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Abstract

The recent years have witnessed the fastest period of the development of digital infor-
mation. Individuals and organizations are publishing data at the highest acceleration.
Accompanying with the immense amount of data are many challenges. Among them,
instance matching, which identifies different instances of the same entity (aka. corefer-
ences) in various data sources, has been considered as a critical problem. The reason
is that the independently created instances are usually incomplete, because of the in-
consistency nature of data publication (e.g., purpose, tool, user, and scale). Instance
matching helps not only to collect the multiple aspects of entities but also to improve
the consistency and non-redundancy of the data.

The dissertation summarizes our contributions to several issues of instance matching.
First, we focus on scalability, which is very important for deploying large matching tasks.
We develop a time and memory efficient framework named ScSLINT . ScSLINT is a
specification-based framework. It generates coreferences on the basis of given instruc-
tions, such as matching properties, similarity metrics, and filtering strategy. ScSLINT
promotes the matching task to at least 10 times faster compared to state-of-the-art
frameworks. ScSLINT is also the unique framework successfully tested on quadrillion
scale dataset using a memory-limited machine. Then, based on the architecture of
ScSLINT , further systems and algorithms have been introduced.

We propose systems and algorithms for two scenarios of instance matching: supervised
and non-supervised. These scenarios are different at the presence of training data. For
supervised matching, we propose a specification-based system and a feature to enhance
classification-based systems.

For non-supervised instance matching, we propose ASL, a schema-independent instance
matching system for linked data. Because of the inconsistency in the schemas of different



repositories, it is important to develop a general system that can work with any reposi-
tory with any schema. ASL finds the equivalent properties and constructs the matching
specification. Experiments on 246 datasets with different schemas and domains show
that ASL obtains high accuracy and significantly improves the quality of discovered
coreferences against the previous systems.

For supervised instance matching, we propose ScLink system and R2M ranking fea-
ture. ScLink is a system for specification-based matching. The most important part of
a specification-based system is the construction of specification. Existing specification
learning algorithms are either ineffective or inefficient. Furthermore, there is space for
improvement of scalability as previous systems have not optimized the candidate gener-
ation step. ScLink is the combination of two novel algorithms cLearn and minBlock.
cLearn finds the optimal matching specifications by detecting high-quality equivalent
properties and optimizing similarity metrics. minBlock enhances the important block-
ing step of the matching process. This algorithm restricts the matching task into a
compact subset instead of the huge pairwise alignments between data sources. In ad-
dition, ScLink employs a novel string similarity metric, Modified-BM25, which aims
at the better disambiguation against the existing metrics. We evaluate ScLink using
15 standard matching tasks on relational databases and linked data. The experiment
results show that cLearn significantly increases F1 score compared to existing specifi-
cation learning algorithms. Meanwhile, minBlock discards up to 95% of unnecessary
candidates and therefore considerably contributes to the reduction of processing time.
Modified-BM25also shows its usefulness on real datasets.

While the specification-based instance matching is good at scalability, the classification-
based approach has the advantage of generalization based on the solid theory of machine
learning. We also approach the problem of instance matching in classifier-based fashion.
We find that the limitation of usual classifiers is the ignorance of ranking the coref-
erences, an important factor of instance matching. We propose ranking feature R2M
for classification-based matching systems. R2M significantly improves the quality of
trained models and advances them to remarkably outperform ScLink as well as existing
classifier-based matching systems. We also compare the performance of the proposed
systems and the classifier with R2M ranking feature. We show that the usage of our
systems and algorithms depends on the matching task and should be considered under
the trade-off between accuracy and scalability.
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Chapter

1
Introduction

In this chapter, we begin with the motivation of instance matching problem and our
study (Section 1.1). After that, we summarize our contributions to different aspects of
this problem (Section 1.2). Finally, we briefly introduce the remaining chapters of the
dissertation (Section 1.3).
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1.1 Background

The Internet nowadays plays an important role in almost every aspect of our activities.
It has profoundly changed the way we create and collect the information. The current
state of technology allows us to easily access the Internet and efficiently look up the
information. For that reason, the Internet is widely believed that it is able to provide
everything. However, even living in an era of digital data overwhelmed like this, not all
people’s needs are really satisfied by the current technologies.

As an example, let’s consider a powerful tool like search engines. Search engines provide
the mechanism of indexing web pages and answering user’s query. One can use search
engines to get the information of any entity, on any topic. However, the information
that search engines can offer is only facts, not knowledge. Therefore, search engines
usually give perfect results to concrete queries but fail to response to complex queries.
For example, they return the correct pages of the query ‘Tokyo’ but may fail to answer
the query ‘capital of the most developed Asian country’. It is because of two issues.
First, the pages describing these information are different and none of them contains
everything of the entities mentioned in the query. Second, the pair ‘Tokyo’ and ‘the
capital of Japan’, and the pair ‘Japan’ and ‘the most developed Asian country’, are not
realized to be coreferent to the same entities. The query can be satisfied by resolving
any of those issues. However, a solution for the first issue is impossible because it
originates from the nature of the Web, in which pages are distributed, independently
created, and usually incomplete. In order to leverage the extensively resourceful data
without compromising the data publication, instance matching is used as a solution for
the second issue. Another example is the integration of the Web pages resulted from
querying an interested entity (e.g. a product, movie, or city) on the Internet. It is
very time-consuming for a user to browse all the returned results of the search engine
to construct the complete information of an entity. In this situation, instance matching
is a powerful tool for removing the duplications and collecting multitude aspects of the
entity.

Abovementioned is a motivating example of instance matching for the mentions in Web
pages. In broad terms, instance matching is to detect different instances of the same
real-world entities. Instance matching is an important task in knowledge discovery and
data mining, especially in data integration [46, 126, 146], data cleansing [36, 129] and
linked data interlinking [40]. In data integration and data cleansing, instance matching
is used to detect the duplicated, erroneous, and outdated data. By applying instance
matching, the integrated data is guaranteed to be consistent in term of data representa-
tion (e.g., data format and schema). Moreover, in many databases, the duplicates are not
allowed. Therefore, instance matching also guarantees the integrity because it keeps the
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data clean. In linked data, instance matching is an essential component for linking the
coreferent instances of different repositories. There are many relationships between the
instances in the Web of linked data (e.g., class, sub-class, property, and sub-property).
However, the owl:sameAs links, which connect the coreferences, are the most important
because they can be used to discover other relationships. In short, instance matching
enriches the knowledge of linked data by connecting the independently created “data
silos”. For its importance, instance matching has been extensively studied. However,
the achievement of an ultimate solution is still an open research problem.

As introduced above, our study is motivated by the problem of data integration in
general and linked data interlinking. We consider the problem of instance matching in
the scope of (semi-)structured repositories, where instances are represented as a set of
property-value pairs. Examples for this type of repository are relational data and linked
data. In relational data, each row represents an instance, whose property-value pairs are
the cells in that row. In linked data, an instance is represented by a set of RDF triples.
Each RDF triple contains three elements: subject, predicate, and object. A subject is
usually the URL of the instance. A predicate is equivalent to a property in relational
data. An object is the value described by a particular predicate.

The challenges of instance matching are different between types of the repository (e.g.,
relational data, linked data, text-based data). However, an instance matching algorithm
generally has to cope with three difficulties: heterogeneity, ambiguity, and scalability.
Solving the problem of instance matching is equivalent to dealing with these challenges.
We are motivated from modest contributions to the solution for each of them.

• Heterogeneity: The issue of heterogeneity is very common in instance matching.
It occurs in both of the schemas and instances. A schema contains the descrip-
tion of all properties used in a repository. The heterogeneity of schemas arises
from the fact that different repositories do not use the same schema. Meanwhile,
the heterogeneity of instances originates from the inconsistent representations and
the sources of fact where the data is collected. An example of heterogeneity is
illustrated in Figure 1.1. In this figure, two linked data instances of the place
‘Harlem’ are depicted, one is from Freebase1 repository and the other is from NY-
Times2 repository. It can be realized that the properties and values stored in
these instances are different. In practice, the same attributes of an entity can be
declared by various properties and represented in different formats (e.g., measure-
ment unit, name ordering, and language) or even different values (e.g., ‘New York’
and ‘NYC’, ‘fridge’ and ‘refrigerator’). Basically, any instance matching algorithm

1http://rdf.freebase.com/ns/en.harlem
2http://data.nytimes.com/harlem_nyc_geo
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nytimes#10037152102685288131

freebase#harlem

freebase#m.0clyh58
freebase#en.samuel_r_delany

fb:location.people_born_herefb:location.geolocation

40.80903

-73.94837fb:location.geocode.longitude

Harlemas

Harlem (NYC)

40.80874

-73.94588

skos/core#preLabel

Harlem

fb:type.object.name

fb:location.geocode.lattitude

geo/wgs84_pos#long

geo/wgs84_pos#lat

skos/core#inScheme

nytimes#nytd_geo

fb:type.object.name

Figure 1.1: An example of heterogeneity.

has to compare the instances and since then, the heterogeneity becomes a hard
obstacle.

The early state of instance matching is the manually operated systems, in which
the instances comparisons are specified given domain and particular repositories
(e.g., focusing on the geographic coordinate of locations and telephone number
of companies). Although this approach achieved acceptable matching results, an
expert’s knowledge may not cover various domains or it is time-consuming to
specify the useful information. Consequently, the manual system becomes difficult
to use for all users and in all domains. We focus on the heuristic-based construction
of specification that does not depend on the domain and thus is applicable to any
repository, related to any domain.

• Ambiguity: Different values can describe the same fact, and contradictorily,
the same value can simultaneously refer to different facts. That is the issue of
ambiguity. For example, ‘Isoaai’ is named for 491 places in Finland and there
are about 1,724 locations sharing the name ‘San José’. Another example is two
instances in DBpedia: ‘Channel Islands National Park’3 and ‘Channel Islands of
California’4. Although these instances describe different places, it is difficult to
recognize that even when presenting them to a human who has not known the fact
in advance. Together with heterogeneity, ambiguity is the reason of the limitation
in the accuracy of most instance matching algorithms.

3http://dbpedia.org/page/Channel_Islands_of_California
4http://dbpedia.org/page/Channel_Islands_National_Park
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The most important part of disambiguation is to successfully estimate the similar-
ity of different values, especially for string literals. To this aspect, most instance
matching systems relied on traditional string similarities, linear combinations of
various metrics, and unrelated to the characteristics of given repositories. This
manner eventually ignores the advantage of each similarity metric in different
specific cases. We study different manners of similarity metrics combination as
well as optimization methods for selecting appropriate metrics given the interested
repositories.

• Scalability: Finally, scalability is also an important issue that needs to be taken
into account, considering 2.5 quintillion bytes of data created daily (a statistic
of 2015). A single repository may contain millions of instances and therefore, a
trillion scale instance matching problem is possible to be frequently demanded.
However, most of the previous work simply checked the pairwise instances of given
repositories and complied an infeasible matching task for large repositories [6, 45,
147]. We study the algorithms that restrict the comparisons into a compact space
for reducing the computational complexity and thus scale up the system’s capability.

In addition, even with the support of current technology, existing frameworks are
not fully optimized for really high-scale matching tasks. The main reason is that
they reused existing but complicated index structures, which is not designed for
the particular instance matching task. We are interested in developing a time and
memory efficient framework that can handle very large repositories.

Furthermore, when the repository’s scale increases, the heterogeneity and ambi-
guity are likely to be more complicated. This situation is obviously expressed on
linked data, which is considered to be large and much heterogeneous. For exam-
ple, consider the DBpedia 3.9, there are 45,858 unique properties, 5,314,053 of only
non-redirected instances5, and more than 20,000 instances sharing the token ‘John’
or ‘William’. Freebase is even more than that. About 2.5 million predicates are
used in Freebase and this number is at least 50 times larger than those of DBpedia,
the main hubs of the linking open data. Large scale repositories nowadays mostly
accompany with open data, which offers the right of creating and editing to mul-
tiple users. On the one hand, this mechanism provides the irrefutable advantages
for the collection of immense data. On the other hand, it makes the repositories
more vulnerable to the inclusion of incorrect and inconsistent information. To this
end, scalability involves not only computational issue but also accuracy issue.

5A redirected instance does not contain any information other than a URI linking to another instance
that actually contains descriptions.
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There are two main approaches for instance matching: specification-based and classification-
based.

• For specification-based approach, a system estimates the matching score of in-
stances and find the coreferences based on the scores. The score estimation and
utilization are described by a specification. For example, it includes the proper-
ties mappings, similarity metrics, and matching thresholds. Most researches on
specification-based matching are about the construction of the specification. As
earlier discussion, the manual method constructs the specification with the help of
human experts and is restricted to well-known domains. One of our focuses is the
heuristic-based construction of specification. Furthermore, considering instance
matching in supervised scenario, when some curated coreferences are given, we
study the problem of elaborate and automatic specification construction.

• For classification-based approach, instance matching is treated as a classification
problem. The classifier is trained using labeled coreferences and is applied to
predict the coreferent state (positive/negative) of given instance pairs. An unre-
solved problem of previous classification-based matching systems is the ranking
of instances pairs. Usual classifiers do not consider the variety of ambiguities for
different values, which is very important in instance matching. For example, con-
sidering the fact that there are many persons sharing the name ‘William’ rather
than ‘Specter’. A very high matching score is expected for matching instances of
a ‘William’ in order to confidently determine a positive coreference. However, for
a ‘Specter’, a medium matching score may be convincing. That is, the ranking
on matching scores of the instances sharing differently ambiguous values may en-
hance the accuracy. We finally investigate the problem of ranking in the context
of classification-based instance matching.

1.2 Contributions

The dissertation is motivated from the above challenges of heterogeneity, ambiguity,
and scalability. We propose a framework, algorithms, systems, and some components to
solve the challenges. Our work focuses on two different scenarios of instance matching:
non-supervised6 and supervised. Although non-supervised matching has wider appli-
cability as it does not require training data, when the matching quality is prioritized
and the training data is available, a supervised method is the best option to improve
the accuracy. Therefore, we also focus on the supervised scenario. For non-supervised,

6We use the term non-supervised to discriminate from unsupervised. Non-supervised only means that
the curated data is unavailable. Unsupervised conventionally implies machine learning is applied.
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Table 1.1: Summary of the contributions.
Legends: sp: Supervised, n-sp: Non-supervised
H: Heterogeneity, A: Ambiguity, S:Scalability

Contribution sp n-sp H A S
1. ScSLINT framework
2. ASL system

Heuristic-based property mappings
Token-based property-driven blocking strategy

3. ScLink system
minBlock blocking model optimization
cLearn specification optimization
Modified-BM25 string similarity metric

4. R2M ranking feature

we propose ASL, a schema-independent instance matching system. The main advan-
tage of ASL is that it can work on any repository with any schema. For supervised,
we propose ScLink and R2M , which focus on specification-based and classification-
based instance matching, respectively. Specification-based matching has the advantage
in scalability while classification-based matching is expected to has better generalization
ability. ScLink is a system that can find the optimal matching specification by using
the training data. R2M is a ranking feature for enhancing the accuracy of classifiers. In
addition, we develop ScSLINT framework for processing large-scale instance matching
tasks. For each system, we install multiple novel components. Those contributions, as
well as their respective targets, are listed in Table 1.1. Here we briefly describe those
contributions.

1. ScSLINT [107]. ScSLINT is an efficient instance matching framework. ScSLINT
is designed for general instance matching tasks and is applicable to various types
of data. ScSLINT aims at scalable instance matching. It is optimized with paral-
lel processing technology and light-weight indexing structures. ScSLINT contains
multitude of built-in functions, including the indexers for different sub-tasks of in-
stance matching. ScSLINT can be used for both supervised and non-supervised
matching tasks. Based on ScSLINT , we further develop two systems, ASL and
ScLink.

2. ASL [108]. ASL is a schema-independent instance matching system. This sys-
tem focuses on the challenges of heterogeneity of schemas and scalability. The
most prominent feature of ASL is the introduction of a heuristic-based strategy
to find the equivalent properties. Such strategy allows the system to work with
any repository and with any schema. For scalability, we focus on the reduction of
comparisons. We try to select only the potential instances pairs from the pairwise
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alignments of the input repositories. In order to achieve this goal, we apply a
token-based property-driven blocking strategy.

3. ScLink [111]. ScLink is a scalable, supervised, and specification-based system.
The targets of ScLink consist of all the challenges: heterogeneity, ambiguity,
and scalability. In ScLink, we propose two supervised algorithms, cLearn
[103, 105, 106, 109] and minBlock. cLearn applies an apriori-like heuristic for
finding the most suitable property mappings and similarity metrics. To this end,
it solves the problem of heterogeneity and ambiguity in supervised scenario. Mean-
while, minBlock focuses on the scalability. It searches for a blocking model, which
aims at optimally reducing the pair-wise alignments of instances between the in-
put repositories. Comparing to the blocking strategy used in ASL, minBlock is
expected to deliver much better performance. We also present a Modified-BM25
metric to estimate the string similarity with a disambiguation ability. Modified-
BM25 is a combination of multiple state-of-the-art metrics, in order to consider
different aspects of the interested strings.

4. R2M [110]. R2M is a ranking feature for classification-based instance matching
systems. In order to include the ranking factor as the prior discussion in Section
1.1, we propose R2M feature for enhancing the classification-based matching sys-
tems. The basic idea is to train the model of R2M estimation by a learning to
rank algorithm. After that, the R2M feature is computed for all examples. The
final classifier is built upon the original as well as the newly created feature. In
general, R2M is designed for classifiers and thus it contributes to the solution for
heterogeneity and ambiguity.

1.3 Outline

The next chapters of the dissertation are summarized as follows.

• Chapter 2: We discuss the background knowledge of instance matching and its
basic issues. After that, we review the work related to several aspects of instance
matching, including frameworks, systems, and algorithms. We also categorize
existing instance matching systems using various criteria.

• Chapter 3: This chapter describes ScSLINT framework. In this chapter, we
detail the general architecture of ScSLINT , as well as its components such as
the indexing, supported similarity metrics, and similarity aggregations. We report
the experiments that evaluate ScSLINT on very large datasets and compares
ScSLINT with prior frameworks.

8
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• Chapter 4: This chapter describesASL system. We detail the schema-independent
mechanism of ASL and the token-based property-driven blocking strategy. Ex-
periments on 253 datasets to evaluate the schema-independent ability and the
performance of the blocking technique are reported.

• Chapter 5: This chapter describes the scalable supervised instance matching
system ScLink. We detail the two supervised algorithms, cLearn and minBlock.
We also introduce the Modified BM25 string similarity metric. We report sev-
eral experiments that evaluate cLearn, minBlock, and the comparisons to other
supervised algorithms and systems. The performance of Modified-BM25 and the
necessary amount of training data are also examined.

• Chapter 6: This chapter describes the ranking feature R2M for classification-
based instance matching systems. We detail R2M and present the fast optimiza-
tion method for R2M model. We report the comparisons between the baseline
classifiers and the ones which are trained with R2M feature. The comparisons to
previous systems are also reported.

• Chapter 7: This chapter summarizes the dissertation and discusses our perspec-
tives on the potential work to further advance the capability of current solutions
to instance matching.

9
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2
Background and related work

We begin this chapter with the basic workflow of instance matching systems (Section
2.1). Following that is the description of the input (Section 2.2) and other components
of the instance matching process (Section 2.3 and 2.4). After that, we describe the
evaluation metrics for instance matching systems (Section 2.5). The chapter also covers
the literature review and addresses the unresolved problems (Section 2.6 and 2.7).
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Source

Target

Matching score 

estimation Determiner Coreferences

Input 

Repositories
OutputInstance matching system

0.237 0.95 0.82 0.317 0.95 0.82

Figure 2.1: The basic workflow of instance matching.

2.1 The basis of instance matching

Instance matching is to detect the coreferent instances from input repositories: the source
and the target. Concretely, the problem is stated as follows. Given two repositories RS
and RT , which are the source and the target, respectively. The mission is to find the
subset A of the Descartes product RS × RT , so that each element of A is a pair of
coreferent instances, and its complement RS ×RT \A does not contain any coreference.

The process of instance matching contains multiple components. In Figure 2.1, we
illustrate a simple instance matching system with two main components: Matching
score estimation and Determiner. The matching score estimation computes the score
of pairwise alignments of all instances (the circles in Figure 2.1) in the source and the
target repositories. The determiner takes those scores (and sometime all intermediate
values) as the input and produces the final coreferences. There are various techniques
for the matching score estimation as well as determiner. These two components are
very important and always exist in any instance matching system, although they can be
divided into smaller components. For example, many systems additionally install the
property alignment, blocking to the matching score estimation. The property alignment
finds the mappings between properties when the input repositories use different schemas.
The blocking filters the pairwise instances and feeds only the potential coreferences into
the matching score estimation. Blocking is very important for large datasets because it
is computationally expensive to consider all pairwise instances.

Before discussing the basic techniques of matching score estimation and determiner
(Section 2.3 and 2.4), we describe the input of instance matching.

12
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2.2 Repository, schema, property, and instance

We study the problem of instance matching on structured and semi-structured reposi-
tories. A repository of these kind consists of two components: schema and instances. A
schema specifies the properties used to describe the instances. Is also can be considered
as the list of all properties. Each property is specified by name, type, and range. name
is string and usually describe the exact function of the property. For example, name
can be ‘title’, ‘address’, ‘affiliation’, etc. However, in some repositories, many properties
are named with just an id number. This is one of the barriers of matching properties
using name. Type specifies the data type of the values described by the property. For
example, numeric, datetime, string, and URI are the most common data types. Type
information is important for selecting the suitable similarity metrics in matching score
estimation. The last information is range. Range restricts the values described by the
property to a limited set. For example, the range of ‘born in’ can be defined as the set
of ‘cities’.

The main difference between structured and semi-structured data is the number of prop-
erties is fixed for all instances of structured data but not for semi-structured data. In
other words, the number properties in each instance of semi-structured data may be
different. In structured data, each instance is described by all properties, even when
missing values are available. That is, for a semi-structured data, seeing all instances is
necessary to draw the complete schema. In addition, the three information name, type,
and range are always described for structured repositories, but not the semi-structured
ones. In such cases, usually only name is found. Usually, for community-based reposito-
ries (e.g., Internet-based and crowdsourcing data), it is difficult to (consistently) specify
the schema. Therefore, these kinds of repositories are usually semi-structured. One
of our studied objects is the semi-structured linked data, whose most repositories are
crowdsourcing data. One reason for us to select the linked data because it is considered
as the data of the future technology and is growing at an impressive speed [140].

Considering the domain, there are also two types repository: single domain and cross
domains. A single domain repository contains the instances of only one domain and a
cross-domain repository may contains the instances of various domains. In the second
case, a repository can be divided into different classes with respective to the domains. In
our study, we consider the problem of instance matching on single domain repositories.
For a cross-domain repository, we separate it into different repositories using the class
information and treat them as single domain repositories.

The second component of a repository is the list of instances. An instance is a represen-
tation of an entity and is stored by using the schema. Concretely, for each instance, the
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Name Hometown Birth year … 

Elvis Presley Mississippi 1935 … 

Michael Jackson Indiana 1958 … 

Eminem Missouri 1972 … 

… … … … 
 

 

Instances 

Properties 

Figure 2.2: An example of relational data. 

  

subject predicate object 

db:Tokyo rdfs:label Tokyo Metropolis 

db:Tokyo dbo:areaTotal 844.66 sq. mi 

db:Tokyo dbo:population 13,506,607 

… … … 

   

db:JMA rdfs:label Japan Meteorological Agency 

db:JMA dbo:employees 5,539 

db:JMA dbo:location db:Tokyo 

… … … 

   

db:Chiyoda rdfs:label Chiyoda 

db:Chiyoda dbo:areaTotal 4.50 sq. mi 

db:Chiyoda dbo:population 54,462 

db:Chiyoda dbo:prefecture db:Tokyo 

… … … 
 

Instance of Tokyo 

Instance of JMA 

Instance of Chiyoda 

Figure 2.3: An example of linked data.

value of each property is declared. Some researchers may call such value as attribute.
In this dissertation, we use the term value for avoiding the confusion between attribute
and property. Figure 2.2 and 2.3 illustrate some example instances of relational data
and linked data, respectively. In relational data, each row represents an instance, whose
property-value pairs are the cells in that row. In linked data, an instance is represented
by a set of RDF triples. Each RDF triple contains three elements: subject, predicate,
and object. A subject is usually the URL of the instance. A predicate is equivalent to a
property in relational data. An object is the value described by a particular predicate.
By representing instances by RDF triples, the number of triples for different instances
are varied. This is one of the characteristics of the semi-structured data as discussed
above.

The coreferences are the instances that co-refer to the same real-world entity. Such
instances may exist among different repositories as well as the same repository. Some
studies consider the instance matching within one repository as the problem of data
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Table 2.1: Notation of inputs of instance matching.

Symbol Meaning
RS source repository
RT target repository
p property
p(x) values of x at property p
o value

deduplication [36, 129]. For the matching of different repositories, they assume the
repositories are “clean”. That means the coreferences do not exist within one repository.
In our work, we study the problem of instance matching between different repository
without that constraint of “cleanliness”. Therefore, we treat the repository as a multiset
of instances. Although a repository also consists of schema, it is usually denoted as only
the instances and we also follow this manner.

Table 2.1 lists the notation of the inputs of instance matching. These notations are used
consistently thorough the dissertation.

We described the input of instance matching. Next, we discuss the basic techniques of
the matching score estimation and determiner.

2.3 Matching score estimation

Matching score estimation is an important step in instance matching. A matching
score represents the similarity of two instances. The most basic form of matching score
estimation is the aggregation of literal similarities. Literal similarities are the similarities
of the values of the given instances. Therefore, the matching score estimation consists
of two steps. The first step is the computation of literal similarities. The second step is
the aggregation of the first step’s results, in order to produce a final score.

Suppose that we need to compute the matching score of two linked data instances x and
y of Figure 2.4. A good matching specification should contain the correct property map-
pings as follows: ‘label’ and ‘name’ (string), ‘population’ and ‘population’ (numeric),
‘website’ and ‘homepage’ (URI ), and ‘established’ and ‘established’ (datetime). Then,
for each property mapping, one or many similarity metrics are applied to compute the
literal similarities. The final matching score of x and y is computed from those literal
similarities.

In practice, the specification is manually or automatically determined. The variety of
systems is also measured by how to construct or use the specification. In this section,
we review the techniques of similarity metrics and similarity aggregation instead of the
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subject predicate Object (type) 

dba:Tokyo label Tokyo Metropolis (string) 

dba:Tokyo areaTotal 844.66 sq. mi (numeric) 

dba:Tokyo population 13,506,607 (numeric) 

dba:Tokyo website www.metro.tokyo.jp (URI) 

dba:Tokyo established 1889/05/01 (datetime) 

… … … 

   

dbb:2378295317 name Tokyo (string) 

dbb:2378295317 population 13,507,000 (numeric) 

dbb:2378295317 homepage http://www.metro.tokyo.jp (URI) 

dbb:2378295317 established  May 1 1889 (datetime) 

… … … 
 

 

Instance x 

Instance y 

Figure 2.4: Linked data instances with data types.

construction of the specification. We review the commonly used similarity metrics and
aggregation strategies. The metrics are categorized into four groups with respective to
four main data types. In case of fully structured data, data types are specified by the
schema. However, when such specifications are missing, data type of each property is
determined by the majority type of its object values.

2.3.1 Literal similarity

2.3.1.1 String

String is the most important data type in many problems, as major of data is text.
In instance matching, string is also an essential types. Many primary attributes are
represented by string, such as name, label, description, etc., and such attributes attaches
to almost all entities.

Many string similarities have been proposed and can be divided into different ap-
proaches. The representative approaches consist of intersection-based, transformation-
based, corpus-based, and hybrid similarities. A string can be decomposed into a sequence
of tokens, characters, or n-gram. Existing string similarity metrics work with all of to-
ken, character, and n-gram inputs. The n-gram of a string s is defined as the sequence of
n-length substring of s. Some metrics treat the strings as the original sequences, while
some others treat the sequences as the sets. In order words, the duplicated elements
are removed and their order is ignored. Next, we describe the widely used similarity
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metrics. We use A and B to denote the decomposed form of the input strings. A and
B can be either sets or sequences depending on the context.

1. Intersection-based metrics estimate the similarity based on the matching ele-
ments.

• Common substring measures the ratio between the common parts of the
given sequences.

σcms(A,B) = 2× lcs(A,B)
|A|+ |B| (2.1)

where lcs(A,B) is the longest common subsequence of A and B. There are
three strategies for measuring lcs(A,B): from the beginning of the input (pre-
fix), from the end of the input (suffix), and just finding the longest common
subsequence.

• Szymkiewicz-Simpson (aka. overlap coefficient) is defined as the ratio of
the intersection divided by the size of the smaller of the given sets [145].

σoverlap(A,B) = |A ∩B|
min(|A|, |B|) (2.2)

• Jaccard similarity coefficient (aka. Jaccard index) is defined as the ratio
of the intersection divided by the size of the union of the input sets [64].

σjaccard(A,B) = |A ∩B|
|A ∪B|

(2.3)

• Sørensen index (aka. Dice’s coefficient) is defined as the ratio of the inter-
section divided by the sum of the size the input sets [31, 149].

σdice(A,B) = 2× |A ∩B|
|A|+ |B| (2.4)

2. Transformation-based metrics estimate the similarity based on the operations
of transforming one of the inputs into the other.

• Levenshtein The Levenshtein distance quantifies the minimum number of
operations (insertion, deletion, and substitution) required to transform one
sequence into the other [79]. The distance is defined as follows.

δlevenshtein(A,B) = min
opn(...op1(A))

∑
i∈[1,n]

cost(opi) (2.5)
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where opn(...op1(A)) = B is a series of nested operations needed to transform
A into B; and cost(opi) is the cost of performing the ith operation. Leven-
shtein distance applies the same cost (equal to 1) for all type of operations.
That is, for Levenshtein distance, the Equation 2.5 counts the number of
operation.

Levenshtein distance can be used reversely to estimate how similar two se-
quences are. The frequently used Levenshtein-based similarity is the Leven-
shtein distance divided by the length of the longer sequence.

σlevenshtein(A,B) = δ(A,B)
max(|A|, |B|) (2.6)

• Jaro and Jaro-Winkler are based on the vicinity of the common elements
of the given sequences [65]. The Jaro distance is computed as follows.

δjaro(A,B) =
{

0 if m = 0
1
3 × ( m|A| + m

|B| + m− t2
m ) otherwise

(2.7)

where m is the number of shared elements and t is number of transpositions.
Two elements are considered as matching if they are the same and their
index in the parent’s sequences are not farther than max(|A|,|B|)

2 − 1. The
transposition is defined as the number of matching elements divided by 2.

The Jaro-Winkler [160] distance adds the factor of prefix common substring
to Jaro distance. It is computed as follows.

δjaro−winkler = δjaro(A,B) + `p(1− δjaro(A,B)) (2.8)

where ` is the length of the shared prefix. ` is bounded into 4 elements, p is a
scaling factor for controlling the impact of the common prefix. p is normalized
to be ≤ 0.25 in order to guarantee that the result is in the range of [0, 1]. In
original work and many others, the default value of p is 0.1.

The complement of Jaro and Jaro-Winkler define the similarities of the re-
spective distances.

σjaro(A,B) = 1− δjaro(A,B) (2.9)

σjaro−winkler(A,B) = 1− δjaro−winkler(A,B) (2.10)

3. Corpus-based metrics uses a corpus to support the estimation of similarity. The
corpus can be the structured dictionary, taxonomy, or just raw text, on which
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some statistical factors can be observed.

• WordNet-based similarities are the metrics based on WordNet database,
a lexical database of English language [94]. WordNet contains the hierar-
chical relationships and the synonyms of words. Therefore, the similarities
using WordNet are expected to capture the semantic relatedness of the in-
put strings. Using WordNet, the inputs are the tokens and a token is called
concept.

Many metrics have been proposed for using WordNet [91]. The widely used
metrics are Resnik [131], Lin [82], JCN [67], LCH [78], WUP [162], HSO
[52], LESK [7], and VECTOR [123]. The first three metrics are based on the
common subsumer (i.e., parent nodes) of the concepts. The next three metrics
uses the relationship structure (e.g., length of path and depth of nodes). The
LESK metric makes use of the WordNet’s gloss of concepts. It computes
the similarity based on the overlaps between the pairwise glosses of the given
concepts and their hyponyms. VECTOR creates the vector representation for
each concept and use vector space’s metrics for computing the similarity. This
vector is the average of the co-occurrence vectors representing the glosses.
The co-occurrence vector of the word w is constructed by concatenating the
co-occurrence of w and other words within a given corpus.

• TF-IDF cosine is one of the most commonly used metrics. This metric
consists of two parts: the TF-IDF [136] and the cosine similarity. TF-IDF
is a weighting scheme measure the importance of words (i.e., term) based on
their frequency. The original context of TF-IDF is the information retrieval
problem. In that problem, the corpus is a set D of text documents and each
document contains many terms. TF (term frequency) tf(t, d) reflects the
number of times that the term t appears in the document d. IDF (inverse
document frequency) reflects the frequency of the term at document-wise
level.

IDF (t,D) = log |D|
|{d ∈ D : t ∈ d}| (2.11)

TF-IDF is not a single function. It is a family of weighting scheme in which
there are slightly different members. For example, there are many variations
of TF, such as binary, raw frequency, log normalization, and min-max nor-
malization. Also, many variations of IDF are available. Frequently used
variations are IDF smooth, IDF max, and probabilistic IDF.
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Cosine is a measure of similarity between two vectors. It is defined as the
inner product of the vectors divided by the product of their lengths.

δcosine(X,Y ) = X · Y
‖X‖‖Y |

=

n∑
i=1

XiYi√
n∑
i=1

X2
i

√
n∑
i=1

Y 2
i

(2.12)

In the context of string similarity, the vector X and Y are also represented
by the TF-IDF weight of the tokens. Then, the inner product of X and Y
is defined as the dot product of the weights of common elements between X
and Y . Finally, the TF-IDF cosine similarity is written as follows.

σcos(A,B) =
∑
t∈A∩B tfidf(t, A) · tfidf(t, B)√∑
t∈A tfidf

2(t)
√∑

t∈B tfidf
2(t)

(2.13)

where tfidf(t, I) = TF (t, I)× IDF (t,D) and D is the document set where I
belongs to.

In the context of instance matching, the instances are considered as docu-
ments and the terms are the tokens of string values. Then, the TF and IDF
are computed similarly to those in the original problem. Also, I is replaced
by the instance and D is its repository.

• Okapi-BM25 (aka. BM25) is one of state-of-the-art corpus-based metrics
and is also originally proposed for information retrieval problem [132]. Given
a query Q, the BM25 of a document d is computed as follows.

BM25(d,Q) =
∑
t∈Q

IDF(t,D) · TF (t, d) · (k + 1)
TF (t, d) + k ·

(
1− b+ b · |d|avgdl

) , (2.14)

where avgdl is the average document length in the corpus D. k and b are free
parameters. The standard range of k and b are [1.2,2.0] and 0.75, respectively.
In BM25, the IDF of the term t is usually the probabilistic IDF, which is
computed as follows.

IDF(t,D) = log |D| − n(t) + 0.5
n(t) + 0.5 (2.15)

where n(t) = |{d ∈ D : t ∈ d}| is the number of documents containing the
term t.

Similar to TF-IDF cosine, BM25 can be used in the context of instance
matching, by replacing the query q and document d by two instances.
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4. Hybrid The hybrid method combines metrics from different approaches in order
to take the advantage of many metrics. The most common type is the combination
of metrics on different level of inputs. Hybrid metrics usually take two levels. The
metric for the first level is called primary and the other one is called secondary.

For example, Soft TF -IDF [95] is the combination of TF -IDF cosine (primary)
and a transformation-based metric (secondary) . Soft TF -IDF modifies the orig-
inal TF -IDF cosine by replacing the intersection set A ∩ B in Equation 2.13
by

T = {t ∈ A|∃t′ ∈ B, σ(t, t′) ≤ α} (2.16)

where σ is a transformation-based metric and α is a threshold. The secondary
metric σ can be Levenshtein, Jaro, Jaro-Winkler, etc...

Another example is the generalized Jaccard. This metric applies Jaccard on token
sets but using Jaro or Levenshtein instead of exact matching. For example, by
using Jaro, Equation 2.3 becomes:

σjaccard−jaro(A,B) = |T |
|A|+ |B| − |T | (2.17)

In this case, Equation 2.17 enables the approximate matching between tokens for
an intersection-based metric.

2.3.1.2 URI

URI nowadays is a common data type and especially frequent in linked data. It is used
to link an instance to the others having a relationship. In some cases, URI defines useful
information for instance matching (e.g., Wikipedia link, homepage, and other functional
properties).

Since URIs are stored as text, matching algorithms can use string similarity metrics for
URIs. In this case, the domain part of the URI is usually striped if the URI contains
a subdirectory. Otherwise, the whole original URI is used for matching. For matching
URIs, exact matching is widely used as the precision of matching URIs should be at high
expectation. Another option is dereferencing the URI to obtain further information, such
as page title or description. To this aspect, dereferencing the linked data instances may
bring plenty of useful information.
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2.3.1.3 Numeric

Numeric is used to define the properties in integer and real ranges. Many important
information are stored as number, such as geographic coordinates, area total, population,
people’s height, etc... There are some metrics to measure the similarity of numbers. Here
we review two common metrics: reverse difference and percentage difference. We use A
and B to denote the two input numbers.

1. Reverse difference measures the similarity of two numbers by taking the reverse
of their absolute difference.

σrdiff (A,B) = 1
|A−B|+ 1 (2.18)

2. Percentage difference measures the similarity of two numbers by taking the
complement of their absolute difference divided by the sum of them.

σpdiff (A,B) = 1− 2× |A−B|
A+B

(2.19)

For percentage difference,the same difference produces smaller σpdiff when the
input numbers become larger. That is the difference between this metric and the
reverse difference, which ignores the magnitude of the input numbers.

2.3.1.4 Datetime

The last common data type is datetime. Similar to the metrics for URIs, the most com-
mon one for datetime is exact matching due to the importance of much datetime-related
information (e.g., date of birth and establish). Another remarkable metric is temporal
inclusion. This metric considers the input as numbers by unifying them into a relative
representation, such as minutes or days from a pivot period. Then, the comparison is
done by using numeric metrics.

2.3.2 Similarity aggregation

Similarity aggregation is the second step in matching score estimation. This step takes
the literal similarities as input and produces the final matching score. Suppose the set
of literal similarities is L, the matching score is defined as score(X,Y ) = ω(L), where
ω is an aggregation function. There are various aggregation functions. The frequently
used aggregations consist of Minkowski, weighted average, and boolean.
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2.3.2.1 Minkowski distance

Minkowski distance is a metric in vector space. It originally measures the difference
between two vectors. Let X and Y be the vectors of length n. The Minkowski distance
of X and Y is defined as follows.

σminkowski(X,Y ) =
(

n∑
i=1
|xi − yi|k

) 1
k

(2.20)

where k ≥ 1 is the parameter controlling the different magnitude of elements. Minkowski
is the generalization of Manhattan and Euclidean distances. Indeed, when k = 1 and
k = 2, Equation 2.20 becomes the distance of Manhattan and Euclidean, respectively.

By considering the literal similarities L as the differences of vector elements, the simi-
larity aggregation based on Minkowski is equivalently defined as follows.

ωminkowski(L) =

∑
`∈L
|`|k
 1

k

(2.21)

2.3.2.2 Weighted average

This aggregation takes the average of literal similarities and at the same time includes
the expected impact of each similarity. The weighted average is widely used in instance
matching because of its simplicity. This aggregation is defined as follows.

ωw−avg(L) = 1
|L|

|L|∑
i=1

`i · wi (2.22)

whereW = {wi} is a weight vector. When weight vector is a ones vector, the aggregation
becomes the normal average of literal similarities.

2.3.2.3 Boolean aggregation

Boolean aggregation is not defined by a function but the transformation of original set
of literal similarities. Using boolean aggregation is equivalent to applying a filter on L
prior to an aggregation function, such as Minkowski or weighted average. That is, a
filtered set of similarities L′ = {f(`i)|`i ∈ L} is extracted, where

f(`i) =
{

0 if `i < αi

`i otherwise
(2.23)
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A = {αi} is a conditional vector. Each element of this vector defines a acceptance
criterion for the respective literal similarity. Then, the matching score is calculated on
the filtered set L′.

Boolean aggregation offers the advantage of better discriminating the positive and nega-
tive co-references. By applying this strategy, the similarities of above threshold (i.e., αi)
contributes to the matching score whereas the under threshold ones make zero impact
on the final result.

2.4 Determiner

The second component of instance matching is the determiner (Figure 2.1) . This
component produces the final coreferences on the basis of matching score of instance
pairs and sometimes the detailed literal similarities. In this section, we review some
basic determiners, including three strategies of specification-based instance matching.
In addition, we discuss the strategy using classifier as the determiner.

2.4.1 Top K selection

This determiner selects K instance pairs having the highest matching scores with re-
spective to each instance of the source repository. Top K selection usually accompanies
with a small threshold to avoid the acceptance of just slightly similar instances. The
advantage of top K selection is the adaptive acceptance criterion, which is implicitly
defined for each instance of the source repository. That is, the most similar instances
are guaranteed to be selected if it satisfies a small threshold.

2.4.2 Thresholding

This determiner simply applies a global threshold for all instance pairs. Different from
top K selection, this strategy may take highly similar pairs in the observation of all in-
stance pairs. The instance pairs whose matching score is higher than the given threshold
are selected for the final coreferences. The limitation of this strategy is that it may ac-
cept the pairs having a high matching score but non-coreferent. Such situations happen
because of the inequality of ambiguity when observing instance pairs in the different
group sharing different words. Matching instances containing frequently used words is
more prone to ambiguity. However, the advantage of this determiner compared to top
K selection is the ability to reject dissimilar pairs as it does not put an objective of K
pairs for each instance of the source repository.
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2.4.3 Classification-based

The determiner of this type does not work directly on matching score. It reuses the
prediction of the classifier trained on curated data, which consists of some instance pairs
and their matching label (positive or negative). The prediction given by the classifier on
an unlabeled instance pair determines if it is included in the result or not. The classifier
can solely take the final matching score or the literal similarities as the input. A match-
ing system that applies classifier-based determiner is called a classifier-based matching
system. This type of system does not require the matching specification because it can
work independently with the instruction of property mappings, similarity metrics, ag-
gregation strategy, and thresholds. All those instructions are optimized by the training
process.

2.5 Evaluation metrics

The goal of instance matching is to return the instance pairs that are identical to the
actual coreferences. Therefore, the evaluation metrics are conventionally designed to
analyze the differences between these two sets. An instance matching system can be
evaluated at different steps rather than only on the final results. In Figure 2.1, a basic
matching system checks all pairwise alignments between given repositories. However,
this practice is at the high complexity and time-consuming. The recent matching system
applies blocking as a step that reduces the number of comparisons. That mission of
blocking is to produce instance pairs that are less than the pairwise alignments but
contains as many expect coreferences as possible. Therefore, the evaluation of blocking
algorithms is as important as of the final result. Two evaluation metrics are used for
blocking: pair completeness and reduction ratio. For the final result, which is the
detected coreferences, there are three metrics: recall, precision, and F1. Let RS and RT
are the source and target repositories, respectively; let I is the set of detect coreferences;
A is the set of actual coreference; and C is the set of candidates (i.e., the result of
blocking); the evaluation metrics are defined as follows.

• Recall reflects the ability of the system at recognizing as many actual coreferences
as possible.

rec = |I ∩A|
|A|

(2.24)
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• Precision reflects the ability of the system at discriminating the actual coreference
and the impostors, i.e., the incorrectly detected coreferences.

prec = |I ∩A|
|I|

(2.25)

• F1 is a conciliation of recall and precision. F1 is the harmonic mean of recall and
precision.

f1 = 2×
( 1
rec

+ 1
prec

)−1
= 2× |I ∩A|

|I|+ |A| (2.26)

It is possibility that a system obtains very recall but low precision and vice-versa.
Therefore, F1 is considered to be the primary evaluation standard.

• Pair completeness reflects the ratio of correctly retained pairs after applying a
blocking algorithm. The pair completeness is equivalent to recall but is computed
based on the set of candidates.

pc = |C ∩A|
|A|

(2.27)

• Reduction ratio expresses the relative compactness of the candidate set com-
pared to the pairwise alignments of instances.

rr = 1− |C|
|RS | × |RT |

(2.28)

All evaluation metrics have the range of [0, 1] and the better performance comes with
the higher value.

We reviewed the basic and commonly used techniques in instance matching systems.
We also described how to evaluate the result of instance matching. Next, we discuss the
remarkable work contributing to the problem of instance matching.

2.6 Related work

Instance matching was founded a long time ago and has been widely studied. It was first
addressed by Halbert L. Dunn in early 1946 with the article titled “Record Linkage”
[33]. The problem was to match persons using the events in their life. The foundation
of modern record linkage is proposed in 1959 [96] and formalized after that ten years
[39]. Since 1990s, the development of computer contributed to the promotion of research

26



Chapter 2 Background and related work

on record linkage [160]. Record linkage has been studied under various names, includ-
ing entity resolution, coreference resolution, entity linking, data conciliation, etc., and
instance matching, the term we use in this dissertation.

There are some problems very similar to instance matching, such as data deduplication,
entity disambiguation, and ontology matching. Data deduplication [36, 129] performs
instance matching on one input repository. That is, the source and the target repos-
itories are identical. Entity disambiguation [49, 53] matches the mentions in text and
repositories’ instances. Ontology matching [19, 34, 71] is the problem of mapping two
ontologies, which include the instances of the classes, properties, and the relations (e.g.,
sub-classes and sub-relations). In instance matching, the mapping of properties is very
important. Therefore, ontology matching is considered as a closely related problem to
instance matching. In instance matching, especially for non-manual systems, the prop-
erty mappings are detected by the heuristic or learning algorithm. In such a case, the
alignment of property is almost identical to ontology matching in the aspect of schema
mapping (not the class mapping). However, the main difference is that the property
mappings used for instance matching is not necessary to be semantically correct. For
example, in instance matching, ‘first-name’ could be match to ‘full-name’ if the full-
name is unavailable for both of the repositories. But, in schema mapping of ontology
matching, such mapping is considered as problematic. Furthermore, because instance
matching has to deal with very large amounts of instances, the complexity of instance
matching is very high compared to ontology matching. Instance matching can be com-
bined with ontology matching. Such combination is potentially useful to improve the
their accuracy. The detected coreferences can support the matching of properties and
classes and vice-versa (e.g., two classes are same if many of their instances are coref-
erent). Combining the results of instance matching and ontology matching also brings
further benefits such as the detection of instance type (e.g., Obama is a president). In
this dissertation, we focus only on the problem of instance matching.

Researches on instance matching mainly include the proposals of determiners. However,
because of the large number of studies and the relationship to other problems (e.g.,
information retrieval, machine learning, and natural language processing), the quantity
of work contributing to other issues of instance matching are also considerable [36, 40,
44, 77, 129].

There are many classification criteria for the work related to instance matching. In
this section, we first review the existing instance matching frameworks. After that, we
review the previous work by each component of the general matching process. That is,
if a study focuses on different components, it may be mentioned multiple times in this
section.
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2.6.1 Instance matching framework

Many instance matching frameworks have been presented [75]. Popular frameworks in-
clude SERF [10], MARLIN [15], Active Atlas [143], FEBRL [22], TAILOR [35], MOMA
[152], SILK [155], LIMES [98], RIMOM [80], and AgreementMaker [27]. These frame-
works can be divided into groups based on different criteria, such as input and super-
vision. Considering the input, the first six frameworks focus on relational data and the
remaining work with linked data. Considering the supervision, Active Atlas, FEBRL,
MARLIN, and TAILOR offer the mechanism of learning-based while the others focus
on training-free, which is equivalent to specification-based matching.

• SILK [155] and LIMES [98] provides declarative languages for the user to specify
the property mappings, similarity aggregation, thresholds, blocking strategy, and
other minor parameters of the matching process. SILK and LIMES support a
diversity of similarity measures and aggregation. The difference between SILK
and LIMES is mainly about the efficiency. LIMES is a designed as a time-efficient
framework and is empirically proved to be significantly faster than SILK. However,
LIMES fails to response when being tested with large datasets [107]. Compared to
LIMES, SILK is considered as an easy-to-use framework so that it is more widely
used. SILK is implemented as identity resolution module of LDIF (Linked Data
Integration Framework) [141].

• AgreementMaker [27], and RiMOM [80] are ontology matching frameworks that
also support instance matching. These frameworks comprise an extensible archi-
tecture that enable performance tuning of a variety of matching methods (e.g.,
conceptual or structural granularity, manual or automatic). Although the main
focus of RiMOM is ontology matching, this framework is among the state-of-the-
art in terms of instance matching. The general idea of RiMOM is to combine
different matchers to obtain the highest performance. AgreementMaker is also a
famous framework in linked data community. This framework has been tested in
practical applications and reported in the Ontology Alignment Evaluation Initia-
tive (OAEI) competition [37]. Recently, AgreementMakerLight [38] is presented
as a flexible framework extended from AgreemenMaker. AgreementMakerLight
focuses more on efficiency as its target is large ontology matching problems. How-
ever, AgreementMakerLight currently supports only medium size datasets with
thousands of ontology elements.

• Matcher combination strategy like RiMOM is also a widely supported in many
frameworks. SERF [10] and MOMA [152] are also among them. SERF (Stan-
ford Entity Resolution Framework) simply considers individual matchers as “black

28



Chapter 2 Background and related work

boxes” and applies different algorithms to minimize the executions of each matcher
by tracking the previously compared values. The combination of individual match-
ers is represented as a disjunction of matching rules. MOMA (Mapping-based
Object Matching) provides an extensible library containing different matchers as
well as combination operators (e.g., average, maximum, weighted average, and
preference).

• MARLIN [15] and Active Atlas [143] are pure-supervised frameworks that follow
the classification-based matching and provide the mechanism for training and pre-
diction procedure. Active Atlas adopts semi-supervised learning for reducing the
training examples. It combines several decision trees by voting strategy in order
to pick the most informative examples for the next learning iteration. MARLIN
(Multiply Adaptive Record Linkage with Induction) applies a two-steps learning.
The first step is to optimize the matchers on a single attribute. The second step is
to combine the tuned matchers using SVM algorithm. The main issue of MARLIN
and Active Atlas is the scalability as their learning routine is expensive. Active
Atlas follows semi-supervised that selects the next examples by checking all the
training set. Meanwhile, MARLIN separates the optimizations into two steps
which actually can be implicitly combined at once.

• TAILOR [35] and FEBRL [22] are hybrid toolboxes for instance matching support-
ing non-training as well as training-based matching. TAILOR provides five differ-
ent similarity measures (e.g., hamming distance, edit distance, Jaro, and Soundex)
and two rule-based matchers whose mechanism is the decision tree. FEBRL is de-
veloped for the biomedical domain and is a freely available as an open-source
software. It supports a wide range of 26 similarity measures and applies SVM
classifier.

The existing frameworks include several limitations. None of them support at the same
time the extensible (e.g., the inclusion of similarity measure), flexible (e.g., the selection
of determiner: specification or classification), and time efficient. Furthermore, memory
efficient is not in their goals although some are designed with the mission of matching
large datasets.

2.6.2 Similarity and matching score estimation

Similarity measure, mainly for strings, is an important component of instance matching.
In addition to the basic similarities mentioned in Section 2.3.1.1, here we discuss other
notably advanced similarities. We classify the similarities into three groups: corpus-
based, similarity flooding, and learning-based.
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• Corpus-based. Corpus includes the definition of raw text data and knowledge-
base (e.g., WordNet). All knowledge-based measures focus on the semantic similar-
ity of texts by leveraging the synonyms or hyponyms offered by the knowledge-base
[93, 94, 124]. However, using synonyms in similarity measures is computationally
expensive. For reducing the complexity, efficient methods have been proposed with
respective to different targets. Instance matching and related problems are among
the targets. Lu et at. propose an efficient algorithm for matching strings based
on the synonym similarity [85]. A so-called selective-expansion, which utilizes a
novel indexing structure SI-tree, has been presented. Rodríguez et al. propose a
domain-independent semantic similarity measure for entity of different ontologies
[133]. The general idea is to determine the similar entity classes by using matching
methods over synonym sets, semantic neighborhoods and distinguishing features
that are further classified into parts, functions, and attributes. STS [63] is simi-
larity using a modified version of the LCS (Longest Common Subsequence). This
measure uses both of corpus and lexical information in computing the similarity.
In addition, different from other semantic measures, STS measure focuses on the
similarity between two sentences or short texts.

The most prominent statistic-based similarity is the Google similarity distance
[25], which relies on a raw-text corpus. This similarity is estimated based on the
co-occurrence probability of the given strings. Google similarity is used widely in
many string matching tasks as it is believed to capture the semantic similarities
such as synonym and hyponyms.

Although semantic similarities are advanced measures, due to the complexity of
this kind of semantic similarity, current matching systems have not included them.
The main reason is that corpus-based similarity can be useful in instance matching
when estimating the similarity of long strings rather than short strings. A short
string usually contains the information of name and has less probability to be
variant. However, a long string is frequently used to store a short description
about the entity and have more chance to be modified with semantically related
words.

• Similarity flooding. Traditional approaches compute the similarity of instances
based on the literal similarities, which reflect the correlation of properties. Similar-
ity flooding [87, 89] is an approach to estimate the similarity of instances when the
literal similarities are unavailable but the relationship of instances are given (e.g.
graph data). The general idea of similarity flooding is to consider the relationships
as edges of a graph. The similarities of instances are propagated over the graph us-
ing structural information (e.g., degree of nodes and type of relations). Similarity
flooding is commonly used in reasoning-based instance matching [87, 89].
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• Learning-based. Learning of similarities is a considerable advantage of super-
vised instance matching. Many supervised systems treat the similarity learning as
an important task [15, 81, 97, 143]. In such systems, a large collection of similarity
measures is chosen at the beginning and refined during the learning process.

2.6.3 Property mapping

Property mapping is closely related to ontology matching [19, 71, 144]. However, ontol-
ogy matching usually focuses on schema information (e.g., structural, lexical, and de-
scriptive information) whereas property mapping in instance matching mainly is mainly
the observation on instances.

Property mapping in instance matching is formed by the mechanism of determiner.
For manual approach, which is schema-dependent, the mappings are constructed by
user or domain expert [27, 48, 68, 69, 80, 80, 118, 125, 135]. For automatic approach,
which is schema-independent, the mappings are automatically detected by statistical
methods. These methods are mainly based on the overlap of values described by the
properties. [5, 102, 112]. In addition, supervised specification-based instance matching
is also considered as domain-independent because the property mappings are optimized
by the learning process [58, 60, 61, 99–101]. For this approach, initial property mappings
are explicitly or implicitly defined and a learning algorithm is used to select the optimal
property mappings. Supervised methods so far produce the best quality mappings and
sometimes even better than the manual approach. The reason is that they consider the
relationship of properties based on the actual data, which a domain expert may not
acknowledge by just investigating the schema and the experience on other datasets.

2.6.4 Blocking and indexing

2.6.4.1 Blocking

Blocking is to generate the candidates for instance matching by filtering only potentially
coreferent pairs of instances. The early stage of blocking is naive approach, which
applies an “accept all” filter on the pairwise instances [35, 50, 147]. This approach is
computationally expensive and impractical for large repositories. Therefore, advanced
blocking methods have been proposed [8, 23]. The notable methods comprise Key-based
blocking [65], sorted neighborhood [50, 166], clustering [88, 121], weighting [62, 90, 98,
155], and learning [14, 29, 72, 73, 122].
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• Key-based method [65] applies an index function for one or a few selected at-
tributes and simply groups the instances that share the same value into one block.

• Sorted neighborhood [50] arranges the instances into an order of lexicographic
feature and slides a fixed-size window to build blocks. Adaptive sorted neighbor-
hood [166] is an advanced version of sorted neighborhood. This method instead of
using a fixed size of sliding window adaptively adjusts the size based on the fre-
quency of blocking keys. Therefore, it reduces number of candidates and improve
the efficiency of the matching process.

• Canopy blocking is similar to iterative clustering. The method randomly selects
a canopy center and the instances having acceptable distances to this center are put
to current cluster. For reducing the size of clusters, a tight threshold is configured
to determine the certain candidates.

Baxter et al. conduct an interesting comparison between Key-based blocking,
Sorted neighborhood, and Canopy clustering [8]. The experimental results show
that Canopy clustering outperforms the two others when using the appropriate
parameters.

• Attribute clustering is a clustering algorithm that groups the instances by sim-
ilar values on given pair of properties. The most recent algorithm of this approach
is the trigrams-based clustering [121]. It works by grouping properties having
many overlaps between the values described by the properties. The overlap sim-
ilarity is based on a trigram-based score. Each property pair in the same group
generates a block of instances sharing a token described by those properties. At-
tribute clustering sometimes generates many candidates due to the rich ambiguity
of some tokens. Block purging [120] provides a simple mechanism to prune off
those situations. The technique is to discard blocks that have too many instance
pairs. The general idea is to assume that a token shared by many instances makes
less discrimination and tends to be a stop-word.

Abovementioned methods consider only the sharing or non-sharing tokens. This
approach offers the very high completeness of the blocking result. However, in
some time-limited matching task, the number of candidates is still very high.

• Weighting methods [90, 98, 155] assign an impact factor for each indexed token
and instance. Based on those factors, this method returns the candidates in ac-
cordance with a ranked list. Usually, weighting methods are used in hybrid with
attribute clustering. For example, SILK [155] and Zhishi.Links [117] look up can-
didates using BM25 weighting scheme. SILK supports a user-specified interface
to configure the mapping alignment, while Zhishi.Links uses the alignment for the
name of instances.
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On some clean datasets, a weighting method has proved to reduce zero loss in
recall [62]. However, weighting methods require a threshold value of an expected
K parameter to select the topmost related instances of the target repository for
each instance of the source repository. Therefore, in many real large datasets,
weighting method achieve a modest of 80% completeness. An example for this
situation is using DBpedia spotlight on NYTimes-DBpedia dataset.

For non-training methods, the blocking keys and property mappings are selected
by the domain expert and have shown generally effective performance [51, 161].
However, the manual process may be expensive, as the expertise may be unavail-
able for some domains. Therefore, learning methods are developed for reducing
the human involvement.

• Learning approach iteratively optimizes the blocking model by reflecting the
blocking result and expected candidates (supervised) or based on pseudo and
heuristic metrics (unsupervised).

Song and Heflin proposed an algorithm to combine multiple property mappings
that increase the discriminability and the coverage metrics [148], which are as-
sumed to express the goodness of the blocking model. Papadakis et al. introduce
supervised meta-blocking that learns the classification models for recognizing the
candidates [122]. The authors presented some generic features that combine a low
extraction cost with high discriminatory power.

Supervised blocking also attracts many researches. Bilenko et al. and Michelson
& Knoblock focus on supervised adaptive blocking, which use learning algorithms
for automatically choosing the instance’s feature selection function [14]. BSL [92]
employed supervised learning for blocking scheme, which is a disjunction of con-
junctions of blocking functions. minHash [29] algorithm learns the blocking scheme
for a given CNF determiner. This algorithm maximizes the pair completeness by
generalizing the CNF clauses. Because deriving from the original CNF determiner,
the model generated by minHash guarantees to produce the candidates with no loss
in pair complemented compared to directly applying the determiner on pairwise
instances.

Recently, Kejriwal and Miranker propose a hybrid method that combines unsu-
pervised and supervised learning for blocking model [72, 73]. The first step of this
approach is to perform dataset mapping and the second step learns the blocking
schemes on structurally heterogeneous repositories.

In addition, candidate generation is not only helpful for further matching, but also can
be applied as a key component for interlinking. In [159], instance matching task is
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conducted by combining a core entity resolution algorithm with the blocking and put
them in an iterative process.

Although many blocking algorithms have been proposed, the scalability is still not fully
solved as giving a billion scale datasets, state-of-the-art frameworks can not produce the
candidate set with high completeness [98, 155].

2.6.4.2 Indexing

The inverted index is a widely used technique in many fields of data engineering. The
index contains the terms as well as the respective documents in where each term appears.
Inverted index is also used in instance matching to speeding up the lookup of instances
given a value [2, 9, 23, 127, 156, 158, 164, 165].

The difference between systems or frameworks is the value representation (i.e., the orig-
inal value or a coding of the value). For example, PPJoin+ [165] considers the order
of tokens in an instance for the lighter index but faster retrieval. BiTrieJoin [156] sup-
ports efficient edit similarity with a technique called sub-trie pruning. Ed-Join [164]
indexes the n-grams of tokens. IndexChunk [127] also used n-grams but also focuses on
character-level to deal with the mismatching cases such as spelling errors. FastJoin [158]
applies fuzzy matching that directly considers both token and character level similarity,
rather than indexing the n-grams like IndexChunk and Ed-join.

Weighted index is an advanced technique that comprises both inverted index and the
weight of terms and instances. DBpedia spotlight [90], SILK [155], LIMES [98], and [59]
apply weighted index. The key technique is to index instances to enable efficient lookup
with weight. Given a list of terms, the instances similar to the query can be efficiently re-
trieved. The retrieval results are ranked and presented with the relevant scores. Lucene1

is a powerful weighted indexer. The main feature of Lucene is the fast text search, which
is represented as a query on a database. Lucene is a commonly used indexer for infor-
mation retrieval and implemented in many instance matching frameworks/systems, such
as SILK, LIMES, Knofuss, etc...

2.6.5 Specification-based determiner

Specification-based determiners detect the coreferences using the specification of prop-
erty mappings, similarity measures, and matching thresholds. There are many types of
specification-based determiner and the classification criteria are also diverse. For ex-
ample, if we consider the supervision aspect, there are unsupervised, semi-supervised,

1http://lucene.apache.org/
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and supervised systems. If we consider the construction of specification, there are man-
ual and automatic approaches. If we consider the usage of the specification, there are
reasoning, crowdsourcing, and filtering-based systems. Because of that diversity, it is
not completely separable if we divide the determiners by a particular criterion. Here we
review the systems of notable groups instead of classifying all the previous work.

2.6.5.1 Manual approach

Manual approach constructs the specification with the help of the human, usually a
domain expert. Given two repositories, an expert has to investigate the information
of data domain, schema, properties, and sometimes with some example instances. Re-
markable work of manual approach include RiMOM [80], LinkedMDB [48], MusicBrainz
[130], Zhishi.Links [117, 118], KD2R [125], LN2R [135], LogMap [68, 69], and SAIM [86].
The mechanisms of these systems and frameworks are similar to the basic workflow of
instance matching (Figure 2.1).

• RiMOM [80] works by estimating the similarity of each property mappings and
combine them by a weighted vector. This vector is configured by a user and is
tuned for different datasets.

• Zhishi.Links [117, 118] is among state-of-the-art matchers. This system performs
two-step matching. In the first step, the label of objects are quickly compared
and the very different instances are discarded. In the second step, a complex
metric at a semantic level is applied. This system improves the efficiency by re-
trieving similar instances using a weighting scheme (e.g. TF-IDF, BM25). This
mechanism is adopted from SILK framework. LinkedMDB [48] focuses on the
movie domain. This system matches the films, directors, producers, and actors
between the LinkedMDB database and the others (e.g., DBpedia, YAGO, Geon-
ames, MusicBrainz). LogMap [68, 69] and MusicBrainz [130] also very similar to
LinkedMDB and Zhishi.Links. The difference is that these systems focus only on
matching the label of instances.

• RDF-AI [139] considers instances as a graph and uses graph matching algorithms.
A graph of instances is represented by many nodes and edges, where nodes are
instances and values, and the edges are the properties, and relationship between
the instances.

• KD2R [125] is a key discovery algorithm that detects the properties with most
distinct values. Although KD2R is an automatic algorithm, it relies on implicit
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property mappings because it assumes the same properties are used for different
repositories.

• SAIM [86] is a semi-automatic system which allows the user to define the property
mappings. SAIM provides a simple and effective tool to support users in the
creation of matching specifications.

2.6.5.2 Automatic approach

This approach constructs the specification automatically and is also called schema-
independent because it works without the specification of the schema. SERIMI [4, 5],
SLINT [113], and PARIS [151] are representatives of automatic approach.

SERIMI and SLINT select the useful properties and their alignments for the specifica-
tion. SERIMI uses the entropy and SLINT uses the discriminability of the values. The
similarity aggregation of these systems is the simple average. Although these systems
adopt simple architecture, they have high capability of schema-independency and ob-
tained good evaluation result. SERIMI placed at the second rank in the OAEI 2011
Instance Matching challenge [37]. Later, SLINT reported a similar experiment at a
higher result. SLINT+ [102, 112] is the extension of SLINT with higher scalability but
resolving the problem of expensive property mappings. However, SLINT+ cannot sup-
port large scale matching tasks because of the high computational operator in blocking
step.

PARIS [151] is an automatic system which simultaneously matches the instances, classes,
properties, and values using probability propagation. PARIS starts with the literal sim-
ilarity on some conventional properties (e.g. name, label) and then estimates the equiv-
alent properties, classes, and instances through many iterations. PARIS is considered
as an advanced system because of the multiple goals. However, PARIS is not scalable
because of the high computational complexity.

2.6.5.3 Reasoning

This approach applies logical expression or reasoning mechanism to determine the coref-
erent state.

• LN2R [135], CODI [119], and ASMOV [66] are the determiners which combine
numerical and logical computation. The core idea of these systems is the disjunc-
tion of logical clauses which implement the numerical condition for each property
mappings.
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• Getoor pointed out that all instance matching tasks can be viewed as a clustering
problem if the data contain the relationship between instances and thus can be
represented by graphs [13]. Furthermore, for graph-based instance matching, the
use of collective information is well-studied [11, 32, 84]. Notably, Dong et al. ex-
amined the relationships between instances on multiple aspects [32]. The relations
are propagated over dependency graphs. The system was applied to multiple real
world datasets and showed the good effectiveness. Melnik et al. and Marshall et
al. proposed similarity flooding algorithms [87, 89] based on the reasoning over
the graph-based repositories. The similarity of instances is indirectly computed
using the structural information of the graph. The advantage of this approach
is the independence on the property mappings as well as the literal similarities.
However, the drawback is the potential weakness of applicability to relational data,
on which the power of graph-based reasoning is not fully leveraged.

• Niepert et al. presented a probabilistic-logical framework for ontology matching
[115]. This framework is based on Markov logic and defines the syntax formaliza-
tion for ontology matching.

• Hogan et al. proposed an approach that combines reasoning and statistical ana-
lyzes [54]. This approach uses existing coreferences to predict the other relations.
The semantics of functional properties, inverse-functional properties, and cardi-
nality restrictions are applied.

• idMesh [28] lets users define the similarity between arbitrary instances then prob-
abilistically infers the coreferences based on uncertain links using constraint satis-
faction mechanisms.

• WebPIE inference engine [153] provides distributed computation over RDF graph.
The objective of WebPIE is to scale up the reasoning engine into 100 billion triple
tasks. In order to do that, WebPIE is built upon the Hadoop platform and is
deployed on a computer cluster of 64 machines.

The main disadvantage of reasoning approaches is the heavy dependency on the cor-
rectness of logical expressions. The reasoning-based approach usually comes with high
precision but low recall and should be used in matching task requiring high precision.

2.6.5.4 Crowdsourcing

Crowdsourcing for instance matching is a hybrid human-machine approach. The role of
human is to verify the detect potential coreferences and the role of the machine is to
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find and present those options. In instance matching, the machine usually determines
the matching score based on machine learning approach or logical reasoning.

• Vesdapunt et al. proposed graph-based crowdsourcing framework for instance
matching [154]. The input repositories are represented by graphs with all in-
stances are nodes and the edges contain the probability reflecting the coreferent
possibility (i.e., given by a machine Learning algorithm). The goal is to resolve the
coreferences by asking users to verify the equality nodes. leveraging. Transitivity
of the coreferent relation is also applied to speeding up the process.

• CrowdER [157],CrowdMap [137], and ZenCrowd [30] are also hybrid systems.
CrowdER is instance matching system while CrowdMap [137] and ZenCrowd [30]
are designed for ontology matching. However, the mechanism of these systems
shares the general idea like [154]. The machine work also is the initial overall data
and user are asked to verify the most likely coreferences.

2.6.5.5 Learning

Learning approach includes machine learning and supervised search algorithms.

• EUCLID [101], Knofuss [116], GenLink [60], and EAGLE [100] use genetic al-
gorithm to learn the specification. The matching rule is encoded with property
mappings and the goal of learning is to optimize the combination of mappings.
Among these systems, only Knofuss is unsupervised and thus is equivalent to an
automatic system. In such case, Knofuss considers pseudo-metrics for precision,
recall, and F1 score as the optimization goal. The effectiveness that this system
offers is not higher than SLINT+ and SERIMI but it takes a long time to produce
a specification. This is also the main issue of the genetic algorithm-based system.
Many iterations are needed to obtain the final optimal version of the specification.

• In order to speed up the learning process, ActiveGenLink [61] is designed as an
active learning implementation of GenLink. Similarly, RAVEN [99] is also an active
learning-based system that learns the specification that uses linear or boolean
classifier as the determiner.

• ADL [58] is a recently proposed system for learning of specification. This system
takes the input of two specific classes of instances and finds the good property
mappings. The limitation of ADL is that it selects the mappings by considering
each mapping independently with the others. That is, it ignores the collective
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information of using multiple properties, which can lead to a redundant and bias
determiner.

• ObjectCoref [55–57] employs a two steps approach for detecting coreferences. In
the first step, an initial set of coreferences is obtained by using existing coreferences,
inverse functional property, and functional property. In a second step, a machine
learning technique learns the discriminability of property mappings. Based on that
information, good property mappings are used to construct the determiner.

2.6.6 Classification-based determiner

Classification is applied in many problems. In instance matching, it is used to predict
the coreferent state of two given instances. Recently survey and comparison between
those systems can be found in [150] and [76].

• Bhattacharya et al. and Hall et. al studied the unsupervised instance matching
and deduplication on bibliography domain [12, 47]. The authors argued that there
should be dependencies between the collective information used for matching, such
as title, author, and venue. The authors showed that Dirichlet process is useful
for representing such dependencies and also can capture the relations between
instance through a hidden group variable. The studies extended Dirichlet mixture
by two different manners. In [47], a set of latent variables is utilized to monitor
the Dirichlet-multinomial model for titles and a string similarity model for venues.
In [12], Latent Dirichlet Allocation model is used to model the collaborative group
to explain co-authorships.

Unsupervised methods do not request training data. However, coming with this
advantage is many drawbacks, including the complexity of learning algorithms and
the low accuracy. Therefore, supervised instance matching is more popular.

• For supervised instance matching, many classifiers have been used. For example,
SVM is used in MARLIN [15], FEBRL [22], and the work in [20]; Neural network is
used in SEMINT [81]; Decision tree is used in LDIM [114], Semiboost [74], and the
work in [134]. Using classifier, the systems need to construct the feature vectors,
which is formed by the literal similarities and other useful information if any (e.g.,
class, type). Most systems follow the supervised mechanism and rely on curated
data.

• In order to reduce the curation effort, semi-supervised, active learning and transfer
learning are applied [21, 134, 138]. Semiboost [74] employs a semi-supervised
learning approach that uses the trained model to predict the unlabeled data. The
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examples with high confidence are used to retrain the classifier in order to improve
the compatibility of the model and the data. This approach obtained good result
compared to MARLIN and FEBRL but still far from perfect. Moreover, because
the model is trained many times on high confidence examples, the initialization
of the model is very important and is prone to over-fitting. Rong et at. applied
active learning and transfer learning with decision tree classifier [134]. Transfer
learning is done by manually mapping the properties of different repositories. The
idea of transfer learning is important for extending the portability of supervised
matchers.

The limitation of previous classification-based systems is that they simply employ the
existing classifier, usually the state-of-the-art for instance matching. However, instance
matching also has its special characteristics. One of the important points is that in
the instance matching has to cope with ambiguity at the different levels for different
terms (i.e. tokens, object values). Therefore, we are motivated from using supervised
ranking in instance matching. The last section of our review is about the learning to
rank techniques.

2.6.7 Learning to rank

Learning to rank is a subfield of machine learning that aims at predicting the order of
data examples. The early form of learning to rank is the Ranking SVM, proposed in
2000 and re-exposition in 2002 by Joachims [70]. Ranking SVM is initially designed for
optimizing search engines. In [70], the author constructed the training data by click-
through logs (i.e. helpful search results according to users’ preference). Each example
reflects the relation between the query and the opened web pages in the order to clicks.
That is, given a query and some web pages, the trained model can be used to rank the
web pages by their relevance to the query.

In general, learning to rank can be applied to any problem whose performance is sup-
ported by a correctly ranked list of relevant examples. Learning to rank has not been
used in instance matching. In this dissertation, we argue that instance matching can
also be viewed as an information retrieval problem where the query is the instances of
source repository and the task is to retrieve the most relevant instances in the target.

After the introduction of Ranking SVM, many approaches for learning to rank have
been presented. [18]. Liu [83] categorized learning to rank algorithms into three groups:
Pointwise [26, 42, 142], Pairwise [17, 41, 70, 142], and Listwise [17, 163].
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• Pointwise: Each example represents a pair of entities and has a numerical or
ordinal score. That is, the input of pointwise approach is similar to that of usual
regression problem. Fuhr applied polynomial regression [42], Cooper et al. and
Sculley applied logistic regression [142] for information retrieval problem.

• Pairwise. This is an advanced version of pointwise approach. In this case, the
ranking problem is formulated by a classification problem. Each training example
is an ordinal combination of two entities and the accompanied label for training
is the binary value reflecting the correctness of order. For example, given for a
query q and three documents d1, d2, d3. For three documents, there are six pairs
(d1, d2), (d2, d1), (d1, d3), (d2, d3), and (d3, d2). The label for each pair is either 1
or -1 (or 0) which denotes the order is correct or not.

Ranking SVM [70] is the first and the most widely used among pairwise learning
techniques. Rankboost [41] combines pairwise ranking and boosting approach to
of produce highly accurate prediction rules. CRR [142] linearly combines logistic
regression and pairwise ranking. The experiment result showed good performance
on LETOR [128], a standard dataset of learning to rank. However, CRR is a
shortage of an interpretation of the probabilistic model.

• Listwise. Cao et al. argued that pairwise ranking ignores the fact that the final
goal of ranking is to build a ranked list, not to predict only the order of two entities
[17]. The authors proposed the first framework for listwise ranking that uses Neural
network on the top of probabilistic models, which represent the relation between
entities in a given list. Listwise is considered as the most difficult learning to rank
task because it has to model the order of a list into an example. The optimization
process is to minimize a loss function defined on the predicted list and the actual
data. Xia et al. conducted a theoretical analysis of listwise ranking based on
the loss functions, which directly affect the consistency, soundness, continuity,
differentiability, convexity, and efficiency [163]. Based on that analysis, the authors
proposed ListMLE, which is proved to be better satisfy those properties compared
to other listwise approaches.

Except pointwise ranking, the other two learning to rank approaches usually have to
cope with large training data because of many combinations of entities compared to
the traditional learning task. Therefore, an efficient method for training the model is
important. The model of learning to rank can be optimized by gradient descent [16] and
thus the efficient stochastic gradient descent [142].

We have reviewed notable work related to instance matching. Next, we summarize the
limitations and the spaces of improvement.
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2.7 Open problems

From the review of related work, we can find that instance matching is a well-studied
problem that attracts many researches. Nevertheless, there are still many unresolved
problems. Among them, the prominent problems include the following points.

• The shortage of a highly scalable framework: Although there are some
frameworks for instance matching, they are not really fit to the up-to-date big
data. Matching on large repositories becomes difficult task for existing framework
because they were built upon complicated data structures designed for multiple
purposes. In addition, the mechanism of those frameworks ignores the issue of
workload and memory balancing. That leads to the intractable memory manage-
ment and fails to work with large repositories.

• An automatic schema-independent approach: In the context of unsuper-
vised, when the curated data for automatic construction of matching specification
is not available, the manual approach has shown the acceptable results. However,
being able to work with any repository is very important for an instance matching
system and manual approach fails to satisfy this requirement. Given a repository
without any description of the schema or belonging to an inexperienced domain, it
is difficult to accurately define an effective specification. The schema-independent
approach is then very important to be studied.

• More effective and efficient blocking scheme: With the desire of high pair
completeness (Section 2.5), many methods considered character-level of string to-
kens and produce too many candidates. On the other hands, some methods applied
weighting to reduce the size of candidate set but failed to retain an expected num-
ber of coreferences. Weighting methods also suffer from high complexity and is not
suitable for large datasets. Besides that, previous blocking schemes were mainly
tested small, artificial, or limited domains of data, so that the performance on
real and large data is not fully evaluated. A study on simple but effective block-
ing strategy and evaluation on plenty of domains are therefore very important.
Furthermore, there is a necessity of developing a learning algorithm for blocking
scheme in the supervised scenario.

• Better learning algorithm for supervised specification-based matching:
The genetic algorithm so far is the best specification learning option in term of
effectiveness [60, 100, 116]. However, it is empirically inefficient because of taking
too many iterations to converge. ADL [58] offers a minimal cost algorithm but
fails to find the optimal specification because it ignores the effect made by the
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combination of different settings. More effective and efficient learning algorithm
is considered as one of the unresolved problems.

• Further improvements for classifier-based matching: Current classifier-
based matching systems do not include the mechanism of adaptive filtering, such
as the effective stable matching. The stable matching can also be interpreted
as the local ranking of an instance pair in its block. However, the objective of
ranking is not to discriminate the positive and negative of coreferences. That
is, using either ranking or traditional classification is insufficient to deliver the
optimal performance. Therefore, the combination of ranking and classification,
which makes the classifiers aware of the ranking factor is a feasible but unsolved
task.
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2.8 Summary

Instance matching is an important problem with many challenging issues. The issues
cover from heterogeneity, ambiguity, and scalability to the detail techniques, including
property mapping, blocking, similarity estimation, and the determiner.

In this chapter, we described the basis of the techniques used in instance matching.
We also reviewed the related work in order to address the unresolved problems. Such
problems consist of the shortage of a scalable instance matching framework, the necessity
of schema-independent approach, more effective blocking, the supervised methods for
specification construction, and ranking method for classifier-based systems.

On the basis of those limitations, we envision the space for improvements and the moti-
vations of our work. As we mentioned in Section 1.2, we have achieved some optimistic
results. From Chapter 3 through 6, we describe the detail of our contributions.
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3
ScSLINT: Framework for large

scale instance matching

This chapter describes the scalable instance matching framework ScSLINT . We begin
with the motivation of developing ScSLINT (Section 3.1). After that, we detail the
framework (Section 3.2). In experiment (Section 3.3), we show that ScSLINT is efficient
in term of time and memory. The comparison to other frameworks is also reported.
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3.1 Motivation

The development of digital data induces the scalability issue to all problems. Instance
matching is not an exception. Existing frameworks for instance matching have shown
the usefulness. However, still there are some limitations, not only scalability but also
other issues.

• Indexing. Previous frameworks used either weighted index or inverted index.
The weighted index has the advantage of retrieving the top potential coreferences
but the drawback is the low pair completeness (Section 2.5). The inverted index
is fast but none of the existing frameworks using this index structure is freely
available. Furthermore, existing frameworks reuse the indexing modules whose
job is to manage many indexes different from the need for instance matching.
Therefore, the index is complicated and may not reach the optimal performance.
We focus on building a framework which follows the inverted index and is an
open-source software so that it may be useful for further researches.

• Workload. The balance between memory and time efficiency is very important.
Existing frameworks ignore the management of workload. They either incremen-
tally use the repository (i.e. process one instance at once) or load the bulk of the
whole repository into memory [98, 155]. Processing the data by this manner may
fail to deal with scalability on large datasets. We take the problem of workload
balancing into account when developing the framework.

• Extensibility. A framework may not support all functions such as different data
acquisitions, similarity measures, blocking strategies, or determiners. Therefore,
extensibility is important for users who expect a modification on existing frame-
work. As previous frameworks do not allow such extensions, it is impossible to
include a new algorithm or any similarity metric. We aim at developing a frame-
work that supports the injection of new elements in every module of the matching
process.

• Portability. Different from previous frameworks, we treat the input repositories
as a unified representation, in which the instances are stored as a list of property-
value pairs. An indexing module can be used to build the same data format from
different inputs. Therefore, the framework in our objective is to work with different
types of data (e.g., relational data and linked data).

• Soundness. Some of previous frameworks [98, 155] are built for large scale in-
stance matching. However, they so far satisfied only the matching tasks on small
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Figure 3.1: The architecture of ScSLINT .

and medium datasets, according to the reports. We are interested in testing the
frameworks on very large datasets to see the capability.

We developed ScSLINT framework [107] for instance matching on large scale datasets.
The framework provides the workload balancing mechanism, extensibility, portability,
and the performance is verified on very large datasets. ScSLINT is written in C++
language and is optimized for Linux and Windows systems. The binary and source code
of ScSLINT are openly available at http://ri-www.nii.ac.jp/ScSLINT/.

3.2 Methodology

3.2.1 Workflow

The architecture of ScSLINT is depicted by Figure 3.1. The input RS and RT are
the indexed repositories. The output is the set of coreferences. In order to produce the
output, there are six components need to be executed: property alignment generator,
similarity function generator, blocking, specification creator, similarity aggregator, and
determiner. The mission of each component is as follows.

• Property alignment generator produces the property mappings between the
schemas of RS and RT . Each mapping is expected to describe the same attribute
of the instances

• Similarity function generator creates the similarity functions based on the
generated property mappings.
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• Blocking creates the candidates for matching. A candidate is a pair of instances
having potentiality to be coreferent.

• Specification creator generates the specification of matching score estimation. A
specification includes the similarity functions, similarity aggregation function, and
necessary thresholds. For classification-based matching, the specification is used
only for computing the literal similarities. In that case, the similarity aggregation
function and other matching threshold are ignored.

• Similarity aggregator executes the similarity functions for each candidate. For
a specification-based matching, this component computes the final matching scores
and feed those results to the next step. For a classification-based matching, this
component delivers all literal similarities estimated by similarity functions.

• Determiner produces the coreferences. For a specification-based matching, it
relies on the specification and the matching scores. For a classification-based
matching, the determiner is a classifier and the input that it takes are the lit-
eral similarities.

The above workflow is the general architecture of ScSLINT . Each component al-
lows user’s intervention to define the processing mechanism. For supervised instance
matching, the workflow can be applied for labeled data and unlabeled data separately.
Concretely, the illustration of workflow for supervised scenario is given in Figure 3.2.
According to this figure, the supervised instance matching consists of three steps. The
first step is the learning of blocking model. In this step, labeled data, which is the
set of known coreferences, are input to the learning algorithm, in order to generate the
blocking model. In the second and third steps, blocking model is used to generate the
labeled candidates and unlabeled candidates, respectively. Labeled candidates are used
to learn the determiner model. The last step is to apply the learned determiner on the
candidates generated by the trained blocking model.

The learning of blocking model and the generation of candidates can be considered as
equivalent to the blocking component in the general workflow. The determiner model
also plays the role of the specification. Therefore, ScSLINT is generic and is compatible
with multiple approaches. In addition, in each component of ScSLINT , we implement
the support tool for the mission of the component, rather than the algorithm solving
the mission. The extensibility of ScSLINT is reflected at the point that it allows
the intervention at any component by including the algorithms (e.g., property mapping
algorithm, and blocking algorithm) for the components.

Next, we describe the detail of each component.
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Table 3.1: Example of property mappings and assigned similarity measures.

Source property Target property Similarity measures

label name Levenshtein, TFIDF-Cosine
alias Levenshtein, TFIDF-Cosine
leader Levenshtein, TFIDF-Cosine

establish named date ExactMatch

population area size Reversed difference
elevation Reversed difference

3.2.2 Property alignment generator

This component creates the property mappings between the schema of RS and RT .
A property alignment is expected to describe the same attribute. In order to detect
such mappings, an algorithm is used to compare the values described by two properties.
Therefore, ScSLINT provides the tool for fast querying the values. The queries are done
upon an indexed structure, which is described in Section 3.2.8. Furthermore, for very
large datasets, a frequent property may describe the values whose quantity is almost the
size of the repository (e.g., name and label). In this case, comparing just two properties
may be a scalability issue to many machine. ScSLINT supports partial querying for
each property for solving this issue.

3.2.3 Similarity function generator

This component uses the property mappings generated previously to create a list of initial
similarity functions. A similarity function is specified by two pieces of information: a
property alignment 〈pS , pT 〉 and a similarity measure σ. For two instances x ∈ RS

and y ∈ RT , a similarity function calculates the similarity σ(pS(x), pT (y)) where p(x)
extracts all values of x declared by p. Examples of property mappings and similarity
measures are provided by Table 3.1.

ScSLINT supports some built-in similarity metrics and is extensible for any new met-
rics. In ScSLINT , the data type of property is taken into account. That is, an inter-
vention can specify the suitable similarity metrics for different data types. The current
version of ScSLINT includes the following metrics. For decimal values, ScSLINT sup-
ports the reverse difference (Section 2.3.1.3). For date and URI, ScSLINT supports
exact matching. For string values, ScSLINT supports TF-IDF, Levenshtein, Jaro,
Jaro-Winkler, exact matching, Jaccard, Dice, and common substring.

The similarity function generator creates only the prototype rather than execute (i.e.
invoke) the functions. The similarity functions are later executed in similarity aggregator
component.
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3.2.4 Blocking

The mission of the candidate generator is to reduce the huge number of pairwise align-
ments between instances from |RS | × |RT | pairs into a significant smaller number. This
component detects the candidates of potentially coreferent instances. In order to obtain
that goal, the basic idea is to group the instance sharing some similar tokens. Therefore,
ScSLINT provides the mechanism of fast retrieval of the instances containing the in-
terested tokens. This is done by the index structure, which will be described in Section
3.2.8.

3.2.5 Specification creator

A specification contains the parameters for further components. It describes similarity
functions, similarity aggregator, and determiner. This component is installed to wrap
the further extension in instance matching. For manual instance matching, specification
is created by user or expert. For automatic instance matching, specification is created
by a heuristic method that constructs the similarity functions, similarity aggregator, and
the parameters of the determiner. For supervised instance matching, this component
plays the role of initial specification creator. The initial here is a default specification
that is later refined by a learning algorithm. For classification-based classifier, the de-
fault specification is important to create the examples, which are the vector of literal
similarities.

3.2.6 Similarity aggregator

In this component, the similarity functions are executed and their results are then ac-
cumulated into one final matching score. This is the most expensive component in the
matching process. The input of this component are the candidates. For large datasets,
the number of candidates can reach to billion pairs and storing all instances in main
memory is very costly. ScSLINT provides the mechanism of incremental processing in
this step. The detail is described later in Section 3.2.9. ScSLINT also applies parallel
processing for performance multiple comparisons at the same time.

For aggregator function, ScSLINT currently supports the following combinations: sum,
maximum, average, euclidean distance, and boolean aggregation. For boolean aggrega-
tion, the threshold for each literal similarity need to be specified by the intervention.
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Figure 3.3: P-O-S indexing.

3.2.7 Determiner

ScSLINT support different types of determiner: specification-based and classification-
based. A specification-based determiner usually applies thresholding or filtering tech-
niques. A classification-based determiner reuses classifier model to predict the corefer-
ences. Therefore, in this component, all ScSLINT need to provide is the information
access on the matching scores and the detailed literal similarities of candidates. Based
on such information, any determiner can find the necessary data for producing the coref-
erences.

We described the components of ScSLINT . Next we describe how ScSLINT is scalable
by indexing and workload balancing techniques.

3.2.8 Indexing

The purpose of indexing is to provide a fast access to the repositories on any detail
that is useful for the instance matching process. The first component of ScSLINT ,
property alignment, requires the index pairs of <property, token> for fast measuring
the similarity of properties. The blocking component requires the nested index pairs of
<<property,token>, instance>. Therefore, the first inverted index structure is designed
for these two purposes. An example of this index is given in Figure 3.3. In this figure,
S,P, and O stand for instance, property, and token, respectively. A token is defined as
a word of string or the whole object value of other data types.
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The second index structure is built for the similarity aggregator. This component takes
two instances as input, estimates the literal similarities, and aggregates the matching
score. Therefore, an index of <instance,property>,value> is necessary. An example of
this index is illustrated in Figure 3.4.

All index structures provide an O(1) complexity for accessing an expected key-value.
Therefore, the information access in ScSLINT is considered to be at maximum perfor-
mance. The building of these indexes is very fast, at a linear complexity, with respective
to the input repository. Furthermore, because the index provides random access to any
indexed key-value pair, the workload balancing becomes possible with simple techniques.

3.2.9 Workload balancing

Workload balancing is the technique of using a limited amount of main memory for
computation, given a large data that cannot fit all-at-once in the memory. This issue
frequently happens for many large scale computational tasks. Instance matching is not
an exception.

During the matching process (Figure 3.1), almost all components of ScSLINT have
to cope the problem of scalability. The first step is the matching of properties. A
repository can contains millions of properties in its schema (e.g., Freebase). Fortunately,
the comparison between two properties can be done by querying only their information,
instead of loading all properties. However, given a very large repository, a frequent
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property may describe million values (e.g., name, label, and description) and thus billion
tokens can be indexed. Therefore, even for one property, the workload management need
to be taken into account. In order to speed up this step, ScSLINT offers the mechanism
of partially querying the tokens of a given property.

In similarity aggregator, one important task is to estimate the literal similarities, given
many pairs of instances. It is obvious that loading a bulk of instances at one time is more
efficient than fetching one-by-one. However, an instance may be used multiple time if it
involves with different candidates. In that case, loading an instance many times reduces
the efficiency. Therefore a caching technique and a sorted set of candidates are utilized.
Caching is to keep the frequently used instance in the main memory. The candidates
are sorted by the order of a repository, usually the target repository as its has larger size
in most matching tasks. The ordering of candidates enables more effective caching. An
instance is kept in the main memory continuously for all comparisons related to itself.
An instance is removed from the cache only when it is not needed anymore. In other
words, an instance is loaded only one time for the repository selected for caching.

In fact, the above techniques are simple, but existing frameworks have not supported
yet, although it is possible to be included [155]. Those frameworks load all properties
or instances into main memory or storing all information on external memory. The
former causes the problem of memory shortage and the latter is a significant reduction
of processing speed. ScSLINT delivers a balance trade-off to obtain better performance
on a limited memory machine.

3.2.10 Use-cases

ScSLINT is developed in 2014 and is published in 2015 [107]. The use-cases of ScSLINT
so far include ASL [108], ScLink [111], and the learning of R2M feature.

• ASL is an automatic system focusing on domain-independent instance matching.

• ScLink is a supervised system focusing on high accuracy matching for heteroge-
neous repositories. ScLink is the result of a well-studied progress, whose products
include different techniques presented in different venues [104–106, 109].

• R2M is a feature that aims at combining the learning to rank and instance match-
ing, in the context of classification-based instance matching.

The detail of ASL, ScLink, and R2M are described in Chapter 4, 5, and 6, respectively.
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Table 3.2: Datasets used for testing ScSLINT .

ID Source repository Target repository Size
Name #Instances#Properties Name #Instances#Properties (×109)

D1 NYTimes loc 3,840 22DBpedia 4,183,461 45,858 16.06
D2 NYTimes org 6,045 20DBpedia 4,183,461 45,858 25.29
D3 NYTimes peo 9,958 20DBpedia 4,183,461 45,858 41.66
D4 NYTimes loc 3,840 22 Freebase 40,358,162 2,455,627 154.98
D5 NYTimes org 6,045 20 Freebase 40,358,162 2,455,627 243.97
D6 NYTimes peo 9,958 20 Freebase 40,358,162 2,455,627 401.89
D7 NYTimes loc 3,840 22Geonames 8,514,201 14 32.69
D8 DBpedia 4,183,461 45,858 Freebase 40,358,162 2,455,627 168836.8

3.3 Experiment

3.3.1 Experiment target

We evaluate ScSLINT in the aspect of memory and time efficiency. For the first issue,
we simply deploy ScSLINT on a desktop computer with a usual computational power.
For the second issue, we measure the time for building the repositories’ index, and the
detailed running time of each component. We also compare the runtime of ScSLINT
and other state-of-the-art frameworks, including SILK [155] and LIMES [98]. Very large
datasets are used for this experiment in order to verify the scalability practically.

3.3.2 Datasets

We use seven standard datasets selected for OAEI 2011 instance matching challenge.
The repositories related to these datasets are NYTimes1, DBpedia2, Geonames3, and
Freebase4. The source repository is NYTimes and the targets are the others. For
these datasets, NYTimes is divided into three subsets regarding to three data domains:
location (loc), organization (org), and people (peo). For DBpedia and Freebase, every
data domain of NYTimes form a dataset. For Geonames, only one dataset for location
is created. Therefore, in total there are seven datasets. We also use another dataset
connecting DBpedia and Freebase. The summary of all datasets are provided in Table
3.2. The only criterion for selecting the datasets is the scale. The first seven datasets
are billion scale and the last dataset is trillion scale.

Some of previous systems reported experiments on the first seven datasets. However,
they utilized simplified version of the datasets rather than the original data. Concretely,

1NYTimes version 2014/02
2DBpedia version 3.9
3Geonames version 2014/02
4Freebase version 2013/09/03
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for DBpedia and Freebase, only the classes related to the subsets of NYTimes are used.
They are people, location, and organization classes of DBpedia and Freebase. In fact,
the ground truth of these datasets show that not only the instances in the appropriate
class are the expected coreferences. That is, other experiment use a simplified version of
the data for reducing the complexity, although the recall definitely drops. Some other
experiments utilized a more simple datasets, in which only the coreferent instances are
stored in the input.

The size of input repository is not only the matter of scalability. As we discussed
in Section 1.1, the scalability also brings the problem of heterogeneity and ambiguity.
However, in our experiment, we focus on the scalability of the frameworks.

3.3.3 Experiment settings

For using ScSLINT , we install the following configuration for its components.

• Property alignment. We do not map the property manually in order to make
ScSLINT performe the property comparison task. We define using Jaccard index
(Section 2.3.1.1) for this task. Two properties are considered as equivalent if the
Jaccard similarity of them is higher than 0.75.

• Blocking. We apply a simple token-based blocking techniques. We also use
the result of property mappings for this component. Given the list of property
mappings M , two instance are considered as a candidate if they share at least the
first token of the values described by any mapping in M .

• Similarity function generator. We apply two complex similarity measures for
string type, Levenshtein and TFIDF cosine. That is, for each string mappings,
two similarity functions are created. For other data types, we simply use only the
exact matching.

• Specification creator. We use specification-based instance matching for this ex-
periment. That is, we need to declare the thresholds for determiner and similarity
aggregator. However, because we do not focus on testing the accuracy, we only
declare the similarity aggregator. We choose average aggregation as the default for
the experiment. The two last components work on the basic of this specification.

The computer used in the experiment is equipped with one Intel core i7 4770K CPU and
16GB memory. The CPU is a quad-cores architecture with virtual dual-core technology
for each physical core. Therefore, we enable multi-threading with 8 threads for the
similarity aggregator component.
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3.3.4 Results

We report the runtime result of ScSLINT on two aspects: the time for building the
indexes and for the whole matching process.

3.3.4.1 Indexing

The result of runtime for building the indexes is as follows.

• NYTimes location: 0.069 second.

• NYTimes organization: 1.006 seconds.

• NYTimes people: 1.908 seconds.

• Geonames: 1,362 seconds.

• DBpedia: 2,874 seconds.

• Freebase: 25,200 seconds.

In general, the time for building the index is very fast and is linear to the size of the
repository. ScSLINT creates the index for Freebase in one hour on a usual desktop
computer. A worthy note is that the size of Freebase is 198GB and the indexes cost
in total 74GB. That is, 66% of the original data has been compressed using the index
structures. It can be said that ScSLINT offers fast index that is sufficient for instance
matching tasks and compact in term of size.

3.3.4.2 Matching process

The detailed runtime of the matching process is reported in Table 3.3. In this table, the
second and the third column display the number of candidates and similarity functions.
These two factors are the source of complexity for other similarity aggregator component.
The other columns are the runtime of the respective components. According to this table,
the most expensive component is similarity aggregator because it has to execute many
string similarity measures. That is, the role of candidate generator is very important
for reducing the number of candidates.

The longest matching time for NYTimes data is 36 minutes, on D7, which requires
11.16× 109 comparisons. On the simplified version of this dataset, which is 2000 times
smaller, the required time for LIMES and SILK, which are among the state-of-the-art
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Table 3.3: Runtime of ScSLINT . (Unit: second)

Dataset #Candidates #Similarity Property Blocking Similarity
(×106) functions alignment aggregator

D1 32.2 12 37 7 70
D2 38.2 25 43 8 268
D3 61.7 17 46 11 404
D4 46.9 22 46 11 251
D5 222.7 23 14 111 641
D6 357.4 16 14 268 1023
D7 620.1 18 15 507 1578
D8 45,286.4 12 52 11,807 345,495

frameworks, is almost 30 minutes and 9.5 hours, respectively [98]. Because there was no
report of an experiment on a billion scale dataset like D1 to D7, we tried to test SILK
[155] and LIMES [98] frameworks on these datasets. The result is that LIMES and SILK
fail to finish the matching task even within 10 times longer period for each dataset. In
such cases, we terminate the processes after such period.

The result of ScSLINT on D8 is impressive. ScSLINT can finish this task and therefore
it is not only the first framework tested on billion scale datasets (D1 to D7), but also
the first framework successfully performed the trillion scale matching task. The total
time to finish the matching on D8 is 99 hours. ScSLINT can process huge data like
D8 using a usual computer. That is, the framework expresses its high scalability and
can far benefit from being deployed with other big data processing framework or on a
powerful machine.
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3.4 Summary

Instance matching framework plays an important role in all matching tasks. Because
existing frameworks do not fully support large scale instance matching, we are motivated
from building a more scalable framework. ScSLINT is the result of that motivation.
ScSLINT also provide more extensibility, portability, and memory efficiency. Further-
more, the performance of ScSLINT is verified on very large datasets that other frame-
works cannot obtain the same results. This chapter described the detail of ScSLINT
and experiments confirming the performance of the framework. The fact that ScSLINT
enables the scalable instance matching is not simply an achievement of a powerful frame-
work. It is also the start of further algorithms and systems whose objectives include the
large matching tasks. Based on ScSLINT , we develop other systems named ASL and
ScLink. Chapter 4 and 5 are the detail of those systems.
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Chapter

4
ASL: Schema-independent

specification-based instance
matching

This chapter describes ASL, a schema-independent specification-based instance match-
ing system. We begin this chapter with the motivation (Section 4.1) and the problem
statement (Section 4.2). After that, we describe the detail of the system (Section 4.3)
and report the experiment (Section 4.4).
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4.1 Motivation

Heterogeneity and scalability are two of the major challenges of instance matching (Sec-
tion 1.1). Heterogeneity includes the difference in data representation of real-world ob-
jects (e.g., Tokyo and capital of Japan) and the inconsistency of schemas, in which the
attributes of objects are declared through arbitrary properties (e.g., ‘name’ and ‘label’
co-describe the same attribute). Scalability is mainly about the number of properties
and instances of the input repositories. If a large number of properties is difficult for
property mapping, that of instances directly contributes to the complexity of instance
comparison.

Bypassing the inconsistency of schemas is very important because it determines the ap-
plicability of a matching system. In order to bypass this challenge, numerous studies
have been published. Previous approaches can be categorized into manually operated,
semi-automatic, and automatic systems. Using manual systems [68, 80, 155], user needs
to provide matching specifications (e.g., property mapping and similarity measures).
Semi-automatic systems try to reduce the user involvement by suggesting a specifica-
tion [86] or by requiring a small number of labeled data [61, 99]. Recently, studies on
automatic approaches have increased because of their generality. Existing automatic
systems can be categorized into three families: unsupervised learning of specifications
[97, 116]; probabilistic matching [30, 151]; and heuristic-based, which is the similarity-
based matching with statistical estimation of property mappings [4, 112]. The first two
families have a limitation in scalability because they either repeatedly browse the data
or memorize all computations. Meanwhile, the third one is more scalable due to its
simple architecture.

We develop ASL [108] (automatic schema-independent interlinking), a system classified
into the third family, which is the automatic approach. ASL can work with any repos-
itory with any schema. Therefore, it is a schema-independent system. ASL is built
upon the architecture of ScSLINT . The notability of ASL includes two aspects. The
first one is the detection of property mappings using a heuristic of overlapping measure
on the values of instances. The second one is the property-driven token-based blocking
for discarding dissimilar candidates. The former is a solution for the heterogeneity of
schemas and the latter is installed for the scalability.

4.2 Problem statement

Given two repositories: the source RS and the target RT . Each repository consists of a
multiset of instances and a schema - the set of properties. The goal of ASL is to find
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the sub-multiset I of the Descartes product RS ×RT so that every member 〈x, y〉 of I is
a pair of coreferent instances and none of the complement set RS ×RT \I is coreferent.

Schema-independent instance matching obtains the achieves goal on the repositories
whose schema description is not given in advance. The schema of a repository is de-
fined as the set of all properties used to describe the instances. Therefore, in schema-
independent instance matching, the property mappings need to be detected using an
automatic method.

4.3 ASL system

ASL is firmly built upon the architecture of ScSLINT . The number of components as
well as the function of each component is similar to that of the respective base one. The
difference is that ASL automates the components by its manners. In the next sections,
we describe the detail of each component.

4.3.1 Property alignment generator

The goal of this step is to detect the alignments between the properties in the source
and the target schema, both of which are respective to the input repositories RS and
RT . These alignments are expected to have descriptions about the same attributes of
instances. This step contains two smaller sub-steps: property selection and alignment.

4.3.1.1 Selecting properties in source repository

This first sub-step applies a filter on the source schema. This filter removes the un-
necessary properties to reduce the noisy information and enhance the speed of later
components. A property is important if it covers at least an acceptable portion of the
data and has diversity among its values. Therefore, we utilize two metrics to determine
the importance level of a property: coverage (cov) and discriminability (dis), derived
from [148]. Equations 4.1 and 4.2 define these metrics in detail.

cov(pk) = |{x|x ∈ RS , pk(x) 6= ∅|
|RS |

(4.1)

dis(pk) = | ∪x∈RS p(x)|
|{x|pk(x) 6= ∅}| (4.2)
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Table 4.1: Value preprocessing

Data type Returned values of E
string unique set of tokens with stopword removal
number rounded value with three decimal digits
date original value with a uniform format
URI original value

In above equations, pk is the property of interest. x is an instance and pk(x) is the value
of x on the property pk. To select the important properties, thresholds α and β are used
for the coverage and discriminability, respectively.

It is not difficult to determine the appropriate values for α and β. We can expect to
have a high value for α and β to obtain the properties that cover a large portion of the
repository and well discriminate the ambiguous instances. However, since ASL compares
multiple attributes of two instances for further steps, α and β can be relaxed to increase
the opportunity of the useful properties. The number of important properties in the
result can be a criterion to select α and β. In our experiment, we also configure α and
β by using this value.

4.3.1.2 Aligning the selected properties into the target schema

This second sub-step finds the corresponding properties in the target schema for each
important property of the source schema. The format of an alignment is 〈pS , pT 〉, where
pS and pT belong to the source and the target schema, respectively. The usefulness of
an alignment is determined in accordance with its confidence. The confidence conf of
〈pS , pT 〉 is estimated by using the coverage of the values of pT against pS , as defined in
Equation 3. The alignments whose confidence is higher than threshold γ are selected to
construct the output of this step.

conf(〈pS , pT 〉) = |VpS ∩ VpT |
|VpS |

(4.3)

Vpk =
⋃
x∈Rk

⋃
v∈pk(x)

E(v)

In the above equation, E is a value extraction function. For each value, E returns its
pre-processed values, in accordance with the type of the corresponding property. The
type of a property is assigned by the most major type of its values. ASL categorizes
values into string, decimal, integer, date, and URI. For a string, E extracts the tokens
with stop-word removal. For a decimal, E returns the rounded value with precision 0.01.
For a value of the remaining types, E keeps the original value. The summary of E is
given in Table 4.1
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All values described by pS and pT are not compared directly. Instead, their values are
firstly preprocessed by function E and cumulated into OpS and OpT . After that, OpS and
OpT are used for comparison. Since the differences between the representations of facts
in different repositories are frequently exist, a preprocessing function like E is helpful to
detect the expected alignments but having such issue. For example, geographic locations
(decimal type) described in coreferent instances are slightly different. E will round these
values with 0.01 decimal precision to increase the opportunity of a positive comparison
result.

Similar to α and β, γ can be selected by using the number of accepted property mappings.
The automatic selection of α, β, and γ requires applications of heuristic or supervised
learning and is considered as a future work. In experiment, we evaluate the sensitivity
of the system to the parameters by setting the same parameters for many datasets.

The heuristic used in this step includes the selection of useful properties and the align-
ment. A property is considered as useful if it is used to describe the common attribute of
instances and the the described values are diverse. Such properties usually are or nearly
the key of the given repository. That is, it simultaneously can help discriminate the
instances and can cover a large portion of the repository. The alignment of properties
is based on a simple overlap measure with the assumption that the properties sharing
many similar values are describing the same attribute.

Some systems also applied similar techniques to find the property mappings [4, 112].
However, the prior property selection from source repository was not investigated al-
though the computation of the confidence for all pair-wise mappings between properties
is impractical on large dataset. In addition, other systems use Jaccard index to measure
the confidence, by replacing the denominator of Equation 4.3 by |VpS∪VpT |. Quantifying
such union is expensive because all elements of VpT must be retrieved. As the repository
becoming large, especially when the target is usually considered as the referent reposi-
tory, querying VpT is not trivial. We only use VpS for the denominator to improve the
scalability.

The goal of this step is to find the property mappings that are useful for matching in-
stances, rather than finding the exact mappings like schema mapping task. For example,
considers the ‘person’ domain, ‘label’ can be aligned with not only ‘label’, but also ‘full
name’, ‘first name’, and ‘last name’ because these alignments are useful.

The results of this step are later used by ASL to finish the matching task without any
other information from the schemas. Since ASL detects the property mappings using the
observation on values and does not use the description of schemas, the system can work
with repositories whose schema is unknown and therefore ASL is schema-independent.
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4.3.2 Blocking

Blocking step generates the pairs of instances that are potentially coreferent. Such pairs
are called candidates. This step creates a candidate from two instances if they share at
least one value among the first K tokens of the two strings described by the pair of two
properties residing in one of previously detected property mappings. Because the order of
tokens are not considered, larger value of K can increase the number of candidates. This
blocking strategy can be called attribute-driven token-based blocking, where ‘attribute-
driven’ implies the comparison on instances using the property mappings. Theoretically,
any type of property can be used for blocking by comparing the returned value of E.
However, ASL only uses strings, and especially, instead of taking all tokens, only the
first K tokens of strings are needed. The experimental results strongly support the
generality of this blocking method.

The objective of this step is to speed up the whole matching process. Although the
alignments detected in the previous step have already enabled the verification for any
pair of instances, it is extremely expensive to check every combination, especially in
large repositories. Thus, blocking is designed as an important step, though its role is
simply as an intermediator.

Token-based blocking is one of the most effective techniques so far. The most similar
technique to token-based blocking is prefix blocking, which is used in Zhishi.Links [117]
and ADL [58]. This blocking method accepts a pair of instances if they share at least
an expected number of first tokens in the same order. The token-based blocking of
ASL does not consider the order of the tokens because token reordering may occur. In
addition to token-based blocking [120], many other approaches, such as canopy clustering
[88], sorted neighborhood [50, 166] can be used. However, token-based blocking is much
more efficient than the others because it can be easily scaled up by a simple inverted
index structure, which ScSLINT supports.

When labeled data is given, some supervised learning method can be used to learn a
blocking function that can optimally reduce the number of unnecessary candidates. Two
representatives of this approach are adaptive blocking [166] and optimal hashing scheme
[29]. Also focusing on eliminating unnecessary candidates but to skip the requirement
of labeled data, some systems use token-based ranking [116, 155], which includes a
weighting scheme equipped with TF-IDF or BM25. Token-based ranking is more efficient
than pure blocking because it assigns a score to the candidates, and therefore supports
the mechanism to select the top candidates. However, token-based ranking ignores
many correct candidates, especially when the data are highly ambiguous. Therefore,
ASL makes the trade-off for better accuracy by using the described blocking method.
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4.3.3 Similarity function generator

ASL uses existing similarity metrics supported by ScSLINT . For each property map-
ping, depending on the data type, suitable similarity metrics are assigned to produce
the similarity functions. Concretely:

• For string type, Levenshtein and TF-IDF cosine are used. Levenshtein is applied
only for short string. ASL considers a property as short string if the average tokens
of the values described by this property is less than 10. Otherwise, a property is
considered as long string.

• For numeric type, ASL uses reverse difference.

• For URI and datetime, exact matching is used.

The similarity functions are input into the next step to create a specification used by
later components.

4.3.4 Specification creator

In ASL, the specification contains S the list of similarity functions F , the similarity
aggregator G, and determiner D. The similarity functions are reused from the input of
the previous step. The similarity aggregator is defined by the built-in Euclidean distance
of ScSLINT . The determiner is a filter based on the stable matching principle [43].
The detail of the aggregator and the filter is described in the next two sections.

4.3.5 Similarity aggregator

This step computes the matching score for each candidate. The matching score is the
linear combination of the literal similarities between their attributes multiplied with a
weight given to the target instance. Equation 4.4 defines the matching score calculation
for two instances xS and xT .

score(xS , xT ) = weight(xT )×
∑

δσ〈pS,pT 〉
∈F

max
u∈ps(xS),v∈pT (xT )

σ2(u, v) (4.4)

where

weight(xT ) = log|argmaxx∈RT |x||)(|xT |+ 1) (4.5)
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In this equation, δ is the similarity function created from the property mapping 〈pS , pT 〉
and the similarity metric σ. In the case that pS or pT describes multiple values, the
similarity of the most similar objects is used. This mechanism is reflected by the max
operator in Equation 4.4. The weighting of the target instance is to prioritize the
instances containing more properties. In Equation 4.5, |x| is the number of properties
used to describe x. In large repository, this weight is helpful to deal with the situation
of self-coreference, when coreferences exist within a repository. In this case, the instance
that contains mo more information should be linked first because the further filtering
mechanism of the determiner may not retain all those instances.

ASL uses a linear quadratic for similarity aggregation. Compared to averaging, which is
widely used by other systems such as SLINT+ [112] and ADL [58], quadratic aggregation
has advantage in matching instances when a few attributes of them are missing. For
example, when two instances are highly similar on ‘latitude’ and ‘name’ but one of them
does not contain information of ‘longitude’, these instances still have high possibility to
be coreferent. Because quadratic aggregation aggregates the final score from the square
power of ‘latitude’ and ‘name’, it returns higher score than averaging. The second case
is when incorrect property mappings are used to compute the similarities. Frequently,
in this case, the similarities on incorrect alignments are smaller than those of correct
alignments. Therefore, with quadratic aggregation, the similarities on correct alignments
can contribute more to the final matching score. Meanwhile, conjunctive logic clauses,
as used in L2R [135] is the strictest strategy because it only accepts pairs whose each
similarity is higher than an associated threshold. For above reasons, we install the
quadratic aggregation in ASL.

4.3.6 Determiner

This step produces the final coreferences. In ASL, the determiner acts as a stable
filter. Using this filter, the possibility to be coreferent for each candidate is not directly
concluded from its matching score. Instead of that, the matching scores of all related
candidates are considered. This filter is based on the principle of stable marriage problem
[43], which was evaluated to be effective on instance matching [99, 112]. A candidate
(x, y), where x ∈ RS and y ∈ RT , is eventually coreferent if the matching score score(x, y)
satisfies the following conditional statement:

score(x, y) ≥ max(max
z∈RS

score(z, y),max
t∈RT

score(x, t)) (4.6)
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Together with applying the filter, ASL selects N candidates having the highest scores
for the result. As the default, N is set to RS for the assumption that the target is a
complete reference.

The basic idea of the filter is to rank each candidate in the local set of candidates sharing
its source or target instance. It guarantees that for very ambiguous repositories, a highly
similar pair (x, y) is not necessary to be co-referent if there exists other pairs (x, z) with
higher similarity.

4.4 Experiment

4.4.1 Experimental design

We conducted a total of three experiments. Two datasets are used for these experiments,
OAEI2011 and DF246. OAEI2011 is the dataset used in OAEI 2011 instance matching
track. DF246 is a newly created dataset that consists of 246 subsets sorted increasingly
in size. The repositories of this dataset are related to 246 domains of DBpedia and 35
domains of Freebase. We will describe the detail of these datasets later.

In the first experiment, we evaluate the blocking component and analyze the change of
the result when varying the numbers of the first tokens K. We use the 193 smallest
subsets of DF246 to limit the size of input data at 10× 109, since the blocking step gen-
erates a huge number of candidates in large repositories. We also compare the runtime
of blocking step with various value of K.

The second experiment evaluates the final result of ASL. We applied a top-down selec-
tion based on matching scores. Concretely, top N pairs with highest matching score are
selected. For each subset, the number of output pairs N is equalized to the number of
expected pairs. In the case that the score of the N th candidate is equal to (N + k)th,
ASL outputs k additional pairs as well. We also compare the result of ASL with other
recent systems, including two automatic systems, PARIS [151] and Knofuss [116], and
three manual systems, SERIMI [3], AgreementMaker [27], and Zhishi.Links [117]. We
execute PARIS and Knofuss on DF246 and use the reported results of SERIMI, Agree-
mentMaker, and Zhishi.Links on OAEI2011 [37]. Note that SERIMI was designed later
as an automatic system, but at OAEI 2011, the system used prior knowledge about
the schema [3, 5]. PARIS provides a probabilistic-based matching which is consid-
ered as an innovative approach among automatic systems. Knofuss is an unsupervised
learning-based system, which is reported to enhance the result on some datasets. We are
interested in seeing how it performs on DF246 and OAEI2011. Zhishi.Links obtained
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the best result on OAEI2011 dataset and is still considered as the best performed sys-
tem. We also include the result of SERIMI and AgreementMaker on this dataset as a
reference.

The following are some notes for running PARIS and Knofuss. For PARIS, we use the
default parameter for the number of iterations. The same top-down selection strategy
as is used for ASL is applied and only the instance mappings are considered, instead
of all types of generated ones (e.g., properties and literals). For Knofuss, we extend
the default value of the maximum Lucene search results from 20 to 500 because we
expected to have high pair completeness. We also increase the maximum number of
genetic algorithm generations from 20 to 100 for a more reliable result. Since Knofuss
is comparably slow, we limit the execution time to 3 days for each subset. In addition,
because the matching score is not available for the output of Knofuss, we select all the
generated pairs for computing the pair completeness, precision, and F1.

Finally, in the last experiment, we analyze the scalability of the tested systems. We
report the detailed execution time and memory footprint of ASL, PARIS, and Knofuss.

4.4.2 Evaluation metrics

We use the pair completeness, precision, and their harmonic mean F1 to evaluate the
instance matching result. For the blocking, as the objective of this step is to find the
set of candidates that is small but contains as many correct ones as possible, the pair
completeness and the reduction ratio are used as the measures for quality and quantity
of generated candidates, respectively. In Section 2.5, we describe the detail of these
metrics.

For evaluating the final result of instance matching, a high pair completeness reflects the
ability of detecting as many expected correct pairs as possible. Meanwhile, high precision
expresses that detected pairs contains a small number of incorrect ones. Similarly,
high pair completeness for blocking step guarantees that correct candidates are retained
as many as possible. Also, reduction is very important because it reflects how many
unnecessary candidates are discarded.

4.4.3 Datasets

DF246 and OAEI2011 datasets contain portions of DBpedia, Freebase, NYTimes, and
Geonames. Because ASL is a schema-independent system, DF246 is chosen due to its
variety of schemas. In addition, OAEI2011 is used to compared ASL and other non-
learning based systems. We set up a few adjustments for the data of these data sources
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because they contain some information that is not related to the instance matching
problem or that reduces the data quality. For DBpedia, we use only the triples that
are loaded into DBpedia’s SPARQL endpoint1 and describe ‘resource’ instances2. For
Freebase, we only consider the ‘topic’ instances3 and the triple with ‘m’ identifier4.
In addition, for DBpedia and Freebase, we integrate the redirect instances into their
reference. Next, we describe the datasets in detail.

4.4.3.1 DF246 dataset

DF246 is created for evaluating the generality of ASL, including the accuracy and the
scalability. This dataset contains 246 subsets combined from 246 source repositories and
35 target repositories. The creation process for this dataset consists of the two following
steps.

Step 1: Select source repositories from DBpedia. To have many repositories
with different schemas, we divide DBpedia into smaller parts based on existing domain
information of the instances. We split the repositories with assumption that RS is a
single domain repository. Since no clear definition for ‘domain’ exists due to the natural
hierarchical relations of concepts, our assumption is close to that RS does not contain
so different domains in terms of schema. For example, the schemata of university and
college (educational institution domain) are highly equivalent, whereas those of ship and
train (transportation domain) are very different. In fact, this assumption is not strict.
Dividing the source repository into separable domains is a feasible inexpensive task. In
DBpedia, an instance may belong to different domains that are involved in a “parent-
child” relation. Therefore, a domain, which consists of a set of instances, may have one
parent and many children.

Since we split the repositories with above assumption, we merge domain C1 into C2 if
the schemas of them are similar. In order to achieve that objective, we conducted a
schema conformance check for each sub-domain relation5. Domain C1 is conformable to
its parent C2 if every property p satisfies the condition in Equation 4.7.

|f(p, C1)− f(p, C2)| ≤ 0.5 (4.7)

f(p, Ck) = |{x|〈s, p, o〉 ∈ x, x ∈ Ck}|
|Ck|

1http://wiki.dbpedia.org/DatasetsLoaded
2The triples whose RDF subjects start with http://dbpedia.-org/resource/
3The instances that contains a triple whose value is http://rdf.freebase.com/ns/common.topic
4The triples whose RDF subjects start with http://freebase.-com/ns/m
5http://mappings.dbpedia.org/server/ontology/classes/
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Table 4.2: Overview of DF246 dataset

# Sources # Targets # Expected
Min 127 1,804 126
Max 602,293 25,625,291 597,566
Avg. 10,754.1 2,002,283.6 9,339.6

Using the checking result together with the original sub-domain specification, we derive
the priority for each domain to classify the instances. That is, a domain is initially given
higher priority than its parent in order to diversify the dataset. However, if a domain is
totally conformable to its parent, the higher priority is given to the parent instead.

In DBpedia, we extract the domain information of instances by using the property
rdf:type. Among 398 domains with respective DBpedia 3.9 (English) instances, 46 classes
are conformable (e.g., governor and politician, bone and anatomical structure). Note
that identical domains are counted as one (e.g., http://dbpedia.org/ontology/Place and
http://schema.org/Place). Also, not every instance is classifiable because the type in-
formation of 584,520 instances is missing. Finally, 352 domains are unconformable and
resulted in 352 repositories.

Step 2: Select target repositories from Freebase. We first separate Freebase
(2013/09/03) into different repositories by using the domain information of the instances,
given by the property fb:type6. After that, we map each source repository into one target
that shares the most coreferent instances, as declared in the gold standard7. Finally, we
remove the mappings having less than 100 coreferent pairs.

The first task extracted 35 different repositories, the second task obtained 2,668,372
standard pairs, and the last task produced 246 subsets. The 246 repositories constructed
from DBpedia, 35 repositories constructed from Freebase, and the mappings between
them are listed in Appendix A, B, and C, respectively.

We sort these subsets increasingly by their size. The size of a subset is the product of the
number of instances in the source and the target repositories. Table 4.2 is the summary
of the number of instances in these subsets. In this table, #Sources and #Targets
represent the number of instances in source and target repositories. #Expected is the
number of actual coreferent pairs. Note that each Freebase instance refers to a topic
and can belong to multiple sibling domains (e.g., book, music, and location). Therefore,
overlaps are found between almost every two of the 35 extracted repositories.

6http://rdf.freebase.com/ns/type.object.type
7http://downloads.dbpedia.org/3.9/links/freebase_links.nt.bz2
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Table 4.3: Overview of OAEI2011 dataset

ID Target Domain # Sources # Expected # Originals
D1 DBpedia location 3,840 1,917 1,920
D2 DBpedia organization 6,088 1,922 1,949
D3 DBpedia people 9,958 4,964 4,977
D4 Freebase location 3,840 1,920 1,920
D5 Freebase organization 6,088 3,001 3,044
D6 Freebase people 9,958 4,979 4,979
D7 Geonames location 3,840 1,729 1,789

4.4.3.2 OAEI2011 dataset

OAEI2011 is used to compare ASL with other manual systems. The gold standard
of this dataset was presented at the OAEI 2011 instance matching track [37]. The
source repositories are three separated domains of NYTimes: location, organization,
and people. The targets are full DBpedia, Freebase, and Geonames. To construct
the repositories, we use DBpedia 3.7 (English), Freebase 2013/09/03, and Geonames
2014/02. The numbers of instances are 4,183,361 for DBpedia, 40,358,162 for Freebase,
and 8,514,201 for Geonames.

An important note for this dataset is that we detected some incorrect and missing pairs
in the previous standard as compared to the current actual data. In evaluation, we do
not count the incorrect, the missing, and erroneous pairs. Consequently, the numbers
of expected pairs are slightly different from the original pairs published in 2011. We
summarize the size of the OAEI2011 dataset in Table 4.3.

Compared to the more recent OAEI datasets, the OAEI2011 dataset is more suitable for
our experiment because of the similar benchmark objective. In year 2012, OAEI provided
the training and test split for OAEI2011 dataset in order to evaluate learning-based
systems. The OAEI dataset of year 2013 and 2014 are small and designed for special
challenges (e.g., multiple languages, string distortion, value deletion, and non-uniform
representations). Since ASL focuses on real and large data, OAEI2011 is suitable for
the experiment.

All datasets, including the repositories, the labels for expected pairs, and their detailed
descriptions as well as the ASL source and the full experimental results, are available
at http://ri-www.nii.ac.jp/ASL/.

4.4.4 Experimental environments

All the executions for ASL are conducted on a Windows machine equipped with one
Intel Core i7 4770K CPU and 16 GB memory. The environment for running PARIS
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and Knofuss is a FreeBSD machine with two Intel Xeon E5-2690 CPUs and 256 GB
memory. We run PARIS and Knofuss on a high-performance computer because the
current versions of these systems require a large amount of memory.

4.4.5 Parameter settings

ASL has three parameters: α, β, and γ. These values are used in the first step, property
mapping. For checking the sensitivity of the system to the parameters, we use the same
parameters for all subsets. We permanently set α = 0.3, β = 0.75, and γ = 0.7. We
assign the value 0.75 to β in the expectation that at least 75% of the values are unique.
By fixing β, the value of α is selected as the maximal value that accepts at least one
property describing an arbitrary string attribute for every subset of DF246. Similarly, γ
is set to the maximal value that retains at least one alignment between string attributes
for every subset.

Using the above parameters, we obtain the results as shown in Table 4.4. In this table,
PS and PT are the number of all properties in source and target repository, respectively.
M is the number of property mappings while P ∗S and P ∗T are the properties aligned to
construct these alignments. Because one property may be aligned with many others,
M , P ∗S , and P ∗T thus can be different. For DF246, we report the values of minimum,
maximum, and average because the number of subsets is high. For OAEI2011 we report
the detailed results of each subset According to this table, although the source and
target schemas for most subsets have many properties, not many of them are usable for
the instance matching task. On average, only 4.23% properties of source repositories in
DF246 are included in the property mappings, when using the configured parameters. It
reflects that many properties are not useful for repositories in DF246 dataset. In other
words, in this dataset, the properties are frequently used to declare the information that
is not shared by source and target repositories. The mapped properties in the target
schema are even lower, at only 0.11%.

For every subset, at least the ‘label’ properties are aligned on both DF246 and OAEI2011.
For DF246, the ‘description’ properties are also frequently mapped, while other proper-
ties are different between subsets, depending on the domain. For OAEI2011, the latitude
and longitude are also correctly mapped in the location domains (D1, D4, and D7) as
well as the alignment between the labels. The ‘label’ property of NYTimes is aligned
more than one time because the target repositories have multiple properties that describe
the same information.

For evaluating the quality of property mappings, experts are asked to check the property
mappings. For OAEI2011, all generated property mappings are correct. For DF246, we
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Table 4.4: Property alignment results

PS PT P ∗S P ∗T M

DF246
Min 32 753 1 1 1
Max 4,144 2,439,785 17 9 45
Avg. 435.74 64,300.24 7.71 5.04 20.85

OAEI2011

D1 22 45,858 3 5 5
D2 20 45,858 1 3 3
D3 20 45,858 1 5 5
D4 22 2,455,627 3 5 5
D5 20 2,455,627 1 3 3
D6 20 2,455,627 1 4 4
D7 22 14 3 4 4

Table 4.5: Blocking results with respect to K first tokens

K = 1 K = 2 K = 3 K = 4 K =∞
pr rr pc rr pc rr pc rr pc rr

Min 0.9866 0.8602 0.9923 0.8423 0.9923 0.6938 0.9923 0.5435 0.9953 0.1226
Max 1.0000 0.9999 1.0000 0.9991 1.0000 0.9998 1.0000 0.9972 1.0000 0.9263
Avg. 0.9995 0.9965 0.9998 0.9880 0.9999 0.9696 0.9999 0.9533 0.9999 0.6064
St.dev. 0.0015 0.0127 0.0009 0.0213 0.0006 0.0510 0.0006 0.0723 0.0004 0.1646

randomly select 35 subsets related to 35 target repositories of DF246 dataset. In total, 48
(10%) out of 480 property mappings are incorrect and occur on 9 subsets. For example,
on the subset of ‘hollywood cartoon’ (DBpedia) and ‘film’ (Freebase), ‘release date’ and
‘birth date’ is aligned. This case happens because the ‘film’ repository shares many
instances from the ‘people’ repository, so that the overlap measurement (Equation 3)
may produce such an alignment due to the diversity of the target. Although there are
datasets for schema mapping problem, such datasets are not applicable for evaluating
property mapping step. Schema mapping finds exactly correct alignments while ASL
focuses on alignments that can be used to match instances. Therefore, we manually
evaluate this step instead of using schema mapping datasets. In the second experiment,
we compare the result of instance matching using all generated alignments and using
only correct alignments, on 35 selected subsets.

4.5 Results and discussions

4.5.1 Experiment 1: Blocking

Table 4.5 shows the result of the blocking step with a varying number of tokens.
K=∞ implies that all tokens are used. According to this table, as the tokens order is
not considered, the more tokens are used, the more candidates are generated. K=1 is
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Table 4.6: Running time of blocking step with different K values (unit: sec)

K = 1 K = 2 K = 3 K = 4 K =∞
Min 0.01 0.06 0.12 0.11 0.69
Max 64.93 148.35 1348.55 2474.87 43096.80
Avg. 4.81 13.54 39.93 72.09 2333.95

Table 4.7: Blocking results for K=1

pc #Candidates rr

DF246

Min 0.9866 2,600 0.8602
Max 1.0000 5,149,781,137 0.9999
Avg. 0.9995 87,372,412 0.9965

OAEI2011

D1 0.972 2,054,099 0.9999
D2 0.988 4,592,818 0.9998
D3 0.997 20,563,742 0.9995
D4 0.988 9,386,067 0.9999
D5 0.977 19,717,567 0.9999
D6 0.991 67,232,889 0.9998
D7 0.967 3,785,063 0.9999

sufficient due to its competitively high pair completeness (pc), as well as best and stable
reduction ratio (rr). Compared to K=∞, only 213 (0.054%) more correct candidates
are missed in total, whereas the reduction ratio greatly increases at 32.44% for the total
of 193 subsets. The numbers for K=2 are 130 and 0.81%, respectively. Although 0.81%
is not a high value when considering the quantity, the number of candidates is 3.29 times
different with more than 2×109 unnecessary candidates included.

Table 4.6 shows the runtime of blocking step when changing K. As increasing K,
the required time increases quickly and reach long responding time on large subsets
when K ≥ 3. Furthermore, the runtime of verification step depends on the number
of candidates and it is very expensive in overall if blocking step generates too many
candidates. In summary, K higher than 1 costs much time and includes many useless
candidates while not compensating much on pair completeness. Therefore, we use K=1
for the remaining experiments.

The detailed result for using K=1 is reported in Table 4.7. The result shows that
only the first token is sufficient for blocking not only on the whole DF246, but also
on OAEI2011. For DF246, most of the reduction ratios are distributed at a very high
value. The average is 0.997 and the standard deviation is narrow at 0.013. The highest
number of candidates is more than 5.1 × 109 for the biggest subset ‘album’ (116,368
instances) and ‘music’ (25,625,291 instances) repositories. This number is comparably
big; however, it is still efficient since 2.77× 1012 comparisons are ignored.
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Table 4.8: Instance matching results

rec prec F1

DF246

Min 0.8769 0.8769 0.8769
Max 1.0000 1.0000 1.0000
Avg. 0.9750 0.9751 0.9751
Std. 0.0257 0.0255 0.0256

OAEI2011

D1 0.8779 0.8807 0.8793
D2 0.8741 0.8709 0.8725
D3 0.9647 0.9647 0.9647
D4 0.9021 0.9035 0.9028
D5 0.9157 0.9169 0.9163
D6 0.9309 0.9315 0.9312
D7 0.8785 0.8750 0.8768

Because high pair completeness is obtained in this step, the input for the further steps
is almost the ‘original full repositories’ but has a much more compact size.

4.5.2 Experiment 2: Final result

Table 4.8 is the result of the determiner. This is also the final result of the whole instance
matching process. Generally, the result of DF246 is better than that of OAEI2011, due
to the rich information given in DBpedia and Freebase. For DF246, ASL can totally
detect 98.35% (2,259,713 pairs) of the expected pairs and obtained a high F1 for most
subsets. Of 170 (69%) subsets obtaining an above-average F1 score (0.975), only 6
subsets obtained an F1 score lower than 0.9. For OAEI2011, since the information
given in the source repositories is very limited, it is difficult to discriminate the highly
ambiguous instances. For example, ‘label’ is the only attribute that can be used for D2,
D3, D5, and D6. The other subsets are slightly richer since they come with geographic
location, although not all instances (93%) contain such information. In addition, the
high results indicate the selected parameters work well on tested datasets, which are
diverse in domain and schema. This fact supports that the system is not so sensitive to
the parameters.

As we discussed, the incorrect property mappings are included on 9 of out the 35 ran-
domly selected subsets. On these 9 subsets, the highest and average F1 are 0.9701 and
0.9945, respectively. We attempt to manually remove incorrect property mappings and
input only the correct ones into blocking and candidate verification step. The highest
and average F1 after this refinement is 0.9758 and 0.9952, respectively. There is one sub-
set on that the final results are the same between the inclusion and exclusion of incorrect
alignments. There are 9 out of 30 property mappings are incorrect on this subset. In
summary, it is clear that using only the correct property mappings is recommended for
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Table 4.9: Instance matching results of ASL and PARIS on 240 subsets of DF246

Min Max
rec prec F1 rec prec F1

ASL 0.8769 0.8769 0.8769 1.0000 1.0000 1.0000
PARIS 0.5165 0.5165 0.5165 1.0000 1.0000 1.0000

Avg. Std. dev.
rec prec F1 rec prec F1

ASL 0.9750 0.9751 0.9750 0.0259 0.0258 0.0259
PARIS 0.9362 0.9223 0.9290 0.0701 0.0763 0.0722

Table 4.10: Instance matching results of ASL and Knofuss on 239 subsets of DF246

Min Max
rec prec F1 rec prec F1

ASL 0.8769 0.8769 0.8769 1.0000 1.0000 1.0000
Knofuss 0.0000 0.0000 0.0000 1.0000 1.0000 0.9980

Avg. Std. dev.
rec prec F1 rec prec F1

ASL 0.9754 0.9756 0.9755 0.0256 0.0255 0.0255
Knofuss 0.4661 0.6212 0.5185 0.3570 0.3915 0.3643

matching instances. However, in overall, ASL still obtains high results on DF246 and
OAEI2011, thanks to the dominance of the correct alignments.

A useful property mapping that describes the same Wikipedia page of two coreferent
instances is detected on 169 subsets (69%) of DF246. Concretely, the average confidence
(Equation 3) of this alignment is 0.86. That is, probabilistically, only 86% of expected
coreferent instances share the same value linking to Wikipedia page. Meanwhile, the
lowest and average pair completenesss of these subsets are 0.8772 and 0.9844, respec-
tively. On the remaining 77 subsets (31%), the lowest and average pair completenesss
are 0.8769 and 0.9544, respectively. These results suggest that using property mapping
on Wikipedia page can improve the result on DF246. However, this alignment is not the
main decisive factor for obtaining the high results because the average pair completeness
on above 169 subsets is higher than 0.86 and that on remaining 77 subsets is also at
high value.

For further evaluating ASL, we compare the results of ASL and other systems. The
details are described as follows.

4.5.2.1 Comparison to automatic systems

Table 4.9 and Table 4.10 compare the results on DF246 of ASL and PARIS, and ASL
and Knofuss, respectively.
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Our machine cannot execute PARIS on 6 subsets of the ‘book’ target repository, because
the number of properties is huge, 2.4×106. Meanwhile, Knofuss does not respond after 3
days of running on 4 subsets, whose source and target repositories contain more than 105

and 106 instances, respectively. Knofuss also generates an empty result on 3 subsets. We
separate the comparisons between ASL with PARIS and Knofuss. For each comparison,
we respectively collect the result on the subsets that are applicable for PARIS and
Knofuss.

Both ASL and PARIS achieve good results with a high F1 and a narrow standard
deviation on average. ASL is better for most cases as it outperforms PARIS on 192
(80%) subsets. For all subsets together, ASL obtains 0.9837 for F1, whereas PARIS
obtains 0.9227. For each subset, the paired t-test yields a significant difference (t =
10.2317, p < 0.0001).

Since Knofuss does not output the matching scores, we consider all detected pairs of
Knofuss as the final results. The result of Knofuss is generally lower than that of ASL
and PARIS. On 239 applicable subsets for Knofuss, the F1 scores of ASL are significantly
better than those of Knofuss on 232 subsets (t = 19.7260, p < 0.0001) and only on 7
subsets Knofuss outperforms ASL. The F1 scores of Knofuss are under their average
on 113 subsets and no correct pairs are detected on 43 subsets. For those 43 subsets,
Knofuss offers a heavy weight for the instance consisting of many triples. Therefore,
many instances of the source are linked to only one big instance of the target but none
of them are correct. The low pair completeness also results from the fact that Knofuss
frequently generates numbers of pairs that are fewer than expected. Only 63.6% of
the total 1,253,254 expected pairs are generated. However, the precision is modest, at
62.12% on average.

4.5.2.2 Comparison to manual systems

Table 4.11 compares the F1 scores of ASL on OAEI2011 with SERIMI [3], Agreement-
Maker [27], and Zhishi.Links [117]. According to this table, ASL performs better on
most subsets than do SERIMI and AgreementMaker. Compared to Zhishi.Links, ASL
is a competitive runner-up. Note that Zhishi.Links includes some effective customiza-
tions for OAEI2011. The system uses 19 unification rules for strings (e.g., ‘Co’ and
‘Company’, ‘Bronx’, ‘Manhattan’, and ‘NYC’). Meanwhile, ASL and other systems use
a general similarity measure without any specific adaptation.

The reported result of other systems on this datasets is based on a much smaller dataset
simplified from the original data due to the scalability issue. Using the simple version of
this dataset is not difficult to obtain near perfect results, as reported in [112]. Although
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Table 4.11: F1 scores of ASL and other manual systems on OAEI2011

ASL SERIMI AgreementMaker Zhishi.links
D1 0.88 0.68 0.69 0.92
D2 0.87 0.88 0.74 0.91
D3 0.96 0.94 0.88 0.97
D4 0.90 0.91 0.85 0.88
D5 0.92 0.91 0.80 0.87
D6 0.93 0.92 0.96 0.93
D7 0.88 0.80 0.85 0.91

Table 4.12: Detailed runtimes of ASL
Unit: %, except Total column.

Property Blocking Similarity Total
mapping aggregator (unit: sec)

DF246
Min 0.01 0.13 26.21 2.33
Max 31.92 19.96 99.16 83314.2
Avg. 3.16 1.31 91.41 2753.5

OAEI2011

D1 19.34 1.65 79.01 295.79
D2 15.5 0.96 83.53 341.12
D3 13.49 2.68 83.6 389.12
D4 14.66 1.58 84.04 924.98
D5 16.42 3.16 80.7 1022.80
D6 11.43 2.74 86.07 1356.08
D7 11.4 7.69 78.72 48.73

we cannot truly compare ASL and other systems, the comparison reported here still has
it value of a reference comparison. In this specific situation, given more difficult data
but ASL obtains better result.

The competitive result of ASL compared to manual systems not only confirms the
good performance of ASL, but also supports the position of an automatic approach for
instance matching solutions.

4.5.3 Experiment 3

4.5.3.1 Runtime of ASL

Table 4.12 summarizes the detailed runtimes of ASL on DF246 and OAEI2011. The
most expensive step of ASL is the candidate verification, which requires an average of
91.4% of the total time, even parallel processing (8 threads) is applied for this step.
This fact also reveals the importance of blocking for reducing the number of candidates.
Since blocking averagely reduces 99.65% of possible pairs (see Table 5), without this
step, it costs approximately 6 years to finish the matching process for DF246, instead
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Table 4.13: Total runtimes of ASL and PARIS on 240 subsets of DF246 (unit: sec)

Min Max Avg.
ASL 2.33 83,314 2763
PARIS 18 33,019 2298

Table 4.14: Total runtimes of ASL and Knofuss on 239 subsets of DF246 (unit: sec)

Min Max Avg.
ASL 2.33 27,684 1,782
Knofuss 50 186,428 12,715

of the current 7.8 days. In addition, it is worthwhile to index the data for speeding up
the property mapping and blocking since the time for building the index is very minor
compared to the total. The most expensive indexing is over 70% for one small subset, on
which ASL takes 4 seconds to finish the whole process, including the very fast candidate
verification step. The reason is the low number of candidates and only one property to
be considered.

4.5.3.2 Comparison to PARIS and Knofuss

We conducted a comparison of the scalability of ASL, PARIS, and Knofuss on the appli-
cable subsets of DF246, as we reported in the second experiment. Note that the machine
for running ASL is not more powerful than that for running PARIS and Knofuss. PARIS
is faster than ASL in overall (see Table 4.13). ASL is built upon ScSLINT , therefore
it is optimized for the memory footprint. The working set of ASL is at most 14 GB on
the tested subsets. Meanwhile, the efficiency of PARIS is supported by a working set of
154 GB memory, and more than 250 GB is needed for the 6 subsets that our machine
failed to execute. ASL is very fast on small subsets, whereas PARIS is more stable and
more efficient on large subsets. For example, PARIS is faster than ASL on 57 subsets.
Of these, 33 subsets are larger than 1011, whereas only 16 of the remaining 183 subsets
are as large.

According to Table 4.14, Knofuss is not as fast as ASL. The system takes 35 days to
finish the benchmark and does not respond after 10 days running on the largest subset.
Knofuss also uses more memory, which is 42 GB for the maximum. It is clear that
Knofuss needs to be reduced in complexity, whereas PARIS needs memory optimization.
ASL can also be improved by using more memory to support the concurrent candidate
verification steps.

In this section, we reported our experimental results. The results show the high perfor-
mance of ASL in both accuracy and efficiency. ASL significantly improves the result on
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the DF246 dataset in comparison with the state-of-the-art system PARIS. ASL is also
competitive with manual systems on the OAEI2011 dataset.
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4.6 Summary

Schema-independent instance matching is very important because of its applicability.
We develop ASL, a system that can work on any repository with any schema. ASL

automatically detects the property mappings without any description of the schemas.
The schema-independent capability of ASL is verified by the experiments on more than
250 different pairs of schemas. For those dataset, ASL shows its portability, effective-
ness, and efficiency. ASL also significantly outperforms other automatic systems and is
competitively better than manual systems.
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Chapter

5
ScLink: Supervised

specification-based instance
matching

In this chapter, we describe our contribution for supervised specification-based instance
matching. We present ScLink system, a scalable, effective, and efficient system. We
write this chapter with the order of motivation (Section 5.1), problem statement (Section
5.2), the detail of ScSLINT (Section 5.3), and the experiment (Section 5.4).
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5.1 Motivation

The early state of instance matching is the manually operated systems [27, 117], in
which the specification is constructed by the human. The heterogeneity of repositories
is a factor of automation limitation for this approach because it blocks the portability
of the constructed specification. In addition, since user’s experience does not guarantee
to cover every data domain, the useful property mappings, suitable similarity metrics,
and the optimality of other settings are difficult to be precisely decided. Finally, the
accuracy is reduced as a consequence. The matching specification can be effectively and
automatically constructed by using learning algorithms. Unsupervised learning is an
option for a fully automatic system [12, 47, 101, 116]. However, it is still far from the
practical usage because it delivers just a modest accuracy but suffers from very high
complexity. Contradictorily, supervised learning of specification has the advantages
in high accuracy and low complexity. Although this approach requires some labeled
instance pairs for the learning step, the small size of training data can compensate
the loss of automation. Specification learning has been the focus of a few systems
[61, 100, 116]. However, those systems are not suitable for highly heterogeneous and
large-scale datasets because they need manual interventions or are at high complexity.

In the previous chapter, we presented ASL, a schema-independent instance matching
system that works without labeled data. ASL achieved good performance but the
quality of the result can be far better with supervised methods. In some matching
tasks, when the accuracy is at high expectation and training data is available, it is
essential to leverage a supervised system. We are motivated from developing a supervised
specification-based instance matching system that can handle heterogeneity, scalability,
and somehow reduces the issue of ambiguity.

We present ScLink [111], a scalable and supervised instance matching system. ScLink
contains two phases: learning phase and resolution phase. In learning phase, ScLink
automatically generates property mappings and assigns similarity metrics to each map-
ping in order to create the initial similarity functions. An optimal combination of these
similarity functions and also other parameters of the resolution phase are selected by a
learning algorithm. Compared to previous supervised systems, ScLink contains three
main novelties. The first one is cLearn [104, 105], a heuristic-based specification learn-
ing algorithm. The second one is minBlock, a learning algorithm for blocking model.
Blocking is a technique used for quickly detecting the candidates of potentially coref-
erent instances. The objective of this step is to avoid taking the comparisons for all
pair-wise alignments of instances between input repositories so that it improves the
scalability. The optimal blocking model learned by minBlock is far better than existing
non-learning approach used by other systems. The third novelty is the modified BM25
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(Modified-BM25 ), a novel similarity metric that is robust to the ambiguous strings.
ScLink is highly scalable because its simple architecture enables the parallel processing
for the comparisons of instances. In addition, different from previous supervised systems,
ScLink optimizes the blocking model and thus generates fewer candidates. That is, the
complexity is much reduced. ScLink is an extensive improvement of cLink [106, 109].
Compared to cLink, the scalability, ambiguity, and heterogeneity are more radically
solved in ScLink.

We analyze the performance of ScLink in many aspects. We use 15 real datasets whose
sizes vary from small to very large. We evaluate in detail minBlock, cLearn, and
Modified-BM25. We re-implement recent specification learning algorithms [58, 60, 61,
100, 116] for comparing with cLearn in the context of using the same input of similarity
functions and all other parameters. We compare ScLink with the previous systems,
including the supervised and the state-of-the-art systems. Interestingly, experimental
results find that our system needs only a small amount of training data for constructing
an effective specification. It supports the applicability of ScLink in practical instance
matching problems.

5.2 Problem statement

Given two repositories: the source RS and the target RT . Each repository is a collection
of instances and is associated with a schema. The set of attributes of an instance x
described by property p is formatted as p(x). Due to the heterogeneity, p(x) may be
empty (e.g., missing value), contains one, or multiple elements (e.g., different names
of one thing). The objective of instance matching is to identify the coreferent set I ∈
RS × RT . A pair 〈x, y〉 of instances x ∈ RS and y ∈ RT belongs to I if x and y

co-describe the same object. In supervised scenario, a subset of RS × RT is labeled
(positive/negative) and given to the learning algorithms. When the learning process
finishes, the obtained knowledge is applied for detecting the coreferences existing in the
unlabeled set.

The discrimination of source and target repository enables the role assignment for the
input repositories. Most researchers consider the target as a referent repository, which is
expected to contain the instances that are coreferent with many instances of the source
repository. Therefore, the target repository contains more instances and so that it is
more heterogeneous and ambiguous. This discrimination is helpful for reducing the
complexity and improving the accuracy of the instance matching. These advantages will
be further discussed in the next section.
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Figure 5.1: The general architecture of ScLink.

5.3 ScLink system

We begin with the description of the general workflow and then we detail the steps.

5.3.1 Overview

The general workflow of ScLink is depicted in Figure 5.1. The instance matching process
consists of two phases: learning and resolution. The learning phase contains four steps:
property alignment, similarity function generation, blocking, and specification learning.
The resolution phase contains four steps: blocking, similarity aggregation, and filtering.
ScLink is built upon the ScSLINT framework (Chapter 3). However, for clearer de-
scription of ScLink, we merge and split some components of the original ScSLINT .
The underlying workflow and implementation fit to those of ScSLINT . Compared to
ScSLINT , the specification creator is merged to specification learning. The determiner
is named with filtering for better describing the specific case of ScLink. In addition,
the result of blocking is separated into labeled and unlabeled, in accordance to the two
phases.

ScLink takes two repositories RS and RT as the input. RS is also separated into two
parts: RSL and RSU , where L and U stand for ‘labeled’ and ‘unlabeled’, respectively.
In learning phase, first, the property alignment generates the property mappings using
statistical analyses over all instances of RS and RT . According to the type of each
mapping, the similarity function generation assigns the similarity metrics and produces
the initial similarity functions. Each function computes one atomic score reflecting an
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aspect of the similarities between two instances. In parallel, in blocking step, minBlock
algorithm finds an optimal blocking model using the generated property mappings. The
learned model is used to create the labeled candidates set CL and unlabeled candidates
CU , where CL ∈ RSL ×RT and CU ∈ RSU ×RT . In this step, an annotation process is
conducted to create the training data for minBlock as well as cLearn. Together with
the initial similarity functions, the labeled candidates CL are input into specification
learning, in which cLearn is executed. cLearn finds the optimal specification, which
contains the specification of further steps, including similarity aggregation and filtering.

In resolution phase, the optimal specification is used to detect the coreferences from
unlabeled candidates. For each candidate, the similarity aggregation executes the learned
similarity functions and combine the results into one final matching score. Finally,
filtering step produces the coreferences for unlabeled candidates by applying a constraint
that considers the matching score of all candidates.

Most parts of the above workflow are shared between many specification-based super-
vised instance matching systems [58, 60, 61, 99]. One originality of ScLink is that it
also applies the learning for blocking step to create the optimal model, which can gen-
erate compact candidate sets. Other systems use all property mappings for this step
and thus ignore the quality judgment for the input information because those mappings
are not guaranteed to be correct. In other words, using all of them may produce many
unnecessary candidates and add more limitations to scalability.

5.3.2 Property alignment

The mission of property alignment is to find the property mappings that are expected
to describe the same attributes. For solving this, ScLink first selects the property
candidates from RS and then aligns them to the appropriate properties in RT . This
mechanism is similar to that of ASL.

5.3.2.1 Select property candidates from source repository

ScLink does not take all properties of the source repository into comparison. Instead,
only the properties that satisfy the requirements of discriminability and coverage are
considered. The discriminability of a property p reflects how many unique values are
described by p. Meanwhile, the coverage (frq) of p expresses how many instances contain
p. These measures are calculated by Equation 4.1 and 4.2, respectively.

We separate the properties by their type before performing the selection. This mech-
anism enables user to set a quota for each type of property, in order to increase the
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inclusion of useful properties from various types. We discriminate the properties into
four types: string, number, date, and URI. For each type, ScLink limits the search
space into only properties whose diversity satisfies a threshold tdiv. Then, a property is
considered as a candidate if it is among the top Kfrq most frequent properties.

5.3.2.2 Align properties between source and target repository

Each selected property from source repository is aligned with the properties having the
same type in the target. Each alignment also is called a mapping. The confidence of a
mapping 〈pS , pT 〉 is measured by counting the sharing values of pS and pT , as formulated
in Equation 4.3. In that equation, E is a preprocessing function and ScLink also uses
the function similar to ASL. Table 4.1 is the detail of E. Among the mappings related
to one property of the source repository, we select the mappings that belong to the top
Kconf most confident ones. In addition, in technical aspect, a very small threshold is
applied to the confidences to skip the slightly relevant mappings. We fix this value to
0.01.

This2 alignment step of ScLink is different from that of ASL. ScLink selects the
target properties independently for each property of the source repository. Meanwhile,
ASL selects the target properties by taking the top most confident alignments over
all properties. The reason is, in ScLink, there is another learning step to refine the
mappings and ASL does not have that step. Therefore, ASL uses the heuristic in a
limited space for not including many unwanted mappings. In contrast, ScLink tends to
include more useful mappings even it can accept the incorrect mappings as well.

ScLink generates the initial property mappings by observing the values described by the
properties. That is, the creation of mappings is independent with the schema description.
Therefore, ScLink is classified as a schema-independent system. In other words, the
heterogeneity of schema is solved. However, this is just half of the solution because the
quality of property mappings are not validated. The refinement is done by specification
learning step.

All property mappings are used for similarity function generation and the mappings of
string properties are used in blocking step. In the next two sections, we describe the
detail of those steps.

5.3.3 Similarity function generation

The task of this step is to assign the suitable similarity metrics to the property mappings.
The result of one assignment is a similarity function. This step creates only the prototype
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Table 5.1: Similarity metrics by data type

Data type Similarity metrics
string Levenshtein (for short string), TF-IDF Cosine, modified BM25
number inverse difference
date exact matching
URI exact matching

of similarity functions. The execution of them is conducted by the similarity aggregation
step, which is described by Section 5.3.6. We denote a similarity function as δmetricmapping.
For example, δExact[name,label](x, y) and δJaro[name,label](x, y) compare the pair-wise of name(x)
and label(y) using exact matching and Jaro similarity, respectively. The formal definition
of a similarity function is given in Equation 5.1.

δσ〈pS ,pT 〉(x, y) = max
vx∈pS(x),vy∈pT (y)

σ(vx, vy) (5.1)

where max operator is used to return only the similarity of the most similar values
described by pS and pT , because pS(x) or pT (y) may contain multiple facts (e.g., ‘Sony’
and ‘Sony Corporation’ are names of a company and both can be described in the same
instance).

ScLink assigns only the similarity metrics that are suitable for the type of the interested
mapping. The list of similarity metrics is reported in Table 5.1. According to this table,
exact matching is used for comparing URI and date. The similarity of values of URI
and date is considered as 0 or 1 because it is suitable for the real data (e.g., homepage,
birth date, and release date). Although the variation of time is useful in temporal
instance matching [24], the focus of ScLink is the general context. For number, reserve
difference is used to calculate how much close the two input numbers are. We apply
Levenshtein metric for short strings comparison because it is effective for this kind of
data [79]. For long string, we install the well-known TF-IDF Cosine and introduce the
novel modified BM25 metrics. These metrics take the tokens (w) of the given strings into
the computation, together with their normalized term frequency (TF ) and the inverse
document frequency (IDF ). Equation 5.2 and 5.3 are the customized calculations of
those weights, for adapting with the instance matching scenario.

TF (w, x,R) =

∑
p∈schema(R)

|V(w, p, x)|

max
t∈R

∑
p∈schema(R)

|V(w, p, t)| (5.2)
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IDF (w,R) = log
|R| −

∑
p∈schema(R)

|{x|x ∈ R,V(w, p, x) 6= ∅}|∑
p∈schema(R)

|{x|x ∈ R,V(w, p, x) 6= ∅}| (5.3)

where

V(w, p, x) = {v|v ∈ p(x), w ∈ E(v)}

By including 5.2 and 5.3, the TF-IDF Cosine and the modified BM25 similarities of two
token lists a and b belonging to pS(x) and pT (y) are calculated as in Equation 5.2 and
5.3, respectively.

cosine(a, b) =

∑
w∈a∩b

TFIDF (w, x,RS)× TFIDF (w, y,RT )√∑
w∈a

TFIDF (w, x,RS)×
∑
w∈b

TFIDF (w, y,RT )
(5.4)

TFIDF (w, x,R) = TF (w, x,R)× IDF (w,R)

mBM25(a, b) = |a ∩ b|
|a ∪ b|

×
∑

w∈a∩b
tWeight(w, x, y)× tEdit(w, a, b) (5.5)

where

tWeight(w, x, y) = IDF (w,RS)× IDF (w,RT )× TF (w, y,RT )× k1
TF (w, y,RT ) + k2

tEdit(w, a, b) = invDiff(pos(w, a)− pos(w0, a), pos(w, b)− pos(w0, b))

The TF-IDF Cosine is popularly used for its advantages in weighting the tokens. How-
ever, it is sensitive to ambiguity because it ignores the tokens order, an important
information. Using a similarity metric with a robust disambiguation capability is very
important.

We introduce the modified BM25 as a more effective metric, which also considers this
useful aspect. The first factor, |a∩b||a∪b| , is the Jaccard coefficient of a and b. The second
factor is the sum of the token weighting tWeight and the order inverse difference tEdit.
The function pos returns the position of a token in its parent string. The variable w0

denotes the first shared token between a and b. The combination of Jaccard coefficient,
tWeight, and tEdit is effective because we can simultaneously penalize the less over-
lapped strings, include the token weight, and consider the token order. tWeight modifies
the original BM25 weighting scheme [132], which is originally designed for Information
Retrieval. tWeight eliminates the target document length in BM25 and introducing the
IDF (w,RS). k1 and k2 are fixed equivalently to the defaults of BM25, which are 2.2 and
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0.3, respectively. In experiment, the modified BM25 shows its considerable effectiveness
against the TF-IDF Cosine on highly ambiguous datasets.

The TF-IDF Cosine and modified BM25 metrics compare the token using exact match-
ing. Since we focus on real data, which infrequently contains token distortion, exact
matching is effective. In addition, ScLink is implemented with a flexible mechanism
that is ready for the injection of new similarity metrics when needed.

5.3.4 Blocking

The input of this step includes the string property mappings, RSL, RSU and RT . In this
step, the labeled candidate set CL and unlabeled set CU are generated. A candidate is
defined as a pair of instances and is expected to be the actual coreference. This step is
very important because it reduces the number of pairwise alignments between RS and
RT . Therefore, together with the retention of many actual coreferences, another mission
of this step is to generate the candidate sets with compact sizes.

For each property mapping, we define a blocking function, which receives the input of
instances pairs C and returns the pairs that satisfy the blocking mechanism. The input,
for example, can be RS × RT or just a subset of this Cartesian product. According
to the experiment of ASL in Section 4.5.1, token-based blocking using only the first
element is sufficient for real datasets. Therefore, in ScLink, the blocking mechanism
also is to qualify a pair if the instances share the first token in the values described by
the properties of interest. Using multiple blocking functions increases the recall but has
more possibility to generate incorrect candidates. Therefore, selecting an optimal set of
blocking function is very important.

The procedure of blocking step is as follows. First, we create a default blocking model
Bdef , which is the set of all blocking functions generated from all input property map-
pings. The result of applying a blocking model is the union of the results of each member.
Then, a candidates set CL0 is generated as the result of Bdef (RSL×RT ). CL0 is passed
through an annotation process in which positive or negative label is assigned for each
candidate. The annotation can be solved by the achievements of other studies. For in-
stance, combining automatic matching algorithms and crowd-sourcing-based technology
[30, 154]. After that, minBlock algorithm learns an optimal blocking model Bopt from
CL0 and Bdef . Finally, Bopt is used to create CL and CU , where CL = Bopt(CL0) and
CU = Bopt(RSU ×RT ).

An optimal blocking model generates compact candidate sets with ignoring minimal
actual coreferences. For the learning of such model, we propose minBlock. minBlock
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Algorithm 1: minBlock
Input: Training set CL0, decimal parameter tloss, default blocking model Bdef
Output: Optimal blocking model Bopt

1 Bopt ← Bdef

2 minRec← recall(C+
L0, F (CL0))× tloss

3 repeat
4 size← |Bopt(CL0)|
5 remove← ∅
6 foreach fblock ∈ Bopt do
7 B = Bopt \ fblock
8 if recall(C+

L0, B(CL0)) ≥ minRec and size > |B(CL0)| then
9 remove← fblock

10 size← |B(CL0)|

11 Bopt ← Bopt \ remove
12 until remove = ∅
13 return Bopt

considers all input blocking functions as baseline and tries to remain the actual corefer-
ences that can be generated by the baseline. Meanwhile, it tries to reduce the unexpected
candidates. The pseudo code of minBlock is written in Algorithm 1. In this pseudo
code, C+

L0 is the positive candidates and recall is calculated by Equation 2.24 (Section
2.5). The idea of minBlock is simple. In each main iteration controlled by line 3, it
removes one blocking function that generates the most unexpected candidates but does
not increase the recall from an acceptable value. This ‘acceptable’ recall is defined by
comparing with the baseline model and is managed by tloss. By default, tloss is set to
1.0 for guaranteeing zero loss in recall.

The complexity of minBlock is acceptable. The worst case happens when the if state-
ment in line 8 is always hold. In that case, the complexity of minBlock is the quadratic
O(n(n+1)

2 ), where n is the size of Bdef . In average, the complexity is not accurately
estimated because it depends on the unknown probability of the if statement. However,
the complexity in the worst case indicates a moderate computational effort so that it is
reasonable to use minBlock for supervised instance matching.

The learning of blocking model is also investigated by many studies [14, 29, 72]. Among
them, most similar to minBlock is optimal hashing [29], which also tries to reduce the
size of candidate set while reserving the recall. However, the problem definition of this
hashing model is very different from ours and therefore the solution is varied.
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The definition of blocking function enables the modification of blocking mechanism.
That is, one or multiple blocking mechanisms can be used for each property mapping.
However, ScLink currently uses token-based strategy [121] as the only mechanism. The
advantage of this strategy is to retain the highest number of the expected coreferences,
compared to that of many other systems [62, 90, 112, 155], which use token weighting.
Although weighting approach generates less number of candidates, it is accompanied by
a considerable drop in recall.

5.3.5 Specification learning

The labeled candidates set CL is separated into two sets, training set Train and vali-
dation set V al. Using Train, V al, initial similarity functions Fdef (Section 5.3.3), and
similarity aggregators Ginp (Section 5.3.6), this step learns the optimal specification Sopt
that is most suitable for the input repositories. A specification specifies the combination
of similarity functions F , the similarity aggregator G, the parameters λδ associated with
each similarity function δ, and the parameter ω of the filtering step (Section 5.3.7). The
mission of this step is to automatically assign the optimal value to all elements of Sopt.

We use cLearn, a heuristic search method to optimize the combination of the similarity
functions and the similarity aggregator. The pseudo code of cLearn is given in Algorithm
2. In this pseudo code, we use dot (‘.’) notation to represent the member access operator.
The detail of the functions and parameters used in Algorithm 2 is as follows.

• Ktop is used to adjust the maximum number of selected similarity functions. A
higher value of Ktop offers more opportunity for the optimal specification but also
may increase the complexity because it may add more iterations controlled by line
12. In cLearn, we assign Ktop = 16 by default. We use such a high value of Ktop

so that possibly cLearn does not miss the optimal specification.

• Init creates a specification by assigning G, F , and λ with given values.

• Match executes the similarity aggregator and the filtering step in order to obtain
the detected coreferent instances.

• FindThreshold assigns a value to λ, a parameter of coreference filter. This func-
tion first selects the top |Train+| candidates with the highest matching score,
where |Train+| is the number of the actual coreferences in Train. Then, it as-
signs the lowest score of the correctly detected coreference to λ.

• Evaluate computes the performance of instance matching by comparing the gen-
erated results with the labeled data. In this function, F1 score is used as the
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Algorithm 2: cLearn
Input: Training set Train, validation set V al, integer paramerter Ktop

list of similiarity functions Fdef , list of similiarity aggregators Ginp
Output: Optimal configuration Sopt

1 Sagg ← ∅
2 foreach A ∈ Ginp do
3 visited← ∅
4 foreach δ ∈ Fdef do
5 c← Init(G← A,F ← δ, λ← 0)
6 links←Match(c, Train)
7 c.λ← FindThreshold(links, Train)
8 c.λδ ← c.λ

9 F1← Evaluate(links, Train)
10 visited← visited ∪ {[c, F1]}

11 candidate← TopHighestF1(visited,Ktop)
12 while candidate 6= ∅ do
13 next← ∅
14 foreach g ∈ candidate do
15 foreach h ∈ candidate do
16 c← Init(G← A,F ← g.c.F ∪ h.c.F, λ← 0)
17 links←Match(c, Train)
18 c.λ← FindThreshold(links, Train)
19 F1← Evaluate(links, Train)
20 visited← visited ∪ {[c, F1]}
21 if |g.c.F ∪ h.c.F | = |g.c.F |+ 1 and g.c.F 6= h.c.F and F1 ≥ g.F1 and

F1 ≥ h.F1 then
22 next← next ∪ {[c, F1]}

23 candidate← next

24 F1← Evaluate(argmaxv∈visited(v.F1).c, V al)
25 Sagg ← Sagg ∪ {[c, F1]}

26 [Sopt, F1]← argmaxc∈Sagg(s.F1)
27 return Sopt
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default performance metric. It is the harmonic mean of recall and precision, as
calculated by Eq. 2.24 and 2.25.

• The validation set V al is used to increase the generality of the final specification
Copt. Each iteration controlled by line 2 finds an optimal specification with one
similarity aggregator A. In other words, there are |Ginp| specifications in Sagg. For
selecting the most optimal one from Sagg, instead of just picking the specification
having the best performance on Train, V al is recommended. In case the labeled
data is too small to be separated into training and validation sets, cross-validation
is a reasonable option.

The heuristic used in this algorithm is the direct enhancement assumption (line 21). It
states that the performance of using a combination must not be less than that of the
combined items. This heuristic is reasonable as a list of similarity functions that reduces
the performance has little possibility of generating a further list with improvement.

cLearn works under the principle of the well-known Apriori algorithm [1], where each
similarity function is considered as an item as in Apriori. cLearn begins with the consid-
eration of each single similarity function and then checks their combinations. Similar to
Apriori, cLearn works as a breadth-first search (BFS) algorithm and explores the search
space by combining the previous states (i.e., the combinations of similarity functions).
cLearn only combines the states of the same size s and share s− 1 elements. Therefore,
the size of the combination increases by one after each iteration. For example, in the 2nd

iteration, the combination of [1,2] and [1,3] (i.e., which makes [1,2,3]) is considered, but
the combination of [1,2] and [3,4] (i.e., which makes [1,2,3,4]) is ignored. Since the goals
of Apriori and our learning task are different, we customize the acceptance mechanism
when checking a new combination of similarity functions. While in Apriori algorithm,
the condition is uniformly fixed for all cases, we adaptively change the criterion for each
combination, which is the heuristic discussed above.

The global optimum of specification can be found using exhaustive search. However,
such method is extremely expensive in term of computational cost and thus has not
been used. Some systems try to use genetic search to solve the issue of complexity
[61, 100, 116] but this algorithm is still time-consuming because it is based on random
convergence. In addition, genetic algorithm has many free parameters. cLearn uses a
reasonable heuristic to reduce the complexity and minimize the parameters.

The complexity of Algorithm 2 is affected by many factors, including the size of training
set Train, the number of initial similarity functions Fdef , the number of similarity
aggregators Ginp, parameter Ktop, and the probability of the if statement in line 21.
However, by analyzing only the number of the specification that the algorithm needs to
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check, the size of training data is skipped. In total the complexity is O(|Ginp|× (|Fdef |+
f(while))), where f(while) is the complexity of the while block from line 12 to line 23.
The complexity of this block depends on Ktop, and the probability of the if statement.
Let pi is the probability of the hold cases for the if statement in the ith iteration of the
while block. The complexity of the ith iteration is f(whilei) = pi−1 ×

(Ktop
i+1

)
, where

the iteration is counted from 1 and p0 = 1.0. That is, the size of candidate may increase
for the first few iterations (if Ktop > 3) and then decrease. In the worst case, if p is
equal to 1.0 for all iterations, the result will be the union of Ktop similarity functions.
Otherwise, lower value of p makes the the algorithm finish faster.

Most studies consider the supervised instance matching problem as the discovery of
property mappings, instead of identifying them by annotation. The reason is the cor-
rect mappings in semantic aspect are different from the useful mappings for instance
matching. For example, air transportation companies frequently share their ICAO (i.e.
unique abbreviation name) and stock symbol; or full name can be matched with first
name and last name, instead of only the same amount of information. Besides taking
this issue into account, ScLink also combines the similarity metric and the mappings
for directly optimizing the similarity functions. The motivation of this mechanism is
that each metric offers different advantages on different properties with the association
of particular repositories.

5.3.6 Similarity aggregation

This step computes the final matching score for each candidate using the similarity
functions Fsim and their parameter δsim specified by a specification. The computation
of the matching score mScore(x, y) for two instances x and y is defined as follows:

mScoreF (x, y) = 1
valid(UF (x, y))

∑
v∈UF (x,y)

vk × weight(y) (5.6)

UF (x, y) = {δ(x, y)|sim(x, y) ≥ λsim, δ ∈ F}

where k ∈ {1, 2}, valid is a counting function, weight is a function weighting the tar-
get instance y, and σsim is the parameter for each similarity function sim, which is
determined automatically by cLearn (at line 8). k controls the transformation for each
similarity v. When k = 1, mScore function acts as a first order aggregation. When
k = 2, we have a quadratic aggregation. There are two variations of valid, which return
the number of elements in UFsim(x, y) and 1.0 always. The difference between these
variations is that the latter penalizes the pair (x, y) having similarities sim(x, y) < σsim

while the former does not. For weight function, ScLink also provides two options. For
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non-weighting, weight(y) simply returns 1.0. For weighting, the function returns:

weight(y) = logmaxt∈RT size(t)
size(y) (5.7)

where size(y) counts the number of RDF triples existing in y. By using Eq. 5.7, we
assume that the instances containing more triples are more prioritized. The logarithmic
scale is used to reduce the weight of instances whose size is particularly large. This
weighting method is effective when the target repository is very ambiguous, such as
large repositories.In addition, ScLink provides a restriction mechanism to enable or
disable σsim. When disabling, all σsim parameters are set to zero instead of the learned
values.

In total, there are 16 combinations of weight, valid, k, and restriction. Consequently,
there are 16 different aggregators supported by ScLink. All of them are used to initialize
Iagg in cLearn and let the algorithm select the most optimal one.

Equation 5.6 also reflects the generalization of different similarity aggregation functions
described in Section 2.3.2. The difference is that it includes the weighting for target
instance.

5.3.7 Filtering

This step produces the final coreferences. A candidate’s coreferent possibility is not
directly concluded from its matching score. Instead of that, the matching scores of
all related candidates are considered. Similar to ASL, we reuse the principle of stable
marriage problem [43]. The difference is that ScLink also uses a cut-off threshold λ to
eliminate the incorrect candidates but satisfying Equation 4.6. λ is assigned automati-
cally by the learning algorithm cLearn. Only candidates whose scores satisfy the above
condition statement and threshold λ are selected for the final results.

The basic idea of the filtering step is to rank each candidate in the local set of candidates
sharing its source or target instance. It guarantees that for very ambiguous repositories,
a highly similar pair (x, y) is not necessary to be coreferent if there exists other pairs
(x, z) with higher similarity.

5.4 Experiment

5.4.1 Experiment target

In order to elaborately evaluate ScLink, we conduct 5 experiments:
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Table 5.2: Summary of datasets used for ScLink.

ID Name |RS | |RT | PS PT factS factT |A|
D1 DBLP-ACM 2,616 2,294 4 4 10,464 9,162 2,224
D2 ABT-Buy 1,081 1,092 3 4 2,580 3,419 1,097
D3 Amazon-GoogleProdu. 1,363 3,226 4 4 5,337 9,719 1,300
D4 Sider-Drugbank 2,670 19,689 10 118 96,269 507,495 1,142
D5 Sider-Diseasome 2,670 8,149 10 18 96,269 69,544 344
D6 Sider-DailyMed 2,670 10,002 10 27 96,269 131,064 3,225
D7 Sider-DBpedia 2,670 4,183,461 10 45,858 96,269 232,957,729 1,449
D8 Dailymed-DBpedia 10,002 4,183,461 27 45,858 131,064 232,957,729 2,454
D9 Nytimes.loc-Geonames 3,840 8,514,201 22 14 42,302 112,643,369 1,729
D10 Nytimes.loc-DBpedia 3,840 4,183,461 22 45,858 42,998 232,957,729 1,917
D11 Nytimes.org-DBpedia 6,045 4,183,461 22 45,858 54,404 232,957,729 1,922
D12 Nytimes.peo-DBpedia 9,958 4,183,461 22 45,858 103,341 232,957,729 4,964
D13 Nytimes.loc-Freebase 3,840 40,358,162 22 2,455,627 43,037 912,845,965 1,920
D14 Nytimes.org-Freebase 6,045 40,358,162 22 2,455,627 59,111 912,845,965 3,001
D15 Nytimes.peo-Freebase 9,958 40,358,162 22 2,455,627 103,496 912,845,965 4,979

• Experiment 1 evaluates the performance of blocking step.

• Experiment 2 evaluates the performance cLearn.

• Experiment 3 analyzes the similarity metrics and similarity aggregators.

• Experiment 4 reports the runtime of ScLink.

• Experiment 5 compares ScLink with other systems.

All experiments are conducted on a desktop computer equipped with one Intel core
i7 4770K CPU and 16GB memory is allocated. The results of these experiments are
reported in Section 4.3 to 4.7. Next, we describe the datasets and the mutual settings
of all experiments.

5.4.2 Datasets

We use in total 15 datasets collected from the instance matching problem on relational
databases and linked data. The summary of the datasets is given in Table 5.2. In this
table, |Rk|, Pk, and factk are the number of instances, properties and total facts (i.e.,
the attributes) existing in the repository k (k ∈ {S, T}), respectively. Datasets D9 to
D15 are also used in previous experiments on ScSLINT and ASL. We describe again
those datasets in Table 5.2 for convenience.

The first 3 datasets (D1-D3) cover the bibliography and e-commerce domains and are
collected from the instance matching problem on relational databases. These datasets
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have small number of instances as well as simple schemas. The next 5 datasets (D4-
D8) belong to medicine and disease domains. Among them, the first 3 datasets have
medium size while the other 2 have larger size. The last 7 datasets (D9-15) belong to
people (peo), location (loc), and organization (org) domains and have very large size.
Particularly, the datasets related to Freebase are at huge size. The largest one contains
nearly 402× 109 pairwise instances between the source and the target repositories. The
schemas of most linked datasets are very heterogeneous. Considering DBpedia, 45,858
different properties are used to describe the instances. In Freebase, such quantity is even
more than 50 times larger. For the last 9 datasets (D7-D15), together with large number
of instances, the huge facts increase the ambiguity and complexity. Especially, the last
7 datasets (D9-D15) are realized as very challenging for theirs scalability, heterogeneity,
and ambiguity. We use the dump of NYTimes 2014/02, DBpedia 3.7 English, Freebase
2013/09/03, and Geonames 2014/02. There are a few slight inconsistencies between the
provided ground-truth and the downloaded dump data, because of the difference in the
release dates. Therefore, we have to manually exclude in total 130 (only 0.298%) source
instances which are related to such inconsistencies.

The above datasets are selected because they are real datasets with the variety of do-
mains and sizes. Although there are some newer datasets, they are either small, artificial,
or focus on the benchmarks with some special targets (e.g., reasoning-based, string dis-
tortion, language variation). Therefore, we do not use such datasets. Morever, many
systems have been recently tested on those datasets [37, 76, 150]. That enables the
comparisons between ScLink and others systems.

5.4.3 Experimental settings

There are 3 parameters in ScLink: tdiv, Kfre, Kconf . We are interested in using the
same parameters for all datasets and test cases in order to evaluate the sensitivity of
ScLink to parameters. We find that the selection for these parameters is not difficult.
We first fix the Kfre, Kconf into 4 for all property types. That is, at most 64 property
mappings will be generated. That quantity is comparatively high because it is at least
2.4 times larger than the number of properties of each source repository. By fixing Kfre

like above, we gradually reduce tdiv from 1.0 until at least one string property is selected
from each source repository. tdiv = 0.5 satisfies this expectation and we use this value
uniformly for all experiments. We observe that varying tdiv in the range 0.2 to 0.7 does
not change the generated mappings on all datasets excepts the last 7 datasets, which are
related to Nytimes. For Nytimes repository, using tdiv higher than 0.5 does not return
any property whose type is string.
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Table 5.3: Result of blocking using all property mappings.

ID size pc ID size pc ID size pc

D1 342,837 0.9933 D6 5,013 0.9939 D11 61,702,166 0.9880
D2 61,756 0.9262 D7 482,605 0.9538 D12 46,942,099 0.9970
D3 70,550 0.8654 D8 1,034,653 0.9780 D13 222,686,571 0.9875
D4 5,771 0.9721 D9 32,161,659 0.9676 D14 357,377,464 0.9770
D5 4,258 0.9535 D10 38,201,823 0.9718 D15 620,076,154 0.9912

For training data separation, we follow the workflow of ScLink (Figure 5.1). We split the
source repository into two parts RSL and RSU . Part RSL is used to generate the labeled
candidates CL and RSU is used to generate unlabeled candidates CU . The ratio of
RSL and RSU is varied between experiments (e.g., cross-validation or percentage split).
After that, CL is separated into two sets with the ratio 80%:20%. These set are used to
generate two labeled candidates set, training set Train (from 80%) and validation set
V al (from 20%), which are used by cLearn. In the rest of this section, we denote x%
labeled data as using x% instances of source repository as RSL.

An important note is that for experiments with percentage split, in order to reduce
the random noise, we repeat 10 times running for every dataset and record the average
results.

5.4.4 Experiment 1: Blocking

5.4.4.1 The general performance of minBlock

In this experiment, we compare the pair completeness and number of candidates when
using and not using minBlock. First, we report the results of not using this algorithm.
That is, all property mappings and all instances of RS are used for blocking step. In
other words, we measure the number of candidates (size) and the pair completeness (pc)
for C0 = Bdef (RS × RT ). Table 5.3 reports those results for all datasets. The high pc
values in this table reflect the effectiveness of using token-based blocking, especially us-
ing only the first token. The most difficult dataset is D3, on which the pair completeness
is 0.865 and is particularly lower than other datasets. However, it is acceptable because
the most recently equivalent result on this dataset is only 0.835 [74], by using the ad-
vanced tri-gram attribute clustering [99]. The number of generated candidates is very
small compared to all possible pair-wise instances between RS and RT . At least 99.9%
unnecessary candidates are removed. However, compared to the actual coreferences, the
generated candidates are generally still at much larger size.
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Table 5.4: Cross validation result with minBlock.

ID size rSize ID size rSize ID size rSize

D1 341,446 0.0041 D6 5,013 0.0000 D11 4,280,108 0.9306
D2 61,756 0.0000 D7 471,953 0.0221 D12 19,548,179 0.5836
D3 70,550 0.0000 D8 951,135 0.0807 D13 9,386,067 0.9579
D4 5,362 0.0709 D9 3,713,019 0.8845 D14 19,353,423 0.9458
D5 4,227 0.0073 D10 2,006,056 0.9475 D15 61,029,275 0.9016

The objective ofminBlock is to remain the pair completeness and reduce the unexpected
candidates. Therefore, we evaluate the effectiveness of minBlock by taking the ratios of
those values between after and before usingminBlock. The procedure of this experiment
is as follows.

• Given two splits RSL and RSU , we first generate the results of not usingminBlock,
CL0 = Bdef (RSL × RT ) and CU0 = Bdef (RSU × RT ). CL0 is used for minBlock
to generate the optimal blocking model Bopt.

• After that, we generate the result of using minBlock by taking CL = Bopt(RSL ×
RT ) and CU = Bopt(RSU ×RT ).

• Finally, we calculate the two ratios: size reduction rate rSize = 1 − |CL|+|CU |
|CL0|+|CU0|

(larger is better) and pair completeness reduction rate rRec = 1− |R∩CU ||R∩CU0| (smaller
is better).

We measure the change of size for both labeled set (CL) and unlabeled set (CU ) because
they are used for cLearn and resolution phase. However, we only measure the change
of pair completeness for unlabeled set because the pair completeness of labeled set is
identical to the original set CL0, as tloss is used as 1.0, the default value. Note that,
when we divide RS into different training split, the pair completeness and the size of CL0

and CU0 are probabilistically similar to those of the parent set C0 (reported in Table
5.3). Therefore, in order to enhance the readability, we skip the intermediate values and
report only the ratios rSize and rRec.

First, we use 5 folds cross-validation so that all instances are in turn used for training
as well as testing. For this test, the pair completeness reduction rRec is equal to 0.0
for most datasets, except D7 and D12. For D7 and D12, only on 1 random fold (out of
5 folds), 1 expected candidate is ignored. However, the size reduction rSize is varied
between datasets. Therefore, we report the detail in Table 5.4. According to this table,
the reduction of size is low on small datasets but very high on large datasets, when
unexpected candidates are frequently available. For D9 to D15, in total, a considerable
number of 1.26 × 109 candidates are discarded. These results confirm the effectiveness
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and importance of minBlock. By limiting the candidates, the complexity of cLearn and
resolution phase is much reduced.

5.4.4.2 Size of training data

For a supervised system, the size of training data is very important. Therefore, we also
evaluate minBlock with different small amount of training data. We vary the ratio
labeled data from 1% to 15% and analyze the trend of rRec and rSize.

Generally, on most datasets, rRec reduces with the increase of labeled data. In other
words, the more labeled data is given, the more optimal blocking model is learned. The
coefficient of variation for rRec values when changing the amount of labeled data is
under 1.0 for all datasets except D15. Particularly, for D6 and D9, rRec is always equal
to zero whatever amount of labeled data is given. In average of all datasets, rRec quickly
reduces from 0.0089 to 0.0035, when labeled data is increased from 1% to 8%. After
this point, the change of rRec is not considerable as only 0.001 unit is reduced for the
range 8% to 15%. The slight variation of rRec between different settings of annotation
effort and the early saturated value show that minBlock can learn the optimal blocking
model by using a small amount of labeled data. More detailed results are illustrated in
Figure 5.2.

The reduction of rRec is companied with the drop in rSize. However, the reduction of
rSize is not considerable and gradually slow down with the increase of labeled data. In
average of all datasets, rSize drops from 0.53 to 0.43 when 1% and 15% labeled data
is given. This value is almost not different with that of using 5 folds cross-validation,
whose average rSize is 0.422. In addition, the coefficient of variation of every dataset
is under 1.0. For above facts, the reduction of rSize is in acceptable range even we try
to reduce rRec by giving more labeled data to minBlock.

5.4.5 Experiment 2: Learning algorithms cLearn

5.4.5.1 General performance of cLearn and comparison to other algorithms

In order to evaluate the effectiveness of our proposed learning algorithm, we compare
the result of ScLink when using cLearn and when replacing it by other algorithms. We
compare with top rank selection (naive), information gain based selection (gain), and
genetic algorithm (genetic). The mechanisms of these algorithms are as follow.

• naive selects the Ktop similarity functions that obtain highest F1.
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Figure 5.2: Pair completeness reduction rate by size of training data

• gain re-implements the idea of ADL [58], which selects the most discriminative
property mappings by independently measuring the information gain of each prop-
erty.

• genetic follows the idea of EAGLE [100], Knofuss [116], GenLink [60], and Ac-
tiveGenLink [61], which use genetic algorithm to learn the matching specification.
We use binary array representation for the combination of similarity functions.
We choose exponential ranking for fitness selection, 0.7 for single point cross-over
probability, 0.1 for single point mutation probability, and 50 for the population
size. We limit the maximum iteration to 1000 and also use early stop mechanism,
which terminates the algorithm when F1 is saturated.

In order to implement other algorithms, we replace the lines from 3 to 23 of Algorithm
2 with the new algorithms. In other words, the mechanism of determining σsim, δ,
and Agg remains the same of all algorithms. The reimplementation of other algorithms
offers elaborate comparisons. It enables using the same input of similarity functions
and the mechanism of determining other settings. More important, other algorithms are
installed in the systems that are not scalable enough and thus cannot work with large
datasets like D7 to D15.
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Table 5.5: F1 scores of ScLink when using cLearn and other algorithms.

cLearn genetic gain naive

D1 0.9626 0.9656 0.9585 0.9585
D2 0.6918 0.6824 0.6214 0.6241
D3 0.6102 0.6133 0.5619 0.5700
D4 0.9486 0.9376 0.9019 0.9096
D5 0.8536 0.8535 0.7470 0.7342
D6 0.8630 0.7798 0.6710 0.6713
D7 0.6591 0.6645 0.4302 0.6397
D8 0.7316 0.7301 0.7236 0.7266
D9 0.9121 0.9115 0.8626 0.8596
D10 0.9222 0.9042 0.9175 0.9126
D11 0.9244 0.9294 0.8695 0.9169
D12 0.9749 0.9748 0.9365 0.9675
D13 0.9164 0.9171 0.8756 0.8741
D14 0.9330 0.9330 0.9020 0.9269
D15 0.9461 0.9467 0.9123 0.9159

H.mean 0.8380 0.8310 0.7541 0.7900

Table 5.5 reports the average F1 score on each dataset of the tested algorithms when
using 5 folds cross-validation. According to this table, the proposed algorithm consis-
tently outperforms gain and naive. For genetic, cLearn is better than this algorithm
on 9 out of 15 datasets. Although the overall harmonic means of cLearn and genetic
look closed, when considering each fold separately, so that there are 75 tests (i.e. for
15 datasets and 5 folds), paired t-test finds that the improvement made by cLearn is
significant (p=0.0223). The similar results are also recorded for comparing cLearn with
naive (p<0.0001) and gain (p<0.0001).

naive and gain are the fastest algorithms because they check each similarity function
independently and do not consider the combinations. For cLearn, since we fixed the
Ktop into 16, in theory, the maximum number of specifications is 216 for the worst case,
if cLearn exhaustively checks all combinations of similarity functions. However, in fact,
with the effect of the heuristic, cLearn stops after checking averagely 177 specifications.
Meanwhile, genetic needs to check 316 specifications in average. That is, the proposed
heuristic reduces almost 44% the specifications while remaining the high accuracy, com-
pared to genetic. In summary, it is concludable that cLearn is more reliable and faster
than other tested algorithms.

5.4.5.2 Size of training data

Similar to Experiment 1, we also analyze the trend of F1 score when varying the size
of labeled data. Small amounts of labeled data are given to cLearn, from 1% to 15%.
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Figure 5.3: Performance of ScLink with different amount of labeled data.

The result of this experiment is depicted in Figure 5.3. From this figure, the harmonic
mean of F1 score quickly increases when labeled data is varied from 1% (0.7272) to
4% (0.8078). After that, it increases with a lower acceleration. At the setting of 13%,
ScLink reaches the value 0.8329, which is slightly better than using genetic with 80%
labeled data (Table 5.5). On most datasets, F1 score is near saturated at 5% labeled
data, except for D3, D5, D6, and D8. For D8, since F1 clearly increases at 15%, we
extend the experiment for this dataset and observe that the change slows down after
19%.

At 5% training data, ScLink expresses its capability by satisfying this expectation for
most tested datasets. Although for few datasets, ScLink needs more than 5% labeled
data to obtain the best F1, the optimal point that reconciles the performance and an-
notation effort is around 10% in overall. The results of the next experiment, which
compares ScLink with other systems using small amount of labeled data, strongly sup-
port this conclusion.

5.4.6 Experiment 3: Similarity aggregators and similarity metrics

In order to know which similarity aggregators and similarity metrics are effective, as well
as the diversity of learned specifications, we conduct some statistics on the specifications
produced by learning algorithms. We reuse the results of cross-validation in Experiment
2 for this analysis. As a result, there are 300 similarity aggregators and 2,419 similarity
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functions. The average number of learned similarity functions is about 8 for each test.
53% of the input similarity functions are removed by the learning process.

For similarity aggregator, considering each individual setting independently (e.g., k = 1
vs. k = 2 and weighting vs. non-weighting), the following settings are most frequently
selected: k = 2 (64%), enabled restriction (79%), valid = |UFsim(x, y)| (54%), and
weighting (77%). Among them, weighting is very effective on the large datasets from
D9 to D15 as it is always selected for all tests related to these datasets. All settings
except valid show the dominant proportions in the learned specifications. However,
the dominance is not strong enough to confirm a universal effectiveness of each setting.
For example, 21% of cases requires another setting for restriction. The combination
of above settings is also the most frequent aggregator. However, its share is only 24%
out of the 300 ones. This result implies that it is difficult to manually connect the dots
between the datasets and the optimal similarity aggregator.

For similarity metrics, all string-related metrics show a relative balance as the similar
proportions of Levenshtein (25%), TFIDF-cosine (32%), and Modified-BM25 (28%). In
addition, rDiff is very important for the subsets related to location domain as it is
always selected on D9, D10, and D13, for the distance estimation of geographic coordi-
nates.

An interesting finding is observed on D10. When the size of training data is 80%, only
longitude, one of two important geographic properties, is selected. While both longitude
and latitude are considered as important for D9, D13, and even in human thinking, the
learning algorithm returns a different recommendation. This example, together with the
variety of similarity aggregators and similarity metrics as reported above, shows that for
particular input, it is difficult for a user to define a perfect matching specification like
an automatic system can do.

For the evaluation of Modified-BM25, we compare the result of ScLink when using and
not using this metric. 5 folds cross-validation is also used for this test. The result is
reported in Table 5.6. According to this table, by including Modified-BM25, ScSLINT
improves the results for most datasets. Especially, for D10 to D14, which are among
the large and highly ambiguous datasets, using Modified-BM25 is clearly better. For D6,
D8, D9, and D15, using Modified-BM25drops the performance but very slightly. For
these datasets, the token order is not important because the learned similarity functions
are almost constructed for short string properties and the strings that are described by
such properties frequently contain only one token. In summary, Modified-BM25 shows
its effectiveness against TF-IDF Cosine, especially for large and ambiguous datasets.
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Table 5.6: F1 scores of using and not using Modified-BM25 in ScLink.

ID using not using ID using not using
D1 0.9626 0.9553 D5 0.8536 0.8536
D2 0.6918 0.6729 D6 0.8630 0.8733
D3 0.6102 0.5720 D7 0.6591 0.6506
D4 0.9486 0.9283 D8 0.7316 0.7341
ID using not using ID using not using
D9 0.9121 0.9179 D13 0.9164 0.8819
D10 0.9222 0.8835 D14 0.9330 0.9087
D11 0.9244 0.9000 D15 0.9461 0.9468
D12 0.9749 0.9651 H.mean 0.8380 0.8227

0

100

200

300

400

500

600

D7 D8 D9 D10 D11 D12 D13 D14 D15 Average

R
u
n
ti

m
e 

(i
n
 s

ec
o
n
d
) 

Filtering

Similarity Aggregation

cLearn

Blocking

minBlock

Property Alignment

Figure 5.4: Detailed runtime of ScLink with 5% labeled data

5.4.7 Experiment 4: Runtime

Efficiency is an important factor of instance matching systems. Therefore, we evaluate
the runtime of ScLink on tested datasets. 5% labeled data is used for this experiment.
For small datasets from D1 to D6, ScLink takes only 2.68 seconds in average to complete
all the steps. Especially for D2 and D5, the runtime is under 1.0 second. The longest
runtime is also small, 8.1 seconds, measured on D1. For larger datasets, the runtime
ranges from 38.6 seconds (D7) to 9.28 minutes (D15) and the average is 3.34 minutes.
We are interested in comparing the runtime of ScLink and other systems. However, the
runtime of other systems on medium to large datasets (D7 to D15) are unfortunately
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not available. However, the speed of ScLink is truly impressive as it is fast on D9 to
D15, which are the scalability barriers for most existing systems.

In order to see the proportion of each steps, we plot the detailed runtime of the medium
and large datasets in Figure 5.4. According to this figure, the consumed time of property
alignment depends on target repository. In overall, for medium datasets like D7, D8,
and D9, this step occupies the largest portion in the total runtime. For larger datasets,
cLearn and similarity aggregation share the dominant parts. In average, from D9 to
D15, these steps cost 37.2% and 41.2%, respectively. Meanwhile, minBlock algorithm
is very efficient. It takes only 9.5% of the runtime in average but deliver very important
benefit. Without using minBlock, about 11.5 times longer runtime would be required
for similarity aggregation step, as the reduction rate of candidates is about 91.3% (Ex-
periment 1). For example, compare to the base framework ScSLINT [107], the total
runtime for D15 is 36 minutes because the number of candidates is more than 10 times
larger [107]. In summary, ScLink is very fast for large datasets and the consumed time
of learning algorithms is also acceptable for the supervised scenario.

5.4.8 Experiment 5: Comparison to other systems

We compare the performance of ScLink with a series of recent and state-of-the-art sys-
tems, including unsupervised, supervised, and non-learning-based ones. The availability
of the result is also a criterion for selecting the systems. Since each system was tested
on different datasets due to the support of data format and/or scalability, and the prob-
lem settings (e.g., supervised, non-supervised), we separate the comparison into three
groups: D1 to D3, D4 to D8, and D9 to D15.

5.4.8.1 Datasets from D1 to D3

These datasets enable the comparison between ScLink and other instance matching
system for relation databases. We compare ScLink with the state-of-the-art FEBRL
[22] and MARLIN [15], and the most recent work in [74], which we temporarily call
semiBoost. These systems are all classifier-based. FEBRL and MARLIN use SVM
to learn the classification model. semiBoost uses Adaboost in conjunction with semi-
supervised learning.

The reported results of these systems are for different settings of labeled data. For
semiBoost, 2% is used. For FEBRL and MARLIN, 22%, 46%, and 38% are used for D1,
D2, and D3, respectively. Therefore, for each comparison, we give the same amount of
labeled data to ScLink. Table 5.7 reports the results of ScLink and these systems.
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Table 5.7: F1 scores of ScLink and other systems on D1 to D3.

Training data System D1 D2 D3 H. mean

2% ScLink 0.9395 0.6434 0.5718 0.6869
semiBoost 0.9342 0.3913 0.3627 0.4700

Variable ScLink 0.968 0.713 0.612 0.7371
FEBRL 0.976 0.713 0.601 0.7333
MARLIN 0.974 0.708 0.599 0.7302

Table 5.8: F1 scores of ScLink and other systems on D4 to D8.

Training data System D4 D5 D6 D7 D8 H.mean

5% ScLink 0.927 0.824 0.776 0.802 0.6354 0.781
rdBoost 0.903 0.794 0.733 0.641 0.375 0.628

Variable ScLink 0.897 0.821 0.774 0.827
ObjectCoref 0.464 0.743 0.708 0.611

Reference systems
RiMOM 0.504 0.458 0.629 0.576 0.267 0.445
PARIS 0.649 0.108 0.149 0.502 0.219 0.208

5.4.8.2 Datasets from D4 to D8

For these datasets, we compare ScLink with ObjectCoref [56] and the work in [134],
which we temporarily call rdBoost. ObjectCoref is a semi-supervised system that learns
discriminative property mappings. rdBoost uses Adaboost to train a committee of ran-
dom forest classifiers. In addition, we include the results of RiMOM [80] and PARIS
[151] as two state-of-the-arts among automatic systems. RiMOM combines multiple
matching strategies in order to obtain the optimal resolution result. PARIS automat-
ically generates coreferences of instances, properties, values, and classes by combining
similarity and probability propagation.

rdBoost uses 5% candidates for training and ObjectCoref uses 2.3%, 11.6% and 1.2% for
D1, D2, and D3, respectively. Note that for ObjectCoref, only the results on D1, D2,
and D3 are reported. We use the same amount of training data when comparing with
each systems. Table 5.8 reports the comparison on these datasets.

5.4.8.3 Datasets from D9 to D15

Many systems have reported the experiments on these 7 datasets. Unfortunately, in those
experiments, the repositories are simplified in various manners and thus the challenge of
ambiguity and scalability are much reduced. For example, instead of inputting the whole
target repository, only the class (location, organization, or people) related the domain
of source repository (Nytimes) is used by SERIMI [3] and ADL [58]; or only instances
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Table 5.9: F1 scores of ScLink and other systems on D9 to D15.

ScLink (5%) ScLink (10%) Zhishi.Links AggrementMaker ASL
D9 0.87 0.90 0.91 0.85 0.88
D10 0.90 0.91 0.92 0.69 0.88
D11 0.91 0.93 0.91 0.74 0.87
D12 0.97 0.97 0.97 0.88 0.96
D13 0.88 0.90 0.88 0.85 0.90
D14 0.93 0.94 0.87 0.80 0.92
D15 0.94 0.94 0.93 0.96 0.93
H.mean 0.913 0.925 0.912 0.816 0.904

residing in actual coreference (R) are used by ADL [58], Knofuss [116], ActiveGenLink
[61], and SLINT+ [112]. As using such simple datasets, it is not difficult to obtain the
perfect results using simple methods, as reported in by SLINT+ [112] and SERIMI [4].

For reference, we report the comparisons with Zhishi.Links [117] and AgreementMaker
[27], and ASL, which are tested with full datasets though they are not learning-based
systems. We report the result of using 5% and 10% of labeled data for the learning
algorithms because 10% is popularly used as an expectation for the size of labeled data.
Table 5.9 reports this comparison.

In over all, ScLink expresses an impressive performance as it is better than other sys-
tems in many cases. Compared to state-of-the-art supervised systems on relational
databases, ScLink is competitive to FEBRL and MARLIN. Compared to recent res-
olution systems for linked data, ScLink is far better than semiBoost, rdBoost, and
ObjectCoref. Especially for D2 and D3, D7 and D8, which seem to be difficult for
semiBoost and rdBoost because of the presences of coreferences inside the source or
target repository. ScLink clearly outperforms AgreementMaker and is competitive to
Zhishi.Links. Note that Zhishi.Links is specially customized for these datasets as this
system applies 19 unification rules for matching difficult strings that frequently appear
in this dataset (e.g.,‘Co’ and‘Company’,‘Manhattan’ and‘NYC’). There-
fore, considering the importance of generality, as well as the better results of ScLink in
term of overall harmonic mean, ScLink reveals its strengths against Zhishi.Links. Com-
paring learning-based systems and non-learning-based systems, ScLink, rdboost, and
ObjectCoref are much better than RiMOM and PARIS. This fact confirms the necessity
of learning-based systems for improving the effectiveness.
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5.5 Summary

We presented a supervised instance matching system named ScLink. We describe our
solutions for the issue of heterogeneity, ambiguity, and scalability. We install in ScLink
a novel learning algorithms for specification and blocking model. We also use a robust
string similarity metric. We reported the detail analyzes and experiments for evaluating
our proposed system. The experimental results confirm that ScLink meets practical
demands in instance matching for real and large data. ScLink consistently outperforms
other systems of the same objectives, including the state-of-the-arts. The heuristic search
algorithm used in ScLink is also significantly better than many advanced methods of
specification learning. Together with effectiveness, ScLink is also more efficient in both
time and memory consumption.
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6
R2M: Ranking features for
classification-based instance

matching

In this chapter, we present the R2M ranking feature for classification-based instance
matching. We describe the motivation (Section 6.1) and the problem statement (Section
6.2). We describe the background of classification-based instance matching and the space
of ranking feature inclusion (Section 6.3). After that, we describe the R2M feature
(Section 6.4). In the last section (Section 6.5), we report the experiment.
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6.1 Motivation

Classification is the problem of predicting the category (i.e., class) of unseen examples,
on the basis of a training data containing the seen examples, whose categories are ob-
servable. Classification is a form of supervised method and is supported by the solid
machine learning theory. Classification covers a wide range of applications, mainly for
prediction tasks.

Instance matching can be considered as a classification problem in which each example
represents a pair of instances. The information described by an instance include a feature
vector consisting of correlation indicators (e.g., literal similarities). For training data,
an instance is also associated with a class, which is either coreferent (i.e., positive) or
non-coreferent (i.e., negative). The matching task on a new example is to accurately
predict its actual class.

An important technique of instance matching is the ranking of matching results. For
easier description, we can consider the instance matching as the problem of information
retrieval. Given an instance x in the source repository, the goal is to find in the target
repository a list of instances Y = {y} so that every pair 〈x, y〉 is coreferent. That is,
among all instances of target repository, we have to rank and select the best-matched
instances to construct Y . The key difference of instance matching is that it is not
necessary to always exist a coreferent instance of x. In other words, Y can be empty.
In contrast, traditional information retrieval is more constraint-relax. The task is to
collect the resources that are most similar without determining whether they are truly
matched or not.

Ranking is important in instance matching. The main reason is that different pairs
of 〈x, Y 〉 (i.e.,〈x1, Y1〉, 〈x2, Y2〉, ...) have different level of ambiguity. That is because
each pair of 〈x, Y 〉 is constructed with unique values (e.g., blocking key, token) and the
ambiguity is closely related to the values. For example, suppose that 〈x1, Y1〉 shares
the token Tokyo and 〈x2, Y2〉 share the token Chiyoda. Now, because there are many
instances describe about entity related to Tokyo (e.g., Tokyo metropolis, Tokyo Skytree,
and Tokyo station) than Chiyoda (e.g., Chiyoda ward and Chiyoda corporation), it is
more difficult to discriminate the coreferences and non-coreferences among all pairs of
〈x1, Y1〉 than those of 〈x2, Y2〉. Traditional classification model tends to discriminate
the positive and negative based on the major cases of the data. That is, the boundary
to separate the two classes are fixed for all examples of different ambiguity tiers. That
manner is potentially problematic for the data with high variance of ambiguity. There-
fore, is it important to include the ranking of examples in classification-based instance
matching.

116



Chapter 6 R2M: Ranking features for classification-based instance matching

In ScLink and ASL, stable matching has demonstrated the effectiveness. Stable match-
ing is a form of ranking in which only the candidates of highest matching score among
all of 〈x, Y 〉 are qualified. It implies a possibility of improvement when applying ranking
techniques to classification-based instance matching. Furthermore, ScLink and ASL are
unable to measure the impact of the ranking factor, even when ScLink is a supervised
system. In fact, the ranking factor is varied for different repositories as the ambiguities
are different. Using ranking factor as a feature of training examples is helpful because
the learning algorithm is capable of determining the impact of the ranking factor.

Previous effort on using classification algorithms for instance matching demonstrated
promising performance [20, 81, 114, 134, 143]. However, the inclusion of ranking mech-
anism remains unsolved and that leaves a possibility of improvement. We are motivated
from the employment of ranking techniques for classifier in order to simultaneously pre-
dicting the coreference and enhancing the disambiguation capability.

6.2 Problem statement

The problem of supervised instance matching is defined as in Section 5.2. Given two
repositories the source RS and the target RT , the goal is to identify the set I of coref-
erences. In this work, we focus on a more specific problem. That is the learning of a
classification model with ranking factor. Therefore, the problem is detailed as follows.

• Given a set of examples, each example represents the correlation of two instances
〈x, y〉, one is from RS and the other is from RT .

– A typical form of correlation is the literal similarities of x and y. In this
chapter, we use the term example to mention the feature vector. For example,
f(a) is to apply a function f on the feature vector of example a.

– The set of examples can be obtained by taking the pairwise instances of RS
and RT or inheriting the candidates generated by blocking techniques.

• The set of examples are divided into two sets, training and test set.

– Training set contains the curated examples whose the coreferent status is
known. In other words, the class (positive/negative) of these examples are
given.

– Test set contains the examples whose class information is missing.

• The problem is to learn a classifier M from the training data and to use M to
predict the class M(a) = {1, 0} of each example a of the test set, where 1 and 0
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Table 6.1: The notations used in classification-based instance matching

Symbol Meaning
a, b, c examples (i.e., feature vectors)
X set of examples
`(a) class of example a
a∗ examples related to a

(i.e., the block to which a belongs)
f ranking function
w parameters of ranking function

(i.e., weight vector)
M classifier model
G preference function
L loss function

stand for positive and negative, respectively. In other words,M can be considered
as a mapping function,M: X → {1, 0}, where X is the set of examples.

6.3 Preliminary

This section provides the general picture of classification-based instance matching. We
also describe how a ranking factor can be included in the traditional classifier. Before
getting to the detail, we note the frequently used symbols, which are listed in Table 6.1.

6.3.1 Classification-based instance matching

In classification-based instance matching, the input for learning algorithm as well as for
prediction task is the examples representing the correlation of instances. To our best
knowledge, the correlation reflects the similarity of the instances. Such similarity can
be the literal similarities or the final matching score. Because the literal similarities
provide more detail information so that the learning algorithm can find the optimal
classifier, literal similarities are widely used to construct the examples. Based on the
observation of existing classification-based instance matching systems, we illustrate a
typical workflow that matches to all systems. Figure 6.1 depicts the workflow.

According to Figure 6.1, there are six components in the workflow.

• The first component is property alignment, which creates the property mappings.
This component is automatically or manually operated.
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Figure 6.1: A typical workflow of classification-based matching.

• The second component, similarity function generation, assigns the similarity met-
rics to each property mappings and creates the initial similarity functions, which
are later used to estimate the literal similarities.

• The third component is the blocking. This component generates the candidates,
which are the pairs of instances having a possibility to be coreferent. The candi-
dates are divided into two parts, labeled and unlabeled sets. The labeled candi-
dates are used to create the training data while to detect the coreferences among
unlabeled candidates is the mission of the system.

• Using the initial similarity function generated in the second component, the fourth
component, similarity aggregator, computes the literal similarities for all candi-
dates and generates the examples for classification. The labeled and unlabeled
candidates are used to construct the training and test data, respectively.

• Training data is input to the learning component to train a classifier.

• Finally, the last step is to apply the classifier on unlabeled examples, to predict
their matching status.

As we earlier mentioned in Section 6.2, the examples can be the pairwise instances of RS
and RT . However, the blocking step is installed in this workflow for generalization. If a
system uses all pairwise instances, the blocking step simply returns all of them without
any filter.

The above workflow is very similar to the first 4 steps of ScLink. The key differences are
the learning and the classifier. Classifier can be any model with the function that maps
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each unseen example into the class positive or negative. Classification is a extensively
studied area and therefore, plenty of classifiers are available. Some examples of the
classifier for instance matching are J48 decision tree, Support vector machine (SVM),
Random forest, and Multilayer perception, which have shown remarkable performances
[74, 81, 114, 134].

6.3.2 Ranking

In machine learning, the ranking is the problem of predicting the order of examples. For
example, to predict the preference of an example among two or a larger collection of
examples. This task is named learning to rank. As reviewed in Section 2.6.7, learning to
rank consists of three approaches: pointwise, pairwise, and listwise. Among them, pair-
wise ranking is the most suitable form for instance matching. This approach induces the
ranking of examples by considering the relationship of every possible pairs of instances.

Pointwise approach considers the ranking of each example independently, it is not suit-
able for our goal in instance matching. Listwise approach finds the preference of an
example over a sorted collection. In instance matching, a sorted collection like that is
not available because only positive/negative labels are observable. Concretely, given the
set 〈a,B〉, if a pair 〈a, bi〉 is positive and the others are negative, the preference can
be defined only for each of [〈a, bi〉,〈a, bj〉], rather than for all of [〈a, bj〉,〈a, bk〉], where
i 6= j 6= k. Shortly, if we can only make sure that the first ranked example is correct, the
order of the remaining examples is left unknown. Therefore, it is not suitable to apply
listwise approach as well.

The general idea of pairwise approach is to find a ranking function f so that the order
of two examples a and b can be defined by sign(f(a)−f(b)) = {1,−1}, where 1 means a
has higher preference than b and −1 means otherwise. f can be represented in different
forms. A typical form f is the linear combination of the input feature vector: f = w×x,
where w is called parameters of f . Another common form of f is the logistic function
f = 1

1+e−wx . The performance of the ranking is determined by the parameter w and
tuning w using training data is the task of learning algorithm. Basically, the learning
algorithm optimizes w by minimizing the following loss:

L(f, w,X ) =
∑
a∈X

∑
b∈X ,`(b)<`(a)

G(f(a)− f(b)) (6.1)

where G is a preference function. G can be a hinge function G(z) = (1−z)+, exponential
function G(z) = e−z, or logistic function G(z) = 1

1+e−z . In order to simply minimize L,
G is usually chosen so that L is convex (e.g., above listed form of G). In that case, the
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global minimal of L is possible and identifiable. The detail of optimization algorithm is
given in Section 6.4.2 in the context of our proposed ranking feature R2M .

6.3.3 Combination of classification and ranking

It is possible to include the ranking factor in the classifier. To our best knowledge, CRR
[142] is the only one work that focuses on the combination of classification and ranking.
The general idea of CRR is to produce a model that can score the examples so that the
result can help to make the class prediction as well as is capable of ranking the examples.
The detail of this combination is as follows.

LCRR(f, w,X ) = αLR(f, w,X ) + (1− α)L(f, w,X ) (6.2)

where L(f,X ) is the ranking loss (Equation 6.1) and LR(h,X ) is the classification loss,
which is the logistic regression:

LR(f, w,X ) = 1
|X |

∑
z∈X

h(`(z), f(z)) (6.3)

where:

h(y, f(z)) = y × f(z) + (1− y)× (1− f(z)) (6.4)

and f is a logistic function f(z) = 1
1+e−z .

The advantage of this method is that the learning process can simultaneously optimize
the classifier and ranking factor. In addition, the impact of regression and ranking are
controllable by adjusting the meta-parameter α ∈ [0, 1]. The priority of regression is
proportional to the increase of α. However, CRR still contains some drawback. First,
the trained model f has to carry two tasks regression and ranking, but is configured
by only one parameter w. It is potentially ineffective as the ideal models of regression
and ranking may be very different. Second, it is difficult to extend the idea to combine
ranking and another classifier. The training of function-based classifier (e.g., Logistic
regression, SVM, and Neural Network) can be done by minimizing the loss function like
Equation 6.3. However, for some type of models, for example tree-based (e.g., ID3, and
J48) or rule-based (e.g. IDA and OneR), it is impossible to include the ranking into the
trained model using the 1 linear combination like CRR.

In our work, we try to include the ranking factor in the manner that is independent of
the mechanism of the classifiers. We propose to include the ranking factor as elements
of the feature vector. That is, the values derived from ranking function f(x) can be
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included in the original feature vector x to create a new vector x′. Similarly, given a set
of examples X , another new set of examples is created and the classification problem is
deployed on the new data X ’. More detailed, the learning process will contain two steps.
The first step is to learn the ranking function f from the original data X and the second
step is to learn the final classifierM from the modified data X ′ = X ∪ f(X ).

The advantage of this method is that the classification modelM is independent with the
ranking model f . That is, the ranking model is compatible with any classifier so that
it is possible to employ any classifier. Furthermore, because the parameters of classifier
M and those of ranking model f are independent, M and f can better adapt to the
characteristic of the data.

6.4 R2M ranking feature

In this section, we describe the proposed R2M ranking feature [110] and how to learn
the ranking model.

6.4.1 Feature design

Recall that an example represents the correlation of two instances. Let a is the example
of the pair 〈x, y〉, we denote a∗ as the set of all examples representing all the 〈x, z〉
related to x, where z 6= y. An example of 〈x, z〉 is to take the result of blocking step,
when 〈x, z〉 is in the same block. The general idea of R2M is to reflect the preference
of an example over other related examples. It takes the difference between the number
of cases a has more preference than the cases a has less preference. This idea can be
formulated as follows.

R2M0(a) = |{b|f(a) > f(b), b ∈ a∗}| − |{b|f(a) < f(b), b ∈ a∗}| (6.5)

which is equivalent to:

R2M0(a) =
∑
b∈a∗

sign(f(a)− f(b)) = sign(G(a, b)) (6.6)

where G(a, b) = f(a)− f(b) is the preference function and f is the ranking function.

The above function is quantitative because it measure the number of preferences and
ignores the difference between cases having the same preferences. Therefore, we finally
design a feature that can carry the qualitative reflection. In addition, the normalization
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is necessary. The R2M feature of an example a is defined as follows.

R2M(a) = 1
|a∗|

∑
b∈a∗
G(a, b) = 1

|a∗|
∑
b∈a∗

(f(a)− f(b)) (6.7)

We use logistic for ranking function f .

f(c) = 1
1 + e−wc

(6.8)

where w is the weight vector, the parameter of f and need to be optimized by learning
algorithm. The logistic function is widely used in classification and regression because
it has a good ability to normalize the input value into the range of (0, 1), which is useful
in analyses. Furthermore, logistic function is convex and easier to be optimized. Next,
we describe the learning of parameter w.

6.4.2 Optimization

The task of optimization is to find the parameter w given a set of training examples
X . Gradient descent is a useful algorithm to optimize the ranking function. In order
to apply the gradient descent, we first define the loss function for the ranking function
f over the training set X . After that, we optimize the loss function using gradient
descent method. The loss of a training example is defined as the complement of the
R2M feature.

L(f, w, a) = −
∑
b∈a∗
G(a, b) (6.9)

which is equivalent to

L(f, w, a) =
∑
b∈a∗
G(b, a) (6.10)

where a∗ is the examples related to a. Furthermore, in the learning process, only the
example pairs of different classes are considered. Let

a− = {b|`(b) < `(a)} (6.11)

We consider only those pairs because the `(a) and `(b) are same if a and b belong to the
sane class. Moreover, considering the cases that {b|`(b) > `(a)} is not necessary because
it causes the redundancy as G is a symmetric function: G(a, b) = −G(b, a).
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From the loss of each example, we induce the loss over the training set X , which is the
sum of loss of all examples in X .

L(f, w,X ) =
∑
a∈X

∑
b∈a−

G(b, a) (6.12)

In order to normalize the loss function, the average is applied to the loss of each example
and also to all examples. That is the above loss is refined as follows.

L(f, w,X ) = 1
|X |

∑
a∈X

∑
b∈a∗

G(b, a)
|a−|

(6.13)

Finally, we the regularization factor is introduced to prevent the over-fitting, as similar
to other loss function optimization. Here we use the L2-norm regularization.

L(f, w,X ) = 1
|X |

( ∑
a∈X

∑
b∈a−

f(b)− f(a)
|a−|

+ 1
2λ||w||

2
)

(6.14)

where λ ≥ 0 is the regularization parameter. Larger value of λ puts more regularization.
In other words, larger value of λ helps prevent more over-fitting and smaller value
of λ helps prevent more under-fitting. In practice, the regularization parameter λ is
determined by the learning process, using validation data.

The gradient descent is an iterative method that minimizes the loss by estimating the
local minimal of L(f, w,X ). It works on the basis of finding the parameter w that makes
the gradient of L(f, w,X ) close to zero, by following the Lagrange multipliers. Gradient
descent updates the parameter w into the new one w′ at each iteration by the following
rule.

w′ = w − α∂L(f, w,X )
∂w

(6.15)

where α is the learning rate and ∂L(f,w,X )
∂w is the gradient of L with respective to w as is

calculated as follows.

∂L(f, w,X )
∂w

= 1
|X |

( ∑
a∈X

∑
b∈a−

(∂f(b)
∂w −

∂f(a)
∂w )

|a−|
+ λw

)
(6.16)

where the gradient of logistic function f is as follows.

∂f(c)
∂w

= f(c)× (1− f(c))× c (6.17)

The gradient descent algorithm is summarized as the following pseudo-code.
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Algorithm 3: Gradient descent
Input: Training set X , regularization parameter λ, learning rate α
Output: Trained parameter w

1 Initialize w as ones vector
2 repeat
3 Calculate loss L by 6.16
4 Calculate gradient of L by 6.18
5 Update w by 6.17
6 until convergence
7 return w

According to Algorithm 3, the learning process finishes when the convergence of L is
reached. The algorithm returns the parameter w and it is used to calculate the R2M
feature for unseen examples.

6.5 Experiment

6.5.1 Experiment settings

The purpose of experiment is to validate the effect of R2M on the classification-based
instance matching systems. For doing that, we design a workflow that inherits parts of
ScLink for literal similarity estimation and includes the new elements for classification-
based instance matching. The concrete workflow is as follows.

• Given the input repositories, we first apply the learning phase of ScLink with skip-
ping the specification learning step (Figure 5.1). That is, we reuse the property
alignment, blocking (including the learning algorithm minBlock), and similarity
function generation. The results include the sets of labeled candidates and unla-
beled candidates, and the initial similarity functions.

• We apply all initial similarity functions on all candidates and record the feature
vectors. We construct the training data and test data with respective to labeled
and unlabeled candidates.

• We apply the learning algorithm (Section 6.4.2) to learn the R2M model on labeled
candidates. Then, we apply the trained model to compute the R2M feature of each
candidate, including labeled and unlabeled ones. This feature is merged with the
original features to construct new examples with extra ranking feature. In addition,
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the training set is divided into two sets, one of them is used as the validation set
to learn the regularization parameter w.

• We apply the optimization algorithm to train a classifier on those new examples.

• We apply the classifier on test data to predict the label of each test example. The
results are compared to the ground-truth for making the final evaluation result.
The metrics used for this experiment are precision, recall, and F1 scores.

We conduct in total 2 experiment. The first experiment is to see the performance of
R2M . For doing that, we compare the results of the classifier when using the original
features and when using R2M . In addition, we also take the results of ScLink into
the comparison. The second experiment is to analyze the trend of performance when
varying the size of training data. For each experiment, we use four state-of-the-art
classifiers, including Logistic regression, J48, SVM, and Random forest. Before reporting
the experiment results, we describe the datasets.

6.5.2 Datasets

That is, for each dataset and each classification algorithm, the classifier trained on
original feature vectors is compared to the one trained on modified feature vectors. For
each dataset, we conduct two splitting strategies for training and test data. Concretely,
we employ 5 folds cross validation and percentage split. The cross validation is used to
know the performance of R2M on the stable training data. Meanwhile, the percentage
split is used to see the trend of performance when giving different effort of curation.
We vary the amount of training data from 2% to 20%. We reduce the random noise
by percentage splitting, we repeat the experiment 10 times and measure the average
results.

In summary, there are 1560 tests need to be done for each dataset. That number of tests
is large and therefore it is sufficient to conduct the experiment on a limited number of
datasets. We use 8 datasets for this experiment. They are the first 8 of 15 datasets used
for testing ScLink. Table 6.2 is the summary of the datasets. In this table, the number
of examples is calculated by taking the result of applying minBlock with 5-folds cross-
validation. For later experiments, we adjust the size of training data and the number of
examples will be varied accordingly. The number of features are fixed for all experiments
because the result of property alignment is based on all data of input repositories. The
number of positive examples are identical to the number of expected co-references. The
number of negative examples are the complement of positive examples, in the parent set
all examples.
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Table 6.2: Summary of datasets used for testing R2M .

ID Name #Examples #Feature #Positive
D1 DBLP-ACM 341,446 37 2,224
D2 ABT-Buy 61,756 23 1,097
D3 Amazon-GoogleProduct 70,550 27 1,300
D4 Sider-Drugbank 5,362 59 1,142
D5 Sider-Diseasome 4,227 31 344
D6 Sider-DailyMed 5,013 31 3,225
D7 Sider-DBpedia 468,909 58 1,449
D8 Dailymed-DBpedia 951,135 114 2,454

Table 6.3: F1 scores of using and not using R2M with 5 folds cross-validation

ID LR J48 RR SVM
Origin R2M Origin R2M Origin R2M Origin R2M

D1 0.9702 0.9774 0.9736 0.9866 0.9850 0.9886 0.9652 0.9748
D2 0.5956 0.5980 0.5766 0.6028 0.6470 0.6736 0.5410 0.6024
D3 0.5508 0.5224 0.5252 0.5682 0.5766 0.6380 0.4204 0.5114
D4 0.9480 0.9710 0.9564 0.9740 0.9704 0.9810 0.9486 0.9734
D5 0.9148 0.9114 0.9036 0.9076 0.9472 0.9472 0.9436 0.9436
D6 0.9548 0.9536 0.9780 0.9854 0.9804 0.9902 0.9578 0.9586
D7 0.7104 0.7046 0.7258 0.7232 0.6886 0.6994 0.7096 0.7156
D8 0.7934 0.7968 0.8258 0.8398 0.8562 0.8638 0.7930 0.8094

6.5.3 General performance of R2M

In this experiment, we compare the performance of the classifier when using and not
using R2M feature. We use 5 folds cross-validation for this experiment in order to know
the stable performance of the classifier as well as R2M . Table 6.3 reports the F1 scores
of 4 classifiers: Logistic regression (LR), J48 decision tree, Random Forest (RR), and
Support Vector Machine (SVM). In this table, Origin and R2M represent that the R2M
feature is not used or used, respectively. The italic and bold numbers indicate the best
result in the context of same classifier and dataset, respectively. According to this table,
using R2M enhances the performance in 26 out of 32 tests (81%). Especially when
using a classifier other than LR, R2M does not make effect on at most one dataset. Al-
though R2M reduces the performance on few datasets, the difference is not remarkable.
Furthermore, the improvement when using R2M compared to using only the original
features is very statistically significant, according to a paired t-test (p=0.0012).

We also compare classification-based matching using R2M and the specification-based
matching system ScLink. The result of ScLink when using 5 folds cross-validation
is given in Table 6.4. Compared to ScLink, classification-based matching is generally
better on all datasets except D2 and D3. Consider only the best performed classifier
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Table 6.4: F1 scores of ScLink and classifier RR with 5 folds cross-validation

ID ScLink RR-Origin RR-R2M
D1 0.9626 0.9850 0.9886
D2 0.6918 0.6470 0.6736
D3 0.6102 0.5766 0.6380
D4 0.9486 0.9704 0.9810
D5 0.8536 0.9472 0.9472
D6 0.8630 0.9804 0.9902
D7 0.6591 0.6886 0.6994
D8 0.7316 0.8562 0.8638
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Figure 6.2: Harmonic mean of F1 scores by curation effort.

Random forest, an interesting result is that using R2M can significantly improves the
F1 score (p=0.0191) but this such result is not obtained when not using R2M .

The above results confirm the role of ranking factor in classification-based instance
matching. It also reveals the effectiveness of our proposed R2M feature on real datasets.

This experiment uses 5 folds cross-validation to better guarantee the stability of training
data (80%). However, in practice, it is prioritized to use a smaller amount of training
data in order to reduce the curation effort. In the next experiment, we analyze the
variation of performance when changing the size of training data.

6.5.4 Size of training data

We analyze the movement of F1 scores when changing the amount of training data.
We vary the training set from 2% to 20%, the remaining data is used for testing. For
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Figure 6.3: F1 scores by curation effort using Random Forest on D1, D4, D5, D6.
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Figure 6.4: F1 scores by curation effort using Random Forest on D2, D3, D7, D8.

each split setting, we repeat the test 10 times in order to reduce the random noise. For
reporting the result of each algorithm, we take the harmonic mean of F1 scores over
all datasets. This result is illustrated in Figure 6.2. Considering the best performed
classifier, we report the detailed result of each dataset using Random forest. The results
are split into two graphs in accordance to the similarity of F1 scores. Figure 6.3 reports
the result on D1, D4, D5, and D6. Meanwhile, Figure 6.4 includes the result on D2, D3,
D7, and D8.
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Figure 6.5: Training time of cLearn and R2M + Random forest (in second).

According to these figures, generally more amount of training data delivers better per-
formance. The harmonic mean of F1 scores quickly increases when adding more training
data within the first 7%. After this point, the performance go up slowly. An interesting
result is that at 10% the difference between the results and those at 5 folds cross-
validation, which employs 80% of training data, is not statistical significant (p=0.0129).
Therefore, it is reasonable to conclude that a limited amount of training data is sufficient
to train a good classifier for the instance matching system. Moreover, the similar result
is also obtain in the experiment on ScLink, the specification-based matching system.
The experiments reveal that supervised instance matching is practical because of the
minimal requirement of curation effort.

6.5.5 Discussion

A limitation of classification-based instance matching is the scalability issue. For su-
pervised specification-based, in order to obtain a good specification, a medium to large
number of initial similarity functions should be input into the learning process. How-
ever, in resolution phase, not all initial similarity functions is necessary. The learned
specification contains only the useful similarity functions, which are up to 53% reduced
(Section 5.4.6). For classification-based matching, because the difficulty of model inter-
pretation, all similarity functions are required for the unlabeled candidates to construct
the examples of the same structure with the training data. As a literal comparison,
the average runtime of ScLink and RR-R2M (including training and prediction), when
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Figure 6.6: Literal similarity estimation time of ScLink and RR-R2M (in second).

10% training data is given, are reported in Figure 6.5 and 6.6. According to this figure,
ScLink is much faster than RR-R2M , especially on large datasets. The time for exe-
cuting cLearn is almost half of the training time of R2M and Random forest, together.
The similarity estimation of ScLink is always lower than using classifier. It confirms
the effect of similarity function reduction, which benefits from the interpretation of the
matching specification. However, the classifier, especially when being support by R2M ,
is significantly better than ScLink. Therefore, a classifier with R2M is recommended for
small and medium repositories while ScLink is more suitable for very large datasets.
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6.6 Summary

We presented ranking feature R2M , whose objective is to enhance the classification-based
instance matching system. We describe the design of R2M as well as optimization tech-
nique for training the model of R2M using curated data. We install R2M feature into
original feature vectors to evaluate the performance of the classifier. We reported the
detail analyses and experiments for evaluating R2M . The experimental results demon-
strated the effectiveness of R2M and confirmed its importance in classification-based
matching. By using R2M , the classifier significantly improves the F1 score compared to
baseline models and also ScLink system.
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7
Conclusion

This chapter summarizes our contributions and discuss the future work.
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7.1 Discussion

Matching different instances of the same real-world entity is an important problem in the
current period of data explosion. In this dissertation, we present a series of solutions to
instance matching that target on the issues of heterogeneity, ambiguity, and scalability.
The solutions are designed for two different scenarios: supervised and non-supervised.
They are reflected by the framework, method, or algorithms, and implemented in dif-
ferent systems. This section discusses the achievements of the dissertation.

• We develop the core of instance matching systems, ScSLINT framework. ScSLINT
is designed for scalability, extensibility, and portability. The architecture of ScSLINT
is based on the general workflow of similarity-based instance matching systems.
It provides the interface of property alignment, blocking, similarity function and
aggregation, and the determiner. ScSLINT is portable for different input data
such as relation database and linked data repository. ScSLINT is compatible
with classification-based and specification-based matching by adjusting the deter-
miner. Furthermore, ScSLINT is also compatible with the supervised matching
scenario by modifying the specification creator. We evaluated ScSLINT on real
large datasets, including a huge dataset linking the whole of DBpedia and Freebase.
ScSLINT is far better than existing frameworks in both terms of memory and
time consumption. Concretely, the speed of ScSLINT is at least 10 times faster
and ScSLINT is the first framework evaluated with the full dataset of OAEI 2011
instance matching challenge as well as a trillion scale dataset. We further propose
two specification-based systems, ASL and ScLink, whose scalability is strongly
supported by ScSLINT .

• In order to cover any repository with any domain and schema, we develop ASL,
an automatic schema-independent instance matching system. ASL works indepen-
dently with the schema because it aligns the properties using a simple but effective
heuristic. ASL also adopts the principle of stable marriage problem for finding
the stable coreferences among the pairwise instances. For evaluating ASL, we
constructed a diversified dataset from the links between DBpedia and Freebase.
246 subsets of different schemas are acquired. The experiments on this dataset
demonstrated the schema-independent capability of ASL. Compared to recent
state-of-the-art systems, ASL significantly outperforms in terms of performance
and also in processing time. Another finding from the experiments is the usefulness
of blocking technique using only the first token. It is sufficient to use this tech-
nique for real dataset without losing a considerable amount of pair completeness,
in comparison to weighting and ranking methods.
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• Targeting on the ambiguity, we propose Modified-BM25 similarity metric for string
values. Modified-BM25 combines the measurements on different aspects of the
given strings. First, it leverages the advantage of Jaccard index on set similarity.
Second, it applies state-of-the-art BM25 weighting scheme. Third, unlike other
metrics, Modified-BM25 takes the relative token’s order into account in order to
improve the disambiguation ability. The combination of above factors is not a
usual linear aggregation rather than a probability conjunction. Modified-BM25 is
included in ScLink and is evaluated in the context of this system. The experiment
results on many datasets including real and large repositories showed the drastic
improvements when applying Modified-BM25, compared to using only other simi-
larities, such as TF-IDF cosine and Levenshtein.

• In order to facilitate the scalable supervised instance matching, we propose ScLink
system. The originality of ScLink includes three main points. First, while other
supervised systems skip the learning of blocking scheme, ScLink follows a more
reasonable workflow, in which the blocking scheme is optimized for a better re-
duction on the number of candidates. Second, ScLink is equipped with minBlock
algorithm that learns the optimal blocking scheme. Third, ScLink uses cLearn for
finding the specification that works best for the input repositories. cLearn utilizes
a heuristic-based searching algorithm on the basis of apriori principle. The ex-
periments on 15 datasets demonstrated the performance of minBlock and cLearn
algorithms. minBlock helps generate a compact set of candidates with losing al-
most none of pair completeness. Meanwhile, cLearn finds the specification that
significantly improves the F1 score against state-of-the-art algorithms. ScLink

also consistently outperforms other systems in many comparisons.

• While other systems simply apply traditional classier for instance matching, the
ranking of instance pairs with respective to each source instance is ignored. In
order to benefit the generalization capability of machine learning classification
and include ranking nature of instance matching, we propose R2M feature. R2M
represents the ranking of instance pairs by probabilistic values. The model gener-
ating R2M is trained by optimization algorithms. R2M is evaluated with different
state-of-the-art classifiers, including Linear regression, J48 decision tree, SVM,
and Random forest. R2M demonstrated the outstanding ability of contribution
to the generalization of all tested classifiers. The inclusion of R2M also signifi-
cantly enhances the base classifiers. Moreover, the best classifier improved by R2M
significantly outperforms ScLink and other systems.

• We developed different systems for various scenarios of instance matching. In sum-
mary, it is recommended to use ASL for non-supervised matching tasks, where the
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schema-independence is required. The ScLink and classifier with R2M are suitable
for supervised tasks. The accuracy of classifier with R2M is better than ScLink
but ScLink is more scalable. Therefore, the application of ScLink and R2M is
based on the consideration of computational cost and the expected accuracy.

• It is possible to combine specification-based and classification-based methods in
the scenario of supervised matching (e.g., the combination of ScLink and R2M ).
Specification learning is responsible for finding the optimal similarity functions and
the classifier learning can use the result of those functions as the input similarity
vector. Such combination could reduce the complexity of the classifier. However,
it is potentially redundant and conflict because both of the learning phases focus
on the same objective. The training of classifiers already includes the selection of
optimal similarity functions. Also, the usefulness of similarities is treated differ-
ently in accordance with each learning mechanism. In other words, the selection
of the first learning phase can affect the performance of the second phase. There-
fore, putting both learning phases together requires a study effort on the model
combination.

7.2 Outlook

We are witnessing the fastest period of the development of digital data. This devel-
opment definitely will be more accelerated over the time. Instance matching will soon
have to cope with more difficult scalability issue. The architecture of ScSLINT and
other specification-based systems allow parallel processing, at least for the most expen-
sive step, the literal similarity estimation. The distributed computing technology is a
powerful tool that can be used to scale-up the instance matching systems without touch-
ing their detailed technical aspects. For example, it is feasible to convert the current
multi-threading settings installed in ScSLINT into the mechanism of high-performance
parallelization frameworks.

Supervised instance matching has demonstrated the impressive performance. However,
training data is a requirement for this approach. Although it is empirically evaluated
that the amount of training data is not necessary to be large, the construction of high
quality curated data does take a cost. Therefore, it is important to simplify the training
data creation process. For example, active learning is a feasible candidate. In order to
use active learning, a study on effective training example selection is necessary because
querying informative examples from a large pool of candidates is not a trivial problem.
Active learning was used in some instance matching systems [61, 99] but this issue is
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not satisfactorily resolved. Transfer learning is also a promising tool. As many exist-
ing co-references are retrievable nowadays, especially on the Web of linked data, the
configuration constructed for two particular repositories can be shared to resolve the
coreferences between similar repositories (e.g., on the domain, schema, and provider).
Transfer learning is preliminarily evaluated that to work with instance matching prob-
lem [134]. However, the issue of identifying exactly the equivalent properties between
the trained repositories and the unknown repositories having different schema remains
unsolved. Furthermore, a study on measuring the similarity of two repositories is im-
portant for applying a model trained on a dataset to other datasets.

We presented the contributions in different approaches of supervised instance matching,
for specification-based and classification-based matching. We have shown that classifier
is doing better than heuristic search on many datasets. However, classification-based
matching is more computational complicated and there are also cases that specification-
based matching outperforms. We envision that their combination can deliver the best
accuracy if the combined model is carefully optimized. Broadly, it is not only about
combining ScLink and R2M -enabled classifiers, but also to select, to combine, and to
tune the best fusion of many matchers, for all fashions of matching, including automatic,
unsupervised, and supervised. In order to obtain that goal, the assessment on strength
and weakness of each matcher, for each particular situation, has to be carried in the first
place. Following that is the self-configuring or tuning the individual matcher and their
combination.

7.3 Conclusion

Recently, linked data is proposed as a standard of future web-based data. The instances
are organized in a structured manner that computers can share and understand easily.
The linked data can help improving many applications such as reasoner, search engine,
question and answering system, etc... Nevertheless, the decentralization of the Web
is irreversible so that the entities will always be distributed and locally incomplete.
Without the support of instance matching, it is impossible to draw the full picture of an
entity. Furthermore, the introduction of linked data will not terminate the publication of
unstructured text, the richest information so far. Linking the mentions in the text is also
important to build up the extensive knowledge-base. Therefore, the instance matching
will always be indispensable and worth to incisively study. Our proposed methods
demonstrated the attractive effectiveness, but within the scope of this dissertation, not
all problems of instance matching are resolved, such like those discussed previously. We
envision that the maturity of instance matching will completely help to build a globally
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interconnected data, not only for linked data, but also for all kinds of data including the
unstructured text.
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A
The repositories constructed from

DBpedia

No. #class #instance #property #fact
1 Convention 554 105 53197
2 Train 1087 195 73926
3 Game 1276 253 75338
4 ProgrammingLanguage 499 150 44498
5 Locomotive 2781 267 202039
6 InformationAppliance 931 275 80775
7 Comics 1982 368 153699
8 Galaxy 578 81 28482
9 Ligament 195 33 6203
10 Vein 232 39 9040
11 Muscle 281 56 15675
12 Nerve 338 40 14715
13 RadioProgram 933 252 76486
14 Diocese 2372 238 181268
15 Artery 370 44 16217
16 Musical 1198 158 100225
17 Archaea 171 50 8698
18 Cycad 173 65 9468
19 LunarCrater 1475 32 55119
20 SpaceMission 441 283 44963
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21 SupremeCourtOfTheUnitedStatesCase 2479 140 150765
22 Food 3397 260 187106
23 Brain 523 60 25876
24 Race 515 70 55018
25 FilmFestival 536 91 46944
26 Star 2265 253 143996
27 Holiday 607 188 51097
28 CyclingTeam 222 59 28662
29 Grape 349 60 23618
30 Bacteria 352 95 21713
31 GreenAlga 356 55 17873
32 Moss 384 68 19435
33 WrestlingEvent 878 88 103485
34 MusicFestival 909 158 128598
35 BasketballLeague 306 126 33836
36 ChemicalCompound 8404 258 367639
37 GrandPrix 1154 128 159306
38 Website 2870 398 170292
39 Legislature 1011 292 119549
40 Racecourse 162 47 11556
41 Software 9906 616 657353
42 Conifer 720 103 52097
43 Fern 833 104 55322
44 Artwork 3412 216 171147
45 Aircraft 8946 816 764742
46 FootballMatch 2064 553 224005
47 MotorsportSeason 2069 153 196644
48 AnimangaCharacter 342 96 27900
49 AnatomicalStructure 2229 112 105651
50 Canal 269 152 22368
51 TelevisionStation 7093 604 741672
52 BasketballTeam 857 260 87012
53 Tunnel 298 177 21387
54 Automobile 7796 450 527705
55 SportsLeague 955 290 85950
56 HockeyTeam 962 220 79980
57 LawFirm 446 107 32884
58 NationalFootballLeagueSeason 3003 322 324975
59 BeachVolleyballPlayer 127 65 9243
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60 WineRegion 334 129 32523
61 OlympicEvent 3070 303 283063
62 Planet 11823 227 674019
63 Cave 345 117 15833
64 SportsTeam 1092 228 65317
65 CultivatedVariety 1474 155 49319
66 MountainRange 375 248 27180
67 TennisTournament 3864 143 207466
68 Museum 3634 515 266385
69 SoccerLeague 1341 357 131890
70 Restaurant 623 170 35990
71 Award 2337 184 301817
72 Bodybuilder 205 101 13604
73 FootballLeagueSeason 4895 644 746938
74 FloweringPlant 2247 225 142051
75 Drug 5368 245 347698
76 HorseTrainer 220 60 30537
77 SkiArea 575 404 37653
78 Skater 222 82 16819
79 SiteOfSpecialScientificInterestc 578 146 28689
80 Crustacean 2374 187 155189
81 Disease 5604 262 349112
82 RugbyClub 1848 394 159749
83 Device 848 247 65016
84 NetballPlayer 243 83 14620
85 Ship 25555 806 2149224
86 Place 636 871 56307
87 Venue 642 174 49028
88 SnookerPlayer 264 85 20545
89 Publisher 940 161 66612
90 SquashPlayer 267 82 16501
91 RadioStation 17997 528 1295033
92 Library 708 217 49547
93 Election 5586 478 740527
94 Medician 282 150 25139
95 RaceHorse 2988 122 337247
96 Prison 740 127 43080
97 PlayboyPlaymate 294 128 33034
98 Volcano 792 282 55445
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99 RadioHost 314 124 26477
100 Castle 816 114 40910
101 LacrossePlayer 339 473 28496
102 TradeUnion 1489 106 77258
103 Species 3838 266 194475
104 Theatre 981 242 82117
105 FashionDesigner 379 171 30923
106 Hotel 1045 261 68432
107 Chef 405 139 29924
108 Jockey 410 62 60357
109 AmateurBoxer 413 71 30038
110 WorldHeritageSite 1102 701 86411
111 DartsPlayer 436 124 35143
112 SumoWrestler 441 112 35124
113 TableTennisPlayer 445 104 24348
114 Ambassador 450 218 45584
115 BadmintonPlayer 465 102 33961
116 Curler 473 85 34311
117 MilitaryConflict 11431 599 1191959
118 Cardinal 507 78 38671
119 Reptile 5408 241 354575
120 NationalCollegiateAthleticAssociationAthlete 538 207 47704
121 Murderer 553 176 55585
122 PublicTransitSystem 1437 436 126397
123 Lighthouse 1471 411 87683
124 PokerPlayer 624 133 39792
125 BroadcastNetwork 1164 326 100406
126 Astronaut 628 173 78409
127 SoapCharacter 2408 316 242688
128 SpeedwayRider 639 94 55170
129 Amphibian 6894 161 367791
130 RecordLabel 2391 268 192142
131 Park 1756 300 100617
132 Economist 698 168 73962
133 Religious 708 256 63907
134 Engineer 731 130 62262
135 VideoGame 18459 1312 1564634
136 HollywoodCartoon 1486 125 104938
137 HandballPlayer 770 91 54713
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138 GovernmentAgency 3283 454 237904
139 Fungus 8739 244 455119
140 NascarDriver 836 264 101428
141 Non-ProfitOrganisation 3494 551 237067
142 FormulaOneRacer 852 206 154137
143 ShoppingMall 2244 350 145723
144 VolleyballPlayer 868 108 63363
145 Airline 3124 281 245712
146 Hospital 2328 351 139507
147 RailwayLine 2385 360 223390
148 Senator 934 316 140388
149 PoliticalParty 3953 503 328632
150 FictionalCharacter 3635 638 326379
151 PowerStation 2481 353 162262
152 ReligiousBuilding 2609 378 177466
153 Comedian 1018 268 129230
154 ChessPlayer 1055 145 85031
155 Gymnast 1084 159 74033
156 Country 2833 1154 532156
157 ComicsCharacter 4531 341 391514
158 Bird 12520 254 853806
159 Bridge 3259 532 238029
160 Skier 1261 139 93045
161 MilitaryStructure 3320 642 251407
162 Architect 1291 183 124422
163 Philosopher 1300 291 188953
164 RacingDriver 1351 197 157481
165 Model 1354 320 102277
166 Island 3586 932 251204
167 Judge 1557 284 136820
168 AdultActor 1597 240 118760
169 RailwayStation 4315 115 275533
170 Organisation 7332 985 543795
171 BeautyQueen 1852 290 127152
172 HistoricBuilding 5072 664 393167
173 Anime 3796 266 148922
174 President 2196 538 265480
175 SoccerClub 17551 1265 1983516
176 ComicsCreator 2415 238 229314
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177 Monarch 2420 411 218190
178 Swimmer 2471 151 191808
179 WrittenWork 1176 101 64019
180 FigureSkater 2513 217 222355
181 Mollusca 27275 205 1436131
182 GolfPlayer 2610 152 231548
183 Wrestler 2664 338 348314
184 Boxer 2698 289 269821
185 MartialArtist 2724 400 296391
186 Saint 2797 332 260589
187 Congressman 2810 385 320862
188 Play 1361 164 93542
189 ProtectedArea 7705 1027 547525
190 Stadium 7856 583 537669
191 GaelicGamesPlayer 3052 249 237546
192 MilitaryUnit 13934 930 1257670
193 TennisPlayer 3364 338 415706
194 Noble 3666 272 301864
195 Lake 9793 790 525491
196 Cyclist 3828 160 286396
197 HistoricPlace 9956 996 542293
198 Plant 40353 485 2344111
199 EducationalInstitution 16217 2449 1450649
200 EthnicGroup 3987 393 426654
201 TelevisionEpisode 7675 319 629111
202 ChristianBishop 4677 416 447796
203 Airport 12231 802 1001289
204 Mountain 12537 776 679720
205 CollegeCoach 5637 384 633710
206 AustralianRulesFootballPlayer 5840 235 349052
207 BasketballPlayer 6487 450 794076
208 MusicGenre 747 148 109021
209 School 28228 3272 2273072
210 Road 17869 578 1608072
211 GridironFootballPlayer 7092 466 541948
212 BritishRoyalty 7168 634 888858
213 Station 18961 777 1242293
214 City 20228 2084 2851897
215 Magazine 3767 457 255444
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216 PopulatedPlace 22605 2382 1763185
217 River 24962 809 1284240
218 Animal 108008 743 5509533
219 Newspaper 5142 563 283100
220 AcademicJournal 5145 200 322986
221 RugbyPlayer 11098 805 936013
222 IceHockeyPlayer 11535 333 1222852
223 Cricketer 11614 531 1214698
224 AmericanFootballPlayer 11884 602 1228538
225 Company 42489 2292 3156275
226 SoccerManager 13363 366 1816804
227 TelevisionShow 25628 1981 2687463
228 Scientist 14612 687 1398494
229 Building 41694 1772 2531623
230 Athlete 17199 671 1109100
231 Politician 18784 1068 1778158
232 BaseballPlayer 19807 529 2154767
233 MilitaryPerson 23499 802 2568998
234 Artist 24892 1122 2385456
235 Song 4165 260 318650
236 MusicalArtist 37935 1539 4341409
237 OfficeHolder 38314 1854 3938759
238 Film 77768 1624 6060213
239 Village 119859 1129 7133643
240 Book 28127 819 1890537
241 SoccerPlayer 89078 734 9248270
242 Settlement 255565 3828 19236695
243 Band 28681 1063 2539429
244 Single 41763 555 3265027
245 Person 602293 4144 32335873
246 Album 116368 1133 8611068
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B
The repositories constructed from

Freebase

No. #class #instance #property #fact
1 conferences 1804 1414 234924
2 rail 4055 789 246981
3 games 3774 882 309461
4 computer 18998 2415 1833780
5 comic_books 9472 1267 1057210
6 astronomy 32590 1036 4161049
7 medicine 118438 3262 11123716
8 broadcast 43781 3127 8282088
9 religion 18028 1692 2303413
10 theater 36781 2073 3460678
11 biology 276338 2516 18396775
12 projects 110119 3886 6605095
13 law 21125 3344 2783895
14 food 16599 2959 5201620
15 time 122069 2489 7980299
16 sports 372776 4590 29880047
17 chemistry 16139 753 3431956
18 internet 49775 4889 10318436
19 government 143160 3731 12701720
20 location 1116911 4725 84126974
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21 visual_art 68682 4077 4863237
22 aviation 26562 1445 2374442
23 fictional_universe 758989 6148 19822647
24 automotive 43213 974 1616546
25 business 817061 9883 34050312
26 people 2897510 6343 130081223
27 architecture 130970 3914 7673984
28 award 235979 6899 33420503
29 boats 27683 1412 1368877
30 organization 695810 7137 32252820
31 tv 1559059 5811 50204226
32 cvg 117919 3229 5262726
33 film 1470618 7946 69582765
34 book 6183219 2439785 158262579
35 music 25625291 4357 408994668
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C
DF246 dataset

ID Source Target Actual corerences
1 Convention conferences 290
2 Train rail 262
3 Game games 816
4 ProgrammingLanguage computer 378
5 Locomotive rail 1477
6 InformationAppliance computer 268
7 Comics comic_books 1616
8 Galaxy astronomy 510
9 Ligament medicine 142
10 Vein medicine 148
11 Muscle medicine 255
12 Nerve medicine 236
13 RadioProgram broadcast 580
14 Diocese religion 2144
15 Artery medicine 300
16 Musical theater 972
17 Archaea biology 163
18 Cycad biology 170
19 LunarCrater astronomy 1475
20 SpaceMission projects 385
21 SupremeCourtOfTheUnitedStatesCase law 2239
22 Food food 1634

167



Appendix

23 Brain medicine 301
24 Race time 217
25 FilmFestival time 439
26 Star astronomy 1949
27 Holiday time 285
28 CyclingTeam sports 136
29 Grape biology 156
30 Bacteria biology 195
31 GreenAlga biology 348
32 Moss biology 350
33 WrestlingEvent time 284
34 MusicFestival time 444
35 BasketballLeague sports 128
36 ChemicalCompound chemistry 7538
37 GrandPrix time 995
38 Website internet 1968
39 Legislature government 613
40 Racecourse location 151
41 Software computer 4136
42 Conifer biology 701
43 Fern biology 660
44 Artwork visual_art 2609
45 Aircraft aviation 4952
46 FootballMatch time 786
47 MotorsportSeason time 671
48 AnimangaCharacter fictional_universe 349
49 AnatomicalStructure medicine 1281
50 Canal location 241
51 TelevisionStation broadcast 3204
52 BasketballTeam sports 418
53 Tunnel location 159
54 Automobile automotive 3015
55 SportsLeague sports 382
56 HockeyTeam sports 471
57 LawFirm business 318
58 NationalFootballLeagueSeason time 1264
59 BeachVolleyballPlayer people 126
60 WineRegion location 247
61 OlympicEvent time 2991
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62 Planet astronomy 11732
63 Cave location 177
64 SportsTeam sports 464
65 CultivatedVariety biology 432
66 MountainRange location 330
67 TennisTournament time 1673
68 Museum architecture 2567
69 SoccerLeague sports 542
70 Restaurant business 213
71 Award award 1427
72 Bodybuilder people 199
73 FootballLeagueSeason time 1523
74 FloweringPlant biology 1965
75 Drug medicine 3006
76 HorseTrainer people 213
77 SkiArea location 442
78 Skater people 212
79 SiteOfSpecialScientificInterest location 410
80 Crustacean biology 1891
81 Disease medicine 5434
82 RugbyClub sports 1106
83 Device business 688
84 NetballPlayer people 242
85 Ship boats 23635
86 Place location 399
87 Venue location 442
88 SnookerPlayer people 264
89 Publisher business 693
90 SquashPlayer people 264
91 RadioStation broadcast 14256
92 Library location 224
93 Election government 3417
94 Medician people 277
95 RaceHorse biology 2468
96 Prison location 574
97 PlayboyPlaymate people 228
98 Volcano location 772
99 RadioHost people 309
100 Castle location 722
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101 LacrossePlayer people 335
102 TradeUnion organization 1147
103 Species biology 3006
104 Theatre location 665
105 FashionDesigner people 367
106 Hotel location 901
107 Chef people 395
108 Jockey people 406
109 AmateurBoxer people 408
110 WorldHeritageSite location 662
111 DartsPlayer people 436
112 SumoWrestler people 433
113 TableTennisPlayer people 426
114 Ambassador people 446
115 BadmintonPlayer people 461
116 Curler people 460
117 MilitaryConflict time 10357
118 Cardinal people 399
119 Reptile biology 5035
120 NationalCollegiateAthleticAssociationAthlete people 523
121 Murderer people 520
122 PublicTransitSystem location 292
123 Lighthouse location 1312
124 PokerPlayer people 621
125 BroadcastNetwork tv 377
126 Astronaut people 619
127 SoapCharacter fictional_universe 2133
128 SpeedwayRider people 634
129 Amphibian biology 6550
130 RecordLabel business 1871
131 Park location 1164
132 Economist people 692
133 Religious people 702
134 Engineer people 729
135 VideoGame cvg 14814
136 HollywoodCartoon film 1439
137 HandballPlayer people 765
138 GovernmentAgency organization 1447
139 Fungus biology 7640
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140 NascarDriver people 821
141 Non-ProfitOrganisation organization 1902
142 FormulaOneRacer people 824
143 ShoppingMall location 2048
144 VolleyballPlayer people 864
145 Airline business 2909
146 Hospital location 1691
147 RailwayLine location 746
148 Senator people 930
149 PoliticalParty organization 3055
150 FictionalCharacter fictional_universe 3310
151 PowerStation location 1377
152 ReligiousBuilding location 2220
153 Comedian people 983
154 ChessPlayer people 1051
155 Gymnast people 1070
156 Country location 1701
157 ComicsCharacter fictional_universe 4392
158 Bird biology 12227
159 Bridge location 2861
160 Skier people 1235
161 MilitaryStructure location 1987
162 Architect people 1276
163 Philosopher people 1293
164 RacingDriver people 1339
165 Model people 1329
166 Island location 3028
167 Judge people 1554
168 AdultActor people 1567
169 RailwayStation location 4093
170 Organisation organization 5122
171 BeautyQueen people 1839
172 HistoricBuilding location 3855
173 Anime tv 770
174 President people 2160
175 SoccerClub sports 14006
176 ComicsCreator people 2401
177 Monarch people 2279
178 Swimmer people 2453
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179 WrittenWork book 1023
180 FigureSkater people 2507
181 Mollusca biology 24214
182 GolfPlayer people 2601
183 Wrestler people 2604
184 Boxer people 2666
185 MartialArtist people 2675
186 Saint people 2666
187 Congressman people 2805
188 Play book 900
189 ProtectedArea location 6369
190 Stadium location 6907
191 GaelicGamesPlayer people 3006
192 MilitaryUnit organization 10187
193 TennisPlayer people 3343
194 Noble people 3626
195 Lake location 9242
196 Cyclist people 3800
197 HistoricPlace location 5564
198 Plant biology 37258
199 EducationalInstitution organization 11855
200 EthnicGroup people 2863
201 TelevisionEpisode tv 7056
202 ChristianBishop people 4639
203 Airport location 10313
204 Mountain location 9905
205 CollegeCoach people 5589
206 AustralianRulesFootballPlayer people 5802
207 BasketballPlayer people 6438
208 MusicGenre music 598
209 School organization 22375
210 Road location 13875
211 GridironFootballPlayer people 7004
212 BritishRoyalty people 7034
213 Station location 15091
214 City location 19619
215 Magazine book 2634
216 PopulatedPlace location 18339
217 River location 21498
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218 Animal biology 72508
219 Newspaper book 4062
220 AcademicJournal book 3440
221 RugbyPlayer people 11024
222 IceHockeyPlayer people 11478
223 Cricketer people 11502
224 AmericanFootballPlayer people 11835
225 Company business 31860
226 SoccerManager people 13321
227 TelevisionShow tv 23423
228 Scientist people 14534
229 Building location 25291
230 Athlete people 16963
231 Politician people 18679
232 BaseballPlayer people 19520
233 MilitaryPerson people 23336
234 Artist people 24682
235 Song music 2809
236 MusicalArtist people 37331
237 OfficeHolder people 37832
238 Film film 73335
239 Village location 67191
240 Book book 25114
241 SoccerPlayer people 88568
242 Settlement location 221982
243 Band music 27535
244 Single music 29441
245 Person people 597566
246 Album music 104958
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