41] and reference view selection [42] for visual quality and/or view

interactivity.

Besides x-dimensional head movement (moving one’s head left or right), z-

dimensional head movement (moving one’s head front or back) is also very natu-

ral for a sitting observer. However, while interactive streaming for x-dimensional

view navigation has been investigated extensively [15, 16, 38–42], to the best of

our knowledge, the problem of synthesizing viewpoint images corresponding to large

z-dimensional virtual camera movements using the color-plus-depth format has not been

formally studied from a classical image interpolation perspective. We address this prob-

lem formally in this chapter, extending the capabilities of previous interactive

free-viewpoint systems.

When the virtual camera is located closer to the 3D scene than the reference

view camera, objects close to the camera will increase in size in the virtual view.

This means that the aforementioned pixel-to-pixel mapping during DIBR from

reference to virtual view cannot complete entire surfaces of rendered objects, re-

sulting in expansion holes [43]. Note that expansion holes differ fundamentally from

disocclusion holes in that the objects are visible in the reference view(s), but the

pixel sampling in the reference view is not sufficient for rendering in the synthesized view

38

(a) captured far view (b) DIBR-synthesized (c) expansion holes filled

Figure 3-1: Examples of disocclusion and expansion holes: a) camera-captured color map;
b) z-dimensional DIBR-synthesized view, where disocclusion holes are larger contiguous
empty regions next to foreground object boundaries, and expansion holes are smaller empty
regions on the surfaces of foreground objects; c) synthesized view with expansion holes
filled by our proposed scheme.

when z-directional camera movement is significant. See Fig. 3-1 for an illustration of

expansion and disocclusion holes.

In this chapter, we propose a methodology to construct z-dimensional DIBR-

synthesized images, including an efficient solution to the challenging expansion

hole filling problem. We first perform a new DIBR pixel-mapping for z-dimensional

camera movement. We then identify disocclusion holes using a depth layering pro-

cedure. To fill expansion holes, we formulate a patch-based maximum a posteriori

(MAP) problem, where the patches are optimally spaced using diamond tiling.

Leveraging on recent advances in graph signal processing (GSP) [25], we define

a graph-signal smoothness prior to regularize the inverse problem. Finally, we

design a fast iterative reweighted least square (IRLS) algorithm [44] to solve the

posed problem efficiently. Experimental results show that our z-dimensional syn-

thesized images outperform images rendered by a naïve modification of VSRS 3.5

by up to 4.01dB in PSNR and noticeably in two other quality metrics, SSIM [35] and

3DSwIM [45]. We claim that we are the first to rigorously formulate the expansion

hole filling problem in DIBR images as a MAP problem, and provide a graph-based

interpolation algorithm that solves it efficiently.

39

Camera Array

Scene

Server

Captured pictures

I. Request virtual view: (2.2,1.1)

Current view in buffer: (3,2)

Capture the scene

1. Compress, store the captured image

2. Synthesize additional views

3. Respond to client request

clients

1. Request the server for an

adequate reference view

2. Do DIBR to synthesize virtual view

II. Send the best reference view(2,2)

III. Synthesize view (2.2, 1)

using the received view (2,2)

Internet

Figure 3-2: Interactive free view streaming system and the example of how the
system present the requested virtual view, V j = (2.2, 1),Vi = (2, 2)

3.2 DIBR for z-dimensional movement

In contrast to the conventional systems that restrict virtual cameras placed at the

same distance with the captured cameras, in our enhanced IMVS system a client

can in addition synthesize images at virtual camera location (x, z), where the z-

coordinate can differ from the captured cameras’—i.e. z , z0—as shown in Fig. 3-2.

A virtual camera location (x, z1) for small z1 means that the viewpoint is closer to

the 3D scene than camera location (x, z0), z1 < z0. It means that objects close to the

camera now appear bigger, and the field-of-view is narrower; see Fig. 3-1(c) for an

example. Note that in general one cannot practically set up a 2D camera array along

both x- and z-dimension; the physical camera closer to the scene along the z-dimension will

be visible and obstruct the view of a camera further from the scene. Thus, given only

a conventional 1D camera array setup, a client must synthesize a novel image at

virtual viewpoint (x, z1) using only color and depth map pairs at camera-captured

views (⌊x⌋, z0) and / or (⌈x⌉, z0). As shown in Fig. 3-1(b), this results in expansion

holes that require filling; the formulation and algorithm for expansion hole filling

are discussed in Section 3.6 and 3.7 respectively.

Next, we overview the z-dimensional mapping.

40

3.2.1 z-dimensional Mapping

In this section we extend DIBR to enable z-dimensional camera movement also.

The top view of the optical system is shown in Fig. 3-3(a), where the virtual camera

with aperture V2 = (x0, z0 − ∆z) is shifted from reference camera with aperture V0

by ∆z along the principal axis. The image plane is shifted correspondingly while

the principal axis remains the same. Thus, when a pixel (u0, v0) on the old image

plane is translated to the new image plane, we can compute the new horizontal

coordinate u2 again using similar triangles:

u2 = α0

f

γ2
= u0

γ0

γ2
= u0

γ0

γ0 − ∆z
(3.1)

Unlike the x-dimensional camera movement, the vertical coordinate of a pixel also

changes during a z-dimensional camera movement. The new vertical coordinate

can be calculated similarly as follows:

v2 = v0

γ0

γ0 − ∆z
(3.2)

The original and synthesized images after the z-dimensional camera movement

towards the 3D scene are shown in Fig. 3-3(b) and (c) respectively, with example

pixels highlighted. Besides holes we encountered during a x-dimensional camera

movement, we now have a scattering of missing pixels over the surfaces of objects.

We call this new kind of holes—unique for z-dimensional camera movement—

expansion holes. Though in principle the expansion holes are similar to rounding

holes, they are much larger in size, especially when there is a large z-dimensional

movement, and hence the interpolation quality has an important influence on

the overall synthesized image perception. We will describe a scheme specifically

for expansion hole filling in a later section. Note that though we focus on the

z-directional camera movement in this work, in practice when any mixture of x-/y-

/z-directional camera movements is possible, we can take the following strategy.

First, we differentiate between disocclusion holes and expansion holes. Second,

41

we determine if the amount of z-directional movement is larger than a threshold.

If so, our algorithm can be used for interpolation of expansion holes. If not, a local

hole filling strategy as done in VSRS software is employed.

Q

V0

V2

Image plane

principal axis

P0

P2

2

Image plane

2

(a) movement

u p
0

v0

0

(b) reference

2u

P
0

0
P

2

0v 2v

u

(c) synthesized

Figure 3-3: DIBR for z-dimensional camera movement.

3.2.2 Likelihood – Rounding Noise in DIBR-mapped pixels

As previously discussed, when we compute new coordinates for pixels mapped

from the reference to virtual view, the computed quantities are in general not inte-

gers and must be rounded to the nearest 2D grid positions for display, resulting in

errors we call rounding noise. To the best of our knowledge, the extent and characteristics

of rounding noise in the DIBR pixel-to-pixel mapping procedure have not been studied

systematically in the literature before. We characterize such rounding noise in this

section empirically.

We first seek a suitable statistical description for rounding noise. Specifically,

we compute the differences between DIBR-mapped pixels from reference views

and camera-captured ground truth pixels of the same views to construct an error

distribution. We then describe the resulting distribution using two popular noise

models—Gaussian and Laplacian distribution with probability density functions

42

(PDF):

fGaussian(x|µG, σ) =
1

σ
√

2π
exp

{

−
(x − µG)2

2σ2

}

(3.3)

fLaplacian(x|µL, l) =
1

2l
exp

{

−
|x − µL|

l

}

(3.4)

where µG and µL are the means, and σ2 and 2l2 are the variances of the distributions

respectively. The reason we restrict our attention to only Gaussian and Lapla-

cian distributions is because the subsequent MAP problem formulations stemming

from these models become relatively straight-forward l2 and l1-norm minimization,

solvable via efficient iterative algorithms. Problem formulation and corresponding

optimization algorithms are described in Section 3.6 and 3.7 respectively.

(a) Art sequence (b) Dolls sequence

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Noise Intensity

P
ro

ba
bi

lit
y

Noise model fittings of DIBR images(Art)

Observation
Laplacian
Gaussian

(c) DIBR noise distribution and best fitted error models for

Art

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Noise Intensity

P
ro

ba
bi

lit
y

Noise model fittings of DIBR images(Dolls)

Observation
Laplacian
Gaussian

(d) DIBR noise distribution and best fitted error models for

Dolls

Figure 3-4: Fitting noise models to DIBR noise distribution for Art and Dolls

Using squared error as a criterion, we compute the error-minimizing model

parameters for the Gaussian and Laplacian distributions separately. The best fitted

models are shown in Fig. 3-4 for image sequences Art and Dolls. We observe

43

that the root mean square errors (RMS) of the Laplacian model (0.0008 for Art

and 0.0006 for Dolls) are smaller than that of Gaussian model (0.0020 for Art and

0.0017 for Dolls). Thus, we conclude that the Laplacian distribution is a better

statistical description of rounding noise, and is the preferred noise model for later

optimization.

Having chosen a rounding noise model and identified the expansion holes,

we next denoise DIBR-mapped pixels and complete expansion holes via a unified

maximize a posteriori (MAP) formulation for a given target patch with center at pixel

p. Specifically, first we divide the image into individual patches with overlaps,

where each patch contains similar pixels (Section 3.4). To restore pixels in each

patch, we introduce a graph-signal smoothness prior to regularize an otherwise

under-determined problem (Section 3.5). Finally, we formulate the MAP estimation

problem in Section 3.6.

3.3 Expansion Holes

We now describe two different kinds of missing pixels in a z-dimensional DIBR-

synthesized image, each requiring a different filling method and how we distin-

guish them. For simplicity, we only describe the DIBR view synthesis procedure

using a single reference color and depth map pair in the following discussions.

3.3.1 Definition

Before we can identify the expansion holes, we need to first properly define them.

For intuition, we examine a magnified piece of a z-dimensional DIBR-synthesized

image in Fig. 3-5, where disocclusion holes are enclosed by yellow lines and expan-

sion holes are enclosed by blue or green lines. Formally, we define an expansion

hole as follows: a spatial area of an object’s surface in the virtual view, whose

corresponding area in the reference view is visible but smaller in size. Since the

amount of expansion is typically evenly distributed over the surface of an object,

44

Figure 3-5: Expansion holes and disocclusion holes in the output image of DIBR

expansion holes are small “cracks" that spread all over the surface of an enlarged

object. As observed, this signal characteristic is very different from the large and

continuous disocclusion holes.

Further, while a disocclusion hole always appears empty, expansion holes can

often be wrongly filled with background pixels during DIBR. The reason is because the

size expansion for a foreground object surface is typically larger than a background

surface during a z-dimensional camera movement, and hence in an expansion hole

due to enlargement of foreground object surface, a background pixel can be mapped

from reference view erroneously. Fig. 3-5 shows an example with a foreground

detergent bottle in front of a background wooden panel. However, the pixels of

the panel erroneously fill the expansion holes of the bottle. Hence it is important to

correctly identify and remove these erroneously mapped background pixels before

performing completion of expansion holes. We describe our proposed procedure

next.

45

3.3.2 Identification

To identify pixels from the same physical object in the DIBR synthesized view,

we adopt a depth layering approach. Specifically, for a given pixel block in the

synthesized view, we first construct a histogram containing depth values of pixels

in the block. Fig. 3-6(b) shows an example. Peaks in the histogram are labeled

as layers ordered from shallow depth to deep depth. Fig. 3-6(a) shows the depth

pixels in the block with assigned layer numbers.

(a) block

The Block’s Depth Histogram

DepthShallow Deep

(b) depth histogram (c) first layer (d) reconstructed

Figure 3-6: Examples of depth layers and corresponding histogram: a) pixels in a depth
block are classified into depth layers and empty pixels; b) corresponding histogram of
depth values for the block; c)the first depth layer separated from the second depth layer;
d) reconstructed depth block.

The identification is performed layer-by-layer, starting from the shallowest, so

that when interpolating missing pixels in layer a, each pixel in layer b > a that

is inside a convex set spanned by pixels in layer a is treated as an empty pixel.

In Fig. 3-6(c), we shown that layer 2 pixels are treated as empty pixels during

expansion hole filling of layer 1. The reconstructed depth block is shown in Fig. 3-

6(d). Having identified available pixels in a depth layer for interpolation of empty

pixels, we next formulate our joint denoising / interpolation problem for expansion

hole filling.

3.4 Adaptive Kernel

We first divide the pixels in the same depth layer into overlapping patches. In par-

ticular, we adaptively select patch shapes based on observed signal characteristics,

46

because the same physical object can have distinct textural patterns that influence

how pixels should be interpolated. For example, if the captured object is a red and

blue striped shirt, then pixels inside a blue stripe should be interpolated using only

neighboring blue pixels.

3.4.1 Patch Selection via Adaptive Kernel

To select the first pixel patch for joint denoising / interpolation, we first select a pixel

p in the depth layer (e.g., the top-left pixel), and calculate an adaptive kernel centered

at p, similarly done in [24] (we discuss our implementation difference from [24] in

details later). There are two basic steps. In the first step, the principal gradient in

a local neighborhood is derived via computation of the structure tensor [46]. The

structure tensor Sw(p) defined on pixel p’s location Cp can be computed as:

Sw(p) =

∑

r∈R
w(Cr)(∆x(Cp,Cr))

2
∑

r∈R
w(Cr)∆x(Cp,Cr)∆y(Cp,Cr)

∑

r∈R
w(Cr)∆x(Cp,Cr)∆y(Cp,Cr)

∑

r∈R
w(Cr)(∆y(Cp,Cr))

2

(3.5)

where R defines a square neighborhood around pixel p, ∆x(Cp,Cr) and ∆y(Cp,Cr)

are the color image gradients1 along the x- and y-axis at pixel p respectively, and

w(Cr) is a weight assigned to neighbor r. Weights are determined by a Gaussian

kernel, which is normalized so that
∑

r∈Rw(Cr) = 1.

Having computed Sw(p), we perform eigen-decomposition on the matrix, which

summarizes the local gradients within R. The ratio between the larger λ2 and

smaller eigenvalue λ1 indicates relative strength of the principal gradient in the

patch R, and the eigenvector v2 corresponding to the larger eigenvalue λ2 indicates

the direction of R’s principal gradient. For example, in the case that a strong edge

1Gradient ∆(Cp,Cr) at pixel p is computed as the intensity difference from a neighbor r divided
by the distance between p and r.

47

is present in the pixel patch, the principal gradient will be orthogonal to the edge.

See Fig. 3-7 for an illustration.

Figure 3-7: Illustration of patch selection via adaptive kernel. An ellipse is elon-
gated perpendicular to the principal gradient, so that similar pixels are selected for
pixel interpolation.

Finally, an ellipse centered at the target pixel p is defined to identify a subset of

pixels in the same depth layer for joint denoising / interpolation. The ellipse has

minor axis aligned with the tensor eigenvector v2, and the major axis orthogonal to

the minor axis. In particular, let a and b be the major and minor radius, i.e., in the

rotated coordinate system (x′, y′),

(

x′

a

)2

+

(

y′

b

)2

= 1 (3.6)

We compute a and b as:

a = ρφ, b = ρ−1 φ (3.7)

ρ =
√

λ2+ω
λ1+ω

is the elongation factor. ρ reflects the relative strength of the principal

gradient, with ω > 0 for numerical stability. Using ρ, the shape of the kernel is

kept circular in flat areas, where λ1 ≈ λ2 ≈ 0, and elongated when near a strong

edge (λ2 ≫ λ1). The idea is to construct an ellipse elongated perpendicular to the

principal gradient of the patch, so we can include enough similar pixels for joint

denoising / interpolation.

48

φ = m
√
λ1λ2 + ǫ is a scaling factor, where m is a size parameter and ǫ is used for

numerical stability. Since
√
λ1λ2 is the geometric mean of the tensor’s eigenvalues,

φ induces a large kernel in a flat area to average over more pixels (better denoising),

and induces a smaller kernel in a heavily textured area (avoid blurring).

In Fig. 3-7(a), an example ellipse is elongated to contain only blue neighboring

pixels, resulting in a texture-adaptive pixel kernel. In contrast, a classic kernel will

be a circle with a fixed radius, containing both blue and red pixels.

p

p
p

1
4 p’

1

p3 p2

B

A

Figure 3-8: Illustration of choosing next kernel center pixel

3.4.2 Kernel Packing

We now determine the location of the next patch. The spacing of the patches should

satisfy two conditions: i) cover all pixels in a depth layer for reconstruction, and ii)

overlap to some controlled extent to avoid boundary artifacts. However, too large

an overlap will increase the number of patches and computation complexity.

To compute an appropriate distance between two neighboring patches, we first

assume that the to-be-computed kernels have the same shape and size as the just

computed one. Further, we approximate a kernel’s ellipse shape with a diamond,

where the diamond’s corners are the ellipse’ endpoints along the major and minor

axis. The appropriate spacing of the patches is then computed as the spacing

of the diamonds when packed to fill a plane without overlap. It is known that

a diamond—itself a concatenation of two identical triangles connected back-to-

49

back—can be used to fill a plane without gap—a process called tessellation2. Hence

the spatial areas enclosed by the tiled diamonds alone are guaranteed to cover all

pixels in the 2D grid. Further, because an ellipse always properly encloses the

approximating diamond, the spatial areas covered by the ellipses contain overlaps.

This patch selection procedure based on diamond tiling thus satisfies both required

conditions: i) cover all pixels in a depth layer for optimization, and ii) introduce

overlaps to eliminate boundary artifacts. See Fig. 3-8 for an illustration.

3.5 Graph Construction

Having identified a subset of pixels in the same depth layer suitable for interpola-

tion, we next define a graphG connecting these pixels for graph-based optimization

as follows. Each pixel in the kernel ellipse is represented as a node in the graph

G. We draw four edges between each pixel and its four nearest neighbors in terms

of Euclidean distance, and each edge weight ep,q between two pixels p and q is

computed as:

ep,q = wp,qvp,q,

wp,q = exp

−

∥

∥

∥Ip − Iq

∥

∥

∥

2

2

σ2
I

,

vp,q = exp

−

∥

∥

∥Cp − Cq

∥

∥

∥

2

2

σ2
C

(3.8)

where Ip and Cp are the intensity and Cartesian grid coordinate for pixel p respec-

tively. σI and σC are chosen parameters. This exponential edge weight assignment

is similar to one used in bilateral filter [47].

Having constructed the graph, we compute the graph Laplacian matrix L de-

scribed in Section 2.2.4 to define the prior probability of the underlining signal so,

a vector composed of the n pixels in the graph [so
1
, . . . , so

n]:

Pr(so) = C exp
{

−d soTLhso
}

(3.9)

2https://en.wikipedia.org/wiki/Tessellation

50

where d is a chosen parameter for the distribution and C is chosen so that the

distribution integrates to one. The graph-signal smoothness prior promotes signals

that are smooth with respect to the defined graph.

3.6 MAP Formulation

We now derive the objective of our MAP formulation. Without loss of generality,

let the ns synthesized pixels, np previously interpolated pixels and n−ns−np empty

pixels in the kernel be arranged in order in signal s; i.e., the signal has initial

observation [s1, . . . , sns , pns+1, . . . , pns+np , 0, . . . , 0]. Let ui’s be a set of ns + np length-n

unit vectors, [0, . . . , 0, 1, 0, . . . , 0], where the single non-zero entry is at position i.

As previously discussed, the error between the synthesized pixels in s and the

underlining signal so follows a Laplacian distribution. Thus, our likelihood will be

the product of a series of probability density functions:

Pr(s | so) =

ns
∏

i=1

1

2l
exp

{

−
‖uT

i
so − si‖1

l

}

(3.10)

Given the defined prior and likelihood, we now formulate a MAP estimation

problem to find the most probable s, where the posterior probability is replaced by

the product of the prior probability and the likelihood:

Pr(so|s) ∝ Pr(s|so) × Pr(so) =

ns
∏

i=1

1

2l
exp

{

−
‖uT

i
so − si‖1

l

}

· C exp
{

−p soTLhso
}

(3.11)

Then the estimation ŝ of so is computed as the argument that minimizes the

negative log of our formulated objective:

min
ŝ

ns
∑

i=1

‖uT
i ŝ − si‖1 + µ ŝTLhŝ (3.12)

where for simplicity µ replaces various constants in previous formulation.

51

Further, during a particular patch-based optimization, the optimized solution ŝ

should be consistent with previously optimized pixels pns+1, . . . , pns+np in the ellipse.

We apply the following constraint on the difference between ŝ and previously

optimized pixels:
ns+np
∑

j=ns+1

‖uT
j ŝ − p j‖22 ≤ τ (3.13)

We describe an efficient algorithm to solve (3.12) with constraint (3.13) next.

3.7 Algorithm Development

3.7.1 Lagrangian Relaxation

To solve the formulated constrained optimization problem directly is difficult, and

so we convert it into an unconstrained optimization via Lagrangian relaxation:

min
ŝ

ns
∑

i=1

‖uT
i ŝ − si‖1 + µ ŝTLhŝ + ν

ns+np
∑

j=ns+1

‖uT
j ŝ − p j‖22 (3.14)

where weight parameter ν > 0 must be chosen so that the original constraint (3.13)

is met.

Our new objective is then to minimize a weighted sum of: i) the l1-norm of

the difference between interpolated signal x and ns synthesized pixels si’s , ii)

smoothness prior ŝTLhŝ, and iii) penalty term to penalize the inconsistency between

the interpolated signal and np previously optimized pixels p j’s.

3.7.2 Iterative reweighted Least Square Algorithm

The objective (3.14) is a combination of one l1-norm term and two l2-norm terms.

To solve the problem efficiently, we leverage on the idea of iterative reweighted least

square (IRLS) [44], where the l1-norm fidelity term of ŝ in (3.12) is replaced by a

weighted l2-norm:

52

min
ŝ

ns
∑

i=1

wi‖uT
i ŝ − si‖22 + µ ŝTLhŝ + ν

ns+np
∑

j=ns+1

‖uT
j ŝ − p j‖22 (3.15)

where the weights wi’s are calculated as:

wi =
1

‖uT
i
ŝ − si‖1 + ǫ′

(3.16)

where ǫ′ > 0 is used for numerical stability.

With weights calculated by (3.16), the weighted l2-norm (3.15) minimizing so-

lution s∗ will coincide with the solution ŝ of the original l1-norm minimization.

However, ŝ is unknown beforehand. To find appropriate weights wi’s for (3.15) to

approximate (3.12), we design an algorithm, where (3.15) is solved iteratively, with

weights w(t)

i
’s at iteration t computed as:

w(t)

i
=

1

‖uT
i
s∗(t−1) − si‖1 + ǫ′

(3.17)

where s∗(t−1) is the solution of the previous iteration t − 1.

The idea is that in the iterative algorithm, one can assume each iteration’s s∗(t)

serves as a good estimate to optimal solution ŝ. Hence, we can define the weights

using (3.17), so the iteratively weighted l2-norm can mimic the l1-norm. Algorithm

1 shows how we adopt IRLS for optimizing (3.15). Each iteration of the algorithm is

an unconstrained quadratic programming problem, which can be solved efficiently

in closed form:

s∗(t) = (W(t) +V + µLh)−1(W(t) +V)s (3.18)

where W(t) is a diagonal matrix with w(t)

i
’s as its first ns diagonal elements, and V is

another diagonal matrix whose (ns + 1)-th through (ns + np)-th diagonal elements

are ν. The initial weights are calculated with s0 where the rendered pixels are kept

and the missing pixels are filled with bilinear interpolation.

53

Algorithm 1 Iterative algorithm to solve weighted l2-norm minimization

1: s′ ← s0;
2: while true do
3: wi ← 1/(‖uT

i
s′ − si‖1 + ǫ′);

4: s∗ = (W +V + µLh)−1(W +V)s
5: if round(s′) equals round(s∗) then
6: return round(s∗)
7: else
8: s′ ← s∗

9: end if
10: end while

Alternative Objective

As the IRLS can require many iterations before it converges, the l1-norm formulation

can be further reduced to an unweighted l2-norm optimization problem shown

below for computation reason:

min
ŝ

ns
∑

i=1

‖uT
i ŝ − si‖22 + µ ŝTLhŝ + ν

ns+np
∑

j=ns

‖uT
j ŝ − t j‖22 (3.19)

The intuition is that the l2 norm can also serves as a fidelity term to penalize ŝ that

deviates from s for i = 1 . . .ns. Further, if the reference texture and depth images

are coarsely quantized during compression, the noise of the synthesized image

is dominated by quantization, and modeling noise as the l1-norm is no longer

necessary.

In this alternative formulation, (4.11) is again an unconstrained quadratic pro-

gramming problem with a closed form solution, and thus, can be solved efficiently.

In the experiment, the unweighted l2-norm formulation is referred as UL2A, and

applied when large QP is used for efficient computation. We will discuss it in detail

in Section 3.8.

3.7.3 Selection of Smoothing Parameters

The amount of smoothness applied during the optimization can be adapted locally

via adjustments to parameters µ and h in (3.15) or (4.11). First, h, the power of

54

the graph Laplacian, L, means a signal should be smooth with respect to its h-hop

neighbors. In this work, we select h to be proportional to the major radius a of

the adaptive kernel ellipse. The rationale is that an elongated ellipse means more

pixels geometrically farther from the target pixel is included in the kernel, and our

h selection allows the filtering to smooth over more pixels when a strong patch

gradient is detected (large λ2), resulting in a sharper textural edge. In particular,

we set h to be the Manhattan distance between the target pixel and the pixel at the

end of the long axis for the experiment.

Unlike our previous work [3], where parameter µ—weighting the importance

of the smoothness prior relative to the fidelity term—is chosen globally and heuris-

tically, our new proposal assigns different µ’s for different patches. For each patch

Pv around a target pixel pv in the virtual view, we first find the corresponding

center pixel pr in the reference view by reverse DIBR, and then draw a reduced-size

version of Pv around pr to define Pr. Then, we remove a selection of pixels in Pr

and test our interpolation method using a set of parameter candidates µ’s. The µ

value that leads to best interpolation quality is then used to interpolate Pv.

Complexity Analysis

We now discuss the complexity of our patch-based approach as compared to the

pixel-based approach LARK [24]. First, our adaptive kernel is based on eigen-

decomposition of a 2 × 2 structure tensor, while LARK performed singular value

decomposition (SVD) of a much larger matrix. Both eigen-decomposition and

SVD require O(n3) computation time, where n is the larger dimension of the target

matrix. Thus for each computed kernel our implementation is significantly faster.

Second, LARK is pixel-based, which means that a kernel is constructed for every

pixel for reconstruction. In contrast, our optimization is patch-based, and all the

pixels in a patch are reconstructed simultaneously. Thus the number of calculated

adaptive kernels in our method is reduced compared to LARK by a factor equals to

the average non-overlapping area inside a diamond, which is approximately 6 in

our experiments. We can thus estimate that our patch-based approach is no more

55

than 1/6 the computation cost of LARK. (Note that our previous method [3] is also

pixel-based, and thus we expect roughly the same speedup factor by employing a

patch-based optimization proposed here.)

Finally, we note that our scheme is inherently local, which is much faster than

non-local schemes like nonlocal means (NLM) [49] that rely on searches of similar

patches in distant spatial areas and thus is computationally much more complex.

3.8 Experiment and Results

3.8.1 Experimental Setup

To demonstrate the performance of our proposed z-dimensional image synthesis

method, we conducted extensive experiments using the Middlebury’s 2003, 2005

and 2014 datasets3 and Nagoya datasets4, which are multiview image sequences

captured indoor using an array of cameras shifted along the x-dimension. We

consider a reduction of the distance between the observer and the nearest object by

half, which means the spatial resolution of the nearest object can be increased by

2x.

Without an actual array of cameras set up along both x- and z-dimension to cap-

ture different viewpoint images, we performed the following to establish ground

truth. Assuming a captured image v0 is the near-camera image, we first synthesized

an image vr as observed from the far-camera—located at roughly twice the distance

from the 3D scene as the near-camera—via DIBR using v0 as reference. This near-

to-far DIBR view synthesis typically generates no expansion holes (pixel sampling

in the reference view is sufficient), but has large out-of-view holes (and some disoc-

clusion holes), since the near-camera reference views have narrower fields-of-view.

To avoid the problem of filling out-of-view holes, we only considered the available

field-of-view in a synthesized far-camera viewpoint image as the spatial area of

interest. Examples of synthesized far-camera texture and depth images are shown

3http://vision.middlebury.edu/stereo/data
4http://http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data

56

in Fig. 3-9.

(a) Art color map (b) Art depth map

Figure 3-9: Example of DIBR-synthesized far-camera color and depth images

Using these synthesized narrower field-of-view far-camera images as new refer-

ences, we first compressed the color and depth maps using H.264 [50] with different

quantization parameters (QP). We then synthesized back the near-camera images

v̂0’s via our proposed z-dimensional pixel mapping, identified and filled expan-

sion holes using our proposed scheme, and completed disocclusion holes using an

existing disocclusion hole filling algorithm [5]. We compared our constructions to

v0 to compute PSNR and two other quality metrics SSIM [35] and 3DSwIM [45] to

evaluate the quality of our constructed DIBR-synthesized images.

For comparison, we employed seven competing schemes. In the first scheme

called VSRS+, we modified VSRS software version 3.5 5 to use a single reference

view for pixel mapping, and then called the default inpainting scheme in VSRS

to fill in all missing pixels. The remaining three schemes first employed our

proposed z-dimensional DIBR for initial pixel mapping, identified expansion holes

using our proposed depth layering method, then completed expansion holes using

different interpolation methods. Note that without our proposed depth layering strategy

to properly identify expansion holes, these three schemes would suffer from foreground /

background confusion, as observed in the rendering results of VSRS+. Bilinear is a

5While VSRS has been updated to version 4.0, the view synthesis component remains the same
as version 3.5.

57

conventional bilinear interpolation scheme [51]. As discussed in Section 1.1, if a

triangular mesh is encoded at the sender instead of the color-plus-depth format [10],

then at the receiver the on-grid pixels will be linearly interpolated using nearest off-

grid triangular end points. Thus Bilinear is representative of the rendering quality

for this coding format. Cubic+TGV first interpolates the expansion holes via bicubic

interpolation [51], then enhances the result via Total Generalized Variation (TGV)

[52]. LARK is the kernel-regression based technique in [24] and can be considered

the state-of-the-art among local interpolation methods. While there are recent

image interpolation methods based on patch clustering, non-local methods [53, 54]

or dictionary learning [55], their complexity are significantly higher than local

methods. Hence we do not compare against them here for complexity reason.

Further, we compared with three methods in the literature that can be used for

expansion hole filling during large z-dimensional camera movements, including

two pixel-enlargement methods proposed in the EU project DIOMEDES [56] and

MUSCADE [57], and the back-projection based method proposed in [58]. We

denote these three techniques by DIO, MUS and BP respectively in the sequel.

In Section 3.7 we described two algorithms, IRLS in (3.15) and UL2A in (4.11),

where the former employs a more accurate statistical noise model and the latter

is computationally faster. We tested the two algorithms using color / depth image

pairs compressed with various QPs. Table 3.1 shows the difference in PSNR be-

tween the two algorithms, computed between images constructed using our algo-

rithms and the ground truth images for all non-disocclusion pixels (DIBR-mapped

pixels from reference view and interpolated expansion hole pixels). Table 3.1 shows

that IRLS is up to 0.22dB better than UL2Awhen QP = 4. As QP increases, the PSNR

gain of IRLS over UL2A diminishes. The reason is that the quantization noise in

compressed color and depth maps becomes dominant compared to rounding noise

when QP becomes large. On the other hand, IRLS takes about three iterations to

converge on average, i.e., it requires three times the computation cost compared

to UL2A. Thus, we used IRLS when QP is small (QP ≤ 12) for better image quality

and UL2A when QP is large (QP > 12) to reduce computation cost. Our proposed

58

Table 3.1: PSNR gain of IRLS over UL2A for different QPs

QP 4 8 12 16 20 28 36
Teddy 0.27 0.24 0.17 0.10 0.09 0.01 0.01
Laundry 0.22 0.16 0.11 0.08 0.05 0.02 0.01
Art 0.28 0.19 0.14 0.09 0.05 0.01 0.01
Dolls 0.19 0.15 0.13 0.08 0.04 0.02 0.00
Moebius 0.17 0.13 0.11 0.07 0.03 -0.01 -0.01
Reindeer 0.20 0.14 0.12 0.08 0.04 0.02 0.01
Motorcycle 0.21 0.18 0.14 0.06 0.04 0.04 0.02
Vintage 0.19 0.20 0.16 0.07 0.03 0.02 0.01

scheme is called AGFT+ in the sequel.

3.8.2 Experimental Comparison

Numerical Comparison for DIBR-synthesized Pixels

We first compare quality of DIBR-synthesized pixels with and without our pro-

posed optimization, denoted as DIBR and AGFT+, which are shown in Fig. 3-10.

Numerical PSNR values when QP = 4 and QP = 16 are listed in Table 4.1. We

observe that, using our proposed scheme, PSNR can be improved by up to 0.25dB

when QP = 4, showing that the pixels synthesized by DIBR and degraded by

rounding noise can by effectively restored by our algorithm. The gain diminishes

as QP increases, however, as quantization becomes coarser and details become

harder to recover.

We observe that the pixel-enlargement methods DIO and MUS have even lower

PSNR value than DIBR as they inevitably introduces blurring in the synthesized

area, degrading the image quality.

Numerical Comparison for Expansion Holes

We next exam reconstruction quality of expansion holes: denoised DIBR-synthesized

pixels and interpolated expansion hole pixels. As shown in Fig. 3-11 and Table 3.3,

3.4, for all eight sequences, Bilinear, Cubic+TGV, LARK, AGFT+ outperformed VSRS+

dramatically by up to 2.75dB, 2.90dB, 4.22dB and 4.01dB respectively. This demon-

strates that the correct identification of expansion holes and subsequent interpola-

59

T
ab

le
3.2:

P
S

N
R

co
m

p
ariso

n
o

f
D

IB
R

sy
n

th
esized

p
ix

els
u

sin
g

d
iff

eren
t

m
eth

o
d

s
g

iv
en

co
m

p
ressed

referen
ce

v
iew

s

QP=4 QP=16
DIBR AGFT+ BP DIO MUS DIBR AGFT+ BP DIO MUS

Teddy 35.10 35.34 35.27 34.86 34.66 34.10 34.30 34.28 33.86 33.51
Laundry 27.15 27.30 27.30 26.94 26.77 26.80 27.01 26.93 26.57 26.54
Art 28.85 29.08 29.11 28.66 28.44 28.23 28.37 28.46 28.17 27.77
Dolls 29.59 29.64 29.70 29.51 29.37 28.93 29.05 29.08 28.88 28.36
Moebius 32.61 32.86 32.75 32.27 31.99 31.93 32.02 32.00 31.78 31.08
Reindeer 29.77 29.83 29.83 29.64 29.54 29.00 29.12 29.07 28.86 28.47
Motorcycle 30.80 30.93 30.92 30.60 30.49 29.82 30.00 29.98 29.62 29.21
Vintage 33.37 33.49 33.45 33.19 33.02 33.11 33.25 33.21 32.94 32.69
Akko 31.12 31.31 31.20 30.89 30.66 30.48 30.58 30.55 30.32 29.71
Balloon 29.36 29.52 29.28 29.18 29.02 28.68 28.80 28.69 28.54 28.12

60

0 10 20 30 40
QP

28

30

32

34

36
P

S
N

R
(d

B
)

PSNR(dB) of synthesized pixels for
Teddy sequence

(a) Teddy

0 10 20 30 40
QP

23

24

25

26

27

28

P
S

N
R

(d
B

)

PSNR(dB) of synthesized pixels for
Laundry sequence

(b) Laundry

0 10 20 30 40
QP

24

25

26

27

28

29

30

P
S

N
R

(d
B

)

PSNR(dB) of synthesized pixels for
Art sequence

(c) Art

0 10 20 30 40
QP

25

26

27

28

29

30

P
S

N
R

(d
B

)

PSNR(dB) of synthesized pixels for
Dolls sequence

(d) Dolls

0 10 20 30 40
QP

27

28

29

30

31

32

33

P
S

N
R

(d
B

)

PSNR(dB) of synthesized pixels for
Moebius sequence

(e) Moebius

0 10 20 30 40
QP

24

25

26

27

28

29

30

P
S

N
R

(d
B

)
PSNR(dB) of synthesized pixels for

Reindeer sequence

(f) Reindeer

0 10 20 30 40
QP

25

26

27

28

29

30

31

P
S

N
R

(d
B

)

PSNR(dB) of synthesized pixels for
Motorcycle sequence

(g) Motorcycle

0 10 20 30 40
QP

27

28

29

30

31

32

33

34

P
S

N
R

(d
B

)

PSNR(dB) of synthesized pixels for
Vintage sequence

(h) Vintage

0 10 20 30 40
QP

26

27

28

29

30

31

32

P
S

N
R

(d
B

)

PSNR(dB) of synthesized pixels for
Akko sequence

(i) Akko

0 10 20 30 40
QP

24

25

26

27

28

29

30

P
S

N
R

(d
B

)

PSNR(dB) of synthesized pixels for
Baloon sequence

(j) Balloon

Figure 3-10: PSNR com-
parison of DIBR synthe-
sized pixels using differ-
ent methods for different
QPs when compressing ref-
erence views.

tion are crucial for z-dimensional DIBR image synthesis. Also, we see that AGFT+

outperformed Bilinear and Cubic+TGV by up to 1.84dB and 1.54dB, showing that

by using our proposed interpolation method, we can achieve better image quality

than the common image interpolation techniques. Further, our method AGFT+ has

comparable PSNR numbers as LARKwhile doing so at a much reduced complexity.

We will show later that AGFT+ is actually better than LARK in the other two quality

metrics. Comparing with BP, MUS and DIO, we observe that AGFT+ outperforms them

by up to 1.89dB, 1.95dB and 2.01dB respectively in the expansion hole area due to

our more advanced interpolation technique. Finally, comparing to our previous

method AGFT [3] shown in gray, we see that the large reduction in computation

complexity results in a very small reduction in synthesis quality.

61

T
ab

le
3.3:

P
S

N
R

co
m

p
ariso

n
fo

r
co

m
p

leted
ex

p
an

sio
n

h
o

les
u

sin
g

d
iff

eren
t

m
eth

-
o

d
s,g

iv
en

co
m

p
ressed

referen
ce

v
iew

s
at

Q
P
=

4

z-dimensional DIBR, Depth Layering
BP MUS DIO VSRS+

AGFT AGFT+ LARK Cubic+TGV Bilinear
Teddy 31.86 31.82 31.99 31.16 31.02 31.28 31.17 31.14 30.14
Laundry 27.62 27.58 27.80 26.91 26.74 27.00 26.91 26.85 25.63
Art 30.34 30.44 30.26 29.33 29.15 29.45 29.35 29.30 26.43
Dolls 28.80 28.83 28.70 27.83 27.59 27.95 27.90 27.81 26.60
Moebius 32.16 32.16 32.34 30.87 30.69 30.99 30.91 30.87 29.41
Reindeer 29.08 29.11 29.25 27.89 27.68 30.00 27.93 27.88 25.01
Motorcycle 27.79 27.78 28.08 26.82 26.71 26.93 26.81 26.78 23.86
Vintage 30.20 30.19 30.36 29.63 29.53 29.76 29.62 29.58 28.62
Akko 30.76 30.73 30.92 28.77 28.54 28.89 28.84 28.77 27.23
Balloon 26.13 26.14 26.43 23.95 23.57 24.56 24.62 24.50 22.87

62

T
ab

le
3.4:

P
S

N
R

co
m

p
ariso

n
fo

r
co

m
p

leted
ex

p
an

sio
n

h
o

les
u

sin
g

d
iff

eren
t

m
eth

-
o

d
s,g

iv
en

co
m

p
ressed

referen
ce

v
iew

s
at

Q
P
=

16

z-dimensional DIBR, Depth Layering
BP MUS DIO VSRS+

AGFT AGFT+ LARK Cubic+TGV Bilinear
Teddy 31.16 31.11 31.26 30.76 30.68 30.86 30.71 30.73 29.87
Laundry 27.48 27.46 27.60 26.80 26.62 26.85 26.73 26.79 25.58
Art 29.95 29.94 30.00 28.93 28.78 28.80 28.66 28.70 26.32
Dolls 28.57 28.57 28.51 27.85 27.68 27.92 27.80 27.86 26.50
Moebius 31.49 31.50 31.65 30.31 30.18 30.40 30.27 30.30 29.18
Reindeer 28.62 28.64 28.77 27.74 27.59 27.81 27.69 27.74 25.04
Motorcycle 27.33 27.31 27.46 26.48 26.41 26.57 26.42 26.44 23.72
Vintage 29.53 29.53 29.67 29.21 29.15 29.29 29.13 29.16 28.30
Akko 29.69 29.68 29.98 27.88 27.74 27.96 27.82 27.86 26.20
Balloon 25.71 25.69 26.02 23.44 23.09 24.02 23.96 24.06 22.54

63

0 10 20 30 40
QP

26

27

28

29

30

31

32
P

S
N

R
(d

B
)

PSNR(dB) of Expansion holes for
Teddy sequence

(a) Teddy

0 10 20 30 40
QP

24

25

26

27

28

P
S

N
R

(d
B

)

PSNR(dB) of Expansion holes for
Laundry sequence

(b) Laundry

0 10 20 30 40
QP

24

25

26

27

28

29

30

31

P
S

N
R

(d
B

)

PSNR(dB) of Expansion holes for
Art sequence

(c) Art

0 10 20 30 40
QP

24

25

26

27

28

29

P
S

N
R

(d
B

)

PSNR(dB) of Expansion holes for
Dolls sequence

(d) Dolls

0 10 20 30 40
QP

26

27

28

29

30

31

32

33

P
S

N
R

(d
B

)

PSNR(dB) of Expansion holes for
Moebius sequence

(e) Moebius

0 10 20 30 40
QP

23

24

25

26

27

28

29

30

P
S

N
R

(d
B

)
PSNR(dB) of Expansion holes for

Reindeer sequence

(f) Reindeer

0 10 20 30 40
QP

22

23

24

25

26

27

28

29

P
S

N
R

(d
B

)

PSNR(dB) of Expansion holes for
Motorcycle sequence

(g) Motorcycle

0 10 20 30 40
QP

25

26

27

28

29

30

31

P
S

N
R

(d
B

)

PSNR(dB) of Expansion holes for
Vintage sequence

(h) Vintage

0 10 20 30 40
QP

22

24

26

28

30

32

P
S

N
R

(d
B

)

PSNR(dB) of Expansion holes for
Akko sequence

(i) Akko

0 10 20 30 40
QP

20

21

22

23

24

25

26

27

P
S

N
R

(d
B

)

PSNR(dB) of Expansion holes for
Baloon sequence

(j) Balloon

Figure 3-11: PSNR com-
parison of completed ex-
pansion holes using differ-
ent methods for different
QPs used when compress-
ing reference views.

Overall Numerical and Visual Comparison

Instead of PSNR, in addition we use two other image quality metrics to evaluate the

performance of our z-dimensional image synthesis: SSIM [35], the most commonly

used image visual quality assessment metric, and 3DSwIM [45], a recently proposed

metric dedicated to artifacts detection in 3D synthesized views. The numerical

results are shown in Table 3.5 and 3.6.

Next, we examine the constructed image quality visually. In Fig. 3-12, we show

the constructed images and closed-up patches by different methods. First, we

see visually in Fig. 3-12(a) that z-dimensional pixel mapping caused the erroneous

mixing of foreground / background pixels during DIBR. Applying inpainting al-

gorithm naïvely to fill in all missing pixels subsequently do not lead to acceptable

64

T
ab

le
3.5:

S
S

IM
co

m
p

ariso
n

fo
r

sy
n

th
esized

im
ag

es,referen
ce

v
iew

co
m

p
ressio

n
Q

P
=

4

z-dimensional DIBR, Depth Layering
BP MUS DIO VSRS+

AGFT AGFT+ LARK Cubic+TGV Bilinear
Teddy 0.9206 0.9202 0.9206 0.9212 0.9202 0.9216 0.9193 0.9186 0.9077
Laundry 0.9393 0.9395 0.9342 0.9346 0.9312 0.9351 0.9323 0.9314 0.8971
Art 0.9426 0.9423 0.9386 0.9367 0.9369 0.9374 0.9338 0.9259 0.8885
Dolls 0.9231 0.9231 0.9180 0.9174 0.9163 0.9192 0.9183 0.9080 0.9031
Moebius 0.9239 0.9236 0.9242 0.9210 0.9184 0.9167 0.9085 0.9054 0.8912
Reindeer 0.9024 0.9026 0.9012 0.9002 0.8999 0.9021 0.8967 0.8928 0.8775
Motorcycle 0.9343 0.9341 0.9279 0.9281 0.9279 0.9269 0.9257 0.9244 0.8680
Vintage 0.9490 0.9490 0.9472 0.9460 0.9458 0.9446 0.9430 0.9409 0.9366
Akko 0.9494 0.9492 0.9460 0.9453 0.9479 0.9387 0.9384 0.9367 0.8932
Balloon 0.9076 0.9079 0.9061 0.9048 0.9023 0.9045 0.9012 0.9006 0.8727

65

T
ab

le
3.6:

3D
S

w
IM

co
m

p
ariso

n
fo

r
sy

n
th

esized
im

ag
es,

referen
ce

v
iew

co
m

p
ressio

n
Q

P
=

4

z-dimensional DIBR, Depth Layering
BP MUS DIO VSRS+

AGFT AGFT+ LARK Cubic+TGV Bilinear
Teddy 0.8459 0.8462 0.8453 0.8392 0.8384 0.8461 0.8398 0.8339 0.8425
Laundry 0.9137 0.9132 0.8992 0.9060 0.9062 0.9136 0.9123 0.9042 0.9101
Art 0.9741 0.9744 0.9621 0.9684 0.9676 0.9691 0.9672 0.9651 0.9573
Dolls 0.9500 0.9499 0.9479 0.9482 0.9499 0.9512 0.9476 0.9468 0.9459
Moebius 0.8938 0.8936 0.8925 0.8873 0.8732 0.8839 0.8724 0.8715 0.8514
Reindeer 0.9512 0.9506 0.9524 0.9545 0.9590 0.9524 0.9533 0.9497 0.9445
Motorcycle 0.9763 0.9754 0.9698 0.9679 0.9678 0.9694 0.9672 0.9613 0.9370
Vintage 0.7595 0.7597 0.7490 0.7496 0.7494 0.7312 0.7325 0.7322 0.7461
Akko 0.8623 0.8619 0.8614 0.8609 0.8602 0.8617 0.8615 0.8606 0.8329
Balloon 0.7453 0.7453 0.7412 0.7386 0.7367 0.7495 0.7351 0.7312 0.7376

66

quality in the expansion hole areas. Second, we see in Fig. 3-12(b) and Fig. 3-12(c)

that even only using the pixels in the same depth layer for interpolation, Bilinear

and Cubic+TGV will introduce significant interpolation artifacts, especially on the

texture edges. Finally, we see in Fig.3-12(d) that by using our proposed AGFT+,

which is comparable to result produced by LARK in Fig.3-12(e), expansion holes can

be filled in a visually pleasing manner. Similar results for the doll sequence are

shown in Fig. 3-13, Fig. 3-14 and Fig. 3-15.

(a) VSRS+ (b) Bilinear (c) DIOMEDES (d) MUSCADE

(e) BP (f) LARK (g) AGFT+

Figure 3-12: Visual evaluation of synthesized images for Artwith QP = 4

Finally, we filled in disocclusion holes using an existing scheme [5] to get the

complete z-dimensional DIBR-synthesized images. As we can see in Fig. 3-16 and

Fig. 3-17, visually pleasing images can be successfully synthesized by our proposal

combined with an appropriate disocclusion hole inpainting algorithm like [5].

67

(a) VSRS+ (b) Bilinear (c) DIOMEDES (d) MUSCADE

(e) BP (f) LARK (g) AGFT+

Figure 3-13: Visual evaluation of synthesized images for Dollswith QP =4

3.9 Chapter Summary

Unlike typical free viewpoint system that considers only synthesis of novel im-

ages of virtual views shifted horizontally along the x-dimension via depth-image-

based rendering (DIBR), in this chapter, we consider in addition construction of

z-dimensional DIBR-synthesized images. In such far-to-near viewpoint synthesis,

there exists a new type of missing pixels called expansion holes—where objects

close to the camera will increase in size and simple pixel-to-pixel mapping in DIBR

from reference to virtual view will result in missing pixel areas—that demand a new

interpolation scheme. In this chapter, we propose to first identify expansion holes

via a depth layering procedure, then formulate a maximum a posteriori (MAP)

problem to estimate the missing pixels using a graph-signal smoothness prior. We

propose an iterative reweighted least square (IRLS) algorithm to solve the posed

MAP problem efficiently. Experimental results show up to 4.01dB gain in PSNR

68

(a) VSRS+ (b) Bilinear (c) DIOMEDES (d) MUSCADE

(e) BP (f) LARK (g) AGFT+

Figure 3-14: Visual evaluation of synthesized images for Moebius with QP = 4

over inpainting method employed in VSRS 3.5. While we focus on static multiview

image rendering, our work can be extended to multiview video rendering, where

additional requirements such as temporal consistency [7, 59] need to be considered

also.

69

(a) VSRS+ (b) Bilinear (c) DIOMEDES (d) MUSCADE

(e) BP (f) LARK (g) AGFT+

Figure 3-15: Visual evaluation of synthesized images for Laundry with QP = 4

(b) VSRS+ (a) Proposed

Figure 3-16: Final output images for z-movement DIBR for art

70

(b) VSRS+ (a) Proposed

Figure 3-17: Final output images for z-movement DIBR for dolls

71

72

Chapter 4

Joint Depth Image Denoising and

Interpolation via Graph Signal

Processing

4.1 Introduction

Recent advanced depth sensing technologies have found applications in a wide

range of practical scenarios, including image refocusing, virtual view synthesis via

depth-image-based rendering (DIBR), and non-intrusive sleep monitoring. One no-

table usage is depth image sensing for unmanned aerial vehicles (UAV) like drones,

where an obtained depth image is analyzed quickly to recognize obstacles in their

flight paths for collision avoidance. Unlike color images, depth images acquired

from actively sensed infrared samples means they are unaffected by changing

lighting conditions, and thus can operate reliably in the dark. On the other hand,

active infrared sensing using time-of-flight (ToF) principle also means more energy

consumption, which is challenging for a battery-powered UAV already scarce in

resource.

In response, in this chapter we tackle the technical challenge of fast restoration

of piecewise smooth (PWS) images such as depth images given sparse, noisy pixel

73

samples—fewer the number of actively sensed samples, lower the energy cost. By

PWS, we mean an image with mostly smooth surfaces interrupted by discontinu-

ities; in the case of depth images, discontinuities correspond to boundaries between

foreground objects and background. By fast, we mean processing operations that

are performed locally on a pixel patch (thus amenable to parallel implementation)

without the expensive cost of global search like nonlocal means (NLM). Further,

algorithms that require a variable number of iterations depending on characteris-

tics of the current target pixel patch to satisfy an exit condition is also not desirable.

With these stringent conditions, many state-of-the-art image restoration algorithms

become unsuitable for our application needs.

Leveraging on recent advances in graph signal processing (GSP), we propose

a joint denoising / interpolation scheme for PWS image restoration. We first pre-

filter an image to obtain initial pixel estimates at each 2D grid pixel location. We

then detect strong edges via spectral clustering. We decompose an image into a

quadtree representation, where each leaf represents a smooth image patch. Each

patch is first coarsely approximated via 2D linear regression, then finely enhanced

via a local graph-based filtering operation.

4.2 Graph Signal Processing via Densely Constructed

Graph

4.3 Image Model

4.3.1 Image Model for Piecewise Smooth Images

We now propose an image model for piecewise-smooth image restoration prob-

lem which combines a quadtree structured piecewise-linear prediction and graph

Laplacian regularizer for the prediction residual. As the regularity of piecewise-

smooth images can be interpreted as smooth regions separated by strong edges, we

propose to approximate a piecewise-smooth image by a set of 2-D linear functions,

74

(a)Compressively sensed noisy signal (b)Prefiltered image (c)Quadtree decomposition

Figure 4-1: An example of the compressively sensed signal, its prefiltered image
and the output of quadtree decomposition. It is shown that while the quality of
the prefiltered image is far from satisfying, the general structure of the image can
be roughly estimated.

whose domains are organized in the form of a quadtree.

Especially, the quadtree has square blocks as its nodes, and both the biggest and

the smallest block sizes are fixed. It is so constructed that any block containing a

strong edge and larger than the smallest size is further divided into four smaller

blocks. As a result, only the smallest leaf blocks in the quadtree may contain a strong

edge. Further, more and smaller blocks will be allocated near the edges, leading to

a finer treatment for the area, which tend to have more complex characteristics. On

the hand, large flat area will be covered with large blocks, within which we have

more pixels to average over, producing smoother results in the block.

In the scenario of image restoration from compressively sensed signal, we will

first apply the filter proposed in [24] on the the sparse and noisy input z for a single

iteration to get z′ as a prefiltered image. Then Canny edge detection is applied on z′

to derive a edge map, based on which we construct the quadtree using the method

described above. The procedure is illustrated by Fig. 4-1:

4.3.2 Piecewise Linear Function Approximation

After the quadtree decomposition, we use simple functions to approximate the

signals within the blocks. In the existing research , smooth signal within a small

region has been modeled by 2D polynomials. As in our proposal, the approxima-

tion only serves as a coarse estimation of the underlying signal, we further restrict

the order of the polynomial to be one, i.e, 2-D linear function f (ci) whose variable

75

ci is the pixel’s coordinate:

fG(Ci) = G · [Ci, 1] (4.1)

The Plane’s parameter vector (G) is then determined via solving least squares

problem:

min
G

∑

i∈P
(yi − fG(Ci))

2 (4.2)

The prediction residual R is then calculated as:

R = {ri = yi − fG(Ci)|i ∈ P} (4.3)

And the residuals of estimation will be regularized by the graph Laplacian,

which we will introduce in details in the next subsection.

unlike the non-edge blocks, which can be easily approximated by a single linear

function, the edge blocks contains multiple pieces of smooth signals, and each

piece of the signals should be approximated by its own plane independently. In

practice, based on our observation that it is rare for edge blocks to contain more

than two pieces of smooth signals, as the they always have the smallest size, we

will first divide the edge blocks into two pieces and estimate planes for the signals

individually. Especially, we first use normalized cut, the image segmentation

technique proposed in , to split the block into two piecewise smooth patches Pi’s.

Obviously, the quality of the approximation cannot be guaranteed when the size

|Pi| is too small. As a result when |Pi| is smaller than some certain threshold, we

will skip the approximation, and directly apply the graph Laplacian to regularize

the sensed signal.

76

4.4 Adaptive Kernel

We adopt a block-based approach in our proposal. For each pixel i in block B, with

intensity value yi, we define a p × p analysis window Pi centered at it. Then we fix

a intensity threshold τi and exclude the pixels that has a deviation from the target

pixel i larger than τi, which provide little useful information about the target pixel’s

value and connecting them to the target pixel results in a bad edge. By viewpoint of

the image content, these pixels are often from a diffrent object other than the target

pixel’s, or from another distinct part of texture, thus can be reasonably ignored

during calculating the target pixel. By the above processing, we select a set Ni of

pixels around i with similar intensity values:

Ni = j||y j − yi| < τi, j ∈ Pi (4.4)

Within Ni we will calculate the structure tensor Si of i, which is computed equa-

tion 3.5. Based on Si we draw a ellipse s in the same way described in 3, and denote

the set of the pixels in s by Si. The kernel we use to draw our graph is then defined

as:

Ki = Si

⋂

Ni (4.5)

Having definedKi for each pixel i in the block B, The graph within the block B
following:

GB = {B,E},

E = {e(i, j) | e(i, j) ∈ Ki or e(i, j) ∈ K j, i, j ∈ B} (4.6)

4.5 Graph Construction

In this section We use the same terminologies about GSP that is defined in Chapter. 3

And the weights of the graph edges are assigned to reflect the similarities of the

nodes. Especially, on image restoration, the edge weights are computed via the

comparing the initial value of the pixels. While the graph Laplacian regularizer

77

0 2 4 6 8 10
0

100

200

300

400

500

600

Standard deviation of the injected noise

M
S

E

MSE of the restored signal via
different graph construction methods

Dense graph
Two−connected graph

(a) noise sensitivity test on 8x1 line signal

0 5 10 15 20
0

50

100

150

200

250

Standard deviation of the injected noise

M
S

E

MSE of the restored signal via
different graph construction methods

Dense graph
Four−connected graph

(b) noise sensetivity test on 8x8 2D signal

has been proved a powerful tool for image regularization by many literatures,

it sufferes from the difficulty to estimate the correct graph from noisy samples.

Previous works, such as [4] and [3] utilized an iterative method to approximate the

correct graph via updating the edge weights by the results of the previous loop.

However, the iterative methods heavily relies on the initial values. What’s more

the iteration cost a lot computation power.

To achieve a graph that can represent the signal faithfully in the presence of

noise, and yet avoid the expensive iterations, we propose to draw more edges,

i.e. create a denser graph. We had the intuition that dense graph is more robust to

noises, and it won’t introduce bias that seriously undermine the restoration quality.

Experiments had been carried out to verify our points.

First, we show that adding more edges to the graph enhances the robustness

of the graph. We did the noise sensitivity test on a 8-node 1D signal and an 8x8

2-D signal. Both signals are piecewise smooth. We fix the topology of the graph,

and then use the residual regularization method proposed later to restore from the

noisy sample. The results is shown in the following figures.

It is well demonstrated that the dense graph is less sensetive to the noise, which

means that we can get a graph more similar to the graph constructed on the clean

data.

Next, we show that adding edges properly will not introduce bias that under-

78

0 5 10 15 20
0

50

100

150

200

250

300

Standard Deviation of AWGN

M
S

E
 o

f t
he

 s
ig

na
ls

 r
es

to
re

d
by

 g
ra

ph
 la

pl
ac

ia
n

graph nodes connected across the edge
no graph nodes connected across the edge
4−connect graph

mines the restoration quality. Again we did test on two piecewise smooth signals

with size 8X1 and 8x8 respectively. We add edges to the four-connected graphs, if

the additive edge doesn’t cross different pieces we call it a proper graph, and vice

versa. The results in the following figures showed that if the additive edge is drawn

properly, it will not introduce a bad bias. On the contrary, if the edge is drawn

accross two distinct pieces, it will introduce a serious bias to the reconstructed

signal.

4.5.1 Residual reconstruction with a Dense Graph Laplacian Reg-

ularizer

In this subsection, we discuss the residual reconstruction with graph Laplacian

regularizer. As we discussed in Section 2.2.4, we intend to construct a graph that

has additional edges to make the graph more robust to noise. And the edges should

not violate the underlying structure of the image, i.e, don’t connect two nodes from

two distinctive pieces. And we designed the following method to construct a dense

graph, which can serve our purpose well.

Having identified a subset of pixels in the same depth layer suitable for in-

terpolation, we next define a graph G connecting these pixels for graph-based

optimization as follows. Each pixel in the kernel ellipse is represented as a node

in the graph G. We draw edges densely between each pixel and neighbors in its

adaptive kernel, and each edge weight ep,q between two pixels p and q is computed

79

as:

ep,q = wp,qvp,q,

wp,q = exp

−

∥

∥

∥Ip − Iq

∥

∥

∥

2

2

σ2
I

,

vp,q = exp

−

∥

∥

∥Cp − Cq

∥

∥

∥

2

2

σ2
C

(4.7)

where Ip and Cp are the intensity and Cartesian grid coordinate for pixel p respec-

tively. σI and σC are chosen parameters.

This exponential edge weight assignment is similar to one used in bilateral

filter [47].

Having constructed the graph, we compute the graph Laplacian matrix L de-

scribed in Section 2.2.4 to define the prior probability of the underlining signal so,

a vector composed of the n pixels in the graph [so
1
, . . . , so

n]:

Pr(so) = C exp
{

−d soTLhso
}

(4.8)

where d is a chosen parameter for the distribution and C is chosen so that the

distribution integrates to one. The graph-signal smoothness prior promotes signals

that are smooth with respect to the defined graph.

4.6 MAP Formulation

We now derive the objective of our MAP formulation. Without loss of generality,

let the ns sensed pixels, n − np empty pixels in the block be arranged in order in

signal s; i.e., the signal has initial observation [s1, . . . , sns , 0, . . . , 0]. Let ui’s be a set

of ns length-n unit vectors, [0, . . . , 0, 1, 0, . . . , 0], where the single non-zero entry

is at position i. Assuming the error between the synthesized pixels in s and the

underlining signal so follows a Gaussian distribution. Thus, our likelihood will be

80

the product of a series of probability density functions:

Pr(s | so) =

ns
∏

i=1

1

2l
exp

{

−
‖uT

i
so − si‖22

l

}

(4.9)

Given the defined prior and likelihood, we now formulate a MAP estimation

problem to find the most probable s, where the posterior probability is replaced by

the product of the prior probability and the likelihood:

Pr(so|s) ∝ Pr(s|so) × Pr(so) =

ns
∏

i=1

1

2l
exp

{

−
‖uT

i
so − si‖22

l

}

· C exp
{

−p soTLhso
}

(4.10)

Then the estimation ŝ of so is computed as the argument that minimizes the

negative log of our formulated objective:

min
ŝ

ns
∑

i=1

‖uT
i ŝ − si‖1 + µ ŝTLhŝ (4.11)

where for simplicity µ replaces various constants in previous formulation.

Our new objective is to minimize a weighted sum of: i) the l1-norm of the dif-

ference between interpolated signal x and ns synthesized pixels si’s , ii) smoothness

prior ŝTLhŝ,

(4.11) is an unconstrained quadratic programming problem with the closed

form solution shown below, and thus, can be solved efficiently.

ŝ = (W + µLh)−1(W)so (4.12)

where W is a diagonal matrix with ui’s as its first ns column vectors.

81

Table 4.1: PSNR and SSIM comparison of restored images using different techniques

PSNR SSIM
Proposed LARK BM3D Proposed LARK BM3D

New Tsukuba 1 32.94 32.13 32.53 0.9370 0.9261 0.9364
New Tsukuba 2 30.50 29.84 30.34 0.9128 0.9061 0.9177

New Tsukuba 3 31.96 31.28 30.82 0.9453 0.9313 0.9427
Flowers 31.30 30.04 30.37 0.9219 0.9113 0.9205
Motorcycle 27.62 27.00 27.09 0.8781 0.8670 0.8713
Recycle 34.01 33.25 33.70 0.9453 0.9357 0.9357

4.7 Experiment and Results

4.7.1 Depth Image Interpolation

Experiment Setup

We did extensive experiments to test the proposed restoration algorithm for com-

pressive sensed depth images. The test inputs are artificially created by first de-

grade the public accessible depth images from Middlebury database and the “New

Tsukuba” test sequence with Additive White Gaussian Noise (AWGN) and then

randomly remove a major portion of the pixels in the degraded images. The pro-

posal is then compared against BM3D and LARK. For all three methods, we used

the same pre-filtered images.

Numerical Comparison

We add AWGN with its standard deviation equals 10 to the image and then remove

75% of pixels to create the input. Then we use our proposed scheme and the

competing methods to recover the signal. As for LARK, we pick its output at

the sixth iteration, which have the highest quality. For BM3D, it used the same

prefiltered image used in our method as input. The numerical comparison is

shown in the following table.

We can see that our scheme outperformed the other two methods for all six test

images by PSNR. Especially, we beat LARK and BM3D by up to 1.26dB and 0.93dB

respectively on Flowers. For the evaluation by SSIM, we again outperformed LARK

82

for all six test images, and better than BM3D on five test images except for New

Tsukuba 2.

We would like to highlight that, comparing with the other two State-of-Art

Algorithms, we achieved better quality at a even lower cost. Our proposal provides

a one-shot processing, while LARK involves multiple iterations without providing

a terminating strategy. On the other hand, our proposal only does analysis with in

a bounded local window, avoided the potentially expensive non-local processing,

such as the patch clustering in BM3D.

Visual Comparison

In this subsection, we show the visual comparison of the images. As we can see

from the images shown below. Our proposed image provides sharper edges and

smoother surfaces comparing to the other two competing schemes.

(a) Ground truth (b) Sensed Signal (c) Proposed

(b) LARK (c) BM3D

Figure 4-2: Ground truth, sensed signal and the visual comparison between LARK,
BM3D and our proposal for sequence New Tsukuba 1.

83

(a) Ground truth (b) Sensed signal (c) Proposed

(d) LARK (e) BM3D

Figure 4-3: Ground truth, sensed signal and the visual comparison between LARK,
BM3D and our proposal for sequence New Tsukuba 3.

4.7.2 z-dimensional DIBR with Interpolated Depth Images

Experiment Setup

Further, we did comparison by performing z-dimensional DIBR using the depth

image restored from partial noising sample by different algorithms. In accordance

with the experiments in Chapter 3, we assume the captured image v0 and depth

image d0 are observed from a near-camera, and synthesize the images v′r and d′r as

observed from the far-camera via DIBR. Next, by adding AWGN and removing

the 75% of the pixels to simulate the sparsely sensed depth image ds
r. Then, image

recovering algorithm is applied to create an estimation d̂r of the depth map. Finally,

using v′r and d̂r as the images from reference view, we synthesized back the near-

camera image v̂0 and evaluate the synthesize qualities of v̂0.

We compare among different technique combinations. Especially, we compare

the image synthesized from the combination of the proposed algorithms in Chapter.

3 and 4 versus the following two comparison schemes: a) depth restoration via

LARK and DIBR using VSRS+, and b) depth restoration by classical gaussian

84

(a) Ground truth (b) Sensed signal (c) Proposed

(d) LARK (e) BM3D

Figure 4-4: Ground truth, sensed signal and the visual comparison between LARK,
BM3D and our proposal for sequence Flowers.

kernel regression and DIBR using VSRS+. We used the images from New Tsukuba

sequence and the middlebury stereo data set.

Experiment Results

The numerical results are shown in the following table:

As we can see from Table. 4.2, Our proposal outperforms the other two methods

by up to 5.28dB and 7.39dB in PSNR respectively, and also ranks highest in SSIM

value, which showed the effectiveness of combined application of our proposed

algorithms.

4.8 Chapter Summary

Sparse sensing technique has been proven to be effective in reducing energy con-

sumption by depth sensing. In order to use the sparse sensed depth images for

freeview image /video applications, I proposeda joint denoise-interpolation scheme

for depth images. Specifically, I proposed the piecewise-linear plus residual im-

85

T
ab

le
4.2:

P
S

N
R

an
d

S
S

IM
co

m
p

ariso
n

o
f

sy
n

th
esized

im
ag

es
u

sin
g

d
iff

eren
t

tech
-

n
iq

u
es

PSNR SSIM
Proposed LARK & VSRS+ KR & VSRS+ Proposed LARK & VSRS+ KR & VSRS+

New Tsukuba 1 30.12 25.05 27.53 0.9210 0.9063 0.9035
New Tsukuba 2 29.68 24.79 27.23 0.9049 0.8805 0.8917
New Tsukuba 3 31.16 27.28 27.82 0.9134 0.9082 0.9118
Laundary 30.90 27.04 25.37 0.9315 0.9158 0.9253
Flowers 26.53 24.28 25.09 0.8511 0.8362 0.84s01
Art 28.51 23.23 20.12 0.8934 0.8251 0.8104

86

age model for depth images. Further, the residuals are regularized via the graph

Laplacian prior via a densely constructed graph. The experiments showed that

our proposed scheme can significantly outperform the state-of-art schemes LARK

and BM3D for 1.26dB and 1.18dB, respectively. Further, we evaluated the quality

of DIBR synthesized images using the resonstructed depth maps, the results show

that our proposal can restore the depth map that leads to better DIBR synthesis

quality.

87

88

Chapter 5

Conclusion and Future Work

5.1 Main Contributions

Freeview image / video technology had been very popular and received much at-

tention from both academia and industry, for the reason of its abundant potential

applications. While the quick technology advances in hardware had greatly im-

proved the technology from different aspects, including compression, streaming,

depth sensing, image rendering, its current status is far from satisfying.

In this thesis, improvements of the freeview image / video technology via im-

age interpolation and denoising by GSP are proposed. Especially, from the content

consumer side, we proposed the z-dimensional extension of the system. The GSP-

based image denoising and interpolation method is applied to fill the expansion

holes – a new type of missing pixels occurred during a far-to-near viewpoint syn-

thesis. Especially, we propose to first identify expansion holes via a depth layering

procedure, then formulate a maximum a posteriori problem to estimate the miss-

ing pixels using a graph-signal smoothness prior. Then we propose an iterative

reweighted least square algorithm to solve the proposed MAP problem efficiently.

Experiment results show that visually pleasing images for a z-dimensional view

switch can be successfully synthesized by our proposal. Further, we also used

GSP-based image interpolation and denoising technique to restore depth image

from partial samples. This allows the recent commodity depth sensors on portable

89

devices to work in a compressed sensing strategy, which reduces the energy con-

sumption. We first presented a quadtree-decomposition based image model for

depth images and then applied GSP to reconstruct the depth images. In the ex-

periment, we achieved significantly better performance over the state-of-art BM3D

and LARK schemes. Finally, experiment result proved that the combined usage

of the proposed algorithms is proved to have better image reconstruction qualities

for DIBR applications compared to traditional solutions.

5.2 Discussion

There are still many works to be completed to promote the usage of the proposed

techniques. First, a key issue is the extension of our work from images to videos

While we focus on static images to build the foundations, our work need to be

extended to multiview video to draw interest from outside of academia. To extend

our work to freeview videos, we need consider additional requirements such as

temporal consistency [7, 59]. Second, while the depth restoration takes the samples

from sensors as input, it is also able to tell the sensors which part of the scene is more

important– we need more samples on edges and corners than on smooth surfaces.

Instead of simply treat the depth image sensing and restoration as separated stages,

we can have them work jointly, i.e. guide the sensor to take more samples in more

important areas such as edges and corners, to generate more accurate depth maps.

Further, in our discussion about the z-dimensional image synthesis work, we are

using very accurate depth maps from the laboratories, which is not very likely to be

available in real life applications. The noise model of the DIBR synthesized images

using sensed depth maps, especially compressed-sensed and restored depth maps,

could be very different and needs more research. Also, we can formulate the

depth map restoration problem using the quality of the DIBR synthesized images

as the criteria, instead of the depth map itself, for the purpose of a more practical

evaluation. Finally, while in this thesis only the acquisition and the synthesis stage

of the freeview video technology is discussed, the corresponding requirements on

90

compression and streaming still needs to be discussed.

5.3 Perspectives and Future Directions

Besides all the technical efforts to enhance freeview video technology, we will

need more interesting applications to accelerate the popularization of freeview

video technology. I’m optimistic about the future of free viewpoint technology not

only because of its own potential, but also the rapid advancement of other related

technologies, especially in the Virtual Reality field. Though the free viewpoint tech-

nology is originally developed for conventional 2D displays, I believe its ultimate

media application is Virtual Reality (VR). While currently the VR equipment are

mostly used to display the contents produced by computer graphics techniques,

it can also be used to playback freeview videos, if we use the video from two

viewpoints that moves correspondingly as the input. By using the freeview video

technology as part of the VR implementation, we can expect a natural and fully-

immersive experience, which can hardly be achieved with the current prevailing

VR products merely based on Computer Graphics technologies.

91

92

Bibliography

[1] P. Merkle, A. Smolic, K. Mueller, and T. Wiegand. Multi-view video plus depth
representation and coding. In IEEE International Conference on Image Processing,
San Antonio, TX, October 2007.

[2] W. Mark, L. McMillan, and G. Bishop. Post-rendering 3D warping. In Sympo-
sium on Interactive 3D Graphics, New York, NY, April 1997.

[3] I. Daribo and B. Pesquet-Popescu. Depth-aided image inpainting for novel
view synthesis. In IEEE Multimedia Signal Processing Workshop, Saint-Malo,
France, October 2010.

[4] I. Ahn and C. Kim. Depth-based disocclusion filling for virtual view synthesis.
In IEEE International Conference on Multimedia and Expo, Melbourne, Australia,
July 2012.

[5] S. Reel, G. Cheung, P. Wong, and L. Dooley. Joint texture-depth pixel inpainting
of disocclusion holes in virtual view synthesis. In APSIPA ASC, Kaohsiung,
Taiwan, October 2013.

[6] D. Tian, P.-L. Lai, P. Lopez, and C. Gomila. View synthesis techniques for 3D
video. In Applications of Digital Image Processing XXXII, Proceedings of the SPIE,
volume 7443 (2009), pages 74430T–74430T–11, 2009.

[7] T. Maugey, P. Frossard, and G. Cheung. Temporal and view constancy in an
interactive multiview streaming system. In IEEE International Conference on
Image Processing, Orlando, FL, September 2012.

[8] I. Daribo, G. Cheung, T. Maugey, and P. Frossard. RD optimized auxiliary
information for inpainting-based view synthesis. In 3DTV-Conference, Zurich,
Switzerland, October 2012.

[9] M. Tanimoto, M. P. Tehrani, T. Fujii, and T. Yendo. Free-viewpoint TV. In IEEE
Signal Processing Magazine, volume 28, no.1, January 2011.

[10] D. Farin, R. Peerlings, and P. H. N. de With. Depth-image representation
employing meshes for intermediate-view rendering and coding. In 3DTV-
Con, Kos Island, Greece, May 2007.

93

[11] D. Scharstein and C. Pal. Learning conditional random fields for stereo. In
IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN,
June 2007.

[12] A. Vetro and T. Wiegandand G. J. Sullivan. Overview of the stereo and mul-
tiview video coding extensions of the H.264 / MPEG-4 AVC standard. In
Proceedings of the IEEE, volume 99, no.4, pages 626–642, 2011.

[13] K. Muller, H. Schwarz, D. Marpe, C. Bartnik, and et al. 3d high-efficiency
video coding for multi-view video and depth data. In IEEE Transactions on
Image Processing, volume 22, no.9, September 2013.

[14] R. Hartley. Theory and practice of projective rectification. In International
Journal of Computer Vision, volume 35, no.2, pages 115–127, November 1999.

[15] G. Cheung, A. Ortega, and N.-M. Cheung. Interactive streaming of stored
multiview video using redundant frame structures. In IEEE Transactions on
Image Processing, volume 20, no.3, pages 744–761, March 2011.

[16] X. Xiu, G. Cheung, and J. Liang. Delay-cognizant interactive multiview video
with free viewpoint synthesis. In IEEE Transactions on Multimedia, volume 14,
no.4, pages 1109–1126, August 2012.

[17] R. Krishnamurthy, B.-B. Chai, H. Tao, and S. Sethuraman. Compression and
transmission of depth maps for image-based rendering. In IEEE International
Conference on Image Processing, Thessaloniki, Greece, October 2001.

[18] D. Liu, X. Sun, F. Wu, S. Li, and Y.-Q. Zhang. Image compression with
edge-based inpainting. In IEEE Transactions on Circuits and Systems for Video
Technology, volume 17, no.10, pages 1273–1287, October 2007.

[19] Y. Morvan, D. Farin, and P. H. N. de With. Multiview depth-image compres-
sion using an extended H.264 encoder. In Advanced Concepts for Intelligent
Vision Systems, Lecture Notes in Computer Sciences, volume 4678, pages 675–686,
2007.

[20] S. Shimizu, M. Kitahara, H. Kimata, K. Kamikura, and Y. Yashima. View
scalable multiview coding using 3-D warping with depth map. In IEEE Trans-
actions on Circuits and Systems for Video Technology, volume 17, no.11, pages
1485–1495, November 2007.

[21] A. M. Tekalp, E. Kurutepe, and M. R. Civanlar. 3DTV over IP: End-to-end
streaming of multiview video. In IEEE Signal Processing Magazine, November
2007.

[22] G. Cheung, A. Ortega, and T. Sakamoto. Coding structure optimization for
interactive multiview streaming in virtual world observation. In IEEE Interna-
tional Workshop on Multimedia Signal Processing, Cairns, Queensland, Australia,
October 2008.

94

[23] G. Cheung, A. Ortega, and N.-M. Cheung. Bandwidth-efficient interactive
multiview video streaming using redundant frame structures. In 2009 APSIPA
Annual Summit and Conference, Sapporo, Japan, October 2009.

[24] H. Takeda, S. Farsiu, and P. Milanfar. Kernel regression for image processing
and reconstruction. In IEEE Trans. on Image Processing, volume 16, no.3, pages
349–366, Feb. 2007.

[25] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The
emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains. In IEEE Signal Process-
ing Magazine, volume 30, no.3, pages 83–98, May 2013.

[26] F. K. Chung. Spectral graph theory. American Mathematical Society, 1997.

[27] W. Hu, X. Li, G. Cheung, and O. Au. Depth map denoising using graph-based
transform and group sparsity. In IEEE International Workshop on Multimedia
Signal Processing, Pula, Italy, October 2013.

[28] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovacevic. Signal denoising on
graphs via graph filtering. In IEEE Global Conference on Signal and Information
Processing, Austin, TX, December 2014.

[29] J. Pang, G. Cheung, A. Ortega, and O. Au. Optimal graph laplacian regulariza-
tion for natural image denoising. In IEEE International Conference on Acoustics,
Speech and Signal Processing, Brisbane, Australia, April 2015.

[30] S. K. Narang, A. Gadde, and A. Ortega. Signal processing techniques for
interpolation of graph structured data. In IEEE International Conference on
Acoustics, Speech and Signal Processing, Vancouver, Canada, May 2013.

[31] P. Wan, G. Cheung, D. Florencio, C. Zhang, and O. Au. Image bit-depth
enhancement via maximum-a-posteriori estimation of graph ac component.
In IEEE International Conference on Image Processing, Paris, France, October
2014.

[32] X. Liu, G. Cheung, X. Wu, and D. Zhao. Inter-block soft decoding of JPEG
images with sparsity and graph-signal smoothness priors. In IEEE International
Conference on Image Processing, Quebec City, Canada, September 2015.

[33] W. Hu, G. Cheung, A. Ortega, and O. Au. Multi-resolution graph fourier
transform for compression of piecewise smooth images. In IEEE Transactions
on Image Processing, volume 24, no.1, pages 419–433, January 2015.

[34] U. Luxburg. A tutorial on spectral clustering. In Statistics and Computing,
volume 17, no.4, pages 395–416, December 2007.

95

[35] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assessment:
From error visibility to structural similarity. In IEEE Transactions on Image
Processing, volume 13, no.4, pages 600–612, August 2005.

[36] C. Zhang, Z. Yin, and D. Florencio. Improving depth perception with motion
parallax and its application in teleconferencing. In IEEE International Workshop
on Multimedia Signal Processing, Rio de Jeneiro, Brazil, October 2009.

[37] S. Reichelt, R. Hausselr, G. Futterer, and N. Leister. Depth cues in human visual
perception and their realization in 3D displays. In SPIE Three-Dimensional
Imaging, Visualization, and Display 2010, Orlando, FL, April 2010.

[38] B. Macchiavello, C. Dorea, E. M. Hung, G. Cheung, and W. Tan. Loss-resilient
coding of texture and depth for free-viewpoint video conferencin. In IEEE
Transactions on Multimedia, volume 16, no.3, pages 711–725, April 2014.

[39] L. Toni, T. Maugey, and P. Frossard. Correlation-aware packet scheduling in
multi-camera networks. In IEEE Transactions on Multimedia, volume 16, no.2,
pages 496–509, February 2014.

[40] L. Toni, T. Maugey, and P. Frossard. Optimized packet scheduling in multiview
video navigation systems. In IEEE Transactions on Multimedia, volume 17, no.8,
pages 1604–1616, September 2015.

[41] D. Ren, G. Chan, G. Cheung, and P. Frossard. Coding structure and replication
optimization for interactive multiview video streaming. In IEEE Transactions
on Multimedia, volume 16, no.7, pages 1874–1887, November 2014.

[42] D. Ren, G. Chan, G. Cheung, V. Zhao, and P. Frossard. Anchor view allocation
for collaborative free viewpoint video streaming. In IEEE Transactions on
Multimedia, volume 17, no.3, pages 307–322, March 2015.

[43] Y. Mao, G. Cheung, A. Ortega, and Y. Ji. Expansion hole filling in depth-
image-based rendering using graph-based interpolation. In IEEE International
Conference on Acousitics, Speech and Signal Processing, Vancouver, Canada, May
2013.

[44] I. Daubechies, R. Devore, M. Fornasier, and S. Gunturk. Iteratively re-weighted
least squares minimization for sparse recovery. In Commun. Pure Appl. Math,
2009.

[45] F. Battisti, E. Bosc, M. Carli, P. Le Callet, and S. Perugia. Objective image
quality assessment of 3D synthesized views. In Signal Processing: Image Com-
munication, volume 30, pages 78–88, January 2015.

[46] J. Bigun and G. Granlund. Optimal orientation detection of linear symmetry.
In Proceedings of the IEEE International Conference on Computer Vision, london,
UK, 1987.

96

[47] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images.
In Proceedings of the IEEE International Conference on Computer Vision, Bombay,
India, 1998.

[48] Y. Mao, G. Cheung, and Y. Ji. Image interpolation during dibr view synthesis
using graph fourier transform. In 3DTV-Conference 2014, Budapest, Hungary,
July 2014.

[49] A. Buades, B. Coll, and J. Morel. A non-local algorithm for image denoising. In
IEEE International Conference on Computer Vision and Pattern Recognition (CVPR
2005), San Diego, CA, June 2005.

[50] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the
H.264/AVC video coding standard. In IEEE Transactions on Circuits and Systems
for Video Technology, volume 13, no.7, pages 560–576, July 2003.

[51] H.S. Hou and H.C. Andrews. Cubic splines for image interpolation and digital
filtering. In IEEE Transactions on Acoustic, Speech, and Signal Processing, volume
26, no.6, pages 508–517, January 1978.

[52] K. Bredies and M. Holler. A TGV-based framework for variational image de-
compression, zooming and reconstruction. part i: Analytics. In SIAM Journal
on Imaging Sciences, volume 8, no.4, pages 2814–2850, 2015.

[53] Y. Romano, M. Protter, and M. Elad. Single image interpolation via adaptive
nonlocal sparsity-based modeling. In IEEE Transactions on Image Processing,
volume 23, no.7, pages 3085–3098, July 2014.

[54] X. Gao K. Zhang, D. Tao, and X. Li. Single image super-resolution with non-
local means and steering kernel regression. In IEEE Transactions on Image
Processing, volume 21, no.11, pages 4544–4556, November 2012.

[55] G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise
linear estimators: From gaussian mixture models to structured sparsity. In
IEEE Transactions on Image Processing, volume 21, no.5, pages 2481–2499, May
2012.

[56] H. K. Arachchi, S. Dogan, X. Shi, E. Ekmekcioglu, S. Worrall, A. Franck,
C. Hartmann, T. Korn, and P. Kovacs. Distribution of multi-view entertainment
using content aware delivery systems diomedes. Technical Report FP7-ICT-
247996, European Commission, Octobor 2011.

[57] P. T. Kovacs, A. Barsi, A. Ouazan, B. Gunel, D. Doyen, U. Schreiber, D. Passoni,
F. Zilly, A. Laborie, and G. Berenger. Multimedia scalable 3d for europe.
Technical Report FP7-ICT-247010, Holografika, June 2011.

[58] A. Chuchvara, M. Georgiev, and A. Gotchev. Cpu-efficient free view synthesis
based on depth layering. In 3DTV-Conference 2014, Budapest, Hungary, July
2014.

97

[59] Z. Liu, G. Cheung, J. Chakareski, and Y. Ji. Multiple description coding and
recovery of free viewpoint video for wireless multi-path streaming. In IEEE
Journal of Selected Topics in Signal Processing, volume 9, no.1, pages 151–164,
2015.

[60] Y. Mao, G. Cheung, and Y. Ji. Graph-based interpolation for dibr-synthesized
images with nonlocal means. In Symposium on Graph Signal Processing in IEEE
Global Conference on Signal and Information Processing (GlobalSIP), Austin, TX,
December 2013.

98

List of Publicated Journals

[1] Y. Mao, G. Cheung, and Y. Ji. On constructing z-dimensional dibr-synthesized

images. In IEEE Transactions on Multimedia, 2016.

99

100

List of Publicated Conference Papers

[1] Y. Mao, G. Cheung, C. Lin, and Y. Ji. Image classifier learning from noisy

labels via generalized graph smoothness priors. In IEEE IVMSP Workshop 2016,

Bordeaux, France, July 2016.

[2] C.Yang, Y. Mao, G. Cheung, V. Stankovic, and K. Chan. Graph-based depth

video denoising and event detection for sleep monitoring. In IEEE International

Workshop on Multimedia Signal Processing 2014, Jakarda, Indonesia, July 2014.

[3] Y. Mao, G. Cheung, and Y. Ji. Image interpolation during dibr view synthesis

using graph fourier transform. In 3DTV-Conference 2014, Budapest, Hungary,

July 2014.

[4] Y. Mao, G. Cheung, and Y. Ji. Graph-based interpolation for dibr-synthesized

images with nonlocal means. In Symposium on Graph Signal Processing in IEEE

Global Conference on Signal and Information Processing (GlobalSIP), Austin, TX,

December 2013.

[5] Z.Liu, Y. Mao, N. Lu, Y. Ji, and S. Shen. Resource allocation for wwan video

multicast with cooperative local repair. In IEEE International Conference on

Communications 2013, Budapest, Hungary, July 2013.

[6] Y. Mao, G. Cheung, A. Ortega, and Y. Ji. Expansion hole filling in depth-

image-based rendering using graph-based interpolation. In IEEE International

Conference on Acousitics, Speech and Signal Processing, Vancouver, Canada, May

2013.

101

[7] Y. Mao, G. Cheung, and Y. Ji. Depth-layer-based multiview image synthesis &

coding for interactive z- and x-dimension view switching. In SPIE VIPC 2013,

Burlingame, CA, January 2013.

102

