K

AL (B 243 )

(AR

paill

%

%

AL GO B A

EINVE I AL R T

Tao Zan

T (1 )

HAF K% 1880 &

Rk 2849 H 28 H

2
e
4
=
5
_\2.
0
e
i
&
S

&

W
=F
N
Sm
=
w
(@)
A
W
—
i
¢
IS

A Putback—Based Approach to Bidirectional Programming

¥ & iz W OIRIC

R TR E
;RGO I R
B Inpg sz

B ®E iz

B e ER ERES

i

i

R

(ll




(oA 2)
(Separate Form 2)

MmN DOEE
Summary of thesis contents

Bidirectional transformation is a promising approach for maintaining consistency between two related information
(we call them source and view), and many bidirectional programming languages are designed that let programmer
merely write one program which denotes both a forward transformation (get) from source to view and a backward
transformation (putback) that updates the source with the view. Since usually source and view are not in a
one-to-one correspondence, the backward transformation (change propagation from view back to source) is
inherently ambiguous. Nevertheless, existing bidirectional transformation languages focus mainly on enforcing
consistency and provide developers only limited control over the backward transformation. Programmer writes the
get transformation, and one “suitable” putback transformation will be derived from this get. While in practice it is
impossible to decide which one is “suitable” in general and what is more, programmer has no choices of defining
the putback behavior he/she wants. We proposed a new programming by update paradigm for putback-based
bidirectional programming based on the fact that a well-behaved put uniquely determines get. If we can design a
user-friendly putback-based bidirectional programming language that lets programmer write the putback function
which behaves simply like an update on the source and the language is well-designed to satisfy the
well-behavedness, a unique get function can be derived for free. In this dissertation, we designed and implemented a
putback-based bidirectional programming language BiFIuX which can be used in many real world applications such
as program refactoring, and self-adaptive systems. We also implemented a bidirectional update library for relational
database.

We proposed a new core bidirectional update language for XML structured data which consists of bidirectional
updates, patterns, and XML related expressions and paths. Since this core language contains many XML related
features, it is hard to design a clear bidirectional semantics. So we distilled another clean generic core bidirectional
programming language BiGUL from the core of the BiFluX language. BiGUL is a combinatorial language that
consists a set of putback combinators which can be used to compose large bidirectional programs. The language is
fully verified to guarantee that any program written in BiGUL is well-behaved. It has been implemented in Haskell
and served as the core language for the putback-based bidirectional programming language BiFIuX.

BiFluX is our first try of designing putback-based bidirectional programming languages, which targets XML
structured data. XML is widely used in data exchanging on the web, and existing works such as bidirectionalization
of XQuery has the same problem as explained before that programmer has no choices of specifying the backward
behavior. We design the bidirectional programming language BiFIuX simply as an update language for
programmers that they only need to write the putback of a bidirectional transformation as an update program that
uses a view XML to update a source XML. The most significant design of BiFluX is the source-view matching
which matches a sequence of source elements with a sequence of view elements either by position or by some keys
and each matched source-view pair is again handled by another subprogram. BiFIuX is expressive enough that
supports if-then-else condition, case analysis, pattern matching, and recursive definition of a bidirectional update
program. A BiFIuX program is firstly normalized into the core XML bidirectional update language and then
compiled into BiGUL. The well-behavedness of a BiFluX program is guaranteed by the underlying BiGUL.

We also implemented a bidirectional update library Brul for relational database that provides two library functions to



(oA 2)
(Separate Form 2)

simply let programmer write update program by using view table to update source tables. The update program can
also be interpreted as a query such as selection, projection and join in the get direction. The library function align
covers the selection and projection, and unjoin covers join in relational algebra. Brul is more powerful than relational
lenses, since it only provides limited control of the putback direction, while Brul allows programmer to describe
flexible update strategies.

Our putback-based bidirectional programming languages have been used in many real world applications. Cheng et
al. use BiFIuX to support reflecting updates on refactored code to the original source code in Java and vice versa.
Lionel et al. utilize BiFluX to implement the BXauthZ which is a policy language to express attribute based rules on
XML views. Zhu et al. propose a declarative bidirectional language BiYacc which supports reflective printing and
parsing implemented on top of BiFluX. Zhao et al. designed a rule-based language vRule for self-adaptation system
which is implemented based on BiFIuX. Colson et al. use BiGUL to implement a reusable self-adaptive system
which synchronizes the configuration files of different servers such as Apache and Nginx.



ARk 3)
(Separate Form 3)
WEimXoEEEROEE
Summary of the results of the doctoral thesis screening

AL, WFREBROBRDLIENEERICFHEBRTE LTI/ I7 I 7 SiEOG L EH
BT 20 THD, WERMEHBREIT, VAT X 52X~ v T —X|ZEH LT,
&~6y%?-&h@ﬁ%%y~x?~&’ﬁ%éﬁé*kﬁﬂ%@%”®ﬁﬁ&®:k
Thod, HIFTFT—F_R—27% B a—FHMEEE L THbA TR, THEIX
ﬁbw7mﬁ7\/7%7w&@m%/7FWIT%%®$%&LTEE%@U va=24
TIVIERBOBENOREL LN AFRMERSENREINTND, ZNUOORFREMRS
R, EAMSEICYEROBEREZELEL 2 LICLoT 2070/ T A EELEBTYH
WA THLRERITTEDL91E2D, L, HIEEBRICK LT —RICE O WL BN
E#é@f\n~$@%ﬂ%ﬁ%bk@%@%§mmﬁﬁf%f““@@%Métﬁﬁ
MERIMLTWD, —F, BEBRPEENIEZNICE DAL AME—IZRED &) B
RAERN S DN, WEBRITIEEBR LD 2RV EMETH L2, TN % @R TR
TELDMEINIIRMRZMETH H, Kin ﬁ\ﬂﬁmfmﬁ?iy7 TR D Wi
R ETOIHLVWEEREAREL MTEOFEHNSEOIEBICL Y WEHAZ il e LT,
jMﬁ@ﬂﬁW%@%%ﬁb%#mﬂﬁﬁ%@DmBmhm&UT TV D W7 ) 2 A
LT W AR S EBrul %Gt - EEBL - IBHZRLTWD, ZHicky, AL
KihbFr2MGm7a oI 0 72 XBETH2RENTE, XFMEBOERIL~DKE R
BRI s TW5D,

ARSI FEFECTRHRBINTEY | REENLHERLINATND,

FIEILFm Ch D, MO R, FFEEMN., TERERZR X EEOMER Z BT
ol

FEOEIT MM OBEN TH D, WITmEBR OB & L mik, NEALH % Lfh & 42 W5
MBS EORI &2 OMBER, WEWZ g & 3 2 5 10 2 20O BRI 7e Pl A 1220
TiEmLTWS,

HFIFETIL, MAMERIZB T D TWEH Pa—2FHALTY —2% [HH) 75 &
WIBZFTICESO T XMEEHRTL2-OOFEHSELILEL, WERLZEZRT 7200
AT EBORFERLTCND, T, Z20aT7 S EXNMLICE LTIV AN R LDIZT S
ZEMNTEDLERLTWVD,

FARETIL, 3| CTEm L TV D a7 5B E ST, XMLE B H 7 5 7= O %A 555
FluXZ 4Lk U O XMLZ X R & F 58 L WG M A # 5 FEBiFIuX O EH & EBZFEm L T 5D,

EHE T, FI3IFEONHAMRaTEHBICESVT, BT —F_XR—Z2 LOFKFFEDOE 2 —
@Eﬁ%%%iﬁ_ﬁﬁfééﬁﬁﬁﬁ@m%mmw Xt & EHAHERL TV D,

EOEIIM LD E LD EAKROMETH 5 BiFLuXiZMaFsE 7/ v — 71k a—RY 77
75'U/7\ a—F7uvy, BHORHEIGVATANSHSRD Z b 2@ E L, BELLEZUXE
Bar Kl 325 —HEONFMEBREBFEOHHAB THEDTHD LiEwmOT2 bz, 57
@m%kyx%A@%EM*owf@ﬁ%®&E% CTW5,

FEEECBWT, HEEIZERORNRFICH > THBEEZITW., TOHEERER L DHEER
ISEEATV, IR REIE N ST, fmo\ A SC SR VR A B SCEERR S LR (BEREH V)

EF T EEBEY — 27 v a v FamseAR, WEMER IR, LEEESER ARDHEE L
WO EBEHT VWS, F-. BARLEVAT ALY 27 CHHIZA Y 0 — RTX 5 X
HIT o TS,



(anaR= 3)
(Separate Form 3)

PLb, Kimsecix, WEMEBOFERICHT T, Wiz ki 23N mE#HlRT o s
TIVITEREOEBET, WEBREZEEE T2 WG MERZ RFEICHEET 2 S4B
ETM I IV RERS AT, AMRIEINGRERE ~JEEE b LD Av— ]
VAT ARHOHE c BOH#LY 7 by T R EEAc OBMERRY VAT ADOHERE~DIG
AR TEDL, Lo T 6 XDEALZERE —HT, KPR LT F a2 RET D01+
DLV THDLHOEHELT,





