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Abstract

Applications are typically executed on fixed distributed system architec-

tures, and they merely interconnect a huge number of software components

through networks. However, the complexity and dynamism of distributed

systems are beyond our ability to build and manage such systems through

conventional approaches, such as centralized and top-down architectures.

On the other hand, the requirements of applications or the structure of

systems change from time to time. For instance, software components that

applications consist of may be dynamically added to or removed from dis-

tributed systems, and networks between computers may be rapidly discon-

nected and reconnected. Therefore, modern distributed systems demand

availability, dependability, and reliability to adapt themselves to various

changes, even dynamically, to self-adapt their architectures.

This dissertation first presents the requirements and proposed approaches.

The key idea behind the proposed approaches are to introduce the reloca-

tion of software components, which define functions, between computers

as a basic mechanism for adaptation. Second, it introduces the design

of Mimosa, which is an adaptive and reliable middleware that adapts to

various changes through relocation of software components in distributed

systems. Third, a policy-based language is described for specifying, and

analyzing user-defined adaptations. Since the language is defined on a

theoretical function, it enables the results of conflicts and divergences

from adaptions to be to analyzed sequentially. Although the proposed

approaches are based on adaptive deployments of software components

but not on those of adaptive functions inside any software components.

Therefore, my proposal can more effectively adapt to types of change be-

tween distributed systems and applications, even change the fixed system

architectures. This is because user-definitions of policies were separated

from software components, and then the software components could be

invoked from different computers.



This dissertation describes the design and implementation of the ap-

proaches with five distributed applications, and experiments were run on

my system with the proposed applications over a distributed system.
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Chapter 1

Introduction

Computer systems are currently undergoing a revolution. Two advanced technologies

began to change the situation. The first involved the invention of powerful micro-

processors and memory chips and the second involved the invention of high-speed

computer networks. These technologies were not only feasible, but also made it easy

to connect a large numbers of computers into systems through high-speed networks,

which are called distributed systems.

Distributed systems have been widely used in various fields of computing, such

as artificial intelligence, cloud computing, ubiquitous computing, mobile computing,

disaggregated computing, big data, machine learning, the Internet of Things (IoTs),

and machine to machine (M2M) [10] [3] [57] [28] [75] [13] [58] [94] [25]. Distributed

systems are complicated and dynamic by nature because their structures, and the

applications running on them tend to change dynamically. For instance, applications

running on computers or software components may be added to or removed from dis-

tributed systems, and networks between computers may be frequently disconnected

and reconnected. Existing distributed systems should have the capabilities to adapt

themselves to such changes, and even dynamically change their architectures to sup-

port their business targets and behaviors.

How to build adaptive distributed systems has become one of the foremost chal-

lenges for researchers. This chapter first introduces the motivation for my research. It

then describes the requirements and challenges to dynamically achieve adaptive dis-

tributed systems. Finally, the main contributions of this dissertation are presented.
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1.1 Motivation

Distributed systems need to support availability, adaptability, and dependability, be-

cause they are often used for mission-critical purposes. However, the configurations of

particular systems have currently been built and operated with specific architectures.

Specific architectures have lost their effectiveness with the expanded scale and use of

distributed systems. Distributed applications, on the other hand, have been imple-

mented for multiple purposes and multiple users with various requirements that have

changed dynamically. Therefore, software running on distributed systems should be

resilient so that the systems can adapt software to various changes at runtime, and

even change the architecture of existing distributed systems to support their busi-

ness targets and behaviors. Software running on distributed systems should also be

reuseable so that it can adapt to various changes in different distributed systems.

Adaptation is an effective way of resolving dynamic changes between distributed

systems and applications. Many researchers have focused on dynamic adaptation for

distributed systems through a variety of approaches [89] [8] [17] [21] [90] [29] [20].

However, adaptation is not only needed to avoid harmful effects, but also to reap the

benefits of potentially favorable effects. Therefore, relocation of software components

is focused on in this dissertation between computers for adaptation on distributed

systems. Although it seems very simple, it can provide very strong adaptability in

both general-purpose applications and existing distributed systems. Conversely, al-

though the conditions of adaptation written inside software programs is a solution,

such programs are difficult to maintain, and it is not easy for junior developers to

develop efficient adaptation programs. Therefore, it is believed that adaptation pro-

grams should be separated from business logic. Adaptation from business logic is

distinguished in this dissertation by using the principle of separation of concerns, so

that developers can concentrate on business logic rather than adaptation programs

as much as possible.

Based on these motivations, this dissertation addresses a policy-based middleware

to adapt to various changes in existing distributed systems. It was assumed that

distributed applications would consist of one or more software components, which

might have been running on different computers through networks. The proposed

approach incorporates two key ideas:

• The proposed adaptation does not cause unnecessary failures, and supports

a wide variety of changes on existing distributed systems. It focuses on the

2



relocation of software components between computers as a basic adaptation

mechanism (The details are presented in Chapter 4).

• A policy-based language needs to be designed for developers to define nature-

inspired relocation policies for describing application-specific adaptations to dis-

tinguish adaptation concerns from software components on distributed systems

(The details are presented in Chapter 5).

Based on these two ideas, when changes occur and their defined conditions of poli-

cies are satisfied, software components are automatically relocated, duplicated then re-

located, between computers or removed from computers to adapt themselves to changes

on distributed systems.

1.2 Requirement

Distributed systems are used for multiple purposes and need capabilities to adapt

themselves to various changes in results from their dynamic properties [93]. Therefore,

seven requirements were first defined for distributed systems, and my approach should

meet all of these requirements.

• Self-adaptability: Software components may be running on different computers.

Therefore, software components should coordinate themselves to support their

applications with partial knowledge about other computers.

• On-demand deployment of software: Computers may have limited resources so

that they cannot support software for various applications beforehand. Software

for the applications needs to be dynamically deployed at appropriate computers

to coordinate multiple computers for individual applications.

• Separation of concerns: All software components should be defined indepen-

dently of the proposed adaptation mechanism as much as possible. As a result,

developers should be able to concentrate on their own application-specific pro-

cessing.

• Availability: System failures are inevitable since numerous software components

run on distributed systems. The proposed adaptation should not only avoid

causing more system failures, but also needs to adapt to them as well as provide

a non-stop distributed system when these failures occur. Therefore, an effective

solution is to relocate software components between computers. This is because

3



it just changes the location of software components instead of changing their

functions. Furthermore, it also enable applications to remain available after

their adaptations in distributed systems.

• Reusability: There have been many attempts to provide adaptive distributed

systems. However, as the approaches and parameters in most of them have

strictly and statically depended on their target systems, they have needed to be

re-defined overall for reuse in other distributed systems. The proposed adap-

tation should be abstracted away from the underlying systems for reasons of

reusability.

• Non-centralized management: There is no central entity to control and coor-

dinate computers. The proposed adaptation should be managed without any

centralized management for reasons of avoiding any single points of failures and

performance bottlenecks to attain availability and scalability.

• General-purpose and adaptation independence: There are various applications

running on distributed systems. Therefore, the approach should be implemented

as a practical middleware to support general-purpose applications. All software

components should be defined independently of the proposed adaptation mech-

anism as much as possible. As a result, developers should be able to concentrate

on their own application-specific processing.

Computers on distributed systems may have limited resources, for instance, pro-

cessing, and storage resources. On the other hand, the bandwidths of networks on

several distributed systems tend to be narrow and their latency cannot be neglected.

Therefore, the proposed approach should be available with such limited resources and

such networks, whereas many existing adaptation approaches explicitly or implicitly

assume that their target distributed systems have enriched resources.

1.3 Challenge

There are a few challenges on be confronted in designing adaptive distributed systems.

Depending on the structure of distributed systems and the requirements of applica-

tions, software components should be flexible and adaptable. These challenges can

be tackled in four steps:

4



• A middleware system needs to be designed and implemented to support adap-

tation in both systems and applications so that it does not rely on different

execution environments. This middleware system needs the capability to man-

age and relocate software components between computers and determine which

software component should be relocated to where. The methods of relocating

software components should be dynamically invocated at destination computers

through the middleware system.

• A policy-based language needs to be designed and implemented for users so that

they can easily define their requirements as polices, such as the requirements

of applications or the structures of system changes or network states. These

policies need to include a pair of condition and action parts. If the condition

part can be satisfied, software components should be relocated to the destination

computer and then their operations need to be restarted.

• A policy interpreter needs to be designed and implemented in our middleware

system for executing user-defined policies. Because the interpreter does not

need to generate intermediate object code and memory requirements are much

less, it is very consistent with the designed middleware system.

• Several applications also need to be developed to verify the performance and

effectivity of the proposed middleware systems and policy language, and even

import the necessary mechanism to analyze the conflicts and divergences be-

tween user-defined policies.

Many researchers have proposed various approaches for adaptation on distributed

systems [89] [44] [43] [23] [68] [14] [21]. They have focused on changing parameters,

coordination of functions or modify software for adaptation, instead of focusing on

the relocation of software components between computers for adaptation. Their ap-

proaches have been effective, but they may create unnecessary failures in existing

distributed systems, thereby causing distributed systems to stop and reduce avail-

ability and reusability.

1.4 Contribution

This dissertation describes how I hoped to tackle these challenges to provide a general-

proposed approach to adapt components themselves to changes by relocating software

components for distributed systems and applications. Several applications were used
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to overcome the challenges and test the proposed approach to validate its feasibility.

The six key contributions of the research described in this dissertation are below:

• A middleware called Mimosa was designed and implemented (explained in

Chapter 4), which allows software components to self-adaptively relocate or

duplicate/relocate or remove themselves from destination computers when the

structure of distributed systems or the requirements of applications are changed.

• The Mimosa system not only relocates the software components in distributed

computers, but it can also relocate their states of software components to des-

tination computers. It can make the relocated software components continue

their operations at the destination computer by dynamically invoking their life-

cycle methods.

• A dynamic method invocation (DMI) mechanism was also developed, in which

the common object request broker architecture (CORBA) [79] was studied, so

that our mechanism could easily hide differences between the interface of objects

at the original computer and others.

• A policy-based language was designed for users who need to define their re-

quirements as policies throuth process calculus [61]. It is basically defined as

a pair of information items on where and when the software components are

deployed.

• Each application-specific component can have one or more policies, therefore

user-defined policies may cause various conflict or divergence, so that the adap-

tation mechanism need to be able to analyze them through the properties of

software component descriptions with the proposed policy-based language, and

provide the necessary modified proposal to policy-makers.

• Distributed applications are formed by different software components. There-

fore, through the relocation of software components between computers, the

architectures of existing distributed systems can be dynamically changed. For

instance, the system architectures can also be dynamically changed in both the

directions of the Client/Server and Peer-to-Peer.

Application developers no longer need to write complex and adaptive code in-

side their programs with the proposed developer-friendly adaptation middleware and

policy-based language, then developers just need to focus on their own work. In

6



addition, general-purposed distributed applications can run on the middleware sys-

tem and they do not need to do anything for adaptation. When changes occur, the

middleware system can determine where software components are relocated so that

they can dynamically adapt themselves to various changes, according to user-defined

policies.

1.5 Organization

This dissertation is organized into eight chapters, which include the introduction,

rrevious studies are described in Chapter 2, which are separated into three types, and

two applicated approaches are then compared with my proposed approach. The six

remaining chapters can be divided into three parts.

The first part (Chapter 3) introduces the underlying concept behind the research,

and why I chose to relocate software components for adaptation on distributed sys-

tems. Some scenarios are presented in this chapter. I will describe the validity of the

proposed approach in contrast with existing studies, and why it can solve problems

that existing research cannot.

The second part (Chapters 4 and 5) introduces a reliable middleware, called Mi-

mosa (Chapter 4), including its specific structure, and how it can adapt to various

changes in distributed systems through relocating software components between com-

puters. As the Mimosa middleware system does not depend on the execution envi-

ronment, it can run on all operating systems. Next, a policy-based language for users

is presented to define functions as policies for relocating software components. As it

was designed based on theoretical foundations, it enables the effects of adaptations to

be analyzed. Both the software and adaptation can be reused in different distributed

systems because adaptation is separate from application-specific software concerns.

Five generally proposed distributed applications are introduced (Chapter 6) based

on the approaches to demonstrate the relocation of software components for adap-

tation on a distributed system, according to user-defined policies. Implementations,

evaluations, and conclusions are covered in the third and last part (Chapters 7 and

8). Chapter 7 explains the implementations and evaluations of the Mimosa middle-

ware system and our policy-based language with the five distributed applications. A

summary of this dissertation and an outline of future work are given in Chapter 8.
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Chapter 2

Related Work

This chapter provides an introduction to research areas with which this dissertation

is concerned. The following sections describe the backgrounds and explain the most

influential researches in the area of adaptation on distributed systems.

Previous studies on adaptation areas can be classified into three types. The first

has focused on parameter-level adaptation for distributed systems. It modifies pro-

gram variables that determine behavior. The second has focused on coordination-

level adaptation for distributed systems. It provides adaptation through dynamic

changes in the coordination of different software components within a computer. The

third has involved software-level approaches to adaptation, e.g., the genetic algorithm

(GA), genetic programming, and swarm intelligence. It provides adaptation through

a dynamic redefinition of software.

Based on the three technologies, there are two applicated approaches for adap-

tation. Architecture approaches enables existing system structures from one type to

change to another type to provide adaptation. Location approaches have used Mobile

agents to adapt agents to changes in their system environment, and it can change

locations by migrating agents to dynamically adapt to their behaviors on distributed

systems.

The next section surveys existing studies on how to provide adaptation on dis-

tributed systems.
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2.1 Parameter-level Adaptation

The first type is parameter-level adaptation for distributed systems. An often-cited

example, the Internet’s Transmission Control Protocol (TCP) [69] allows its behavior

by changing values which could control window management. It also adjusts retrans-

missions in response to apparent network congestion.

In dynamic environments, the value of parameters may change over time. Epifani

et al. presented a framework, called KAMI [24]. They provided a solution by changing

the parameters on a runtime system. The updated model that provided for software

engineers have advantages and disadvantage. Before the software engineers build their

systems, they should give full consideration to all requirements. Once their original

systems are constructed, parameter adaptation does not allow new algorithms and

software components to be added to applications. It can tune parameters or direct an

application to use a different existing strategy, however it cannot adopt new strategies.

Herrera and Lozano proposed an approach to adaptive parameters, in which their

approach was based on the use of fuzzy logic controllers [33] through which the param-

eters dynamically changed to provide adaptation for distributed systems. Programs

could be rewritten in their research; however, they could not adapt themselves to

changes inside systems, and the software components could not be reused.

Chang et al., [14] present an adaptation approach for distributed applications to

adapt to changing resource characteristics. Their approach modify program variables

that determine behavior. However, It does not allow new algorithms and components

to be added to an application after the original design and construction.

Blair et al. explored the role of the Aster framework in supporting dynamic adap-

tation within the context of the Open-ORB middleware platform [8]. Following a

detailed examination of adaptation, I concluded that Aster [37] could usefully be ex-

tended to meet my requirements. The key extensions to Aster included the incorpora-

tion of weakest properties and environmental parameters in architectural descriptions

to accommodate re-configurations due to changing non-functional parameters in the

former and environmental conditions in the latter. However, when changes occurred

in their research project, the defined configurations or re-configurations were difficult

to reuse.

9



A model-driven middleware was presented in [45]. They focused on component-

based parameter adaptation to adapt changes for applications at a runtime system.

They designed their user interface for implementing components with a number of dif-

ferent variants, e.g., OneWayUI, TwoWayUI, PlayBackUI. However, their approach

has an inherent weakness. Changes in the environment can not only from the ap-

plications, but also may come from their system itself or the networks. Therefore,

adaptive behaviors are limited in parameter-level adaptation.

Ting Liu and Margaret Martonosi presented a non-VM-based middleware system

for managing distribuetd sensor systems, called Impala [53]. It allows software up-

dates to be received through the transceiver of nodes, and to be applied to the running

system dynamically. However, they defined a set of application parameters and sys-

tem parameters to represent at runtime. However, adaptive behaviors are limited in

their researches, it does not allow new algorithms to be added to applications, and

does not allow software components to be relocated between computers.

2.2 Coordination-level Adaptation

The second type is coordination-level adaptation for distributed systems. These ap-

proaches can be divided into two categories.

The first changes the coordination of programs for adaptation, such as [89] [44]

[43] [23].

Uribarren et al. presented a context-based coordination-level middleware plat-

form, which was a configurable, adaptable, heterogeneous, and interoperable middle-

ware that was abbreviated to CAHIM. CAHIM provides interoperable mechanisms of

communication between applications and devices [89]. Like mine, their middleware

platform provided good portability, and was independent of the underlying hardware,

operating system, and of the application itself. CAHIM can be simply summed up as

the collection, distribution, transformation and inference of generic information. For

instance, one of the main scopes of CAHIM is to communicate context information,

and it focuses on how to make software components run on different devices, and

then to become aware of their network and related resources. However, CAHIM can

adapt and provide pervasive services to distributed applications. Although CAHIM

based on contexts and generic information can change the coordination of software
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components, CAHIM middleware does not support the relocation of software compo-

nents for adaptation and it needs more computing resources for generic information

than my approach. In addition, CAHIM cannot change fixed system architectures to

provide various adaptations to distributed systems.

Keeney and Cahill presented a context-aware policy-based dynamic adaptation

framework, called Chisel [44] [43]. Chisel is based on decomposing the particular

aspects of service objects and using meta-types, but it does not provide core func-

tionality to the multiple behaviors of components. When the context of users or

applications changes, service objects are driven by a human-readable adaptation pol-

icy to adapt themselves to different behaviors as the execution environment. If an

application needs to adapt in Chisel [43], it is usually the non-functional requirements

or behaviors of some objects contained in this application that need to be changed,

rather than the domain of the application that needs to be changed. Therefore, ap-

plications running on Chisel can be adapted by changing these behaviors without

changing the applications themselves. Like the one proposed here, Chisel separates

policy and service objects. However, unlike the one proposed here, they did not rise

the approach to the level of language, they used the concept of meta-types and re-

flection to implement the adaptation mechanism, and the one proposed here uses

policies to define the relocation of software components for adaptation. Policies in

Chisel make it difficult to describe complex changes to users, and it is difficult to

solve conflicts in user-defined policies. Unlike the system proposed here, their system

is built on a fixed architecture, and therefore, unlike that proposed here, their ap-

proach can not dynamically change the system architecture to provide adaptability

to applications to adapt themselves to changes on distributed systems.

Rouvoy et al. presented a component-based middleware, i.e., for mobile users in

ubiquitous computing environments that was abbreviated as MUSIC, for adapting

to changes in ubiquitous and service-oriented environments [71] [72]. The MUSIC

project focused on various changes from service providers. Services functionalities

could be dynamically changed to adapt to changes through coordination-level adap-

tation of software components. Their research was like mine in that they separated

adaptation concerns from business logic concerns, and designed their middleware for

complex distributed environments and various generic applications. They offered

adaptivity through given changes in execution contexts. Software components that
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defined service functionalities could be dynamically configured with conforming com-

ponents by coordinating adaptation processes. Their approach essentially had limi-

tations in adaptation. For instance, their approach could not dynamically increase or

decrease or duplicate functions of components for adaptation. In addition, although

their proposed approach could change the coordination of components, it required

system resources to optimize the context for adaptation and it could not dynamically

correspond to changes from distributed systems themselves.

Mirkoet Morandini et al., presents a goal-oriented approach to specify variability

in system requirements which is called Tropos4AS (Tropos for self-adaptive systems)

[63]. Tropos4AS tries to capture already at design time the information needed for

autonomous decision making in self-adaptive systems, allowing designers to model

features such as the ability to select among different alternatives depending on the

environmental context, user’s preferences, and system failures to be prevented. How-

ever, this research focus on the coordination-level, but they don’t separate the adap-

tation concern from the business logic concern like mine.

Brian et al., presented a simple high-level directives and a sophisticated runtime

algorithm for coordinating adaptation approach [23]. Application developers can

describe when an adaptation must happen, as a functions of the relative computa-

tional progress of the affected processes and then scheduled automatically by runtime

system. However, they just can change the cooperation of processes, therefore the

adaptive behaviors is limited, unlike mine. For instance, this approach can not dy-

namically add or delete processes on various computers.

The second uses Policy-based language [20] [97] [42] [16] [17] to separate adaptive

behaviors from bussiness logic for adaptation, and it is an ideal mechanism to drive

general-purpose dynamic adaptation framework/middleware [59], since the adapta-

tion mechanism can be completely decoupled from adaptation management. Several

research groups have theoretically designed and implemented Policy-based languages

for adaptation on distributed systems.

Lymberopoulos et al. [56] proposed an object-oriented declarative framework for

adaptations based on their policy specification language that was called Ponder[20].

However, the Ponder language focused on specifying management and security poli-

cies.
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inst oblig policyName “{” 

       subject [<type>] domain-Scope-Expression ;

        [ target [<type>] domain-Scope-Expression ;] 

       on event-specification ; 

       do obligation-action-list ; 

       [ catch exception-specification ; ] 

       [ when constraint-Expression ; ] “}”

Figure 2.1: Obligation policies

Unlike my research, they used an obligation policies format to specify the actions

of components in coordination-level adaptation. When changes occurred, the Ponder

language manager was run to provide capabilities for action for themselves to respond

to the changing circumstances. The definition of obligation policies is given in Figure

2.1. I can see from the figure that Obligation is an event-triggered condition-action

rule, which explicitly identifies the subjects that are responsible for running the man-

agement actions on target objects. Both subject and target objects are specified in

terms of domain scopes, which are a method of grouping objects which the policies

define, such as timer events and external events. These Internal Events are collected

and distributed by Ponder’s monitoring services. In addition, composite events can

be specified by using event composition operators that Ponder language supports [20].

When the defined policies are sent to Differentiated Services (DiffServ) elements, the

policy actions dynamically change the parameters and reconfigure the policy objects,

and then the behaviors of objects are modified.

Remark The user-defined policies that were defined by Ponder language just

change the coordination of the components; they cannot dynamically add/remove

functions to/from their systems. Moreover, as Ponder language is dependent on the

domain scope, the biggest difference is that it cannot provide functions that automat-

ically select the destination by themselves, and it does not support dynamic changes

to system architectures to adapt to various changes on distributed systems.

Whittle et al.fs research was different to that of Lymberopoulos et al. and they pre-

sented RELAX [97] [15], i.e., a new specification language to develop the engineering

language requirements of dynamically adaptive systems (DASs), while demonstra-

tively addressing factoring uncertainty in requirements and processes. RELAX uses a

variation of threat modeling to determine where the requirements need to be updated
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for adaptation. Typically, RELAX use a modal verb, such as SHALL (or WILL) that

defines actions or functions inside software components to provide adaptation on the

prescribed behaviors of textual requirements.

For each SHALL
statement DO the 

following

1. Must

SHALL stmt always be 

satisfied?

3. Must

SHALL statement be 

RELAX-ed to handle 

Uncertainty factors?

2. Identify
Uncertainty

factors

4. Introduce RELAX 
operator(s)

INVARIANT
requirement

RELAXed
requirement

No

No

Yes

Yes

Figure 2.2: RELAX process

The core of the RELAX language [97] [98] is the operators, which are designed to

enable system administrators to identify requirements that could temporarily change

under user-defined certain conditions. Figure2.2 shows how the steps of the process

translate traditional requirements into RELAX-ing requirements. The set of RELAX

operators can be organized into modal, temporal, and ordinal operators, and uncer-

tainty factors (The details are provided in Subsection 2.1 of [97]). Each relaxation

operator defines constraints on how a requirement is relaxed at system runtime by

using these user-defined conditions to adapt components to changes. In addition, un-

certainty factors, such as, MON (monitor), ENV (environment), REL (relationship),

and DEP (dependency), ensure requirements are relaxed, which require adaptive be-

haviors.

Remark Although RELAX can adapt to changes through transferring text to

requirements, and then these SHALL statements can be relaxed, however the deci-

sion of whether a requirement is invariant is an issue for the system stakeholders,

aided by the requirements engineer. As same as Ponder language, RELAX language
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also cannot provide the adaptive functions to automatically select the destination for

components, conflicts in RELAX-defined rules may occur, and existing systems may

stop working: RELAX does not provide specific solutions. Moreover, RELAX does

not support dynamic changes to system architectures to adapt to various changes on

existing systems.

Kagal et al. [42] proposed a policy language called Rei [42]. Based on deonic

concepts and grounded, Rei was designed for pervasive computing applications. It

supports unanticipated dynamic adaptation, but must be used in conjunction with a

separate adaptation mechanism. Refrains in Ponder, Rei policy language is mostly

focused towards security policies. There were four basic policy types in Rei, such as

rights, prohibitions, obligations and dispensations that was correspond to positive and

negative authorizations, and obligations. These constructs denoted by PolicyObject

are represented as

PolicyObject(Action, Conditions)

where, Action is a domain dependent action and Conditions are constraints on the

actor, action and environment. A set of rules can be associated with a managed

domain entity, and any time of an action was to be performed on that entity. For

instance, a rule that states that all employees of ’UMBC’ can perform printAction1

is represented as the follows:

has(Variable, right(printAction1, (employee(Variable, ’UMBC’))))

Remark Rei language was requested to verify that the action, and was provided

a mechanism to define actions that can be used in obligation rules. In addtion, Rei

provided the ability to reason about rules and respond to queries but does not provide

a mechanism to enforce policy rules or perform actions. Therefore, the adaptability

of Rei supported is limited than mine, and it does not support duplication of software

components for adaptive changes for their systems. More over, it cannot allows dy-

namic changes to be adapted to various changes through system architectures changed

in distributed systems.

Cheng et al. [16] proposed a language called Stitch. It is responsible for repair-

ing strategies within the context of an architecture-based self-adaptation framework

Rainbow [17]. The Stitch language supports definition of the adaptation strategies

through a control-theoretic point of view in which systems and dynamic models. In
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addtion, Stitch also represents uncertainties in adaptation outcome and timing delays.

The follwing example shows how to use the Stitch language to adapt to response time

2.3.

Figure 2.3: Example of stitch language

Remark Unlike mine, Stitch used an architecture evaluator to detect when a

target-system is in a state suitable for repair when the conditions of applicability are

satisfied. It also cannot provide functions that automatically relocate to the desti-

nation by themselves or make duplications of functions to be relocated to where the

computers need. In addtion, the policies which defined by Stitch have to complies

and executes repairs, but my research implemented as interpreter, and my research

supports relocation of software components for adaptation, unlike Stitch. Further-

more, my research supports conflict and divergence of user-defined policies. It is not

available in Stitch language.

Joonseon et al.,[1] proposed a high-level policy description language for ubiqui-

tous environment. The programming environment contains a high-level ubiquitous

programming framework, a run-time system, and programming support tools for pro-

gram analysis and monitoring. By using the policy description language, programmers

can describe a high level specification on context space, context-based security, and

context-based adaptation for ubiquitous applications. The syntax of adaptation rules

of the proposed policy language is described as follows:
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Remark Unlike mine, the proposed approach does not focus on components in-

stead of context for adapt to changes, although it can describe the adaptive condi-

tions and actions as policies, but it does not support the relocation or duplication

of software components for adaptation and allow new software components to be dy-

namically added to their systems. In addtion, There is no way to provide a solution

for conflict and divergence of user-defined policies.

Based on the requirements of my policy language (in chapter 5.2.2), the Table 2.1

shows the differences of the existing adaptation languages. To compared with mine,

Ponder language can define the adaptive conditions, but it do not support relocation

of software components for adaptation. However, Ponder language provides a policy

compiler to resolve the different types of constraints at compile time, not like mine.

Although RELAX language supports monotonicity as other languages, but it does

not separate the concerns for adaptation developers, and the developed programs

have to be compiled. However, RELAX language does not support reusability and

scalability([97]). Rei language and Joonseon’s proposed policy language separated

conditions and actions for adaptations like mine. However, both of them does not

support relocation of software components as actions, they focus on variables, and

the adaptive programs does not support reusability and scalability. Not like mine,

Stitch language is a compiled language instead of interpreted languages, therefore the

adaptive programs need to be compiled and create a middle code. Stitch also does

not separate adaptive conditions and actions from their programs.

Table 2.1: Comparison with existing language.

Requriements/Languages Ponder RELAX Rei Stitch Joonseon’s Mine

Monotonicity O O O O O O
Independence X X O X O O
No-compiling X X O X O O
Reusability O X X O X O
Scalbility O X X O X O

However, I defined the policy language is an interpreted language, and separa-

tion of concerns of adaptation. In addition, the condition part and action part are
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separated in mine for describing adaptations. The former is written in a first-order

predicate logic-like notation, where predicates reflect information about the system

and applications. The latter is a specified action which responsible for relocation of

software components for adaptation on distributed systems. Furthermore, I proposed

the policy language support reusability and scalability for developers.

2.3 Software-level Adaptation

The third type is software-level adaptation. Common approaches to software-level

adaptation enables software to be dynamically modified in accordance with environ-

ment changes.

Genetic programming (GP) [47] [48][33] is an automated method of creating a

working computer program from a high-level problem statement of a problem. Ge-

netic programming starts from a high-level statement of what needs to be done and

it automatically creates a computer program for adaptation. Therefore, applica-

tions which implemented by GP, it can adopt new algorithms for addressing concerns

when unforeseen during development. However, it cannot predict adaptability on a

distributed system. It also needs a large number of computing resources for adapta-

tion. In addition, genetic programs cannot support reuse, and they do not support

the relocation of software components. Therefore, developers find it difficult to define

the destination of the software components.

Computational reflection aspect oriented programming (AOP) [46] enables soft-

ware to be open to dynamically defining itself without compromising portability or

exposing parts unnecessarily, where the software implementing a crosscutting con-

cern, called an aspect, is developed separately from other parts of the system and

woven with the business logic at compile- or run-time. Many researchers have in-

troduced AOP into adaptive distributed systems. For instance, McKinley et al., [68]

proposed a middleware system with compositional adaptation by using AOP. They

can modify parts of programs running on single computers but do not support dis-

tributed systems themselves. Satoh et al., [75] proposed a bio-inspired adaptation by

introducing the notion of cellular-differentiation into distributed systems to change

available functions in accordance with the frequency of invoking the functions from

the external system; however the adaptation cannot migrate any functions between

computers.

18



Bonabeau et al. provided a detailed look at models of social insect behavior and

how to apply these models to the design of complex systems [9]. They demonstrated

how these models replaced emphasis on control, preprogramming, and centraliza-

tion with designs featuring autonomy, emergence, and distributed functioning. These

designs proved to be immensely flexible and robust, able to adapt quickly to chang-

ing environments, and to continue functioning even when individual elements failed.

However, most swarm intelligence approaches have only focused on their target prob-

lems or applications but they are not general purpose, whereas distributed systems

are. Software adaptation approaches should be independent of applications. In addi-

tion, computers in real distributed systems have no such room to execute such large

numbers of computations and analyses.

Ji Zhang et al., proposed an approach to create formal models for the behaviors

of adaptive programs [101]. Their approach separates the adaptation behaviors and

non-adaptive behaviors from the specifications of adaptive programs. In addtion,

their approach also presented a process to construct adaptation models that auto-

matically generate adaptive programs from the models, and verify and validate them.

The proposed approach focused on the behavior of adaptive programs not on reloca-

tion like mine. The quiescent states (e.g., states in which adaptations may be safely

performed) of an adaptive program can be defined in the specific adaptation context

which includs the program behavior before, during, and after adaptation, the require-

ments for the adaptive program, and the adaptation mechanism. Behaviors of the

programs can be changed when adaptation, however, it is difficult for users to define

where and how adapt to such changes for developers. Moveover, the proposed ap-

proach just require invocating the methods of the adaptive programs, but they don’t

support relocation of software components for adaptation and the fixed architecture

can not be dynamically adapt to the changes from existing distributed systems.

Christos et al., present a middleware platform, and a policy language that has been

designed and implemented for adaptive changes in mobile applications [22]. Based

on Event Calculus [78], the policy language described that handles adaptation allows

the dynamic modification of the adaptive behaviors in order to overcome potential

conflicts and satisfy the user requirements. In addtion, their approach allows sharing

of application status information among all applications running on the system. Like

mine, the proposed approach rise adaptation to the language-level, however, they
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need to modify the behaviors for adaptation, therefore the proposed approach is dif-

ficult to dynamically add/remove components to/on existing systems, unlike mine.

2.4 Other Approaches

Based on the above three adaptation technologies, there are two applicated ap-

proaches for adaptation.

2.4.1 Architecture Approach

Architecture approach was presented in previous work [80] [26] [30] [17] [65][18] [87] [8]

to adapt to various changes by changing their system architecture styles for adaptation

on distributed systems.

Danny et al., presented a comprehensive reference model, named Formal Refer-

ence Model for Self-adaptation (FORMS) [96]. FORMS supports a small number

of formally specified modeling elements which is correspond to the key concerns for

self-adaptive software systems, and a set of relationships which is guided to the compo-

sition of the proposed approach. On the other hand, based on documenting, FORMS

gives us a potential reusable architectural solution to adapt to changes through change

the parameter’s invocation by they defined interface. Like mine, FORMS not only

adapt to environment changes, but also change the architectures. e.g., the model of

self-adaptive system is desributed as follows:

However, when the execution of systems changes to complex and dynamic, the

proposed approach is not sample for adaptive changes between different models, and

change back the model is also a different task. Compared with their model, my ap-

proch support the relocation of software component, therefore, the fixed and complex

architectures of distributed systems can be dynamically adapted in both directions.

Jacqueline Floch’s group proposed a middleware system, called MADAM (mo-

bility and adaptation-enabling middleware), the aims of their approach dynamically

adapt to various changes of applications for mobile computing [26]. MADAM sup-

ports adaptability of applications, and it allows services to be composed in a flexible

manner through parameter’s changes. In the proposed approach, they use a UML

profile to self-adapt changes on systems, which the architect will use to model the

architecture. I also have a try to use UML format to define requirements of appli-

cations for adaptive distributed systems [40]. However, to execute UML need cost
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computing resource more than a interpreter type language. In their research, they

need centralized management, and do not support relocation of software components.

Moreira et al., proposed an architecture, called FORMAware. Based on reflec-

tion 1, the proposed approach blends run-time architectural representation with a

reflective programming model to address coordination-level adaptation [64]. It opens

up composition architecture through a replaceable default style manager that per-

mits to execute architecture reconfigurations. This manager enforces the structural

integrity of the architecture through a set of style rules that developers may change

to meet other architectural strategies. Each reconfiguration runs in the scope of a

transaction that I may commit or rollback. In addition, FORMAware prescribes a

method to formally carry out architecture constrain verifications whenever architec-

tural adaptation (e.g. add, plug, unplug, remove, replace components) is required,

since the architecture structure is opened up and maintained by the reflective com-

ponent model approach.

Remark FORMAware is similar with mine, the difference is that they do not

upgrade to the definition of adaptations into language-level, they through reconfigu-

rations to change the architecture style, and I use relocating software components for

adaptation on architecture-level.

1Reflection technology is be used for invoke methods from objects for adaptation.
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Garlan et al. presented a framework, called Rainbow [29] for specifying architecture-

based self-adaptation. The aims of the proposed approach focused on reduce the cost

and improve the reliability of making changes to complex systems through change

the coordination of the adaptive programs. Although Rainbow supports automated,

dynamic system adaptation via architectural models, however their approach was not

solely aimed at distributed systems, it supports adaptive connections between oper-

ators of components, which might be running on different computers.

Yang’s [100] group presents an architecture-based software adaptation through

coordination of agents on their systems. On the basis of explicating and reasoning

about architectural knowledge, they are mainly to automate the software adaptation

in running system. The proposed architectures themselves can also be introspected

and altered at runtime, to control the adaptation. They use the architectural re-

flection to observe and control the system architecture, while use the architectural

style to ensure the consistency and correctness of the architecture reconfiguration. In

addition, the proposed approach not only forms an adaptation feedback loop onto the

running system, but also it separates the concerns among the architectural model,

the target system and the facilities use for adaptation. However, they did not specify

how to define the conditions of adaptation to change their structure style, therefore,

it is difficult to dynamically adapt to frequent changes in existing systems.

Shang-Wen Cheng et al., described an approach for dynamic adaptation, which is

supported by the use of software architectural models to monitor an application, and

guide dynamic changes to it [18]. The use of externalized models permits one to make

reconfiguration decisions based on a global perspective of the running system, apply

analytic models to determine correct repair strategies, and gauge the effectiveness of

repair through continuous system monitoring. Their approach is based on the 3-layer

view illustrated in Figure 2.4.

The Runtime Layer is responsible for observing a system’s runtime properties and

performing low-level operations to adapt the system. It consists of the system it-

self, together with its operating environment (e.g., networks, processors, I/O devices,

communications links, etc.) The Model Layer is responsible for interpreting observed

system behavior in terms of higher-level, and more easily analyzed, properties. The

Task Layer is responsible for determining the quality of service requirements for the

tasks. In their system each architecture is identified with a particular architectural
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Figure 2.4: Architectural model

style. An architectural style defines a set of types for components, connectors, inter-

faces, and properties together with a set of rules that govern how elements of those

types may be composed. However, in their proposed approach, their middleware

doesn’t support the relocation of software components, and the rules is difficult for

defining by developers. Once the change in system configuration, how to change it

back to the original structure it is not easy thing.

Jeff Kramer and Jeff Magee proposed an architectural approach for self-managed

systems [49]. The architectural provided the required level of abstraction, and gen-

erality to deal with the challenges. In the proposed approach, the vision of self-

management at the architectural level are described, where a self-managed software

architecture is one in which components automatically configure their interaction for

adaptation as software-level adaptation.

Figure 2.5 described a three layer reference model. It is that consist of component

control, change management, and goal management. The proposed approach pro-

vided a context for discussing the main research challenges. At the component layer,

the main challenge is responsible for providing change management which reconfig-

ures the software components, ensures application consistency, and avoids undesirable

transient behaviors. At the change management layer, decentralized configuration

management is required which can tolerate consistent views of the system state, but

still converge to a satisfactory stable state. At the goal management layer, some form

of on-line planning is required. However, the adaptation concerns is written inside of
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components for adaptive changes in distributed systems. Unlike mine, the adaptation

in their approach can’t be reused. When environment changes frequently occurred in

such system, their research can’t be suited well.

2.4.2 Location Approach

There have been a few attempts to introduce to the location approach for adaptation

[6] [35] [38] [88] [101] [66] [12] [92] [70] [32] [54] [76] [97] [63] [73] [49] [96] [95].

Israsel Ben-Shaul’s group introduced two middleware systems in location approach

[6][5][34][7] [35][36]. One of the middleware system is named Hadas, it focused on

intra-component self adaptability. Another middleware system is named FarGo, it

focused on inter-component self adaptability. Both of their systems were fully imple-

mented, and by migrating the code of software components between computers for

self-adaptation.

The FarGo system [35][36] focus on dynamic inter-component structure. It pro-

posed a dynamic mechanism which laid out in a no-centralized manner between dis-

tributed systems and applications. The mechanism of FarGo system provides mobility

of software components to adapt themselves to changes for self-adaptation. It is at-

tachment the remote components into the same address, and then detachment the

co-located components into different addresses. FarGo system provides an interface

named reference, it can make duplications of the target components which follows the

source code to destination computers.

FarGo system proposed two levels of adaptation for distributed applications.
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• The dynamic relocation of software components may be viewed as an adaptation

of distributed system architecture.

• Evolved the semantics of inter-component reference dynamically for adaptation.

Unlike the FarGo system, Ben-Shaul et al. proposed another system called Hadas

[5][34][7]. It was designed to adapt to changes in distributed applications. Adaptation

is a major element of Hadas and it dynamically supports the deployment of existing

software components and autonomously addresses sites.

In particular, 1) Each software component in Hadas can be defined by users. 2)

As each component is mutable, it extends a special class of adaptive objects termed

Ambassadors, which can dynamically be deployed to the remote side of computers. 3)

Each software component has an interface consisting of methods and data members,

which can be evolved at runtime. 4) Each component contains two sections, the

first is a fixed section, and the second is an extensible section. The data items and

methods of the components are defined in the former as class-based items that may

not be changed during their lifetimes. The latter comprises the mutable portion

of the components through their structures and behaviors to dynamically adapt to

changes. For instance, new/old items (data, objects, or methods) can be dynamically

added/removed or changed for components on-the-fly. 5) Through Hadas’s built-in

meta-methods, which are responsible for structural and behavioral changes, individual

components adapt themselves to changes in distributed applications. Readers can find

detailed samples in their previous work [5][34][7].

Both of their approaches provided migration of software components for adap-

tation from the adaptability perspective. Their major distinction was the FarGo

systemfs focus on reference as the subject of adaptability; whereas, Hadasf focus was

on the definition of software components.

These studies represented two location research projects for adaptation, and they

were very similar to my research. I also used the relocation of software components

to adapt themselves to changes on distributed systems. However, their research and

mine had two major distinctions. First, I not only migrated the source code, but

also migrated the state of software components to destination computers for adap-

tation. However, their research just migrated source code for adaptation. When

changes occurred, the software components could not be restarted to immediately

deal with their tasks, whereas those in my research could. Second, Hadas compo-

nents could define changes by users inside of components; however, I distinguished

adaptation concerns from business logic concerns for adaptation. As Hadas provided
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meta-methods embedded into components, neither of the components nor adaptive

functions could be reused, whereas my research not only provided software compo-

nents, but also user-defined adaptive programs that could be reused. I promoted

these adaptive definitions to language level.

Suda and Suzuki [83] proposed a bio-inspired middleware system, called Bio-

Networking, for disseminating network services in dynamic and large-scale networks

that have large numbers of decentralized data and services. The system provides

reusable software components for developing, deploying and executing cyber-entities

(CEs). Low-level operating and networking details can be embedded in CEs, and

high-level runtime services provided to adaptability to their services and behaviors.

In addtion, the system enables CEs to be replicated, moved, and deleted, like mine

does. However, [83]’s policies for migration and duplication of agents has already been

decided beforehand, and the users cannot define that in Bio-Networking middleware

system. Conversely, mine proposal provides policy language to define adaptive con-

ditions and behaviors for their systems to adapt to various changes. Furthermore,

unlike mine system, Bio-Networking’s target is a large number of homologous com-

puters, and the destinations of agent migrations depended on the number of service

requests in addition to the locations of clients.

Wu et. al, and Fok et. al [99] [27] are focus on sensor networks. Wu’s group

present a simplified analytical model for a distributed sensor network by using mobile

agents. They formulate the route computation problem in terms of maximizing an

objective function, which is directly proportional to the received signal strength and

inversely proportional to the path loss and energy consumption [99], and Fok’s group

presents a mobile agent middleware for self-adaptive applications in wireless sensor

networks [27], called Agilla. It provides a programming model in which applications

consist of evolving communities of agents that share a wireless sensor network. The

agents can dynamically enter and exit a network and can autonomously clone and

migrate themselves in response to environmental changes like mine. However, these

approaches do not separate the adaptation from agents, therefore, their adaptation

can’t be reused, and their proposals can not dynamically change the fixed system

architectures.

Paolo et. al [4], and Gray et. al [31] proposed agent-based middleware for mo-

bile computing. Such middleware facilitates service-specific optimization and allows

26



users to adapt to local resources. Mobile users can change locations and dynamically

adaptive mobility-enabled applications to the properties and characteristics of their

network connections and hardware devices. In addition, mobile agents simplifies dy-

namic personalization by following user movements and tailoring service depending

on personal preferences. Gray’s group described a mobile agent system Agent Tcl [31]

that is under development at Dartmouth College. They present a system to support

agents that provide network sensing and routing services. It support agents allow an

agent to transparently migrate between a mobile computer and a permanently con-

nected machine or between one mobile computer and another regardless of, when the

mobile computers connect to the network. However, both of them did not separate

the adaptation from agents, therefore, their adaptation can’t be reused.

Radu et al., presents a framework, called DACIA, for building adaptive distributed

applications [52]. In DACIA, distributed applications are viewed as consisting of con-

nected components that typically implement data streaming, processing, and filtering

functions. It also provides mechanisms for runtime reconfiguration of applications to

allow them to adapt to the changing of operating environments. The key contribution

of DACIA supports migration of components from original host to different host dur-

ing execution, while maintaining communication connectivity with other components.

The proposed approach is similar with mine, however the runtime reconfiguration of

applications are difficult to be reused. Once the software components is relocated,

the new reconfiguration could cause conflicts, in their paper, they did not consider

this issue.

Ito et. al., [39] presents a communication infrastructure of agent-based middle-

ware for ubiquitous computing environments. The proposed approach provide an

adaptive communication mechanism that can select communication schemes flexibly,

according to the properties of inter-agent communication, and resource status. In

addtion, this mechanism enables the agent platform to adapt to various inter-agent

communication requirements in a ubiquitous computing environment with limited

resources. However, the proposed middleware doesn’t separate the adaptation from

agents.
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2.5 Discussion

The existing studies have been proposed various approaches through different cases for

adaptation. However, to satisfy I defined requirements (in Chapter 1), they all have

some issues remain unresolved. The Table 2.2 shows the differents between existing

research and mine. Parameter-level adaptation has inherent weakness, such researches

cannot dynamically allow new components to be added into their systems, but mine

reserach can solve this problem throuth relocation of software components between

computers. To compared with coordination-level adaptation, there are two important

differents with mine. Such researches can coordinate functions between computers to

provide adaptability, but the function can not be relocated to destination computer

to execute, network environment restricts the effect of those approaches. In addition,

some policy language was presented in those approaches, but almost all languages only

can describe the adaptive conditions. It was not specifically designed for relocation

of software components, therefore, almost all languages do not support migration for

adaptation in distributed systems. It is why I designed a policy language to this

dissertation. In addition, software-level approaches were support modification for

adaptation in single computer. For distributed systems which was composed of a

large number of computers, the adaptive behaviors ware limited than mine.

Architecture and location approaches also were presented, and mine approach

have distinguished between the two proposals. Compared to the former, users do

not need to describe the styles of their architecture. Only through the relocation

of software components, the system architectures can be dynamically changed in

distributed systems. Compared to the latter, users can define their requirements as

policies, and then mine proposal can automatically relocate the specified software

component to the destination computers for adaptation.
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2.6 Summary

This chapter introduced four types of approaches to adaptation. A number of systems

and research influenced this dissertation and made similar contributions to those

presented here. However, they did not solve the requirements of modern distributed

systems or the challenges faced like those in the present research.

In dynamic environments, various changes may change over time and time. The

first common type involved parameter-level adaptation for distributed systems. Such

researches are often adapted changes to variables in distributed systems, and then

supported various services to users. However, those approaches can not change the

fixed system architecture to provide adaptability in their systems, and then they do

not allow the new algorithms or software components to be added to their systems

when the requirements of users or system environment are changed. Therefore, the

presented approaches have a common weakness that is the adaptive behaviors are

limited in distributed systems.

The second type involved coordination-level adaptation for distributed systems.

Most research has been proposed by using policy-based or rule-based language to

define the conditions of changes outside components. However, as far as is known,

existing research has not had any language focus on dynamically defining the destina-

tion to relocated software components for adaptation on existing distributed systems.

Therefore, I developed a policy-based specifying language to define the conditions and

events for each change, assigned when and where the software components should to

be relocated, and when changes occurred between the system itself or applications.

Moreover, the present research could dynamically change the system architecture to

adapt components to various changes.

The third type involved software-level approaches to adaptation. Software com-

ponents in these approaches could be reconfigured/rewritten through genetic pro-

gramming or swarm intelligence. These approaches were initially common in non-

distributed systems. Therefore, they only focused on their target problems or ap-

plications but they were not general purpose. Software-level approaches should be

independent of applications. Furthermore, distributed computers have no such room

to execute such large numbers of computation resources for analysis.

Following the above three tecnologies, there are two applicated approaches for

adaptation. Architecture approaches, which enabled the system architecture to be

dynamically changed for adaptation. However, it needed certain formats to define

the changes, thereby changing the style of the system. The main problem was who
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defined the changes, and which architecture was best. It was very difficult to use, and

developers were required to be familiar with well-known properties of their systems,

whereas existing systems may be down/stop to execute tasks. As was previously

explained, I previous approach was of this type, but I focused on the relocation of

software components for adaptation, according to user-defined policies. The proposed

approach does not reduce the functions of components, it just moves the location

of execution; therefore, it is more reliable on existing distributed systems. Location

approaches often used migration of agents to adapt to changes on distributed systems,

whereas the proposed approach migrates source code between computers; code is not

only relocated, but also the state of components to the destination. Therefore, tasks

running on distributed systems can restart immediately. In addition, unlike existing

approaches, the present research discussed here raises the description of requirements

to language level.

Next, the concepts and solutions to certain key ideas will be presented with several

scenarios.
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Chapter 3

Proposed Approach

This chapter focuses on introducing the main concept underlying the proposed ap-

proach. First, why existing researches cannot solve these problems are explained

through several scenarios, which include the dynamic changes to system architecture

between Client/Server and Peer-to-Peer systems, the dynamic addition/removal of

computers, the disconnection/reconnection of networks, the dynamic distribution of

resources, and the dynamic reductions in the number of message deliveries in pub-

lish/subscribe systems. The proposed approach can resolve all these issues.

Second, key ideas behind the proposed approach on how to solve these problems

will be introduced by using policy-based relocation of software components to define

functions between computers. Although the approach is very simple, it can adapt to

various changes between general-purpose applications and distributed systems, which

are the most important in this research; the architecture of distributed systems can

be dynamically changed to adapt to various changes. For instance, the architecture

between Client/Server and Peer-to-Peer systems can be changed. Moreover, the pro-

posed approach can not only relocate software components, but can also relocate their

states to the destination for adaptation. This means temporarily halted processing

can be immediately restarted on another computer.

Finally, since the proposed approach does not have centralized management, and

adaptation concerns are separated from business logic concerns, both software com-

ponents and policies can be reused on-demand in different distributed systems.
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3.1 Overview

Many researchers have proposed various approaches to adapt to changes on dis-

tributed systems [20] [38] [88] [89] [54] [86] [56] [29] [7] [52] [63] [74] [101] [85] [66].

These approaches have outlined parameter-level, coordination-level, software-level

adaptation, and other approaches are applicated through them which are introduced

in Chapter 2. However, these approaches cannot support the policy-based relocation

of software component to define functions for adaptive changes between the archi-

tectures of distributed systems and requirements of distributed applications. This

chapter introduces the proposed approach on how to resolve problems that existing

approaches have not been able to solve.

The proposed approach can fully meet the demands presented in Chapter 1. Next,

five scenarios will be introduced to illustrate its effectiveness through our policy-based

relocation of software components.

3.2 Scenarios

A widely distributed system can generally be anticipated that is comprised of nu-

merous computers, which form a collection with immense aggregate computing, com-

munication, and storage capabilities. For described various changes on distributed

systems, five scenarios are outlined as follows.

Adaptive Peer-to-Peer and Client/Server Architecture

Client/Server and Peer-to-Peer are the most classic architectures for distributed

systems. There are many applications based on these architectures for constructing

file-sharing, chatting, and multimedia applications. However, both of them have

advantages and disadvantages. For instance, if specific Peers are frequently requested

to provided data, the Peer-to-Peer architecture cannot meet these needs, but the

Client/Server can (Figure 3.1). On the other hand, if high delay between Server and

Client, the Client/Server architecture cannot meet these needs, but the Peer-to-Peer

can. Such architectures should be dynamically changed as the environment changed.

The proposed approach can solve this problem. For instance, Peer-to-Peer systems

generally have client and server functions in Peers (Figure: 3.1). It was assumed

that server functions could be relocated to be concentrated on a computer in such

systems, which then dispersed client components within the remaining computers to

change their architecture. In other words, a Peer-to-Peer system architecture could

be dynamically changed to a Client/Server architecture. In addition, the proposed
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Figure 3.1: Adaptive system architecture

approach can be used to easily change system architectures to adapt to changes.

However, while other research techniques cannot do this, the proposed approach can

change the system structure in both of them, and gain all of the benefits from Peer-

to-Peer and Client/Server networks.

The opposite of existing research, such as that on software-level and coordination-

level approaches try to adapt to changes of the system architecture for adaptation.

However, they need to rewrite the software components themselves, or change the

coordination of components to adapt to changes instead of relocation of software

components. Both of them can only adapt to software components themselves when

changes occur, and both of them are difficult to be reused. Parameter-level approaches
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can change parameters of functions for adaptations, but it does not support to adapt

to changes as architecures for adaptations. Architecture approaches can change the

style of the system architecture through user-defined policies/rules, but their policy-

based language can only describe the conditions of the changes, and these types of

research cannot easily define their architectures to adapt to various changes, and

they cannot immediately return the state before changes occur. Location research

can migrate software components to the destination. However, they do not support

adaptive changes to the system architecture, and they do not separate adaptation

concerns from business concerns. Therefore, the software components cannot be

reused for different distributed systems. Moreover, as far as is known, such approaches

have no language that can define when conditions are changed, where the software

components should be relocated for adaptation.

Adaptive Addition and Deletion Computers

In distributed systems, computers and software components of which an appli-

cation consists may be added to or removed from them (Figure: 3.2). When the

environment or system requirements changed, dynamically increase or decrease com-

puting resources and software components are required. The proposed approach can

solve the problems through dynamically relocating software components according

to user-defined policies. System developers only need to define what computers or

software components and when they need to adapt themselves to changes for adap-

tation. These software components will then freely be relocated/duplicated then

relocated/removed from the whole distributed system for adaptation.

Addition

Deletion

Figure 3.2: Adaptive addition & deletion of computers
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The opposite of existing research, through parameters changed, parameter-level

approaches can adapt to changes in distirbuted systems, software-level approaches

can provide reconfigured/rewritten adaptation programs inside their components,

coordination-level approaches can change how the methods of components are in-

voked, which are running on computers, architecture approaches need policies/rules

to define adaptive functions outside components to adapt to changes on distributed

systems or change the architecture for adaptation. However, these types of approaches

can adapt themselves to static changes instead of dynamic changes, for instance, to

add computers/software components to or remove computers/software components

from the external environments of their systems. Although location approaches can

migrate components as agents to destinations, this technology does not support user-

defined actions at the language level for specific adaptation. Our approach provides

several policy formats for users to easily define policies. Policy-makers just require

under what conditions they are defined and when they need to be relocated to desti-

nation then computers/software components will automatically be added to/remove

from distributed systems.

Adaptive Network Environment

Although penetration of networks determines the level of a country’s scientific and

technological advances, network delays still occur in the same place even if networks

are very common in developed countries due to changes in the increasing number

of users. Adaptation technology is required like that in these unstable networks.

For instance, frequent network connections, disconnections, and then reconnections

within a certain time (Figure: 3.3) will cause high levels of delay and packet losses

in their networks. The proposed approach can solve the problems through dynam-

ically relocating software components between computers. The proposed approach

is an effective way in this scenario to adapt to network failures between changes in

frequently connected and disconnected networks. One or more policies can be pre-

defined to describe when networks are connected and when software is relocated to its

destinations. In contrast, these components can package their codes/objects to wait

for network connectivity. When a network is reconnected, our system can dynami-

cally relocate the software components to the destination side. Because our system

not only relocates the software components, but also relocates their state, these com-

ponents can go on working at destination computers for users. When components

have finished processing, they just need to take the results back to the start location.

The proposed approach can greatly reduce the communication delay time between

computers to enable adaptive network changes.
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The opposite of existing research, such as that on parameter-level, software-level

and coordination-level approaches focus on adaptation on local computer instead of

computers. However, they cannot be applied to frequent changes and cannot be

reused. Architecture approaches still cannot solve the problem. Although this re-

search can change the architecture style to provide adaptation through user-defined

policies/rules, there is essentially no way to reduce the number of communications

between components through networks. Location approaches can migrate software

components to destinations for adaptation. However, they have not separated adap-

tation concerns from business concerns, and as they have written adaptation inside

software components, these approaches cannot be reused for different distributed sys-

tems. As far as is known, these have no existing languages that can define where the

software components should be relocated to adapt to changes on existing distributed

systems. However, my research can define a pair of condition and action for relocating

the software components for specificing adaptation.

Adaptive Resource Management

There have been many approaches in distributed systems to adaptive resource

management. If system resources can realistically be used, our systems can greatly

improve the usage of computers, and reduce the cost of adding new servers. For

instance, Amazon’s cloud involves global scale distributed systems, from which users

can borrow resources that they need. Although users most cases often use system

resources for a fixed period of time, they still cost money when they are not used

(Figure: 3.4). The proposed approach can solve the problems through dynamically

relocating software components between computers. In addition, the proposed ap-

proach is more effective in these cases. For instance, when users do not use system

resources, software components can be relocated to destination computer and to sleep

the computers. In contrast, when more computing resources are needed that are be-

yond the upper limit of resources that can be borrowed, programs and the state of

objects can be migrated to local computers through the relocation of software com-

ponents, or resources can be dynamically allocated to who needs them during specific

time, both of users and providers of resources can gain benefits through my approach.

Although existing researches try to slove this problem, however, software-level

approaches need a numbers of resources to predict, and it is difficult to self-adjust

system resources based on user requirements. Parameter-level and coordination-level

approaches can adapt to such changes on existing distributed systems, but both of

them should to define adaptation programs inside of software components, however,

they can not dynamically add new resource, and cannot be reused in frequent changes.
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Architecture approaches and location approaches do not separate adaptation concerns

from those of business. Location approaches focus on migrate agets between comput-

ers instead of migration of software components for adaptation. In addition, these

approaches are difficult to be reused in diffident types of distributed systems.

Adaptive Publish/Subscribe Events

The last scenario introduces how to adapt events in publish/subscribe (pub/-

sub) systems. Pub/sub is a messaging pattern where senders of messages are called

publishers. The messages are then to be directly sent to specific receivers, who are

called subscribers. However, the published messages are divided into classes without

knowledge about which subscribers they were sent to. Similarly, subscribers express

interest in one or more classes and only receive messages that are of interest, without

knowledge about which publishers sent them.

Messages in pub/sub need to be transferred through various brokers, who choose

the shortest routes for application receive events (Figure: 3.5). However, when needs

are changed by user-defined applications, messages will be lost or system latency will

be increased. The proposed approach can solve this problem in this case. When re-

quirements change, software components can be relocated from brokers to subscribers,

according to user-defined policies. Some copies of the software components can also

be made, which are then relocated to a number of subscribers. Message loss through

transmission and delay time can be reduced by relocating software components.
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Existing researches focus on the shortest routing for exploring instead of adap-

tation. Only a few of researches describe adaptation for pub/sub system. However,

unlike I described this scenario, parameter-level, software-level and coordination-level

approaches, supports adaptation, but in their researches, they need numerous re-

sources to adapt to changes, and just changing the coordination of components can-

not solve adaptation problem. Architecture approaches also cannot solve the problem

because they do not need to change the style of system architecture to provide adap-

tation through user-defined policies/rules. Near with mine, location research can

migrate software components to adapt to changes. However, they cannot adapt to

messaging control modes by relocating software components on pub/sub systems with

language.

3.3 Approach

Although reconfiguration software components can feasibly be endorsed through these

scenarios or software component coordination can be changed to provide adaptation,

such approaches make it difficult for developers to define functions, and such software

components cannot be reused. However, the proposed adaptation is very simple, and

it can adapt to more cases than those with the existing researches. A policy-based

middleware was attempted to materialize this idea for these reasons, which could

relocate software components to adapt to changes on existing distributed systems.
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• I focus was on the relocation of software components for adaptation. This is

because this approach does not need to increase or decrease the number of func-

tions for systems; only the location where software components are executed is

changed. Although it seems simple, the proposed approach does not reduce

the reliability of distributed systems, but improves adaptability between sys-

tems themselves and applications, and even their system architectures can be

dynamically changed for adaptation. Two items should be considered.

• The adaptation programs should be separate from software components to de-

fine changes between distributed systems and applications for reuse on different

distributed systems.

• There may be many applications in distributed systems, which contain various

components running on them. Therefore, many changes may simultaneously

occur. Individual components in the new approach can have one or multiple

policies to control software components.

Figure 3.6 presents the steps in the approach on how to provide adaptation on

distributed systems.

Step1

Step2

Component

B 

Destination

Component

Component

B 

Computer1 Computer2

Computer1 Computer2

Relocation

Destination

Component

Condition

Policy

Component is relocated

when condition is satisfied

The location of destination 

component can be changed to

support different distributed systems

A copy component can be 

remained at source side

Component

A 

Component

A 
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• First, environmental changes should be defined as policies by using the policy-

based language (in Chapter 5), which are saved at a policy database.

• Second, when the defined conditions of policies are satisfied, the actions of

policies will be invocated, then specific software components can automatically

be relocated to destination computers through the system and network monitor,

which can determine the relocated destination of software components.

• Third, these software components can relocate to or duplicate themselves and

then relocate to destination computers. When the software components re-

located to destination computers, the methods of such software components

can be dynamically invocated through the original designed dynamic method

invocation mechanism.

Middleware and policy language are introduced on the basis of this idea in the

chapter 4 and 5, which were developed for adaptation on distributed systems with

several applications.

3.4 Discussion

In this section, I discuss how my proposal can satisfy the requirements of my definition

in 1.2 and explain the differences between related works and the proposed approach.

• Self-adaptability. The proposed Mimosa middleware can satisfy self-adaptability

well. This is because the Mimosa middleware system can dynamically monitor

the external environment changes, and if the changes are matched with the

conditions of policies, software components can automatically be relocated to

destination computers through it.

• On-demand deployment of software. Users can define their own policies to

control the software components to adapt to changed behaviors, therefore, the

proposed approach can deploy the software on-demand.

• Separation of concerns. Because the proposal separates adaptations from soft-

ware components, the proposed approach can significantly reduce the burden

for different users. This is because developing adaptation programs requires a

lot of experience and high programmability. Separation of concerns can make

different levels of developers dedicated to their work.
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• Availablity. The proposed middleware system supports duplication of software

components through user definition of copyTo(x) function (details in Chapter

5). Therefore, multiplexing can effectively improve the availablity so as not to

cause failures. This is because the software components can be duplicated, and

executed at different computers beforehand.

• Reusability. Because the user-defined adaptation policies are not required to be

built in software components, both of the policies and software components can

be reused to adapt to changes on Mimosa middleware.

• Non-centralized management. The proposed approach can provide dynamically

adaptation through the relocation of software components in distributed sys-

tems, therefore, the approach donot bound any system architectures. On the

contrary, dynamic adaptation does not require centralized management in my

proposal.

• General-purpose and adaptation independence. The proposed approach is de-

signed and implemented for general distributed applications, and my proposal

separate adaptations from software components, therefore, the proposal can be

better used in general-purpose application and independence adaptations for

distributed systems.

Remark Compared with the proposed proposals, such as parameter-level ap-

proaches, and coordination-level approaches can change the parameters of functions

and cooperation of processes. Software-level approaches need to modify program

variables for adaptation. However, those approaches will reduce the reliability for

distributed systems. Furthermore, such adaptation approaches are not separated

concerns of developers, and adaptations are built inside of software components,

therefore, such components are difficult to be reused. On the other hand, architec-

ture approaches and location approaches are near with mine, but the main difference

is their migration policies have been decided beforehand. However, the proposed

proposal can freely define various policies for adaptive environment changes in both

general-purpose applications and existing distributed systems.

Relocation of software components for adaptation seems simple, but it can provide

strong adaptability. The advantages of the proposed approach are listed as follows:

• Software doesnot need to be rewrited in my proposed approach, and not only

the changes of distributed systems, but also the changes of applications can be

dynamically adapted to through relocation of software components.
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• The execution position of software can be changed in my approach, however,

the functions of distributed systems doesnot need to be increased or decreased

through the whole system.

• The state of software components can be relocated from original computer@to

destination computer.

• Through changing the execution position of software, the architectures of dis-

tributed systems can be changed dynamically.

3.5 Summary

This chapter presented five scenarios to explain why the existing research could not

solve these problems, such as dynamically changing system architectures, dynami-

cally adding/removing computers, connecting/disconnecting networks, dynamically

distributing resources, and dynamically reducing the number of message deliveries

in pub/sub systems. It then mainly introduced the proposed approach on how to

solve these problems through the policy-based relocation of software components,

and explained why existing research could not resolve these problems. The last sec-

tion provided detailed descriptions of why the focus was on the relocation of software

components for adaptation on distributed systems, explained why the policies were

separated from software components for adaptation. How software components were

relocated in two steps on user-defined policies were introduced which based on the

key ideas of mine (The details are given in Chapters 3 and 4).

The next chapter mainly introduces the design of the middleware system I pro-

posed and a policy-based language on how to define functions outside software com-

ponents based on the key ideas of mine. In addition, how the interpreter is located

inside the adaptation manager is also introduced to enable polices to be easily ex-

ecuted on the new middleware, which does not consume large amounts of system

resources.
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Chapter 4

Mimosa: a Dynamic Adaptation
Middleware through Relocation of
Software Components for
Distributed Systems

The work presented in this chapter was first described in an earlier paper by Sun et

al. [82] [40]. Unlike that in existing approaches, Mimosa is presented here, which is

a dynamic adaptation middleware for distributed systems. Software components au-

tomatically relocate or duplicate/relocate or remove themselves between computers

with the Mimosa system, according to user-definitional policies. Application de-

velopers only need to focus on their development programs, and Mimosa provides

self-adaptations on their distributed systems.

The Mimosa middleware system that is proposed here has four distinct benefits:

I. Not only the source code of software components, but also the states of the software

components can be relocated to destination computers. II. The software components

can not only relocate themselves to destination computers, they can make copies of

themselves and spread themselves via networks. III. Developers can easily hide the

differences between the interface of their objects at original and other computers by

using the developed dynamic method invocation mechanism. IV. Because Mimosa was

developed with Java language, general-purpose applications can easily be constructed

on any operating systems.
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4.1 Strong and Weak Relocation

The state of execution is relocated with the source code so that computation can

be resumed at the destination. According to the amount of detail captured in the

state, component relocation can be classified into as two types: strong and weak

relocation.

• Strong relocation: is the ability of components to relocate over a network,

carrying their code and execution state, where the state includes the program

counter, saved processor registers, and local variables, which correspond to vari-

ables allocated in the stack frame of the components’ memory space, i.e., global

variables. These correspond to variables allocated in the heap frame. A com-

ponent is suspended, marshaled, transmitted, unmarshaled, and then restarted

at the exact position where it was previously suspended on the destination

computer without loss of data or execution states.

• Weak relocation: is the ability of components to relocate over a network, car-

rying their code and partial execution state, where the state is variables in the

heap frame, e.g., instance variables in object oriented programs, instead of its

program counter and local variables declared in methods or functions. A com-

ponent is relocated to and restarted on the destination with its global variables.

The runtime system may explicitly invoke specified component methods.

Although strong migration can cover weak migration, this is a minority. This is

because the execution state of software component tends to be large and the marshal-

ing and transmitting of the state over a network need heavy processing. Therefore,

the latter was chosen for the study presented in this dissertation to design the Mimosa

middleware system. Compared to existing studies, the proposed approach can provide

adaptation between general-proposed applications and distributed systems without

losing availability, dependability, or reliability. In fact, the proposed approach can

also adapt to changes of structures of distributed system dynamically as architecture-

level approach.

4.2 System Model

The requirements of applications in distributed systems and their structures may

often change, however software components can easily adapt to these changes. Exist-

46



ing adaptation technology needs large amounts of computational resources, but the

range of adaptation is limited, or adaptive content cannot be predicted. Therefore,

an attempt was made to relocate the software components to adapt to changes in

distributed systems which was proposed by me. This section introduces my system

model that can make software components adapt to various changes in their systems,

networks, and applications.

I define an adaptive model (4.1) is defined as:

Data : User-defined Policies

Result: Determine whether to adapt to changes through
 relocate the software components
initialization;
read policy context;

while conditions is satisfied do

      if action.duplicatation is true then

           duplicate software components;
           relocate component to destination;

      else if action.relocation is ture then

           relocate component to destination;

      else

           remove component;

      end

end

Figure 4.1: Adaptive model

The above figure indicates that Mimosa system developers need to define the poli-

cies first with the proposed policy-based language (the details are given in Chapter 4).

Mimosa has three options according to user-definitional policies: I. Make copies of the

software components and relocate themselves to multiple destination computers. II.

Relocate the running software components to designated computers in their network.

Two options are provided for developers in this case. For instance, automatically

select the destination, or manually specify it. III. The software components can finish

their tasks at the departure point or at destination computers, which is determined

by developers.

47



4.3 Approach: Dynamic Adaptation for Distributed

Systems

The proposed approach dynamically deploys components to define application-specific

functions at computers according to the policies of the components to adapt dis-

tributed applications to changes on distributed systems.

4.3.1 Software Components

It has been assumed that an application consists of one or more software components,

which may be running on different computers. Each component is general-purpose

and is a programmable entity. It can be deployed at another computer according

to its deployment policy, when it has started to run. It is defined as a collection

of Java objects like JavaBeans components in the current implementation. It also

has an interface, called a reference, to communicate with other components through

dynamic method invocation developed in the common object request broker architec-

ture (CORBA) [79]. The interface supports the notion of being mobility-transparent

in addition to that of inter-component communication, in the sense that it can for-

ward messages to co-partner components after it has migrated to another computer

through a network. Consider the four items below.

• The approach supports relocation of software components but no adaptations

inside software components. When more than one dimension must be considered

for adaptation, representing the policies and choices between policies tends to

be too complicated to define and select policies. Therefore, support for at most

one dimension is intended, e.g., the dynamic deployment of components.

• Each component has one or more policies, where a policy specifies the relocation

of its components and instructs them to migrate to the destination according

to conditions specified in the policy. The validation of every policy can be

explicitly configured to be one-time, within specified computers, or permanent

within its component.

• Each policy is specified as a pair of a condition part and at the most one desti-

nation part. The former is written in a first-order predicate logic-like notation,

where predicates reflect information about the system and applications. The

destination part refers to another components instead of the computer itself.

This is because such policies should be abstracted away from the underlying
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systems, e.g., network addresses, so that they can be reused on other distributed

systems. The policy deploys its target component (or a copy of the component)

at the current computer of the component specified as the destination, if the

condition is satisfied.

• The approach also provides built-in policies for adaptation as extensions of this

primitive relocation policy. In fact, it is not easy to define relocation policies,

because such policies tend to depend on the underlying systems.

Since components for which other components have policies can be statically or

dynamically deployed at computers, the destinations of policies can easily be changed

for reuse by other distributed systems. Next, I will describe my built-in policies for

adaptation in distributed systems.

4.3.2 Adaptation Policy

My approach provides a policy-based language to help users to define their adapta-

tion outside of software components, it is developed by using a Condition-Action

format, therefore, users can easily describe the changes of environment as policy’s

condition, when their defined conditions are satisfied, the appropriate action will be

invoked through methods of the software components. I also defined a set of essential

and useful adaptation policies for distributed systems. Each policy is only activated

when the condition specified in it is satisfied, where the condition is written in a first-

order predicate logic-like notation [67], where predicates reflect information about

the system and applications (The mathematical definition is presented in Chapter 5).

The five policies format is presented as follows:

• Attraction: Frequent communication between two components yields stronger

force. Both or one of the components are dynamically deployed at computers

that other components are located at.

• Repulsion: Components are deployed at computers in a decentralized manner

to avoid collisions between them. This policy relocates software components

from regions with high concentrations of components to those with low concen-

trations.

• Spreading: Copies of software components are dynamically deployed at destina-

tion computers and propagated from one computer to another over a distributed

system. This policy progressively spreads components to define functions over

the system and reduces the lack of functions.
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• Evaporation: Excess of components results in overloads. The same or com-

patible functions must be distributively processed to reduce the amount of load

and information. This policy consists in locally applying functions to synthesize

multiple components or periodically reduces the relevance of functions.

• Time-to-Live: After a certain time is reached, software components or their

clones can be migrated to destination computers. This policy can periodically

send software component to destination computers that allow members of their

group to synchronize message changes.

Through the above formats, the user can define the necessary procedures to adapt

to changes according to their requirements. Once the adaptive program started, the

following middleware will help them to achieve their dynamic requirements.

4.4 Mimosa: System Design

This section introduces the design of the proposed Mimosa system, and presents the

core technologies for adaptive distributed systems.

4.4.1 Adaptive System Architecture

The proposed middleware architecture consists of three parts: a component runtime

system, an adaptation manager, and software components of applications (Figure.

4.2). From this architecture, it can be noted that:

• The first part is a component runtime system. It consists of three parts where

the component deployment manager is responsible for executing software

components. The component discovery service is responsible for relocating

software components. However, it can control the behavior of components, fetch

and determine themselves where the software components should be moved.

Relocation transparent method invocation is responsible for enabling

them to invoke methods on the destination side’s software components through

my defined Activity interface. However, the software components need to be

marshaled in the first part by using the method invocation mechanism, and then

migrate themselves from one computer to the destination. When these software

components arrive at destination computers, data items are unmarshaled, and

they then communicate with the components of destination computers, accord-

ing to naming inspections.
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• The second part is the adaptation manager. It also consists of three parts

where the policy language interpreter is responsible for executing user-defined

policies. The policies are written in a Condition-Action format policy lan-

guage and a database system to maintain the policies. The Destination Ad-

dress Service is responsible for managing, determining the software com-

ponents who should be addressed to which destination computer. The Sys-

tem&Resource&Network Monitor is responsible for monitoring dynamic

changes from the external systems.

• The third part consists of distributed applications, which can be designed by

using any java-based general purposes.

4.4.2 Component Runtime System

Each runtime system allows each component to have at most one activity through the

Java thread library. When the life-cycle state of a component changes (The details

are provided as follows). When it is creates, terminates, duplicates, or relocates

to another computer, the runtime system issues specific events to the component.

Each component can have more than one listener object to capture such events that

implements a specific listener interface to hook certain events issued before or after

changes have been made in its life-cycle state. The current implementation uses the

notion of dynamic method invocation studied in CORBA [79] so that it can easily

hide differences between the interfaces of objects at the original and other computers.

public abstract class Activity extends JFrame implements

ActionListener {

private static final long serialVersionUID = 1L;

public Activity () {

System.out.println (" Definition Software Component ");

}

public abstract void create(CompURL url);

public abstract void duplicate(boolean flag);

public abstract void relocate(CompAddress address ,

InvocationMethod invoMethod );

public abstract void terminate ();

}
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Figure 4.2: Mimosa system architecture

Each runtime system can exchange components with other runtime systems through

a TCP channel by using distributed objects technology. When a component is trans-

ferred over the network, not only the software component but also its state is trans-

formed into a bitstream by using Java’s object serialization package and then the

bitstream is transferred to the destination. The component runtime system on the

receiving side receives and unmarshals the bitstream.

Even after components have been deployed at destinations, their methods should

still be able to be invoked from other components, which are running at local or

remote computers. The runtime systems exchange information about components

that visit them with one another in a peer-to-peer manner to trace the locations of
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components.

4.4.2.1 Component Marshaling

A running program of data items, such as objects and values, cannot be directly

transmitted over a network. Before migrating, both of them should be transformed

into external data representations, i.e., binary or text forms. (Figure 4.3). Marshaling

is the process of collecting data items and assembling them into a form suitable for

transmission in a message. Unmarshaling is the process of disassembling them on

arrival to produce an equivalent collection of data items at the destination.
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Object 4
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Reference
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Figure 4.3: Marshaling of component
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Figure 4.4: Relocation of component between computers

2 The marshaling and unmarshaling processes are carried out by runtime systems

2Note that marshaling and serialization are often used without any distinction between them.
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in the Mimosa systems. The runtime system at the left (on the sender-side computer)

of Figure 4.4 marshals a software component to transmit it to a destination through a

communication channel or message and then the runtime system at the right (on the

receiver-side computer) of Figure 4.4 receives the data and unmarshals the component.

4.4.2.2 Dynamic methods Invocation

Each component has to be an instance of a subclass of abstract class Activity. The

component class consists of certain methods invoked in the life-cycle of a software

component. I also developed a new ”ClassLoader” for invoking transmitted software

components through their objects and class files. It is because the default class loader

does not support invoking their paths of the user implemented software components.

When the software components are relocated to destination computers, I use the

package/class/method names of the software components to allow the components to

invoke themselves by using Java’s reflect package.

4.4.3 Adaptation Manager

Figure 4.5 explains the policy-based relocation of components. Each adaptation man-

ager periodically advertises its address to the others through UDP multicasting, and

these computers then return their addresses and capabilities to the computer through

a TCP channel. It evaluates the conditions for its storing policies, when the exter-

nal system detects changes in environmental conditions, e.g., user requirements and

resource availability.

• When a component has an attraction policy for another component, if commu-

nications between the former and latter reach more than a specified number,

the policy instructs the former to migrate to the current computer of the latter.

• When a component has a spreading policy for another component, if the current

computer of the latter does not have the same or compatible components, the

policy makes a copy of the former copy of it and instructs the copy to migrate

to the current computer of the latter.

• When a component has a repulsion policy for another component, if there are a

specified number or more of the same or compatible components of the former at

The latter is a process of flattening and converting an object, including its referring objects, into a
sequence of bytes to be sent across networks or saved on a disk.
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the current computer, the policy instructs the former to migrate to the current

computer of the latter.

• When a component has an evaporation policy, if there are a specified number

or more of the same or compatible components of the former at the current

computer it terminates.

• Time-to-live policy often requires combination with the above four policy to be

effective. When the user-specified time is up, it will complete its next mission.

Each policy has a condition part, which is written in a first-order predicate logic-

like notation. The part specifies when its policy should be activated. For example,

when the condition of the attraction policy is the movement of the co-partner com-

ponent, the target component follows the movement of the co-partner. This is useful

when the two components need to frequently interact and/or require heavy data-

transfer on each interaction yet they cannot be programmed inside a single compo-

nent. The number of components are reduced when the condition of the evaporation

policy is that of the target component and specified components are at the same

computer.
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4.5 Benefits

Our middleware can provide a variety of benefits for different users. Because my mid-

dleware system can be self-adaptive for various changes between existing distributed

systems and applications. Therefore,

• Application developers do not need to develop or modify their complex adap-

tation programs inside of software components. I can effectively reduce the

burden and improve development the speed for application developers.

• System developers also do not need to develop adaptation programs. There-

fore, my middleware can effectively coordinate the adaptive behaviors between

distributed systems and applications.

• Policy definers can easily and simply define what is expected from adaptive

conditions and adaptive behaviors through our language.

On the other hand, my language is an interpreted language, it does not generate

intermediate code to help users to execute their adaptation programs efficiently.

4.6 Discussion

An adaptive middleware system called Mimosa is proposed. It can relocate software

components between computers as a basic mechanism. As software components are

relocated through networks, Security was one of the most important issues in my

research.

Many researchers have explored mechanisms to enhance security for adaptive sys-

tems. However, there are two main security problems: the protection of hosts from

malicious relocation and the protection of relocation of components from malicious

hosts. It is difficult to verify whether incoming components are malicious or not.

Nevertheless, there are two solutions to protecting hosts from malicious component

relocation. The first is to provide access-control mechanisms, e.g., Java’s security

manager. They explicitly specify the permission of components and restrict any

component behaviors that are beyond their permissions. The second is to provide au-

thentication mechanisms by using digital signatures or authentication systems. They

explicitly permit runtime systems to only receive components that have been authen-

ticated, have been sent from authenticated computers, or that have originated from

authenticated computers.
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Although these technologies have not been cited in the current design, I intend to

improve the Mimosa middleware in follow-up work.

4.7 Summary

This chapter introduced the system model by using user-defined policies. It also

described the requirements and the design of the Mimosa middleware system. The

new approach has three main advantages:

• Because parts of software components are relocated from one computer to oth-

ers, the same state components can still be executed in different computers to

provide services to users.

• Because the size of components3 is smaller than that of large data, the cost of

network translation can be reduced, and more computational resources can be

saved for adaptations.

• System architectures can be dynamically changed because distributed applica-

tions are formed by different software components that contain server and client

functions through the relocation of software components.

It is hoped that the proposed Mimosa system can meet the needs of more develop-

ers in the future, and become a universal handling approach for adaptive distributed

systems.

3In my current system, the size of components is 10 KB.
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Chapter 5

A Policy-based Language for
Specifying Adaptation

Distributed systems often need to support availability, adaptability, and scalabil-

ity because they are often used for mission-critical purposes. However, adaptations

change distributed systems themselves so that the adapted systems may not satisfy

the requirements of the systems. Adaptations may result in uncertainty in the sense

that their effects may not be able to be predicted beforehand. They need to have the

degree of uncertainty resulting from their adaptations reduced. Distributed systems

execute multiple applications whose adaptations are simultaneously different. Al-

though individual adaptations may be appropriate, they may cause serious problems,

e.g., conflict and divergence, in distributed systems. For instance, when two or more

adaptations are activated according to their conditions, one adaptation denies the

effects of one or more other activated adaptations. Adaptations may be activated in-

finitely, if their conditions are satisfied after they have been performed. This chapter

introduces a language to define requirements as policies for specifying adaptations.
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5.1 Overview

Many researchers have proposed several language [20] [90] [19] [16] [98] [1] to de-

fine requirements for adaptation on distributed systems. This section outlines the

proposed language based on the general purpose middleware Mimosa for adaptive

distributed systems [82]. The proposed language consists of conditions and actions

for each policy. Both of them are defined based on a theoretical foundation to verify

the validation of adaptations. The former is written in a first-order predicate logic-

like notation , where predicates reflect information about the system and applications.

The latter represents the deployment and duplication of components in the proposed

adaptation instead of any application-specific behaviors, including communications

and state transition, of the components. The foundation presented in this approach

is constructed as a process calculus to specify adaptations [62][81]. This enables the

effects of adaptations to be analyzed and also specified, e.g., where and what func-

tions are provided from after adaptation. Mimosa middleware system can specify

and interpret policies for adaptations on the basis of the foundation outside software

components.

5.2 Language Requirement

Many researchers presented a numbers of policy languages for distributed systems.

For instance, Seamons proposed a clearly requirements [77] for their language. How-

ever, unlike such researches, I proposed the policy language is designed for specified

software components to adapt to changes in distributed systems through relocation

software components between computers.

5.2.1 Problem statements

Before describing the requirements of the proposed policy language, problems in adap-

tive distributed systems are stated independently of the proposed adaptations.

• Since the special nature of distributed systems, only within a single computer-

implemented adaptation is limited, therefore I think that the policy language

should considered more adaptive behaviors between computers.

• Exisiting adaptations technology often result in uncertainty in the sense that

their effects may not be able to be predicted beforehand. This is serious problem
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in mission-critical distributed systems, therefore, adaptation should be defined

by the users customize to satisfy their assigned requirements.

• There may be no guarantees as to whether activated adaptations can be stopped.

An adaptation often creates the conditions to satisfy other adaptations. Chain

reaction adaptations may occur or certain adaptations may be activated in-

finitely.

• Distributed systems are used for multiple applications, which may require adap-

tations to the systems. Therefore, more than one adaption may have conflicts,

although individual adaptations would be unaffected.

5.2.2 Requirements for language

Adaptations in distributed systems need to be managed with partial knowledge about

other computers, so that these four problems above in adaptations between different

computers cannot be accurately detected at runtime. Therefore, it is believed that

adaptations in distributed systems should be verified beforehand rather than checked

at runtime. Furthermore, distributed applications should often be defined indepen-

dently of adaptations, and vice versa, as much as possible. This is because most

adaptations in distributed systems depend on the underlying systems or user’s re-

quirements rather than the applications themselves.

The proposed policy language should satisfy the requirements as follows:

• Monotonicity. For trust negotiation of proposed language, it should be mono-

tonic. This is because if two parties successfully negotiate trust, then that same

negotiation should also succeed.

• Independence. The proposed language should abstracted away from the un-

derlying systems based on the concept of separation of concerns, the language

enables adaptations to be defined independently of applications.

• No-compiling. The proposed language need to control the software components

which running on the proposed Mimosa middleware system, therefore the user-

defined policies in needs of immediate execution without having to generate

intermediate code.

• Reusability. User-defined policies should be reused to satisfy the dynamic

changes between distributed systems themselves and applications.
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• Scalability. The proposed language should support the scalability to users so

that satisfy their requirements as much as possible.

5.2.3 Advantages

This approach focuses on the specifications of the proposed adaptations rather than

other existing adaptations for distributed systems. Policies to relocate software com-

ponents as a basic adaptation mechanism are introduced. It provide users to define

their own functions outside of software components. If functions inside software com-

ponents are adapted, other components, which communicate with the adapted ones,

may have serious problems, e.g., downed systems and security leaks. In addition,

through the software components between computers, the architecture of distributed

system can be dyanimcally changed (in chapter 3). Furthermore, relocation of soft-

ware components does not lose the potential functions of components. This is because

the proposed approach only migrate the execution of software components. It may

seem to be simple but it makes their applications resilient without losing availability,

adaptability, or reliability.

5.3 Approach: Policy-based Specification Language

This section defines the proposed language for specifying adaptations in a process-

calculus-style [62]. I used several notations to better describe the language, as sum-

marized in Table 5.1. The proposed middleware enabled users to specify user-defined

policies for adaptations by means of the expressions. Each expression contained con-

ditions for triggering adaptation and the destinations of relocation. Software compo-

nents were relocated to the specified destinations when the conditions were satisfied.

Table 5.1: Notations.

Notation Meaning

current Current node

L = {`1, `2, `3, · · · } Location names

X = {x1, x2, x3, · · · } Location variable names

C = {A,B, · · · } The identifiers of components with conditions
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5.3.1 Policy Expression

D = {D,D1, D2} is defined as a set of located process expressions, which is the

smallest set containing the expressions in Table 5.2. In the expressions, C represents

a condition expression, and E ; 0 is often abbreviated as E. The τ is an action invoked

as a callback function, and ε indicates that there are no components.

Table 5.2: Policy expressions.
Expression Meaning

D, D1, D2 ::= `[E| P] Located component
| D1 ‖ D2 Distributed component

E, E1, E2 ::= C then G Conditional action
| E1 ; E2 Sequential composition
| E1 + E2 Alternative selection
| 0 Termination

G ::= moveTo(x) Migration
| copyTo(x) Duplication & migration
| remove Elimination
| τ Internal execution

P , P1, P2 ::= P1,P2 Composition
| A Component
| ε No component

The proposed language describes the intuitive meanings of several constructors in

the language. For instance,

• `1[E | A] means that component A located at `1 is executed as an expression

specified as E.

• D1 ‖ D2 represents distributed components D1 and D2 executed in parallel.

• E1 ; E2 is executed as E2 after E1, and E1 + E2 behaves as E1 or E2.

• `1[C then moveTo(`2) | A] means that if condition C is true, component A

located at `1 is relocated to `2, where moveTo(`2) represents the relocation to

`2.

• `1[C then remove | A] means that if condition C is true, component A ter-

minates.

• `[C1 then copyTo(`2) + C2 then callback ; remove | A, B] means that if

condition C1 is true, two components A and B are copied, and then the copies
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are deployed at `2. Otherwise, if condition C2 is true, the policy executes a

callback function in A and B and then terminates A and B.

5.3.2 Policy Conditional Functions

The policy conditional functions of the proposed language is defined as first-order

logic predicates. The set C of conditions is the smallest set containing the following

expressions:

C,C1, C2 := φ | ¬C | C1 ∧ C2 | C1 ∨ C2 | true | false,

where φ is a logical predicate symbol and returns either true or false with zero or more

parameters.

The φ is a user-defined function in components or a system’s built-in function.

The former is provided as an application-specific method from the component that its

policy is assigned to. The current implementation provides several built-in functions

as:

• exist(A,`) (exist : P × L → true or false) returns true if the same or compatible

component(s) of A exist at location `; otherwise, it returns false.

• delay(time) (delay : T → true or false) blocks the subsequent executions for

the time interval and then returns true, where T is an infinite set of relative

time values.

• received(m, `, A) (requested : M × N × L → true or false) returns true if the

component that the policy is assigned to receives a message labelled as m from

component A.

• receivedFrom(n, t) (receivedFrom : N × T → true or false) returns true if it

received messages from more than a number of of computers, specified as n,

within a certain duration specified as t, otherwise, it return false.

• largerSize(d, s) (largerSize : D × S → true or false) return ture if the received

data size is bigger than program size, otherwise, it return false.

• highThroughput(d, b) (throughput : D × B → true or false) return ture if the

received data size is divided by a bandwidth greater than 1, otherwise, it return

false.
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• detect(target) (detect : T → true or false) returns true when the movement of

a target is discovered, otherwise, it return false.

User-defined functions are implemented inside components or the runtime system.

User-defined functions defined in components can be accessed inside the components.

5.3.3 Control Structures

There are two types of control structures, branches and loops, can be used in the

proposed language, it can be repeated a sequence of statements over and over or to

choose among two or more possible courses of action.

• An if statement notifies the computer to take one of two alternative courses of

action, depending on whether the value of a given boolean-valued expression is

true or false.

• An if-else statement notifies the computer when they executes an if statement,

it evaluates the boolean expression. If the value is true, the computer executes

the first statement and skips the statement that follows the ”else”.

• A while loop will repeat a statement over and over, but only so long as a specified

condition remains true.

• An for-each statement is also a loop control statements, it is used to repeat a

given statement over and over when the condition is true.

5.4 Design of Policy Formats

Figure 5.1 presents typical adaptation policies. It can help users easily defining their

adaptations through the proposed policy language.

5.4.1 Attraction Policy

The following policy (Figure 5.1) is assigned to component A in the computer. If a

computer, called another, has the same or compatible component of component A,

the policy instructs A to migrate to another, and then it follows E.

`[exist(A, another) then moveTo(another) ; E | A]
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Figure 5.1: Policy formats

5.4.2 Spreading Policy

The following policy (Figure 5.1) is assigned to component A. If a computer, called

another, does not have the same component A, the policy makes a copy of component

A and deploys the copy at another computer, and then it follows E.

current[¬exist(A, another) then copyTo(another) ; E | A]

5.4.3 Repulsion Policy

The following policy (Figure 5.1) is assigned to component A. If the same or compat-

ible components of A exist, the policy instructs component A to migrate to another

computer, called another, and then it follows E.

current[exist(A, another) then moveTo(another) ; E | A]
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5.4.4 Evaporation Policy

The following policy (Figure 5.1) is assigned to component A. If the current computer

has one or more components A, the policy eliminates component A there.

current[exist(A, another) then remove ; 0 | A]

5.4.5 Time-To-Live Policy

After a certain time has passed, the following policy (Figure 5.1) terminates compo-

nent A.

`[delay(t) then remove ; 0 | A]

Remark Users can individually, or with a combination of these policies, define

the changes for adaptation on distributed systems according to these five kinds of

policy formats.

5.5 Policy Conflict and Divergence

According to the characteristics of distributed systems described in Subsections 5.1

and 5.2, multiple adaptations may be in conflict with others. In addition, inappro-

priate definition within a policy, adaptive conditions may lead to the emergence of

divergences. McEvoy et al. [60], and Lupu and Sloman [55] have explored these

problems [60] [55] in distributed systems. Unlike their research, I designed language

can formally analyze several properties of adaptation through components that are

described.

5.5.1 Conflict

Before describing the policy conflict, I need to analyze what a conflict is. Policy

conflict means that there are inconsistent and even mutually exclusive phenomena

during the interiorization of policies. Conflict was divided into two patterns in this

research. The first was in a location computer, the adaptation of a component is

described as:

`[C1 then E1 + ... + Cn then En | A]
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this is a local conflict, if more than two of C1,...Cn are positive at a location. The

second was a conflict between computers, if and only if more than two of C1,...Cn can

be positive at every location, this was a global conflict.

Suppose that the same software component A has two conditions as the figure 5.2

shows. For instance, the condition 1 is a function that determine the network status,

e.g., 4G,3G,Wi-Fi, and condition 2 is a function that determine delay time. When

both of the two conditions are positive at location computer, local conflict may occur.

Because the proposed policy language focus on static analysis, therefore, the solution

of local conflicts can be detected by evaluating the overlaps of conditions of two or

more policies at certain locations. According to the first-order predicate logic, the

proposal language can notify users that the user-defined conditions may conflict and

need to be modified.

Location  computer 

policy

Condition 1 

is ture

G1

then

G2

then
Condition 2 

is ture

component A

component A
G1

G2
are actions 

Figure 5.2: Local conflict

Global conflicts may be occured in two cases (Figure 5.3).

• Case 1: For the same software component which is executing at a location

computer, two or more user-defined policies may lead to global conflict. For

instance, condition 1 is the delay (time) and it return ture, and the condition

2 is net status and it return ture, in this case, two conditions are true for one

software component, therefore, global conflicts may occurred. Global conflicts

can be detected by the overlaps of conditions of two or more policies at location

computer.
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• Case 2: According to the grammar of my policy language, policies need to be

executed at each computer. Therefore, even if the conditions of policies are

same and positive, the software component are different, so that this case’s

global conflitc never be occurred.
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policy1

Condition 1 

is ture

G1

then

component A

G1

G2
are actions 

policy2

Condition 2 

is ture

G2

then

component A
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policy1

Condition 1 

is ture

G1

then

component A

policy2

Condition 2 

is ture

G2

then

component A’

Destination  computer 

Case 1 

Case 2 

Figure 5.3: Global conflict

Currently, the detection method of such global conflict is still restricted at con-

ditions of arbitrary locations in static-level, once such conflict was found, the user

needs to modify or redefine their adaptation policies.

Remark There may no guarantee that activated adaptations can be stopped.

Suppose an adaptation is invoked and executed at a change because the change satis-

fies the condition of the adaptation. After the adaptation is executed, the condition

is still satisfied so that the adaptation is invoked again. When the condition of the

effectiveness of an adaptation is inappropriate, the adaptation may go into an infinite

loop; it becomes divergent. I will disscuss it in next section.
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5.5.2 Divergence

Before describing the policy divergence, I need to analyze what divergence is. Policy

divergence means that when the conditions of a policy are still satisfied, the same

actions of the software components are invoked for non-stop adaptation. The adap-

tation of divergence that occurs in a component can be described as:

`[C then E | A]

Here, there is local divergence, if C is still positive after executing E at a location.

Figure 5.4 shows this situation. It is very difficult to find divergent at static conditions,

however, at present, the proposal can

• Confirm whether an adaptation is divergent or not by evaluating C condition

at every step of E, because adaptations are written in the language can be

interpreted as their possible itineraries.

• Although this practice restricted to the description of C, for instance, the C

condition is just expressed as ture with number of times. Currently imple-

mentation provide a discovery method by comparing the user-defined number

of times with the actual number of times. Once the actual number of times

exceeds a user-defined number of times, it will be treated a divergence.

If a component is divergent, its adaptation may be endless. Such adaptation

should be modified so that it is not divergent4.

Remark Currently, the proposed language to discovery divergence is restricted,

this is because the proposal approach focus on static condition, and the solution

of divergence confined to detect the adaptation conditions before executing policies.

Although I added to a comparing method by counting the number of times for loop,

however this proposal still has the following inabilities:

• It can not be applied the conditions are positive forever.

• The proposed language do not support detecting divergence in destination in

current implementation.

4Please note that the proposed language do not support detecting divergence in destination by
current implementation
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Figure 5.4: Divergence

5.6 Discussion

I designed a policy-based language for adaptation on distributed systems. Users

can easily define their policies by using the five policy formats that are provided. All

policies can be immediately defined, but can also be called from their policy database.

The proposed language procive an interpreter for executing user-defined policies on

Mimosa middleware system, it also can satisfy the defined requirements, such as

monitinicity, independence, no-compiling, reusability, and scalability in section 5.2.

Currently I design language only provide some basic variables, and functions,

however, in the future, with the further development of new applications, I need

to expand the proposed policy language. In addition, although the language can

analyze parts of the policy conflicts and divergence, but it is still limited by analysis

the adaptive conditions individually. Therefore, more adaptation policies need to be

defined and evaluated, and new algorithm for founding conflicts and divergences need

to be imported in future.

5.7 Summary

This chapter outlined the theoretical foundation of policy-based language for speci-

fying adaptive distributed systems. The current foundation could only specify adap-

tations in the proposed middleware system, where it introduced the relocation of
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software components whose distributed applications occurred between computers as

a basic mechanism for adaptation on distributed systems. It enabled adaptations to

be analyzed and rationalized based on a process-calculus-based formal system.

Five policy formats were explored in Subsection 5.4: Attraction policy, Spreading

policy, Repulsion policy, Evaporation policy and Time-to-live policy. If users defined

these once, these policies could be reused when the same conditions were satisfied. I

provided a policy database to conserve policies. Therefore, when the software com-

ponents were relocated to destination computers, the policies that were saved in the

destination policiesf database could be recalled through the names of component’s

methods. When conflict and divergence occurred, the proposed policy language ana-

lyzed the reasons, notified users, and then let them make decisions for adaptation.

The proposed policy-based language especially strengthened the relocation of soft-

ware components, unlike that in existing research. I just need developers to define

the name of the destination for relocation, and the language will then automatically

explore its IP address through the Mimosa middleware system. Then, when the con-

ditions of policies are satisfied, the software components will automatically relocate

themselves to the destination for adaptation. When the software components migrate

to destination computers, the proposed dynamic method invocation mechanism will

recall their methods to restart the tasks for execting. In addition, some condition ex-

pressions were provided. Such as branch statements, if statement, if-else statement,

and loop statements of while, for-each for users to define the conditions and actions

of their policies. Especially, by using the for-each statement, and loop the action to

easily spread components to various computers.
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Chapter 6

Adaptive Applications on
Distributed Systems

Various changes between distributed systems and applications could be dynamically

adapted based on two technologies, i.e., the Mimosa middleware system and policy-

based language.

This chapter introduces five typical applications for adaptation on a distributed

system. I. Remote Information Retrieval is a typical example to relocate software

components among computers for adaptation. II. Primary-back replication and Chain

replication are very common approaches to distributed systems. However, both of

them have suitable and unsuitable cases. When changes occur on distributed systems,

they should be adapted. Their architectures can be dynamically changed from one

type to another one through the software componentsf relocation. III. Because the

resources of sensors are limited, sensor networks also need adaptation against changes.

By using the proposed approaches, the software components can make copies, and

spread/relocate the copies to other sensors for dynamic adaptation. IV. Model-View-

Control (MVC) applications are one of the best examples of disaggregated computing.

Various changes can be dynamically adapted by relocating their components between

servers and disaggregated computers. V. Approaches to a publish/subscribe system

were used in the last application. Brokers can be self-adaptively connected to cope

with failures and guarantee delivery of messages through the relocation of software

components on brokers.
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6.1 Remote Information Retrieval

Data have recently become huge and have been increasing year by year. However,

when the processing is heavier on servers or there is network instability, remotely

fetching data through networks will become bottlenecks. When this occurs, the search

function of clients should be relocated to the destination computer that is closest

to the data side to improve efficiency. Data dispatch can substantially be reduced

between local and remote computers by using the proposed approaches. I then just

need to return the results to local computers.

Suppose users are trying to search certain text patterns from data located at

remote computers like Unix’s grep command. A typical approach is to fetch files

from remote computers and locally find the patterns from all the lines of the files.

However, the approach is not efficient if the sum of the volume of its result and the

size of a component for searching patterns from data is smaller than the volume of

target data. The component should be executed at remote computers that maintain

the target data rather than at local computers. However, it is difficult to select where

the component is to be executed because the volume of the result may not be known

in advance.

The proposed approach can solve this problem by relocating such components from

remote computers to local computers and vice versa while they are running. Figure 6.1

presents our system for adaptive remote information retrieval, which consists of client,

search, and data access manager components. The first is located on the computer

client side and the third is on the computer server side. The second supports the

finding of text lines that match certain patterns provided by the first in text files

that it accesses via the third. The search component has the following policy with a

function called largerSize() 5 that compares the sizes of two data or programs.

client side [ largerSize ( receivedData, programSize )

then moveTo(server side) | search component]

The above policy relocates a search component from the computer client side to

the server side when the volume of its middle result is larger than the size of the

component; otherwise, it relocates components from remote to local computers. The

largerSize() function was implemented as a public method of the search component.

5Current policy language provides only the most basic functions, but in practical applications,
depending on the environment, custom functions should be defined to satify the requirements of
users
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Figure 6.1: Adaptive remote information retrieval

The proposed approach enabled the search component to have its own adaptation

policy and manage itself according to the policy independently of these components

themselves. It was independent of its underlying systems because the destinations of

the component relocations were specified as components instead of computers them-

selves. The proposed adaptation also can be reused by changing the locations of such

destination components.

6.2 Primary-back up and Chain Replication

The second application enabled adaptive management in data replication on mul-

tiple computers. Although there have been many data replication approaches on

distributed systems, the primary-backup approach is one of the most typical [2]. A

client only sends an update request to one designated primary server. The server

updates its replica and then forwards the request to one or more backup servers to

update the replica and waits for responses from the backup servers before responding
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to the client. The chain replication approach is a replication protocol to support

large-scale storage services, e.g., key-value stores, to achieve high throughput and

availability while providing strong consistency guarantees [91]. A client sends update

requests to the backup server with the maximum number (head) to update its replica,

while forwarding the request to update the replica of the server with the next lowest

number until it reaches the server with the minimum number (tail). The tail server

responds to the client (As shown in Figure 6.2).
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Figure 6.2: Adaptive consistency for data replication

Both these approaches have advantages and disadvantages. For instance, the

primary backup approach must wait for acknowledgements from the backups for prior

updates, whereas the chain replication approach can execute sequencing requests

before prior updates have not been completed. Chain replication is at a disadvantage

for reply latency to update requests since it disseminates updates serially, compared
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to primary-backup, which disseminates updates in parallel. Therefore, the approaches

should be selected according to the requirements of applications.

The proposed approach enables the two approaches to be easily transformed into

each other. As can be seen from Figure 6.2, the application consists of three kinds

of components: a client, a server, and a replica manager. The first receives update

requests from the external system. The second has polices for one of either the

primary backup or chain replication approaches. The third component is statically

deployed at a computer that keeps the replica, is assigned with its own number, and

is responsible for updating the replica on behalf of server components.

In the primary-backup approach, the client component first creates a server com-

ponent after receiving an update request and then deploys at computers with the

minimum number and blocks itself until the server returns to it. The server compo-

nent creates its clones and deploys them at computers that have other replica compo-

nents. Each server component asks the replica components to update the replica at

its destination, and then it returns to the computer that has the parent server com-

ponent. The parent waits for all its clone components to arrive and then migrates to

the computer that has the client component.

In the chain replication, the client component first creates a server component

after receiving a update request and waits for the next update request. Next, the

server component migrates to the computer that has the replica component with the

maximum number. After asking the replica component at the destination, it migrates

to the computer that has the replica component with the next lowest number until

it reaches the computer that has the replica with the minimum number. The server

component migrates to the computer that has the client component.

Figure 6.3 presents the architecture can be changed from Primary-backup to

Chain replication, which consists of client, server, replica components, and updataing

replica. The following policy is located on the computer, called primary side, whereas

the highThroughput(d, b) is a function returns true if the received data size is di-

vided by a bandwidth greater than 1. When the server component finished the

updata with replica component through a function, called updata replica(), then

the server component migrate from primary side to backup 1 server. By using this

method, the replication approach’s architecure can be changed from parallel to chain.

In addition, because only a single server (the tail means the backup 2) is involved in

processing a query and that processing is never delayed by activity elsewhere in the

chain. Therefore, when high throughput in a distributed system, the chain is better

than primary-backup replication.
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Figure 6.3: Primary-backup change to Chain

primary side [ received( message, primary side, server component ) then

callback(updata replica());

highThroughput( data size , bandwidth) then

moveTo( backup server ) | server component]

On the other hand, figure 6.4 presents the architecture can be changed from

Chain to Primary-backup replication, which also consists of client, server, replica

components, and updataing replica. The following policy is located on the com-

puter, called head side, whereas the delay() function is detect the latency. When the

server component finished the updata with replica component through a function,

called updata replica(), then when latency is become high, the server component

make copies, then migrate the copies from head side to two computers, one is called

next side server and another is called tail side. In this case, primary-backup is bet-
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ter than chain replication, this is because the requests were distributed to backups in

parallel. By using this method, the replication approach’s architecure can be changed

from chain to a parallel.
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head side [ received( message, head side, server component ) then

callback(updata replica());

delay( time ) then copyTo( other servers )

| server component]

The whole system can adapt itself to one of either of the primary-backup or

chain replication approaches by changing the policies of the server component. This

application means that the proposed approach could enable a distributed system to
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be adapted in its architecture level between primary backup and chain replication.

As it had no centralized management system, it was useful in providing scalable and

dependable distributed systems, as was discussed in Chapters 4 and 5. The server

components themselves in primary backup and chain replication were the same. This

means that our approach could separately define adaptations for components from

the application-logic of the components.

6.3 Spreading Components for Sensor Nodes

The third application is the dynamic deployment of software components over a sensor

network. It is a well known that after a sensor node detects environmental changes,

e.g., the presence or movement of people, in its area of coverage, some of its geo-

graphically neighboring nodes tend to detect similar changes after a period of time.

Software components should be deployed at nodes where and when environmental

changes can be measured. The basic idea behind this example is to only deploy

software components at nodes around such changes.

I assumed that the sensor field was a two-dimensional surface composed of sensor

nodes and it monitored environmental changes, such as motion in objects and vari-

ations in temperature. Each software component had the spreading and time-to-live

policies described in Subsection 5.4 in addition to its application-specific logic, e.g.,

monitoring environmental changes around its current node, where the destination

components of the former were neighboring sensor nodes and the condition of the

latter was the detection of changes within a specified time. It was assumed that

such a component was located at nodes close to the changes. When an adaptation

manager receives an event from sensors to notify of changes, it evaluates the policies

of the component; if there are no components at neighboring nodes, it creates clones

of the component and deploys them at the neighboring nodes (As shown in Figure

6.5). When the changes move to another location, e.g., when people are walking, the

components located at the nodes near the change can detect the change in the same

way because the clones of the components are deployed at the nodes. The policy for

each of the Sensing components is described as:

current [ + delay( time ) then remove

+ (detect( target ) then moveTo(target) ;

¬ exist (Sensing, neighbor of target) then

copyTo( neighbor of target ) ) | Sensing]

79



where current is an element of X , and specifies the current computer of the compo-

nent and detect(target) is a user-defined function that returns true when the movement

of a target is discovered. I can select the destinations by using the estination(Spec)

according to the specification of neighboring nodes. Each clone is associated with

a time-to-live (TTL) limit by using a detect function, and neighbor of target is an

element of X and specifies the spatially neighboring nodes around the current node.

Although a node can monitor changes in interesting environments, it sets the TTLs

of its components to their own initial values. It otherwise decrements TTLs over the

passage of time. When the TTL of a component becomes zero, the component auto-

matically removes itself according to the policy to conserve computational resources

and batteries at the node. The TTL limit of each Sensing component is reset when

the component detects the target again.

6.4 Distributed Model-View-Control application

The fourth application is distributed Model-View-Control (MVC) for adaptation. It

is one of the most typical applications of disaggregated computing, where the orig-

inal MVC is a software architectural pattern for implementing user interfaces [50].

The concept of disaggregated computing was initially advocated in Microsoft’s Ea-

syLiving project [11]. There have been several similar projects, e.g., PointRight [41]

and BEACH [85]. Existing work on disaggregated computing has basically aimed at

sharing input/output devices between computers to construct virtual computers on

distributed computers and has assumed centralized management systems have coordi-

nated different computers. As was previously explained, their federations themselves

could not be reused because they were defined inside applications and strongly de-

pended on the target systems in addition to the applications. They also assumed that

computers were initially provided with software to control devices, but it was difficult

to retain such software beforehand. It divides a given software application into three

interconnected parts, so as to separate internal representations of information from

the ways that information is presented to or accepted by the user. Whereas the orig-

inal MVC assumes that MVC parts are located at the same computers, distributed

MVC permits these parts to be provided by different computers.

The proposed distributed MVC consists of two parts: proxy and application-

specific components. The first was implemented as proxy components to control and

monitor devices, screens, keyboards, and mice, through low-level interfaces provided
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by the underlying systems, e.g., hardware and operating systems that were coordi-

nated with application-specific components through high-level interfaces. The second

was implemented as several components, Model, View, and three control components,

called Keyboard-based control, Virtual keyboard-based control, and Pointer-based

control components with their adaptation policies (As shown in Figure 6.6).

• The model component maintains content data inside it. When receiving con-

tent input messages from control components, it updates the data and sends

output messages to the View component. It has two attraction and repulsion

polices. The former enables it to be deployed at computers whose computa-

tional resources, e.g., processors, memory, and storage satisfy its requirements.

The latter avoids having to work two or more Model components within a spec-

ified area for reasons of consistency. An example of the attraction and repulsion

polices is described as:

home server [exist(keyboard-based control, NotebookPC ) then

moveTo(NotebookPC)

| keyboard-based control]

home server [exist( pointer-based control, TabletPC )

then moveTo(TabletPC)

| pointer-based control]

• The View component receives output messages from Model components. It has

an attraction policy whose destinations are proxy components for screen devices

that satisfy its requirements on screen.

• Keyboard-based control, Virtual keyboard-based control, and Pointer-based

control components forward events input from their target devices to application-

specific components. They have a spreading policy whose destinations are proxy

components for devices that satisfy its requirements, e.g., keyboards, screens

with software-based keyboards, touch-screens, or mice.

A smart television with Virtual keyboard-based control and Pointer-based control

components, in addition to the View component, were placed in a room, where these

components were connected to the Model component. When a person entered the

room with a tablet-PC with the component runtime system, the system detected the
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presence of the tablet-PC by using the external location sensing system. It deployed

Virtual keyboard-based control, and Pointer-based control components at the tablet

PC. These components forwarded their events to the Model component by using my

message forwarding mechanism. The system deployed the Keyboard-based control

component at the PC, if the room contained a notebook or desktop PC, when a

number of inputs was required by the application.

6.5 Reliable Publish/Subscribe System

The fifth application is adaptive changes of publish/subscribe system. There have

been numerous research efforts to developing reliable pub/sub systems. Most of them

have required dynamic applicability to be adaptive to various changes in systems and

applications. For instance, message loss and broker/link failures need to be handled

in the presence of environmental changes. In addition, the software components of an

application consist may need to be migrated from one node to another, so as to be

adaptive to limited computing resources and high loading at a node. However, most

existing approaches propose solutions in the software layer while the pub/sub system

structure itself is not able to be adaptive to routing changes.

Some past research efforts have been devoted to developing reliable pub/sub sys-

tems [86]. Most of them have guaranteed that messages will eventually be delivered.

Previous efforts have relied heavily on the topology to guarantee message order in the

presence of failures, either through redundant nodes or links. However, redundant

nodes incur high costs in replication, and redundant links usually require brokers to

store large amounts of redundant information, which limits the scalability of systems

and may even render brokers unusable.

I assumed that an asynchronous model was presented, where messages could be

delayed, duplicated, dropped, or delivered out of order and brokers could crash and

subsequently recover. Up to bn−1
2
c crash failures are tolerated for any n brokers

between any pair of publishers and subscribers. In other words, there are at least 2f

+ 1 brokers on the path to handle f brokers in two failures.

In this example, a pub/sub system has at least three brokers (Figure 6.7). The

broker 2 is the only way for other brokers to go through. When broker 2 has too

many same functions for software components, this will lead to failure. Therefore, I

can regularly terminate some of the software components. In addition, the software

components can be relocated to new computers or some computers can be deleted

for adaptive environmental changes. A Spreading policy can be used with a function

84



Broker3 
component 

Broker2 
component 

Step1

Broker1 
component 

Broker1

Broker2 
component 

Broker2

Broker3 
component 

Broker3

Broker1 
component 

Broker1

Broker2 
component 

Broker2 Broker3 Broker 4

Spreading+

Evaporation

PolicyStep2

Duplicate

component

Notification

Destination

Component

Policy

Naming

Service

Figure 6.7: Adaptive pub/sub system

called determination Component() and a combination of other policies. The combi-

nation of Spreading with an Evaporation policy as an example follows.

current [ + receive( message, broker2,

application-specific component ) then remove

+ (¬exist( determination Component(), broker2)

then copyTo(broker4) ) | application-specific component]

When a new broker is added to the pub/sub system, the new brokers will send a

notify message to other broker members of their group. Then, when communication

has finished, the determination Component will automatically remove broker 4, go

on to another computer, or go back to broker 2. This needs to be defined by users

according to a real situation.
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6.6 Summary

This chapter introduced five applications to adapt to changes on distributed systems.

By using the proposed Mimosa system and policy-based language, the software com-

ponents could be relocated between computers/nodes to adapt to changes. Both of

them ascertained that the proposed approaches were effective, and I believe that the

five general-purpose applications demonstrated the performance and capabilities of

the proposed adaptation technologies. While individual examples only demonstrated

one part of the way to define policies, it is hoped that developers can use the policy-

based language flexibly, so as to create more distributed applications. I also hope

they can share their applications with more users. In future, I also plan to expand

this research and develop more applications. Both of the five applications can be

found in previous papers in the References section.

The next chapter introduces the implementation of two core technologies, which

were evaluated and verified with these applications.
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Chapter 7

Implementation and Evaluations

This chapter can be divided into two parts that introduce the implementation and

evaluations of my proposed approaches.

The first part introduces the implementation of the Mimosa middleware system,

and policy-based language for specifying adaptation on distributed systems. Both

of them were implemented in Java language; the former was responsible for relocat-

ing the software components between computers, and the latter was responsible for

defining the changes between distributed systems and applications as policies. When

the requirements were changed, these policies automatically directed the software

components to relocate to destination computers to adapt to changes.

The second part explains how the strength and performance of the proposed mid-

dleware and the policy language were tested and verified through several evaluations

by using the distributed applications that were introduced in Chapter 6. A detailed

discussion is then presented on both of them.
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7.1 Implementation of Mimosa Middleware

As was described in Chapter 4, the Mimosa middleware system is composed of a

software component runtime system and an adaptation manager (Figure 4.2). I im-

plemented it by using Java language.

The component runtime system was implemented as a mobile agent platform,

but it was constructed independently of any existing middleware systems because

existing middleware systems, including mobile agents and distributed objects, have

not supported the policy-based relocation of application-specific components. The

current implementation basically uses the Java object serialization package to marshal

or duplicate components. The package does not support the capture of stack frames of

threads. Instead, when a component is duplicated, the runtime system issues events

for it to invoke its specified methods, which should be executed before the component

is duplicated or migrated, and it then suspends its active threads.

It can encrypt components before migrating them over the network and it can

then decrypt them after they arrive at their destinations. Moreover, since each com-

ponent is simply a programmable entity, it can explicitly encrypt its individual fields

and migrate itself with these and its own cryptographic procedure. The Java virtual

machine could explicitly restrict components so that they could only access specified

resources to protect computers from malicious components. Although the current

implementation cannot protect components from malicious computers, the runtime

system supports authentication mechanisms to migrate components so that all run-

time systems can only send components to, and only receive from, trusted runtime

systems. Each component runtime system periodically advertises its address to the

others through UDP multicasting, and these computers then return their addresses

and capabilities to the computer through a TCP channel.

The adaptation manager runs on individual computers which exchanges informa-

tion and evaluates the conditions of its storing policies and when the external system

detects changes in environmental conditions, e.g., user requirements and resource

availability.

A process for the relocation of a component according to one of its policies is

described.

• When a component creates or arrives at a computer, it automatically registers

its deployment policies with the database of the current adaptation manager,

where the database maintains the policies of components running on its runtime

system.
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• The manager periodically evaluates the conditions of the policies maintained in

its database.

• When it detects policies whose conditions are satisfied, it deploys components

according to the selected policies at the computer that the destination compo-

nent is running on.

Two or more policies may specify different destinations under the same condition

that drives them. The current implementation analyzes whether there are conflicts in

the policies of its visiting components by using a technique to find conflicts between

multiple predicates studied in existing propositional or first-class logic systems. The

destination of the component may enter divergence modes, as in Chapter 5.5. The

manager analyzes whether or not the effects of adaptations are repetitious by using a

runtime system like that in existing runtime checking techniques [84] based on Chapter

5.5. The current implementation does not exclude any conflicts or divergences but

can predict the presence of typical conflicts or divergences. As mentioned in the

previous section, the language permits us to specify the requirements of computers

at which components are deployed instead of the addresses of the computers, where

the requirements are defined as a set of the constraints or limitations that destination

computers must satisfy. In the current implementation constraints are evaluated as

a constraint satisfaction problem (CSP) by using an existing tool for symbolic CSP,

named JaCop [51].

Each component is a general-purpose programmable entity defined as a collection

of Java objects like JavaBeans and packaged in the standard JAR file format. It

has no specifications for adaptation inside it. The original remote method invocation

between computers was introduced instead of Java remote method invocation (RMI)

because Java RMI does not support object migration. Each runtime system can

maintain a database that stores pairs of identifiers of its connected components and

the network addresses of their current runtime systems. It also provides components

with references to the other components of the application federation to which it

belongs, as was discussed in Chapter 4. Each reference enables the component to

interact with the component that it specifies, even if the components are on different

hosts or move to other hosts. These references are managed by using the original

protocol for locating components by using UDP multicasting.

Suppose a plan is required to start two computers to run the Mimosa system.

Table 7.1 describes how to start Mimosa system. There are two modes involved in

running the Mimosa system.
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Table 7.1: Execution of mimosa system.

Command line arguments

Java MimosaSystem 8000 8001 false

Java MimosaSystem 8001 8000 true

• First, users need to enter a path that the executable files of the Mimosa system

has.

• Second, users need to input three arguments: the first is the local host number,

the second is the remote host number, and the third argument is for users to

choose types of Mimosa systems. When the argument is false, the Mimosa

system will start a receive model to wait for messages arriving from the local

network. When the argument becomes true, the Mimosa system will start a

send model to initiate sending its IP Address to the whole local network by

using the UDP protocol.

Figure 7.1 has the interface of the Mimosa middleware. There are two parts: the

sets of buttons, and the main body of the current status. The New Policy button

is responsible for editing user-defined policies. The Open button is responsible for

invoking components that have been developed as JAR files, and saved in individual

computers. The Close button is responsible for closing currently executed compo-

nents. The Copy button is responsible for manually copying the selected execution

of components. The Go button is responsible for migrating the components to spec-

ified destination computers6. An automatic way of duplicating/relocating/removing

components is also offered, according to user-defined policies.

Figure 7.1: Mimosa middleware graphical user interface

6We have left out functions, such as remove, copy, and relocation to explain and facilitate testing.
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When components are running on the Mimosa system (Figure 7.2), each runtime

system has a unique ID number. This has 32 significant digits, which consist of

the current IP address, and port network. Each component also has a unique ID

number. It is generated by Java’s Universally Unique Identifier (UUID)7. Compo-

nent Name, Component lifecycle, Component Type, Component Status, and Com-

ponent Date indicate the properties that components have. When the system state is

changed, both properties will be changed. The component Name needs to be pointed

out because it contains the package name. This is because when the destination com-

puters have the same component, it will create conflicts when it calls its own methods.

If this occurs, system users will have to define its path and name with policies.

Figure 7.2: Applications running on mimosa system

7.1.1 Experiments and Evaluations

This subsection focuses on testing the performance of the Mimosa system when ap-

plications are running on it. Table Table 7.2 summarizes the information obtained

from computers that were used in the experiments.

Two terminals were started to test the performance of the Mimosa system. A

Java Monitor8 was used in this experiment to evaluate four parts, such as Used Heap

7UUID is an identifier standard used in software construction. A UUID is simply a 128-bit value.
The meaning of each bit is defined by any of several variants.

8The JVM Monitor is a Java profiler integrated with Eclipse to monitor CPU, threads, and
memory usage of Java applications.
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Table 7.2: Experiment environment.

System State System Information

CUP 2 Ghz Intel Core i7

OS OS X Mavericks v10.9.2

Memory 8GB

Internet Speed 28.98Mb/s

Language Java 1.7.0 45

Memory, Load Class Count, Thread Count, and CPU Usage. This was done according

to three steps to test the Mimosa system.

• To Test the situation with the four parts when the Mimosa system was started.

• To test the situation with applications that were running on the Mimosa system.

• To test the situation with software components relocated to destination com-

puters when changes occurred.

Figure 7.3: Experiment of receive model

Figure 7.3 presents the results obtained from starting the Mimosa system’s receive

model. Figure 7.4 presents the results obtained from starting the Mimosa system’s

send model. A comparison of the two figures reveals that used heap memory has

relatively large changes e.g., enter a peak, and then a decline every second. This is
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Figure 7.4: Experiment of send model

because I set the Mimosa system to interact with their own IP addresses every second

through the UDP protocol.

Figure 7.5: Experiment of start component

Figure 7.5 shows the execution of an application on the receive model’s Mimosa

system. This figure indicates several changes at 21:33:05 min from the four parts.

This is because the start of an application needs computation resources; when it

immediately returns to its original state means that this application has its setup

completed.

When the requirements change, software components that are included in testing

applications should relocate themselves to destination computers to adapt themselves
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to changes as well.

Figure 7.6: Experiment of relocated component

Figure 7.7: Experiment of received component

Figures 7.6 and 7.7 show the relocated components from the receive model’s com-

puter to the send model’s computer. Both the properties of the two systems have a

weak float, and they then return to their original state from the four parts at about

21:39:30 min. This is because the relocation of components between computers needs

resources to execute migration.

These figures on testing the performance of the Mimosa middleware indicate the

maximum CUP Usage and Used Heap Memory was close to 20% and 0.97%, and their
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minimum was close to 3% and 0.72%. Therefore, it was concluded that the proposed

Mimosa middleware system was robust and performed well.

7.1.2 Discussion

As the Mimosa middleware system is based on mobile agents, it contains all their

advantages. It can not only span different operating system platforms, but can also

dynamically adapt to changes on distributed systems. Unknown computers delivering

their addresses to known computers with the UDP protocol can clearly be identified,

as can be seen through the description of the implementation and evaluation of Mi-

mosa. When they are connected, they use the TCP protocol to define sockets, and then

transfer messages between computers. The five figures for the experimental results

indicate that the Mimosa middleware system consumes very few system resources,

and performs well in relocating software components.

Next, the implementation of policy-based language will be introduced, and the

utilization of user-definitional policies to evaluate network latency that was proposed

with the five applications.

7.2 Implementation of Policy-based Language

As was discussed in Chapter 2, there are no mechanisms in existing research that com-

pletely fulfill the objectives and requirements of the research discussed here. There-

fore, a policy-based language was developed to define policies to automatically select

the destinations for relocated software components between computers.

The proposed policy-based language was implemented in Java language. Unlike

other adaptation languages, the relocation of software components was specialized.

For instance, relocation, duplication/relocation, and removal were provided for each

component. Users could also choose automatic or manual means to define the des-

tinations where software components needed to be relocated for adaptation. The

following describes how this language was achieved.

The proposed policy-based language consists of two parts, e.g., the condition and

action parts. The condition part is responsible for notifying user’s defined conditions

to naming the server, and getting back to the destination computer’s IP address.

Once the proposed monitor system identifies changes from applications or distributed

systems themselves, and the conditions for user-defined policies are satisfied, the user-

defined policies will automatically invoke the actions of each policy where their soft-
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ware components need to be relocated for adaptation. Users can choose ”moveto()”,

”copyto()”, or ”remove()” functions for adaptive software components.

The proposed policy-based language is based on s-expressions of Scheme 8. There-

fore, parenthesized lists contains two parts, the formeris a prefix operator, and the

latter is followed by its arguments. These policy programs can easily define, and dy-

namically evaluate pieces of user-defined code. Since the policy language is relatively

small, and makes it easy to implement custom functions, users can freely expand their

adaptations for conditions and actions. Moreover, the language can also manually set

user’s destinations to facilitate management and testing. Users only need to define a

variable to save the specified IP address, and the software components can relocate

to their destination computers, instead of using naming server retrieval.

Expression notation The expression of the policy-based language involves using

a special notation where the expression is enclosed in parentheses. The first to appear

inside parentheses is a function name or operator, and the second is the parameters.

Table 7.3 lists some examples on how to use the language to define variables and

functions.

Table 7.3: Expression notation.

Expression Example

( + 2 3)

(<= a b)

(+ (* 2 3))

(let ((x 2) (y 3)) (+ x y))

(define a 322)

(define word ”hello”)

(define (function x) (if (<= x 0) ”yes” ”no”))

Key words The proposed policy-based language mainly provides a number of

keywords (Table 7.4) as:

Operators and expressions The policy language mainly supports the following

operator, condition expression, and loop expression, which are summarized in Table

7.5.

Users can easily define their conditions and actions as policy for relocating software

components by using these designed operators and expressions. In addition, users can

8Scheme is primarily a functional programming language. It shares many characteristics with
other members of the Lisp programming language family
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Table 7.4: Mainly key words.

Key words Grammar Description

let (let ((var val) ...) exp1 exp2 ...) Valid only within the expression

define (define var exp) Globally valid (variable and assignment)

set! (set! var exp) Globally valid (assignment)

lambda (lambda (var ...) exp1 exp2 ...) Used to define function

begin (begin exp1 exp2 ...) Order execution

Table 7.5: Operators.

Relational Operators Description

= equal

< less than

<= less than or equal to

> greater than

>= greater than or equal to

null? not null

Logic Operators Description

not Negation

or Disjunction

and Conjunction

Condition expression Description

(if test consequent alternative) If test is true, return consequent, otherwise alternative

(cond (test exp) ... (else exp)) Multiple branch judgment expression

Loop expression Description

(for-each procedure list1 list2 ...) Don’t return to results list
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define policies best suited to their applications and distributed systems as the policy

language has strong distensibility.

7.2.1 Experiments and Evaluations

These experiment were used to evaluate the basic performance of adaptation using

policy-based language as was discussed in Chapter 5. The cost of transmitting an

object between two computers was 35 ms through the TCP protocol in my testing

network environment (Table 7.2).

Next, the policy language was used to define different policies to test the five

applications that were proposed. Each application contained several software compo-

nents. All components were general-purpose and programmable entities, which were

defined as a collection of Java objects and packaged in the standard JAR file format.

They could migrate and duplicate themselves between computers according to user-

defined policies. The current implementation in both the class files and the state of

the software components could be relocated to the destination side.

We used a set of policies to test the delay time of the proposed applications 9. The

delay time in different tasks may largely vary when taking the internal processing of

software components into account. Therefore, the processing time was ignored when

assessing adaptation delay in this experiment. Instead, the latency due to relocation

of software components was focused on. In addition, since the transmission time

between nodes with different distances may also largely vary, the round-trip relocation

of software components between computers was simply evaluated.

Table 7.6: Performance.

Adaptation Time

Component duplication 15ms

Component relocation 35ms

Attraction policy 85ms

Spreading policy 140

Repulsion policy 115ms

Evaporation policy 14ms

Time-to-Live policy 90ms

9Each component was about 10 KB.
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Table 7.6 shows the costs of executing five policies: attraction, spreading, re-

pulsion, and evaporation, time-to-live described in Chapter 5.4. Each of the costs

was the sum of interpreting the policies, marshaling, authentication, transmission,

security verification, decompression, and unmarshaling after the target component or

its clone after the adaptation manager detected the changes that should have acti-

vate the polices. Distributed systems potentially have several semantics of failures.

Nevertheless, the current implementation supports the detection of crash failures at

other runtime systems and disconnections in networks, where crash failures means

that when a computer has troubles, it stops functioning properly. Each runtime sys-

tem and adaptation manager consume smaller than 80 MB memory. It can transfer

components to other runtime systems through TCP/IP. so that it is independent of

any physical networks that support TCP/IP. Our approach is available in limited

resources.

7.2.2 Discussion

Observations indicated that the most basic attraction policy caused the shortest delay

time in both components. This is because it did not need to copy components like the

other policies. Since the duplication of a software component took 30 to 40 ms, the

execution time for the spreading policy was longer than that for the attraction policy.

However, the evaporation policy generated the longest delay in the policies, other

than that for the spreading policy, due to assessments of compatibility with other

software components. Finally, since the repulsion policy and time-to-live policy did

not need to be copied, both of them only have discrepancy about 25ms. In addtion,

the time-to-live policy added a timestamp to each software component for execution.

7.3 Summary

This chapter outlined the implementation of an adaptive middleware system, and a

theoretical foundation of policy-based language for users to define a pair of condi-

tions and actions for adaptive changes on distributed systems. Both of them were

implemented with Java language; the current implementation could only specify adap-

tations in the Mimosa middleware system, where the system automatically selected

the destination for relocating software components, according to user-defined poli-

cies. We used various applications to test and validate the utility of the proposed

middleware system and language.
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Five policy formats could be written with the policy language, such as Attraction,

Spreading, Repulsion, Evaporation, and Time-to-Live policies. If users defined these

policies once, they could be reused when the same conditions were satisfied. A policy

database was provided to save policies, and a naming server was used to manage all

the information and to determine the destination of which computers were suited for

relocation. When the software components were relocated to destination computers,

the actions of user-defined policies could recall the methods of relocated software

components to restart their tasks. The policy language could statically analyze the

reasons for conflict and divergence and notify users; it then let users modify their

decisions for adaptive distributed systems and applications.

The evaluations also revealed the strengthened performance of the current re-

search. The average delay time for relocating software components between comput-

ers just needed 85 ms.

In addition, an IF expression, a cond expression, and a FOR-EACH statement

were provided for defining policies. Users could especially define condition statements

and loop actions by using For-Each statements to spread components to various

computers.
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Chapter 8

Conclusion and Future Work

This dissertation provided basic ideas for dynamic adaptation on distributed sys-

tems through the relocation of software components. This is because the relocation

of software components just changes the execution of their location. Therefore, the

approaches explained here could avoid system failures, and adapt to them as well

as provide non-stop distributed systems. However, these approaches also separated

adaptation concerns from software components. If the conditions of policies are sat-

isfied according to user-defined policies, the proposed middleware system will auto-

matically choose when and which software components need to relocate themselves

to suitable destination computers for adaptation.

The final section of this dissertation overviews contributions that have been pre-

sented, and there is a brief description of several research topics that have not been

tackled. Finally, several future studies will be discussed.

It is hoped that this research will help more people to develop adaptive appli-

cations on the new middleware system. I also plan to continue with these research

achievements in the future.
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8.1 Overview of Dissertation

Chapter 1 began with the motivation for this dissertation’s aims. As different dis-

tributed systems have different requirements, several of these were defined for ex-

pected distributed systems. After that, basic ideas were introduced for adaptation

on distributed systems. The key idea was to continue with policy-based language

and adaptive middleware systems. A discussion on the challenges, contributions, and

organization of this dissertation are presented in the last section.

Chapter 2 provided an overview and discussion of the most relevant current re-

searches that were related to and influenced the design and operation of the new

dynamic adaptation middleware called Mimosa (in Chapter 4). Related work was

discussed in terms of its support for dynamic adaptation, such as parameter, soft-

ware, and coordination levels and other approaches, e.g., architecture and location

approaches. This chapter also compared differences in related work with the ap-

proaches discussed here, and introduce the advantages of my proposed approach.

Chapter 3 introduced the concepts underlying this research. Several scenarios

were used to focus on how software components were relocated for adaptation on dis-

tributed systems. Unlike existing researches, the proposed approaches could not only

relocate software components through user-defined policies, but could also transmit

their states to destination computers for adaptation on distributed systems.

Chapter 4 presented the proposed Mimosa adaptive middleware system. It began

with a system model, and then presented a detailed discussion on software compo-

nents and policies. After that, the new Mimosa middleware system that included a

component runtime system and an adaptation manager were introduced. The basic

mechanism for this involved software components running on distributed systems that

could be relocated to destination computers for adaptation when the conditions of

policies were satisfied.

Chapter 5 presented a policy-based language, which was constructed as a process

calculus to specify adaptations. This language was developed by using a theoretical

foundation, and it enabled the effects of adaptations, such as conflict and divergence

problems, to be analyzed. In addition, I proposed five policy formats for users to

easily define the changes as policies.

Chapter 6 presented five applications to demonstrate the usefulness and limita-

tions of the approaches. The first application called Remote Information Retrieval was

a typical example to relocate software components between computers according to

the largerSize function. The second was called Primary-back replication and Chain
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replication. Both of these approachesf architectures could be dynamically changed

through the relocation of software components. The third application was sensor

networks. The software components could make copies by using user-defined policies,

and spread the copies to other sensors to notify them that similar changes would

occur. The fourth application involved adaptive Model-View-Control (MVC) appli-

cations. It is one typical example of disaggregated computing, and it can relocate

software components to control various devices. The fifth application was an adaptive

publish/subscribe system; through the relocation of software components among bro-

kers, the brokers can be connected self-adaptively to cope with failures and guarantee

messages are delivered.

Chapter 7 introduced the implementation and evaluation of the proposed ap-

proaches.

In this chapter concluded the dissertation with an overview of its main contribu-

tions, and further works were presented.

8.2 Conclusion

This dissertation proposed several approaches to adapting distributed applications

for distributed systems. I first introduced the Mimosa middleware system as a basic

mechanism that could dynamically relocate the software components between com-

puters. Second, a policy-based language to define policies for users was introduced,

which contained five relocation policy formats, called attraction, repulsion, spread-

ing, evaporation, and time-to-live to easily enable practical adaptations to be imple-

mented. Software components were separated from their adaptations in addition to

underlying systems, and the policies were specified outside the components. This was

simple but provided various adaptations to support distributed systems without any

centralized management.

The relocation of components between computers was useful to avoid network

latency on distributed systems. It was constructed as a general-purpose middle-

ware system instead of any simulation-based systems. Software components could

be composed from Java objects. These components could be relocated to destina-

tion computers through serialization/deserialization and reflection and dynamically

invocated by themselves. In addition, these approaches could be used with limited

resources because they involved no speculative approaches, which tended to consume

computational resources. Five policy formats were evaluated in a distributed system.
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The results from tests and verifications indicated that the delay time of software com-

ponents was 85 ms or less. These data not only corroborated the performance of

the new systems, but also indicated that the impact of the proposals would be very

limited for existing distributed systems.

8.3 Future Work

Several issues still remain for future work. One of the most important issues is that

this study only provided adaptive software components by relocation and was not

coordinated through software components themselves. Coordination-level adaptation

can be completely added to future research work. Here, further directions this work

can take are pointed out.

Security Problems As the software components can be freely configured through

networks, security is a huge problem. There are two security problems in the proposed

approaches. The first is protection of hosts from malicious relocation. The second

is protection of the relocation of components from malicious hosts. It is difficult to

verify whether incoming components are malicious or not. However, there are two

solutions to protecting hosts from malicious component relocation. The first is to

provide access-control mechanisms, such as Java’s security manager. This method

can explicitly specify the permission of components, and restrict any component be-

haviors that are beyond their permissions. The second is to provide authentication

mechanisms by using digital signatures or authentication systems. These methods

can explicitly permit runtime systems to only receive components that have been

authenticated or have originated from authenticated computers.

Synchronize and Consistency Problems As software components can be re-

located to destination computers, how to synchronize the processing of the original

component and relocated components is worth considering, which is the same as the

security problem. For instance, the system time of unrelocated computers and des-

tination computers may be different. In addition, when data processing is in order,

the components have the same named functions, and their software components plan

to call one of them, which will lead to consistency problems. I need to combine user-

defined policies to broker one of them, and re-allocate the order for the executing

components. I intend to resolve these issues in the future.

Conflict and Divergence Since each software component can have multiple

policies, conflict and divergence still occur. Although a method of analyzing them was

proposed in this dissertation, however the focus was on the static level. The purpose
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of this dissertation is for adaptation, therefore, when conflicts occur, modifications are

seek to policy developers, in future, I hope to find out a method to help developers

automatically modifing the conflicts. As for the divergence, there still have two

restrictions in this dissertation.

• The proposed language can not be applied the conditions are positive forever.

• The proposed language do not support detecting divergence in destination in

current implementation.

In future, a well-semantic and a dynamic level approach needs to be tackled to solve

these problems. I hope to develop a self-decided algorithm to reduce conflict and

divergence as far as possible. I also need to write more policies to test and ver-

ify the approaches to continue the research carried out thus far, and develop more

applications by using the approaches to evaluate their utility.
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