
A Putback-Based Approach to Bidirectional

Programming

Tao Zan

Doctor of Philosophy

Department of Informatics

School of Multidisciplinary Sciences

SOKENDAI (The Graduate University for

Advanced Studies)

A Putback-Based Approach to
Bidirectional Programming

by

Tao Zan

Dissertation

submitted to the Department of Informatics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

SOKENDAI (The Graduate University for Advanced Studies)
July 2016

Abstract

In Kevin Kelly’s new book The Inevitable, he said that the most important thing
you need to focus is change. Even every change is small and unintentionally
to be omitted, but it happens anytime and anywhere. If you do not keep your
software up to date, the inconsistency will finally leads to a huge gap which
may cause a big disaster. How to correctly propagate the changes and keep
them consistency is a critical issue. Bidirectional transformation is a promising
approach for maintaining consistency between two related information (we call
them source and view), and many bidirectional programming languages are
designed that let programmer merely write one program which denotes either a
forward transformation (get) from source to view or a backward transformation
(putback) that updates the source with the view.

Since usually source and view are not in a one-to-one correspondence, the
backward transformation (change propagation from view back to source) is
inherently ambiguous. Nevertheless, existing bidirectional transformation lan-
guages focus mainly on enforcing consistency and provide developers only
limited control over the backward transformation, solving the latent ambiguity
via default strategies whose behavior is unclear to developers. We propose a new
programming by update paradigm in which developers write putback programs
merely as updates that succinctly describe how a view can be used to update
a source, such that the bidirectional behavior is fully determined. We have
implemented BiFluX, which is a bidirectional update language for XML struc-
tured data that supports programmer in specifying flexible update strategies.
Based on the core language of BiFluX, we built a clean core language BiGUL
for putback-based bidirectional programming and also implemented a library
Brul for relational database. Our putback-based languages have been used in
refactoring, parsing and printing, and self-adaptive systems.

iii

Acknowledgements

When I was a high school student, my dream was to get in one of the top
universities in China and find a decent job. After entering the University of
Science and Technology of China, my alumni who are top researchers around
the world gave me a huge impression about their pure passion of pursing the
truth and discovering unknown knowledge. I want to be one of them, then I
went to Tokyo where I stayed fives years for pursing my own truth.

I am especially grateful to Professor Zhenjiang Hu for his delicate supervi-
sion of my research. Before I joined the Programming Research Lab, I have no
experience of doing research. Professor Zhenjiang Hu patiently guided me to
survey the related works and finally find the key research problem. He always
gives me wise suggestions and strong support, he taught me how to write a
good research paper hand by hand, he cared about me even more than myself,
he is a role model for me not only in research but also how to behave.

I must thank Professor Hiroyuki Kato and Professor Soichiro Hidaka for
being my co-supervisors. Professor Hiroyuki Kato gives me a lot of useful
advices and always asks important questions during my presentation to ensure
I am really clear about the technical detail. Professor Soichiro Hidaka care-
fully introduces the GRoundTram system from which I started my research
life. He always check my slides seriously to make sure I do not have any
misunderstanding and gives me a lot of useful suggestions.

I must also thank our Postdoc researcher Hsiang-Shang Ko. He is really an
extremely excellent researcher. Even he is not one of my supervisors, but he
really did a lot of work in helping me sort out my research, giving advices, and
guiding me.

v

vi Acknowledgements

I would like to thank the members of my dissertation committee, Professor
Shin Nakajima, Professor Nobukazu Yoshioka, Professor Keisuke Nakano, and
Professor Kanae Tsushima for giving insight comments.

I would like to thank all other members in our lab, Yu Liu, Chong Li, Lionel
Montrieux, Atsushi Koike, Le Duc Tung, Zirun Zhu, and Yongzhe Zhang for
having a great research life together. And to all the intern students that helped
me a lot through the journey.

Not less important, I would like to thank my parents, my wife for supporting
me all the time, without your support I could not go so far.

Tao Zan National Institute of Informatics & Tokyo, 2016

Contents

1 Introduction 1

1.1 Research Objective . 1

1.2 Contributions . 5

1.3 Overview of the Thesis . 7

2 Bidirectional Transformation 9

2.1 The Birth of Bidirectional Transformation 9

2.2 Lenses . 13

2.2.1 Definition . 13

2.2.2 Properties . 15

2.3 Limitations of Get-Based Lenses 18

2.4 Putback-Based Bidirectional Transformation 19

2.4.1 Mathematical Propositions 20

2.4.2 Well-behavedness from Putback 22

2.5 Survey . 23

2.5.1 View Updating . 24

2.5.2 Bidirectional Programming Languages 24

vii

viii Contents

3 Core Language 29

3.1 From Put to Update . 30

3.2 Core XML Update Language . 31

3.2.1 Patterns . 32

3.2.2 Expressions and Paths . 33

3.2.3 Bidirectionalizable Updates 36

3.2.4 Unidirectional Updates . 40

3.3 Generic Core Language . 40

3.3.1 Syntax and Semantics . 41

3.3.2 Well-behavedness . 48

4 A Bidirectional Functional Update Language for XML 51

4.1 Syntax, Informal Semantics, and General Framework 52

4.1.1 Our Running Example . 52

4.1.2 Syntax and Informal Semantics of BiFluX 55

4.1.3 Bidirectional Execution . 62

4.1.4 Other Update Strategies . 66

4.1.5 General Framework . 67

4.2 BiFluX to Core Update Normalization 68

4.2.1 Bidirectional Update Normalization 69

4.2.2 Unidirectional Update Normalization 72

4.3 Core Compilation . 75

4.3.1 Overview of Compilaton 75

4.3.2 XML Values and Regular Expression Types 78

4.3.3 Compilation of Bidirectionalizable Updates 81

Contents ix

4.3.4 Compilation of Expressions, Paths and Patterns 88

4.4 Related Work . 91

4.4.1 XML Update Languages . 91

4.4.2 XML View Updating . 91

4.4.3 Bidirectional XML Languages 92

4.5 Conclusion . 92

4.6 Discussion . 93

5 A Putback-Based Library for Updatable Views 95

5.1 Motivation of Design . 95

5.2 Brul Library . 98

5.2.1 Align . 99

5.2.2 Unjoin . 100

5.3 Example . 102

5.3.1 Update Single Source . 103

5.3.2 Update Multiple Sources 107

5.4 Implementation . 109

5.4.1 Relational Database Representation 109

5.4.2 Syntax Sugar of BiGUL in Template Haskell 110

5.4.3 Align . 111

5.4.4 Unjoin . 113

5.5 Related Work . 119

5.6 Conclusion . 121

6 Conclusion 123

x Contents

6.1 Summary . 123

6.2 Future Work . 125

Bibliography 129

Chapter 1

Introduction

1.1 Research Objective

The rapid progress of technology lets us surf the Internet anywhere with any
devices conveniently, and nowadays people usually possess more than one smart
device such as a laptop, a tablet, and even several mobile phones. Normally we
prefer each device to be used in a particular situation that fit our needs. For
example, we may lookup research papers through Google Scholar Search at the
lab using desktop computer instead of using mobile since the screen size of
desktop is big enough and desktop operation systems are more convenient for
other research activities (e.g., implement algorithms, write papers, etc.); we may
read Blog posts through Safari using iPhone during the transportation other
than using a laptop since mobile devices are small and lightweight; we may
watch YouTube movies at home through tablet or iPad since it provides touch
facilities and is easy to be brought everywhere (e.g., during eating breakfast,
before sleeping in the bed, etc.) and also the screen size is big enough compared
with mobile devices.

As Kevin Kelly says in his new book The Inevitable [45] that the new tech-
nology greatly facilitates our daily lives but also introduces new problems.
Typically, what we discuss here is the synchronization of information between
different devices. Intuitively, the first solution comes to our mind would be

1

2 1 Introduction

cloud synchronization services such as Dropbox [2], Google Drive [3], and Mi-
crosoft OneDrive [6]. I agree that they work well for synchronizing documents
and pictures at the file level, but what I intend to say is more fine-grained
synchronization services that work with structured data. For example, syn-
chronization of bookmarks between different browsers. Since different web
browsers have different bookmark formats, it is impossible to directly copy
from one to another.

Concretely, the following is a demo bookmark file that used in Netscape [71]
which is an HTML file with the bookmarks stored inside the <dl> tag. A
bookmark is represented inside a <dt> tag including an url and the title. A
folder that stores a set of bookmarks is wrapped by a <dd> tag and the name of
this folder is wrapped by a <h3> tag.

<html>

<head>My Bookmarks</head>

<body>

<h1>my bookmarks</h1>

<dl>

<dt>Foo's</dt>
<dd>

<h3>my folder</h3>

<dl>

<dt>stefanzan</dt>

</dl>

</dd>

<dt>Bar's</dt>
</dl>

</body>

</html>

While the following is another demo bookmark file that in the XBEL [7] for-
mat, which directly uses the <folder> tag for bookmark folders and <bookmark>

tag for bookmarks.

<xbel>

1.1 Research Objective 3

<title>NII bookmarks</title>

<folder>

<title>National Institute of Informatics</title>

<bookmark href="http://www.nii.ac.jp/en">

<title>English</title>

</bookmark>

<bookmark href="http://www.nii.ac.jp">

<title>Japanese</title>

</bookmark>

</folder>

<folder>

<title>my folder</title>

<bookmark href="stefanzan.com">

<title>stefanzan</title>

</bookmark>

</folder>

<bookmark href="bar.edu">

<title>Bars</title>

</bookmark>

</xbel>

In order to synchronize between these two bookmark files, a naive solution
would be manually implementing two unidirectional transformations that one
from Netscape to Xbel and another one from Xbel to Netscape, and also proving
they are work correct together. This ad hoc solution is time inefficient and
error-prone, since we have to write two transformations while these two are
somehow related and any changes of the format requires the refactoring of both
transformations carefully in order not to break the consistency.

Lenses [28] originated from the view updating problem in the database
research area elegantly solves this problem. A lens consists of a pair of two
transformations: a forward transformation get that extracts information from
source to construct a view and a backward transformation put that propagates
the updates on the view back to the source, which can be used to ensure the
consistency between two related information (a source and a view). Each lens

4 1 Introduction

has to satisfy the following two properties:

put s (get s) = s (GetPut)
get (put s v) = v (PutGet)

to guarantee the correctness which is called well-behavedness. Lenses are
also compositional which is convenient for composing small lenses together
to achieve large bidirectional programs. Programmers use lenses to simply
write program like writing a unidirectional forward transformation, while it
can be interpreted as a backward transformation as well. Since each lens is
well-behaved, the program written use lenses are correct by construction.

Even the lenses framework provides a new direction to do synchronization,
but this bidirectional programming style is based on an impractical assump-
tion [26]:

For a forward transformation get, it is sufficient to derive a suit-
able put that can be combined to form a well-behaved bidirectional
transformation.

This is because in general the forward transformation get is not injective,
and thus there could be many possible backward transformation puts together
with this get to form well-behaved lenses. The put function can not be uniquely
determined by the get, we call it the nondeterminism of put. Lenses solve the
ambiguity by providing one default put semantics, but this default one may not
be acceptable in practice.

For example, suppose we have a source s which is basically a list of integers:
[1, 2, 3, 4, 5], the get function we define (in Haskell [52]) is to extract all
the odd numbers.

get s = filter isOdd s

filter is the Haskell built-in function, and isOdd is a function that checks a
given number is odd or not. The result of get s is [1, 3, 5]. If we change the
view to [1,3], what the source would be ?

In fact, there are more than one puts for this get function, we can choose
either to delete the number 5 in the source or change from 5 to arbitrary even

1.2 Contributions 5

number. Using the traditional lenses, it is hard to encode arbitrary correct
update strategies into the put function as it only provides a default one.

Consider another example, source is still a list of integers: [1, 2, 3, 4, 5],
and the get function is the summation of the source list.

get s = sum s

sum is a built-in function in Haskell that computes the summation of a list.
The result of get s is 15. If we update the view to 20, there are many possible
ways to modify the source list. For example, we can insert a new element 5
before the first or after the last of the list, update the first or the last element in
the list by increasing 5, increase each element in the source by 1, and so on.

1.2 Contributions

In this dissertation, our contributions can be summarized as follows: 1. We
proposed a new programming by update paradigm that let programmers write
bidirectional transformations as simple as merely describing flexible updates
on the source. Since the update program is in fact the put direction of a
bidirectional transformation, generally we call it putback-based approach. Due
to the powerfulness of put, the corresponding get will be uniquely determined.
2. We designed and implemented a typical bidirectional programming language
BiFluX following this paradigm for XML structured data, and we lifted the core
XML update language of BiFluX to a generic update language that is served
as the general core for our putback-based bidirectional programming. 3. We
implemented a bidirectional update library for relational database to solve the
view updating problem.

We claim that to deal with the nondeterminism of put, bidirectional program-
ming languages should be designed in a better way. We managed to achieve
that by providing a programming by update paradigm to bidirectional program-
ming that lets programmers write bidirectional programs as updates. Our
language design is based on the theory (2.4.1) which states that a well-behaved
put can uniquely determine the get function, in sharp contrast with the truth

6 1 Introduction

that get cannot always uniquely determine the put. Since a well-behaved put can
uniquely determine the get, if we carefully design the bidirectional program-
ming language from the perspective of put, we will not suffer from choosing a
proper get for a given put anymore since it is unique.

We have designed and implemented BiFluX [73, 74, 65, 75] which is short for
Bidirectional Functional lightweight update language for XML. BiFluX borrows the
language syntax from FluX [15] which is a functional update language for XML,
and several new syntaxes are added such as an important UPDATE FOR VIEW syn-
tax that means updating a source XML with a view XML, and pattern matching
for decomposing source/view into small components. BiFluX allows program-
mers to write bidirectional programs by only concentrating on describing how
to decompose source/view and specify the update policies he/she wants to
update the specific part of the source using the corresponding view component,
and a unique forward transformation from source to view can be derived free
from the written update program. We provide programmers with full control
over the puts which is the key contribution of our putback-based design. This
is a big step of moving forward for bidirectional programming in order for it to
be useful in real word applications, as the behavior of a bidirectional program
can be fully controlled by programmer.

Based on the core language of BiFluX, we implemented a core language
BiGUL [46] for generic data. The goal of designing BiGUL is to build a clean
and solid foundation for higher-level putback-based languages. BiGUL is concise
that only consists of a set of essential and orthogonal bidirectional statements,
such as source/view rearrangement, case analyses, production for handling
larger source and view, composition for creating complex programs. BiGUL is
completely formally verified in the dependently typed programming language
AGDA to guarantee that any program written in BiGUL is well-behaved.

Brul [72] is short for Bidirectional relational update library. View updating
has been intensively studied in relational database community, Keller [43, 44]
systematically proposed a series of update translation algorithms for different
query (selection, projection, and join) and different update operation on the view
(replacement, deletion, and insertion). He proposed a dialog based approach
that lets user to choose the update translation policy at the view definition time

1.3 Overview of the Thesis 7

which is kind of combination of the get and put function, but still lacks of a good
language to support that. We designed the library Brul which provides basic
put combinators that can 1) let programmers directly describe the put behavior,
and 2) give programmers full control of the bidirectional behavior of their
programs, since the put behavior uniquely determines the get behavior. Brul is
implemented on top of the generic bidirectional update language BiGUL. The
well-behavedness of Brul can thus be easily proved. Brul is more powerful
than the relational lenses that all the operations of relational lenses can be
encoded in Brul .

Our putback-based languages are used in many applications such as parser
and pretty-printer [77], refactoring [16], attribute-based access-control [55], and
self-adaptive systems [20, 76].

1.3 Overview of the Thesis

Chapter 2 gives an introduction of bidirectional transformations, shows the
limitations of the current approaches, gives the theory based of our putback-
based approach, and finally gives a survey of related work. Chapter 3 first
explains the relation between put and update, then introduces our core XML
update language and the generic bidirectional core update language. Chapter 4
introduces the bidirectional functional update language BiFluX which is built
for XML data. Chapter 5 introduces Brul which is a putback-based library for
relational database. Chapter 6 concludes the dissertation.

8 1 Introduction

Chapter 2

Bidirectional Transformation

Bidirectional transformations (BX) can be used to keep different information
consistent in a concise way: when either one is changed, a predefined bidirec-
tional transformation program can propagate the changes from one to another
to make them synchronized.

In this chapter, we will first explain the birth of bidirectional transformation
and three basic approaches for synchronizing data, i.e. manually write two
functions, bidirectionalization of an existing unidirectional language, and design
domain specific bidirectional programming languages such as lenses typically.
Since our work is based on the lenses solution, we introduce the lenses in detail,
and show the limitations of current approaches. Finally, we give a survey of
works on bidirectional transformations.

2.1 The Birth of Bidirectional Transformation

Bidirectional transformations are a mechanism for maintaining consistency
between two or more related informations. The idea of bidirectional transfor-
mation comes from the view updating problem [8] in relational database. In
relational database, a source table can be really huge that contains millions to
even billions of records, so it is nearly impossible to directly manipulate data
on this huge table. A proper solution is to create a smaller view from this big

9

10 2 Bidirectional Transformation

s

V

V’

S
query

S’

V

V’

S

updateupdate translate

Figure 2.1 View Updating

source, then it can be manipulated by database programmers easily. When the
view is updated, the changes on the view need to be reflected back to the origi-
nal source table as shown in Figure 2.1 since the view and the original source
table become inconsistent. Researchers in relational database area proposed
many approaches [8, 23, 31, 43, 47] to correctly propagate the changes on the
modified view back to the original source.

In recent years, there is an emerging interest in bidirectional transformations
from different research areas with different approaches inspired by different
problems, but all of them have a common core idea that is to maintain the
consistency between different information, which inherently related to the
bidirectionality. Czarnecki and Hu et al. [22, 40] give a wide-ranging survey
of bidirectional transformations from a variety of disciplines in computer sci-
ence including programming languages, databases, and model-driven software
engineering.

In model-driven software engineering, every entity in the world can be
described using a model. For the same entity, there can be many different
models described from different aspects. Models can be composed, some
models are sub-models of other big models. These models are related and
share some information in common. On the other hand, in order to easily
create new models, model transformation languages are designed to describe

2.1 The Birth of Bidirectional Transformation 11

how to generate a new model from an existing model (source), e.g. ATL [41],
and QVT-R [59]. Suppose there are modifications on the source model, we
can run the model transformation program to generate a new model to keep
the information consistent with the source model; but if the modifications are
happened on the target model, we need a way to reflect the updates back to
the source model. In model-driven software engineering, bidirectional model
transformation are utilized to handle this issue. Stevens [69] gives a detailed
survey of bidirectional model transformation and its challenges.

As the technologies evolves rapidly, smart devices become more and more
powerful and convenient. People normally possess more than one device, and
information are scattered among multiple devices, typically for example book-
marks among different browsers among different devices. How to synchronize
information between different devices is a critical issue. For example, Suppose I
bookmarked a useful website in my desktop computer using chrome and want
to look into the details later on the mobile using safari during the transportation
to go back home, I have to send an email to myself with the link information
and check it out on the mobile email application which is really inconvenient.
We need a way to synchronize the bookmarks among different browsers in dif-
ferent devices, and lenses [28] have been proposed that contains a set of useful
combinators to write bidirectional programs to synchronize the data. Note that
this is different from the file synchronization services like Dropbox [2] which
only handle data at the file level, what we want to process is deeper into the
data. For example, you cannot use Dropbox to synchronize bookmarks between
safari and chrome. Synchronization is also needed in many other different
areas such as database, model-driven software development. Each of them uses
different formalization of bidirectional transformations to synchronize between
their specific formats.

Due to different problems in different research areas, several different ap-
proaches are proposed to this problem. In summary, there are three approaches:
1) Manually write two functions to synchronize between two information;
2) Bidirectionlization of an existing unidirectional programming language by
giving the language a specific update semantics; 3) Design domain specific
languages that each constructor has both a forward semantics that is used to

12 2 Bidirectional Transformation

construct a view and a backward semantics that describes how to update the
source.

The most straight-forward approach is to manually write two functions:
one describes the transformation from source to view and the other one vice
versa. While there are some problems for this approach: these two functions
need to be carefully designed to guarantee they work well together. when the
program is small, it is easy to check the behavior of these two programs is
correct, but when they become complex and large, it is hard to guarantee those
two functions together are will not break the consistency relation; what is more,
when the specification changes, these two programs both are need to be revised
to keep them up-to-date.

Another approach is bidirectionalization of an existing programming lan-
guage which requires carefully giving a proper backward semantics for all the
language constructs. If the target language is complex (for example, supports
regular expressions, and graph data structures), it will be very hard to give a
correct backward semantics. Liu et.al. [48] gives a backward interpretation of
XQuery [30], and Hidaka et.al. [33] bidirectionalize UnQL [14] (a graph query
language) to handle bidirectional transformations on graph structured data.

The third approach is to design domain specific bidirectional programming
languages. When handling domain specific data, usually it is better to have
a specialized language that provides more suitable syntax for programming,
and the clean syntax also makes the semantics easy to define and prove. For
synchronization between source and view data, lenses [28] as a bidirectional
transformation framework that formalizes the bidirectional transformation as a
lens that can be interpreted bidirectionally, and the bidirectional semantics are
well-designed to satisfy certain properties called well-behavedness (Theory 2.2.1).
Since our approach is kind of refined lenses, we will explain lenses in detail in
the next section.

2.2 Lenses 13

2.2 Lenses

Lenses are originated from the view updating problem in relational database
with the purpose of synchronizing between multiple devices [5]. In this section,
we will introduce the definition of lenses and the properties they need to be
satisfied.

2.2.1 Definition

Before going to the definition, we first introduce a little about the convention.
The function application is denoted by juxtaposition (i.e. the Haskell style).
Normally, if a function f that accepts an argument a, we will write f (a), but it is
written as

f a

in Haskell. If there are multiple arguments, normally we will consider them as
the arguments of the function (e.g. f (a, b)). We will use the curried style instead,
which means for multiple-argument functions, it will take one argument each
time and the result will be another function which accepts the rest arguments.
For example, the function f (a, b) will be written as

f a b

, which means the function f is applied to argument a, yield another function
that accepts argument b, and finally computes the result.

A lens (l for short) as shown in Figure 2.2 is a basic combinator that can be
interpreted as a pair of functions: a get function that extracts part of information
from the source to construct a view, and a put function that accepts an updated
view and the original source, to produce an update source.

Formally, given a source type S and a view type V, the type signature for
get and put function can be written in Haskell as :

get :: S→ V
put :: S→ V → S

Note we will use the dot notation to identify the get and put function for a lens

14 2 Bidirectional Transformation

s

V

V’

S
get

put
S’

V

V’

S

Figure 2.2 Lenses framework

l, i.e. l.get and l.put, and the type signature for a lens is Len S V if the source
type is S and view type is V.

Example 2.2.1. We define a lens l1 that contains a get function which extracts
the second element from a source pair:

l1.get (a, b) = b

, and a put function that updates the source by replacing the second element
with the view:

l1.put (a, b) b′ = (a, b′)

Suppose we have a source s that is (1, “a”), then the get direction of the lens l1
would extract the second element:

l1.get s = “a′′

If we update the view from “a” to “b”, then the put direction of the lens l1 will
update the second element of the source:

l1.put (1, “a′′) “b′′ = (1, “b′′)

The advantage of lenses is that each lens is carefully designed to have both
a straight-forward get semantics that behaves like a unidirectional program and
one default backward put semantics that propagates the updates on the view
back to the source. What is more, there is another combinator called comp that

2.2 Lenses 15

can be used to compose small lenses into larger ones. By using composition,
we can use lenses to write complex bx programs to solve large problems. The
definition of composition is as follows:

comp :: Lens S V1 → Lens V1 V → Lens S V

, which means if we have a lens l1 can be used to synchronize between S and
V1, and another lens l2 that can be used to synchronize between V1 and V, then
we can create a new lens comp l1 l2 that can be used to synchronize between S
and V.

2.2.2 Properties

Not arbitrary pair of get and put functions can form a correct pair as a lens to
synchronize the source and the view, and thus certain properties need to be
satisfied.

Definition 2.2.1. (GetPut law) For a given source s, if a lens l satisfies the following
property: l.put s (l.get s) = s, then the lens l is source preservable.

If a lens l is source preservable, then no changes on view will not impose
any change on the source.

Definition 2.2.2. (PutGet law) For a given source s and an updated view v, if a lens l
satisfies the following property: l.get (l.put s v) = v, then the lens l is update preservable.

If a lens l is update preservable, then all the updates on the view will be
reflected back to the source, and thus it can be reconstructed from the updated
source exactly as the original view.

Theorem 2.2.1. If a lens is both source preservable and update preservable, then it is
well-behaved.

A well-behaved lens guarantees the put will reflect no more than updates,
and all the updates are reflected to the source.

The lens defined in example 2.2.1 is well-behaved, we can easily prove the
two properties:

16 2 Bidirectional Transformation

Proof.
l1.put (a, b) (l1.get (a, b)) (GetPut)

= {− Definition of l1.get −}
l1.put (a, b) b

= {− Definition of l1.put −}
(a, b)

l1.get (l1.put (a, b) b′) (PutGet)
= {− Definition of l1.put −}

l1.get (a, b′)
= {− Definition of l1.get −}

b′

�

We can easily define another lens that it is not well-behaved. The following
is another example.

Example 2.2.2. Given a source which is a pair of integers, a view which is the
second element of the pair, and we define the lens l2 as follows:

l2.get (a, b) = b
l2.put (a, b) b′ = (a, b′ + 1)

The put function will update the second element of the source by increasing the
view value by 1.

The lens l2 does not satisfy the source preservation property, since even
no updates on the view, the second element of the source pair will always be
increased by 1.

Proof.
l2.get (l2.put (a, b) b′)

= {− Definition of l2.put −}
l2.get (a, b′ + 1)

= {− Definition of l2.get −}
b′ + 1

2.2 Lenses 17

Since the result is b′ + 1 which is different from the original view b′, so it does
not satisfy the PutGet property and l2 is not a well-behaved lens. �

As shown in Example 2.2.2, not arbitrary put function couped with the
get function is well-behaved, the lens semantics need to be carefully designed
(especially for the put function) to satisfy the well-behavedness properties.

Sometimes there may exist more than one possible put function together
with a get function to be well-behaved, in this situation, lenses normally should
be designed with one default put behavior in the underline semantics.

Example 2.2.3. Suppose the source s is a list of pairs [(1, “Tokyo”), (2, “Kyoto”),
(3, “Tokyo”)], and view is constructed by extracting the first element of the pair
whose second element is Tokyo. Let us call the lens l3, the get function of the
lens l3 is defined as:

l3.get = map fst · filter (s→ snd s == “Tokyo′′)

The get function first uses a filter to get those pairs that the second element
is Tokyo, then calls a map to extract the first element of each pair. The result
of l3.get s is [1, 3]. Suppose we delete the first element in the view, resulting
in [3]. How would the source be updated ? One default and most commonly
chosen implementation of put is to delete the first element in the source, i.e.
(1, “Tokyo”). While in fact, there are many possible put functions that can be
defined. For example, instead of deleting this source pair, we can update (1,
“Tokyo”) to (1, “Kyoto”). Since the second element of the pair is changed to
”Kyoto”, it will not appear in the view since it not satisfy the filter condition.

The nondeterminism of the put also reveals a design restriction of the current
lenses, that user cannot flexibility choose or specify the put behavior she/he
wants, and this will be intensively studied by our research. Since the lenses are
designed to let programmer think and write in the direction of get, we call it
get-based lenses.

18 2 Bidirectional Transformation

2.3 Limitations of Get-Based Lenses

The Lenses framework relieves the burden of writing bidirectional transfor-
mations by providing a set of bidirectional combinators that each one can be
interpreted as either a get function that extracts a view from a source, or a
put that propagates the updates on the view back to the original source. Pro-
grammers only need to write the program in a unidirectional way (get) plus
having the pre-designed update semantics in mind (put). These bidirectional
combinators can be composed together through composition (;), which is also a
bidirectional combinator to create large bidirectional programs.

Even through the design of Lenses has these advantages, there is an impracti-
cal assumption: for a get function, it is sufficient to derive a suitable put function
that these two functions forms a lens and it is well-behaved. Normally a get
function may not be injective, and thus there may exist more than one possible
put functions that can be combined with the get function to form a well-behaved
lens. It is impractical to fix a “suitable” put function at the design time for a
lens combinator, since the requirements change overtime. The “suitable” choice
currently may not be the suitable one the next time. So it is hard to justify what
“suitable” is in general.

Example 2.3.1. We define a sum lens l4 which contains a get function that
computes the summation of the pair:

l4.get (a, b) = a + b

, and a put function that updates the second element of the source:

l4.put (a, b) b′ = (a, b′ − a)

Suppose we have a source s that is (1, 2), then the get direction of the lens l4
would be 3:

l4.get s = 3

If we have an updated view 5, then the put direction of the lens l4 will update
the second element of the source:

l4.put (1, 2) 5 = (1, 4)

2.4 Putback-Based Bidirectional Transformation 19

It is straight-forward to prove that lens l4 is well-behaved. The put function
of lens l4 will always update the second element of the pair, we can also define
another put function that updates the first element of the pair:

l4.put (a, b) b′ = (b′ − b, b)

So, the result of l4.put (1, 2) 5 will be (3, 2). Or, we can even write more involved
put programs:

l4.put (a, b) b′ = i f a + b == b′ then (a, b) else (bb′/2c, b′ − bb′/2c)

There could be infinite possibilities to give a definition of the put function
for a given get. It is not practical to only encoding one “suitable” put function
in the underline semantics for a lens. As Stevens [69] says:

The developer needs full control of what the transformation does.
[...] We claim that determinism is necessary in order to ensure, first,
that developers will find tool behavior predictable, and second, that
organizations will not be unacceptably “locked in” to the tool they
first use.

We need to provide a way, an interface, or a well-designed language to
give programmer the flexibility to define the put semantics. So we start our
research on putback-based bidirectional transformation, and proposed putback-
based bidirectional programming languages to give programmer the choice of
defining the put.

2.4 Putback-Based Bidirectional Transformation

We now introduce mathematical concepts, and then the definition and properties
of putback-based bidirectional transformation. This Section is written according
to the technical report [26] with different notations.

20 2 Bidirectional Transformation

2.4.1 Mathematical Propositions

In this subsection, we give a brief introduction of basic mathematical concepts
which will be used later for characterizing properties of put function.

Definition 2.4.1. (Injectivity). A function f :: S→ V is injective if and only if there
exists a function g :: V→ S, so that for all s. g (f s) = s.

Intuitively, for each value s in S, there is a unique result value f (s) in V.

Definition 2.4.2. (Surjectivity). A function f :: S → V is surjective if and only if
there exists a function g :: V→ S, so that for all s. f (g v) = v.

Intuitively, for all value v in the result type V, there exists an argument value
s in the source S that can compute to.

Definition 2.4.3. (Idempotence). A function f :: S→ S is idempotent if for all s, f (f s)
= f s.

Proposition 2.4.1. (Injectivity of put). The PutGet law implies that “put s” is injective
for all sources s.

Since the PutGet law is in the form of:

get (put s v) = v

Let the get :: S→ V, and put :: S→ V → S be the two functions, s is the
source of type S, v is the view of type V, then put s is a high-order function of
type V → S. Let put′ be put s, we can rewrite the PutGet law as follows:

get (put′ v) = v

So it is easy to find out that put′ i.e. put s is injective for all source s.

Since we write functions in curried style, now we provide another function
uncurry that converts it from a curried style to the normal style:

uncurry f (x, y) = f x y

So the uncurried function uncurry f accepts a tuple of arguments, and thus the
type signature of uncurry put is:

uncurry put :: (S, V)→ S

2.4 Putback-Based Bidirectional Transformation 21

Proposition 2.4.2. (Surjectivity of uncurry put). The GetPut law implies that uncurry
put is surjective.

Proof. let f = λ s → (s, get s).

uncurry put (f s)
= { Definition of f }

uncurry put (s, get s)
= { Definition of uncurry}

put s (get s)
= { GetPut law}

s

�

Proposition 2.4.3. (PutTwice). If a lens is well-behaved, which means it satisfies the
GetPut and PutGet laws, then executing two puts with the same view v, the result must
be the same as only once. [27]

put (put s v) v = put s v

Proof.
put (put s v) v

= { PutGet law}
put (put s v) (get (put s v))

= { GetPut law}
put s v

�

If we flip the order of the arguments of put, i.e. let put′ = flit put, then the
type signature of put′ is:

put′ :: V → S→ S

The PutTwice property can be written as:

put′ v (put′ v s) = put′ v s

Then we can easily conclude that put′ v is idempotent for all v.

22 2 Bidirectional Transformation

2.4.2 Well-behavedness from Putback

Definition 2.4.4. (Well-behaved put). Assume a put function that satisfies the follow-
ing propositions:

1. ((flip put) v) is idempotent for all views v.

2. “put s” is injective for all sources s.

3. “uncurry put” is surjective on the source type.

The put is well-behaved.

Proposition 2.4.4. (Uniqueness of view). Given a well-behaved put function, there is
exactly one view view v such that put s v = s for every source s.

(a) existence of view v: Suppose for all source s, each source s’, such that s =
put s’ v.

(put s v)
= { s = put s′ v}

put (put s′ v) v
= { PutTwice, Proposition 2.4.3}

put s′ v
= { s = put s′ v}

s

(b) uniqueness of view v: since “put s” is injective for all source s.

Theorem 2.4.1. (Uniqueness of get for well-behaved put). Given a well-behaved put
function, there exists only one get function that the get and put functions form a
well-behaved lens.

Proof. (a) existence of get: according to Proposition 2.4.4, define get s = v, such

2.5 Survey 23

that s = put s v.

put s (get s)
= { definition o f get }

put s v, such that s = put s v
= { s = put s v}

s

get(put s v)
= { linv is left inverse of (put (put s v) for any view }

linv (put (put s v) ((get(put s v))))
= { GetPut }

linv (put s v)
= { PutTwice }

linv (put (put s v) v)
= { linv is left inverse of (put (put s v) for any view }

v

(b) uniqueness of get: suppose there exits another get’ that with the put is
well-behaved.

get′ s
= { Proposition 2.4.4 }

get′ (put s v), such that s = put s v
= { PutGet }

v, such that s = put s v
= { definition of get}

get s

�

2.5 Survey

This section gives a survey of varieties of works related to bidirectional transfor-
mations started with view-updating, then bidirectional programming languages
for different domains.

24 2 Bidirectional Transformation

2.5.1 View Updating

In relational databases, view is created for the purpose of manipulating large
source database in a relative small scale instead of directly operating on the big
source table which is usually impossible and dangerous. Though it has many
advantages, how to correctly translate the updates on the view to the update
operations on the source as shown in the Figure 2.1 systematically is a great
issue. Many research has been intensively done [8, 23, 31, 43, 44, 47] to tackle
this problem.

Keller [43] studied the translation of different update operations (deletion,
insertion, and replacement) on the view to proper update operations on the
source based on different query operations (selection, join, and projection). He
proposed a series of algorithms to handle each case. For example, when the
query is a selection and the update operation on the view is deletion, then there
are two specific algorithms for this case that we can choose either to delete the
corresponding record on the source ([43] Chapter 5.1.4 Algorithm S-D-1) or
replace the value of the non-key attribute in the record which also mentioned in
the selection condition with a value that does not satisfy the selection condition
([43] Chapter 5.1.4 Algorithm S-D-2). For queries that involve composition of
several small queries, he also proposed algorithms to analyze the updates and
update the source table. It comes out that for one query operation and one
specific update operation, there could be many possible update policies and
it is impossible for programmer to remember all the algorithms and decide
which one to use, and thus he proposed to use a dialog [44] to interact with
programmer to let him/her choose a proper view update policy at the view
definition time.

2.5.2 Bidirectional Programming Languages

The lenses framework [28] as shown in Figure 2.2 means that each lens can be
interpreted as a get function that extracts information from source to construct
a view, or a put function that putback the updated view to the original source
to get an updated source.

2.5 Survey 25

Foster et al. [28] are the first one to propose the linguistic approach to the
view-update problem, he designed a bidirectional tree transformation language
Focal, formalized the lenses framework, and introduced the well-behavedness
properties that the lenses should satisfy. He provided many basic combinators
that work on trees (such as fork, split, map, and recursion) and composition. Each
combinator has both the forward get and backward put semantics, and proved
to be well-behaved under the type systems. The bidirectional tree language has
been used to develop a synchronization system [5] to synchronize data between
multiple devices typically bookmarks.

Bohannon et al. [11] developed a new bidirectional transformation language
called Boomerang [1] for string data, especially with order. The basic string
lenses contains a set of operations based on regular transducers such as union,
concatenation, and Kleene-star to handle with a type system based on regular
expressions. There are also some restrictions such as concatenation: two lenses
shall be unambiguously concatenable, in order to be able to construct a unique
way of splitting the result string into two strings in the put function of concate-
nation. They enriched the basic string lenses with dictionary lenses that asks
programmers to specify a key for each string chunk. They keys are associated
with the corresponding chunks which will be used in the put direction for
finding the correct chunks to restore the string data globally when the orders
are changed on the view.

Relational lenses [12] has been proposed to handle the relational data by
Bohannon et al.. They redefine the relational algebra primitives as lenses. The
forward semantics of selection and join are the same as in the relational algebra.
A drop lens that drops one column of the data which can be used to resemble
the projection operation. The backward semantics of each lens are carefully
designed in order to be well-behaved. For example, the forward of selection
extract the records that satisfy the where condition like a filter, and the backward
semantics will reflect deletion on the view back to the source as deletion in order
to make the delete records will not appear in the view to satisfy the PutGet law.
Several restrictions have been imposed to guarantee well-behavedness, such
as they only handle functional dependencies that can be represented in a tree
form, and the join key must be one the the table’s key.

26 2 Bidirectional Transformation

Many other lenses languages are developed from the same group such
as quotient lenses [29], matching lenses [9], symmetric lenses [34], and delta
lenses [35]. Quotient lenses refines the well-behavedness by generalizing the
equivalence relation. Matching lenses extends the key-based matching in
Boomerang to allow arbitrary alignment strategies. Hofmann et al. [34] pro-
posed a symmetric formalization of lenses that generalized from traditional
asymmetric lenses. Since the composition of lenses will have many intermediate
results and duplicated computation, Hugo et.al. [60, 61] has done several works
to optimize the calculation.

Matsuda et al. [53] proposed an approach for bidirectionalizing transfor-
mation based on automatic derivation of view complement functions, that
automatically derives backward transformation under a constant complement.

Diskin et al. [24] discussed the limitations of state-based approaches and
forms an abstract delta lenses framework by two phases: it firstly computes the
delta between the updated view (source) and the original view (source), and
then transforms the view (source) deltas into source (view) deltas.

Hu et al. [39] designed a programmable editor for developing structured
XML documents based on bidirectional transformations, and the editor is built
based on X that is a lens language with several combinators. Liu et.al. [49]
bidirectionalize XQuery by resembling the XQuery core into a lens language.
Nakano et al. [56] built Vu-X system that can be used to describe a bidirectional
transformation between XML document and HTML web pages, which allows
user to edit directly on the HTML source and reflects the modifications to the
XML document. Hidaka et al. [33] works on the bidirectionalization of graph
query language UnQL [14] by giving the backward semantics of the core lan-
guage of UnQL named UnCAL. They developed an IDE called GRoundTram [4]
for easily analyzing bidirectional graph transformations. Since the subgraphs
may have orders, they have also proposed a new graph transformation language
lambdaFG for ordered graphs [32] and try to give backward semantics for this
ordered version. Sasano et al. [67] tried to bidirectionalize a subset of ATL [41]
transformations by translating the ATL programs into the UnCAL programs
and then executed based on GRoundTram [4].

2.5 Survey 27

Kawanaka et al. proposed biXid [42] which is a bidirectional transformation
language for XML. A biXid program describes a consistency relation between
two different XML documents, and one can be generated from another through
this biXid program. Cunha et al. [21] use bidirectional transformations to
maintain the consistency between spreadsheet models and their instances, and
thus the evolution of either side can be propagated to the other to keep them
consistent. Query/View/Transformation Relations (QVT-R) [59] is a standard
language defined by Object Management Group (OMG) to specify bidirectional
model transformations, which allows to define a consistency relation between
two models. Macedo et al. [51] implemented a large subset of this specifications
using Alloy, and the put semantics follows the principle of least changes that
computes an updated source that at a minimal distance from the original source.
Cicchetti et al. [17] proposed JTL, which is a declarative bidirectional model
transformation language that let user write model transformation in a QVT-like
syntax, and the program is translated into a logic predicates and then using
logic solvers to find all possible models. The problem of this approach is that
the number of result models can be huge while the difference between models
are very small. It would be better to have more specific constraints to narrow
the solution space.

28 2 Bidirectional Transformation

Chapter 3

Core Language

In Chapter 2, we have introduced bidirectional transformations, the existing ap-
proaches for bidirectional programming and the basic theory for putback-based
bidirectional programming. The basic theory for putback-based programming
says that there exists a unique get for a well-behaved put, which means if we
can define a well-behaved put, a unique get can be derived from this put for
free. In contrast with the traditional lenses, the lens combinators are designed
in the get direction (programs are written as get), and thus there may exist
many possible puts. This opens a new direction for designing bidirectional
programming languages.

Putback-based bidirectional programming is a promising approach for bidi-
rectional transformations, but it still lacks of well-designed user-friendly bidirec-
tional programming languages. In this Chapter, we will firstly show the relation-
ship between a put function and an update, then introduce our putback-based
core bidirectional programming language for XML that follows a paradigm of
programming put by update. Base on this core language, we design and implement
a bidirectional update language BiFluX (Chapter 4) for XML which has a nice
surface language for developer to flexibly describe puts.

29

30 3 Core Language

3.1 From Put to Update

The get-based bidirectional programming languages have the advantage that it is
straightforward since it only needs programmer to write a function that extracts
values from a source to construct a view as writing a normal program, while if
we design languages that let developer to write the backward transformation
put, we can sense that it is not so easy merely from the type signature. The type
signature of the put function for a bidirectional transformation in Haskell is as
follows:

put :: S→ V → S

which accepts a source of type S and a view of type V, and outputs an updated
source of the same source type S.

The goal of designing a good putback-based bidirectional programming
language not only needs to guarantee the well-behavedness, but also includes
releasing the burden of developers to write the put function.

If we flip the definition of put:

put :: V → S→ S

Informally, it can be read as the put function updates source using view (If we
look at the function put v which is of type S → S). This parameterization on
views motivates a bidirectional update language (in contrast to bidirectional
transformation languages) in which programmers write bidirectional updates
that modify an original source to embed some view information. Typepreserv-
ing updates are simpler to write than typechanging transformations in that one
only needs to specify how the view information changes a small part of the
source, leaving the remaining data fixed.

We design putback-based bidirectional programming language from the
perspective of update, that has user-friendly update syntaxes to let developer
merely write how to use a view to update a source. Even though we only
flipped the arguments of the put function, it brings us a totally new style
of designing bidirectional programming languages. In the following, when
we use the term bidirectional update language, which also means putback-based
bidirectional language.

3.2 Core XML Update Language 31

We propose a novel bidirectional programming by update paradigm, in which
the programmer writes an update program that describes how to update a
source to embed information from a view, and the system derives a query from
source to view that expresses the consistency between both documents. Such
a bidirectional update describes the relationship between source and view in a
simple way —as in the relational paradigm— by saying which related source
parts are to be updated, but combined with additional actions that supply
the missing pieces to eliminate the ambiguity in how target modifications
are reflected —as in the combinatorial paradigm. For a wide class of BXs
usually known as lenses [28], which have a data flow from source to view, this
paradigm opens a new axis in the BX design space that enjoys a unique trade-off
between the declarative style of relational approaches and the stepwise style of
combinatorial approaches.

3.2 Core XML Update Language

Nowadays, various XML formats are widely used for data exchange and pro-
cessing. Since data evolves naturally over time and is often replicated among
different applications, it becomes frequently necessary to mutually convert be-
tween such formats. However, traditional XML transformation languages, like
the XSLT and XQuery standards of the World Wide Web Consortium (W3C), are
unsatisfactory for this purpose as they require writing a separate transformation
for each direction.

Bidirectional transformation (BX) languages [22] mean to cover this gap, by
allowing users to write a single program that can be executed both forwards and
backwards, so that consistency between two formats can be maintained for free.
As most interesting examples of bidirectional transformations are not bijective,
there may be multiple ways to synchronize two documents into a consistent state,
introducing ambiguity. Despite this fact, bidirectional languages are typically
designed to satisfy fundamental consistency principles, and support only a
fixed set of synchronization strategies (out of a myriad possible) to translate
a (non-deterministic) bidirectional specification —the syntactic description of

32 3 Core Language

a bidirectional transformation— into an executable BX procedure. This latent
ambiguity often leads to unpredictable behavior, as users have limited power to
configure and understand what a BX does from its specification.

Since XML is widely used among real world applications for data exchange
and there are limitations for the get-based bidirectional transformations, we
designed a bidirectional XML update language BiFluX which will be introduced
in next chapter. Since BiFluX is normalized into a core bidirectional XML update
language we designed, we will introduce the core language firstly. The core
XML update language contains several components: patterns (Section 3.2.1)
that are used to do pattern matching on XML data, paths and expressions
(Section 3.2.2) that are essential for traversing XML documents and creating
XML-structured data, the most important one is the bidirectional updates
(Section 3.2.3) that have a set of update operators of which each one has
bidirectional semantics, and unidirectional updates (Section 3.2.4) which are
used inside of some bidirectional update operations.

3.2.1 Patterns

Pattern matching is a very useful feature of XML transformation languages like
XDuce [38] or CDuce [10], allowing matching tree patterns against the input
data to transform it into an output of different shape. Typical XML update
languages like XQuery! [30] or Flux [15] do not support pattern matching, since
it is not essential and may be more difficult to optimize, and they use solely
paths to navigate to the portions of the input documents that are to be updated
in-place. On the other hand, pattern matching can be used to guide the update
based on the structure of the data.

Our pattern language follows that of XDuce [38]:

pat ::= x as τ | τ | c | () | n[pat] | pat, pat′

A pattern can be a variable pattern restricted by a regular expression type τ,
a type pattern τ, a constant pattern c representing constant values, an empty
pattern (), an element pattern, or a sequence pattern. We require every variable
to be annotated with a type; this simplifies our design, but will also increase the

3.2 Core XML Update Language 33

number of (often unnecessary) annotations in our update programs. We see it
as an orthogonal problem that can be mitigated using existing tree-based type
inference algorithms [70]. To reduce complexity, we impose a simple but strong
syntactic linearity restriction on patterns (no alternative choice, no Kleene star)
to ensure that matching a value against a pattern binds each variable exactly
once. (Note that the restriction is imposed on patterns rather than on types, so
we can still annotate patterns with alternation and sequence types.) Less severe
linearity restrictions are actually known [36], but these simple patterns suffice
for our practical needs.

For example, the following pattern:

person [$sname as s : name, $semail as s : email, $affiliation as s : location]

is used to decompose a source person element into three parts: $sname, $semail
and $affiliation. The first element of person is a name and it is matched with
the $sname in the pattern. $semail and $affiliation are similar.

3.2.2 Expressions and Paths

Updates instrumentally use XQuery [66] expressions, XPath [18] paths and
XDuce [37] patterns to manipulate XML data. Different expressions are used
for different purpose: general expressions are arbitrary which are evaluated
into a value, view expressions are a subset of them that need to be invertible,
and source paths are again a subset of general paths because they are used to
narrow the focus.

General Expressions and Paths

We write expressions e in a minimal XQuery-like language, which is a variant
of the µXQ core language proposed in [19]:

e ::= () | e, e′ | n[e] | p | let pat = e in e′

| e = e′ | if e then e′ else e′′

| for x in e return e′

| case e of
−−−−→
pat→ e′

34 3 Core Language

An empty expression () means nothing; sequence expression e, e′ contains
two expressions which are separated by a comma; path expression p will be
introduced later; let-binding binds a pattern pat to an expression e and the
binded variables are used in the expression e′; boolean expression e = e′ checks
whether two expressions are equal; conditional expression, for-loop, and case
expression are also supported in the core language. Note that there are no
case expressions in µXQ as they can be emulated by conditional expressions;
we extend our expression language with case expressions to make the core
language easier to be used.

We differentiate paths p in a core path language that represents a minimal
dialect of XPath [18]:

p ::= self | child | :: nt | where e | p / p′

| x | w | true | false
nt ::= n | text() | node()

Path self points to the current XML element itself, and child points to children
of the current XML document. nt is short for name test that tests whether the
current XML document node satisfies the given name (n), is a text node (text())
or a normal node (node()). Where condition (where e) is used to extracts those
that satisfy the expression e. Complex path p / p′ traverses deeper into the XML
document that it firstly evaluates the path p to a sequence of values, and then
evaluates the path p′ over the sequence. Simple path can be a variable x, a
constant w, a boolean value true or false.

For example, the following is a case expression that checks whether the
current XML document is a person and his/her affiliation is NII.

case self of

person [$sname as s : name, $semail as s : email, $affiliation as s : location]
→ $affiliation / child / :: text() = "NII"

It uses self to locate on the current XML document, then does pattern matching
on this document to extract the sub-element (e.g. $affiliation), and finally uses a
boolean expression to check whether the affiliation is NII. Since the affiliation is
an element node:

<affiliation>NII</affiliation>

3.2 Core XML Update Language 35

To extract text string, we need first to get the children of the element node
which is a text node, and then extract the text from the text node by :: text().

To simplify the formal treatment, we consider nodetests ::nt that apply
to atomic values and where clauses where e that filter values satisfying an
expression e. As syntactic sugar, we write p :: nt , p / ::nt, p[e] , p / where e,
and p / n , p / child :: n.

View Expressions and Paths

Restrictions have to be placed on expressions used in the statement [b]e, since
such expressions should express invertible computations to allow the statement
to be bidirectionalized. The allowed subset of the expressions and paths defined
in Section 3.2.2 is as follows:

e ::= () | e, e′ | n[e] | p | w | true | false
p ::= x | self | child | ::nt | p / p′

Source Paths

A source path p, as used in the statement p[b], narrows the source focus to only
part of the current source. Not all paths can be used to change the source focus:
We do not allow constant string paths (w) and boolean paths (true and false), as
they are meaningless for focus narrowing. Note that it is intrinsically different
from the unidirectional update, as the source type does not change and the
source data is not updated in-place, but modified to embed the view data. Also,
only the self and child axes are supported; this ensures that only descendants
of the source focus can be selected as the new source focus and that a selection
contains no overlapping elements. To sum up, the valid source paths are as
follows:

p ::= x | self | child | :: nt | p / p′

36 3 Core Language

3.2.3 Bidirectionalizable Updates

Unlike conventional XML update languages, our core update language mainly
consists of bidirectionalizable updates. Their names suggest what their update
semantics are, and they will be interpreted as bidirectional transformations that
update a source document given a view document or query a source document
to compute its view fragment. The grammar of core bidirectionalizable updates b
is as follows:

b ::= skip | fail | replace | p[b] | [b]ev | b; b′

| alignpos ef b c r
| alignkey ef ems emv b c r

| caseS p of
−−−−−−→
pat→ b | u

| caseV ev of
−−−−→
pat→ b

| ifS e then b else b′

| ifV e then b else b′

| iter b | view x := ev in b | P(ps, ev)

We will informally describe their update semantics below.

The operation skip keeps the source unchanged provided that the view is
empty, the fail operation aborts an update, and the replace operation replaces
the source with the view.

The operation p[b] traverses the source along a source path p, and runs a
further update b on the sub-source. For example, if a source variable $source
points to an XML document that consists of a list of people.

<person>

<name>Adam Smith</name>

<email>as@as.com</email>

</person>

<person>

<name>James Bird</name>

<email>jb@jb.com</email>

</person>

<name>Michael Johnson</name>

3.2 Core XML Update Language 37

<email>mj@mj.com</email>

</person>

Then a source path $source / child / :: person extracts all the people under
the $source. If we want to update all the people by replacing them with the
view (suppose the view is a person), we can write a simple program $source /
child / :: person[replace]. It will first evaluates the source path, and the source
will be a list of people, and each person will be replaced by the given view.

Dually, the operation [b]ev changes the current view by evaluating an expres-
sion ev on it and uses the result as the new view for the update b. This is often
used when the view contains some extra structural information and it can not
be directly used to update the source. Then a view expression is used to extract
the data to be used in the bidirectional update b. For example, we have a view
that is an XML element with a tag named employee.

<employee>

<person>

<name>David Edison</name>

<email>de@mj.com</email>

</person>

</employee>

This view shall not be directly used to update the source person using the
program $source / child / :: person[replace], since each source person shall
be updated with a view that has the same shape. In this situation, we can
use a view expression $view / child / :: employee to extract the person element
under the employee, and the whole program is written as [$source / child / ::
person[replace]]($view / child / :: employee).

Composition b1; b2 updates a part of the source with b1, and another part of
the source with b2. For example, we have a composition statement as follows:

$semail [[replace] $vemail];
$sname [[replace] $vname]

Each one is in the form of p[[b]ev]. The first one replaces source email ($semail)
with view email ($vemail), and the second one replace source name ($sname)

38 3 Core Language

with view name ($vname). To guarantee the PutGet property, the same part of
the source cannot be updated twice with two different view variables. This is
enforced by requiring that the two statements b1 and b2 update different source
variables. It is possible that one view variable depends on another view variable,
even points to the same value. We provide view dependency description syntax
to express the dependency between view components which will be introduced
later.

The two special alignment statements (alignpos and alignkey) update
a source sequence using a view sequence. They receive a source filtering
expression ef which evaluates to a boolean, and match source elements satisfying
ef with view elements by position (alignpos) or by key (alignkey). In the latter
case, keys are computed from the source and view respectively by evaluating
two expressions ems and emv. Expression es and ev specify the matching condition
between source and view element (i.e. the evaluated result of both are equal).

After aligning the source sequence with the view sequence, there are three
cases to consider: For matched source–view element pairs, we use a bidirec-
tionalizable statement b to synchronize them; for an unmatched view, we use
a create statement c to create a suitable source to match with the view; for an
unmatched source, we use a recover statement r to either delete or transform it.
Create statements c are simply unidirectional updates which will be introduced
in Section 3.2.4. Recover statements r are enriched unidirectional updates of the
form:

r ::= delete | u | if e then r else r′

| case e of
−−−−→
pat→ r

We can use delete for deleting an unmatched source, or unidirectional updates
to modify an unmatched source so that the es filtering expression evaluates to
false.

For example, the source is a list of people, and view is a list of employees.
Suppose each employee is decomposed into name ($vname) and email ($vemail)
through pattern matching. If we want to update the source people that work at
NII with the corresponding view employees that have the same name, we can
match the source people list with the view employee list by their name using

3.2 Core XML Update Language 39

the alignment (alignkey) operation.

alignkey

$person / affiliation / :: text() = "NII"

$person / name / :: text()
$vname / :: text()
$person / email [replace [$vemail]]; $person / name [[replace] $vname]
insert person [name [""], email [""], affiliation ["NII"]]

delete

The first argument is a boolean expression that is used to extract those at
NII, the second and third arguments extract the name text from source person
and view name respectively which will be used to match the source person and
view employee. If a source person and view employee are matched, then the
email and name of the source person will be replaced by the corresponding
view email and name; if there is an employee that has no matching source
person, a new person will be inserted into source with the affiliation marked
as NII (the name and email will be updated with the employee); if there is a
person that has no matching view employee, this person will be deleted from
the source.

The core language also provides two kinds of conditionals (ifS and ifV) and
case statements (caseS and caseV), whose expressions or paths are evaluated
on the source and view respectively. The case statement on source also supports
source adaptation which means if the source satisfies certain pattern pat, we
can choose to update this source using a unidirectional update u (which will
be introduced later) instead of directly giving a bidirectional update b. This is
really useful when the source is in a shape that cannot be directly updated by
view, we first restructure the source through a unidirectional update, then the
restructured source will again be matched with any of the case pattern and be
updated.

The operation iter b embeds the same view into each element of a source
sequence through the bidirectional update b. A procedure call P(ps, ev) updates
the sub-source at the end of the source path ps using the result of evaluating
the view expression ev as the view. Procedures may be recursive. The statement

40 3 Core Language

view x := ev in b states that the value for a view variable x can be computed
from the rest of the view using the view expression ev, and then runs b using
the remaining view. This means that part of the view binded to the variable x
depends on the other parts of the view. Since the part binded to the variable
x can be computed by the rest parts, the variable x will not be used in the
bidirectional update b.

3.2.4 Unidirectional Updates

Unidirectional updates are used in the create statement of the alignment op-
erations (alignpos and alignkey). Our core unidirectional updates are adapted
from the core Flux update language [15]:

u ::= skip | u; u′ | insert e | delete
| if e then u else u′ | case e of

−−−−→
pat→ u

| p[u] | left[u] | right[u] | children[u]

These include standard operations such as the no-op skip, sequential compo-
sition, conditionals, and case expressions. The basic operations are insert e,
which inserts a value e to the current location; and delete, which replaces any
value with the empty sequence. We can also apply an update in a specific
direction (that traverses down a path p, moves to the left or right of a value,
or focuses on the children of a labeled node).

3.3 Generic Core Language

The core language presented in Section 3.2 still retains XML-specific details
and freely uses pattern matching and variables to manage data-flow, making
it difficult to directly give a formal bidirectional semantics to the language.
To achieve bidirectionality more reliably, we designed a generic bidirectional
update language BiGUL, which is an invariant of BiGUL [46]. The data repre-
sentation is XML-free and the data-flow management is done in a point-free
style. The advantage of using BiGUL is that it is completely formally verified
in the dependently typed language Agda [58] to guarantee that any program

3.3 Generic Core Language 41

bigul ::= Replace | Fail | Skip | Update upat | Iter bigul
| RearrS sRearr bigul
| RearrV vRearr bigul

| CaseS
−−−−−−−→
caseSBranch

| CaseV
−−−−−−−→
caseVBranch

| Align filter match bigul create conceal
| Compose bigul bigul

upat ::= UVar bigul | UIn upat | UProd upat upat
| UConst a | ULeft upat | URight upat

caseSBranch ::= (predicate, branch)
branch ::= Normal bigul

| Adaptive adaptSource
caseVBranch ::= (predicate, bigul)

Figure 3.1 Syntax of BiGUL.

written in BiGUL satisfies the BX properties. The semantics of BiGUL is con-
cretely defined as monadic programs, with all dynamic checks for guaranteeing
well-behavedness explicitly appearing in the programs.

3.3.1 Syntax and Semantics

The syntax of BiGUL is shown in Figure 3.1, which originates from, and thus
many operations —e.g., Replace, Fail, and Skip— resemble those presented in
Section 3.2.3. The three primitive operations are Fail, Skip, and Replace. Fail
always fails to compute (i.e., returns a Left-value) when interpreted as either
put or get. The put behavior of Skip returns the unchanged original source,
while its get interpretation returns an empty view — note that the view type
specified for Skip is ().

bigul1 :: BiGUL Int ()

bigul1 = Skip

42 3 Core Language

For the BiGUL program bigul1, given a source 1 and view 2 in the interpretation
of put, it will fail since the view type must be (); if the view is (), then the
result of program put bigul1 1 () will be 1; no matter what the source integer
value it is, the get direction of bigul1 will always be ().

Replace works on sources and views of the same type; its put interpretation
replaces the whole source with the view, while its get interpretation returns the
whole source.

bigul2 :: BiGUL String String

bigul2 = Replace

For example, suppose source s is "Tokyo" and view v is "NewYork", the result of
put bigul2 s v will be "NewYork" which means the source string is replaced
by the view string. If we execute get bigul2 "NewYork", the result will be
"NewYork" as the view.

Source and View Rearrangement

RearrS updates a source s using view v by first computing a (usually) smaller
source s′ with a simple λ-expression (given as the first argument of RearrS),
then using a BiGUL sub-program to update the source s′ with v, and finally
putting s′ back into s by “inverting” the λ-expression; its get semantics again
computes a smaller source from which the resulting view is extracted. RearrV
is dual to RearrS, acting on the view instead of the source.

Suppose that we have a source (1, "Tokyo") and a view "Tokyo" which is
the second component of the source. If we modify the view into "NewYork",
then the source and view become inconsistent. We can write a simple BiGUL
program bigul4 to update the source with the view:

bigul4 :: BiGUL (a,b) b

bigul4 = RearrV (Lambda RVar

(EProd (EConst ()) (EDir (DRight DVar))))

(Prod Skip Replace)

Note that the first argument of RearrV is a deeply (syntactically) represented

3.3 Generic Core Language 43

λ-expression \v -> ((), v). We also provide a more readable surface syntax
(implemented with Template Haskell [68]):

bigul4' :: BiGUL (a,b) b

bigul4' = RearrV [|\v -> ((), v)|] (Prod Skip Replace)

bigul1′ is expanded into bigul1 at compile-time. It first rearranges a view v to
((), v) (as specified by the Template Haskell code [|\v -> ((), v)|]). Then,
the first element of the source pair is skipped, and the second element of the
source pair is replaced by v which is the second element of the rearranged view
pair. If we execute the put direction of the program with the above source pair
and modified view, the source will be updated to (1, "NewYork"), and if we
execute the get direction of the program on this updated source, it will output
"NewYork".

Update

One important new operation is Update, which is used to decompose a source
into parts by pattern matching, and then update each part by a separate BiGUL
program. The patterns used are called update patterns (upat): UVar updates the
current source with a bigul statement, UIn updates the children of the current
source, UProd decomposes the source into a product of two parts and updates
each part separately, UConst matches the current source with a given value,
and ULeft and URight handles the situation in which source is a choice. The
view for the Update operation should have the same structure as the update
pattern; to rearrange the view into that structure, a new operation RearrV is
introduced, which computes a new view by a simple invertible function (like
what [e]b does). Sometimes the source also needs to be rearranged for updating,
so a dual operation RearrS is introduced.

Here is a small example about Update and RearrV. Suppose that the source
is a piece of personal information which have name, email, and affiliation as
its children, and a view that is a pair of name and email. If we want to update
the source’s name and email with the information from view, we can write a
BiGUL program like this:

44 3 Core Language

RearrV

(λ(vname, vemail)→ (vname, (vemail, ())))
(Update (UIn (UProd (UVar Replace)

(UProd (UVar Replace)

(UVar Skip)))))

We first rearrange the view pair (vname, vemail) into a triple, adding an empty
view element at the end in order to match with the update pattern (also
matching a triple), then update the source by using UIn in order to update its
children, which is a product of elements, and finally decompose the product
by two UProd patterns. After the source is decomposed into a triple, we use
the updates Replace, Replace, and Skip associated with the UVar patterns to
replace the name and email and leave the affiliation unchanged.

Case Analysis

Case does case analysis on both the source and the view, and performs either a
normal BiGUL operation to update the source using the view or an adaptive
operation to change the source to a new one. Concretely, a Haskell function
that returns a boolean value is used to check the given source and view satisfy
the specific branch, and two different kinds of branches are provided: either
a normal BiGUL operation followed by a boolean condition on source (The
boolean condition is used to reducing the checking complexity in the interpre-
tation of get) or an adaptive branch that changes the source to a new one (We
will explain more about the adaptation).

Let us use an example to see how it works.

bigul5 :: BiGUL (Bool, Int) Bool

bigul5 = Case

[(\(b, i) v -> b == v,

Normal (RearrV [|\v -> (v, ())|]

(Prod Replace Skip)) (_ -> True)),

(_ _ -> True,

Normal (RearrV [|\v -> (v, 0)|]

(Prod Replace Replace))) (_ -> True))

3.3 Generic Core Language 45

]

The program bigul5 is implemented use the Case with two normal branches.
Source is a pair of a boolean value and an integer, and view is a boolean value.
The first branch checks whether the boolean value b is the same as the boolean
value of view v, and if they are equal, then view is rearranged to a pair with
the second one is (), and finally the first element of the source is replaced by
the view v and the second element is skipped; the second branch handles the
other cases, which updates the first element of the source pair with view and
reset the value of the second element by 0.

Note that both branches have the ”acceleration” conditions that return true
which in fact does not accelerate the interpretation of get since it will always
return true. This is because during the interpretation of get, it will skip this
branch if the ”acceleration” condition on source returns false. Otherwise, we
need to first compute a view from the branch and then check the computed
view together with the source matches the case condition which may require
lots of recursive computation.

Source Adaptation

The most distinctive feature of Case is source adaptation, which is useful when
the source is not in a suitable shape to be updated with the view, and needs
to be modified through an adaptation function to a new source to make it
updatable. After adapting to a new source, the whole Case statement is run
again on the new source and the view. To ensure termination, this second run
should not match with any adaptive cases again.

Let us use another example to show how to use the Case operator, in
particular the source adaptation mechanism. Suppose that the source s is a list
and we want to put a value v into the i-th place in the source list. We can write
a bidirectional program in BiGUL as follows:

embedAt :: Int -> BiGUL [Int] Int

embedAt i = Case

[(\s _ -> i == 0 && not (null s),

46 3 Core Language

Normal (RearrS [|\(x:xs) -> (x, xs)|]

(RearrV [|\v -> (v, ())|]

(Prod Replace Skip)))),

(\s _ -> i >= 0 && null s,

Adaptive (_ _ -> [-1])),

(_ _ -> i > 0,

Normal (RearrS [|\(x:xs) -> (x, xs)|]

(Prod Skip (embedAt (i-1)))))

]

We can call put embedAt i s v to achieve our goal of embedding v to the ith
location in the source list, and get embedAt i s to retrieve the value from
source at the ith location. The implementation of embedAt is easy to understand:
when i is greater than zero and source is not null (the last branch), it leaves the
first element of source unchanged and calls the embedAt function recursively
with i− 1; when i is greater than zero and source is null (the middle branch),
the source is adapted to a non-empty list by changing it to a one-element list
with a default value −1; when i is zero and the source is not null (the first
branch), then the first element of the source will be replaced with the view
value, and the rest of the list will be skipped.

Source-view Alignment

The Align operation in BiGULx unifies the two core operations alignpos and
alignkey into one, based on the observation that alignpos can be regarded as a
special case of alignkey that uses position as the key. The boolean filter function
corresponds to ef , while the boolean match function specifies when a source
and view element are matched. The remaining three arguments deal with the
three cases arising from source–view alignment: the bigul program deals with
matched pairs, the create function creates a new source from an unmatched
view element, and the conceal function deletes or modifies an unmatched source
element.

CaseS and CaseV are two kinds of case analysis on either source or view.

3.3 Generic Core Language 47

They differ from their counterparts in the core in two aspects: BiGULx’s CaseS

and CaseV always match the whole source or view with the branches, and the
source or view is fed into a boolean function (predicate) to decide whether it
matches a branch. BiGULx does not include conditionals like ifS and ifV in
the core, since they are subsumed by CaseS and CaseV.

Composition

Composition is an important combinator, which can be used to concatenate
BiGUL programs sequentially.

For example, suppose we have a source list s:

[(1, "Tokyo"), (2, "Kyoto"), (3, "Osaka")]

We want to update the first element of the list from Tokyo to NewYork. Since
we have already written two BiGUL programs: bigul4 and embedAt, we can
use Compose to compose these two programs together to achieve that.

Even though the embedAt program is specialized to integers, we only need
to modify a little to satisfy our needs.

embedAt' :: Int -> BiGUL [(Int, String)] String

embedAt' i = Case

[(\s _ -> i == 0 && not (null s),

Normal (RearrS [|\(x:xs) -> (x, xs)|]

(RearrV [|\v -> (v, ())|]

(Prod Replace Skip)))),

(\s _ -> i >= 0 && null s,

Adaptive (_ _ -> [(i+1, "Dft")])),

(_ _ -> i > 0,

Normal (RearrS [|\(x:xs) -> (x, xs)|]

(Prod Skip (embedAt (i-1)))))

]

Compared with embedAt, the embedAt' only changes the type signature and the
case branch when the index i is greater and equal to zero while the list is empty,

48 3 Core Language

we adaptive the source to [(i+1, "Dft")].

Finally, the following BiGUL program update the ith element of the source
list with the view value.

bigul7 :: Int -> [(Int, String)] String

bigul7 i = Compose bigul4 (embedAt i)

The result of put (bigul7 0) s "NewYork" will be:

[(1, "NewYork"), (2, "Kyoto"), (3, "Osaka")]

If we update the 4th element of the source using put (bigul7 4) s "NewYork",
the result will be:

[(1, "Tokyo"), (2, "Kyoto"), (3, "Osaka"), (4, "Dft"), (5, "NewYork")]

Since length of the the original source list is less than 4, it will add new
default value to the end of the list and update the one with the correct index
with the view.

3.3.2 Well-behavedness

The well-behavedness of BiGUL is fully verified in Agda [57]. For use in
practical applications, BiGUL is ported to Haskell as an embedded domain-
specific language (shown in Figure ??). A BiGUL program with type BiGUL s v

describes a bidirectional program between source of type s and view of type v.
A BiGUL program can be evaluated as either a put or a get. That is, there are
two interpreters for BiGUL programs:

put :: BiGUL s v -> s -> v -> Either ErrorInfo s

get :: BiGUL s v -> s -> Either ErrorInfo v

The bidirectional transformations described by BiGUL programs are potentially
partial, and hence the results of these two interpreters are wrapped in the Either
monad — a value returned by put or get is either Left errMsg for some error
message errMsg (of type ErrorInfo) or Right result for some successfully

3.3 Generic Core Language 49

computed result. The well-behavedness laws are accordingly revised to

get b s = Right v ⇒ put b s v = Right s (GetPut)
put b s v = Right s′ ⇒ get b s′ = Right v (PutGet)

These are the well-behavedness properties verified in Agda.

50 3 Core Language

Chapter 4

A Bidirectional Functional Update
Language for XML

In Chapter 3, we designed a bidirectional core update language for XML-
structured data that includes expressions, paths, bidirectional updates and
unidirectional updates. Since this core retains many XML specific features
like paths and expressions, the processing of XML details and bidirectional
semantics are mixed together which makes it hard to guarantee the correctness
of the bidirectional semantics. In order to target this problem, we lift the core
to a generic one by removing the XML specific features that the bidirectional
semantics can be defined and proved easily.

Even the core language supports XML specific operations such as paths,
expressions, etc., but it is lower-level and inconvenient for programmer to
use. In this chapter, we introduce the surface language BiFluX (BIdirectional
FunctionaL Updates for XML) that has a user-friendly syntax for programmer
to write bidirectional update programs. BiFluX is inspired by the Flux (a func-
tional XML update language), which adopts a novel bidirectional programming
by update paradigm, where a program succinctly and precisely describes how
to update a source document with a target document in an intuitive way, such
that there is a unique “inverse” source query for each update program. BiFluX
extends Flux with bidirectional actions that describe the connection between
source and target formats.

51

52 4 A Bidirectional Functional Update Language for XML

4.1 Syntax, Informal Semantics, and General Frame-
work

This section explains the syntax and informal semantics of BiFluX with a typical
example, and then shows the big picture of our general framework.

4.1.1 Our Running Example

Consider a typical address book whose format is represented by the DTD from
Figure 4.1. An address book contains a list of people, each possessing a name,
an email address, and the person’s affiliation. Let us start with the following
XML address book with three people:

<addrbook>

<person>

<name>Hugo Pacheco</name>

<email>hpacheco@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

<person>

<name>Josh Ko</name>

<email>joshko@ox.ac.uk</email>

<affiliation>Oxford</affiliation>

</person>

<person>

<name>Zhenjiang Hu</name>

<email>zh@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

</addrbook>

On the other hand, the NII’s administrative services may keep only a view
with the name and email address of employees (people who are affiliated to
NII), as shown in the DTD from Figure 4.2. We have a view that simply keeps

4.1 Syntax, Informal Semantics, and General Framework 53

<!DOCTYPE addrbook [

<!ELEMENT addrbook(person*)>

<!ELEMENT person(name,email,affiliation)>

<!ELEMENT name(#PCDATA)>

<!ELEMENT email(#PCDATA)>

<!ELEMENT affiliation(#PCDATA)>]>

Figure 4.1 A simple address book DTD.

<!DOCTYPE niibook [

<!ELEMENT niibook (employee*)>

<!ELEMENT employee (name,email)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT email (#PCDATA)>]>

Figure 4.2 An NII address book DTD.

the email of each person working at NII:

<niibook>

<employee>

<name>Hugo Pacheco</name>

<email>hpacheco@nii.ac.jp</email>

</employee>

<employee>

<name>Zhenjiang Hu</name>

<email>zh@nii.ac.jp</email>

</employee>

</niibook>

We can perform update operations on this view XML. For instance, we can
add Tao (in alphabetical order) as a new NII employee, fix Zhenjiang’s email,
and delete Hugo:

54 4 A Bidirectional Functional Update Language for XML

PROCEDURE niibook($source AS s:addrbook, $view AS v:niibook) =

UPDATE person[$sname AS s:name,

$semail AS s:email,

$affil AS s:affiliation] IN $source/person BY

{ MATCH -> REPLACE $semail WITH $vemail
| UNMATCHV -> CREATE VALUE

<person>

<name/>

<email/>

<affiliation>NII</affiliation>

</person>

| UNMATCHS -> DELETE .

} FOR VIEW employee[$vname AS v:name,

$vemail AS v:email] IN $view/employee
MATCHING SOURCE BY $sname VIEW BY $vname
WHERE $affil/text() = "NII"

Figure 4.3 BiFluX update for the institutional address book example.

<niibook>

<employee>

<name>Tao Zan</name>

<email>zantao@nii.ac.jp</email>

</employee>

<employee>

<name>Zhenjiang Hu</name>

<email>zhenjhu@nii.ac.jp</email>

</employee>

</niibook>

Now the updated view and source XMLs become inconsistent, and we need to
update the source XML to restore consistency. We can write a simple program
in BiFluX to describe how the update should proceed, which is shown in

4.1 Syntax, Informal Semantics, and General Framework 55

Figure 4.31. The program has a single procedure niibook, which consists of a
single UPDATE FOR VIEW statement specifying how to update the source using
the view. It focuses on a sequence of people in the source by traversing down
the path $source/person, selecting only those that work at NII through the
WHERE expression, and also focuses on a sequence of employees in the view by
traversing down the path $view/employee. Elements in the two sequences are
matched by their names, as specified by the MATCHING condition. Both the source
and view elements are decomposed by pattern matching. A matching person-
employee pair is processed according to the MATCH clause, updating the person’s
email with the employee’s email. If an unmatched employee exists in the view,
according to the UNMATCHV clause, a new person with NII as the affiliation is
created in the source. We do not need to fill in the name with $vname and
email with $vemail, as the underlying semantics will pass the newly created
source person into the MATCH clause, and thus both the name and email will be
updated with the corresponding view elements. (Although the MATCH clause
does not include a statement REPLACE $sname WITH $vname, this statement in
fact will be derived from the MATCHING condition and implicitly inserted.) If an
unmatched person exists in the source, the person will be deleted, according
to the UNMATCHS clause. This UPDATE FOR VIEW syntax is specifically designed
for specifying flexible alignment strategies in update programs, and can be
regarded as a novel feature of BiFluX.

4.1.2 Syntax and Informal Semantics of BiFluX

In this section we will explain the syntax and informal semantics of BiFluX
in terms of the running example in Figure 4.3. The syntax for BiFluX’s main
constructs is defined in Figure 4.4 and Figure 4.5, which is based on Flux [15],
a high-level, purely functional language for writing XML updates. Statements
Stmt include updates, composition, conditionals, let-binding, case expressions,
and procedure calls. Update statements Upd include insertion, deletion, re-
placement, update under a path (UPDATE BY), update of a source using a view

1The names s:elem and v:elem are BiFluX type variables that refer to the types of source
and view elements declared in the respective DTDs.

56 4 A Bidirectional Functional Update Language for XML

Stmt ::= Upd [WHERE Conds] | Stmt ; Stmt
| { Stmt } | { }
| IF Expr THEN Stmt ELSE Stmt
| LET Pat = Expr IN Stmt
| CASE Expr OF { Cases }
| P(Path, Expr)

Upd ::= INSERT (BEFORE | AFTER) PatPath
VALUE Expr

| INSERT AS (FIRST | LAST) INTO PatPath
VALUE Expr

| DELETE [FROM] PatPath
| REPLACE [IN] PatPath WITH Expr
| UPDATE PatPath BY Stmt
| UPDATE PatPath BY VStmt

FOR VIEW PatPath [Match]
| CREATE VALUE Expr

Figure 4.4 Concrete syntax of BiFluX updates (Part I).

(UPDATE FOR VIEW), and source creation. They may be guarded by a WHERE

clause that defines a set of conditions constraining when the updates are exe-
cuted.

In general, a BiFluX update is executed for a particular source and view as
follows: by evaluating a source path or performing pattern matching on the
current source, we obtain a source focus selection, which is recursively updated
using a view focus selection computed by evaluating a view path or performing
pattern matching on the current view, until all the view information is embedded
into the source. View and source focus selections denote the parts of the source
and view that can be respectively updated and used by the update.

Below we will go through each of the constructs.

4.1 Syntax, Informal Semantics, and General Framework 57

Conds ::= Expr [; Conds]
| Var := Expr [; Conds]

Cases ::= Pat→ Stmt
| Pat→ ADAPT SOURCE BY Stmt
| Cases ′|′ Cases

VStmt ::= { VStmt } | VUpd
| VUpd ′|′ VUpd

VUpd ::= MATCH→ Stmt
| UNMATCHS→ Stmt
| UNMATCHV→ Stmt

Match ::= MATCHING BY Path
| MATCHING SOURCE BY Path

VIEW BY Path
PatPath ::= [Pat IN] Path

Figure 4.5 Concrete syntax of BiFluX updates (Part II).

Procedure

In BiFluX, large bidirectional update programs are constructed by using a list
of small procedures. A procedure is defined in the following syntax:

PROCEDURE P(Var AS τ, Var AS τ) = Stmt

The first argument is the source and the second one is the view. τ is a regular
expression type (whose details will be presented in Section 4.3.2).

In the running example, we declare a procedure named niibook with source
argument $source and view argument $view, whose types are s:addrbook and
v:niibook respectively. XML element names appearing in types (in this case
addrbook and niibook) are prefixed with either s: or v: to specify that they are
from the source or view DTD, since there may be elements with the same name
but different definitions in the source and view DTDs.

58 4 A Bidirectional Functional Update Language for XML

Path

In BiFluX, we use a subset of XPaths to traverse XML data. We omit the detailed
definition of XPaths in the paper for brevity, only giving explanations in terms
of a couple of paths used in the running example instead. For one, the path
$source/person extracts all the three people under $source, which points to
an addrbook, and produces:

<person>

<name>Hugo Pacheco</name>

<email>hpacheco@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

<person>

<name>Josh Ko</name>

<email>joshko@ox.ac.uk</email>

<affiliation>Oxford</affiliation>

</person>

<person>

<name>Zhenjiang Hu</name>

<email>zh@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

Function text() extracts text information. For example, $affil/text() gets
the text in the affiliation element pointed to by $affil: If $affil points to
<affiliation>NII</affiliation>, then the result will be “NII”.

Source and view matching

The main difference between FluX and BiFluX is that updates on sources can
use view information. Such an update is performed by a new UPDATE FOR VIEW

operation, which synchronizes elements in the results of evaluating a source
path and a view path. In the running example, we update a list of people de-
noted by $source/person with a list of employees denoted by $view/employee.

4.1 Syntax, Informal Semantics, and General Framework 59

The Pat IN Path notation is used to decompose the elements in the two lists, so
that we can specify further updates on the sub-elements.

One of the key design issues for the bidirectional-programming-by-update
paradigm is to invent a nice syntax for describing flexible alignment strategies,
and our solution is the UPDATE FOR VIEW operation. The operation comes along
with a matching condition that means the synchronization can be configured
by the programmer via the matching condition that aligns source and view
elements, and a triple of matching/unmatching clauses (VUpd) that describe
the actions for individual source-view elements. When two source and view
elements MATCH, a bidirectional statement is executed to update the source
using the view; during compilation, a REPLACE statement derived from the
MATCHING condition is implicitly inserted into the MATCH clause to guarantee
that the source and the view still match after the update. An unmatched view
element (UNMATCHV) creates a temporary element in the source according to a
unidirectional CREATE statement, and the temporary source element will be
updated using the view element via the MATCH clause. An unmatched source
element (UNMATCHS) is DELETEd by default, but we may keep it by providing a
unidirectional statement describing how to invalidate the given WHERE SOURCE

selection criteria. The rule is that all BiFluX statements are bidirectional, except
inside UNMATCHS or UNMATCHV clauses.

Let us use the running example illustrated in Figure 4.3 for explanation.
It matches a list of source person elements that satisfies the where condition
(WHERE $affil/text() = "NII") with a list of view employees by source per-
son’s name ($sname) and view person’s name ($vname). For the matched source
person and view employee, update its email by the view employee’s email; for
the view employee that there is no corresponding matching source element
person, create a new source person with default affiliation set to NII; for the
source person that there is no corresponding matching view element employee,
delete this person.

60 4 A Bidirectional Functional Update Language for XML

Flux Operations

Some update operations are inherited from Flux, which can be singular, to
update single trees, or plural, to update the children of the selected tree. Singu-
lar replacements (REPLACE WITH) replace each node selected by a path, while
plural replacements (REPLACE IN) replace their content. Singular insertions
(INSERT BEFORE/AFTER) insert a value before or after each node selected by a
path, while plural insertions (INSERT AS FIRST/LAST INTO) insert a value at the
first or last position of the child-list of each selected node. Singular deletions
(DELETE) delete each selected node, while plural deletions (DELETE FROM) delete
their content.

Below we use several examples to show how these updates work. Suppose
that we have an XML database of type addrbook pointed to by variable $s,
which is initially an empty list. We insert a person into the database by using
the following plural insertion:

INSERT AS FIRST INTO $s VALUE

<person>

<name>Tao Zan</name>

<email>zantao@nii.ac.jp</email>

<affiliation>NII</affiliation>

<person>

(Since the database is empty, either INSERT AS FIRST or INSERT AS LAST

works.) Now the database contains one entry for Tao. If we want to change
Tao’s affiliation, we can use the following update:

REPLACE $s/person/affiliation/text() WITH "Osaka"

This update can also be written using a plural replacement (REPLACE IN):

REPLACE IN $s/person/affiliation WITH "Osaka"

Finally, we can clear the database by DELETE FROM $s or even delete the
database itself by DELETE $s.

4.1 Syntax, Informal Semantics, and General Framework 61

Source Adaptation

Different from the first version of BiFluX, case statements have been extended
to include a source adaptation mechanism. With the first version of BiFluX, if
a source is not compatible with the given view, we can only throw away the
source and create a new one from the view. Sometimes, however, we do want
some information in the old source to be preserved in the new one. The source
adaptation mechanism is added for this purpose: when incompatibility arises,
the old source can be transformed to a new one compatible with the view, while
keeping part of the original source information.

To illustrate how source adaptation works, consider the following scenario:
The source is a record about either a book or a magazine that contains the title,
authors, price, and publication year, e.g.,

<book>

<title>Everyday Italian</title>

<author>Giada De Laurentiis</author>

<year>2005</year><price>30.00</price>

</book>

and there is a variable $s pointing to the above record. The view can be either a
book or a magazine with only the title and price, e.g.,

<magazine>

<title>Everyday Italian</title>

<price>15.00</price>

</magazine>

Suppose that we have decomposed the above view with the following pattern
magazine[$vtitle AS v:title, $vprice as v:price]. The following BiFluX
program with source adaptation can transform the source into a magazine and
then update it with the view values:

CASE $s of

magazine[$title AS s:title, s:author+,

s:year, $price AS s:price]

62 4 A Bidirectional Functional Update Language for XML

-> REPLACE $title WITH $vtitle;
REPLACE $price WITH $vprice

book[s:title, $ars AS s:author+,

$y AS s:year, s:price]

-> ADAPT SOURCE BY CREATE VALUE

<magazine><title/>{$ars}
{$y}<price/></magazine>

Since the source is a book, it matches the second, adaptive branch and is
transformed to a magazine with the author and year information preserved
in the new source. After encountering an adaptive branch and executing the
associated transformation, the case statement will be run again on the new
source, which, in this case, is a magazine and matches the first normal branch.
The replacement statements are then executed, producing the following updated
source:

<magazine>

<title>Everyday Italian</title>

<author>Giada De Laurentiis</author>

<year>2005</year><price>15.00</price>

</magazine>

The programmer should adapt the source with the intention of making
it match with a normal branch — to avoid falling into adaptive branches
repeatedly and resulting in non-termination, the underlying engine BiGUL
will check that the adapted source matches a normal branch; subsequently, the
adapted source will be updated by the bidirectional update statement in that
branch and an updated source will be generated.

4.1.3 Bidirectional Execution

Although the emphasis is on writing updates, BiFluX programs have a bidirec-
tional interpretation. They can be read as 1) an update function U(s, v′) = s′ that
updates a source s into a new source s′ which contains a given view v′, or 2)
a query function Q(s) = v that computes a view v from a given source s; these

4.1 Syntax, Informal Semantics, and General Framework 63

PROCEDURE niibook($source AS s:addrbook, $view AS v:niibook) =

UPDATE person[$sname AS s:name,

$semail AS s:email,

$affil AS s:affiliation] IN $source/person BY

{ MATCH -> REPLACE $semail WITH $vemail
| UNMATCHV -> CREATE VALUE

<person>

<name/>

<email/>

<affiliation>NII</affiliation>

</person>

| UNMATCHS -> REPLACE IN $affil WITH "NCI"

} FOR VIEW employee[$vname AS v:name,

$vemail AS v:email] IN $view/employee
MATCHING SOURCE BY $sname VIEW BY $vname
WHERE $affil/text() = "NII"

Figure 4.6 Another update Strategy in BiFluX.

functions may be partial. For the running example in Figure 4.3, (assuming that
people are uniquely identified by their names) the query function is semantically
equivalent to the XQuery expression:

<niibook>

{

for $person in $s/person
where $person/affiliation/text() = "NII"

return <employee>

{$person/name}
{$person/email}

</employee>

}

</niibook>

64 4 A Bidirectional Functional Update Language for XML

For example, a typical use case is to run the BiFluX program as a query on
the source in Section 4.1.1 and get the first view in that section, which is then
modified to the second view. To produce a new, consistent source, the BiFluX
program is run as an update on the original source and the modified view. In
the new source, Josh is left unchanged, Tao is created with the default affiliation
NII (as his name does not match any name in the original source), Zhenjiang’s
email is updated, and the Hugo is deleted:

<addrbook>

<person>

<name>Josh Ko</name>

<email>joshko@ox.ac.uk</email>

<affiliation>Oxford</affiliation>

</person>

<person>

<name>Tao Zan</name>

<email>zantao@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

<person>

<name>Zhenjiang Hu</name>

<email>zhenjhu@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

</addrbook>

Note that it is possible to preserve information in the original source (in this
case Josh’s information) since in a update program we can choose to update
only part of the source and keep everything else. This is not always supported
by “bidirectional” XML transformation languages: biXid [42], for example,
supports transformation of one XML format into the other and vice versa,
creating a new XML document from scratch every time; consequently, when
biXid converts a more informative format F1 into a less informative format F2,
the information exclusive to F1 will be lost and cannot be recovered when
converting a F2-formatted document back to F1.

4.1 Syntax, Informal Semantics, and General Framework 65

Our language is carefully designed to ensure that the inferred relationship
between sources and views is deterministic, so that capturing it by a query
function is appropriate. In other words, there exists a unique query function
for each update program written in our language. Moreover, its bidirectional
semantics satisfies two basic synchronization properties: that an update U
consistently embeds view information to the source:

U(s, v′) = s′ ⇒ Q(s′) = v′ UpdateQuery

and that it does not update already consistent sources:

Q(s) = v ⇒ U(s, v) = s QueryUpdate

These two properties are commonly known as the well-behavedness laws of
lenses in the bidirectional programming community [22].

The UpdateQuery property indicates that view information must be fully
embedded into the source and cannot be arbitrarily discarded. This calls for
careful language design that helps the programmer to manage view information
and check that the view is indeed fully embedded. In BiFluX, full embedding
is checked during compilation to guarantee that the view can be reconstructed
from the source. For example, if we write an empty statement ({}) in the MATCH

clause of the running example instead of REPLACE $semail WITH $vemail, the
program will fail to compile, as it will be discovered that the view variable
$vemail is not used and hence not embedded into the source.

Sometimes a part of the view contains only redundant information in the
sense that it can be computed from other parts, and hence does not need to
be embedded. This situation can be explicitly described with a WHERE clause.
For example, suppose that in the view we include for each name some extra
indexing information that can be derived from the name, and this indexing in-
formation is not present in the source. At some point in the BiFluX program for
synchronizing this kind of source and view, we might have two view variables
$vname and $index, denoting a name and an associating indexing information.
We can embed $vname into the name part of the source, but cannot do so for
$index, since $index does not have a corresponding part in the source. In this
case, we indirectly embed $index into the source by specifying the dependency
between $index and $vname as follows: WHERE $index := index[$vname]. Af-

66 4 A Bidirectional Functional Update Language for XML

ter that, $index is considered embedded, and we only need to embed $vname
into the source.

4.1.4 Other Update Strategies

In this section, we show that BiFLuX is flexible enough for describing other
update strategies that may better reflect the user’s intention.

For the running example we have explained, even though the BiFLuX
program in Figure 4.3 gives a reasonable update strategy for many situations,
this strategy is not the only one possible; for example, deleting a person from
the view may actually mean that the person just moves to another institute
instead of disappearing from the source database. We can easily describe
this alternative update strategy by modifying the UNMATCHS case, as shown in
Figure 4.6.

Running this second update moves people like Hugo to a new institute, in
this case “NCI”, producing the updated source:

<addrbook>

<person>

<name>Hugo Pacheco</name>

<email>hpacheco@nii.ac.jp</email>

<affiliation>NCI</affiliation>

</person>

<person>

<name>Josh Ko</name>

<email>joshko@ox.ac.uk</email>

<affiliation>Oxford</affiliation>

</person>

<person>

<name>Tao Zan</name>

<email>zantao@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

4.1 Syntax, Informal Semantics, and General Framework 67

<person>

<name>Zhenjiang Hu</name>

<email>zhenjhu@nii.ac.jp</email>

<affiliation>NII</affiliation>

</person>

</addrbook>

For simplicity, we omit updating his email address accordingly in the BiFLuX
program. In general, we can describe even more complicated strategies like
conditionally delete or modify the person’s information in the UNMATCHS clause.

This behavior cannot usually be described using the typical BX languages
(e.g. lenses [28]), which are designed from the perspective of get, as they only
provide one default update strategy for the put direction, usually reflecting
deletion on the view to deletion on the source, and the user has no way of
specifying a different update strategy for the put direction.

The main difference between BiFluX and Foster’s lenses [28] is that the
emphasis is now on writing a put transformation instead of a get transformation.
This will allow a much more flexible and intuitive control over backward
synchronization strategies, by making several put design choices explicit in the
design of a bidirectional update.

4.1.5 General Framework

The general architecture of our bidirectional updating framework is illustrated
in Figure 4.7. A BiFluX program is evaluated in two stages. First, it is statically
compiled against a source and a view schema (represented as DTDs), producing
a bidirectional executable. The generated executable can then be evaluated
bidirectionally for particular XML documents conforming to the DTDs: in
forward mode as a query Q, or in backward mode as an update U.

The compilation of BiFluX has two stages: The high-level BiFluX language
is first normalized into a clean core language with syntax simplification, and
then the core language is compiled into an XML-oblivious language BiGUL.

68 4 A Bidirectional Functional Update Language for XML

Bidirectional Executable

Query

Update

BiFluX
Program

Source DTD View DTD

Updated
Source XML

View XML

Updated
View XML

Source XML

Bidirectional
Compiler

Figure 4.7 Architecture of the BiFluX framework.

The second stage is the key part that includes handling XML values and regular
expression types, checking necessary bidirectional transformation constraints
and bidirectionalizing the core language by dealing with paths, composition
etc. We will explain the core language, introduce BiGUL, and describe the
compilation rules from core to BiGUL in the following sections.

4.2 BiFluX to Core Update Normalization

In this section, we formalize the translation from the high-level BiFluX language
to the core language presented in Section 3.2, highlighting the significant gap
between them. This process is usually referred to as normalization in languages
like XQuery [30] and Flux [15]. We define two main normalization functions
that interpret statements as bidirectional J|| − ||Kb

Stmt and unidirectional updates
J|| − ||Ku

Stmt.

4.2 BiFluX to Core Update Normalization 69

$source / child / :: person
[[alignkey

(case self of

person [$sname as s : name, $semail as s : email, $affiliation as s : location]
→ $affiliation / child / :: text() = "NII")

(case self of

person [$sname as s : name, $semail as s : email, $affiliation as s : affiliation]
→ $sname)

(case self of

employee [$vname as v : name, $vemail as v : email]→ $vname)
(caseS self of

person [$sname as s : name, $semail as s : email, $affiliation as s : affiliation]
→ caseV self of

employee [$vname as v : name, $vemail as v : email]→
$semail [[replace] $vemail];
$sname [[replace] $vname]

)

(insert person [name [""], email [""], affiliation ["NII"]])

delete]

$view / child / :: employee]

Figure 4.8 Core program of the institutional address example in Figure 4.3

4.2.1 Bidirectional Update Normalization

The translation rules for BiFluX surface language to the core XML update
language are shown in Figure 4.9 and Figure 4.10. Simple bidirectional updates
are translated by a function J|| − ||Kb

Upd(es, ev,~x =~e), where the extra parameters
group the WHERE clauses of the update into a source selection expression es, a
view selection expression ev and a sequence of view bindings~x =~e; these triples
are parsed from a set of conditions, according to their source/view tags, by a
function J|| − ||KConds.

For special UPDATE FOR VIEW statements, the splitVStmt function parses

70 4 A Bidirectional Functional Update Language for XML

J|| u WHERE cs ||Kb
Stmt = J|| u ||Kb

Upd(J|| cs ||KConds) J|| s; s′ ||Kb
Stmt = J|| s ||Kb

Stmt; J|| s′ ||Kb
Stmt

J|| pat IN p ||KiterPatPath(eS, b) =

(p / where (let pat = self in eS))[iter (caseS self of pat→ b)]

J|| pat IN p ||KS
PatPath(eS, b) =

(p / where (let pat = self in eS))[caseS self of pat→ b]

J|| DELETE patp ||Kb
Upd(eS, true, ·) = J|| patp ||KS

PatPath(eS, [replace]())

J|| DELETE FROM patp ||Kb
Upd(eS, true, ·) = J|| patp ||KS

PatPath(eS, child[[replace]()])

J|| REPLACE patp IN p WITH e′ ||Kb
Upd(eS, eV,~x =~e) =

J|| patp ||KiterPatPath(eS, view~x :=~e in ifV eV then [replace]e′ else fail)

J|| REPLACE IN patp WITH e′ ||Kb
Upd(eS, eV,~x =~e) =

J|| patp ||KiterPatPath(eS, view~x :=~e in ifV eV then child[[replace]e′] else fail)

J|| UPDATE patp BY s ||Kb
Upd(eS, eV,~x =~e) =

J|| patp ||KiterPatPath(eS, view~x :=~e in ifV eV then J|| s ||Kb
Stmt else fail)

J|| UPDATE pat IN p BY vs FOR VIEW pat′ IN p′

MATCHING SOURCE BY ps VIEW BY pv ||Kb
Upd(eS, eV,~x =~e) = p[[b]p′] where

((sSV, msV, msS), ps
′, pv

′) =

(splitVStmt(vs), case self of pat→ ps, case self of pat′ → pv)

b = alignkey (case self of pat→ eS) p′s p′v

J|| sSV ||Kb
Stmt (pat, pat′, ps, pv) J||msV ||Kc

MStmt(pat′) J||msS ||Kr
MStmt(pat)

splitVStmt : VStmt→ (Maybe Stmt, Maybe Stmt, Maybe Stmt)
splitVStmt (MATCH→ s) = (Just s, Nothing, Nothing)
splitVStmt (UNMATCHV→ s) = (Nothing, Just s, Nothing)
splitVStmt (UNMATCHS→ s) = (Nothing, Nothing, Just s)
splitVStmt (MATCH→ s ’|’ vs) = (Just s, msV, msS)

where splitVStmt (vs) = (Nothing, msV, msS)

splitVStmt (UNMATCHV→ s ’|’ vs) = (msSV, Just s, msS)

where splitVStmt (vs) = (msSV, Nothing, msS)

splitVStmt (UNMATCHS→ s ’|’ vs) = (msSV, msV, Just s)
where splitVStmt (vs) = (msSV, msV, Nothing)

Figure 4.9 BiFluX bidirectional statement normalization. (Part I)

4.2 BiFluX to Core Update Normalization 71

J|| {} ||Kb
Stmt = skip

J|| u ||Kb
Stmt = J|| u ||Kb

Upd(true, true, ·)

J|| LET SOURCE pat = p IN s ||Kb
Stmt = caseS p of p→ J|| s ||Kb

Stmt

J|| LET VIEW pat = e IN s ||Kb
Stmt = caseV p of p→ J|| s ||Kb

Stmt

J|| LET pat = e IN s ||Kb
Stmt = case p of p→ J|| s ||Kb

Stmt

J|| SOURCE e1; cs ||KConds =

(e1 ∧ eS, eV,~x =~e) where J|| cs ||KConds = (eS, eV,~x =~e)

J|| VIEW e1; cs ||KConds =

(eS, e1 ∧ eV,~x =~e) where J|| cs ||KConds = (eS, eV,~x =~e)

J|| VIEW x0 := e0; cs ||KConds =

(eS, eV, x0,~x = e0,~e) where J|| cs ||KConds = (eS, eV,~x =~e)

J|| SOURCE e ||KConds = (e, true, ·)
J|| VIEW e ||KConds = (true, e, ·)
J|| VIEW x := e ||KConds = (true, true, x = e)

J|| CASE SOURCE p OF {pat1 → s1 | . . . | patn → sn} ||Kb
Stmt =

caseS p of ~pat→ J||~s ||Kb
Stmt

J|| CASE VIEW e OF {pat1 → s1 | . . . | patn → sn} ||Kb
Stmt =

caseV e of ~pat→ J||~s ||Kb
Stmt

J|| CASE e OF {pat1 → s1 | . . . | patn → sn} ||Kb
Stmt = case e of ~pat→ J||~s ||Kb

Stmt

J|| IF SOURCE e THEN s ELSE s′ ||Kb
Stmt = ifS e then J|| s ||Kb

Stmt else J|| s′ ||Kb
Stmt

J|| IF VIEW e THEN s ELSE s′ ||Kb
Stmt = ifV e then J|| s ||Kb

Stmt else J|| s′ ||Kb
Stmt

J|| IF e THEN s ELSE s′ ||Kb
Stmt = if e then J|| s ||Kb

Stmt else J|| s′ ||Kb
Stmt

Figure 4.10 BiFluX bidirectional update normalization. (Part II)

72 4 A Bidirectional Functional Update Language for XML

a VStmt into a matching statement and two optional unmatched-view and
unmatched-source statements. Optional unmatched-view statements are trans-
lated using a function J|| − ||Kc

MStmt(mpat) that takes an extra optional view
pattern and returns a core create update; if no UNMATCHV clause is defined,
the U function of the underlying lens will be evaluated without an original
source. Optional unmatched-source statements are translated using a function
J|| − ||Kr

MStmt(mpat) that takes an extra optional source pattern and returns a core
recover update; if no UNMATCHS clause is defined, all unmatched source elements
are deleted by default.

4.2.2 Unidirectional Update Normalization

The syntax of ordinary unidirectional updates that we use in BiFluX differs
slightly from that of Flux [15]. For example, there is no iter u update that
iterates over a sequence by applying the same update u, and instead we support
arbitrary paths as directions. In our design, iteration occurs automatically at the
child axis (for updates of the form child[u]). The two different let x = e in u
and snapshot x in u updates in Flux, that respectively bind a variable to
the result of evaluating an expression under the current environment and
bind a variable to the current value of the focus, are both subsumed by our
case e of

−−−−→
pat→ u update, that allows the expression e to depend on the current

value of the focus. Simple unidirectional updates are translated by a function
J|| − ||Ku

Upd(e), where e is the conjunction of all the WHERE clauses of the update.
The translation rules for normalizing high-level unidirectional updates are
shown in Figure 4.11. The normalization for particular create and recover
unidirectional updates are given in Figure 4.12.

The translation denotes a partial function from high-level BiFluX to core Bi-
FluX. For example, INSERT operation as a unidirectional update is not supported
for bidirectional updates, UPDATE FOR VIEW is not supported for unidirectional
updates, and CREATE is only supported under UNMATCHV or UNMATCHS clauses, re-
spectively. We assume that paths and expressions are expressed in terms of our
core languages; this is standard practice as normalization of XQuery expressions
or XPath paths can be done independently. To simplify the presentation, we also

4.2 BiFluX to Core Update Normalization 73

J|| e ||Ku
Conds = e

J|| p ||Ku
PatPath(u) = p[u]

J|| e; cs ||Ku
Conds = e ∧ J|| cs ||Ku

Conds

J|| pat IN p ||Ku
PatPath(u) = p[case self of pat→ u]

J|| u WHERE cs ||Ku
Stmt = J|| u ||Ku

Upd(J|| cs ||Ku
Conds)

J|| u ||Ku
Stmt = J|| u ||Ku

Upd(true)

J|| {} ||Ku
Stmt = skip

J|| s; s′ ||Ku
Stmt = J|| s ||Ku

Stmt; J|| s′ ||K
u
Stmt

J|| IF e THEN s ELSE s′ ||Ku
Stmt = if e then J|| s ||Ku

Stmt else J|| s′ ||Ku
Stmt

J|| LET pat = e IN s ||Ku
Stmt = case e of pat→ J|| s ||Ku

Stmt

J|| CASE e OF {pat1 → s1 | . . . | patn → sn} ||Ku
Stmt = case e of ~pat→ J||~s ||Ku

Stmt

J|| UPDATE patp BY s ||Ku
Upd(e) = J|| patp ||Ku

PatPath((where e)[J|| s ||Ku
Stmt])

J|| DELETE patp ||Ku
Upd(e) = J|| patp ||Ku

PatPath((where e)[delete])

J|| DELETE patp ||Ku
Upd(e) = J|| patp ||Ku

PatPath((where e)[children[delete]])

J|| REPLACE patp WITH e′ ||Ku
Upd(e) = J|| patp ||Ku

PatPath((where e)[delete; insert e′])

J|| REPLACE IN patp WITH e′ ||Ku
Upd(e) =

J|| patp ||Ku
PatPath((where e)[children[delete; insert e′]])

J|| INSERT BEFORE patp VALUE e′ ||Ku
Upd(e) =

J|| patp ||Ku
PatPath((where e)[left[insert e′]])

J|| INSERT AFTER patp VALUE e′ ||Ku
Upd(e) =

J|| patp ||Ku
PatPath((where e)[right[insert e′]])

J|| INSERT AS FIRST INTO patp VALUE e′ ||Ku
Upd(e) =

J|| patp ||Ku
PatPath((where e)[children[left[insert e′]]])

J|| INSERT AS LAST INTO patp VALUE e′ ||Ku
Upd(e) =

J|| patp ||Ku
PatPath((where e)[children[right[insert e′]]])

Figure 4.11 Unidirectional update normalization.

74 4 A Bidirectional Functional Update Language for XML

J|| { } ||Kr
MStmt(mpat) = delete

J|| · ||Kr
MStmt(mpat) = delete

J|| s ||Kr
MStmt(·) = J|| s ||Kr

Stmt

J|| s ||Kr
MStmt(pat) = case self of pat→ J|| s ||Kr

Stmt

J|| IF e THEN s ELSE s′ ||Kr
Stmt = if e then J|| s ||Kr

Stmt else J|| s′ ||Kr
Stmt

J|| LET pat = e IN s ||Kr
Stmt = case e of pat→ J|| s ||Kr

Stmt

J|| CASE e OF {pat1 → r1 | . . . | patn → rn} ||Kr
Stmt = case e of ~pat→ J||~r ||Kr

Cases

J|| DELETE self ||Kr
Stmt = delete

J|| { } ||Kc
MStmt(mpat) = ·

J|| · ||Kc
MStmt(mpat) = ·

J|| s ||Kc
MStmt(·) = delete; J|| s ||Kc

Stmt

J|| s ||Kc
MStmt(pat) = case pat of self→ delete; J|| s ||Kc

Stmt

J|| IF e THEN s ELSE s′ ||Kc
Stmt = if e then J|| s ||Kc

Stmt else J|| s′ ||Kc
Stmt

J|| LET pat = e IN s ||Kc
Stmt = case e of pat→ J|| s ||Kc

Stmt

J|| CASE e OF {pat1 → r1 | . . . | patn → rn} ||Kc
Stmt = case e of ~pat→ J||~r ||Kc

Cases

J|| CREATE e; s ||Kc
Stmt = insert e; J|| s ||Ku

Stmt

Figure 4.12 Create and recover unidirectional update normalization.

4.3 Core Compilation 75

assume explicit SOURCE and VIEW tags, though our implementation is elaborated
to implicitly distinguish between source/view/normal expressions, using the
additional environment information available at the time of typechecking the
core language.

4.3 Core Compilation

In last Section, we have explained the core language and the normalization
process from the BiFluX surface language to the core language. In this section,
we will give a detailed explanation of the compilation from the core language
to a bidirectional core update language BiGUL.

4.3.1 Overview of Compilaton

The core language is compiled into BiGUL, which is the most complex part of
this work since details about XML and bidirectionality are dealt with here. For
the address book running example, the normalized core program in Figure 4.8
is compiled into the BiGUL program in Figure 4.13. The compilation (Sec-
tion 4.3.3) basically consists of five parts: translating the core bidirectionalizable
updates to BiGUL operations (Sections 4.3.3, 4.3.3, and 4.3.3), source paths
into BiGUL update patterns (Section 4.3.3), view expressions into BiGUL’s
view rearrangement operation (Section 4.3.3), general expressions into Haskell
expressions (Section 4.3.4), and unidirectional updates into Haskell functions.
The more interesting part is, naturally, the translation of the bidirectionalizable
updates, and we will devote this section to this part. The translation of the
unidirectional updates are straightforward and in fact tedious, so we omit them
for brevity.

We should emphasize that we intend the compilation rules to serve as the
(preliminary) definition of BiFluX semantics. That is, instead of defining a
semantics for the surface language and then proving that the compilation rules
preserve the semantics, we will rely on the intuitive understanding of what
BiFluX programs should do —as presented in Section 4.1— and capture that

76 4 A Bidirectional Functional Update Language for XML

Update (UIn (UVar

(RearrV

(λ(Niibook hEmployeelst)→ hEmployeelst)
(Align

(λhPerson→
case hPerson of {Person (sName, sEmail, sAffil)→ out sAffil ≡ "NII"})

(λhPerson hEmployee→
case hPerson of {Person (sName, sEmail, Affil)→ sName}
≡ case hEmployee of {Employee (vName, vEmail)→ vName})

(Update (UVar

(CaseS [

((λhs→ case hs of {Person (sName, (sEmail, sAffil))→ True; → False}),
Normal (RearrS

(λPerson (sName, (sEmail, sAffil))→ (sName, (sEmail, sAffil)))
(RearrV (λhv→ (hv, ()))
(RearrV (λ(hv, hvv)→ (hv, hvv))
(CaseV [

((λ(hv,)→ case hv of
{Employee (vName, vEmail)→ True; → False}),

RearrV (λ(Employee (vName, vEmail), ())→ (vName, hEmail))
(RearrS (λ(sName, (sEmail, sAffil))→ ((sEmail, sName), sAffil))
(RearrV (λ(vName, vEmail)→ ((vEmail, vName), ()))
(Update (UProd

(UProd

(UVar (Update (UVar

(RearrV (λvEmail→ vEmail) Replace))))
(UVar (Update (UVar

(RearrV (λvName→ vName) Replace))))
(UVar Skip)))))))])))))])))

(λ(Employee (vName, vEmail))→ Person ("", ("", "NII")))
(λ → Nothing)))))

Figure 4.13 Compiled BiGUL program of the address example.

4.3 Core Compilation 77

Γ s̀p p⇒ f

Γ s̀p x⇒ λupat.genupat(Γ, x, upat) {τ} s̀p self⇒ id

τ : n [τ1]

{τ} s̀p child⇒ UIn

τ <: nt
{τ} s̀p :: nt⇒ id

τ ��<: nt
{τ} s̀p :: nt⇒ const (UVar Skip)

Γ s̀p p1 ⇒ f1 Γ`itersp p2 ⇒ f2
Γ s̀p p1 / p2 ⇒ f1 ◦ f2

Γ`itersp p⇒ f

{()}`itersp p⇒ const (UConst ())

{τ} s̀p :: nt⇒ f
{τ}`itersp :: nt⇒ f

{τ} s̀p :: nt⇒ f
{τ∗}`itersp :: nt⇒ f

{τ1}`itersp :: nt⇒ f1 {τ2}`itersp :: nt⇒ f2
{(τ1, τ2)}`itersp :: nt⇒ f1× f2

{α} s̀p p⇒ f
{α}`itersp p⇒ f

{E(X)}`itersp p⇒ f

{X}`itersp p⇒ f

{τ1}`itersp p⇒ f1 {τ2}`itersp p⇒ f2

{τ1 | τ2}`itersp p⇒
λupat.UVar (CaseS [(isLeft, Normal (Update (f1 upat))),

(isRight, Normal (Update (f2 upat)))]))

Figure 4.14 Compilation of source path.

78 4 A Bidirectional Functional Update Language for XML

intuition with the compilation rules. Admittedly, it is hard to make a semantics
defined by compilation as clear as one hopes for, but such a semantics is usually
sufficient for an experimental language. Our main purpose of designing BiFluX
is to experiment with the paradigm of bidirectional programming by update,
and we expect to make further changes and extensions (some of which will be
mentioned in Section 4.5) to the language. We plan to give a better formalization,
in particular specifying a semantics for the surface language, after the language
is more mature and stabilized.

What we have refrained from saying explicitly up until now is that all of
the high-level BiFluX language, the core language, and BiGUL are typed. We
have omitted the typing rules for the languages from the paper since they are in
general straightforward. The compiler, however, sometimes needs to use type
information in a core program to generate appropriate BiGUL code, and hence
the compilation rules need to refer to the types. Therefore, before presenting
the compilation rules, we first give an account of the type system used by the
core language in Section 4.3.2.

4.3.2 XML Values and Regular Expression Types

As several other XML processing languages [38, 15, 19], we consider a type
system of regular expression types with structural subtyping2:

Atomic types
α ::= bool ‖ string ‖ n[τ]

Sequence types
τ ::= α ‖ () ‖ τ | τ′ ‖ τ, τ′ ‖ τ∗ ‖ X

Atomic types α ∈ Atom are primitive booleans, strings or labeled sequences n[τ].
Sequence types τ ∈ Type are defined using regular expressions, including empty
sequence (), alternative choice τ | τ′, sequential composition τ, τ′, iteration τ∗

or type variables X; choice and composition are right-nested. We define the
usual τ+ = τ, τ∗ and τ? = τ | (). Types can also be recursively defined:

2We use ‖ for syntax alternatives in the type grammar to prevent confusion.

4.3 Core Compilation 79

Type definitions
τD ::= α ‖ () ‖ τD | τ′D ‖ τD, τ′D ‖ τD

∗

Type signatures
E ::= · ‖ E, type X = τD

Type definitions τD are sequences with no top-level variables (to avoid non-label-
guarded recursion [19]). A type signature E is a set of named type definitions of
the form X = τD, and is well-formed if no two types have the same name and
all type variables in definitions are declared in E. We write E(X) for the type
bound to X in E. Hereafter, we will assume the signature E to be fixed.

In traditional XML-centric approaches [38, 19], values are encoded using a
uniform representation that does not record the structure that types impose
on values. This “flat” representation is economical and simplifies subtyping,
but makes it harder to realize that a value belongs to a type and therefore
to integrate regular expression features into functional languages with non-
structural type equivalence, such as Haskell or ML. We instead consider a
structured representation of values (in line with values of algebraic data types)
that keep explicit annotations which, in a way, witness how to parse a flat value
as an instance of a type [50]:

Atomic values
t ::= true | false | w | n[v]

Forest values
v ::= t | () | L v | R v | (v, v) | [v0, . . . , vn]

Atomic values t ∈ Tree can be true, false ∈ Bool, strings w ∈ Σ∗ (for some
alphabet Σ), or singleton trees n[v] with a node label n. Forest values v ∈ Val
include the empty sequence (), left- L v or right- R v tagged choices, binary
sequences (v, v) and lists of arbitrary length [v0, . . . , vn]. The semantics of a type
τ denotes a set of values JτK that is defined as the minimal solution (formally
the least fixed point [38]) of the following set of equations:

J()K , {()} JstringK ,Σ∗

JboolK , {true, false} JXK , JE (X)K
Jn[τ]K , {n[v] | v ∈ JτK}
Jτ, τ′K , {(v, v′) | v ∈ JτK, v′ ∈ Jτ′K}

80 4 A Bidirectional Functional Update Language for XML

Jτ | τ′K , {L v | v ∈ JτK} ∪ {R v | v ∈ Jτ′K}
Jτ∗K , { [v0, . . . , vn] | v0, . . . , vn ∈ JτK, n > 0}

In our context, values in the type semantics preserve the type structure. We
will denote flat values ft ∈ FTree and fv ∈ FVal (dropping left/right tags,
parenthesis and list brackets) by:

Flat atomic values
ft ::= true | false | w | n[fv]

Flat forest values
fv ::= () | ft, fv

The notion of subtyping plays a crucial role in XML approaches with regular
expression types. A type τ1 is said to be a subtype of τ2, written τ1 <: τ2, if
the flat values belonging to τ1 are also values of τ2, i.e. Jτ1Kflat ⊆ Jτ2Kflat. Since
we retain a structured representation of values, upcasting a value v1 of type
τ1 into a supertype τ2 requires more than a proof of subtyping: we must also
change v1 into a value v2 that contains the same flat information as v1 but
conforms to the structure of τ2. This problem has been considered in [50], that
introduces a subtyping algorithm as a proof system with judgments of the form
` τ1 <: τ2 ⇒ c, that we treat as a “black box”. In BX terms, c : τ2←→. τ1 is called
a canonizer [29], which is a bit like a lens from τ2 to τ1 that comprises a total
upcast function ucast : τ1 → τ2, and a partial downcast function dcast : τ2 → τ1.
In our sense, canonizers satisfy two properties stating that they only handle
structure:

ucast v1 ∼ v1 Up∼

dcast v2 = v1 ⇒ v1 ∼ v2 Down∼

The equivalence relation ∼ used above ignores structure and relates values
parsing the same data using different markup, e.g., L v ∼ R v; formally,

v ∼ v′ , flat(v) = flat(v′)

where the function flat : Val→ FVal flattens a structured value.

4.3 Core Compilation 81

4.3.3 Compilation of Bidirectionalizable Updates

We can now move on to the compilation rules from the core language to BiGUL.
The first three basic operations —replace, skip, and fail— are simply com-
piled into their counterparts in BiGUL. The rest are explained in the following
subsections.

Source Paths

The p[b] operation in Section 3.2.2 updates part of the source, and in BiGUL
this behavior is implemented by the Update operation. The major difference
between the two operations is that the former uses a source path to point to the
sub-source, while the latter uses an update pattern to decompose the source and
execute a sub-update on the sub-source. A source path should thus be compiled
into a “pattern with a hole”, into which we can fill in the sub-update. Since we
can use whatever the host language Haskell offers to describe the compilation,
we can simply express the semantics of a source path —i.e. a “pattern with
a hole”— as a function mapping a BiGUL update to an update pattern. To
be able to define the semantics of source paths compositionally, however, we
instead compile source paths to functions mapping a pattern to another pattern,
and these functions will be easily composable. After a source path is compiled
into such a function, we can apply the function to UVar bigul where bigul is the
sub-update. The resulting update pattern can then be supplied as the argument
to an Update operation.

The compilation rules are shown in Figure 4.14. Γ is an environment that
maps variables to their type, and always include a special variable ‘.’ for
recording the type of the current focus which is useful for paths like self.
When Γ contains only the focus, we write {τ} for {(., τ)} for simplicity.

The compilation of a variable path (x) needs a helper function genupat to
create an update pattern for the current environment Γ. As Γ may have more
than one source variables, others except x in fact will not be updated (the special
variable ‘.’ will not be considered during this computation), and thus we use
UVar Skip to skip them and combine all of them by UProd. The construction

82 4 A Bidirectional Functional Update Language for XML

of upat from Γ follows the alphabetical order of the variables in Γ in order
to keep the generation of patterns consistent. For example, suppose that we
have an environment Γ = {(y, τ2), (x, τ1)} and a bidirectionalizable update
x[replace] in which the path is a variable x. Then the generated function
is λupat.(UProd upat (UVar Skip)). Variable y will be skipped, and x will be
updated using UVar Replace.

self is compiled into the identity function, and child is compiled into UIn

for updating the children of the current focus. For a node-test path ::nt, if
the current source type is a subtype of nt, then the current source is returned;
otherwise it is skipped. (const is a Haskell function that always return the first
argument, ignore the second one.)

Given a path p1 / p2, the result type of p1 can be any one of the types
introduced in Section 4.3.2, so we define rules that enumerate all the cases.
When the result type is τ∗ and the path p2 is a ::nt, an id function is returned if
τ is a subtype of nt, or otherwise it is skipped; when the result type is {τ1 | τ2},
the translated function involves a case analysis on the current source in order
to perform different updates.

For Figure 4.8, there is a source path $source / child / :: person, which is
compiled into id ◦ UIn ◦ id, i.e. UIn.

View Expressions

This subsection gives the compilation rules for view expressions described
in Section 3.2.2. In the update direction, a view expression is regarded as
a function computing a new view from values bound to the view variables;
conversely, in the query direction, we compute the values for the view variables
by inverting the function. We thus restrict the forms of expressions that can be
used for this purpose, requiring them to be invertible.

In detail: A view expression e is compiled into a lambda expression used as
the first argument to a rearrangement (RearrV) operation in BiGUL. In order
to construct this lambda expression, we first compute a set of paths that are
used in e. A path can be used in multiple locations in the expression, while two

4.3 Core Compilation 83

different paths with the same root variable are not allowed. To be able to check
the invertibility of e, complex paths are not allowed; instead, the programmer
should use pattern matching to fully decompose a view into small pieces. Let
us give a counter-example: Suppose that $vbookstore contains a list of books
and each book has a list of authors. The path $vbookstore/book/author retrieves
authors of all the book in $vbookstore as a single list. This path is not invertible
since, in the query direction, there is no way to determine how to divide the list
of authors into sublists for the books.

Our next job is to compute a Haskell pattern (hpat) from the above set of
paths, and an environment (Γp) that maps each path to a fresh Haskell variable
name, which will be used for view expression compilation. Figure 4.15 gives
the compilation rules for constructing a Haskell expression (hexp) from a view
expression under the environment Γp. The most interesting case is that when
the view expression is a path p, it suffices to fetch the corresponding Haskell
variable name from Γp —there is no need to analyze p. The view expression
in our running example is a path $view / child / :: employee, and the compiled
lambda expression is (λ(Niibook hEmployeelst)→ hEmployeelst), as shown in the
third line of Figure 4.13.

A related operation is view x := e in b, which is compiled into a combination
of two operations in BiGUL, as shown in Figure 4.16: a view rearrangement
RearrV to separate x from the rest of the view, and a Dep operation stating that
the value for x can be computed from the other part.

Composition

The compilation of composition statement b1; b2 guarantees that b1 and b2 update
different parts of the source by splitting and rearranging the source into three
parts, one to be updated by b1, another by b2, and the third part to be kept
unchanged.

Specifically, the core composition statement b1; b2 will be compiled into a
source rearrangement (RearrS), a view rearrangement (RearrV), followed by
an Update operation. In the compilation rule for composition in Figure 4.16

84 4 A Bidirectional Functional Update Language for XML

Γp v̀ e⇒ hexp

Γp v̀ ()⇒ () Γp v̀ w⇒ w

Γp v̀ true⇒ True Γp v̀ false⇒ False

Γp v̀ p⇒ Γp(p)
Γp v̀ e⇒ hexp

Γp v̀ n[e]⇒ hn hexp

Γp v̀ e1 ⇒ hexp1 Γp v̀ e2 ⇒ hexp2
Γp v̀ e1, e2 ⇒ (hexp1, hexp2)

Figure 4.15 Compilation of view expression.

and Figure 4.17, s denotes the set of source variables, while s1 and s2 are the
source variables used in b1 and b2 respectively. We use an abstract notation
s ≺ ((s1, s2), s3) for the lambda expression that rearranges a tuple of values for
the variables in s to a triple whose components are values for the variables in s1,
s2, and s \ (s1 ∪ s2) respectively. The view is similarly rearranged. Finally, with
an Update, the three parts of the source are updated using the three parts of the
view (the last of which is empty) by Replace, Replace, and Skip.

To illustrate, let us look at the composition used in the running example:

$semail [[replace] $vemail];
$sname [[replace] $vname]

At this point, the source is of the form ($sname, $semail, $affiliation) (which
is a simplified representation for expository purpose), and the source rear-
ranging lambda expression we synthesize is λ($sname, $semail, $affiliation) →
(($semail, $sname), $affiliation), since the left-hand side statement updates $semail,
the right-hand side statement updates $sname, and $affiliation is untouched. Sim-
ilarly the view rearrangement is synthesized, followed by the Update operation.

4.3 Core Compilation 85

b⇒ bigul
skip⇒ Skip fail⇒ Fail

replace⇒ Replace

b⇒ bigul
iter b⇒ Iter bigul

(s1, v1) = vars(b1) (s2, v2) = vars(b2) b1 ⇒ bigul1 b2 ⇒ bigul2
b1; b2 ⇒ RearrS (s ≺ ((s1, s2), s \ (s1 ∪ s2))) (RearrV (v ≺ ((v1, v2), ()))

(Update (UProd (UProd (UVar bigul1) (UVar bigul2)) (UVar Skip))))

x ∈ dom(v) v \x ⇒ (Γvar, hpat) Γvar v̀ e⇒ hexp b⇒ bigul
view x := e in b⇒ RearrV (v ≺ (v \x, x)) (Dep λhpat.hexp bigul)

Γs s̀p p⇒ f b⇒ bigul
p[b]⇒ Update (f (UVar bigul))

b⇒ bigul v̀ e⇒ fe
[b]e⇒ RearrV fe bigul

Γs ` s⇒ (Γvar, hpat) Γvar ` e⇒ hexp b1 ⇒ bigul1 b2 ⇒ bigul2
ifS e then b1 else b2 ⇒ CaseS [(λhpat.booleanτ(hexp), Normal bigul1),

(λ .True, Normal bigul2)]

Γv ` v⇒ (Γvar, hpat) Γvar ` e⇒ hexp b1 ⇒ bigul1 b2 ⇒ bigul2
ifV e then b1 else b2 ⇒ CaseV [(λhpat.booleanτ(hexp), Normal bigul1),

(λ .True, Normal bigul2)]

Figure 4.16 Compilation of bidirectional updates. (Part I)

86 4 A Bidirectional Functional Update Language for XML

{hs} ` e⇒ hexp b⇒ bigul c̀reate c⇒ fc r̀ecover r⇒ fr
alignpos e b c r⇒ Align (λhs.hexp) (λ .True) bigul fc fr

{hs} ` ef ⇒ hexp {hs} ` ems ⇒ hexpms {hv} ` emv ⇒ hexpmv
b⇒ bigul c̀reate c⇒ fc r̀ecover r⇒ fr

alignkey ef ems emv b c r⇒ Align (λhs.hexp) (λhs hv.(hexpms ≡ hexpmv)) bigul fc fr

Γs s̀p p⇒ f
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Γs ` pat⇒ (hpat, Γpat) b⇒ bigul Γpat ù a⇒ u

caseS p of
−−−−−−→
pat→ b | a⇒ Update (

f (UVar (CaseS [λhs.case hv of {hpati → True; → False},
−−→
((Normal (RearrS (s ≺ vars(pati)) biguli)) | (Adaptive ui))])))

Γvar v̀ e⇒ hexp Γvar ` hpatv−−−−−−−−−−−−−−−−−−−−−−−−→
Γv ` pat⇒ (hpat, Γpat) b⇒ bigul let vare bind to e

caseV e of
−−−−→
pat→ b⇒

RearrV (v ≺ (vars(e), v \vars(e)))

(RearrV ((vars(e), v \vars(e)) ≺ ((vare, v \vars(e))))

(CaseV [λ(hv,).case hv of {hpati → True; → False},
−−−→
RearrV ((vars(pati), v \vars(e)) ≺ vars(pati) ∪ v \vars(e)) biguli]

c̀reate c⇒ fc r̀ecover r⇒ fr

ù u⇒ f
c̀reate u⇒ f r̀ecover delete u⇒ λ .Nothing

{hs} ` e⇒ hexp r̀ecover r1 ⇒ f1 r̀ecover r2 ⇒ f2
r̀ecover if e then r1 else r2 ⇒ if hexp then f1 else f2

{hs} ` e⇒ hexp
−−−−−−−−−−−−−−−−−−−−−−−−−−→
` pat⇒ (hpat, Γpat) Γpat r̀ecover r⇒ f

r̀ecover case e of
−−−−→
pat→ r⇒ λhs.let hs′ = hexp in case hs′ of {

−−−−−−−−−→
hpat→ f (Γpat)}

Figure 4.17 Compilation of bidirectional updates. (Part II)

4.3 Core Compilation 87

The compiled BiGUL fragment can be found in Figure 4.13.

Cases and Conditionals

The source case statement is essentially compiled into CaseS in BiGUL wrapped
in an Update due to the need to compile the source path. Each source pattern
pati is compiled into a Haskell pattern (by the rules shown in Figure 4.18), a
boolean function, and a source rearrangement. An adaptive operation ai is
compiled into a plain Haskell function which computes a new source from the
current one.

The view case statement, on the other hand, is compiled into CaseV, along
with “three” view rearrangement operations. The first rearrangement operation
splits the view into those used in the view expression and the rest; the second
one evaluates the expression, while keeping the rest as it is; in each branch,
after matching the result of evaluating the expression with the pati, the third
rearrangement merges the values bound to the variables in the pati and the rest
back into one view.

The conditional operations ifS and ifV choose between two statements b1

or b2 according to a boolean expression e, and both of them are translated into
case statements in BiGUL (CaseS and CaseV respectively).

Source-view Alignment

As described toward the end of Section 3.3, the core alignment operations
alignpos and alignkey correspond closely to BiGUL’s Align operation. The
compilation is thus straightforward, turning bidirectionalizable updates into
BiGUL programs and expressions and unidirectional updates into functions.
Notably, the matching-by-position and matching-by-key variants can be ex-
pressed by providing suitable matching predicate functions to Align.

88 4 A Bidirectional Functional Update Language for XML

` pat⇒ (hpat, Γpat)

` τ ⇒ (, ∅) ` x as τ ⇒ (hx, {(x, hx)})

` ()⇒ ((), ∅)

` pat⇒ (hpat, Γpat)

` n[pat]⇒ (hn hpat, Γpat)

` pat1 ⇒ (hpat1, Γpat1
) ` pat2 ⇒ (hpat2, Γpat2

)

` pat1, pat2 ⇒ ((hpat1, hpat2), Γpat1
∪ Γpat2

)

Figure 4.18 Pattern Compilation.

4.3.4 Compilation of Expressions, Paths and Patterns

Finally, Figure 4.19 and Figure 4.20 shows the rules for compiling expressions
and paths. The judgement Γvar ` e⇒ hexp says that the expression e is compiled
into a Haskell expression hexp under the environment Γvar, which maps from
BiFluX variable names to distinct, fresh Haskell variable names. In the rule for
element expressions n[e], hn is the Haskell datatype constructor name for the
given element n[e] computed from an ambient type environment. A path p is
compiled into a Haskell function f , which is applied to the current focus. The
notation Γvar C (x, hx) denotes an environment obtained by removing x from
Γvar (if any) and then adding (x, hx). Like source paths in Section 4.3.3, we also
have another set of translation rules Γvar f̀or x in τ → p⇒ f that enumerate all
the types, which are used in the compilation of for expressions and paths of the
form p1 / p2.

4.3 Core Compilation 89

Γvar ` e⇒ hexp

Γvar ` e⇒ hexp ` τ <: τ′ ⇒ c
Γvar ` e⇒ ucast c hexp

Γvar ` e⇒ hexp
Γvar ` n[e]⇒ hn hexp

Γvar ` e1 ⇒ hexp1 Γvar ` e2 ⇒ hexp2
Γvar ` e1, e2 ⇒ (hexp1, hexp2)

Γvar ` e1 ⇒ hexp1
Γvar ∪ {(vars(pat), hvars)} ` pat⇒ hpat
Γvar ∪ {(vars(pat), hvars)} ` e2 ⇒ hexp2

Γvar ` let pat = e1 in e2 ⇒ let hpat = hexp1 in hexp2

Γvar ` e1 ⇒ hexp1 Γvar ` e2 ⇒ hexp2
Γvar ` e1 = e2 ⇒ hexp1 ≡ hexp2 Γvar ` ()⇒ ()

Γvar ` e⇒ hexp Γvar ` e1 ⇒ hexp1 Γvar ` e2 ⇒ hexp2
Γvar ` if e then e1 else e2 ⇒ (if hexp then L hexp1 else R hexp2)

Γvar ` e⇒ hexp
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Γvar ` pat⇒ (hpat, Γpat) Γpat ∪ Γvar ` e′ ⇒ hexp′

case e of
−−−−→
pat→ e′ ⇒ case hexp of {

−−−−−−−−→
hpat→ hexp′}

Γvar ` e1 ⇒ hexp e1 : τ Γvar f̀or x in τ → e2 ⇒ f
Γvar ` for x in e1 return e2 ⇒ f hexp

Γvar p̀ p⇒ f
Γvar ` p⇒ f Γvar(.)

Figure 4.19 Compilation of Expression and Path. (Part I)

90 4 A Bidirectional Functional Update Language for XML

Γvar p̀ p⇒ f

Γvar p̀ w⇒ const w

Γvar p̀ true⇒ const True Γvar p̀ false⇒ const False

x ∈ dom(Γvar)

Γvar p̀ x⇒ const Γvar(x) Γvar p̀ self⇒ id Γvar p̀ child⇒ out

α <: nt
Γvar p̀ :: nt⇒ id

α ��<: nt
Γvar p̀ :: nt⇒ const ()

e : ()
Γvar p̀ where e⇒ const ()

Γvar ` if e then self else ()⇒ f
Γvar p̀ where e⇒ f

Γvar C (., Γvar(x)) p̀ p⇒ f
Γvar p̀ x / p⇒ f

Γvar p̀ p1 ⇒ f1 p1 : τ1

x /∈ dom(Γ) Γvar f̀or x in τ1 → x / p2 ⇒ f2
Γvar p̀ p1 / p2 ⇒ f2 . f1

Γvar f̀or x in τ → p⇒ f

Γvar f̀or x in ()→ p⇒ const ()
Γvar f̀or x in τ → p⇒ f

Γvar f̀or x in τ∗ → p⇒ map f

Γvar f̀or x in τ1 → p⇒ f1
Γvar f̀or x in τ2 → p⇒ f2

Γvar f̀or x in τ1, τ2 → p⇒ f1× f2
Γvar f̀or x in E(X)→ p⇒ f

Γvar f̀or x in X→ p⇒ f

Γvar ` p⇒ f
Γvar f̀or x in α→ p⇒ f

Γvar f̀or x in τ1 → p⇒ f1 Γvar f̀or x in τ2 → p⇒ f1
Γvar f̀or x in τ1 | τ2 → p⇒

λhexp. case hexp of {L hexp1 → L (f1 hexp1); R hexp2 → R (f2 hexp2)}

Figure 4.20 Compilation of Expression and Path. (Part II)

4.4 Related Work 91

4.4 Related Work

4.4.1 XML Update Languages

Several XML update languages have been proposed, including (among many
others) XQuery! [30], Flux [15] and the standard W3C XQuery Update Facil-
ity [66]. Even though the specification style, expressiveness and semantics of
the XML updates that can be written may vary significantly, they all focus
on updating XML documents in-place, i.e. updating selected parts of an XML
document, keeping the remaining parts of the document unchanged. This
means that update programs can be seen as unidirectional transformations
that insert, delete or replace elements in a source document and produce an
updated document conforming to a new target type. XML updates in BiFluX
are different in that they determine how to update a source document (using
some view information) while preserving its source type, and this is enforced
by the type system.

4.4.2 XML View Updating

In [25], the author studies the problem of updating XML views of relational
databases by translating view updates written in the XQuery Update Facility
into embedded SQL updates. The work of [49] supports updatable views of
XML data by giving a bidirectional semantics to the XQuery Core language.
The semantic bidirectionalization technique of [54] interprets various XQuery
use cases as BXs by encoding them as polymorphic Haskell functions. The
Multifocal language [62] allows writing high-level generic XML views that can
be applied to multiple XML schemas, producing a view schema and a lens
conforming to the schemas. In the four approaches, the programmer writes a
view function and the system derives a suitable view update translation strategy
using built-in techniques that cannot be configured. In BiFluX, the programmer
writes an update translation strategy directly as an update (over the source)
and the system derives the uniquely related query.

92 4 A Bidirectional Functional Update Language for XML

4.4.3 Bidirectional XML Languages

Many bidirectional programming languages support tree-structured or XML
data formats. Two popular bidirectional XML languages are XSugar [13] and
biXid [42], which describe XML-to-ASCII and XML-to-XML mappings as pairs
of intertwined grammars. While XSugar restricts itself to bijective grammars,
biXid programs describe nondeterministic specifications and are thus inherently
ambiguous. Most functional bidirectional programming languages are based
on lenses [28, 63, 64, 39], and follow a combinatorial style that puts special
emphasis on building complex lenses by composition of smaller combinators.
Depending on the choice of combinators, lens languages can become very
powerful at specifying application-specific behavior [64, 9, 63]. However, their
lower-level nature also induces a more cumbersome programming style that
makes it impractical and often unintuitive for users to build non-trivial BXs by
piping together several small, surgical steps.

BiFluX features a new programming by update paradigm, which enables
the high-level syntax of relational languages such as XSugar and biXid while
providing a handful of intuitive update strategies. Remember the huge gap be-
tween our high-level BiFluX language (pattern matching, procedures, etc.) and
the lens-based BiGUL language that gives it semantics. The most significant
innovation in BiFluX is thus the declarative surface language used to specify
BXs as bidirectional update programs, at a notably higher-level of abstraction
than lens-based functions.

4.5 Conclusion

In this Chapter, we introduce the syntax and informal semantics of the BiFluX
language, give normalization rules to translate a BiFluX program into a core
XML update program, and show the compilation rules that compile the core
XML update program into a generic bidirectional core update program. We
have shown that programming in BiFluX enjoys a better trade-off between the
expressiveness and declarativeness of the written bidirectional programs, by

4.6 Discussion 93

allowing users to write directly, in a friendly notation and at a nice level of
abstraction, a view update translation strategy that gives rise to a well-behaved
BX.

As future work, we are still seeking to extend BiFluX so as to further
increase the flexibility of BiFluX programming. We also plan to provide
more static guarantees to BiFluX by incorporating existing path-query static
analyses, implement more powerful pattern type inference algorithms to avoid
excessive annotations, and extend the class of bidirectional updates that can
be written by integrating user-defined lenses for defining source and view
focuses. We also plan to improve the efficiency of our prototype for large
XML databases by exploring optimizations to the underlying BiGUL language,
including incremental update translation.

4.6 Discussion

The project of designing and implementing BiFluX has been lasted for more
than three years. Since it is our first attempt to design such a complex but user-
friendly language for real world data, we encountered many problems (not only
because of the XML details, but also the mixture between XML and bidirectional
transformation.) which also pushed us to improve the BiFluX language as well
as think how to build a clean and concise core for putback-based programming.

BiFluX evolves overtime from February 2013, and our first design of Bi-
FluX [73] was published at the domestic conference of Japan Society for Soft-
ware and Science (JSSST). After that, we implemented the language based on
putlenses [64] and published at the 16th International Symposium on Principles
and Practice of Declarative Programming (PPDP) [65]. While the underlying
putlenses is complex and hard to maintain, so we directly implemented the
bidirectional semantics of the core XML update language (Section 3.2). During
the implementation, we found that the core language is a mixture of bidirec-
tional updates (replace, fail, skip, etc.) and XML related features (expressions,
and paths) which makes the bidirectional semantics hard to implement clearly
since we need to handle the XML details at the same time. So we decided

94 4 A Bidirectional Functional Update Language for XML

to extract a clean and concise core language for putback-based bidirectional
programming from this core XML update language that completely has nothing
related to XML but it is powerful enough that the bidirectional semantics of the
core XML update language can be implemented easily. The core language is
called BiGUL [46] which is short for bidirectional generic update language that
has a clear bidirectional semantics and it is formally verified in Agda by Josh Ko
to guarantee that any program written in BiGUL satisfies the well-behavedness
properties. Based on this new putback-based core language, we finally reimple-
mented our BiFluX by compiling the core XML update language to BiGUL and
published as a journal article [75] to the Computer Software of Japan Society
for Software Science and Technology (JSSST).

Chapter 5

A Putback-Based Library for
Updatable Views

In this chapter, to explore the powerfulness of the putback-based bidirectional
programming, we implement a library for the user to write the put function
with flexible update policies easily; what is more, a unique get function can be
derived automatically from the put function.

5.1 Motivation of Design

In work on relational databases, the view-update problem is about how to trans-
late update operations on the view table to corresponding update operations on
the source table properly. The problem is that the update translation policies are
not unique in many situations. For example, suppose the view is the result of
joining two source tables, and we delete one record on the view, we can choose
to delete the related record on either source table or both of them. This indicates
that it is not possible to determine a proper update policy for this deletion
without the user’s choice since there are three update (deletion) policies.

As we introduced before, a lens is a well-behaved pair of get and put func-
tions. Bohannon et al. designed relational lenses [12], whose get functions are
database queries and put functions reflect updates on query results back to

95

96 5 A Putback-Based Library for Updatable Views

name email location
John john@john.com Tokyo
Mary mary@mary.com NewYork
Stan stan@stan.com Tokyo

(a) Source table

name email location
John john@john.com Tokyo
Stan stan@stan.com Tokyo

(b) View table

Figure 5.1 Updated view and source table

name email location
Stan stan@mary.com Tokyo
Jeff jeff@jeff.com Tokyo

(a) Updated view table

name email location
Mary mary@mary.com NewYork
Stan stan@mary.com Tokyo
Jeff jeff@jeff.com Tokyo

(b) Updated source table

Figure 5.2 Updated view and source table

databases. Specifically, they designed three basic lenses, called selection, drop
and join. The get semantics for selection and join are the same as the ones in SQL,
and the get semantics of drop removes one column from the source table. Their
put semantics are carefully formalized in order to satisfy the well-behavedness
properties. The lenses can be composed in order to create larger programs.

Relational lenses have a SQL-like syntax, which let the programmers sim-
ply write a bidirectional program as a SQL program. This get-based design
(meaning that the lens programs look like get functions) reduces the burden of
writing bidirectional programs, but the put behavior is not controlled by the
programmers, and may not satisfy their real needs (even they provide several
specific join such as join dl and join dr that specify to delete on the left table or
right table, but it still only has limited flexibility.).

To explain the problem, let us look at an example: suppose that a company
keeps a table of employee information shown in Figure 5.1a, in which each
record gives a person’s name, email address, and current location. We can write

5.1 Motivation of Design 97

a program with relational lenses as follows :

select from s where location = "Tokyo" as v

It looks exactly the same as writing a SQL query that selects only those people
located in Tokyo. Running the get direction of this program on the source table
in Figure 5.1a yields the view table shown in Figure 5.1b. Now we do some
modifications on the view table: We delete the person John because he moved
to another city Kyoto, insert a new person Jeff, and update Stan’s email address.
After that, if we run the put direction of this program, the source table will be
updated by deleting John, inserting Jeff, and updating Stan’s email address
with the one in the view, while Mary is left unchanged. The resulting table is
shown in Figure 5.2b.

This backward behavior is acceptable in some cases, but it is not what we
want here. What we want is updating John’s location instead of deleting him,
since he just moved to Kyoto and still belongs to the company. Relational
lenses cannot describe this behavior as this is more about controlling update
policies in the put direction. The put behavior provided by relational lenses is
well-behaved, but the programmers are not given the freedom to customize that
behavior.

In order to give the programmers more control over the put behavior, we
provide a new library Brul (bidirectional relational update library) that follows
our previous work [65, 46] on putback-based bidirectional programming. In-
stead of letting the programmers write the forward get function and implicitly
deriving a backward put which might not satisfy the programmers’ real needs,
we carefully define the library in a way that allows the programmers to specify
the update policies flexibly as a put function, from which the necessarily unique
forward transformation is derived. Our contributions can be summarized as
follows:

• We design a library Brul that provides basic put combinators that can 1)
let the programmers directly describe the put behavior, and 2) give the
programmers full control of the bidirectional behavior of their programs,
since the put behavior uniquely determines the get behavior [26].

• Brul is implemented on top of BiGUL [46], which is a fully formalized

98 5 A Putback-Based Library for Updatable Views

putback-based language. The well-behavedness of Brul can thus be easily
proved. The source code of the implementation is available at the Brul

website 1.

• We demonstrate Brul’s expressiveness by encoding in Brul all the operations
of relational lenses and giving examples of more flexible puts that cannot be
described with relational lenses.

The rest of the Chapter is organized as follows: Section 5.2 shows the design
of the Brul library, Section 5.3 gives two typical examples which are described
in the relational lenses paper, Section 5.4 explains the implementation of Brul

in detail, Section 5.5 reviews the related work in both relational database and
bidirectional transformation, and Section 5.6 gives a conclusion of our work.

5.2 Brul Library

Unlike relational lenses [12] where a fixed putback semantics (update policy) is
preset to the forward query with three relational operators (select, projection,
join), we propose a new library Brul, where two putback-based combinators
(operators) are designed to specify update policies, from which forward queries
can be automatically derived. Two distinguished features of Brul are : (1) it
is powerful to be used to specify various update policies (put), and (2) update
policies written in Brul are guaranteed to be well-behaved as a consequence of
the formalization of BiGUL.

In the following, we will explain the Brul library functions in detail. Brul

is designed and implemented based on BiGUL, for the detailed explanation of
BiGUL, please refer to Chapter 3.3. The basic library functions are:

1) align, which updates a source list by a view list through matching part of
the source records that satisfy a filter condition with all the view records
according to a matching condition between a source and view record,
and update the source records with three different update operations for
different matching results;

1http://www.prg.nii.ac.jp/project/brul

5.2 Brul Library 99

2) unjoin, which uses a join view to update two sources. We offer three
update policies that can be specified as the first argument: DeleteLeft,
DeleteRight, and DeleteBoth to delete on the two sources when there
is deletion on the view, and the rest three arguments specify the join
attributes for the two sources and the view.

Note that we use list to simulate set, since relational tables are normally repre-
sented as sets and BiGULdoes not support set yet.

5.2.1 Align

The function align:

align :: (s -> Bool) -> (s -> v -> Bool) ->

-> BiGUL s v {* Case 1: matched *}

-> (v -> s) {* Case 2: missing source *}

-> (s -> Maybe s) {* Case 3: missing view *}

-> Brul [s] [v]

describes an update on a source which is a list of records with type s using a
view which a list of records with type v. It starts by using the first argument
(a source filter function (s -> Bool)) to extract the satisfied source records,
and then uses the second argument (a matching function (s -> v -> Bool)) to
match these source elements with the view elements. The matching result has
three cases, and each case uses different update operation: when source and
view elements are matched, the third argument (a BiGUL program (BiGUL s v))
is used to update the source element by the view element; when a view element
has no corresponding matching source element, the fourth argument (a user-
defined function (b -> a)) is used to create a source element from this view
element; when a source element has no corresponding matching view element,
the fifth argument (a user-defined conceal function (a -> Maybe a)) is used to
conceal the element (from the view) by either deleting this source element or
modifying it so that it does not satisfy the filter condition. Note that the type of
brul a b is similar with BiGUL a b except that it can call a function to correct

100 5 A Putback-Based Library for Updatable Views

the source of type a if it is inconsistent (say, not satisfying necessary functional
dependencies if the source is a table).

Let us use align by writing a brul program to solve the problem shown in
the introduction section:

uDB :: Brul [Record] [Record]

uDB = align

(\r -> (r!!2) == RString "Tokyo")

(\s v -> (s!!0 == v!!0))

Replace

id

(_ -> Nothing)

The function we defined is called uDB that updates a source table which is
a list of Records by a view table which is also a list of Records. The Record

is a List type in Haskell, and thus in fact a table is represented as a List of
List. Since we use Record to represent database record, if we want to retrieve
an attribute value from the record, we use the list index operator (!!). For
example, let r represent one record, we can get the location of the record by
r!!2. (RString "Tokyo" simply means a string is wrapped by the constructor
RString.) The Brul program above matches the source records that is located
at Tokyo with the view records by their names. If they are matched, the source
record is replaced by the view record since they have the same structure; if
there is a view record that has no corresponding matching source record, create
a new source record by the id function; if there is a source record that has
no corresponding matching view record, delete this source record by return
Nothing.

5.2.2 Unjoin

The function ujoin:

unjoin :: DeleteFlag

-> (Record -> a)

-> (Record -> a)

5.2 Brul Library 101

A B
a1 b1
a2 b2
a3 b3
a5 b5

(a) Source table I

B C
b1 c1
b3 c3
b4 c4
b5 c5

(b) Source table II

Figure 5.3 Source of Join example I

A B C
a1 b1 c1
a3 b3 c3
a5 b5 c5

(a) View table

A B C
a1 b1 c1
a5 b5 c5

(b) Updated view table

Figure 5.4 View of Join example I

-> (Record -> a)

-> Brul ([Record], [Record]) [Record]

specifies how to update two source tables using a view table when the view
table is modified (the view is the join result of the two source tables), by simply
giving a deletion policy and three functions to extract the common parts of these
three tables. The deletion policy is used to define how to update the source
tables when some records are deleted on the view table. We offer three kinds of
deletion policies: delete record on the left source table (DeleteLeft), delete on
the right source table (DeleteRight) or delete on both tables (DeleteBoth). The
rest three arguments are functions with the same output type as the result is
the common part of the three tables.

Suppose we have one source table with two attributes A and B shown in
Figure 5.3a, and another source table with two attributes B and C shown in
Figure 5.3b. Consider the view table shown in Figure 5.4b which is the join of

102 5 A Putback-Based Library for Updatable Views

the two source tables by attribute their common attribute B, and it is updated
by deleting record (a3, b3, c3). We can write a Brul program using unjoin to
update the two source tables as follows:

uss1 = unjoin DeleteLeft fs1 fs2 fv

where fs1 = \[a,b] -> [b]

fs2 = \[b,c]-> [b]

fv = \[a,b,c] -> [b]

Here, we use the deletion policy DeleteLeft to delete the records on the left
table (source table I in Figure 5.3a). Function fs1, fs2 and fsv extract the value
of attribute B from a record of each table respectively as B is the join attribute.
With uss1, deletion of record (a3, b3, c3) from the view will lead to deletion of
record (a3, b3) from source table I, while the record (b3, c3) in source table II
remains unchanged. We can also choose DeleteRight to only delete (b3, c3) on
table II or DeleteBoth to delete both (a3, b3) on table I and (b3, c3) on table II.
If we choose DeleteBoth as the update policy as in the following uss2:

uss2 = unjoin DeleteBoth fs1 fs2 fv

the same deletion from the view will lead to deletion of record (a3, b3) from
source table I and that of (b3, c3) from source table II.

5.3 Example

The two proposed library functions are powerful to describe various update
policies, in this section we use several typical examples from the relational
lenses paper [12] to illustrate that Brul can be used to describe many different
update policies, together with an extra join example that shows that we can
handle more flexible data.

5.3 Example 103

Track Date Rating Album Quantity
Lullaby 1989 3 Galore 2
Lullaby 1989 3 Show 3
Lovesong 1989 5 Galore 2
Lovesong 1989 5 Paris 4
Trust 1992 4 Wish 5

Figure 5.5 Source table

Track Rating Album Quantity
Lullaby 3 Show 3
Lovesong 5 Paris 4
Trust 4 Wish 5

Figure 5.6 View table

5.3.1 Update Single Source

The source table is a track database shown in Figure 5.5 that stores the track’s
information: track name, release date, rating, album name and the quantity
of this album. Both date and rating depend on track, and quantity depends
on album. For example, two tracks named Lullaby have the same date and
rating, and the quantities of the same album are also the same. The view table
in Figure 5.6 extracts part of the records that the quantity is greater than 2, and
each record in the view has no rating. Suppose the view table is updated by
changing the rating of Lullaby to 4, the album of Lovesong to Disintegration
and its corresponding quantity is also modified, and the Trust track is deleted
as shown in Figure 5.7. We will show three different update policies written in
Brul in the following sections.

Deletion to deletion

The first update program written in Brul:

104 5 A Putback-Based Library for Updatable Views

Track Rating Album Quantity
Lullaby 4 Show 3
Lovesong 5 Disintegration 7

Figure 5.7 Updated view table

u1 :: RType -> Brul [Record] [Record]

u1 d = align

(\r -> (r!!4) > RInt 2)

(\s v -> (s!!0 == v!!0)&&(s!!3 == v!!2))

(RearrV

[p|\[t, r, a, q] -> [t, _, r, a, q]|]

[d|t = Replace; r = Replace;

a = Replace; q = Replace|])

(\[t, r, a, q] -> [t, d, r, a, q])

(\rs -> Nothing)

The function u1 is implemented using the library function align, which
matches part of the source record list that satisfy the filter condition (line 3) with
the view record list by the matching condition (line 4). RType is our defined
datatype that wraps basic Haskell types, and it will be introduced in the next
section. Record is a list of values of RType. The filter condition says that it only
retrieves those whose quantity is greater than 2. If a source and view record
have the same track and album, then they are matched. Matching the source
records with view records have three cases:

• Matching case: we rearrange the view from a four-elements list ([t,r,a,q])
to a five-elements list ([t,_,r,a,q]) in order to make the view to be matched
with the source structurally (line 5-9), and update the corresponding source
element in the source record list by Replace.

• Unmatched view record case: we create a new source record (line 10), and
fill this record with a default date value.

• Unmatched source record case: we delete this source record by return
Nothing.

5.3 Example 105

Track Date Rating Album Quantity
Lullaby 1989 4 Galore 2
Lullaby 1989 4 Show 3
Lovesong 1989 5 Galore 2
Lovesong 1989 5 Disintegration 7

Figure 5.8 Updated Source I

Figure 5.8 shows the updated source table after executing the put direction
of the program u1 with the source table and updated view table. Even the
first record of the source table does not appear in the view, its rating is also
updated according to the functional dependencies since it has the same track
name with the second record and the second record is updated. The program
can be executed bidirectionally either as a put function to update source by
view, or as a get function that extracts a view from the source. Running get of
the program will get the same view shown in Figure 5.7.

Deletion to replacement

Here is another update program written in Brul that uses a different update
policy:

u2 :: RType -> Brul [Record] [Record]

u2 d = align

(\r -> (r!!4) > RInt 2)

(\s v -> (s!!0 == v!!0)&&(s!!3 == v!!2))

(RearrV

[p|\[t, r, a, q] -> [t, _, r, a, q]|]

[d|t = Replace; r = Replace;

a = Replace; q = Replace|])

(\[t, r, a, q] -> [t, d, r, a, q])

(\[t, r, a, q] -> [t, d, r, a, RInt 2])

Instead of deleting the unmatched source record (Trust, 1992, 4, Wish, 5) in u1,

106 5 A Putback-Based Library for Updatable Views

we update it by changing the quantity to 2. Since the view table only contains
the records that the quantity is greater than 2, Modifying it to 2 is a valid update
and the updated record (Trust, 1992, 4, Wish, 2) will not appear in the view
when performing get.

Deletion to replacement with environment

Sometimes we cannot simply update the unmatched source record with a
constant value, and we may refer to other information. For example, suppose
there is an environment that stores a mapping from album name to quantity of
this album, we can update this unmatched source record by retrieving in the
environment. Luckily, Brul supports to use environment to write more flexible
update programs:

Type Env = Map RType RType

u3 :: Env -> RType -> Brul [Record] [Record]

u3 env d = align

(\r -> (r!!4) > RInt 2)

(\s v -> (s!!0 == v!!0)&&(s!!3 == v!!2))

(Rearrv

[p|\[t, r, a, q] -> [t, _, r, a, q]|]

[d|t = Replace; r = Replace;

a = Replace; q = Replace|])

(\[t, r, a, q] -> [t, d, r, a, q])

(\rs -> uSWithEnv rs env)

uSWithEnv :: Record -> Env -> Maybe Record

uSWithEnv r env =

case Map.lookup (r!!3) env of

Just q -> Just $ uRecord 4 q r

Nothing -> Just $ uRecord 4 (RInt 0) r

uRecord :: Int -> RType -> Record -> Record

uRecord 0 v (x:xs) = v:xs

uRecord i v (x:xs) = x : uRecord (i-1) v xs

The function uSWithEnv finds the quantity value from the environment by

5.3 Example 107

Track Date Rating Album Quantity
Lullaby 1989 4 Galore 2
Lullaby 1989 4 Show 3
Lovesong 1989 5 Galore 2
Lovesong 1989 5 Disintegration 7
Trust 1992 4 Wish 1

Figure 5.9 Updated Source II

the album of a record, and updates the quantity of the record with the found
value or with a default quantity value 0. For example, if we have an env

that stores a mapping from album “Wish” to quantity 1, using u3 to update
the source will change the Quantity of unmatched source record “Trust” to
1 as shown in Figure 5.9. Our library function align will check that those
unmatched source records will not satisfy the filter function after they are
updated to guarantee that those records will not appear in the view.

Even the Brul program u1, u2, u3 only describes the put behavior, but in
fact the get direction of these programs implicitly behaves as the same SQL
query:

select Track, Rating, Album, Quantity as v

from s where Quantity > 2

It is in fact the same as the one described in the relational lenses paper, which
is a composition of the drop operations and selection:

drop Date determined by (Track, unknown)

from s as s1;

select from s1 where Quantity > 2 as v

5.3.2 Update Multiple Sources

Notice that unjoin is more general and powerful than the join lenses (i.e. join dl,
join dr etc.) in relational lenses, where the join lenses have the restriction

108 5 A Putback-Based Library for Updatable Views

A B
a1 b1
a2 b1

(a) Source table I

B C
b1 c1
b1 c2

(b) Source table II

A B C
a1 b1 c1
a1 b1 c2
a2 b1 c1
a2 b1 c2

(c) View table

Figure 5.10 Join example II

that the join attribute should be the key of the right table. We do not have
this restriction, allowing arbitrary join attribute. This, however, introduces
challenges in implementation, which will be given in Section 5.4.4.

To see this, let us consider the tables in Figure 5.10. Each of the two source
tables has two records, and joining these two table by attribute B (which is
not the key of source table II) yields a view table with four records as shown
in Figure 5.10c. It is important to see that arbitrary updates on view are not
necessarily valid if B is not the key of source table II. For example, if we delete
(a1, b1, c1) from the view table, there is no correct way of updating the two
source tables. If we would delete (a1, b1) from source table I, then joining the
updated source table I with source table II would remove another record (a1, b1,
c2) from the view table; if we would delete (b1, c1) from source table II, record
(a2, b1, c1) would be removed from the view. But if we give a valid update on
the view, say deleting (a1, b1, c1) and (a1, b1, c2) from the view table, there is
one possible update strategy that is to delete record (a1, b1) from source table I.

The good news is that programs written in Brul (both uss1 and uss2) can
correctly identify the invalid cases to report dynamic errors while allowing
valid view updates.

5.4 Implementation 109

5.4 Implementation

In this section, we show how Brul is implemented using BiGUL to enjoy the
well-behavedness of BiGUL. The align function is implemented basically in
Case; The unjoin function is composed by three sub BiGUL programs.

Since Brul is designed for relational data that is basically set, while BiGUL
is for algebraic data types. We start by introducing database table representation
in BiGUL , and then explain how to implement Brul library functions in BiGUL.

5.4.1 Relational Database Representation

Before explaining the implementation of two library functions on a relational
database (i.e. table), we briefly give a explanation of how tables are represented
in our context. A table is a list of records ([Record]), and each record is a list of
attribute elements of type RType:

type Record = [RType]

data RType = RInt Int

| RString String

| RFloat Float

| RDouble Double

For example, the source table in Figure 5.1a is represented as follows.

[[RString "John", RString "john@john.com", RString "Tokyo"],

[RString "Mary", RString "mary@mary.com", RString "NewYork"],

[RString "Stan", RString "stan@stan.com", RString "Tokyo"]]

A table may have functional dependencies. In the above example, the second
attribute (email) may depend on the first (name). We use FDMap to store such
functional dependencies of a table:

type FDMap = Map Int [Int]

which maps from one attribute to a list of attributes that depend on it. Here
each attribute is represented by the index in the record list. More than one

110 5 A Putback-Based Library for Updatable Views

attribute may depend on the same attribute, and one attribute may depend on
more than one attribute. For simplicity, in our example, we do not consider the
case where one attribute depends on more than one attribute.

5.4.2 Syntax Sugar of BiGUL in Template Haskell

Even BiGUL is powerful to write many useful applications, while the lower-level
syntax makes it hard to write and understand, and thus we utilize Template
Haskell [] to make a better syntax sugar and implemented Brul based on that.
We will briefly introduce several functions that are used in Brul. Reader does
not need to fully understand how this is implemented and the main purpose is
for explaining the implementation of library functions in brul.

rearrAndUpdate rearranges the view by pattern matching on it (the first
argument) to construct a new view (the second argument) in order to match
with the structure of the source , and finally update the source with this updated
view. For example:

rearrAndUpdate [p| vs |] [p| _ :vs |] [d| vs = bigul2 |]

means view vs is rearranged to (_:vs) and then the first element of the source
is skipped and the rest of the source is updated using vs by bigul2.

In order to simplify the programming using Case, we have several helper
notations: normalV, normalSV, adaptiveS, and adaptiveSV for writing different
case branches.

Both normalV and normalSV is used to specify conditions for normal case
branches. The following is an example of using normalV.

$(normalV [p| ([],[]) |]) $
$(rearr [| \([],[]) -> [] |]) Replace

The first argument ([p| ([],[]) |])) specifies the condition on view which
checks whether the view is a pair of empty lists, and the second part is a
BiGULupdate ($(rearr [| \([],[]) -> [] |]) Replace) that rearranges the
view from a pair of empty lists to an empty list and then replace source with

5.4 Implementation 111

this empty list. normalV only has one condition on the view, while the normalSV

checks both the current source and view, the following example shows that
when the source is an empty list and view is a pair of empty lists, then skip this
source. View can be reconstructed from this rearrangement operation in the get
direction.

$(normalSV [p| [] |] [p| ([], []) |]) $
$(rearr [| \([], []) -> () |]) Skip

The Case operation in BiGULalso support adaptive branches, both adaptiveSV

and adaptiveV are used to specify conditions for adapting the source in the
Case operator. The function adaptiveSV accepts two arguments: the first one is
a condition on the source and the second one is a condition on the view. While
adaptiveV only species a condition for the view. For example:

$(adaptiveSV [p| [[]] |] [p| _ |]) $
(\[[]] _ -> [[],[]])

checks that if the source is a list of empty list, and view can be anything, then
update the source from a list of one empty list to a list of two empty lists.

5.4.3 Align

The align function is implemented using the Case operator in BiGUL. As dis-
cussed in Section 3.3, Case provides a flexible way to do case analysis on both
the source and the view, and perform either a normal BiGUL operation to
update the source using the view or an adaptive operation to change the source
to a new one. Six cases should be considered for implementing

align p m b c d

using a Case, where p is a predicate for the filter function, m is a matching
function, b is a BiGUL program to do updating when the source and the
view are matched, c is a source create function, d is a conceal function. We
use fd to represent the function for updating the source record according to
the functional dependency, which can be automatically generated from the
functional dependencies on the database. In the following, we give an intuitive

112 5 A Putback-Based Library for Updatable Views

explanation for each case analysis in this Case; the detailed implementation is
available in the Brul website.

1. When the view is empty and the source meets the requirement of func-
tional dependences and there is no record in the source satisfying p, we
keep the source and make no change. The condition for this case can be
written as a Haskell function:

\ss vv -> null vv && null (filter p ss) && map fd ss == ss

2. When the view is empty but the source does not satisfy the condition in
the first case, we perform an adaption, where we update each record of
the source by function fd and conceal those updated records that satisfy
the filter condition p. Note that according to the semantics of Case, the
adapted source will be fed into this Case again to match other cases.

3. When the first record of the source does not satisfy the filter condition p
and also does not meet the requirement of functional dependencies, the
source is adapted by updating the first record using function fd. We will
check the adapted record shall still not satisfy the filter condition p.

4. When the first record of the source does not satisfy the filter condition
p but follows the functional dependency, we keep the first record and
update the rest part of the source with current view by recursively calling
the align function.

5. When the first record of the source satisfies p and matches with the first
element of the view, we use the given function b to update the matched
source record, and recursively update the rest part of the source with the
rest of the view. The condition is:

\ss vs -> not (null (filter p ss)) && p (head ss)

&& not (null vs) && m (head ss) (head vs)

6. Otherwise, we do adaption on the source. In this case, both the source
satisfying p and the view should not be empty. The first record of the
view is used to find a corresponding element in the source according to

5.4 Implementation 113

(a1, b1, c1)
(a3, b3, c3)
(a5, b5, c5)

(a3, b3, c3)

(a1, b1)
(a2, b2)
(a3, b3)
(a5, b5)

(b1, c1)
(b3, c3)
(b4, c4)
(b5, c5)

(a1, b1)
(a2, b2)
(a3, b3)
(a5, b5)

(b1, c1)
(b3, c3)
(b4, c4)
(b5, c5)

([(a1, b1)], [(b1, c1)])
([(a2, b2)], [])
([(a3, b3)], [(b3, c3)])
([] , [(b4, c4)])
([(a5, b5)], [(b5, c5)])

groupalignunZip

ungroup

ungroup

source1

source2

tabg1

tabg2

ziptab viewg
view

(a1, b1, c1)

(a5, b5, c5)

Figure 5.11 Implementation sketch for unjoin

the matching function m. If we find one, we move this record to the head
of the source; otherwise, we use the create function v to create a new head
record of the source based on the view record.

The implementation of align is based on the Case constructor in BiGUL,
and thus the well-behavedness of align is inherited from BiGUL. Any program
written using align is well-behaved.

5.4.4 Unjoin

The function unjoin describes how to update a pair of tables using its join view.
The implementation contains four bidirectional transformations:

unjoin :: DeleteFlag -> (Record -> a) -> (Record -> a)

-> (Record -> a) -> Brul ([Record], [Record]) [Record]

unjoin flag fs1 fs2 fv =

productUnGroup fs1 fs2 ;

unZip fs1 fs2 ;

alignWithsubUnjoin flag fs1 fv;

group fv

where f;g denotes composition of two BiGUL transformations f and g (i.e.,
(Compose g f)). As demonstrated in Figure 5.11, the basic idea to update the

114 5 A Putback-Based Library for Updatable Views

(a1, b1)
(a1, b2)
(a3, b3)
(a5, b5)

unforkG
(a1, b1)
(a1, b2)
(a3, b3)
(a5, b5)

(a1, b1)
(a1, b2)

Replace

(a3, b3)
(a5, b5)

ungroup (a3, b3)
(a5, b5)

(a1, b1)
(a1, b2) RearrV

Figure 5.12 A concrete example for ungroup

two sources (source1 and source2) using the view (view), is to use the grouped
view (viewg) to update the zipped table (ziptab) of two grouped sources (tabg1
and tabg2). Let us use Figure 5.11 to illustrate how uss1 works, in order to
understand the implementation of unjoin concretely:

• The view is grouped by group fv into a list of list (viewg) according to
attribute B extracted by fv. Since (a3, b3, c3) is deleted in the view, it will
also be deleted in the viewg.

• alignWithsubJoin flag fs1 fv aligns ziptab with viewg by attribute B.
Each record in ziptab is a pair of lists, and each element in the record has
the same value for attribute B. (a3, b3) will be deleted from the pair ([(a3,
b3)], [(b3, c3)]), resulting into ([], [(b3, c3)]) since we specify the the flag as
DeleteLeft in uss1.

• unZip fs1 fs2 generates tabg1 and tabg2 from the first and second elements
of each pair in ziptab.

• productUnGroup fs1 fs2 ungroups tabg1 and tabg2 to get the new sources.

(a3, b3) is deleted in the updated source table source1, and another source
table source2 remains unchanged.

Let us explain the implementation details for each operation in the following
subsections.

5.4 Implementation 115

ungroup

Both productUnGroup and group are implemented using the transformation
ungroup :

ungroup :: Eq a => (s -> a) -> BiGUL [s] [[s]]

ungroup f =

Case [(_ v -> null v, Normal Replace,

(_ _ -> true, Normal

(unforkG f ;

RearrV [| \x:xs -> (x, xs) |]

(Prod Replace (ungroup f)))]

It flattens all sublists of the view list into one as the updated source. Notice
that the argument of ungroup is a function, which determines the attributes for
grouping. We will check whether all the elements in the same sublist in the
view have the same value for the common attributes and also the value of two
different sublists must be different for those attributes. When view is an empty
list, using Replace to replace any source list with the empty view; Otherwise,
as shown in Figure 5.12, ungroup rearranges the view list to a tuple that the first
element of the pair is the first element of the view list and the second element is
the rest of the view list. The first element of the pair which is a list will be used
to update the corresponding elements in the source that is computed by using
the get of function unforkG f; the rest are done by calling ungroup f recursively.
The transformation unforkG is defined as follows:

unforkG :: (s -> a) -> BiGUL [s] ([s], [s])

In put direction, unforkG merges two view lists into one as the source and in get
direction it splits the source into two lists that one list has the same common
attribute value while the other list has arbitrary common attribute value which
must be different from the value mentioned before.

Based on ungroup, we can easily define productUnGroup:

productUnGroup :: (s1 -> a) -> (s2 -> a)

-> BiGUL ([s1], [s2]) ([[s1]], [[s2]])

116 5 A Putback-Based Library for Updatable Views

productUnGroup f1 f2 =

Prod (ungroup f1) (ungroup f2)

which is used to un/group a pair of sources separately.

Notice that ungroup ignores the entire source when putting back the view,
and the source and view of ungroup are isomorphic, we can easily define group

by swapping the get and put of ungroup, we get the dual program group by
using the emb function:

group :: Eq a => (s -> a) -> BiGUL [[s]] [s]

group f = emb (\s -> put (ungroup f) [] s)

(_ v -> get (ungroup f) v)

The emb function is implemented in BiGUL using Case operator as follows:

emb :: Eq v => (s -> v) -> (s -> v -> s) -> BiGUL s v

emb get put = Case

[$(normal [| \x y -> get x == y |])$
$(rearrV [| \x -> ((), x) |])$
Dep Skip (\x () -> get x)

, $(adaptive [| _ _ -> True |]) put]

It accepts a user-defined get and put function, and wraps them as a lens. The
well-behavedness of the get and put function is guaranteed by user him/herself.
Otherwise, it will always fail.

Since group which is defined based on ungroup is proved to be well-behaved,
then we can use them to compose larger program to implement the unjoin

function and the unjoin function is also well-behaved guaranteed by the com-
position of BiGUL.

unZip

The unZip which is used to implement unjoin is the dual of zip (Note that
this zip is different from the built in function zip in Haskell.), we focus on the
implementation of zip, and unZip can be implemented easily using zip:

5.4 Implementation 117

(a2, b2)
(a3, b3)

(b3, c3)
(b4, c4)

 (b5, c5)

([(a2, b2)], [])
([(a3, b3)], [(b3, c3)])
([] , [(b4, c4)])
([] , [(b5, c5)])

zip

Figure 5.13 A concrete example for zip

（ (a1, b), (b, c1))
（ (a1, b), (b, c2))
（ (a2, b), (b, c1))
（ (a2, b), (b, c2))

compress
（ a1, b, c1)

(a1, b, c2)
（ a2, b, c1)
（ a2, b, c2)

（ (a1, b), (b, c1))
（ (a1, b), (b, c2))
（ (a2, b), (b, c1))
（ (a2, b), (b, c2))

ungroup

(b, c1)
(b, c2)

(a1, b)
(a2, b)dup

Figure 5.14 A concrete example for subUnjoin

zip :: Ord a => (s1 -> a) -> (s2 -> a) ->

BiGUL [([s1], [s2])] ([[s1]], [[s2]])

zip f1 f2 =

Case[(_ (vls,_) -> null vls, Normal zipLEmpty),

(_ (_,vrs) -> null vrs, Normal zipREmpty),

(\s _ -> null s, Adaptive

(_ _ -> [undefined])),

(pUnMatchedRight, Normal ...),

(pUnMatchedLeft, Normal $
RearrV [| \((vl,vls),vrs)

-> ((vl,[]),(vls,vrs)) |] $
RearrS [| \x:xs -> (x,xs) |]

(Prod Replace (zip f1 f2))),

(pMatched, Normal ...)]

where pUnMatchedLeft (v1, v2) =

f1 (head (head v1)) < f2 (head (head v2))

118 5 A Putback-Based Library for Updatable Views

(a1, b)
(a2, b)

(b, c1)
(b, c2)

RearrV

(a1, b)

(b, c1)
(b, c2)

(a2, b)

(b, c1)
(b, c2)

dup’

dup

((a1, b), (b, c1))
((a1, b), (b, c2))

((a2, b), (b, c1))
((a2, b), (b, c2))

RearrV

((a2, b), (b, c1))
((a2, b), (b, c2))

((a1, b), (b, c1))
((a1, b), (b, c2))

Figure 5.15 A concrete example for dup

pUnMatchedRight ...

pMatched (v1, v2) = ... == ...

The zip function matches sublists of two lists recursively (the first and second
element of the view pair) by their common attributes that are extracted by
function f1 and f2 (f1 and f2 extract common attributes from s1 and s2

respectively). If common attributes’ value of the two sublists are the same, they
will be paired together; otherwise, using an empty list to pair with the smaller
one (shown in line 11). zipLEmpty create pair for each element in vls with the
first element as an empty list. zipREmpty is similar to zipLEmpty. Note that
both the first and second elements of the view pair must be in ascending order
regarding to their common attributes. We sort the records in the ascending
order before fed into unjoin, and ungroup preserve this order.

Figure 5.13 gives a concrete of how zip works. Both f1 and f2 are used to
extract value of attribute B, and all the records are sorted in ascending order
regarding to the subscript of B (e.g. b2 < b3 < b4 < b5). In the first round, it
will enter the pUnMatchedLeft branch, [(a2, b2)] is picked out and paired with
[] since the first sublist for the second element of the view pair is [(b3, c3)]; then
[[(a3, b3)]] and [[(b3, c3)] will be paired; after that, the first element of the view
pair is empty, it will match the first case of zip and use zipLEmpty to handle it.

alignWithsubUnjoin

The alignWithsubUnjoin is implemented using align which is shown as an
alignment between ziptab and viewg in Figure 5.11. The filter condition for the

5.5 Related Work 119

align function is: not (null (fst s)) && not (null (snd s)) which means
that both parts of the source pair are non-empty, where s is each pair in the
source list. The source pair in ziptab and view element (which is a list) in viewg

is matched according to their common attributes. As we mentioned before,
the results of alignment are three cases: for the matched source pair and view
element, we use subUnjoin synchronize them; for the unmatched view element,
we create a proper source; for the unmatched source pair, it will be updated by
either deleting the first one, the second one or both of the pair according to the
given flag.

The subUnJoin is a special case of unjoin, which requires that all val-
ues of join attributes must be the same. Since subUnjoin is only used in
alignWithsubUnjoin, this requirement is always satisfied. Figure 5.14 uses a
concrete example to show the sketch of subUnJoin. Read from the right to the
left, it first duplicates the view pair of list (the detail is shown in Figure 5.15),
and then flatten the list of list by ungroup into a list of pairs, finally compresses
each pair into one record by unifying the common attributes.

5.5 Related Work

In relational databases, much research has been devoted to correct translation
of updates on the view to updates on the source (the view-update problem)
[8, 23]. To deal with different update strategies, Keller [44] classified different
update translation algorithms for different update operations (i.e. replacement,
insertion, and deletion) with the view that is computed using either selection,
projection, join or a combination of these three operations, and suggested using
a dialog to ask the user to choose a proper update translation algorithm where
there exists more than one update translation algorithm for a given view and
update operations on the view. In this paper, we show that Brul provides a
concise way to specify and choose update translations.

Bidirectional transformations [28] originate from the view-update problem
in relational databases, and many bidirectional languages [28, 9, 35, 60, 39, 29]
have been proposed. Among them are a series of bidirectional languages

120 5 A Putback-Based Library for Updatable Views

called lenses; they are basically get-based in the sense that they provide a set
of combinators that are intended to describe the get direction of bidirectional
transformations. One problem with this get-based approach is that there often
exist many puts for a given get and there is no way to choose a suitable put just
by writing a good get and the get-based approach only provides one possible
put as the default that may not satisfy the user’s need.

The putback-based approach [26] opens a new research direction to resolve
this problem for bidirectional transformations, and several putback-based bidirec-
tional programming languages have been proposed to handle different kinds
of data: putlenses [64] defines a set of bidirectional combinators that sup-
port putback style bidirectional programming. BiFluX [65] is a bidirectional
functional update language for XML data; with BiFluX, the programmer can
describe the putback function explicitly and the system derives a unique get
function for free. BiYacc [77] lets the programmer write simple production-like
rules which in fact describe how to update the concrete syntax tree using the
abstract syntax tree as a “reflective” printer. Finally, BiGUL [46] was designed
to serve as the foundation for higher-level putback-based bidirectional pro-
gramming languages; BiGUL is designed to be concise yet powerful, and its
well-behavedness has been fully verified in the dependently typed program-
ming language Agda [58], guaranteeing that any program written in BiGUL is
well-behaved.

Brul follows the putback-based approach, and it removes the ambiguity of
put function by providing operations that let the user write update translations
explicitly. Our careful design of the Brul library not only offers flexibility, but
also guarantees that any put program written in Brul has a unique forward get
semantics that forms a well-behaved bidirectional transformation with this put.
We also extend put with parameters to allow the user to update the source by
an environment.

5.6 Conclusion 121

5.6 Conclusion

We implemented a library Brul for writing bidirectional programs on relational
databases, offering programmers the ability to specify flexible update policies.
The programmers write put programs that describe how to use a view table to
update a source table; corresponding get programs — queries that extract data
from a source table to construct a view table — are then automatically derived.
Brul is implemented on top of the putback-based bidirectional programming
language BiGUL which is formalized in Agda, and hence all programs written
with Brul are guaranteed to be well-behaved. We also explore the expressive-
ness of putback-based bidirectional programming by adding parameters to the
put function to write more interesting examples, i.e. using a third environment
when updating the source table. For future work, we plan to investigate how to
write the putback behavior for aggregate functions (average, maximum, etc.),
which are also frequently used in relational databases.

122 5 A Putback-Based Library for Updatable Views

Chapter 6

Conclusion

6.1 Summary

In this dissertation, we proposed a new programming by update paradigm for
putback-based bidirectional programming, designed and implemented a bidi-
rectional programming language BiFluX which can be used in many real
world applications such as refactoring in Java, and self-adaptive systems, and a
bidirectional update library Brul for relational database.

First, we explained the drawback of the current get-based lenses of which the
bidirectional programming languages are designed from the perspective of get.
Programmer only needs to write the get transformation, and one ”suitable” put
transformation will be derived from this get. While in practice it is impossible
to decide which one is ”suitable” in general and programmer has no choices of
defining the put behavior he/she wants. We proposed the new programming by
update paradigm for putback-based bidirectional programming based on the fact
that a well-behaved put uniquely determines get. If we can design a user-friendly
putback language that lets programmer write the putback behavior simply like
updates and the language is well-designed to satisfy the well-behavedness, then
a unique get function can be derived for free.

Then, we introduced our core bidirectional update language for XML struc-
tured data which consists of bidirectional updates, XML related expressions

123

124 6 Conclusion

and paths. Since this core language contains many XML related features such
as expressions and paths, it is hard to make a clear bidirectional semantics. So
we distilled another clean core bidirectional programming language BiGUL
from the core of BiFluX language. The initial goal of BiGUL is to serve as the
underlying engine for BiFluX. BiGUL is a combinatorial language that consists
of a set of putback combinators which support composition to compose large
bidirectional programs. The language is formalized in the dependently typed
programming language Agda to guarantee that any program written in BiGUL
is well-behaved. The language is ported into Haskell and served as the core
language for the bidirectional programming language BiFluX [75].

BiFluX is our first try of designing putback-based bidirectional programming
language, which targets XML structured data. XML is widely used in data
exchanging on the web, and existing works such as bidirectionalization of
XQuery [49] has the same problem of the existing lenses that programmer
has no choices of specifying backward behavior. We design the bidirectional
programming language BiFluX simply as an update language for programmer
to merely write the putback of a bidirectional transformation as an update
program that uses a view XML to update a source XML. The most significant
design of BiFluX is the source-view alignment which aligns a sequence of
source elements with a sequence of view elements either by position or by
some keys and each aligned source-view pairs are again updated either by a
replacement or another subprogram. BiFluX is expressive enough that supports
if-then-else condition, case analysis, pattern matching, and recursive definition
of a bidirectional update program. BiFluX is firstly normalized into a small core
language and then compiled into BiGUL. The well-behavedness of a BiFluX
program is guaranteed by the underlying BiGUL.

Brul is a library for relational database which is implemented on top of
BiGUL that provides two library functions to simply let programmer write
update program by using view table to update source tables. The update
program can also be interpreted as a query such as selection, projection and
join in the get direction. The library function align covers the selection and
projection, and unjoin covers join in relational algebra. Brul also covers
the three lens combinators (selection, drop, and join) defined in relational

6.2 Future Work 125

lenses [12] and in fact the Brul library is more powerful than relational lenses
since Brul allows programmer to describe flexible putback strategies due to
the advantage of putback-based design of the library functions. Since Brul is
implemented by BiGUL, the well-behavedness of Brul comes for free.

Our putback-based bidirectional programming languages have been used
in many real world applications. Cheng et al. [16] use BiFluX to support
reflecting updates on code after refactoring to the original source code. Lionel
et al. [55] utilize BiFluX to implement the BXauthZ which is a policy language
to express attribute based rules on XML views. Zhu et al. [77] proposed a
declarative bidirectional language BiYacc which supports reflective printing
and parsing implemented on top of BiFluX. Zhao et al. [76] designed a rule-
based language νRule for self-adaptation system which is implemented based
on BiFluX. Colson et al. [20] use BiGUL to implement a reusable self-adaptive
system which synchronizes the configuration files of different servers such as
Apache and Nginx.

6.2 Future Work

The research of putback-based bidirectional programming just started in three
years, even it is promising based on the current results we have gotten, there
are still lots of improvements need to be done to make it practical and useful.

Language

Even the putback-based approach has advantages of uniquely determining the
forward transformation over the traditional get-based approach, programming
the backward transformation is still a bit counter-intuitive compared with pro-
gramming the forward transformation. We already tried to tackle this problem
by designing the language more like an update language with bidirectional
semantics. We provide basic language constructs that let programmer write
programs to express how to update the source using the view which work well
when the consistency relation between source and view is not complex. When

126 6 Conclusion

the consistency relation between source and view are not straight-forward such
as view is the summation of the source list, or view is the reverse of the source
list, it can be implemented in our core language BiGUL, but there are two issues:
1. it takes a lot of efforts to implement. 2. it is hard to verify the implementation
satisfies the specification. One research direction is to design a more user-
friendly general surface putback-based bidirectional programming language,
which requires a deep understanding of the mechanism and expressiveness
of the putback. Another research direction is to provide a way to describe the
consistency relation between source and view, and check whether the written
program will bring the source and view into the specified consistency state or
not. Currently, one of our colleges is trying to use Hoare logic to let programmer
to define the consistency relation of the written BiGUL program, and check the
program will be matched with the specification.

Haskell has many handy packages that can be used directly such as List and
Set, if we can provide basic putback-based libraries for these basic datatypes, it
would be very useful for real world applications.

The putback-based design of bidirectional languages also can be employed
into other data domains such as JSON which becomes a popular data format
for data exchanging, or graphs for bidirectional model transformations which
may requires more efforts since graphs may have cycles.

Optimization

Like get-based lenses, composition plays a key role in writing large and complex
putback-based bidirectional programs which also makes the composition as the
bottleneck of the a BX program. Generally, for composition l1; l2, the backward
of l2 requires the execution of forward transformation of l1. There can be a lot
of intermediate computations for a long composition sequence. For example
the backward transformation of ln needs all the forward computation from
l1; l2; ...; ln−1. Several optimizations can be done to make the composition more
efficient: 1. since the ln only needs the ”original” source computed from ln−1,
we can compute all the ”original” source in advance for all the lenses. 2. for a
special category of lenses which is injective, then the backward transformation

6.2 Future Work 127

do not depend on the original source, we can just chain them together as the
forward transformation.

Applications

Nowadays, people tend to use many social applications to communicate with
friends such as Facebook, Twitter, Instagram, Snapchat and so on. The personal
information is scattered around, sometimes an unintended action could even
lead to a terrible information leak that exposes private personal data to the
public. It would be possible to build the personal information as the source,
each social service as the view, and then using bidirectional transformations
to private limited data access for each service. What is more, by using putback-
based bidirectional transformation, we can specify the specific update policy for
each social services which gives the person full control of his/her personal data.
Similarly, our solution can also be used for maintaining hybrid cloud services in
order to control the data share between private and public cloud in a company.

Applications are normally isolated, while there are third party applications
that the customer want to use to analyze his/her own data to get insights, but
it cannot be shared due to security issues and company interest. Bidirectional
transformation may be used to allow customer to provide third party applica-
tions with limited access to the data to guarantee the security and also give
customer self-satisfied services.

128 6 Conclusion

Bibliography

[1] Boomerang. http://www.seas.upenn.edu/~harmony. � page 25

[2] Dropbox. https://www.dropbox.com. � pages 2 and 11

[3] Google Drive. https://www.google.com/drive. � page 2

[4] GRoundTram. http://www.biglab.org. � page 26

[5] Harmony: A synchronization framework for heterogeneous tree-structured
data. https://alliance.seas.upenn.edu/~harmony/old. � pages 13 and 25

[6] Microsoft OneDrive. https://onedrive.live.com. � page 2

[7] The XML Bookmark Exchange Language (XBEL). http://pyxml.

sourceforge.net/topics/xbel. � page 2

[8] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM
Transactions on Database Systems, 6(4):557–575, 1981. � pages 9, 10, 24, and 119

[9] D. M. J. Barbosa, J. Cretin, J. N. Foster, M. Greenberg, and B. C. Pierce.
Matching lenses: Alignment and view update. In Proceedings of the 15th
ACM SIGPLAN International Conference on Functional Programming, pages
193–204. ACM, 2010. � pages 26, 92, and 119

[10] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-
purpose language. In Proceedings of the 8th ACM SIGPLAN International
Conference on Functional Programming, pages 51–63. ACM, 2003. � page 32

129

http://www.seas.upenn.edu/~harmony
https://www.dropbox.com
https://www.google.com/drive
http://www.biglab.org
https://alliance.seas.upenn.edu/~harmony/old
https://onedrive.live.com
http://pyxml.sourceforge.net/topics/xbel
http://pyxml.sourceforge.net/topics/xbel

130 Bibliography

[11] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt.
Boomerang: resourceful lenses for string data. In Proceedings of the 35th
annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 407–419. ACM, 2008. � page 25

[12] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: A language
for updatable views. In Proceedings of the 25th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pages 338–347. ACM,
2006. � pages 25, 95, 98, 102, and 125

[13] C. Brabrand, A. Møller, and M. I. Schwartzbach. Dual syntax for XML
languages. Information Systems, 33(4-5):385–406, 2008. � page 92

[14] P. Buneman, M. Fernandez, and D. Suciu. UnQL: A Query Language and
Algebra for Semistructured Data Based on Structural Recursion. The VLDB
Journal, 9(1):76–110, Mar. 2000. � pages 12 and 26

[15] J. Cheney. FLUX: functional updates for XML. In Proceedings of the 13th
ACM SIGPLAN International Conference on Functional Programming, pages
3–14. ACM, 2008. � pages 6, 32, 40, 55, 68, 72, 78, and 91

[16] X. Cheng, Y. Chen, Z. Hu, T. Zan, M. Liu, H. Zhong, and J. Zhao. Support-
ing selective undo for refactoring. In International Conference on Software
Analysis, Evolution, and Reengineering. IEEE, 2016. � pages 7 and 125

[17] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Software Lan-
guage Engineering: Third International Conference, SLE 2010, Eindhoven, The
Netherlands, October 12-13, 2010, Revised Selected Papers, chapter JTL: A
Bidirectional and Change Propagating Transformation Language, pages
183–202. Springer Berlin Heidelberg, 2011. � page 27

[18] J. Clark and S. DeRose. XML path language (XPath) version 1.0. 1999.
� pages 33 and 34

[19] D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Static analysis for path
correctness of XML queries. Journal of Functional Programming, 16(4-5):621–
661, 2006. � pages 33, 78, and 79

Bibliography 131

[20] K. Colson, R. Dupuis, L. Montrieux, Z. Hu, S. Uchitel, and P.-Y. Schobbens.
Reusable self-adaptation through bidirectional programming. In Proceed-
ings of the 11th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pages 4–15, New York, NY, USA, 2016. ACM.
� pages 7 and 125

[21] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva. Bidirec-
tional transformation of model-driven spreadsheets. pages 105–120, 2012.
� page 27

[22] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. Terwilliger.
Bidirectional Transformations: A Cross-Discipline Perspective. In Proceed-
ings of the 2nd International Conference on Model Transformation, volume 5563
of LNCS, pages 260–283. Springer, 2009. � pages 10, 31, and 65

[23] U. Dayal and P. A. Bernstein. On the Correct Translation of Update
Operations on Relational Views. ACM Transactions on Database Systems,
7(3):381–416, 1982. � pages 10, 24, and 119

[24] Z. Diskin. Proceedings of 11th International Conference on Model Driven Engi-
neering Languages and Systems, chapter Algebraic Models for Bidirectional
Model Synchronization, pages 21–36. Springer Berlin Heidelberg, 2008.
� page 26

[25] L. Fegaras. Propagating updates through XML views using lineage tracing.
In Proceedings of the 26th International Conference on Data Engineering, pages
309 –320. IEEE, 2010. � page 91

[26] S. Fischer, Z. Hu, and H. Pacheco. “Putback” is the essence of bidirec-
tional programming. Technical Report GRACE-TR 2012-08, GRACE Center,
National Institute of Informatics, 2012. � pages 4, 19, 97, and 120

[27] J. Foster. Bidirectional Programming Languages. PhD thesis, University of
Pennsylvania, December 2009. � page 21

[28] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt.
Combinators for bidirectional tree transformations: A linguistic approach

132 Bibliography

to the view-update problem. ACM TOPLAS, 29(3):17, 2007. � pages 3, 11, 12,

24, 25, 31, 67, 92, and 119

[29] J. N. Foster, A. Pilkiewicz, and B. C. Pierce. Quotient lenses. In Proceedings
of the 13th ACM SIGPLAN International Conference on Functional Programming,
pages 383–396. ACM, 2008. � pages 26, 80, and 119

[30] G. Ghelli, C. Ré, and J. Siméon. XQuery!: An XML query language with
side effects. In Current Trends in Database Technology – EDBT 2006: EDBT
2006 Workshops PhD, DataX, IIDB, IIHA, ICSNW, QLQP, PIM, PaRMA, and
Reactivity on the Web, Revised Selected Papers, volume 4254 of LNCS, pages
178–191. Springer, 2006. � pages 12, 32, 68, and 91

[31] G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of
consistent views. ACM Transactions on Database Systems, 13(4):486–524, 1988.
� pages 10 and 24

[32] S. Hidaka, K. Asada, Z. Hu, H. Kato, and K. Nakano. Structural Recursion
for Querying Ordered Graphs. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming, pages 305–318, New
York, NY, USA, 2013. ACM. � page 26

[33] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidirec-
tionalizing graph transformations. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, pages 205–216. ACM,
2010. � pages 12 and 26

[34] M. Hofmann, B. C. Pierce, and D. Wagner. Symmetric lenses. In Proceed-
ings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 371–384. ACM, 2011. � page 26

[35] M. Hofmann, B. C. Pierce, and D. Wagner. Edit lenses. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 495–508. ACM, 2012. � pages 26 and 119

[36] H. Hosoya and B. Pierce. Regular Expression Pattern Matching for XML.
In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 67–80. ACM, 2001. � page 33

Bibliography 133

[37] H. Hosoya and B. C. Pierce. Xduce: A Statically Typed XML Processing
Language. ACM Trans. Internet Technol., 3(2):117–148, May 2003. � page 33

[38] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for XML.
In Proceedings of the 5th ACM SIGPLAN International Conference on Functional
Programming, pages 11–22. ACM, 2000. � pages 32, 78, and 79

[39] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for devel-
oping structured documents based on bidirectional transformations. In
Proceedings of the 2004 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation, pages 178–189, New York, NY, USA,
2004. ACM. � pages 26, 92, and 119

[40] Z. Hu, A. Schurr, P. Stevens, and J. F. Terwilliger. Dagstuhl seminar on
bidirectional transformations (bx). SIGMOD Rec., 40(1):35–39, July 2011.
� page 10

[41] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. ATL: A
QVT-like Transformation Language. In Companion to the 21st ACM SIG-
PLAN Symposium on Object-oriented Programming Systems, Languages, and
Applications, pages 719–720, New York, NY, USA, 2006. ACM. � pages 11

and 26

[42] S. Kawanaka and H. Hosoya. biXid: a bidirectional transformation lan-
guage for XML. In Proceedings of the 11th ACM SIGPLAN International
Conference on Functional Programming, pages 201–214. ACM, 2006. � pages 27,

64, and 92

[43] A. Keller. Updating Relational Databases Through Views. PhD thesis, Stanford
University, 1985. � pages 6, 10, and 24

[44] A. Keller. Choosing a View Update Translator by Dialog at View Definition
Time. In Proceedings of the 12th International Conference on Very Large Data
Bases, pages 467–474. Morgan Kaufmann Publishers, 1986. � pages 6, 24,

and 119

[45] K. Kelly. The Inevitable. Viking, 2016. � page 1

134 Bibliography

[46] H.-S. Ko, T. Zan, and Z. Hu. BiGUL: A formally verified core language for
putback-based bidirectional programming. In Proceedings of the 2016 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation. ACM,
2016. � pages 6, 40, 94, 97, and 120

[47] J. A. Larson and A. P. Sheth. Updating relational views using knowledge
at view definition and view update time. Information Systems, 16(2):145 –
168, 1991. � pages 10 and 24

[48] D. Liu, Z. Hu, and M. Takeichi. Bidirectional Interpretation of XQuery. In
Proceedings of the 2007 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation, pages 21–30, New York, NY, USA,
2007. ACM. � page 12

[49] D. Liu, Z. Hu, and M. Takeichi. An expressive bidirectional transformation
language for XQuery view update. Progress in Informatics, 10:89–130, 2013.
� pages 26, 91, and 124

[50] K. Z. M. Lu and M. Sulzmann. An Implementation of Subtyping Among
Regular Expression Types. In Proceedings of the 2nd Asian Symposium on
Programming Languages and Systems, volume 3302 of LNCS, pages 57–73.
Springer, 2004. � pages 79 and 80

[51] N. Macedo and A. Cunha. Proceedings of 16th International Conference
on Fundamental Approaches to Software Engineering, chapter Implementing
QVT-R Bidirectional Model Transformations Using Alloy, pages 297–311.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. � page 27

[52] S. Marlow (editor). Haskell 2010 language report, 2010. � page 4

[53] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectional-
ization transformation based on automatic derivation of view complement
functions. In Proceedings of the 12th ACM SIGPLAN International Conference
on Functional Programming, pages 47–58. ACM, 2007. � page 26

[54] K. Matsuda and M. Wang. Bidirectionalization for Free with Runtime
Recording: Or, a Light-weight Approach to the View-update Problem. In

Bibliography 135

Proceedings of the 15th Symposium on Principles and Practice of Declarative
Programming, pages 297–308. ACM, 2013. � page 91

[55] L. Montrieux and Z. Hu. Towards Attribute-Based Authorisation for
Bidirectional Programming. In Proceedings of the 20th ACM Symposium on
Access Control Models and Technologies, pages 185–196, New York, NY, USA,
2015. ACM. � pages 7 and 125

[56] K. Nakano, Z. Hu, and M. Takeichi. Consistent web site updating based
on bidirectional transformation. International Journal on Software Tools for
Technology Transfer, 11(6):453–468, 2009. � page 26

[57] U. Norell. Towards a Practical Programming Language based on Dependent Type
Theory. PhD thesis, Chalmers University of Technology, 2007. � page 48

[58] U. Norell. Dependently Typed Programming in Agda. In Advanced Func-
tional Programming, volume 5832 of Lecture Notes in Computer Science, pages
230–266. Springer, 2009. � pages 40 and 120

[59] O. M. G. (OMG). MOF 2.0 QVT Final Adopted Specification v1.2, 2015.
OMG Adopted Specification formal/2016-02. � pages 11 and 27

[60] H. Pacheco and A. Cunha. Generic point-free lenses. In Proceedings of the
10th International Conference on Mathematics of Program Construction, MPC
’10, pages 331–352. Springer, 2010. � pages 26 and 119

[61] H. Pacheco and A. Cunha. Calculating with lenses: optimising bidirectional
transformations. In Proceedings of the 20th ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, pages 91–100. ACM, 2011.
� page 26

[62] H. Pacheco and A. Cunha. Multifocal: A Strategic Bidirectional Transfor-
mation Language for XML Schemas. In Proceedings of the 5th International
Conference on Theory and Practice of Model Transformations, volume 7307 of
LNCS, pages 89–104. Springer, 2012. � page 91

[63] H. Pacheco, A. Cunha, and Z. Hu. Delta Lenses over Inductive Types. In
the 1st International Workshop on Bidirectional Transformations, volume 49 of
Electronic Communications of the EASST, 2012. � page 92

136 Bibliography

[64] H. Pacheco, Z. Hu, and S. Fischer. Monadic Combinators for “Putback”
Style Bidirectional Programming. In Proceedings of the ACM SIGPLAN 2014
Workshop on Partial Evaluation and Program Manipulation, pages 39–50. ACM,
2014. � pages 92, 93, and 120

[65] H. Pacheco, T. Zan, and Z. Hu. BiFluX: A Bidirectional Functional Update
Language for XML. In Proceedings of the 16th International Symposium on
Principles and Practice of Declarative Programming, pages 147–158. ACM, 2014.
� pages 6, 93, 97, and 120

[66] J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton, and J. Siméon.
XQuery update facility 1.0. W3C Recommendation. http://www.w3.org/
TR/xquery-update-10/, March 2011. � pages 33 and 91

[67] I. Sasano, Z. Hu, S. Hidaka, K. Inaba, H. Kato, and K. Nakano. Proceedings
of the 4th International Conference Theory and Practice of Model Transformations,
chapter Toward Bidirectionalization of ATL with GRoundTram, pages
138–151. Springer Berlin Heidelberg, 2011. � page 26

[68] T. Sheard and S. Peyton Jones. Template Meta-programming for Haskell.
In Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, pages 1–16.
ACM, 2002. � page 43

[69] P. Stevens. Bidirectional model transformations in QVT: Semantic issues
and open questions. In Proceedings of the 10th International Conference on
Model Driven Engineering Languages and Systems, pages 1–15. Springer, 2007.
� pages 11 and 19

[70] S. Vansummeren. Type inference for unique pattern matching. ACM
TOPLAS, 28(3):389–428, 2006. � page 33

[71] Wikipedia. Netscape (web browser) — Wikipedia, The Free Encyclopedia,
2016. [Online; accessed 11-May-2016]. � page 2

[72] T. Zan, L. Lu, H.-S. Ko, and Z. Hu. Brul: A Putback-Based Bidirectional
Transformation Library for Updatable Views. CEUR-WS, 2016. � page 6

http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/

Bibliography 137

[73] T. Zan, H. Pacheco, and Z. Hu. BiFluX: A Bidirectional Functional Update
Language for XML. Proceedings of the 30th Conference of Japan Society for
Software and Science, 2013. � pages 6 and 93

[74] T. Zan, H. Pacheco, and Z. Hu. Writing Bidirectional Model Transfor-
mations As Intentional Updates. In Companion Proceedings of the 36th
International Conference on Software Engineering, pages 488–491. ACM, 2014.
� page 6

[75] T. Zan, H. Pacheco, H.-S. Ko, and Z. Hu. BiFluX: A Bidirectional Functional
Update Language for XML. Computer Software of Japan Society for
Software Science and Technology, 2016. � pages 6, 94, and 124

[76] T. Zhao, T. Zan, H. Zhao, Z. Hu, and Z. Jin. A Novel Approach to Goal-
oriented Adaptation with View-based Rules. Technical Report GRACE-TR
2016-01, GRACE Center, National Institute of Informatics, 2016. � pages 7

and 125

[77] Z. Zhu, H.-S. Ko, P. Martins, J. Saraiva, and Z. Hu. BiYacc: Roll Your Parser
and Reflective Printer into One. Bidirectional Transformations, page 43, 2015.
� pages 7, 120, and 125

	Title page
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Research Objective
	1.2 Contributions
	1.3 Overview of the Thesis

	2 Bidirectional Transformation
	2.1 The Birth of Bidirectional Transformation
	2.2 Lenses
	2.2.1 Definition
	2.2.2 Properties

	2.3 Limitations of Get-Based Lenses
	2.4 Putback-Based Bidirectional Transformation
	2.4.1 Mathematical Propositions
	2.4.2 Well-behavedness from Putback

	2.5 Survey
	2.5.1 View Updating
	2.5.2 Bidirectional Programming Languages

	3 Core Language
	3.1 From Put to Update
	3.2 Core XML Update Language
	3.2.1 Patterns
	3.2.2 Expressions and Paths
	3.2.3 Bidirectionalizable Updates
	3.2.4 Unidirectional Updates

	3.3 Generic Core Language
	3.3.1 Syntax and Semantics
	3.3.2 Well-behavedness

	4 A Bidirectional Functional Update Language for XML
	4.1 Syntax, Informal Semantics, and General Framework
	4.1.1 Our Running Example
	4.1.2 Syntax and Informal Semantics of BiFluX
	4.1.3 Bidirectional Execution
	4.1.4 Other Update Strategies
	4.1.5 General Framework

	4.2 BiFluX to Core Update Normalization
	4.2.1 Bidirectional Update Normalization
	4.2.2 Unidirectional Update Normalization

	4.3 Core Compilation
	4.3.1 Overview of Compilaton
	4.3.2 XML Values and Regular Expression Types
	4.3.3 Compilation of Bidirectionalizable Updates
	4.3.4 Compilation of Expressions, Paths and Patterns

	4.4 Related Work
	4.4.1 XML Update Languages
	4.4.2 XML View Updating
	4.4.3 Bidirectional XML Languages

	4.5 Conclusion
	4.6 Discussion

	5 A Putback-Based Library for Updatable Views
	5.1 Motivation of Design
	5.2 Brul Library
	5.2.1 Align
	5.2.2 Unjoin

	5.3 Example
	5.3.1 Update Single Source
	5.3.2 Update Multiple Sources

	5.4 Implementation
	5.4.1 Relational Database Representation
	5.4.2 Syntax Sugar of BiGUL in Template Haskell
	5.4.3 Align
	5.4.4 Unjoin

	5.5 Related Work
	5.6 Conclusion

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Bibliography

