Completeness of Verification System with

Separation Logic for Recursive Procedures

Mahmudul Faisal Al Ameen

Doctor of Philosophy

Department of Informatics

School of Multidisciplinary Sciences
SOKENDAI (The Graduate University for
Advanced Studies)

Completeness of Verification System with
Separation Logic for Recursive Procedures

Mahmudul Faisal Al Ameen

Doctor of Philosophy

3/

Department of Informatics
School of Multidisciplinary Sciences
SOKENDAI (The Graduate University for Advanced Studies)

Tokyo, Japan

September 2016

A dissertation submitted to
the Department of Informatics
School of Multidisciplinary Sciences
SOKENDAI (The Graduate University for Advanced Studies)
in partial fulfillment of the requirements for
the degree of
Doctor of Philosophy

Review Committee

Makoto TATSUTA National Institute of Informatics, SOKENDAI

Zhenjiang HU National Institute of Informatics, SOKENDAI
Makoto KANAZAWA National Institute of Informatics, SOKENDAI
Shin Nakajima National Institute of Informatics, SOKENDAI

Yukiyoshi Kameyama University of Tsukuba

Thesis advisor: Makoto Tatsuta Mahmudul Faisal Al Ameen

SOKENDAI (THE GRADUATE UNIVERSITY FOR ADVANCED STUDIES)

ABSTRACT

Completeness of Verification System with Separation Logic for

Recursive Procedures

The contributions of this dissertation are two results; the first result gives a new
complete Hoare’s logic system for recursive procedures, and the second result proves
the completeness of the verification system based on Hoare’s logic and separation
logic for recursive procedures. The first result is a complete verification system for
reasoning about WHILE programs with recursive procedures that can be extended to
separation logic. To obtain it, this work introduces two new inference rules, shows
derivability of an inference rule and removes other redundant inference rules and an
unsound axiom for showing completeness. The second result is a complete verifica-
tion system, which is an extension of Hoare’s logic and separation logic for mutual
recursive procedures. To obtain the second result, the language of WHILE programs
with recursive procedures is extended with commands to allocate, access, mutate and
deallocate shared resources, and the logical system from the first result is extended
with the backward reasoning rules of Hoare’s logic and separation logic. Moreover,
it is shown that the assertion language of separation logic is expressive relative to the
programs. It also introduces a novel expression that is used to describe the complete
information of a given state in a precondition. In addition, this work uses the nec-
essary and sufficient precondition of a program for the abort-free execution, which

enables to utilize the strongest postconditions.

ii

I WOULD LIKE TO DEDICATE THIS THESIS TO MY PARENTS FOR THEIR LOVE, SAC-

RIFICE AND SUPPORT ALL THROUGH MY LIFE.

Acknowledgments

I wish to express my deepest gratitude to my advisor, Prof. Makoto Tatsuta, for
giving me the opportunity, pre-admission supports and recommendations to study
in SOKENDAI with NII scholarship. His guidance with extreme patience is the key
driving force for my today’s success. His support not only encouraged but also nour-
ished me this last six years. Without his sincere efforts, I could not be in today’s posi-

tion. His lessons helped me realizing the rigid nature of mathematics and logic.

I am very grateful to my co-supervisor Asst. Prof. Makoto Kanazawa for being
one of the most important supporting force for my work. His suggestions at the logic
seminars have been a very good basis for elaborating and structuring my research; he
gave me enough feedback to mature my ideas while always pointing me interesting

directions.

I would like to thank Prof. Zhenjiang Hu for providing valuable remarks, allowing
me to improve the papers drafts and clarify my arguments. He has shown me a very
important horizon of program composition that enabled me to realize programs as
mathematical objects. His care and support especially kept me optimistic in my hard

times.

Valuable review and suggestions made by Prof. Shin Nakajima of SOKENDAI and
Prof. Yukiyoshi Kameyama of University of Tsukuba helped me to enhance and fine

tuning the dissertation. I am very grateful them.

I am grateful to Prof. Kazushige Terui for his suggestions and support in the early

stage of my study.

I would like to express my sincere appreciation to Dr. Daisuke Kimura for giving
me along time support as an elder brother. I am indebted to Dr. Takayuki Koai for his
sincere most effort to make mylife easy in Japan. In different occasions, their academic
tutoring, as well as mental supports, are never to be forgotten. Their explanation of
several basic and advanced topics often made me understand difficult mathematical
topics in an easy way. Special thanks to Dr. Kazuhiro Inaba for an important criticism
to show a gap in one of my earlier solution. Dr. Kazuyuki Asada’s advice and Mr.
Toshihiko Uchida’s friendly support also helped me to reach in this position. I am
very grateful to all of them. Moreover, I thank to Mr. Koike Atsushi for sharing his
BTEX class file, based on which the class file for this dissertation is prepared.

I thank National Institute of Informatics for providing me the necessary financial
and resource support. Further, I also thank NII officials at the student support section

for their administrative assistances.

I owe to Prof. Dr. Shorif Uddin for driving me and directly helping me to apply to
NII for the doctoral study. I also thank Dr. Zahed Hasan and Mr. Enayetur Rahman

for their contributions in my life and research career.

Finally, I thank my parents for their love, sacrifices, long patience and endless en-
couragements. I thank my wife for her invaluable and direct care and support in the
final year. I also thank my sister, relatives and friends for their great mental support

that helped me to handle the challenging research situations.

Contents

INTRODUCTION 1
1.1 Motivation e 1
1.2 Main Contribution 3
1.3 Outlineof ThisPaper 6
BACKGROUND 7
2.1 Hoare’s Logic for Recursive Procedures

2.2 SeparationLogic 00 17

NeEw COMPLETE SYSTEM OF HOARE’S LOGIC WITH RECURSIVE PROCE-

DURES 19
3.0 Language 20
3.2 Semantics L e e e 21
3.3 Logical System 21
3.4 Completeness o 23
SEPARATION LOGIC FOR RECURSIVE PROCEDURES 29
41 Language 30
4.2 Semantics e e e e e e e e 40
4.3 LogicalSystem 0 .. 58
SOUNDNESS AND COMPLETENESS 63
5.1 Soundness e 64
s.2 Expressiveness o oL 74

5.3 Completeness L 95

6 ADMISSIBILITY OF FRAME RULES 107
6.1 FrameRules. 108
6.2 ConjunctionRule Lo 0oL 115

7 CONCLUSION 117

Introduction

1.1 MOTIVATION

It is widely accepted that a program is needed to be verified to ensure that it is cor-
rect. A correct program guarantees to perform the given task as expected. It is very
important to ensure the safety of the mission-critical, medical, spacecraft, nuclear re-
actor, financial, genetic-engineering and simulator programs. Moreover, everyone de-

sires bug-free programs.

Formal verification is intended to deliver programs which are completely free of
bugs or defects. It verifies the source code of a program statically. So formal verifi-
cation does not depend on the execution of a program. The time required to verify a
program depends on neither its runtime and memory complexity nor the magnitude

of its inputs. A program is required to be verified only once since it does not depend

2 Chapter 1. Introduction

on test cases. Hence, formal verification of programs is important to save both time
and expenses commercially and for its supremacy theoretically. Among formal verifi-
cation approaches, model checking and Hoare’s logic are prominent. Model checking
computes whether a model satisfies a given specification, whereas Hoare’s logic shows

it for all models by provability [12].

Since it was proposed by Hoare [11], numerous works on Hoare’s logic have been
done [3, 6, 8, 10, 14]. Several extensions have also been proposed [3], among which
some attempted to verify programs that access heap or shared resources. However,
until the twenty-first century begins, very few of them were simple enough to use. On
the other hand, since the development of programming languages like C and C++,
the usage of pointers in programs (which are called pointer programs) gained much
popularity for their ability to use shared memory and other resources directly and for
faster execution. This ability also causes crashed programs for some reasons because it
is difficult to keep track of each memory operation. It may lead unsafe heap operation.
A program crash occurs when the program tries to access a memory cell that has al-
ready been deallocated before or when a memory cell is accessed before its allocation.
So apparently it became necessary to have an extension of Hoare’s logic that can verify
such pointer programs. In 2002, Reynolds proposed separation logic [18]. It was a
breakthrough to achieve the ability to verify pointer programs. Especially it can guar-
antee safe heap operations of programs. Although recently we can find several works
on separationlogic [4, 13] and its extensions and applications [5, 15, 16], there are few
works found to show their completeness [19]. Tatsuta et al. [19] show the complete-
ness of the separation logic for pointer programs which is introduced in [18]. In this
paper, we will show the completeness of an extended logical system. Our logical sys-
tem is intended to verify pointer programs with mutual recursive procedures. Among
several versions of the same inference rule, Reynolds offered in [18] for separation
logic, a concise set of backward reasoning rules has been chosen in [19]. The later
work in [19] also offers rigorous mathematical discussions. The problems regarding
the completeness of Hoare’s logic, the concept of relative completeness, completeness
of Hoare’s logic with recursive procedures and many other important topics have been

discussed in detail in [3]. Our work begins with [19] and [3].

In modern days, programs are written in segments with procedures, which make

1.2 Main Contribution 3

the programs shorter in size and logically structured, and increase the reusability of
code. So it is important to use procedures and heap operations (use of shared mutable
resources) both in a single program. The parameter mechanism is an important part of
a procedure, and it enhances the flexibility in programming. However, theoretically,
the parameterless procedures are simpler to analyze, and it is much easier to extend it
with parameters. Moreover, there are different kinds of parameter mechanism such
as call-by-value, call-by-name, and call-by-reference. So verification of pointer pro-
grams with parameterless procedures is a significant starting point of verification of
programs with different parameter mechanisms. Therefore, it is important to achieve
a sound and complete verification system for pointer programs with parameterless
procedures first so that it can be extended to different parameter mechanisms later. It

is the main motivation of our work.

1.2 MAIN CONTRIBUTION

Our goal is to give a relatively complete logical system that can be used for reason-
ing about pointer programs with mutual recursive procedures. A logical system for
software verification is called complete if every true judgment can be derived using
that system. It ensures the strength of our system so that no further development is
necessary for the logical system. If all true asserted programs are provable in Hoare’s
system where all true assertions are provided, we call it a relatively complete system.
We will show the relative completeness of our system. A language is expressive if the
weakest precondition can be defined in the language. We will also show that our lan-
guage of specification is expressive for our programs. Relative completeness is dis-
cussed vastly in [3, 8]. In this paper, relative completeness is sometimes paraphrased

as completeness when it is not ambiguous.
The main contributions of our paper are as follows:
(1) A new complete logical system for Hoare’s logic for recursive procedures [1].

(2) A new logical system for verification of pointer programs and recursive proce-

dures [2].

4 Chapter 1. Introduction

(3) Proving the soundness and the completeness theorems.
(4) Proving that our assertion language is expressive for our programs.

(5) Discussing soundness and admissibility of the frame rules and the conjunction

rule in our system.

We know that Hoare’s logic with recursive procedures is complete [3]. We also
know that Hoare’s logic with separation logic is complete [19]. But we do not know

if Hoare’s logic with separation logic for recursive procedures is complete.

To achieve our contributions, we will first construct our logical system by combin-
ing the axioms and inference rules of [3] and [19]. Then we will prove the expres-
siveness by coding the states in a similar way to [19]. At last, we will follow a similar

strategy in [3] to prove the completeness.

Although one may feel it easy to combine these two logical systems to achieve such
a complete system, in reality, it is not the case. Now we will discuss some challenges

we face to prove its relative completeness.

(1) The axiom (AX10M 9: INVARIANCE AXI0M) is defined in [3] by {A}P{A}
where free variables of P and A are mutually exclusive, P is a WHILE program with
recursive procedures, and A is an assertion in Hoare’s logic. It is an essential axiom to

show completeness of Hoare’s logic but it is not sound in separation logic.

(2) In the completeness proof of the extension of Hoare’s logic for the recursive
procedures in [3], the expression X = 7 (¥ areall program variables, and Z are
fresh) is used to describe the complete information of a given state in a precondition.
A state in Hoare’s logic is only a store, which is a mapping from the set of variables
to the set of natural numbers. In separation logic, a state is a pair of a store and a
heap. So the same expression cannot be used for a similar purpose for a heap because
a store information may contain variables «,, . . . , x,, which are assigned z,, ..., z,
respectively, while a heap information consists of the set of the physical addresses only
in the heap and their corresponding values. The vector notation cannot express the
general information of the size of the heap and its changes because of allocation and

deallocation of memory cells.

1.2 Main Contribution I3

(3) Another challenge is to utilize the strongest postcondition of a precondition
and a program. In case a program aborts in a state for which the precondition is valid,
the strongest postcondition of the precondition and the program does not exist. But
utilizing the strongest postcondition is necessary for completeness proof because the

completeness proof of [3] depends on it.

Now it is necessary to solve these obstacles for the proof of the completeness of our
system. That is why it is quite challenging to solve the completeness theorem which

is our principal goal.
The solutions to the challenges stated above are as follows:

(1) We will give an inference rule (INv-CONj) as an alternative to the axiom (Ax-
10M 9: INVARIANCE AX10M) in [3]. It will accept a pure assertion which does not
have a variable common to the program. We will also give an inference rule (Ex1sts)
that is analogous to the existential introduction rule in the first-order predicate calcu-
lus. We will show that the inference rule (RULE 10: SuBsTITUTION RULE I) in [3]
is derivable in our system. Since the inference rules (RULE 11: SUBSTITUTION RULE
II) and (RULE 12: CONJUNCTION RULE) in [3] are redundant in our system, we will
remove them. It gives us the new complete system for Hoare’s logic for mutual recur-
sive procedures. We will extend this system with the inference rules in [19] to give
the verification system for pointer programs with mutual recursive procedures. As a

result, the set of our axioms and inference rules will be quite different from the union

of those of [3] and [19].

(2) We will give an appropriate assertion to describe the complete information of
a given state in a precondition. Beside the expression X = Z for the store infor-
mation, we will additionally use the expression Heap(x;,) for the heap information,

where x;, keeps a natural number that is obtained by a coding of the current heap.

(3) For pointer programs, it is difficult to utilize the strongest postcondition be-
cause it is impossible to assert a postcondition for A and P where P may abort in a
state for which A is true. We use { A} P{True} as the abort-free condition of A and P.
For the existence of the strongest postcondition, it is necessary for { A }P{True} to be

true. We will give the necessary and sufficient precondition vaTrue(7) for the fact

6 Chapter 1. Introduction

that the program P will never abort.

1.3 OUTLINE OF THi1S PAPER

Our background will be presented in Chapter 2. A new complete Hoare’s logic for
recursive procedures will be given in Chapter 3. It will be extended to a complete sys-
tem with separation logic in the next chapter. We will define our languages, semantics
and the logical system in Chapter 4. In Chapter 5, we will prove the soundness, ex-
pressiveness and completeness. Admissibility of some important inference rules in

our system will be discussed in Chapter 6. We will conclude in Chapter 7.

Background

Hoare introduced an axiomatic method, Hoare’s logic, to prove the correctness of
programs in 1969 [11]. Floyd’s intermediate assertion method was behind the ap-
proach of Hoare’s logic. Besides its great influence in designing and verifying pro-

grams, it has also been used to define the semantics of programming languages.

While Hoare’s logic is sound, it is not complete since Peano arithmetic is undecid-
able. If Hoare’s logic contains a proof system of Peano arithmetic, the Hoare’s logic
becomes undecidable. Cook indicated a way to overcome these difficulties by defin-
ing the notion of completenessin 1978 [8]. If there exists an assertion in £ that defines
the strongest postcondition of A € L and P € P, L is said to be expressive relative
to P. A proof system for P and L is complete in the sense of Cook if L is expressive
relative to P and all true assertions are given. Cook also extended Hoare’s logic to
nonrecursive procedures and proved its completeness in the above sense. Gorelick

[9] extended Cook’s work to recursive procedures.

8 Chapter 2. Background

Among many works which extended the approach of Hoare to prove a program cor-
rect, some were not useful or difficult to use. In 1981, Apt presented a survey of various
results concerning the approach of Hoare in [3]. His work emphasized mainly on the
soundness and completeness issues. He first presented the proof system for WHILE
programs along with its soundness, expressiveness, and completeness in the sense of
Cook. He then presented the work of Gorelick, the extension of Hoare’s logic to recur-
sive procedures. He also presented other extensions such aslocal variable declarations

and procedures with parameters with corresponding soundness and completeness.

2.1 HOARE’S LOGIC FOR RECURSIVE PROCEDURES

In this section, we will discuss the verification system for WHILE programs with
recursive procedures given in [3]. Here we will present the language of the WHILE
programs with recursive procedures and the assertions, their semantics, a logical sys-
tem to reason about the programs and the completeness proof. We will extend this

proof to pointer programs with recursive procedures later.

2.1.1 LANGUAGE

The language of assertion in [3] is the first order language with equality of Peano
arithmetic. Its variables are denoted by x, y, z, w, Expressions, denoted by e, are

definedbye ::= x| 0| 1] e+ e| e X e. A quantifier-free formula b is defined by

bi=e=cle<e|b|bAb|bVD|b—b.

The formula (of the assertion language), denoted by A, B, C, is defined by

Ai=e=cele<e|b|bAb|bVb|b—b|VxA| IxA.

Recursive procedures are denoted by R. WHILE programs extended to recursive

2.1 Hoare’s Logic for Recursive Procedures 9

procedures, denoted by P, Q, is defined in 3] by

PQ = x:=¢e
| if (b) then (P) else (P)
| while (b) do (P)

| PP

| skip

| R

We assume that procedure R is declared with its body Q.

The basic formula of Hoare’s logic is composed with three elements. They are two

assertions A and B and a program P. It is expressed in the form

{A}P{B}

that is also called a correctness formula or an asserted program. Here A and B are
called the precondition and the postcondition of the program P respectively. When-
ever A is true before the execution of P and the execution terminates, B is true after

the execution.

2.1.2 SEMANTICS

States, denoted by s, are defined in [3] as a function from the set of variables V'to the
set of natural numbers N. The semantics of the programming language is defined first
by [P]~ for the programs that do not contain procedures, which is a partial function

from States to States.

The semantics of assertions is denoted by [[A]; that gives us the truth value of A at
the state s.

10 Chapter 2. Background

Definition 2.1.1 The definition of semantics of programs is given below.

[:=¢e](s) = slx:= [e]],

. - [PD(s) if[b] = True
[if (b) then (P,) else (P,)]~ (s) [P(s) otherwise,
s if [b], = False
[while (b) do (P)]~([P]~(s)) otherwise,
[P:; P.] " (s) = [RI7(P]7 ()
[skip] ~ (s) = .

[while (b) do (P)]~ =

In order to define the semantics of programs which include recursive procedures,
Apt provided the approximation semantics of programs. He defined a procedure-less

program P by induction on #:

plo) Q,
po) = p[Q™ /R].

He then defined the semantics of programs by

7 = UIpiQ"/R-

An asserted program (or a correctness formula) {A}P{B} is defined to be true if
and only if for all states s, s/, if [A]; = True and [P]/(s) = s’ then [B]y = True.

2.1.3 LOGICAL SYSTEM

The logical system H given in [3] consists of the following axioms and inference
rules. Here I' is used as a set of asserted programs. A judgment is defined as I' -
{A}P{B}. var(P) is defined as all the variables appeared in the execution of P.

2.1 Hoare’s Logic for Recursive Procedures 11

AXIOM 1: ASSIGNMENT AXIOM

(assignment)

[{A[x :=¢]}x = e{A}

RULE 2: CoMPOSITION RULE

r+{Ajp{Cc} rt+{C}pr,{B}
I+ {A}P;P,{B}

(composition)

RULE 3: if-then-else RULE

T+ {AADYP{B} TF {AA-bP,{B}
I = {A}if (b) then (P,) else (P,){B}

(if-then-else)

RULE 4: while RULE

'+ {AAb}IP{A}
' = {A}while (b) do (P){A A —b}

(while)

RULE 5: CONSEQUENCE RULE

T+ {A}P{B,}
r + {A}P{B}

(consequence) (A—A,B, —B true)

RULE 8: RECURSION RULE

T U{A}R{B} - {A}Q{B}
'+ {A}R{B}

(recursion)

AX10M 9: INVARIANCE AXIOM

W (invariance) (FV(A) Nvar(R) = 0)

12 Chapter 2. Background

RULE 10: SUBSTITUTION RULE I

I+ {A}R{B}
I'-{A[Z = YIR{B[Z := ¥]}

(substitution I)

(¥, Z ¢ var(R))

RULE 11: SuBsTiTUTION RULE 11

I+ {A}R{B}
T+ {A[Z := ¥]}R{B}

(substitution IT)

(Z & var(R) UFV(B))

RULE 12: CONJUNCTION RULE

I+ {A}R{B} T F {A'}R{C}
I'-{ANA}R{BAC}

(conjunction)

An asserted formula {A}x := e{A[x := e]} may seems fit more for the assignment
axiom. But itis not. For an examplelike {x =aAb=a+1}x:=b{(x =aAb=
a+1)[x := b]},thatis {x = aAb=a+1}x := b{(b = aAb = a+1)},isnot obvi-
ously true. Rather {(x = b)[x := b|}x := b{x = b}, thatis {b = b}x := b{x = b}
is true. The composition rule is similar to the cut rule in concept. When two programs
are executed one after another, the postcondition of the former one is the precondi-
tion of the later. The precondition of the former one and the postcondition of the later
one are preserved for the execution of the composition of those two programs. The
if-then-else rule comes from the fact that truth value of b determines the execution of
either P, or P,. The rule itself is very natural. The while rule is a bit tricky. Here A
is called a loop invariant, which is an assertion that is preserved before and after the
execution of P. The truthness of b triggers execution of P and naturally the execution

terminates only when b is false.

The consequence rule is not any ordinary rule like others. Here the important fact
is that a stronger precondition and a weaker postcondition may replace respectively
the precondition and the postcondition of a valid asserted program without affecting

its validity. With an example, it may help to understand it better. The asserted program

2.1 Hoare’s Logic for Recursive Procedures 13

{x = a}x := x + 1{x = a + 1} is indeed valid. But from assignment axiom we may
getonly {(x = a+1)[x := x+1]}x ;= x+1{x = a+1}, thatis {x+1 = a+1}x :=
x +1{x = a+1}. Sincex = a — x + 1 = a + 1, with the help of the consequence
rule now we finally get {x = a}x := x + 1{x = a +1}.

Recursion rule states that if the assumption of a valid asserted program for a re-
cursive procedure gives us a valid asserted program for its body, we can say that the
asserted program for the procedure is indeed valid. The invariance axiom confirms
us that the precondition is preserved in the postcondition if none of its variables is
accessed by the execution of a recursive procedure. Substitution rule I allows vari-
able substitution in the assertions in an asserted program if the recursive procedure
does not access the substituted and substituting variables. Substitution rules II allows
the substitution of only the variables in the precondition if those neither appear in
the recursive procedure nor in the postcondition. Conjunction rule allows the pre-
conditions and the postconditions of two asserted programs for the same recursive

procedure to be conjoined.

2.1.4 SOUNDNESS

In [3],Fu {A}P{B} denotes the fact that {A}P{B} is provable in the logical sys-
tem H, which uses the assumption that all the true assertions are provided (for conse-
quence rule). In his work, the notion of the truth of an asserted program is introduced
where he chose the standard interpretation of the assertion language with the domain

of natural numbers.

Apt called an asserted program valid if it is true under all interpretations. He also
called a proofrule sound if for all interpretations it preserves the truth of asserted pro-
grams. Since it is easy to prove that the axioms are valid and the proof rules are sound,
it can be said that the logical system is proved to be sound by induction on the length

of proofs.

His soundness theorem claims that for every asserted program {A}P{B} in the
logical system H, if -5 {A}P{B} is provable under the presence of all true assertions
then {A} P{B} is true.

14 Chapter 2. Background

2.1.5 COMPLETENESS IN THE SENSE OF COOK

The strongest postcondition of an assertion and a program and the weakest precon-
dition of a program and an assertion have a key role in defining the completeness in
the sense of Cook of such a proof system where general completeness does not hold.

Now we will define the strongest postcondition and the weakest precondition.

Definition 2.1.2 The strongest postcondition of an assertion A and a program P is defined

by
SP(A,P) = {s | Is([A]s A [P](s) = &) }.

The weakest precondition of a program P and an assertion A is defined by
WP(P,A) = {s | Vs([P](s) =5 — [A]v) }.

Definition 2.1.3 An assertion language L is said to be expressive relative to the set of
programs P if for all assertions A € L and programs P € ‘P, there exists an assertion
S € L which defines the strongest postcondition SP(A, P).

Definition 2.1.4 A proof system G for a set of programs ‘P is said to be complete in the
sense of Cook if, for all L such that L is expressive relative to P and for every asserted
formula {A}P{B}, if {A}P{B} is true then -g {A}P{B} is provable.

Apt presented the proof of the completeness of the system in the sense of Cook in
[3] using two central lemmas. We will present them and discuss their proof. Assume
that % is the sequence of all variables which occur in P and Zisa sequence of some
new variables and both of their lengths are same. Assume that the assertion language
is expressive for the logical system. So, there exists an assertion S that defines the
strongest postcondition of X = Z and R. The asserted program {7 = 7}R{S}
is the most general formula for R, since any other true asserted program about R can
be derived from {7 = 7}R{S} This claim is the contents of the first lemma.

Lemma 2.1.5 (Apt 1981) if {A}P{B} is true then {7 = 7}R{S} + {A}P{B} is

provable provided that all the true assertions are given.

Proof. Itis proved by induction on P where the most interesting case is P = R. Other

2.1 Hoare’s Logic for Recursive Procedures 15

cases are similar to that of the system H in [3].
Suppose that Pis R. Assume {A}R{B} is true. We have
F{¥ = ZIR{S}.

Let A, be A[Z := W] and B,be B[Z :=] where @ ¢ FV(B) U var(R). By
invariance axiom,

F{A[¥ = Z|}R{A[X = Z]}

is provable. By the conjunction rule,
R = ZAA[R = ZIR(SAA[F = Z])

is provable since FV(A1[7 = ?]) Nwvar(R) = (). We now show that S A A1[7 =
7] — B,.

Assume [[S /\A1[7 = 7]]]5 = True. By definition [S]; = True. By the prop-
erty of the strongest postcondition, there exists a state s’ such that [R;[|(s') = sand

[% = Z]y = True.
By invariance axiom,
F{-A 7 = ZR{-A[¥ = Z]}
is provable. The by conjunction rule
H{% = Z A-A[F = ZIR{SA AT = 2]}
By soundness,
{¥ = Z A-A[X = Z]IR{SA-A[¥ = 7]}

is true. Now suppose that —|[[A1[7 = 7]]]5/ = True. Hence
[[7 =Z A —|A1[7 = 7]]]5/ = True. Therefore, —[A, [7 = 7]]]5 = True.

But [A, [7 = 7]]]5 = True by the assumption for s’. It contradicts the assumption

16 Chapter 2. Background

and hence [A, [7 = 7]]]5/ = True.

Since ¥ = Z AA[¥ := Z]—A, wehave [A,]y = True. Then [[A]]S,[?:,(—us} =
True. Then [R] (s’[? = 7’3]) = 5[7 = m} since 7, W & var(R). Then by
definition, [B];z.— 7 True. Then by definition, [B,]; = True. Hence S A A1[7 =
7] — B, is true.

Then by the consequence rule,

F{¥ = Z ANA[¥ = Z|}R{B,}

is provable. Then by the substitution rule II,
F{¥ =% AAJR{B}
is provable. Then by the consequence rule,
= {AJRA{B,}

is provable. By the substitution rule I,

- {A[7 = Z]}R{B,[W = Z]}.
We have A — A1[7 = 7] and B1[7 = 7] — B. Then by the consequence rule,

= {A}P{B}

provable. O

Lemma 2.1.6 (Apt 1981) The next lemma in [3] claims that - {7 = 7}R{S} is

provable.

Proof. By definition of S, {7 = 7}R{S} is true and hence {7 = 7}Q{S} is true
since [R] = [Q]. By the Lemma 2.1.5, {7 = ?}R{S} - {7 = ?}Q{S} is
provable. By the recursion rule, - {7 = 7}R{S} is provable. O

2.2 Separation Logic 17

The completeness theorem states that if an asserted program {A} P{B} is true then
I {A}P{B} is provable where all the true assertions are given. Itis the central concept

of completeness in the sense of Cook.
Theorem 2.1.7 (Apt 1981) If{A}P{B} is true then = {A}P{B} is provable.

Proof. Assume {A}P{B} is true. By Lemma ».1.5, { ¥ = Z}R{S} + {A}P{B}
is provable. By Lemma 2.1.6, - { % = 7}R{S} is provable. Then - {A}P{B} is
provable. O

2.2 SEPARATION LoOGIC

In system programming, use of shared mutable data structures is widespread. For
three decades, approaches to reasoning about this technique has been studied. Most
of them either have extremely complexity or limited applicability. Until the work of
Reynolds in 2002 [18], an extension to pointer programs was missing. Reynolds in-
troduced separation logic, which is an extension of Hoare’s logic that permits reason-
ing about pointer programs that have the ability to use shared mutable data structure.
He extended the simple WHILE programs with commands for allocating, deallocat-
ing, accessing and modifying shared resources. He also extended the assertions by
incorporating separating conjunction and separating implication that resembles mul-
tiplicative conjunction and multiplicative implication in the logic of bunched implica-
tion by O’Hearn and Pym [20]. In his work, he also extended Hoare’s logic to pointer
programs with several sets of logical rules. Although Reynolds provided the logical
system and mentioned that it is sound, he did not provide the proof. The detail tech-

nical description of separation logic is given in Chapter 4.

Tatsuta et al. gave the detailed proof of completeness in [19]. In his work he has
taken all the axioms and rules from basic Hoare’s logic and only the backward rea-
soning axioms from the rules proposed by Reynolds and proved that his system is
complete in the sense of Cook. On the way of proving completeness, he also proved

the expressiveness of the separation logic for pointer programs.

The work of O’Hearn gives us local reasoning of Programs [21] using frame rule. It

18 Chapter 2. Background

is important to simplify verification since it gives an information hiding mechanism.
Yang investigated the “adaptation completeness” (completeness of atomic programs)
using the frame rule for programs with procedures, which indicates that all properties

can be inferred with the rule [23].

This dissertation is based on [3, 19], that intends to extend Hoare’s logic and sep-
aration logic to mutual recursive procedures, and discuss admissibility of frame rules

in it.

19

New Complete System of Hoare’s Logic

with Recursive Procedures

We introduce a complete system of Hoare’s logic with recursive procedures. Apt
gave a system for the same purpose and showed its completeness in [3]. Our sys-
tem is obtained from Apt’s system by replacing the INVARIANCE AXIOM, the SUB-
STITUTION RULE I, the SUBSTITUTION RULE II, and the CONJUNCTION
RULE by the rules (INv-Cony) and (Ex1sTs). Apt suggested without proofs that one
could replace them by his SUBSTITUTION RULE I, (Inv-CoNy), and (Ex1sTs) to
get another complete system. We prove that the substitution rule I can actually be de-

rived in our system. We also give a detailed proof of the completeness of our system.

20 Chapter 3. New Complete System of Hoare’s Logic with Recursive Procedures

3.1 LANGUAGE

Our assertion is a formula A of Peano arithmetic. We define the language £ as

follows.

Definition 3.1.1 Formulas A are defined by

Au=e=cele<e|A|ANA|AVA|A—A|VxA|3IxA

We will sometimes call a formula an assertion.
We define FV(A) as the set of free variables in A. We define FV(e) similarly.
Our program is a while-program with parameterless recursive procedures.

Definition 3.1.2 Programs, denoted by P,Q, are defined by

PQ = x:=e
| if (b) then (P) else (P)
| while (b) do (P)

| P;P

| skip

| R.

b is a formula without the quantifiers. R; is a parameter-less procedure name having

Q; as its definition body. We define the language £~ as £ excluding the construct R.

An asserted program is defined by { A} P{B}, which means the partial correctness.

3.2 SEMANTICS

Definition 3.2.1 We define the semantics of our programming language. For a program

P, its meaning [P] is defined as a partial function from States to States. We will define

3.3 Logical System 21

[P] (r,) as the resulting state after termination of the execution of P with the initial state r,.
If the execution of P with the initial state r, does not terminate, we leave [P](r,) undefined.
In order to define [P], we would like to define [P]|~ for all P in the language L. We define
[P]~ by induction on Pin L~ as follows:

[x:=el"(s) = slx = [eld,

. - [PD(s) if [b] = True
[if (b) then (P,) else (P,)]~(s) P16 otherwise
s if [b], = False
[while (b) do (P)]~([P](s)) otherwise,
[P P~ (s) = [RI7([P]7(5)
[skip] ~(s) = .

[while (b) do (P)]~ =

Definition 3.2.2 For an asserted program {A}P{B}, the meaning of {A}P{B} is de-
fined as True or False. { A}P{B} is defined to be True if the following holds.

For all s and s/, if [A]l; = True and [P](s) = &, then [B]l¢ = True.
Definition 3.2.3 The semantics of P in L is defined by

/s if {[PV]"(s)]i = o} = {s'}
[Ple) = { undefined if {[PY]~(s)[i > o} =0

3.3 LOGICAL SYSTEM

This section defines the logical system.
We will write A[x := e] for the formula obtained from A by replacing x by e.

Definition 3.3.1 Our logical system consists of the following inference rules. As men-
tioned in previous section, we will use I for a set of asserted programs. A judgment is defined

asT + {A}P{B).

22 Chapter 3. New Complete System of Hoare’s Logic with Recursive Procedures

Skip
[{A}skip{A}
IDENTITY
I, {A}P{B} - {A}P{B}
ASSIGNMENT
[{A[x:=¢]}x = e{A}
Ir
T+ {AABYP{B} T+ {AA-b}P{B}
I {A}if (b) then (P,) else (P,){B}
WHILE
T+ {AAb}P{A}
I - {A}while (b) do (P){A A —b}
CoMPOSITION
r+{A}p{C} T+ {C}P.{B}
r+ {A}P;P,{B}
CONSEQ
'+ {A}P{B,}
W (A—A,,B, > B)
RECURSION

FU{{AIR{Bi =1, nyu} F {A}Q{B.}

FU{{AJRAB}i=1,... npo} {A,,pm}Q,,p,_M{BnW}
I+ {4}R{B;}

1 Sj S nproc

3.4 Completeness 23

INv-Cony
I+ {A}P{C}
I+ {AANB}P{CAB}

(FV(B) N Mod(P) = ()

EXISTS
I+ {A}P{B}
T - {3x.A}P{B}

(x ¢ FV(B) UEFV(P))

We say { A} P{B} is provable and we write - {A}P{B}, when {A}P{B} can be

derived by these inference rules.

The rule (Ex1sTs) is analogous to the rule existential introduction of propositional

calculus.

3.4 COMPLETENESS

Lemma 3.4.1 If {A}P,{B} istrue and [P,] = [P,] then {A}P,{B} is true.
Proof. By definition. O

Definition 3.4.2 X is called the strongest postcondition of P and A if and only if the fol-
lowing holds.

(1) Foralls, s, if [A]; = True and [P]|(s) = s' thens' € X.

(2) Forall Y, if Vs, s ([A]s = True A [P](s) =5 — s’ € Y) then X C Y.
Definition 3.4.3 Sy p(%) is defined as the strongest postcondition for A and P.

S A’p(7) gives the strongest assertion S such that {A}P{S} is true.

Lemma 3.4.4 Ift- {A}P{B} thent {A[¥ = Z|\P{B[¥ := 2|} where 2, ¥ &
EFV(P).

24 Chapter 3. New Complete System of Hoare’s Logic with Recursive Procedures

Proof. Assume - {A}P{B} and Z ¢ EFV(P). Then by (INv-Cony),

F{ANKY = ZIP{BAX =72}
Wehave BA % = Z — B[¥ := Z]. Then by (ConsEQ),

F{ANX = Z}P{B[¥ = 7]}
Then by (ExsTs),

F{3Z(AANK = 2)}P{B[¥ = Z]}.

Wehave A[¥ := Z] = 3Z(AA ¥ = Z). Then by (ConsEQ),

- {A[¥ = Z]}P{B[¥ := 7]}

0

Lemma 3.4.5 If {A}P{B} is true and Z ¢ EFV(P) then T = {A}P{B} where
r ={{x = ?}Ri{Syszi(?)Hi =1,...n, X =x,... %, and {xlj =
1,...,m} = EFV(P).

Proof. We will prove it by induction on P. We will consider the cases of P.

If P is other than R;, the proof of these cases are similar to those of completeness

proof of H given in [3].
Case PisR,.
Assume {A}R,{B} is true and Z ¢ EFV(R;). We have
TH{¥ = ZIR{Sv-2x(¥)}.

LetA, be A|Z := W] and B,be B[Z := | where @ ¢ FV(B) UEFV(R,). By the

rule (INv-CoNJ),

Ik {7 -7 /\A1[7 = 7]}Ri{87:77&(7) /\A1[7 = 7]}

3.4 Completeness 25

since FV(A,[¥ := Z]) N Mod(R,) = 0.
We now show that 87:7,&(7) ANA[X = 2] — B.

Assume [Sp_z(¥) NA[X = 2] = True. By definition
[[87:7,&(7)]]5 = True. By the property of the strongest postcondition,
there exists a state s’ such that [R;]](s') = sand [[7 = 7]]5/ = True.

Now suppose that —[A,[% := Z]]y = True. By (INv-Cony),
TH{% =7 A-A[% = Z}R{Sz_2(F) A A[¥ = Z]}.

Since T' is true by definition, by soundness, {7 = Z A —|A1[7 =
7]}Ri{87:7’&(7) A —|A1[7 = 7]} is true. Then by definition
ﬁ[[AI[Y = 7]]]5 = True. But [[A1[7 = 7]]]5 = True. It contradicts the assump-
tion and hence [[A1[7 = 7]]]51 = True.

Since % = 7/\A1[7 = 7] —A,,wehave [A,]ly = True. Then [[A]]s/[?:m} =

True. Then [R](s[Z := m]) =7 = m] since 7, W ¢ EFV(R;). Then by
definition, [B] 7 .—)True. Then by definition, [B,]; = True. Hence 87:73(7) A
Al[7 = 7} — B, is true. Then by the rule (CoNsgQ),
TH{® =7 AA[¥ = Z]}R{B,}.
Then by the rule (ExisTs),
I'-{37Z(¥ = Z ANA[¥ = Z])}R{B,}.
We have A, — 37(7 =7 /\A1[7 = 7]) Then by the rule (CONSEQ),

I+ {A}R{B,}.

By Lemma 3.4.4,

I+ {A[W = Z]}R{B,[¥W = Z]}.

26 Chapter 3. New Complete System of Hoare’s Logic with Recursive Procedures

We have A — A1[7 = 7] and 31[7 = ?] — B. Then by (conseq),
I+ {A}P{B},

which was to be proved. O

Next lemma shows that the hypothesis {7 = 7(7) }R{87:7’R(7)} used in

lemma 5.3.7 is provable in the our system.

Lemma 3.4.6 {7 = 7}Rj{87:?£}_(7)} forj = 1,...,n where X =
Xy %m %l =1,...,m} = UL, EFV(R,) and Z & |J_, EFV(R,).

Proof. Assume Z & |J._ EFV(R)and ¥ =, . . ., ,, where {xli=1,...,m} =
U?:x EFV(Rl)

Fix j. Assume [[7 = 7]]5 = True. Assume [Q](s) = rwhere Q; is the body
of R;. Then by Lemma 3.4.1, [R]](s) = r. By definition, [[57:771{}_(7)% = True.
Then by definition, {7 = 7}@{87:73}_(7)} is true. By Lemma 3.4.5, {{7 =
7}R,-{87:77Ri(7)}|i =1,...,n} F {7 = 7}@{87:77&.(7)}. Hence,
{{7 = 7}Ri{57:77&(7)}|i =1,...,n} b {7 = 7}(2}{57:7,11,-(7)}
forallj = 1,...,n. Then by the rule (RECURSsION),F { % = ?}Rj{87:7’1{j(7)}.

O

The following theorem is the key theorem of this paper. It says that our system is

complete.
Theorem 3.4.7 If {A}P{B} is true then = {A}P{B} is provable.

Proof. Assume {A}P{B} is true. Let Z besuch that 7 ¢ U, EFV(R,) UEFV(P)
and ¥ =, ...,x, where {%lj =1,...,m} = J_, EFV(R;) UEFV(P). Then by
Lemma3.4.5, {{7 = 7}Ri{87:77&(7)}|i =1,...,n} - {A}P{B}. ByLemma
3.4.6,F {* = 7}Ri{57:7,1{,-(7)} fori = 1,...,n. Then we have - {A}P{B}.

O

Apt’s system cannot be extended to separation logic, because his invariance axiom

3.4 Completeness 27

isinconsistent with separationlogic. On the other hand, we can extend our system to a

verification system with separation logic and recursive procedures in a straightforward

way.

29

Separation Logic for Recursive Procedures

30 Chapter 4. Separation Logic for Recursive Procedures

4.1 LANGUAGE

This section defines our programming language and our assertion language. Our
programming language inherits from the pointer programs in Reynolds’ paper [18].

Our assertion language is also the same as in [18], which is based on Peano arithmetic.

4.1.1 BASE LANGUAGE

We first define our base language, which will be used later for both a part of our
programming language and a part of our assertion language. It is essentially a first-
order language for Peano arithmetic. We call its formula a pure formula. We will use
i,j, k, I, m,n for natural numbers. Our base language is defined as follows. We have
variables x, y, z, w, . . . and constants o, 1, null, denoted by c¢. The symbol null means
the null pointer. We have function symbols +, X and we do not have any predicate
constants. Our predicate symbols are = and <. Terms and expressions, denoted by
¢, are definedbye ::= x | c | e+ e | e X e. Terms mean natural numbers or pointers.

Our pure formulas, denoted by A, are defined by
At=ce=ce|le<e|A|ANA|AVA|A— A|VxA|3xA.

The formula constructions mean usual logical connectives. We will sometimes write

the number n to denote the term1+ (1 + (1+ ... (14 0))) (ntimesof1+).

4.1.2 PROGRAMMING LANGUAGE

Next we define our programming language, which is an extension of while pro-
grams to pointers and procedures. Its expressions are terms of the base language.
Its boolean expressions, denoted by b, are quantifier-free pure formulas and defined
byb:=e=ce|e<e|b|bAb|bVDb|b— b. Boolean expressions are used as

conditions in a program.

4.1 Language 31

R

We assume procedure namesR,, ..., R,
proc

, for some 11,,,.. We will write R for these

procedure names.

Definition 4.1.1 Programs, denoted by P,Q, are defined by

P = x:=e (assignment)
| if (b) then (P) else (P) (conditional)
| while (b) do (P) (iteration)
| P;P (composition)
| skip (no operation)
| x:=cons(e,e) (allocation)
| x:=] (lookup)
| e :==e (mutation)
| dispose(e) (deallocation)
| R (mutual recursive procedure name)

R meansa procedure name without parameters.

We write L for the set of programs. We write £~ for the set of programs that do

not contain procedure names.

The statement x := cons(e,, ¢,) allocates two new consecutive memory cells, puts
the values of ¢, and e, in the respective cells, and assigns the first address to x. The
statement x := [e] looks up the content of the memory cell at the address e and assigns
it to x. The statement [e,]| := e, changes the content of the memory cell at the address

e, by e,. The statement dispose(e) deallocates the memory cell at the address e.

The programs x := e, skip, x := cons(e,, ¢,),x := [¢], [e,] := e, and dispose(e) are

called atomic programs.

We call Procedure R(Q) a procedure declaration where R is a procedure name and
Qs a program. The program Q is said to be the body of R. This means that we define
the procedure name R with its procedure body Q.

32 Chapter 4. Separation Logic for Recursive Procedures

We assume the procedure declarations

{Procedure R,(Q,), . . ., Procedure Ry, (anm)}

that gives procedure definitions to all procedure names in the rest of the paper. We

allow mutual recursive procedure calls.

4.1.3 ASSERTION LANGUAGE AND ASSERTED PROGRAMS

Our assertion language is a first-order language extended by the separating con-
junction * and the separating implication — as well as emp and . Its variables,
constants, function symbols, and terms are the same as those of the base language.
We have predicate symbols =, < and > and a predicate constant emp. Our assertion

language is defined as follows.

Definition 4.1.2 Formulas A are defined by

Ac=emple=c|le<e|erre| A|ANA|AVA|A— A|VxA|
WA |AxA|A %A

We will sometimes call a formula an assertion.
We define FV(A) as the set of free variables in A. We define FV(e) similarly.

The symbol emp means the current heap is empty. The formula e, > e, means
the current heap has only one cell at the address ¢, and its content is e,. The formula
A * B means the current heap can be split into some two disjoint heaps such that the
formula A holds at one heap and the formula B holds at the other heap. The formula
A — B means that for any heap disjoint from the current heap such that the formula
A holds at the heap, the formula B holds at the new heap obtained from the current
heap and the heap by combining them.

We use vector notation to denote a sequence. For example, ¢ denotes the se-

quencee,, . . ., e, of expressions.

4.1 Language 33

Definition 4.1.3 The expression {A}P{B} is called an asserted program, where A, B are

formulas and P is a program.

This means the program P with its precondition A and its postcondition B.

4.1.4 UNFOLDING OF PROCEDURES

We define the set of procedure names which are visible in a program. It will be

necessary later in defining the dependency relation between two procedures.

Definition 4.1.4 The set PN(P) of procedure names in P is defined as follows.

PN(P) =0 if P is atomic,
PN(if (b) then (P,) else (P,)) = PN(P,) UPN(P,),
PN(P,; P,) — PN(P,) UPN(P,),
PN(while (b) do (P)) = PN(P),

PN(

=z
|
——

R}.

We define the dependency relation between two procedures. When a procedure
name appears in the body of another procedure, we say the latter procedure depends
on the former procedure at level 1. When one procedure depends on another and the
latter one again depends on the third one, we say the first one also depends on the
third one. In this case, the level of the third dependency is determined by summing

up the levels of first and second dependencies mentioned above.

Definition 4.1.5 We define the relation R, A R; as follows:

R;~> R;,
R~ R;ifPN(Q)) D R,
RS RifR, =R, ~» R~ ..~ R, =R forsomeR,, ... R,

Procedures dependency PD(R;, k) of a procedure name R; up to level k is defined by
PD(R, k) = {R/ | R ~»> R, 1 < k}.

34 Chapter 4. Separation Logic for Recursive Procedures

This relation will be used to define EFV(P) and Mod(P) as well as the semantics of P.

Note that (1) PD(R;, k) € PD(R;,k + 1) forallkand (2) PD(R;,k) C {R; | i =

Lo Mo } where Myroc i the number of procedures in the declaration.

The following first lemma will show that once procedures dependencies of a pro-
cedure up to two consecutive levels are the same, it is the same up to any higher level

too. The second claim states that 7,,,. — 1is sufficient for the largest level.

Lemma 4.1.6 (1) IfPD(R;, k) = PD(R;, k + 1) then PD(R;, k) = PD(R;, k + I) for
allk,1 € N.

(2) PD(R;, k) C PD(R;, tyroc — 1) for all k.
Proof. (1) Itis proved by induction on .

Case 1. [be o.

Its proof is immediate.

Case2.lbel + 1.

Assume PD(R;, k) = PD(R;, k + 1). We can show that if R| € PD(R;, k) then
R/ € PD(R;,k + I + 1). Now we will show thatif R} € PD(R;,k + I' + 1) then
R; € PD(R;, k). Assume R] € PD(R;, k + ' + 1). Then we have R; such that R; €
PD(R;, k + I') and R; ~> R!. By induction hypothesis, PD(R;, k) = PD(R;, k + I').
Then R; € PD(R;, k). Then by definition, R € PD(R;, k + 1). Then R; € PD(R;, k)
by the assumption. Therefore, PD(R;, k) = PD(R;, k+ ' + 1).

(2) We will show that PD(R;,m) = PD(R;,m + 1) for some m < i, by
contradiction. Assume for all m < n,,, PD (R;,m) # PD(R;,m + 1). Then
PD(R;, m) ; PD(R;,m + 1). Then we have | PD(R;,;m) | > m + 1 and hence
| PD(R;, fproc) | 2> Mproe 4+ 1. But PD(Ry, fipr) © {Ri | i = 1,. .., My } and then
| PD(Ry, fiproc) | < #ppoc. Itis a contradiction. Therefore, PD(R;, m) = PD(R;, m+1)
for some m < npy,.. By (1), we have now PD(R;, Mproc — 1) = PD(R,, Mproe — 1+)

forall 1.

Therefore, PD(R;, k) € PD(R;, o — 1) forall k. O

4.1 Language 35

We need to define some closed program that never terminates in order to define

unfolding of a program for a specific number of times. First we will define Q.

Definition 4.1.7 We define Q as

while (o = o) do (skip)

Substitution of a program for a procedure name is defined below.

%
Definition 4.1.8 Let P = P, ... ,P;pm where P, is a program. P| P'] is defined by

induction on P as follows:

P[?’] = P if P is atomic,
= (if (b) then (P,[")) else (P,
d = (while(0)d do (P[P))),
(p,[P"); P.[P]),

] = P

—
p

),

%
P[P']isaprogram obtained from Pby replacing the procedure namesR,, . . . , R

Nproc

by P, ... P, respectively.

n,

Unfolding transforms a program in language £ into a program in language £~ Dis-
cussions on the programs in language £ can be reduced to those in £, which are ei-
ther easy or already shown elsewhere. P%) denotes P where each procedure name is
unfolded only k times. P(® just replaces a procedure name by Q, since a procedure
name is not unfolded any more, which means the procedure name is supposed to be

not executed. Here we present the unfolding of a program.

Definition 4.1.9 Let Q; = Q for1 < i < ny,.. We define P(k)fork > o as follows:

PO = PlQ,...,Q,.]
P(k+1) — P[Ql(k)7 N QSII;BM]'

Sometimes we will call P%*) as the k-times unfolding of the program P.

36 Chapter 4. Separation Logic for Recursive Procedures

We present some basic properties of unfolded programs.
Proposition 4.1.10 (1) Pk = P[@]

() R =

(3) RS = Q[RW),
Proof. (1) By case analysis of k.
Case 1. k = o.
Plo) — P[] by definition. By (2), P[G] — P[R®]. Therefore, P — P[RC].

Case2. k=K +1

plE+) — P[ﬁ Since R ™ = RIQ¥)) = @, PIQ¥)] = PIRW], There-
fore, p+) — 3

o -2
(2) By definition we have Ri() = R[Q] = Q.

‘il
3
o
&l

(3) By definition we have Rl (feta)
Therefore, R i(k+) = Q,[@] O

The next two definitions will define the set of the free variables (FV(P)) and the set
of the variables that can be modified (Mod, (P)). Generally speaking, the left variable
of the symbol := in a program is a modifiable variable. First we will define above
mentioned two sets for a program in its syntactic structure. Next, it will be used to
define the set of free variables (extended free variables, EFV) and the set of modifiable
variables (Mod(P)) that may appear in the execution of the program. Since ‘a free
variable’” has an ordinary meaning without procedure calls, we will use ‘an extended

free variable’ for that with procedure calls.

4.1 Language

37

Definition 4.1.11 We define FV(P) for Pin L~ and EFV(P) for P in L as follows:

FV(dispose(e))
EFV(P)

{x} UFV(e),

FV(b) UFV(P,) UFV(P,),
FV(b) UFV(P),

FV(P,) UFV(P,),

0,

{x} UFV(e,) UFV(e,),
{x} UFV(e),

FV(e,) UFV(e,),

FV(e),

EV(Plrere)),

The expression FV(P) is the set of variables that occur in P. EFV(P) is the set of vari-

ables that may be used in the execution of P.

The expression FV(O,, . . .,

a formula, an expression, or a program.

0,,) is defined as FV(O,) U . ..

UFV(0,,) when O; is

Definition 4.1.12 We define Mod, (P) for Pin L~ and Mod(P) for P in L as follows:

Mod,(x :=e)
Mod, (if (b)

Mod, (while
Mod, (P;;

(
(
(o (P))
(
Mod, (skip

(

(

(

(

the
(b) d
)

2

_/"U

Mod, (x :
Mod, (x :
Mod,([e,] :=e,)
Mod, (dispose(e))
Mod(P)

ons(e,, e.))

[])

n (P,) else (P.))

= {a},

= Mod,(P,) U Mod,(P,),
= Mod,(P),

= Mod,(P,) U Mod,(P,),
= 0,

= {a},

= {a},

= 0,

=,

= Mod, (P")).

The expression Mod(P) is the set of variables that may be modified by P.

38 Chapter 4. Separation Logic for Recursive Procedures

Lemma 4.1.13 (1) FV(RI-(HI)) = UR]_EPD(th) FV(Q).
(2) Mod, (R*™) = Uy cpp(a) Modi (Q)

Proof. (1) Itis proved by induction on k.
Case 1. k = o.

By definition, FV(R") = FV(R,-[@]) — FV(QY) = FV(Q[3]) = EV(Q).
Since PD(R;,0) = {R;}, we have FV(Q;) = UR}EPD(R{@) FV(Q)).

Case 2. ktobe k' + 1.

By Proposition 4.1.10 (3), FV(REHJ”)) = FV(Qj[R(kl+‘3]). Then we have
FV(Ri(kurz)) = FV(Q) U UR&R}, FV(R]-(kU“)). By induction hypothesis, we
have FV(Rt‘(k/+2)> = FV(Q) U UR,-«‘»R; URmGPD(th') FV(Qu). Then we have

FV(RY ™) = FV(Q) U U, conrsy) FV(Qu)- Therefore, FV(R" ")
Urepp) EV(Q))-

(2) Its proof is similar to (1). O
Proposition 4.1.14 (1) FV(P®) C EEV(P) for all k.
(2) Mod,(P®)) C Mod(P) for all k.

Proof. (1) Fixk. If k = o, the claim trivially holds. Assume k > o. By Lemma
4.1.6 (2), we have PD(R;, k — 1) € PD(R;, 1, — 1). Then UR,ePD(Ri,kﬂ) FV(Q;) C

igs k Nproc
U&GPD(RW,_DFI) FV(Q;). Then by Proposition 4.1.13 (1), FV(Ri()) C FV(R,»(!)).
Then we have FV(P) U Uy congey FVRY) € BV(P) U Uy congp EVR™™). Then
by Proposition 4.1.10 (1) we have FV(P(k)) - FV(P(”P”")). By definition, FV(P(k)) -
EFV(P).

(2) Its proof is similar to (1). O

4.2 Semantics 39

4.2 SEMANTICS

The semantics of our programming language and our assertion language is defined
in this section. Our semantics is based on the same structure as that in Reynolds’
paper [18] except the following simplification: (1) values are natural numbers, (2)

addresses are non-zero natural numbers, and (3) null is o.

The set N is defined as the set of natural numbers. The set Vars is defined as the set
of variables in the base language. The set Locs is defined as the set {n € N|n > o}.

Forsets S,,S,,f : S, — S, means that fis a function from S, to S,. f : S, —4, S,
means that f is a finite function from §, to S,, that is, there is a finite subset S/ of S,
andf: S’ — S,. Dom(f) denotes the domain of the function f. The expression p(S)
denotes the power set of the set S. For a function f : A — B and a subset C C A, the
function f|c : C — Bis defined by f|c(x) = f(x) forx € C.

A store is defined as a function from Vars — N, and denoted by s. A heap is defined
as a finite function from Locs —, N, and denoted by h. A value is a natural number.
An address is a positive natural number. The null pointer is o. A store assigns a value

to each variable. A heap assigns a value to an address in its finite domain.

The store s[x, := n,,...,x := ny] is defined by s’ such that '(x;) = n; and
s'(y) = s(y) fory & {x,,...,x}. The heap h[m, := n,,...,m := n] is defined
by K’ such that ' (m;) = n;and h'(y) = h(y) fory € Dom(h) — {m,, ..., m}.

The store s[x, := n,,...,x; := ny is the same as s except values for the variables
%, ...,x. Theheap h|m, := n,, ..., m := n;] is the same as h except the contents
of the memory cells at the addresses m,, . . . , m.

We will write h = h, + h, when Dom(h) = Dom(h,) U Dom(h,), Dom(h,) N
Dom(h,) = 0, h(x) = h,(x) forx € Dom(h,), and h(x) = h,(x) for x € Dom(h,).
The heap h is divided into the two disjoint heaps h, and h, when h = h, + h,.

A state is defined as (s, h). The set States is defined as the set of states. The state
for a pointer program is specified by the store and the heap, since pointer programs

manipulate memory heaps as well as variable assignments.

40 Chapter 4. Separation Logic for Recursive Procedures

Definition 4.2.1 We define the semantics of our base language by the standard model of
natural numbers and [null] = o. That is, we suppose [o] = o, 1] = 1 [+] = +
[x] = %, [=] = (=), and [<] = (<). For a store s, an expression e, and a pure
formula A, according to the interpretation of a first-order language, the meaning [e]; is

defined as a natural number and the meaning [A]; is defined as True or False.

The expression [[e]; and [A]; are the value of e under the store s, and the truth value of

A under the store s, respectively.

4.2.1 SEMANTICS OF PROGRAMS

The relation C over the functions of type States U {abort} — p(States U {abort})

is necessary to define the semantics for while (b) do (P).

Definition 4.2.2 We define C for functions F, G: States U {abort} — p(States U
{abort}). F C Gis defined to hold if Vr € States (F(r) C G(r)).

Definition 4.2.3 We define the semantics of our programming language. For a program
P, its meaning [[P] is defined as a function from States U {abort} to p(States U {abort}).
We will define [P](r,) as the set of all the possible resulting states after the execution of P
terminates with the initial state r,. In particular, if the execution of P with the initial state r,
does not terminate, we will define [P](r,) as the empty set (). The set [P]({r.,...,rn})is
defined as | J_, [P] (r;). In order to define [P] we would like to define [P]~ for all P in the

4.2 Semantics 41

language L~ . We define [P]|~ by induction on Pin L™ as follows:
[P]~ (abort) = {abort},
[x:= el ((s; b)) = { (sl := [e]], B}

[if (b) then (P,) else (P,)]~((s, h)) = { [P (s 1) if [b] = True,

[P.]((s, k) otherwise,
while o (P)| ™ is the least function satisfyin
[[hl(b)d()]] he least fi sfying

[while (b) do (P)]~ (abort) = {abort},
[while (b) do (P)]~((s,h)) = {(s,h)} if [b], = False,
[while (b) do (P)]~((s, h))

U{ [while (b) do (P)[™(r) [r € [P]((s, 1)) } otherwise,
[P P.]"((s,h)) = ULIR.] (1) [r € [P ((s, 1)) },
[skip]~((s, 1)) = {(s, 1)},

[:= cons(e,, e,)]~((s,h)) =
{Gs[x :==n],hln = [e]s,n+1:=[e.]s]) | n > 0,n,n+1 & Dom(h)},

[« =] (s) :{ e ey el © Domh)

{abort} otherwise,

{(s hlle]s = [edd)} iflals € Dom(h),

{abort} otherwise,

[fe) = e~ (s,)) = {

{abort} otherwise.

[dispose(e)]~((s,h)) = { {5, Blomm (111} if [e]s € Dom(h),

We present two propositions which together state that the semantics of a

while (b) do (P) can be constructed by the semantics of P.

Proposition 4.2.4 r € [while (b) do (P)]~((s, h)) if and only if there exist m > o,
Toy.vns tm such thatry = (s, h),r, =1, [b],, = Trueand r;;, € [P]~(r;) foro <i <
m, and one of the following holds:

(1) r # abort and [b], = False,

(2) r = abort,

42 Chapter 4. Separation Logic for Recursive Procedures

where we write [b] v iy for [b]¢.

Proof. First we will show the only-if-part. Let F((s,h)) = {r|m >
0,10 = (8,h), 1 = 1,1 = (s, h), [b]y, = True,rip, € [P (r;)) (0 < Vi <
m),(r = (Sm,hm) A [b],, = False) V r = abort} and F(abort) = {abort}.
We will show that F satisfies the inequations obtained from the equations for
[while (b) do (P)]~ by replacing = by D. That is, we will show

F(abort) O {abort},
F((s,h)) 2 {(s,h)}if [b]; = False,
F((s,1)) 2 U{E() | € [PL (s,) }if [6], = True.

By the well-known least fixed point theorem [22], these inequations imply our
only-if-part.

The first inequation immediately holds by the definition of F. For the second in-
equation, since [b]; = False, by taking m to be o, we have (s, h) € F((s, h)). We will
show the third inequation. Assume [b]; = True and r is in the right-hand side. We
will show r € F((s, h)).

We have g € [P]~((s,h)) and r € F(q).
Case 1. g = (s, h").

By the definition of r € F(q), we have m > o,r, = (s",h"),r,, = r,r; =
(si, hi), [b]s = True,riy, € [P] (ri) (o < Vi < m), and one of the following
holds: either r = (s,,, h,,) and [b],, = False, or r = abort.

Letm' = m+ 1,7, = (s,h),andr, = r;_, foro < i < m’. By takingm and r; to be
m' and 7/ respectively in the definition of F, we have r € F((s, h)).

Case 2. g = abort.

By the definition of F we have r = abort. By takingm = 1, we have abort €

F((s, h)).

Next we will show the if-part by induction on m. We assume the right-hand side.

4.2 Semantics 43

We will show r € [while (b) do (P)]~((s, h)).

If m = o then we have [b], = False and r = (s,;h). Hence r €
[while (b) do (P)]~ ((s, h)).

Suppose m > o. We have m and r,, . ..,r, satisfying the conditions (1) or
(2). Ifr, = abort, we have m = 1and abort € [P] ((s,h)). Hence r €
[while (b) do (P)]~((s, h)) in this case. Suppose r, # abort. By induction hy-
pothesis for m — 1, we have r € [while (b) do (P)]~(r,). Since [b]; = True and
r, € [P]~((s, h)), by the definition we have r € [while (b) do (P)]~((s, h)). O

The following proposition characterizes the two properties of the semantics of).
Proposition 4.2.5 (1) [Q] ™ (abort) = {abort}.

(2) [((s; 1)) = 0.
Proof. (1) By definition, [Q] ~ (abort) = {abort}.

(2) By definition, [Q] ((s,h)) = [while (o = o) do (skip)]~((s,h)). Since
[skip]((s',')) # abort for all s',’, by Proposition 4.2.1, abort ¢
[while (o = o) do (skip)] ~((s, #)). Since Jo = o]y = True forall s’, by Proposition
4.2.4 we have (s', i) ¢ [while (o = o) do (skip)]~((s, h)) for all &', h’. Therefore,
[while (o = o) do (skip)] = ((s, h)) = 0. 0

Lemma4.2.6 If PP/ € L™ (1 < i < nyy) and [P]]~ C [P!]™ for all i then

— o —
[P[P]]- C [PIP]]~ whereP € L and P[P] € £~
Proof. (1) By induction on P. Assume [P/~ C [P/]~ foralli.

Case 1. Pis atomic.

%

Since P[P’ | =P:P[17 |, the claim holds.

Case 2. Pisif (b) then (P,) else (P,).
%

We will show that [P[P']|~ () < [P[P/]]~ ().

Case 2.1. ris abort.

44 Chapter 4. Separation Logic for Recursive Procedures

. - -
By definition, [P[P'|] (abort) = {abort} = [P[P”]] (abort). Hence
P[P} € [PIP"]]

Case 2.2. ris (s, h).

—

Let r to be (ﬁppose [b]s = True Then by definition, [P[P'|]~(r) =

[P, [P']]] and [[P iP (r). By induction hypothesis,
o o / 7

[P.[P]]~ g ﬂP Idln ’lherefore, [P[P']]~ C [[P[1]~ In the case [b], = False,

it can be proved similarly.
Case 3. Pis while (b) do (P,).
We will show that [P[P']]~ () < [PIP/]]~ (r).
Case 3.1. ris abort.
The case is similar to 2.1.

Case 3.2. rto be (s, h).

Case [b], = False. By definition, [while (b) do (P,[P'])]~((s,h)) = {(s,h)} =
: SVT— o -
[while (b) do (P,[P"])]~((s, h)). Hence [P[P']]~ C [P[P"]]
Case [b], = True. Assume [while (b) do (P [—>])]]_((s,h)) > . By Proposi-
tion 4.2.4, we have m > o, r,,...,r, such thatr, = (s,h),r,, € [P[P']]”(r)
and [b], = True for o < i < m such that either ¥ # abort and

[b], = False, or ¥ = abort. By induction hypothesis, r,;, € [P, [17 11~ (r;). Then
[while (b) do (P.[P"])]~(+) > 7.

Tgen [while (g) do (Pl[?])]]_(r) C [while (b) do (P,[P"])]~(r). Therefore,
[P[P]]™ < [P[P"]] "

Case 4. Pis P,; P,.

By induction hypothesis, [P, [?]]]_ C [P, [17]~ and [[Pz[?]]]_ C [P, [17 1.

Therefore, [P[P']]~ C [P[P]]~.

Case 5. R,.

We have R[P] = P and R[P/] = P Hence [R[P']]~ C [R{[P"]]". O

4.2 Semantics 45

We have already defined the semantics of P in the language £~. We define the
semantics of P in £. The semantics we will define is usually called an approximating

semantics.
Definition 4.2.7 The semantics of P in L is defined by [P](r) = U=, ([PY]~ ().

Note that Q‘-(k) is a program of the language £~ and doesn’t contain R;.

Remark that for Pin £~, we have [P] = [P]~ since P¥) = P.

Lemma 4.2.8 For all k, [PW]~ C [P*+)],
Proof. By induction on k.

Case1.k = o.

We have [Q](r) = 0 for all by Proposition 4.2.5 (2). Then for all i, we have
[Q] € [Q®]". Then by Lemma 4.2.6, [P[G]] € [P[Q)]]. Then [P©)]~ C
[PU]-.

Case 2. k > o.

Let kbe K + 1. We have Q¥ — Q¥+ — Q[Q®)] and Q) — Q¥+ —

Q,[Q_(IH_1] B)E)duction hypothesis, [[Q_(k,)]]_ C [[Q_(kq_l)]]_. By Lemma 4.2.6, we
now have [P[Q*)]]~ C [P[Q¥*V]]~. Then [PW]~ C [P*+)]~. O

4.2.2 SEMANTICS OF ASSERTIONS

Definition 4.2.9 We define the semantics of the assertion language. For an assertion A

and a state (s, h), the meaning [A]) is defined as True or False. [A] (s) is the truth value

46 Chapter 4. Separation Logic for Recursive Procedures

of A at the state (s, h). [A] (s) is defined by induction on A as follows:

[[emp]] (s,h) = True ifDom(h) =0,

le. = elen = ([a] = [e]),

[e. <een = ([e]s <[els),

le, = ey = True ifDom(h) = {[e]} and h([e.];) = [e.]s,

[FAlew = (not[A]n),
[AAB]ery = ([Alep and [Blen),
[AVBJw = (Al or [B]pn),
[A = Blww = ([A]¢n implies [B](on).
[VxA] (s = True if [A] (pu:=m,ny = Trueforallm € N,
[3%A] o) = True if [A] (fw:=m)n) = True for somem € N,
[A * B]](S’h) = True ifh=h,+ h,and

[Al sy = [Blsn) = True for some h,, h,,
[A = B]n = True ifh,=h,+ hand

[Al sy = Trueimplies [B] s,y = True for all h,, h,.

We say A is true when [A] (s 5y = True for all (s, h).

4.2.3 SEMANTICS OF ASSERTED PROGRAM

Finally we need to define the semantics of the asserted programs. It is basically the

same asin [18].

Definition 4.2.10 For an asserted program { A}P{B}, the meaning of { A} P{B} is de-
fined as True or False. { A}P{B} is defined to be True if both of the following hold.

(1) for all (s, h), if [A] () = True, then [P]((s, h)) # abort.

(2) for all (s,h) and (s, '), if [A](ny = True and [P]((s,h)) > (s', 1), then
[B] (¢) = True.

Remark that the semantics of an asserted program with a non-terminating program
is always True. Because, according to the definition of semantics, a resulting abort

state of a program implies termination of its execution.

4.2 Semantics 47

In our system, judgments are in the form I' - {A} P{B} where I is a set of asserted

programs. Here we will define semantics of a judgment.
We say I is true ifall {A}P{B} in T are true.

Definition 4.2.11 Wesay T & {A}P{B} is true when the following holds: {A}P{B} is
true if {A;}P;{ B;} is true for all {A;} P{B;} € T.

We say [is true ifall {A}P{B} in I are true.

The asserted program {A}P{B} means abort-free partial correctness and also im-
plies partial correctness in the standard sense. Namely, it means that the execution of
the program P with all the initial states which satisfy A never aborts, thatis, P does not
access any of the unallocated addresses during the execution. It is one of the strongest

feature of the system.

The next lemma shows that the semantics of a procedure call (or procedure name)

is the same as that of its body.
Lemma 4.2.12 [R] = [Q].

Proof. By definition we have [Q](r) = U;:io([[Qi(k)]]_(r)). Since Qi(k) =
RIQY = R, we bave U, (1071 () = URE,(IR*)(7). Then by
Proposition 4.2.5 (2), [Q](r) = U, (IR*]7 () U [@](r). Then [Q](r) =
U;:io([[R,’(kﬂ)]]_(r)) U [[R,.(O)]]_(r) by Proposition 4.1.10(2). Then [Q](r) =
U (IRP]7(r)). Therefore, [Q] = [Ri]- O

We define the equality of two stores over a set of variables. Suppose some stores
are equal over the set of free variables of a program. If we execute the program with
those stores in the states, then the stores in the resulting states are still equal over the

same set of free variables.

Definition 4.2.13 For a set V of variables, we define =y as follows: s =y s’ if and only if
s(x) = §'(x) forallx € V.

Definition 4.2.14 We first define [s,, s,, V] to denote the store s such that s =y s, and

s =y s, for stores s,, s, and a set of variables V.

48 Chapter 4. Separation Logic for Recursive Procedures

Lemma 4.2.15 Suppose P € L.
(I)If[[P]]_<(S7 h)) > (517 hl) then S5 —Mod, (P)* S.

(2) If s =pypy 8, [Pl ((s,h)) > (s,,h) ands, = [s,,s',FV(P)] then
[P]™((s',) > (s,).

(3) If s =py(p) ' and [P] ™ ((s, h)) > abort, then [P]~((s', h)) > abort.

Proof. (1) We will show the claim by induction on P. We consider cases according to

P.
Case1.x :=e.

Assume [[x := €] ((s,h)) D (s, h,). By definition, s, = s[x := [e];] and h = h,.
Then for ally # x,s(y) = s,(y). By definition, Mod, (x := ¢) = {x}. Therefore,

S1 =Mod, (P)c S-
Case 2. Pisif (b) then (P,) else (P,).
Assume [P]~((s,h)) > (s,, h,).

Case [b], = True. By definition, we have [P,]~((s,h)) > (s, h,). By induction
hypothesis, s =4, (p,)c 5:,- We have Mod, (P)* C Mod, (P,)". Therefore, s =Mod, (P)¢ S1-

Case [b], = False can be shown as above.
Case 3. Piswhile (b) do (P,).
Assume [P]~((s,h)) > (s,, h,).

Case [b], = True. By Proposition 4.2.4, we haves,, ..., sy, h,, . . ., h,, such that
(s,h) = (s,,h,), (55,) = (s,), foralli = 2,....m — 1, [P,]"((s;, b)) >
(Sit1, hits), [b]; = True and [b],, = False. By induction hypothesis, for all i =
2,0y M—1,8 =Mod,(P,) Sit:- SinCe Mod, (P)* C Mod,(P,)", foralli = 2,...,m—1,

Si =Mod, (P)c Sit:- Iherefore, s =ppoq,(p)e 5:-
Case [b]; = False. Then by definition, s = s,. Then s =oq, () 5:-

Case 4. P,; P,.

4.2 Semantics 49

Assume [P,;P,] ((s,h)) > (s;,h). By definition, we have s,,h, such that
[[Pl]]i((s’ h)) 9 (527 h?-) and [[PZ]]i((Sza hz)) 9 (517 hl)

By induction hypothesis, s, =woa,(p)c s and's, =moq,(p,)c - Since Mod,(P)* C
Mod, (P,)¢ and Mod, (P)* C Mod, (P,)¢, we have s, =Mod,(P)c S and s, =pmoq,(p) Sa-

Therefore, s, =04, (p): 5.
Case s. skip.
Its proof is immediate.
Case 6. x := cons(e,, ¢,).

Assume [x := cons(e,,e,)]| ((s,h)) > (s,,h). By definition, (s,,h,) is in
{(s[x :== m], hjm := [e]s,m+1:=[e,]s]) | m > o, m, m + 1 & Dom(h) }. So,
forally # x,s(y) = s,(y). By definition, Mod, (x := cons(e,, e,)) = {x}. Therefore,

S =Mod, (x:=cons(e,,e,))¢ S
Case 7. x := [e].

Assume [x := [e]]| 7 ((s,h)) > (s, h,). By definition, {(s[x := h([e]s)], h)}. So,
forally # x,s(y) = s.(y). By definition, Mod,(x := [¢]) = {x}. Therefore,

S :Mod,(x::[e])f Sy-
Case 8. [¢,] :=e,.

Assume [[e,]| :==¢,] ((s,h)) > (s;,h). By definition, s = s, Therefore,

S :Mod,([el]::el)c ;.
Case 9. dispose(e).

Assume [dispose(e)]~((s,h)) > (s;,h,). By definition, s = s, Therefore,

§ =—Mod, (dispose(e)) S1-
(2) We will show the claim by induction on P. We consider cases according to P.
Case 1. Pisx :=e.

Assume s =py(x—) s, [x:=¢€] ((s,h)) > (s,h,) ands] = [s,,s', FV(x := e)].
Then by definition, s, = s[x := [e],] ands] =gy(.—¢) 5. Thens](x) = s,(x) = [e], =

50 Chapter 4. Separation Logic for Recursive Procedures

le]s. Wehave s, =gy (=) s’ andforally € FV(e) andy # x,s.(y) = s,(y) = s(y) =
s'(y). Then we have s’ = s'[x := [e]y]. Therefore, [x := e]~((s',h)) 2 (s/, h,).

1?7

Case 2. Pisif (b) then (P,) else (P,).

Assume s =gv(if (b) then (,) else (P,)) $» [if (D) then (P,) else (P,)]~((s,h)) > (s,, h,)
ands’ = [s,, s, FV(if (b) then (P 1) else (P,))].

Let [b]; = True. Then by definition [P,] ™ ((s, h)) 3 (s, h,). By (1), =wmod,(p.) §
and since FV(P,)° C Mod, (P,), we have s =pv(p,): Si- We also have s =gy(p) s by
assumption and s] =gy(p) s, by definition and hence s’ =py(p,) sands, =gy(p) s
because FV(P,) C FV(P). Thenforally € FV(P) —FV(P,),s'(y) = s(y) = s.(y) =

si(y). Since s, =gy(p)_rv(p,) ' and's, =gy(p) s’ are true, we have that s’ =gy(p,)- s,
holds. Then's’ = [s,,s’, FV(P,)]. By induction hypothesis, [P,]((s’,h)) > (s/, h,).
Then by definition [P] ~((s', h)) > (s, h,).

1?7

Againlet [b]); = False. In the same way as above we can prove that [P] ~((s', h)) >
(s!,).

17

Case 3. Pis while (b) do (P,).

Assume s =gy (while (b) do (P,)) 5 » s/, [while (b) do (P,)]((s,h)) > (s,,h,) and s, =
[s,, s’ FV(while (b) do (P 1))] We have (s, h) = (qo, h.), -, (qm,) = (s, h,) such
that [P,]~((gi, h})) 3 (i, hiy,) and [b],, = Trueforallo < i < mand [b],, =
False by Proposition 4.2.4. Let g, = [g;,s', FV(P,)] forallo < i < m.

We will show that s = ¢/, ands/ = gq/,. We have g, = [s,s, FV(P,)]. Then
g =rv(p) §. Sinces =py(p,) s’ and g, =py(p,) s, we have g, =gy(p §'. Therefore,

= gq/. We have ¢/, = [s,,5,FV(P,)]. We also have s’ = [s,,s', FV(P)]. Then
4, =rv(p,) Si- By (1), 5 =mod,(p)c 5i- Then's =gy(p,)c s, since Mod,(P)* = Mod, (P,)¢
and Mod, (P,)* O FV(P,)‘. We have q;, =py(p)c ¢ since FV(P)* C FV(P,) and
4y =rv(p,) §- Then g, =py(p) s, Since g, =pv(p,)c 5, =pv(p) sands, =py(p) s,
forally € FV(P) — FV(P,), q,,(y) = s'(y) = s(y) = s.(y) = s.(y). Therefore,

/) A A A |
s, = q,,- Hences' = q,s, = q,,.

Since g =py(p,): § by definition, qi,, = [qit.,q}, FV(P,)] foro < i < m.
By induction hypothesis, [P.]™((q},h)) > (qiy,,hir.). We also have [b], =

4.2 Semantics §1

True for o < i < mand [b];, = False. Hence by Proposition 4.2.4,
[while (b) do (P,)]~((s',h)) > (s, h,).

Case 4. Pis P,; P,.

Assume s =gy(p.p,) S, [Pi; P.] ((s,h)) 2 (s, h) ands] = [s,,s', FV(P,; P,)].
By definition, we know that [P, ((s,h)) 3 (s, h,) and [P,]((s,, 1)) 2 (s,)
for some s,, h,. By (1), s =moq, () S.and s, =woq,(p,)c S, and then s =py(p) s,
and s, =gy(p,)c 5,. Let take 5] such thats, = [s,,s’, FV(P,)]. Thens, =gy(p,) s, and
s, =rv(p,)c §- Thenforally € FV(P,) NFV(P,),s.(y) = s,(y). Forally € FV(P,) —
FV(PI), s;(y) = s'(y) = s(y) = 52()/). So, 5’ =Frv(p,) S.- Since si =FV(p,;p,) S We have
s =pv(p,) S Forally € FV(P,) — FV(P,),s.(y) = s.(y) bys, = [s,,s', FV(P;; P,)],
5.(y) = 5:.(0) by s, =ev(p,)c 52, 5.(7) = 5,(y) by s, =pv(p) 5, and hence sj(y) = 5,(y).
Forally ¢ FV(P;P,),s(y) = s(y) bys. = [s,,s,FV(P,;P,)] and s’(y) = s (y)
bys, = [s,,s', FV(P,)] and hence s,(y) = s.(y). Then we have s, =gy(p,)c s.. Then
s = [s,, s, FV(P,)].

1

Hence, by induction hypothesis [P,] = ((s',h)) > (s,,h,) and [P,] ((s., h,)) >
(s', h,). Therefore, by definition [P,; P, ((s', h)) > (s, h,).

17

Case s. Pis skip.
Its proof is immediate.
Case 6. Pisx := cons(e,, ¢,).

Assume S =gy(x:—cons(e,e,)) s 1% := cons(e, e,)]((s,h)) > (s, h) ands, =
[s;,s', FV(x := cons(e,, e,))]. Then by definition, s, = s[x := m] for somem > o
where m,m + 1 ¢ Dom(h) and s, =gv(x:=cons(c,.c.)) - Thens,(x) = s,(x) = m.
We have s =py(x=cons(e,,e.))c §- Forally € FV(x := cons(e,e,)) — {«},
s'(y) = s.(y) = s(y) = §(y). Then we have s’ = §'[x := m]. Therefore, by defi-
nition [x := cons(e,, &,)] 7 ((s',h)) 2 (s, h,).

17
Case 7. Pisx := |e].

Assume s =pygemipy 9 I = []((5,) 3 (sh) and d = [s,, EV(x 1=
le])]. Then by definition, s, = slx := h([e],)] and s, =gy(x.=) s Thensl(x) =

52 Chapter 4. Separation Logic for Recursive Procedures

si(x) = h([e];) = h([e]s). We have s] =gy(x.=[j): s’ and hence forally # x and

y € FV(x :=[¢]),s/(y) = s.(y) = s(y) = s'(y). Then we have s = s'[x := h([e],)].
Therefore, [x := [¢]] ((s',h)) > (5, h,).

Case 8. Pis [el] =e,.

Assume s =gy([]:=e,) 5 [[&) := &] 7 ((s,h)) 2 (s;,h,) and's] = [s,, s, FV([e,] :=
¢,)]. Then by deﬁmtlon, s, = sand's] =py([o]i=e,) S Forally € FV([e,] :=¢,), we
haves/(y) = s,(y) = s(y) = §'(y). Thenwe have s’ = s'. Since h, = h[[e,], := [e.].},
we have h, = hl[e,]y := [e.]¢]- Therefore, [[e,] := e, ((s',h)) 2 (s, h,).

Case 9. Pis dispose(e).

Assume s =py(dispose(e)) s |dispose(e)] ((s,h)) > (s, h) and s, =
[s;,s’, FV(dispose(e))]. Then by definition, s, = sand s, =pv(dispose(c)) - For
aly € FV(dispose()), we have s/(y) = s,(y) = s(y) = s'(y). Then we
have s/ =

[dispose(e)[~((s' 1)) = (s, h).

(3) We will show the claim by induction on P. We consider cases according to P.

. Since h, = h|Dom (h)—[]» We have h, = h|Dom(h),MS,. Therefore,

Case1.x :=e.

Assume s =py(n—) S and [x:=¢] ((s,h)) > abort. By definition,

[:=¢]"((s,h)) = {(s[x := [e],],h)}. Therefore, [x :=e] ((s,h)) > abortis
False. Then [x := €] ~((s, h)) > abortimplies [x :=¢]~((s', h)) > abort.

Case 2. Pisif (b) then (P,) else (P,).
Assume s =gy(p) s

Case 2.1. [b]; = True. Then [b]y = True. Assume [P] ((s,h)) > abort.
By definition, [P,]((s,h)) > abort. By definition FV(P,) C FV(P) and then
s =pv(p,) §. By induction hypothesis, [P,]((s’,h)) > abort. Therefore, by defi-
nition [P]~((s', h)) > abort.

Case 2.2. [b]; = False can be proved similarly.

Case 3. Pis while (b) do (P,).

4.2 Semantics S3

Assume s —FV(while (b) do (P,)) s’

Case 3.1. [b]; = True. Then [b]y = True. Assume [while (b) do (P,)]((s,h))
abort. By Proposition 4.2.4, we have s, ... sy, b, ..., h, such that (s,h) =
(s, h), [P.]~((si,) > (siy, higy) and [b], = True foralli = 1,...,m —
1y, [P.]”((sm,hm)) > abort and [b],, = True. By definition FV(P,) C
FV(while (b) do (P,)) and then s =gy(p) s'. Lets, = [s;, s/, FV(P)] foralli =
1,...,m. Thens] =pyp) s’ ands, =py(p) s, = s =py(p) s and hences, = .
We will show that s, | = [si, s, FEV(P,)] fori =1,...,m — 1.

For that we will show that s 41 TEV(R): ". By (1), sity =Mod,(p,): Si and hence
Sits =Fv(p,) Si- Forally € FV(P) — FV(PI), st (¥) = sin(y) = si(y) = si(y). For
ally FV(P),s.,,(y) = s'(y) = s(y). Hence we have s | =py(p,): s,

. / / / /
Since s; =py(p) s, we have s/, =py(p,) sit, and thens;, = [sij,, s/, FV(P,)].

Then by (2), we have [P,]~((s!, h;)) 3 (si;,, hiy,) foralli = 1,...,m — 1. Since
Stw =FV(P) Smy We also have [[b]]s;n = True, s, =pv(p,) Sw and then by induction hy-
pothesis [P,] 7 ((s , h,,)) > abort. Now we have (s', h) = (s, h,), [P.]~((s], h;)) >

s hi,)and [b]ly = Trueforalli =1,...,m—1,[P,]~((s,,h,)) > abortand
i+10 it ; m
[b]; = True. Therefore, by Proposition 4.2.4, [while (b) do (P)]~((s', h)) > abort.

Case 3.2. [b]y = False. Then [b]y = False. Assume
[while (b) do (P)]~((s, h)) > abort. By definition it is false.

Case 4. P,; P,.

Assume s =py(p,;p,) s’ and [P;P,]((s,h)) > abort. By definition,
U{[P.] (r) | € [P] ((s,h))} > abort. Then either [P,] ((s,h)) > abort
or [P,] ((s,h)) > (s, h) and [P,] ((s,,h,)) > abort for some s,, h,. Assume
[P.]7((s,h)) > abort. Since FV(P,) C FV(P,;P,), we have s =gy(p) . Byin-
duction hypothesis, [P,] ~((s,h)) > abort. Since [P,]~(abort) > abort, we have
[P; P.]~((s',h)) > abort.

Now assume, [P,]~((s,h)) > (s, h,) and [P,]((s;,h)) > abort. We have
s =pyp) . Lets, = [s,,s,FV(P,)]. Then by induction hypothesis (2),

[P.]((s', 1)) = (s,).

54 Chapter 4. Separation Logic for Recursive Procedures

By (1), s, =pv(p,)- sands, =py(p) §. Thenforally € FV(P,) N FV(P,),
s.(y) = s.(y). Since FV(P,) — FV(P,) C Mod,(P,)¢, forally € FV(P,) — FV(P,),
we have s,(y) = s(y) = §'(y) = s.(y). Thens, =gy(p,) s.. By induction hypothesis,
[P.]~ ((s/,h,)) > abort. Then, [P,; P,]| = ((s/, h,)) > abort.

Case s. skip.
Its proof is immediate.
Case 6. x := cons(e,, ¢,).

Assume s =py(x:—cons(e,e,)) § and [x := cons(e,, e,)] 7 ((s, h)) > abort. Butby def-
inition, [x := cons(e,,e,)] " ((s,h)) Z abort. Then [x := cons(e,,¢,)] ((s,h)) >
abort implies [x := cons(e,, e,)] ~((s', h)) > abort.

Case 7. x := [e].

Assume s =py(e=[) § and [x:=[¢]]7((s,h)) > abort. Then by definition,
[e]s ¢ Dom(h). Since s =FV(x:=¢]) s', we have [e];, = [e]s. Then [e]y ¢ Dom(h).
Therefore, [x := [e]]((s',h)) > abort.

Case 8. [¢,] :=e,.

Assume s =py([o]:=.,) § and [[e,] :=¢,]7((s,h)) > abort. Then by definition,
le]Js ¢ Dom(h). Since s =py(j]:=,) §, we have [¢,]; = [e]ly. Then [e]s ¢
Dom(h). Therefore, [[e,] :=e,] ((s',h)) > abort.

Case 9. dispose(e).

Assume s =gy (dispose(e)) S and [dispose(e)]((s,h)) > abort. Then by definition,
le]s & Dom(h). Since s =gy (dispose(e)) §'» we have [e]; = [e]y. Then [e]s ¢ Dom(h).
Therefore, [dispose(e)] ™ ((s', h)) > abort. O

Lemma 4.2.16 Suppose P € L.
(1) If s =ggvp) s’ and [P]((s, h)) > abort, then [P]((s', h)) > abort.

(2) If s =grvp) & and [P]((s,h)) > (s,,h) ands, = [s,,s', EFV(P)] then
[PI((s', 1) > (s, h).

4.2 Semantics 55

(3) If[[P]]((S’ h)) > (517 hl) then s, =Mod(P)¢ $-

Proof. (1) Assume s =gpy(p) s and [P]((s,h)) > abort. Then by definition,
[P®]~((s,h)) > abort for some k. Since we have EV(P®)) C EFV(P) by
Proposition 4.1.14 (1), we have s =gy(ptvy §. By Lemma 4.2.15 (3), we have

[P®]~((s', h)) > abort. Then by definition, [P]((s',)) > abort.

(2) Assume s =gry(p) 5, [P]((s,h)) > (s,,h,) ands] = [s,, s, EFV(P)]. Then by
definition, [P*)]((s,h)) > (s,, h,) for some k,. By definition, EFV(P) = FV(P))
where 1, is the number of our procedure names. Let k = max(k,, npm). Then by
Lemma 4.2.8, [P®]((s,h)) > (s,,h,). Since FV(PU)) = EV(P®) by Proposi-
tion 4.1.14 (1), we have FV(P(*)) = EFV(P). Thens' = [s,,s', FV(P®))]. Then by
Lemma 4.2.15 (2), [PP]~((s', h)) D (s/, h,). Therefore, [P]((s', h)) > (5., h,).

1)

(3) We can show the claim in a similar way to (1). O

56 Chapter 4. Separation Logic for Recursive Procedures

4.3 LOGICAL SYSTEM

This section defines our logical system. It is the extension of Reynolds’ system pre-

sented in [18] for mutual recursive procedure call.

We will write Alx := e| for the formula obtained from A by replacing x by e. We
will write the formula e — e¢,, e, to denote (e —> ¢,) * (e + 1 > e,).

Definition 4.3.1 Our logical system consists of the following inference rules. As men-

tioned in the previous section, we will use T for a set of asserted programs. A judgment

is defined as T + {A}P{B}.

Ski1p
F {A}skip{A}
IDENTITY
{{a}P{B}} I {A}P{B}
ASSIGNMENT
F{Afx :=e|]}x :=e{A}
Ir
T+ {AAb}P{B} TF {AA-b}P,{B}
T+ {A}if (b) then (P,) else (P,){B}
WHILE
T+ {AAbYP{A)}
T F {A}while (b) do (P){A A —b}
CoMPOSITION

r+{A}p{C} T+ {C}P.{B}
I+ {A}P;P,{B}

4.3 Logical System 87

CONSEQ
I+ {A}P{B}
r+{A}P{B} (A— A,B,—B)

Cons

(' & FV(e,,e,,A))

FAVX (&' — e, e,) = Alx := &']) }x := cons(e,, e,){A}

Looxup

FA{3x (e — o x (e &' = Alx :=«'])) }a := [e]{A}

MUTATION

(G o 1) = (6 o & =+ AJ[e] = afa] FETVE)

DiIsPOSE

(x & FV(e))

F{(3x(e — x)) * A}dispose(e){A}

RECURSION

I'U{AIR{Bi =1, npuc} - {AIQ{B.}

TU{{AJR{B}i=1,... iy} I {As,..}Qupc{ B}
I+ {A}R{B} (1<) < fyroc)

INv-Cony

T+ {A}P{C}

T {AABLP{C A B} ([V(B) (1 Mod(P) =0, Bispure)

58 Chapter 4. Separation Logic for Recursive Procedures

ExisTs
I+ {A}P{B}
T [ATP(E] (x ¢ FV(B) U EFV(P))
Cur
r+{A}P{B,} TU{{A}P{B}}+ {A}P{B}

I+ {A}P{B}
WEAKENING

T+ {A}P{B}

TUT F {A}P{B}
We say { A} P{B} is provable and we write - {A}P{B}, when - {A}P{B} can be
derived by these inference rules.

We explain inference rules by the following simple example.

4.3.1 EXAMPLE

Let A be the abbreviation of Vy(y > xAy < z <> Jw(y — w)*True). So A asserts
about the heap which has the domain {x + o,x +1,...,x + k} where k +1 = z.

Suppose we have the procedure declaration
Procedure R, (if (x < z) then (dispose(x); x := x + 1; R,) else (skip))

We will show that - {A}R,{emp} is provable in our system. This means we have a

heap with some consecutive allocation of cells and the program R, deallocates them

all.

Let'be {{A}R,{emp}}. The axiom (AssIGNMENT) and the rule (WEAKENING)
gives
[FA{Alx:=x+1]}x:=x+1{A}.

4.3 Logical System 59

The axiom (IDENTITY) gives
'+ {A}R{emp}.
By the inference rule (CoMPOSITION), we have
I'F{Alx:=x+1]}x:=x+1;R{emp}.
The axiom (D1srosE) and the rule (WEAKENING) gives
I F{(Jy(x—y)) * Alx := x + 1] }dispose(x) {Alx := x + 1] }.
Then by the inference rule (ComMPOSITION), we have
I'F{(3y(x —y)) * Alx := x + 1] }dispose(x); x := x + 1; R, {emp}.
The axiom (SkiP) and the rule (WEAKENING) gives
T'H{AA—(x <z)}skip{AA—(x < 2)}.

Indeed A A —(x < z) is true only for the empty heap. Now we have A A x < z —
(Fy(x +— y)) * Alx := x + 1] and A A =(x < z) — emp. Then by the inference rule

(ConseqQ), we have
' {AAx < z}dispose(x);x := x + 1; R, {emp}

and

I'F{AA—(x < z)}skip{emp}.

By applying the inference rule (if), we get
' {A}if (x < z) then (dispose(x); x := x + 1; R,) else (skip){emp}.

Finally, by the inference rule (RECURSION), we have - {A} R, {emp} is provable.

60 Chapter 4. Separation Logic for Recursive Procedures

4.3.2 NEwW RULES

We have two new rules, (INv-Cony) and (Exists), which appear neitherin [3] nor
in [18].

We have found that the axiom (Ax10M 9: INVARIANCE AXIOM) in [3] is not
sound for our system. The definition of the axiom will be given in the next chap-
ter. The asserted program {x = o}[y] := o{x = o} is a counter example
since it is not true although it is provable by the axiom. It causes abort for the state
(s,h) = ([x := o,y :=1], D) though [x = o] (s is true. Another counter example
is {emp}x := cons(o,0){emp}. Although it does not abort, it is not true. So, we
have introduced the rule (INv-CoNy). It is a variant of the combination of the axiom
(Ax10M 9: INVARIANCE Ax10M) and the rule (RULE 12: CONJUNCTION RULE) of
[3]. Thatis, an arbitrary assertion, also called an invariant [23], can be conjuncted to
the precondition and postcondition of an asserted program if none of its free variables
can be modified by the program. Note that it is the frame rule [18] restricted to pure

formulas.

The rule (Ex1sTs) is analogous to the rule existential introduction of propositional

calculus. RULE 15: ELIMINATION RULE in [3] is similar to this inference rule.

61

>

Soundness and Completeness

62 Chapter 5. Soundness and Completeness

5.1 SOUNDNESS

In this section we will prove soundness of our system. That means we will show
thatifajudgment I' - {A}P{B} is derivable in our system then ' - {A}P{B} isalso

true.

We say an unfolded program is correct when eac level of the unfolding of the pro-
gram is correct. For a given specification, correctness of a program is the same as that

of its unfolded transformation.

Itis straightforward to construct alogical system by collecting axioms and inference
rules from both Hoare’s logic for recursive procedure and separation logic to verify
pointer programs with recursive procedures. But this system is unsound. It is because
the invariance axiom is not sound in separation logic. At the end of this section, we

will give an unsound example.
Proposition §.1.1 {A}P{B} is true if and only if for all k, { A} P®){B} is true.

Proof. First we will show from the left-hand side to the right-hand side. Assume
{A}P{B} is true. Assume [A], = True. Then by definition, [P](r) # abort. Then
by definition, | J;°_([P¥]~(r)) # abort. Then for all k, [P®]~(r) # abort. Fix
k. Assume [P®]~(r) > 7. Then we have [J;° ([P®]~(r)) #. Then again by
definition, [P](r) > 7. Then [B], = True. Then {A}P® {B} is true for all k.

Next we will show the right-hand side to the left-hand side. Assume {A}P®*){B}
is true for all k. Assume [A], = True. Fix k. Then by definition, [P®)](r) ¥ abort.
Then [P®]~(r) # abort. Then | J;° ([P®]~(r)) F abort. Then by definition,
[P](r) # abort. Assume [P](r) > #. Then by definition, | ;= ([P¥]~(r)) > 7.
Then we have [P¥]~(r) > # for some k. Then by definition, [P®)](r) > . Then
[B], = True. Then {A}P{B} is true. O

Definition s.1.2 For a set T of asserted programs, T® is defined by { {A;}P,{B;} |
LSSl = (PO} 1 <i<n)

If the truth of an assertion depends only on a store, it is not altered in the presence

of any heap. This easy lemma will be necessary for some formal discussions later.

5.1 Soundness 63

Lemma 5.1.3 [A]; = [A] () for apure formula A where the left-hand side is the seman-

tics for the base language and the right-hand side is the semantics for the assertion language.

Proof. This is proved by induction on A. If A is B A C, we have [A], = ([B], and
[Cl;) and [A] 5y = ([B s,y and [C](s4)), and both sides are the same, since by the
induction hypothesis we have [B]; = [B]) and [C]; = [C]). Other cases are
similarly proved. U

The following lemma is important for the soundness of the inference rule

(RECURSION).

Lemma s.1.4 If{ {A,-}Ri(k) {Bi} [1<i< o } F {A,}Qi(k) {B;} is true for all i and
k then = {Ai}ll,-(k) {B;} true for alli.

Proof. Assume { {Ai}R,-(k) B} [1<i<nye}t {Ai}Q‘.(k) {B;} is true for all i and
k. We will show {A,—}Ri(k) {B;} true for all i by induction on k.

Case1.k = o.
By Proposition 4.1.10 (2) R,»(O) = Q. Then {A,;}Q{B;} is true.
Case2. k =k + 1.

We assume that { {A,-}Ri(k){Bi} 1< i <y } - {Ai}Qz(k) {B;} is true for all k.
By induction hypothesis, {A,»}R,-(k/) {B;} is true for all i. By the assumption for K, we
have { {AJR¥{B;} |1 <i < Mproc } {A;}Q¥{B;} true. Hence {Ai}Q‘(k/){Bi} is
true. By Proposition 4.1.10 (3), R,»(kurl) = Q,-(k/). Hence {A,}Ri(k) {B;} is true for all i.

O

In the following lemma we consider an assertion and a program such that the as-
sertion has no free variable that can be modified by the program. In such a case, the

truth of the assertion is preserved even after the execution of the program.

Lemma s5.1.5 If A is pure, P doesn’t contain any procedure names, [A] () = True,
FV(A) N Mod,(P) = D and [P]~((s,h)) > (s, ') then [A] (¢ 5y = True.

Proof. Assume A is pure, P doesn’t contain any procedure names, [A] () = True,

64 Chapter 5. Soundness and Completeness

FV(A) "Mod,(P) = Dand [P]~((s,h)) > (s',h). By Lemma 4.2.15 (1), s =moa(p):
s'. Since FV(A) C Mod,(P)¢, we have s =gy(4) s’. By Lemma 5.1.3, [A]=True.
Hence [A]y=True. By Lemma 5.1.3, [A] (s w1y = True. O

The following lemma will be necessary to show the soundness of the inference rule

(Inv-Cony).

Lemma 5.1.6 IfP doesn’t contain any procedure names, B is pure, Mod,(P)NFV(B) = ()
and {A}P{C} is true, then {A N B}P{C A B} is true.

Proof. Assume B is pure, Mod,(P) N FV(B) = () and {A}P{C} is true. We have to
prove {A A B}P{C A B} is true.

Assume [A A B] ;) = True. Then [A]} ;) = True and [B]() = True. Then
[Pl((s,h)) # abort. Assume [P]((s,h)) > (s',H'). Then [C](y) = True. By
Lemma s.1.5, [B] (v) = True. Then [B A C](¢) = True. Hence, {AAB}P{CAB}

is true. O
Lemma s.1.7 IfT' = {A}P{B} is provable then T® \= {A}PW{B} is true for all k.

Proof. Itis proved by induction on the proof. We consider cases according to the last

rule.
Case 1. (Sk1p).
Its proof is immediate.
Case 2. (IDENTITY).

Assume T, {A}P{B} I+ {A}P{B} is provable. Then I'® {A}P®{B} |
{AYPW B} is true for all k.

Case 3. (ASSIGNMENT).

Assume I' = {A[x := e|]}x := e{A} is provable. Assume [A[x :=¢]]()) =
True. Let n be [Je],. By the definition we have [x := ¢]((s,h)) = {(s,, h)} where
s, = slx := n|. Since [A[x := e]]su) = [A](s,n), we have [A](; 5y = True. Hence
{Alx := €] }x := e{A} istrue. Then by definition, T®) - {A[x := ¢]}(x :=)W {A}

5.1 Soundness 65

is true.
Case 4. (IF).

We have the asserted program I' = {A A b}P,{B} and T - {A A —b}P,{B}
which are provable. By induction hypothesis, T® {A A b}P®{B} and
™ - {A A =b}PP{B} are true.

Now we will show that T®) = {A}(if (b) then (P,) else (P,))*®{B} is true for all
k. Assume T'® is true. Then {A A b}P®{B} and {A A —b}PF{B} are true.

Assume [A] (s,h) 18 true.

Case 4.1. [[b]; is true. By Lemma 5.1.3, we have [[b]](s,;,) is true. By def-
inition, [AAb](is true. Assume [(if (b) then (P,) else (P,))®]((s,h)) =
[P®]((s, h)) > r. Thenr # abortand [B], is true.

Case 4.2. [b], is false. Then the fact that r # abort and [B], is true is similarly

proved to Case 1.

Then {A}(if (b) then (P,) else (P,))®¥'{B} is true. Then by definition T®) |-
{A}(if b then P, else P,) ¥ {B} is true for all k.

Case 5. (WHILE).

B is in the form A A —b and by (while) rule we have the asserted program I'
{A A b}P{A} which is provable. By induction hypothesis, [®) - {A A b}PW{A} is
true for all k.

Now we will show that T®) = {A}(while (b) do (P))®){=b A A} is true. Assume
I'® is true. Then {A A b} P {A} is true.

Let define the function F : States U {abort} — p(States U {abort}) by

F(abort) = {abort},
F((s,h)) = {(s0, ho) | [A A =] s,) = True} U {r € States | [A] () = False}.

We will show that F satisfies the inequations obtained from the equations for

66 Chapter 5. Soundness and Completeness

[(while (b) do (P))®)] by replacing = by 2. That is, we will show

F(abort) O {abort},
F((s,h)) 2 {(s, h)}if [b]; = False,
F((s,1)) 2 ULE) | € [PO)((5,) } €8], = Teue.

The firstinequation immediately holds by the definition of F. We will show the second
inequation. Assume [b], = False. By Lemma 5.1.3, we have [b];) = False. If
[A] () = False, then the inequation holds by the definition of F. If [A] (; sy = True,
then [A A —b] 5y = True, and the inequation holds by the definition of F.

We will show the last inequation. If [A] ; ») = False, then it holds by the definition
of F. Assume [A](;5) = True, [b]; = True, and ¥ is in the right-hand side. We
will show that ¥/ € F((s, h)). We have some r, such that [P®]((s, 1)) > r, and
F(r,) > v. By Lemma 5.1.3, we have [b] () = True. Hence [A A b] () = True.
Since {A A b}PM{A} is true we have r, # abort and [A], = True. Then we have
¢ # abortand [A A —b], = True. Hence? € F((s, h)).

We have shown that F satisfies the inequations. By the least fixed point theo-
rem [22], we have F D [(while (b) do (P))®]. If [A] p = Trueandr €
[(while (b) do (P))®]((s, h)), then ¥/ € F((s,h)), and we have ¥ # abort and
[A A =b], = True. Therefore T®) - {A}(while (b) do (P))®){A A —b} is true.

Case 6. (COMPOSITION).

We have the asserted program I' = {A}P,{C} and T - {C}P,{B} which are prov-
able for some C. By induction hypothesis, [®) = {A}P®{C} and T F {C}P¥{B}

are true for all k.

Now we will show that T® - {A}(P,; P,)®{B} is true for all k. Assume I'®) is
true. Then {A}P®{C} and {C} P {B} are true.

Assume [A]) = True and [(P,; P, YO]((s,h)) > r. We will show r # abort
and [B], = True. We have r, such that [P%¥]((s, h)) > r, and [P¥](r,) > r. Hence
we have r, # abort and [C],, = True. Since [P¥](r,) > r, we have r # abort and
[B], = True. Hence {A}(P,; P,)®¥'{B} is true. Then T® F {A}(P,;P,)®{B} is

5.1 Soundness 67

true for all k.
Case 7. (CONSEQ).

We have the asserted program I' F {A’} P{B’} which is provable where A — A’
and B’ — B. By induction hypothesis for the assumption, ®) - {A’}P®){B'} is true
for all k.

Now we will show that T®) = {A}P®){B} is true for all k. Assume I'® is true.
Then {A'}P®){B'} is true.

Assume [A]l) = True and [P®]((s,h)) > r. We will show r # abort and
[B], = True. By the side condition [A — A,[(; sy = True, we have [A,](;s) = True.
Hence r # abort and [B,], = True. By the side condition [B, — B], = True, we
have [B], = True. Hence {A}P%®){B} is true. Then T®) - {A}P®){B} is true for all
k.

Case 8. (Cons).

Assume T+ {V¥((« +— e,e) —*« Alx = «])}x =
cons(e,, e,){A} is provable. Assume [Va'(x' = e, e, = Alx := &'])] sy = True
and [x := cons(e,, €,)]((s,h)) > r. We will show r # abort and [A], = True. Let
Pbe x := cons(e,, e,), 1, be [e,], and n, be [e,],. By the definition of [P], r # abort
andr = (s,, h,) wheres, = s[x := n]and h, = h[n := n,, n+1 := n,| for some nsuch

thatn > oandn,n +1 € Dom(h). By [Va'(x' — e,, e, = Alx := &'])][(;p) = True,

we have [x' — ¢, e, = A[x == &/]|(vy = True where s’ = slx’ := n|. Let
h,=0[n:=n,n+1:=n,). Wehave h, = h + h,. Then [x’ — e,,¢,] (v »,) = True
since X & FV(e,e,). Since [« > e, e, = Alx := &[]y = True, we have

[Alx := «']] (v) = True. Hence [A](,) = True, since 8’ ¢ FV(A). Now
we have {V«'((«' +— e,e,) = Alx := «/])}x := cons(e,,e,){A} is true. Then
I IV (& > e, e,) = Alx := «]) }(x := cons(e,, e,)) ¥ {A} is true for all k.

Case 9. (Lookup).

Assume I' F {3x'(e — & *x (e — & — Alx = «])}x = [e]{A}
is provable. Assume [3x'((e — «') * ((e = &’) = Alx := &]))] sy = True and
[:=[e]]((s,h)) > r. We will show r # abort and [A], = True. Let n be

68 Chapter 5. Soundness and Completeness

le]s. We have some n, such that [[(e — ') * (e = &' = A[x := «'])[¢y = True
where s = s[x’ := n). Hence we have h,, h, such that b, = ([n = n,],
h = h + h,and [e = &' = Alx := &']] v,y = True. By [e —= &] (v) = True,
[Alx := «']](v) = True. Since " & FV(e), we have [e]s = [e]; = n. Since
n € Dom(h), we have r # abort and r = (s, h) wheres, = s[x = n,].
Since [Alx := &|](vn) = [Aln bya & FV(A), we have [A], = True. Then
{I(e — & x (e — & —« Alx := &]))}x := [e]{A} is true. Then we have
{T® F 3w (e v o * (e > & — Afx := «])) }(x := [e]) P {A} is true for all k.

Case 10. (MUTATION).

Assume I' - {(Ix(e, = x)) * (e, —> €, = A) }[e)] := e,{A} is provable. Assume
[(3x(e, = x)) * (e, — e, = A)] () = True and [[e,] == &,]((s,h)) > r. We will
show r # abort and [A], = True. Let n be [e,], and n, be [e,];- We have h,, h, such
that [le, — e, = A4y and h = h, + h, and [Ix(e, — x)](;) = True. Hence
we have some #, such that [[e, — «] (¢,h) = True where s = s[x := n,]. Since
x & FV(e,), we have [e,] = [e]s = n. We also have Dom(h,) = {n}. Since
n € Dom(h), r # abortand r = (s, h’) where ' = h[n := n,]. Let h! be O[n := n,).
Then ' = h + h, and [e, — e,] (s 5ry = True. Since [e, — e, = A]/(;4,) = True, we
have [A] sy = True. Hence {(3x(e, = x)) * (e, > €, = A)}[e,] := e,{A} is true.
Therefore T® = {(Tx(e, > x)) * (e, = e, = A)}([e)] := &,)® {A} is true for all k.

Case 11. (DISPOSE).

Assume ' + {(3x(e +— «)) x Al}dispose(e){A} is provable. Assume
[(3x(e — x)) * Al sy = True and [dispose(e)]((s,h)) > r. We will show
r # abort and [A],. Let n be [e],. Then we have h,, h, such that h = h, + h,,
[3x(e — x)](n) = True and [A](;,) = True. Hence we have some 7, such that
le = x] (v) = True where s’ = s[x := n,]. Since [e]y = [e], = nbyx & FV(e),
Dom(h,) = {n} and h,(n) = n,. Sincen € Dom(h), r # abortand r = (s, h))
where i, = h|pom(i)—{»}- Hence h, = h.. Therefore [A]}, = True. Hence {(Jx(e —
x)) * A}dispose(e){A} is true. Then T® F {(Tx(e > x)) * A} (dispose(e)) ¥ {A}

is true for all k.

Case 12. (RECURSION).

5.1 Soundness 69

We have the asserted program I' U { {A;}JR{B;} | 1 <i < nyoe } F {AFQA{B;}
that are provable for all i. Fixi and k. By induction hypothesis, T®) U { {A,-}Ri(k) {B:} |
1< i < e } F {A,—}Q,-(k) {B;} is true. Assume I'¥ s true. Then { {Al—}R,-(k) {B:} |
1< 0 < e } - {ATQY B} s true.

By Lemma 5.1.4, {Ai}Ri(k) {B;} is true. Then r {A,»}Rl»(k){Bi} is true.
Case 13. (INv-Cony).

We have I' - {A}P{C} is provable and Mod(P) N FV(B) = (). By induction
hypothesis, [®) - {A}P®{C} s true for all k.

Fix k. Now we will show that T®) {AA B}P(k {C A B} is true. Assume r® is
true. Then {A}P®){C} s true.

By definition, Mod(P) = Mod, (P P(proc)

Since we have Mod, (P®) C Mod, (P"=)) hence FV(B) N Mod,(P®) = (). By
Lemma 5.1.6, we have {A A B}PX{C A B} is true.

Case 14. (Ex1sTS).

We have the asserted program I - {A}P{B}, which is provable and x ¢ FV(B) U
EFV(P). By induction hypothesis, T®) = {A}P®{B} is true for all k. Since x ¢
EEV(P), by definition x ¢ FV(P("<)). Since FV(P®) C FV(P(")), we have x ¢
EV(PW),

Fix k. Now we will show that T® I~ {3xA}P®){B} is true. Assume I'®) s true.
Then {A}P®{B} is true.

Assume [3xA](;) = True and [PO]=((s,h)) > r. Then by definition
[A] (sfx:=m] ,»y = True for some m. By definition [PY]~((s[x := m], h)) ¥ abort. We
have s =gy(pw) s[x 1= m]sincex ¢ FV(P®). Then by Lemma 4.2.15(3), r # abort.
Assume r = (s, i'). Then by Lemma 4.2.15(1), we have s’ =p.4 (pw). s and hence
S =gy(pe) 5. Nowlets; = [¢/,s[x 1= m], EV(P(®))]. Then by Lemma 4.2.15(2),
[P®]~((s|x := m],h)) > (s, h'). Then by definition, [B](y) = True. We have
s!(y) = s'(y) forally € FV(P®)), We also have s/ (y) = s(y) = s/(y) forall y # x and

70 Chapter 5. Soundness and Completeness

y & FV(P®). Hence s, =(, 5. Since x & FV(B), we have [B](y sy = True. Then
by definition {JxA}P® {B} is true. Therefore, I®) - {3xA}P® {B} is true. O

We present the soundness theorem. It is one of the important theorems in our
paper.
Theorem 5.1.8 (Soundness) IfT' - {A}P{B} is provable, T - {A}P{B} is true.

Proof. Assume I' - {A}P{B} is provable. By Lemma 5.1.7, T®) = {A}P®){B} true
for all k. By Proposition 5.1.1, ' = {A}P{B} is true. O

We will give an unsound example for the naive logical system obtained by taking
the union of axioms and inference rules from Hoare’s logic for recursive procedures

and separation logic.

Definition 5.1.9 The axiom (AX10M 9: INVARIANCE AX10M) has been defined in [3]

as:
(invariance)

- {A}P{A} (FV(A) N EFV(P) = ()

Definition §.1.10 We define the logical system ‘Separation+Invariance Logic’ as the log-

ical system obtained from the separation logic by adding the axiom (invariance).

Proposition s.1.11 The axiom (invariance) is not sound in Separation+Invariance

Logic.

Proof. - {emp}x := cons(e,, e,){emp} is provable by the axiom (invariance) in the
system Separation+Invariance Logic since FV(emp) N EFV(x := cons(e,, ¢,)) = ().

However it is apparently false. O

5.2 Expressiveness 71

5.2 EXPRESSIVENESS

§5.2.1 CODING OF ASSERTIONS

This section proves the expressiveness theorem. Our technique is to extend the
expressiveness theorem given in [19] to mutual recursive procedure calls. In this sec-
tion, we first assume that for given assertions and programs, we fix some sequence x
of variables that contains the free variables of the assertions and the extended free vari-
ables of the programs. We will next define the formulas Store (m) and Heap(m) for
describing the current store and the current heap respectively. Next we will provide
the pure formulas EEval, (1, k) and BEval, » (n), which express the meaning of the
expression e and the pure formula A respectively. Then we will define the pure formula
HEval, (m) for expressing the meaning of the assertion A at the heap by m. By using
it, we will define the pure formula Eval, - (1, m), which expresses the meaning of the
assertion A. We will also define the pure formula Execp (n, m) for the meaning of the
program P. Finally we will define the formula Wp, A(?) for the weakest precondition
of the program P and the assertion A, and we will prove the expressiveness theorem

that states Wp 4 (7) indeed expresses the weakest precondition.

We assume a standard surjective pairing function on natural numbers. For natural
numbers n, m, we will write (1, m) to denote the number that represents the pair of n
and m. We also assume a standard surjective coding of a sequence of natural numbers
by a natural number. We will write (n,, ..., n;) for the number that represents the
sequencen,, . . ., n;. When the number n represents a sequence, [h(n) and (n); denote

the length of the sequence and the i-th element of the sequence respectively.

The following predicates for handling sequences are known to be definable in the
language of Peano arithmetic. Pair(k,n,m) is defined to hold if k is the number
that represents the pair of n and m. Lh(n, k) is defined to hold if k is the length of
the sequence represented by n. That is, Lh({n,, ..., n), k) holds. Elem(n,i,k) is
defined to hold if k is the i-th element in the sequence represented by n. That is,
Elem({(n,,...,n),i —1,n;) holds.

72 Chapter 5. Soundness and Completeness

We code the piece of the store s for variables x,, . . . , x; by the number (n,, . . ., nt)
where s(x;) = n;. We code the heap h by the number (m,, . .., m;) where Dom(h) =
{n,,...,m},0 < n < ...< nandm;is the number that represents the pair of n;
and h(n;). We code the result of a program execution by coding abort and (s, 1) by
o and k + 1 respectively where the piece of s is coded by n, h is coded by m, and k is
the pair of numbers n and m. The number that represents a given heap is unique. For
example, the number ((1, 5), (3, 8)) represents the heap h such that Dom(h) = {1,3}
and h(1) = s, h(3) = 8. Note that for heap representation we do not think the
numbers ((3, 8), (1,5)) or ((1,5), (1,5), (3, 8)) since n, < n, is violated.

We say A is true at (s, h) when [A] ;) = True. The formula A <+ Bis defined as
(A—B) A (B—A).

() sometimes denotes the empty heap, that is, ()(x) is undefined for all x € N.

We define the following pure formulas. First we define coding of our assertion lan-

guage. Itis the same as [19].

Lesslh(i,n) = dx(Lh(n,x) Ai < x),
Addseq(k,n,m) = 3x(Lh(n,x) ALh(m,x+ 1)) A Elem(m, o,k) A
Vyx(Lesslh(y, n) A Elem(n, y, x) — Elem(m,y + 1,x)).

The predicate Lesslh(i,n) means i < Ih(n). The predicate Addseq(k, n, m) means

(k) - n = m where - denotes the concatenation of sequences.

Definition s.2.1 We define the formulas Store,, . (m) and Heap(m).

Store,, . ..(m) = Lh(m,n) A Elem(m,o,x,) A ... A Elem(m,n—1,x,),
Lookup(m,1,k) = 3yz(Lesslh(y, m) A Elem(m,y, z) A Pair(z,1,k)),
IsHeap(m) = VYix,y,z,x,y,2,(Lesslh(i +1,m) A Elem(m, i, x,) A
Pair(x,,y,,z,) A\ Elem(m, i + 1,x,) A Pair(x,,y,,2,)—
o <H AN <),
Heap(m) = IsHeap(m) A Vxy(Lookup(m,x,y) <> (x — y * True)).

The predicate Store,, ., ((m,,...,m,)) means s(x;) = m; where s is the current

5.2 Expressiveness 73

store. The predicate Lookup(m, I, k) means h(l) = k where m represents the heap
h. The predicate IsHeap is defined so that IsHeap(m) means that there is some heap

that the number m represents. The predicate Heap(((l,,n,), ..., (I, n;))) means
Dom(h) = {l,...,k},0 < I, < ... < Iy and h(l;) = n; where h is the current
heap.

Definition 5.2.2 We define the pure formulas EEval, 3 (n, k) for the expression e and
BEval, (n) for the pure formula A where we suppose X includes FV(e) and FV(A) re-
spectively.
EEval, 3 (n,k) = 3% (Storew(n) Ae=k),
BEval, % (n) = 3% (Storez (n) A A).
EEval, 3 (n, k) means [e]; = k where n represents the stores. BEval, w (n) means [A], =

True where n represents the store s.

We define the following pure formulas.

Pair2(z,%,y) = 3Jw(z =w+ 1A Pair(w,x,y) A IsHeap(y)),

Domain(k, m) JyLookup(m, k, y),

Separate(m, m,,m,) = IsHeap(m) A IsHeap(m,) A IsHeap(m,) A
Va(3y(Elem(m, y,x)) <> Jy(Elem(m,,y, x)V
Elem(m,,y,x))) A Va,x,,y,(Lookup(m,, x,, y,) A

Lookup(m,, x,,y,) — %, # «x,).

Domain(k,m) means k € Dom(h) where m represents the heap h.
Separate(m, m,,m,) means h = h, + h, where m, m,, and m, represent the

heaps h, h,, and h, respectively.

Definition 5.2.3 We define the pure formula HEval, (x) for the assertion A by induction

74

Chapter 5. Soundness and Completeness

onA.

HEval,(m)
HEval,,,(m)
HEval,, ,, (m)
HEval_,(m)
HEval\p(m)
HEval,yp(m)
HEval,_,3(m)
HEva va(m)
HEval,,(m)
(m)

(m)

HEval,.5(m

HEval,_.5(m

A (A'is a pure formula),

—JxyLookup(m, x,y),

e, > o A Vay(Lookup(m,x,y) > x

—HEval,(m),

HEval,(m) A HEvalz(m),

HEvaly(m) V HEvalg(m)
)
(m

:el/\y:ez),

HEval,(m) — HEvalg(m),

VxHEvaly(m),

JxHEval,(m),

y,y,(Separate(m, y,, y,) A HEval,(y,) A HEvaly(y,)),
Vy.y.(HEvaly(y,) A Separate(y,, m,y,) — HEvalg(y,)).

HEval, (m) means [A] ;) = True where s is the current store and m represents the

heap h.

Definition §.2.4 We define the pure formula Eval, (n, m) for the assertion A. We sup-

pose « includes F V(A).

Evaly w(n,m) = 3% (Store (n) A IsHeap(m) A HEvaly(m)).

Eval, - (n, m) means [A] .

the heap h.

= True where n represents the store s and m represents

5.2 Expressiveness 75

5.2.2 CODING OF PROGRAMS

We define the following pure formulas.

New2(n,m) = n > o A “Domain(n, m) A “Domain(n + 1, m),

_____ s (M; Ky my) = Lh(m,, n + 1) ALh(m,, n + 1)\
Vyx(y < n+1Ay #iAElem(m,,y,x) — Elem(m,,y, x))A
Elem(m,, i, k),

ChangeHeap(m,, I, k, m,) = Vxy(x # | — (Lookup(m,, x,y) <>
Lookup(m,, x,y))) A Lookup(m,, I, k).

ChangeStorexo

New2(n, m) means n is the address of free cells in h where m represents the heap
h. That is, the address n can be used by the next x := cons(e,, e,) statement.

ChangeStore m,, k, m,) means m, represents the store s[x; := k| where m,

07-~-7xn7xi<
represents the store s. ChangeHeap(m,, I, k, m,) means m, represents the heap h[l :=

k| where m, represents the heap h.

We say the number n represents the result rif r = abortandn = oorr = (s, h)

and n = (m, k) + 1 where m represents the store s and k represents the heap h.

Next we extend coding of programs used in [19] to mutual recursive procedure

calls.

Definition §.2.5 We define the pure formula ExecUp 3 (m,n,,n,) by induction on
(m, P) in Figure 5.2.1. We define

ExecP,?(”u nz) = Elk<ExeCUP,7(k7 Ny, nz))

ExecUp + (k, n,, n,) is true if and only if the following: when we execute the k-level
unfolding P% of the program P from the state coded by n,, one of the possible result-
ing states is the state coded by n,. The predicate Execp 7 (n,, n,) means [P[(r,) > r,

where 1, and n, represent r, and r, respectively.

76 Chapter 5. Soundness and Completeness

ExecU,._, % (m,n,n,) = (n, =0 —n, = o)A
(n, > o = Jy,z,y,w(Pair2(n,, y,,z,) A EEval, % (y,, w)A
ChangeStore— (3, w,y,) A Pair2(n,,y,,2.))),

ExecUj¢ (b) then (P,) else (P,), % (ma ny, nz) = (nl =o0—n, = O>/\
(n, > o — Jxy(Pair2(n,, x,y) A (BEval, % (x)—
Exchplj(m, n,n,)) A (—\BEvalbj(x) — Exchpzj(m, n,n,)))),

ExecUypite (b) do (P),?(ma ny, 7’!2) = (”1 =0—n, = O)/\
(n, > o — Jwz(Lh(w,z + 1) A Elem(w, 0, n,) A Elem(w, z, n,) A
Vw, (w, < z— Jz,z,w,w,(Elem(w, w,, z,) A Elem(w, w, + 1,2,)A
z, > o A Pair2(z,, w,, w;) A BEval, » (w,) A ExecUp % (m, 2,,2,))))
A(n, > o — Jyz(Pair2(n,,y,z) A ~BEval, % (y)))),
ExecUp,.p, 7 (m, n,,n,) = 3z(ExecUp, w(m, n,,z) A ExecUp, »(m,z,n,)),
ExecUggp w (m, n,,n,) = (n, = n,),
ExeCUx::cons(el,ez),7(m7 n,, nz) - (”1 =0—n,= O)/\
(n, > o = Jy,.z,y,z,ww,w, (Pair2(n,, y,, z,) A EEval, 3 (y,, w,)A
EEval,, w (y,,w,) A New2(w, z,) A ChangeStore— (y,, w,y,)A
Vaxy(x # w A x # w + 1 — (Lookup(z,, x,y) <> Lookup(z,, x,y)))A
Lookup(z,, w, w,) A Lookup(z,, w + 1,w,) A Pair2(n,,y,,2,))),
Exchx::[e]j(m, n,n,) = (n,=o0—n,=o)A
(n, > o = Jy.z,y,ww, (Paira(n,, y,, z,) A EEval, 2 (5, w)A
(—Domain(w, z,) — n, = o) A (Domain(w, z,)—
Lookup(z,, w, w,) A ChangeStore— (y,,w,,y,) A Pair2(n,,y,,2,)))),
ExecUy,.—., % (m,n,,n,) = (n, = 0o = n, = o)A\
(n, > o = Jy.z,z,w,w, (Pair2(n,, y,, z,) A EEval, 3 (y,, w,)A
EEval, % (3, w,) A (mDomain(w,,z,) = n, = o)A
(Domain(w,, z,) — ChangeHeap(z,, w,, w,, z,) A Pair2(n,,,,2,)))),
Exchdispose(E)j(m, n,, nl) = (n1 =0—n, = o)/\
(n, > o — Fy.z,z,w(Pair2(n,, y,,2z,) A EEval, » (y,, w)A
(—wDomain(w, z,) — n, = o) A (Domain(w, z,)—
Vaxy(Lookup(z,, x,y) A x # w <> Lookup(z,, x,y)) A Pair2(n,, y,,2,)))),
ExecUyg +(0,n,n,) = (n, =0 An, = o),

ExecUy, w(k +1,n,,n,) = ExecUq, 2 (k,n,,n,).

Figure 5.2.1: Definition of ExecU

5.2 Expressiveness 77

We define the following abbreviations. Note that they are not formulas.

_____ o (m,s) = Lh(m,n) AVi< n(Elem(m,i,s(x,))),

Heapcode(m,h) = IsHeap(m) A Vin(h(l) = n <+ Lookup(m, I, n)),
Result(n,r) = n=o0Ar=abortV

n > o A Jshyz(r = (s, h) A Pair2(n,y,z) A

Storecodes (y,s) A Heapcode(z, h)).

Storecode,,

Storecode,, ., (m,s) means that the number m is the code that represents the store
s for variables x,, . . . , x,. Heapcode(m, h) means the number m is the code that rep-

resents the heap h. Result3 (n, r) means the number n represents the result r.

The following lemma says that ExecUp (k, n,, n,) simulates the execution of the

k level of unfolding of the program P.

Lemma §.2.6 (1) ExecUg (0, n,,n,) is true if and only if n, = n, = o.
(2) ExecUp = (k, n,, n,) is true if and only if ExecUpw (0, 1y, 1) is true.
(3) ExecUp (k, n,, n,) is true if and only if Execp 3 (n,, n,) is true.

Proof. (1) We will show from the left-hand side to the right-hand side. Assume that

ExecUq (0, n,, n,) is true. By definition, ExecU,;. (0=0) do (skip), ¥ (0,n,,n,) is true.
Case 1. n, = o. Then by definition, n, = o.

Case 2. n, > o. Then Fwz(Lh(w,z + 1) A Elem(w, 0,n,) A Elem(w,z,n,) A
Vw,(w, < z — Jz,z,w,w,(Elem(w,w,,z,) A Elem(w,w, + 1,2,) Az, > o A
Pair2(z,, w,, w;) A BEval,_, % (w,) A ExecUgy, (0,2,,2,)))) A (n, > o —
Jyz(Pairz2(n,,y,z) A ~BEval, 2 (y))) holds.

Case 2.1. n, > o. Since BEval,_, % (y) is true, Jyz(Pair2(n,,y,z) A
—BEval,_, w (y)) is false. Hence we do not have this case.

Case 2.2. n, = o. Wehavew = (w,,...,w,) andw, = n,,w, = n, and for all
1<i<n, ExchSkip’y(o, w;, Wiy,) is true. Then forall1 < i < n, w; = w;,,. Since,

n, = o, we have n, = o. It contradicts the assumption.

78 Chapter 5. Soundness and Completeness

Therefore, n, = n, = o.

The opposite direction can be shown directly by definition.

(2) Proved by induction on (k, P). We will consider the cases of k.
Case1.k = o.

Here only important case is when P is R;. Because, induction hypothesis proves

other cases in a similar way to those in Case 2.
Case 1.1. PisR,.

By definition, ExecUp (k,n,,n,) is n, = n, = o. By Proposition 4.1.10 (2),
ExecUpw 3 (0, 1y, 1,) is ExecUgq 3 (0, n,, n,). By (1), they are equivalent.

Case2. k =k, +1
Case 2.1. Pis atomic.
Pis P®), by definition.

Since ExecUp + (k, n,,n,) does not depend on k, ExecUp 3 (k, n,, 1,) is the same

as EXeCUP(k)77(O, n,n,).
Case 2.2. Pisif (b) then (P,)else (P,).

Suppose we have some x and y such that Pair2(n,, x, y) is true. ExecUp 3 (k, n,, 1,)
is equivalent to ExecUp w(k,n,n,) when BEval,»(x) is true and
ExecUp, 2 (k, n,,n,) when —BEval, 7 () is true. By induction hypothesis, it is equiv-
alent to ExchPSk)?(o, n,,n,) when BEval, 7 (x) is true and ExchP§k>77(o, n,n,)

when —BEval, + (x) is true. Hence it is equivalent to ExecUpw 7 (o,n,,n,).
Case 2.3. Pis P;; P,.

ExecUp » (k,n,,n,) is true if and only if ExecUp +(k,n,,n,) is true and
ExecUp, + (k, ny, n,) is true for some n,. By induction hypothesis, it equivalent to the
fact that ExchPSk) = (o,n,,n,) is true and Exchpgk) = (0, ny, n,) is true. Therefore, it

is equivalent to ExecUpw (0, n,, 1,).

5.2 Expressiveness 79

Case 2.4. Pis while (b) do (P,).

ExecUp 3 (k, n,, n,) is true if and only if ExecUp,_ (k, m;, m;y,) is true forall 1 <
i < lforsome |, where m, = n, and m; = n, by definition. By induction hypothesis, it
is equivalent to ExecU,w — (0, m;, miy,) for all such i. Therefore, ExecUp 3 (k, n,, 1,)

is true if and only if ExecUp 3 (0, 1, 1,) is true.
Case 2.5. PisR,.

By definition ExecUp » (k, n,, n,) is ExecUg, % (k,, n,,n,). By induction hypoth-
esis, it is equivalent to ExchQ(kl) —(0,my,n,). Since R,(k) = R,'[Q(’“;] = Q‘-(k‘) by
definition, ExchRl@j (o,n,,n,)is EXECUQ‘(kl)77(O7 n,n,).

Therefore, ExecUp (k, n,, n,) is equivalent to ExecU, = (0,n,,n,).

(3) From the left-hand side to the right-hand side. Assume the left-hand side. By

(2) , EXCCUP(k)77 (o, n, nz) is true. Hence Execp 7 (nl, nz) is true.

From the right-hand side to the left-hand side. Assume the right-hand side. Then
ExchP(@j(m, n,,n,) is true for some m. It is the same as ExchP(@j(o, n,n,).

Therefore, by (2), ExecUp 3 (k, n,, n,) is true. O

5.2.3 REPRESENTATION LEMMA FOR ASSERTIONS

The next lemma shows that the pure formulas EEval, 3 (n, k), BEval, +(n),
HEvaly (m) and Eval, 3 (n, m) actually have the meaning we explained above. The

next lemma can be proved in the same way as [19].

Lemma s.2.7 (Representation of Assertions) (1) EEval, - (n, k) is true if and only
if 3s(Storecode (n,s) A [e]s = k) holds.

(2) BEvaly (n) is true if and only if 3s(Storecode (n, s) A [A]; = True) holds.
(3) If Heapcode(m, h) holds then [HEvaly(m)]; = [A] s) also holds.

(4) Evaly » (n, m) is true if and only if Ish(Storecode+ (n,s) A\ Heapcode(m, h) A
[A] 5y = True) holds.

80 Chapter 5. Soundness and Completeness

Proof. (1) This is similarly proved to (2).

(2) The left-hand side is equivalent to Vs([[ﬂ?(Storey(n) ANA)]s = True).
It is equivalent to Js([Storew(n) A A];, = True). Hence it is equivalent to
Js([Storew (n)]; = True A [A]; = True). Since [Storew(n)], = True is equiv-

alent to Storecode+ (n, s), we have the claim.

(3) By induction on A, we will show that Vmh(Heapcode(m,h) —
([HEvaly(m)]; = True < [A] (s = True)) holds. Assume that Heapcode(m, h)
holds. We will show that [HEval,(m)]; = True <« [[A]](s,h) = True holds. We

consider cases according to A.
Case 1. A is a pure formula. We have HEval,(m) = A and the claim holds.

Case 2. A = emp. By definition HEval,(m) = —3JxyLookup(m, x,y). By defi-
nition, [emp] () = True if and only if Dom(h) = (. Dom(h) = 0 if and only if

—JxyLookup(m, x, y) is true. Hence we have the claim.

Case 3. A = ¢, > e,. Letk; be [e;];. All of [HEvaly(m)]; = True, k, > o A
Vay(Lookup(m, x,y) <> x = k, ANy = k,), h = Ok, := k,],and [A](; y = True are

equivalent. Hence the claim holds.

Case4. A=A, xA,.

From the left-hand side to the right-hand side. Assume
[HEvaly(m)]; = True. We will show [A] = True. We have
[Separate(m, y,,y,) A HEvaly (y,) A HEvaly, (y,)spp:=m, yoi=m,) = True for

some m,, m,. Then [HEvaly, (m;)]; = True. We have h; such that Heapcode(m;, h;)
holds. Then h = h, + h,. By induction hypothesis with [HEvaly, (m;)]; = True, we
have [A;]|;5) = True. Hence [A] ;) = True.

From the right-hand side to the left-hand side. Assume [A] ;) = True. We will
show [HEvaly(m)]; = True. There are h,, h, such that h = h, + h, and [A]] (5 =
True. We have m,, m, such that Heapcode(m;, h;) holds. Then Separate(m, m,, m,)
is true. By induction hypothesis for A;, we have [HEvaly, (m;)]; = True. Hence
[HEvaly(m)]; = True holds by taking y, = m, and y, = m,.

5.2 Expressiveness 81

Cases. A=A, =« A,.

From the left-hand side to the right-hand side. Assume [HEvaly(m)], =
True. We will show [A], = True. Assume [A];n) = True and
h + h, exists. We will show [[Az]](S,hHH) = True. We have m,, m, such that
Heapcode(m,, h,) and Heapcode(m,, h + h,) hold. By induction hypothesis for 4,
we have [HEvaly, (m,)]; = True. We also have Separate(m,, m, m,) is true. From the
assumption, we have [HEvaly, (m,)], = True. By induction hypothesis for A,, we

have [A,] (shi+h) = True.

From the right-hand side to the left-hand side. Assume [A]in =
True. We will show [HEvaly(m)], = True. Fix m,,m, and assume
[HEvaly (m,) A Separate(m,, m,m,)]; = True. We will show [HEvaly (m,)], =
True. We have h,, h, such that Heapcode(m,, h,) and Heapcode(m,, h,) hold. Then
h, = h + h,. By induction hypothesis for A,, we have [[Al]](S,hZ) = True. From the
assumption, we have [[Az]](s,hl) = True. By induction hypothesis for A,, we have
[HEvaly, (m,)]s = True.

CasesA = —A,, A, N\A,,A,\VA,, A, —A,, VxA,, 3xA, are proved straightforwardly
by using induction hypothesis.

(4) The righthand side is equivalent to Jh(Heapcode(m,h) A
Js(Storecodew (n,s) A [A]n = True)). Since [A]n = [HEvaly(m)];
under Heapcode(m,h) by (3), it is equivalent to Jh(Heapcode(m,h) A
Jds(Storecodey (n,s) A [HEvaly(m)], = True)). It is equivalent to
Jds(IsHeap(m) A Storecode(n,s) A [HEvaly(m)], = True). It can
be shown from (2) that BEvalygy,(m)z (1) = True if and only if
Js(Storecode (n,s) A [HEvaly(m)]; = True) holds. Hence it is equiva-
lent to IsHeap(m) A BEvalggy,(m),w(n). By definition, it is equivalent to
37(ISHeap(m) A Store(n) A HEvaly(m)), which is the left-hand side by the
definition of Eval, ». O

82 Chapter 5. Soundness and Completeness

5.2.4 REPRESENTATION LEMMA FOR PROGRAMS

The next lemma shows that the pure formula ExecUp (k, n,, n,) actually have the

meaning we explained above.

Lemma §.2.8 (Representation of Programs) (1) If ExecUp (k, n,, n,) is true, then
for allr, such that Result- (n,, r,), we have r, such that Result+ (n,, r,) and [[P(k)]] ~(r,) >

rs.

(2) If [PP]~(r.) > r, Resultz(n,r), and Resultz(n,,r,) hold, then
ExecUp 3 (k, n,, n,) is true.

Proof. (1) We will prove it by induction on (k, P). We will consider the cases of P.
Case 1. Pisx :=e.

Assume that ExecU,._, (k, n,, n,) is true and , is given. If n, = o, thenn, = o
and r, = abort, and by taking r, to be abort we have r, € [(x := ¢)®](r,). As-
sume n, > o. Then Pair2(n,, y,, z,), EEval, % (y,, w), ChangeStore77x(y17 w,y,) and
Pair2(n,, y,, z,) are true for some values for y,,y,, z,, w. Now we have s, h such that
r, = (s, h). Let n be the value of w. Letr, = (s[x := n], h). Then we have [e], = n.
Therefore Results (n,,7,) and r, € [(x := ¢)®]~(r,).

Case 2. PisP,; P,.

Assume that ExecUy,.p, 7 (k,n,,n,) is true and r, is given. We have z such that
ExecUp, +(k, n,,z) A ExecUp, 3 (k, z, n,) is true. By induction hypothesis for P,, we
have r, such that Result(z,r,) and r, € [P%¥]~(r,) hold. By induction hypoth-
esis for P,, we have r, such that Result (n,,r,) and r, € [P¥]~(r,). Therefore
r, € [(PsP) O] (r).

Case 3. Pisif (b) then (P,) else (P,).

Assume that ExecUi¢ (4 then (p,) else (,), (k,n,,n,) is true and r, is given. If n, =
o, then n, = o and r, = abort, and by taking r, to be abort we have
[(if (b) then (P,) else (P,))®]~(r,) > r,. Assume n, > o. We have x,y such that
Pair2(n,, x,y) is true. Let r, = (s, h). Then Storecode (x, s) holds.

5.2 Expressiveness 83

Case 3.1. [b]y = True. By Lemma s5.2.7 (2), BEval,3(x) is
true. Then ExecUp w(k,n,,n,) is true. By induction hypothesis, we
have r, such that Resulty(n,,r,) and [P®]~(r,) > r. By definition,
[(if (b) then (P,) else (P,))®]~(r,) > r,.

Case 3.2. [b]; = False. In the same way as above, we can show this case.
Case 4. Pis while (b) do (P,).

Assume that ExecUynie (5) do (p,), % (k,n,,n,) is true and r, is given. If n, =

o, then n, = o and r, = abort, and by taking r, to be abort we have
[(while (b) do (P,))®]~(r,) > r,. Assumen, > o. Let y,z be such that
Pair2(n,, y,,z,) is true. We have w = (w,,...,w,), w, = n,w, = n, and

ExecUp, + (k, w;, wiy,) forallo < i < n. We also have either w, = oorw, > o
and the fact that BEval, 2 (y,) is true where Pair2(n,, y,, z,) is true for some y,, z,.
By repeatedly using induction hypothesis for P,, we have r/, . .., 7, such that?, = r,,
Result (w;, /) forallo < i < n,and [P®]~(¥)) > 7, forallo < i < n. By Lemma
5.2.7 (2), we also have either r, = abort or [b],, = False and r, # abort where
fy = (54, h,). Letr, = 7. By Proposition 4.2.4, [while (b) do (P®)]~(r,) > r..
Then by definition, [(while (b) do (P,))®]~(r,) > r,.

Case s. Pis skip.
Its proof is immediate.
Case 6. Pisx := cons(el, ez).

Assume that ExecU,.—cons(e, c,), % (k,n,,n,) is true and r, is given. If n, = o,
then n, = o and r, = abort, and by taking r, to be abort we have r, €
[(x := cons(e,, e,))®]~(r,). Assume n, > o. We have s, h such that r, = (s, h).
Let n be the value of w in the definition of ExecU,._cons(e, c.), (k,n,,n,). Letr, =
(sl :=n],h[n:= [e,]s,n+1:=[e,]s]). Thenn,n + 1 ¢ Dom(h). Therefore
r, € [(x := cons(e,, e,))®](r,). We also have Result (n,,7,).

Case 7. Pisx := [e].

Assume that ExecU,._, % (k, n,, n,) is true and r, is given. If n, = o, thenn, = o

84 Chapter 5. Soundness and Completeness

and r, = abort, and by taking r, to be abort we have r, € [x := [e]] (r,). Assume
n, > o. We have s, h such that r, = (s, h). Take r, such that either r, = (s[x :=
h([e]s)], h) and [e], € Dom(h) orr, = abort and [e,]; ¢ Dom(h). Thenr, €
[:= [¢e])®]~(r,). We also have Result (n,, r,).

Case 8. Pis [e,| 1= e,.

Assume that ExecUy, j.—,, w (k,n,,n,) is true and r, is given. If n, = o, thenn, = o
and r, = abort, and by taking r, to be abort we have r, € [[e,] := e,] (r,). Assume
n, > o. We have s, h such that r, = (s, h). Take r, such that either [¢,], € Dom(h)
andr, = (s,h[fe.]s := [e.]s]) or [e]s & Dom(h) and r, = abort. Thenr, €
[([e.] := &)®]~(r,). We also have Result (n,, r,).

Case 9. Pis dispose(e).

Assume that Exchdispose(e)y(k, n,,n,) is true and r, is given. If n, = o, then
n, = oandr, = abort, and by taking r, to be abort we have r, € [dispose(e)] ™ (r,).
Assume n, > o. We have s, h such that r, = (s,h). Take r, such that either
r, = (s, h|pom(n)—{[q,}) and [e]; € Dom(h) orr, = abort and [e,]; & Dom(h).
Thenr, € [(dispose(e))®]~(r,). We also have Results (n,, r,).

Case 10. Pis R;. We consider cases according to k.
Case 10.1. k = o.

Assume ExecUp, - (0, m,,n,) is true and r, is given. By definition, n, = n, = oand

r, = abort. Let r, be abort. Then the claim holds.
Case 10.2. k = k' + 1.

By definition ExecUy (k' + 1,n,,n,) = ExecUq »(kK',n,,n,) and Q,(k/) =
R¥, By induction hypothesis for K, the claim holds for ExecUq, + (K, n,,n,)
and [[Q,-(kl)]]_(rl) S r,. Hence the claim holds for ExecUy, % (k" + 1,n,,n,) and

R () 5 m
(2) We will prove it by induction on (k, P). We will consider the cases of P.

Case1.Pisx :=e.

5.2 Expressiveness 85

Assume the conditions. We will show that ExecU,._, % (k, n,,n,) is true. If r, =
abort, then r, = abort and we have n, = n, = o, and hence ExecU,._, % (k, n,,n,)
is true. Now assume r, = (s, h). We have some n,, n, such that Result+ (n,,r,) and
Result (n,, r,) hold. Thenn, > o. We have y,, z, such that Pair2(n,, y,, z,) is true and
Storecode+ (y,, s) and Heapcode(z,, h) hold. We also have EEval, 2 (y,, n).

Thenr, = (s,,h) wheres, = (s[x := n]). Then we have y,,z, such that
Storecode(y,, s,) and Heapcode(z,, h) hold. Then ChangeStore— (y,,n,y,) is true
and z, = z,. Then by definition, ExecU,._, % (k, n,, n,) is true.

Case2.PisP; P,.

Assume the conditions. We will show that ExecUp + (k, n,, n,) is true. We have
[(P; P,)®]~(r,) > r,. By definition, we have r, such that r, € [P®]~(r,) and r, €
[P]~(r,). Suppose z is such that Result (z, 7,) holds. By induction hypothesis for
P,, ExecUp, »(k, n,, z) is true. By induction hypothesis for P,, ExecUp, 3 (k, z, n,) is
true. Hence by definition ExecUp + (k, n,, 1,) is true.

Case 3. Pisif (b) then (P,) else (P,).

Assume the conditions. We will show that ExecUp 3 (k, n,, 1,) is true. We have
[[P(k)]]_(rl) 3 r,. If r, = abort, then r, = abort and we have n, = n, = o, and hence
Execp 7 (k, n,,n,) is true. Assume r, = (s, h). Thenn, > o. We have y,,z, such that

Pair2(n,, y,,z,) is true.

Case 3.1. BEval, (y,) is true. By Lemma 5.2.7 (2), Storecodew(y,,s) and
[6]; = True hold. Then by definition, [P*®)]~(r,) > r,. By induction hypothesis,
ExecUp, +(k, n,, n,) is true. Then by definition, ExecUp (k, n,, n,) is true.

Case 3.2. BEval, 7 (,) is false. In the same way as above we can show the claim.
Case 4. Pis while (b) do (P,).

Assume the conditions. We have [(while (b)(P,))®]~(r,) > r. If
r, = abort, then r, = abort and we have n, = #n, = o. Hence
ExecUynite (b) do (p,), % (k, 111, 1,) is true. Now assume r, = (s, h). By Proposition 4.2.4,
we have (s,,1,), . . ., (Sp—i, Bm—r), rmsuch that (s, h) = (s, h,),foralli=1,... . m—

86 Chapter 5. Soundness and Completeness

2, [[Pl(")]]_((si,hi)) S (Sigay hiva), [b]s = True, [[Pl(k)]]_((sm_l,hm_l)) S r,, either

[b],,_. = True and r,, = abortorr,, = (s, h,,) and [b],, = False for some s,y h,,.

Then we have z,, . . ., z, such that foralli = 1,...,m — 1, Resultz(z;, (s;, h;))
holds and either z,, = o or Result3 (2, (s, hn)) holds. Thenz, = n, and z,, = n,.
We also have y,, ...,y ¥., ...,y such that foralli = 1,...,m — 1, BEval, 3 ()
is true where Pair2(z;, y;,y!) is true, and either z,, = o or Pair2(z,, y,., y,,) is true
and BEval, % (y,,) is false. Foralli = 1,...,m — 1, by induction hypothesis,
ExecUp, % (k, 2, zi1,) is true. Then by definition, ExecUygite (4) do (p,), % (K, 11, 71,) is

true.
Case 5. Pis skip.
Its proof is immediate.
Case 6. Pisx := cons(e,, ¢,).

Assume the conditions. We will show that ExeCUx::cons(el,ez),7(ka n,, n,) is true.
We have r, € [(x := cons(e,, e,))®]~(r,). Ifr, = abort, then r, = abort and
we have n, = n, = o, and hence Exchx::C(ms(e”ez)j(k, n,,n,) is true. Now as-
sume r, = (s,h). Thenr, = (s,,h,) wheres, = (s[x := n]), h, = hjn =
le.Js;n + 1 := [e.]s] and n,n + 1 & Dom(h). Thenn, > o. We also have y,, z,,,, z,
such that Pair2(n,,y,,z,) and Pair2(n,,y,,z,) are true. Then Storecode(y,,s),
Heapcode(z,,), Storecode+ (y,, s,) and Heapcode(z,, h,) hold. Let w = n, w, =
le.]s and w, = [e,];. Then by Lemma 5.2.7 (1), EEval, & (y,, w,), EEval, = (y,, w,)
and New2(w, z,) are true. Then ChangeStore?x(yl, w,y,), Vay(x # wAx # w+
1—(Lookup(z,, x,y) <> Lookup(z,, x,))) and Lookup(z,, w, w,) ALookup(z,, w+

1,w,) are true. Then by definition, ExecU,._ cong(e, .), % (k; 71, 1) is true.
Case 7. Pisx := [e].

Assume the conditions. We will show that ExecU,._, % (k, n,, n,) is true. We have
r, € [(x:= [e]))®]~(r,). If r, = abort, then r, = abort and we have n, = n, = o,
and hence Exchx::[eLy(k, n,,n,) is true. Now assume r, = (s, h). Thenn, > o. We
have y,, z, such that Pair2(n,, y,, z,) is true and Storecode+ (y,, s) and Heapcode(z,, h)
hold. Let w be [e].

5.2 Expressiveness 87

Assume that Domain(w, z,) is true. By Lemma 5.2.7 (1), EEval, & (y,, w) is true.
Then [e], € Dom(h). Thenr, = (s,,h,) where h(w) = w,, s, = (s[x := w,])
and h, = h. Then we have y, such that Pair2(n,, y,, z,) is true and Storecode (., s,)
and Heapcode(z,, h,) hold. Then Lookup(z,, w,w,) and ChangeStore (3, Wi, ¥)
are true. Now assume that “Domain(w, z,) is true. Then [e]; ¢ Dom(h). Then
r, = abort and hence n, = o. Then by definition, Exchx::Mj(k, n,,n,) is true in

both cases.

Case 8. Pis [e,| :=e,.

haver, € [([e] := e,)®]~(r,). If r, = abort, then r, = abort and we have n, =

Assume the conditions. We will show that ExecUy, .., % (k, n,,n,) is true. We

n, = o, and hence EXGCU[Q]::EZ,?(k, n,,n,) is true. Now assume r, = (s, h). Then
n, > o. We have y,, z, such that Pair2(n,, y,, z,) is true and Storecode (y,,s) and
Heapcode(z,, h) hold. Let w be [e,]; and w, be [e,];. Assume that Domain(w, z,) is
true. By Lemma 5.2.7 (1), EEval, - (y,,w) and EEval, % (y,,w,) are true. Then we
have w € Dom(h). Thenr, = (s,, h,) wheres, = sand h, = h[w := w,]. Then we
have z, such that Pair2(n,, y,, z,) is true and Storecode (y,, s,) and Heapcode(z,, h,)
hold. Then ChangeHeap(z,, w, w,, z,) is true. Now assume that “Domain(w, z,) is
true. Then [e]; ¢ Dom(h). Thenr, = abort and hence n, = o. Then by definition,

ExecUl,|.—, w (k, n,, n,) is true in both cases.
Case 9. Pis dispose(e).

Assume the conditions. We will show that ExecUgipose (e), 7 (k,n,,n,) is true. We
have r, € [(dispose(e))®]~(r,). Ifr, = abort, then r, = abort and we have
n, = n, = o, and hence ExeCUdispose(e),7(k7 n,,n,) is true. Now assume r, = (s, h).
Then n, > o. We have y,, z, such that Pair2(n,, y,, z,) is true and Storecode+ (y,,)
and Heapcode(z,, h) hold. Let w be [e],. By Lemma 5.2.7 (1), EEval, % (y,, w) is
true. Assume that Domain(w, z,) is true. Then we have [e], € Dom(h). Then
r, = (s,,h,) wheres, = sand h, = h|D0m(h),{[[e]]s}. Then we have z, such
that Pair2(n,, y,, z,) is true and Storecode+ (y,, s,) and Heapcode(z,, h,) hold. Then
Vxy(Lookup(z,,%,y) A x # w <> Lookup(z,,x,y)) is true. Now assume that
—Domain(w, z,) is true. Then [e], ¢ Dom(h). Then r, = abort and hence n, = o.

Then by definition, ExecUgigpose (), % (K, 71:, 71,) is true in both cases.

88 Chapter 5. Soundness and Completeness

Case 10. Pis R;. We consider cases according to k.
Case 10.1. k = o.

Assume that the conditions. By Proposition 4.2.5 [[Ri(o)]]_(abort) S abort and
for all s, h, [[R,-(o)]]*((s, h)) = (. Hence we have r, = r, = abort. Since
Result (n,, r,) and Result+ (n,, r,) hold, by definition n, = n, = o. Then by def-

inition ExecUyg, w (o, n, nz) is true.
Case10.2. k=K +1.

This case is proved in a similar way to thatin (1). O

The next lemma shows that the pure formula Execp (n,,n,) actually have the

meaning we explained above.

Lemma s.2.9 (1) If Execp 3 (n,, n,) is true, then for all r, such that Result (n,, ,), we
have r, such that Resultz (n,, r,) and [P](r,) > r,.

(2) If[P](r,) © r,, Result(n,, r,), and Result (n,, r,) hold, then Execp v (n,,n,) is

true.
Proof. (1) By using Lemma 5.2.8 (1), we can prove the claim in a similar way to (2).

(2) Assume [P](r,) > r,, Resultw(n,,r,), and Result-(n,,r,). Then we have k
such that [P%¥]~(r,) > r,. From Lemma 5.2.8 (2), ExecUp » (k, n,, n,) is true. Hence
ExecUp % (k, n,, n,) is true. O

5.2.5 WEAKEST PRECONDITION

We define the weakest precondition for a program and a postcondition. We also
define aformula Wp, A(?) and show that it is the weakest precondition of the program
P and the postcondition A.

Definition §.2.10 For a program P and an assertion A, the weakest precondition for P
and A under the standard interpretation is defined as the set { (s, h) | Vr([P]((s,h)) 2
r — r % abort A\ [A], = True) }.

5.2 Expressiveness 89

Since we have defined Exec and have shown Lemma 5.2.9 for our extended pro-
gramming language with procedure calls, we can show the existence of the assertion

of the weakest precondition in the same way as [19].

Definition §.2.11 We define the formula Wp, A(%) for the program P and the assertion
A. We fix some sequence x of the variables that includes EFV(P) U FV(A).

WpA(%) = Vayzw(Stores (x) A Heap(y) A Pair2(z, %, y) A Execp 3 (z, w)—
w > o A Jy,z,(Pair2(w, y,,z,) A Evaly 3 (5., 2.))).

Wp. A(?) means the weakest precondition for P and A. That is, Wp, A(?) gives the
weakest assertion W such that {W}P{A} is true. Note that all the free variables in
W 4(%) are % and they appear only in Store (x).

The next lemma says that Wp 4 (7) indeed describes the weakest precondition for
Pand A.

Lemma 5.2.12 (1) {WRA(?)}P{A} is true.

(2) If [P]((s,h)) > r impliesr # abort and [A], = True for all r, then
[[WRA(?)]](S,;I) = True.

Proof. (1) Assume [[WP,A(7)]](SJI) = True and [P]((s,h)) > r. We will show
r # abort and [A], = True. We have n,,n,,n and m such that Result3 (n,, (s, h))
and Resultz (n,,r) hold and Pair2(n,, n,m) is true. We have [Storew (n)] (4 and
[Heap(m)] s) are true and Storecode (1, s) and Heapcode(m, h) hold. By Lemma

5.2.9 (2), Execp 2 (n,, n,) is true.

By letting x = n,y = m,z = n,,w = n, in the definition of WP,A(7),
from [[WP,A(7)]](5,;1) = True, we have n, > o A Jyz(Pair2(n,,y,2z,) A
Evaly % (y.,z,)). Byn, > o, r # abort. Letr = (s,h,). We have n',m’
such that Pair2(n,,n’,m’) and Eval, 2 (n’, m’) are true. By Lemma 5.2.7 (4), we
have s, b, such that Storecode (n', s]) A Heapcode(m', h;) A [A] (s i) holds. Since
Storecode (n', s,) and Heapcode(m', h,) hold, we have s’ =+ s, and b/ = h,. Hence
[A] (s.,h) = True, thatis, [A], = True.

90 Chapter 5. Soundness and Completeness

(2) Assume that for all r, [P]((s, h)) S rimplies r # abort A [A], = True. We
will show [[WP,A(7)]](5,h) = True. Fix n, m, n,, n, and assume Store (n), Heap(m),
Pair2(n,, n, m), and Execp w (n,, n,) are true at (s, h). We will show that n, > o and

Jy.z,(Pair2(n,, y,, z,) A Bvaly % (3., 2,)) is true.

We have Result (n,, (s, h)). By Lemma 5.2.9 (1) with Execp 3 (n,, n,), we have
r, such that [P]((s,h)) > r, and Resultw(n,,r,). By the assumption, [A], =
True. Let r, be (s,,h,). We have n’, m’ such that Pair2(n,,n’, m’) is true. Then
Storecode (', s,) and Heapcode(m', h,) hold. Since the right-hand side of Lemma
5.2.7 (4) holds by lettings = s, and h = h,, we have Eval, (', m’"). Hence
Jy.z,(Pair2(n,, y,,z,) A Evaly % (3., 2,)) is true by taking y, = n’ and z, = m'.

Therefore, Vayzw'(Storew (x) A Heap(y) A Pair2(z,x,y) A Execpz(z,w') —
w >0 A Jyz(Paira(w',y,,2,) A Evaly 2(3,2))) is true at (s,h), that is,
[[WP,A(Y)]](S,;I) = True. O

We present the main theorem about expressiveness.

Theorem s.2.13 (Expressiveness) Our assertion language is expressive for our pro-
gramming language under the standard interpretation. Namely for every program P and
assertion A, there is a formula W such that [W]) is true if and only if (s, h) is in the

weakest precondition for P and A under the standard interpretation.

Proof. Since Lemma 5.2.12 (1) and (2) show Wp, A(?) defines the weakest precon-
dition for P and A under the standard interpretation, the weakest precondition is de-

finable in our language. O

5.3 Completeness 91

5.3 COMPLETENESS

This section is the most important section of this paper. It shows that our system
is complete. Although the proof technique here is inspired from [3], we introduce
some important concepts to show the completeness of our system. We also define
the strongest postcondition in the same way as the weakest precondition in order to

follow a similar story of proofs in [3].

For the form of T {A}P{B} where I is empty, we will write - {A}P{B}.

§.3.1 STRONGEST POSTCONDITION

{A}P{True} is true when P does not abort at a state for which A is true. We call
{A}P{True} the abort-free condition for A and P.

The set S of states is called the strongest postcondition for A and P if

(1) Forallr,?, [A], = True and [P](r) > ¥ implies ¥’ # abortand ¥ € §.

(2) Forall S, wehave S C S ifforallr, 7, [A], = True and [P](r) > # implies
Y = abortand? € §'.

Note that the strongest postcondition S for A and P exists if P does not abort at any
state that satisfies A. Since we have defined Exec and have shown Lemma 5.2.9 for
our extended programming language with procedure calls, we can define the assertion

that describes the strongest postcondition of A and P.

Definition 5.3.1 We define the pure formula S A7p(7) for the assertion A and the pro-
gram P. We fix some sequence x of the variables that includes EFV(P) U FV(A).

SA,p(Y) = Jxyzw(Evaly w (x,y) A Paira(z, x,y) A Execp 3 (z, w) A
Jy,z,(Pair2(w, y,,z,) A Storez (y,) A\ Heap(z,))).

Sa, p(7) describes the strongest postcondition for A and P. Thatis, S4, p(7) gives
the strongest assertion B such that {A}P{B} is true, under the condition that P does
not abort at any state that satisfies A. Note that all the free variablesin S, p(7) are X

92 Chapter 5. Soundness and Completeness

and they appear only in Store (x).
Lemma s5.3.2 (1) If {A}P{True} is true then {A}P{SA’p(Y)} is true.

(2) If [[SAJ)(?)]](S/’W) is true then there exists s, h such that [A]() is true and

[P]((s;h)) = (s',).

Proof. (1) Assume that {A}P{True} is true. Assume [A]l4 = True. Then
[PI((s,)) # abort. Assume [P]((s,h)) > (s,K). Let ¥ = xo,...,x, Let
n, be (s(x,),...,s(x,)) and m, be ((I,, h(L,)), ..., (., h(l,))) where Dom(h) =
{l; | i < m}. Letn,be (s(x,),...,5(x,)), mybe (L,KW(I)),....(L, H(I.,))
where Dom(h') = {I! | i < m'}. Letp, be (n,,m,) + 1and p, be (n,,m,) +
1. Then Pair2(p,, n,,m,) and Pair2(p,, n,, m,) are true. Then Storecodes (n,,s),
Heapcode(m,, h), Storecodew(n,,s’) and Heapcode(m,,h’) hold. Then we
have Result+ (p,, (s, h)) and Resultz(p,, (s',h’)). Then Jsh(Storecode (n,,s) A
Heapcode(m,, h) A [A]n = True) holds. By Lemma 5.2.7 (4), Evaly » (n,, m,)
is true. By Lemma 5.2.9 (2), Execp % (p,,p,) is true. By definition, we also
have [Store(n,) A Heap(m,)] (s) is true. By taking y,z,w,w,,y,,2, to be
Ny, My, Pry Pay ey My, [Fyzww,y,z, (Evaly 2 (v, 2) A Pair2(w, y,z) A Execp 2 (w, w,) A
Paira(w,, y,,2,) A Storez(y,) A Heap(z,))](w) is true. Then by definition,
[[SA’p(7)]](s/7;,/) = True. Therefore, {A}P{S4 p(X)} is true.

(2) Assume that [S4 p(7)]] (i) is true. By definition, we have n,, m,, p,, p,, n,, m,
such that Evaly z(n,,m,), Paira(p,,n,m,), Execpw(p,,p,), Pairz(p,,n,, m,),
[Storew (n,)](v#y = True and [Heap(m,)](¢)y = True hold. Then we have
Storecode (n,, s") and Heapcode(m,, h'). By Lemma 5.2.7 (4) with Eval, 2 (n,, m,),
we have s,, h such that Storecode (n,, s,), Heapcode(m,, h), and [A] (s,h) = True.
Then we have Resultw (p,, (s,, h)). Since we have Execp 7 (p,, p.), by Lemma 5.2.9
(1), we have r, such that Result(p,,r,) and [P]((s,, 1)) > r,. Since p, > o, we
have r, # abort. Take s,, i’ such thatr, = (s,, h’). We definestobe [s,, s/, 7] Since
s =grv(p) S, by Lemma 4.2.16 (2), [P]((s, h)) 2 ([s, s, EFV(P)], ¥').

We will show s’ = [s,, s, EFV(P)]. We have s, = s’ since Storecode(n,, s,) and
Storecode(n,, s’). Hence s’ =gpv(p) S.- By the definition of s, we have s =@ S

Sinces = s, by the definition of s, s, =ggy(p)c s, by Lemma 4.2.16 (3),ands, == ¢/,

5.3 Completeness 93

we have s =% _gpy(p) s’ Hence s =gpy(p): s'. Therefores' = [s,, s, EFV(P)].
Hence [P]((s,h)) > (s, h'). We also have [A] ;) is true since s = s,. O

Remark. The following is shown by Lemma 5.3.2 (2): if {A}{P}{B} is true, then
SA,p(7) — Bis true.

§5.3.2 AUXILIARY LEMMAS

Lemma s5.3.3 A — Jx(Heap(x) A\ HEvaly(x)) is true.

Proof. Assume [A](;) = True. Let mbe ((ko, L), ..., (ks 1,)) where h(k;) = I;
fori = o,...,nand Dom(h) = {k; | i = o,...,n}ando < k, < ... < k,.
Then Heapcode(m, h) holds. Then [Heap(m)](, = True. Then by Lemma 5.2.7
(3), [HEvaly(m)](n = True. By taking x to be m, 3x(Heap(x) A HEval,(x)) is
true. U

Lemma s5.3.4 If {A}P{B} istrue, then A — WP,B(7) is true.
Proof. Assume [A] ;) = True. We will show [[WRB(?)]](SJ,) = True.

Assume [P]((s,h)) > r. Since {A}P{B} is true, r # abort and [B], = True.
Hence we have [P]((s,h)) > rimplies r # abort and [B], = True. By Lemma
5.2.12 (2), we have [[WP,B(7)]](5,h) = True.

Hence A — WRB(?) is true. O
The following lemma (1) shows that the inference rule (RULE 10: SUBSTITU-
TION RULETI) in [3] is derivable in our system.

Lemma s.3.5 (1) IfT - {A}P{B} is provable, W and W are mutually exclusive, and
W, W & EFV(P), thenT - {A[W := W|}P{B[W := W]} is provable.

(2) IfT + {A}P{B} istrue, U and W are mutually exclusive, and W, W ¢ EFV(P),
thenT F {A[W = W]}P{B[W = W]} is true.

94 Chapter 5. Soundness and Completeness

Proof. (1) Assume I' + {A}P{B}, W and W are mutually exclusive, and
W, W ¢ EFV(P). Then by (INnv-Cony), T F {A A W = W}P{B A
U = 7} We have BAW =W — B[7 = 7] Then by (ConseQ),
I - {AA W =W}P{B[W :=W]}. Thenby (Exists), I + {3UW(A A
U = W)}P{B[W := W]}. Wehave A[«/ := W] — 3W(AA W = W). Thenby
(ConseQ), T - {A[W := W]}P{B[W = W]}.

(2) Assume I' = {A}P{B} is true, W and W are mutually exclusive, and wU, W g
EFV(P). Let A, be A[W := W] and B, be B[W := W].

Assume [A,], 5) = Trueand r, € [P]((s,, h,)). We will show r, # abort and
[B.],, = True.

Lets bes,[w := s,(W)]. Then [A] (¢,n) = True. Since s, =gpy(p) s, by Lemma
4.2.16 (1), we have r, # abort. Letr, be (s,, h,) and s. be [s,, s/, EFV(P)]. By Lemma
4.2.16 (2), we have (s, h,) € [P]((s!, h,)). Then [B] s,y = True.

We will show s. = 5,[:= 5,(W)]. Sinces’ = 5,[W := s,(W)] by the defi-
nition and s,[7@ = s,(W)] =EEFV(P) |7 = s,(W) by w & EFV(P), we have
S| =EEV(P): 52[7 = 52(7)] By combining it with 52[7 = 52(7)] = [52,52[7 =
s,(W)],EFV(P)| by ¥ & EFV(P), we have s,[W := s5,(W)] = [s,, s/, EFV(P)].
Hences,[@ := s,(W)] = s’ by the definition of .

Hence [[B] (5:[7=, (W) ,h) = 1rue. Therefore [[Bl]](sz,hz) = True. O

Let Vbe [J”* EFV(R;). We next take the sequence of mutually distinct variables
7 =9, ...,yisuchthat{y,,...,y} = V. Thenwe choose the sequence of variables
Z =z,...,z, 2 = z.,...,z], and variable x;, x} such that 7 and they are all
mutually distinct. From now, we assume that for given assertions and programs that
we will discuss, we fix some sequence X ofvariables that contains V, the free variables
of the assertions, the extended free variables of the programs, and z, «,. Finally we
use this % for construction of the weakest preconditions and the variables 7, Z, %,

for construction of the strongest postconditions.

We will explain the roles of these variables. For simplicity we sometimes write x

for the set of elements contained in the sequence X The expressiveness theorem

5.3 Completeness 95

(Theorem 5.2.13) assumed the coding of a store by using some fixed interesting vari-
ables % . The variables in Vin % are necessary to define the weakest preconditions of
procedures since procedures are defined with V. The variables Z, x), are necessary
to define the weakest preconditions of some assertions that are used in Lemma 5.3.8.
After fixing the set X of variables, we only consider assertions and programs whose
free variables and extended free variables are contained in the set ¥ — VU Z’U {«,}.
Since our choice of the set ¥ of variables is arbitrary, this works for arbitrary given
assertions and programs. By these definitions, we also have the variables 2, x;, that

are notin ¥ and are used in Definition 7.6.
The next definition plays a key role in our completeness proof.

Definition 5.3.6 We define W; as WRhTme(7), G, as 7 =ZA Heap(x;,) A W,, and
S; as SG,-,R,-(77 ?, xp,). We also define F; as { G;}R{ S, }.

Here G; has three purposes. First, the expression 7 — Z enables us to describe com-
plete information of a given store, which is inspired from [3]. Second, the expression
Heap(x;,) enables us to describe complete information of a given heap. Third, W; en-
sures abort-free execution of the program, which enables us to use the strongest post-

condition.

5.3.3 MAIN PROOFS

The following Lemma is the key lemma to prove the completeness theorem.
Lemma 5.3.7 If{A}P{B} istruethenF,, ... ,F, t {A}P{B} is provable.
Proof. We will prove it by induction on P. We will consider the cases of P.

Case 1. Pisx :=e.

We will show that A— B[x := e] is true. Assume [A]; 5y = True. Letnbe [e],. We
have [x := €] ((s,h)) = {(s,, h)} where s, = s[x := n]. Since {A}x := e{B} is true,
[B](s,,ny = True. Since [B](, » = [B[x := e]] (s), we have [B[x := e|](;»y = True.
Hence A — B[x := ¢] is true.

96 Chapter 5. Soundness and Completeness

By applying the rule (CONSEQ) to the fact that A—B[x := e]istrueand - {B[x :=
e| }a := e{B} from the axiom (AssiIGNMENT), we have - {A}x := ¢{B}. Therefore,
E,...,F,, F{A}x:=e{B}.

Case 2. Pisif (b) then (P,) else (P,).

Assume that {A}P{B} is true. First, we will show that {A A b}P,{B} is true. As-
sume [A A bl = True and [P,[((s,h)) > r. We have [b]; = [b]n) = True
by Lemma 5.1.3. Hence [P]((s,h)) = [P]((s,h)) > r. Thenr # abort and
[B], = True. Hence {A A b}P,{B} is true.

Similarly {A A —b}P,{B} is true.

By induction hypothesis for P, and P,, we have F,, .. ., F, .+ {A A b}P,{B} and
E,...,F,, F{AA—b}P,{B}. By the rule (IF), therefore, we have F,, .. . , F, . |-

Nproc
{A}if (b) then (P,) else (P,){B}.
Case 3. Pis while (b) do (P,).
Assume that {A}P{B} is true. Let C be Wp 3 (7)

We will show that {C A b}P,{C} is true. Assume [CAb]() = True and
[P]((s,h)) > r. We will show r # abort and [C], = True. We have [[b],
[6] ;) = True by Lemma 5.1.3. By the definition of [P], we have [P]((s,h)) 2
[P](r). Since {C}P{B} is true by Lemma 5.2.12 (1), from [C[;) = True, we have
[P]((s,h)) # abort. Hence r # abort. Assume [P](r) > ¥. Thenr € [P]((s,h))
and we have ¥ # abort and [B], = True. By Lemma 5.2.12 (2), we have [C], =
True. Hence {C A b}P,{C} is true.

By induction hypothesis for P,, we have F,, ... ,F, = {CAb}P,{C}.

Nproc
By Lemma 5.3.4 with {A} P{B} being true, A — Cis true.

We will show that CA—b— Bis true. Assume [C A =],) = True. We will show
[B] sy = True. We have [=b]; = [—b](») = True. Hence [P[((s,h)) = {(s,h)}.
Since { C}P{B} is true by Lemma 5.2.12 (1), from [C];y = Trueand [P]((s, h)) =
{(s,h)}, we have [B] ;) = True. Hence C A =b — Bis true.

5.3 Completeness 97

SinceF,, ..., F,, = {CAb}P{C},bytherule (WHILE), we haveF,, ... ,F, I

C}P{C A —b}. Since A — Cand C A =b — B are true, by the rule (CONSEQ), we
y
haveF,,...,F, \ {A}P{B}.

Case 4. Pis P;; P,.

Assume that {A}P,; P,{B} is true. Let P be P,; P, and we can take C to be
WPZ’B(Y) by theorem 5.2.13. By Lemma 5.2.12 (1), { C}P,{B} is true.

We will show that {A}P,{C} is true. Assume [A](; 5y = Trueand [P,[((s,h)) > r.
We will show r # abort and [C], = True. Since {A}P{B} is true, [P]((s,h)) &
abort. Since [P]((s, h)) 2 [P,](r) by the definition of [P], r # abort. We will show
[C], = True. Assume [P,](r) > r,. Then [P]((s, h)) > r,. Then we have r, # abort
and [B],, = True. By Lemma 5.2.12 (2), [C], = True. Hence {A}P,{C} is true.

By induction hypothesis for P, and P,, we have F,,...,F, F {A}P{C}
and F,,...,F, F {C}P,{B}. By the rule (CompOSITION), we have therefore

Mproc

F,...,F, + {A}P,;P,{B}.

)~ Nproc
Case 5. Pisx := cons(el, ez).

Assume {A}x := cons(e,, e,){B} is true. Letx’ be such thatx’ & FV(e,, ¢,, B) and
CbeVx/((x' +— e, e,) = Blx := «]).

We will show that A — C is true. Assume [A], = True. Fix n. Let
s = s[¢' :=n]. We will show [(« > e,,e,) = B[x := &]] (v) = True. Assume
[x' — e, e.](wn) = True. Thenh, = Qn := [e,]y,n + 1 := [e,]y]. Assume that

h + h, exists. Let h, = h + h,. Now we will prove that [B[x := «]] (¢ 4,) = True.

Lets, = s[x := n]. Since [x := cons(e,, e,)]((s,h)) > (5., h,) by definition, we
have [B] 5,y = True. Since [Blx := &[] (v 5,y = [B](s,n) by« & FV(B), we have
[Blx := «]] (¢ 4,y = True. Therefore [(x’ — e,,e,) = Blx := &']] (¢ »y = True.

Hence [(x' — e,e,) =+ Blx:=«']](vy = True for all n. Hence
/

[Va/((«" = e, e,) = Blow := &’])] () = True. Hence A — Cis true.

Since - {C}x := cons(e,, e,){B} is provable by the axiom (cons) and A — C
is true, we have - {A}x := cons(e,, e,){B} by the rule (Conseq). Therefore, by

98 Chapter 5. Soundness and Completeness

(WEBAKENING) F,, ... ,F, F {A}x := cons(e,e,){B}.

) = Nproc

Case 6. Pisx := |e].

Assume that {A}x := [e]{B} is true. Letx’ & FV(e, B), and C be 3x/(e — &’ %
(e — &' = B[x :='])).

We will show A — C. Assume [A] ;) = True. We will show [C] ;) = True.

Let n be [e]. Since {A}P{B} is true, [P]((s,h)) Z abort. Hence n € Dom(h).
Let h(n) = n,. We have [P]((s,h)) = {(s;,h)} and [B](; 5y = True wheres, =
slx := n,]. Leth, = h|gn, by = h|pom(n)—{n}, and s’ = s[x" := n,]. Then h = h, + h,.

We have e — «'] (v 5,) = Truesince [e]y = [e]; = nbyx’ & FV(e).

We will show [e — &’ — Blx := &[]y 5,y = True. Assume [e > ']y =
True and h, + h] exists. We have h, = h!. Hence h{ + h, = h. From [B]» =
[Blx := «]] (¢ » byx’ & FV(B)and [B],) = True,wehave [Blx := «]] (¢ j 1) =

True. Hence [e — &’ — B[x := &']] (v ,) = True.

Combining them, we have [e = &" * (e = &’ — Bx := &'])]|(v 5y = True. Hence

[C] (s;n) = True. Hence A — Cis true.

By the axiom (Lookup), - { C}P{B} is provable. Since A — Cis true, by the rule
(Conseq), we have - {A}P{B}. Therefore, F,, ... ,F, + {A}x:= [¢]{B}.

7 = Nproc
Case 7. Pis [el] =e,.

Assume that {A}[e,] := e,{B} is true. Letx & FV(e,) and Cbe (Ix(e, — x)) *
(e, — e, = B).

We will show that A — Cis true. Assume [A](;) = True. We will show [C](;) =

True.

Letn, = [e,];. Since {A}P{B} is true, [P]((s, h)) # abort. Hence n, € Dom(h).
Leth, = |,y and hy = h|pom(n)—{n}- Now we will show [Ix(e, = x)] () = True
and [e, — e, = B](s) = True.

Let n, be h,(n,). Then [e, = [(f:=n,)) = True. Then [Fx(e, — x)](n) =

5.3 Completeness 99

True.

Assume [e, — ez]](57h4) = True. Then h, = ([[e,]; := [e.],]. By definition
[P]((s,h)) = {(s,h,)} where h, = h, + h,. Then [B]) = True. Then
[[e1 — e, —k B]] (s,h,) = True.

Hence A — Cis true.

By the axiom (MuTaTION), - {C}P{B} is provable. Since A — C is true, by the
rule (ConseQ), we have - {A}P{B}. Therefore, F,, ..., F, . F {A}[e] := e,{B}.

2= Mproc

Case 8. Pis dispose(e).
Assume that {A}dispose(e){B} is true. Letx ¢ FV(e) and Cbe (Jx(e — x)) * B.

We will show that A — Cis true. Assume [A] () = True. We will show [C]) =
True. Letn = [e],. Since {A}P{B} istrue, [P]((s, h)) # abort. Hencen € Dom(h).
Hence [P]((s,h)) = {(s,h,)} and [B] () = True where h, = h|pom()—{s}- Let
n, = h(n), h, = O[n :== n,],and s’ = s[x := n,]. We have h = h, + h,. Since [e], =
le]s = nbyx & FV(e), we have e — x] (v 5,y = True. Hence [Jx(e — x)](s) =
True. Hence [C] ;) = True. Hence A — Cis true.

By the axiom (D1srosg), - { C}P{B} is provable. Since A — Cis true, by the rule
(Conseq), we have - {A}P{B}. Therefore, F,, ..., F, 1+ {A}dispose(e){B}.

7 = Nproc
Case 9. PisR;.

Assume that {A}R;{B} is true. We have F,, ..., F, F F;. Note that the variables
in 7,xh,FV(A) U FV(B) U EFV(R;) are mutually distinct according to our global
assumption. By the rule (Inv-Cony),

F“ ..., F + {G, AN HEV&IA[7::7] (x;,)}Ri{Si N HEV&IA[7::7] (x;,)}

)~ Nproc
since FV(HEvalAW;:?] (%)) N Mod(R;) = 0.

We will prove S; A HEvalp._2)(x) — B Assume that
[S: A HEvaly5.—21(x1)] (v w) is true. Then [S;] (¢ vy and [HEvaly5.— 27 (x)] (o)

are true. By Lemma 5.3.2 (2), we have s,h such that [[Gi]](s,h) is true and

100 Chapter 5. Soundness and Completeness

[[Ri]] ((57 h)) = (Slv h/)

Now we will show [HEvaly5.—2|(x1)] sy = True by contradiction. Assume
[HEval(5.—2)(%4)] sn) = False. Then [~HEvaly5.—(x3)] .y = True. By (INv-
Cony),

Fl, ..., F + {G,- VAN —|HEvalA[7::7} (xh)}R,-{S,- VAN —|HEvalA[7::7} (xh)}

) = Nproc

By Theorem s5.1.8, F,, ... ,F

Nproc

F {Gi N ﬂHEvalAW::?](xh)}R,-{Si A
—HEval,7._7|(x4)} is true. Since F,,...,F, are true by Lemma 5.3.2

(1) with the fact that {G;}R;{True} is true by Lemma 5.2.12 (1), {G; A
—HEvaly5.—2)(xx) }RA{S; A ~HEval,5.-21(x5,) } is true.

By the definition of the truth of asserted programs, we have
[-HEval,5.—2)(%4)] (v,w) = True. Then [HEval,5.—2)(x4)] (v w) = False. But it
contradicts with [HEval,5.-21(x)] (v) = True. Thus [HEval,5.—2(x)] s.n) =

True.

Then 5(7) = 5(7) and [Heap(x;) A W; A HEvals(xy,)] ;) is true. Since
Heapcode(s(xy,), h) holds and [[HEvalA(xh)]](&h) is true, by Lemma 5.2.7 (3), we have
[A] (s ny = True.

Since {A}R;{B} is true, [B] (¢, is true. Then S; A HEval,5.—2 (x;,) — Bis true.
Then by (ConsEeQ) rule,

Fl, ..., F F {G,— A HEV&IA[7::7} (xh)}Ri{B}

7 = Nproc

is provable. By (Exists) rule,

F,...,F,. F {3Zx(7 = Z AHeap(x;) A W; A HBvaly5.—(x,)) }R{B}.

) = Nproc

Naturally {A}R;{True} is true. Then by Lemma 5.3.4, A — W, is true. By Lemma
53.3,A— 3Zx,(7 = Z A Heap(x;) A HEval,(3.—7)(%4)) is true and then we
have A— 372, (7 =ZA Heap (x;) A HEvaly(5.—2(x,) AW;). Thenby (conseq)
rule,

F,...,F, F{A}R{B}

2 = Mproc

5.3 Completeness 101

, which was to be proved. a

Next Lemma shows that the hypothesis F,, . . ., F, usedinlemma 5.3.7 are prov-

7+ Nproc

able in the our system.
Lemma 5.3.8 = F;is provablefori =1,. .., fy,.

Proof. Fix i. Note that we have fresh variables Z’ and x), according to our global
assumption. Let G/ be G[Z := Z’,x, :=)] and S| be §;[Z := Z’, % = «]].
By Lemma 5.2.12 (1), {W;}R;{True} is true. Then {G;}R;{True} is true. Then by
Lemma 5.3.2 (1), {G;}R{S;} is true. By Lemma 4.2.12, [R;] = [Q;] where Q; is
the body of R;. Hence {G;}Q;{S;} is true. By Lemma 5.3.5 (2), { G/} Q;{S/} is true.
Thenby Lemma 5.3.7,F,,...,F, F {G/}Q{S/} is provable. By Lemma 5.3.5 (1),

)~ Nproc

E,...,F,, . F{Gi}Q{S:} is provable. By (RECURSION) rule, - F;is provable. [
The following theorem is our central result of this paper. It says that our system is

complete.
Theorem 5.3.9 If {A}P{B} is true then = {A}P{B} is provable.

Proof. Assume {A}P{B} is true. Then by Lemma 5.3.7, F,,...,F, + {A}P{B}

) = Nproc

is provable. By Lemma 5.3.8, = F; is provable for i = 1,...,n,,. By (Cur), +
{A}P{B} is also provable. O

103

Admissibility of Frame Rules

We have the soundness for I' - {A} P{B} (Theorem 5.1.8), but we have the com-
pleteness only for = {A}P{B} (Theorem 5.3.9). Hence for sequents of the shape
- {A}P{B}, a rule is sound if and only if the rule is admissible. On the other hand,
for rules that use sequents of the shape I' - {A}P{B}, this equivalence may fail. This

section shows

o the ordinary frame rule is sound, but not admissible,

o the uniform hypothetical frame rule is not sound nor admissible,
« the hypothetical frame rule is not sound nor admissible,

« the hypothesis-free frame rule is sound and admissible,

« the conjunction rule is sound, but not admissible.

The ordinary frame rule and the hypothetical frame rule are important for the local

reasoning in separation logic as discussed in [7, 17, 23]. It is because we can use the

104 Chapter 6. Admissibility of Frame Rules

hypothetical judgments as for the specifications of the procedures in terms of their
actually used memory to reason a program in an extended memory space. A natural
question is how important these rules are for the completeness of our system. Since
we can achieve the completeness for asserted programs without hypothesis in our sys-
tem without these rules, indeed they are not necessary for the completeness. However
when we think completeness for asserted programs with a hypothesis, they may be im-
portant. In fact, the ordinary frame rule is not admissible in our system, and we will
show it in this section. Moreover, the uniform hypothetical frame rule, where all the
specifications in the hypothesis are extended with the invariant uniformly, is neither
sound nor admissible. As a consequence, the hypothetical frame rule is not admissi-
ble as well since the frame rules mentioned above are special forms of it. However, a
frame rule with an empty hypothesis, called the hypothesis-free frame rule, is admis-
sible and sound in our system. Another interesting question is about the role of the
conjunction rule [17] in our system. It is clear that the conjunction rule is not nec-
essary for the completeness for asserted programs without a hypothesis. In fact, the
conjunction rule is not admissible in the system. In this section, we will investigate

the soundness and the admissibility of these rules.

6.1 FRAME RULES

6.1.1 ORDINARY FRAME RULE

Definition 6.1.1 The ORDINARY FRAME RULE is defined as -

I'+ {A}P{B}
'+ {A* C}P{Bx*C}

(FV(C) N Mod(P) = ()

The following lemmas are used to prove the soundness of the ORDINARY FRAME

RULE.

Lemma 6.1.2 Suppose P € L. If [P]((s,h, + h,)) > (s, 1) and [P]~ (s, h,) &
abortthen W = h! + h, and [P]~((s,h,)) > (s', h!) for some h'.

6.1 Frame Rules 10§

Proof. Proved by induction on P. We will consider the cases of P.
Case 1. Pisx :=e.

Assume [P]|~((s,h, + h,)) © (s,). Then h’ = h, + h, by definition. Take // to
be h,. Then b’ = K/ + h, and [P]~((s,h,)) > (s, K)).

Case 2. Pisif (b) then (P,) else (p,).
Assume [P] ™ ((s,h, + h,)) > (s, #') and [P] (s, h,) # abort.

Case [b]; = True. Then [P,]~((s,h, + h,)) > (s, 1) and [P,] (s, h,) # abort
by definition. Then we have i/ such that i’ = k! + h, and [P,]~((s, h,)) > (s, k) by
induction hypothesis. Then [P] ~((s, h,)) 3 (s, h!) for some h! by definition.

Case [b]; = False can be shown as above.
Case 3. Pis while (b) do (P,).

Assume [P]~((s,h, + h,)) > (s,#') and [P]((s,h,)) Z abort. By Proposi-
tion 4.2.4, we have m > o, s/ st h!, ... W suchthat (s/,h!) = (s,h, + h,),

1% " my o 0’70

(1) = (", 17), [bler = True, [P~ (s, h)) > (s, H,) foro < i < m,

m) "'m it

and [b]y, = False. Take)" = h,. Then [P,]((s/', h{")) Z abort and by induction

i

hypothesis we have k) such that b, = k!, +h, and [P,]~ ((s, h!")) > (s/.,, b))

i

for o < i < m. Take h! be h!. Then by Proposition 4.2.4, [P]~((s, h,)) > (s, h)).
Case 4. Pis P,; P,.

Assume [P]~((s,h, + h,)) > (s,K) and [P] (s,h,) ZF abort. Then
[P.]~ ((s,h,)) Z abort and we have s”, h” such that [P,]~((s,h, + h,)) > (5", h")
and [P,]((s",#")) > (s',}'). By induction hypothesis, we have 4 such that
W = K’ + h,and [P,]((s,h)) > (s",h”). Then [P,]((s,h”)) # abort since
[P]~((s,h,)) # abort. By induction hypothesis, we have k! such that /' = h/ + h,
and [P,]~((s", k")) > (s, h!). Then [P]~((s, h,)) > (s, K)).

Case 5. Pis skip.

Its proof is immediate.

106 Chapter 6. Admissibility of Frame Rules

Case 6. Pisx := cons(el, ez).

Assume [P]~((s,h, + h,)) > (s, ') and [P]~((s,h,)) Z abort. By definition,
W= (h+h,)[n:= [e]s,n+1:= [e,];] wheren > o,n,n+1 & Dom(h,+h,). Then
W= (h[n:=[e]s,n+1:=[e]s]) + h,. Take h tobe h,[n := [e,], n +1:= [e,]]-
Thenh’ = K. + h, and [P]~((s,h,)) > (s, h!) by definition.

Case 7. Pisx := |e].

Assume [P]~((s,h, + h,)) > (s, W) and [P]~((s, h,)) # abort. Thenh’ = h, +
h, and [e], € Dom(h,) by definition. Take h/ to be h,. Then K = h/ + h, and
[P]™((s, 1)) > (s,).

Case 8. Pis [e,| :='e,.

Assume [P]~((s,h, + h,)) > (s,) and [P]((s,h,)) # abort. By definition,
W = (h, + h,)[[e]s := [e.]] where [e,], € Dom(h,). Then ¥’ = (h[[e,], :=
le.]s]) + h,. Take h! to be h,[[e,]; := [e.],]- Then W’ = h! + h, and [P]~((s,h,)) >
(s', h') by definition.

Case 9. Pis dispose(e).

Assume [P]~((s,h, + h,)) > (s,h) and [P] ((s,h,)) Z abort. By defi-
nition, ' = (h, + h,)|pom(h+n)—{[].}) Where [e], € Dom(h,). Then h' =
(hlyDom(hl)f{[[eﬂs}) + h,. Take h: to be hl’Dom(hl)f{[[e}]s}- Then h' = hi + h, and
[P]~((s,h)) > (s, h!) by definition. O

Lemma 6.1.3 Suppose P € L. If[P]((s,h, + h,)) > (s', ') and [P] (s, h,) Z abort
thenh’ = h! + h, and [P]((s, h,)) > (s, h}) for some h..

Proof. Assume [P]((s,h, + h,)) > (s, 1) and [P]((s, h,)) # abort. By definition,
[PO]~((s,h, + h,)) > (s, 1) for some k and [P*¥)]~((s,h,)) Z abort for all K.
Hence [PW]~((s, h,)) # abort. By Lemma 6.1.2, k' = k' +h, and [P®]~((s, h,)) >
(s', h!) for some h/. Hence by definition [P]((s, h,)) > (5, K)). O

Below we show that the OrRDINARY FRAME RULE is sound.

6.1 Frame Rules 107

Proposition 6.1.4 The ORDINARY FRAME RULE is sound. Namely, if T - {A}P{B} is
true then T = {A x C}P{B % C} is true where Mod(P) N FV(C) = ().

Proof. Assume I' - {A}P{B} is true. Assume I'is true, [A] (;5) = True, [C] () =
True, and [P]((s, h, + h,)) > (s, h'). We will show that [B * C]|(y) = True.

Then {A}P{B} is true since I' - {A}P{B} and I are true. Then [P]((s, h,)) &
abort. By Lemma 6.1.3, /' = K/ + h, and [P]((s, h,)) 2 (s, h!) for some h!. Then
[B] (i) = True. Then IC] (+,h,) = True since s =gy(c) s'. Then by definition,
[B * C (s 4y = True. Therefore, ' = {A * C}P{B * C} is true. O

Below we will show that the ORDINARY FRAME RULE is not admissible.

Lemma 6.1.5 If {A}P{B} is false, P is atomic, and T = {A}P{B} has a proof with
(< n) cut rules, then T = {A}P{B} is provable only by (IDENTITY), (WEAKENING),
(Exists), (INv-Cony), and (CONSEQ).

Proof. By induction on n, we will show that, if I - {A}P{B} is provable with (<
n) cut rules then T = {A}P{B} has a proof only by (IDENTITY), (WEAKENING),
(Ex1sts), (INv-Cony), and (CONSEQ).

Assume that I' = {A} P{B} has some proof with (< n) cut rules. We consider the

cases of n.
Case1.n = o.

The proof does not have (Ir), (WHiLE), (CoMPosITION), and (RECURSION)
since P is atomic. Hence the proof has some first axiom (Skip), (ASSIGNMENT),
(Cons), (Lookup), (MutaTION), and (DisPosE) and it is followed by some of
(WEAKENING), (ConsEQ), (ExistTs), (INv-CoNy), or (IDENTITY). Since {A}P{B}

is False, by Theorem 5.1.8, the first axiom is (IDENTITY).
Case2.n > o.

If the last rule is (WEAKENING), (CoNSEQ), (ExisTs), or (INv-CONJ), we can

move it upward. Hence we can assume that the last rule is (CuT). Then we have

I+ {A}P{B'} andT U {{A'}P{B'}} - {A}P{B} for some {A'}P'{B'}. Then

108 Chapter 6. Admissibility of Frame Rules

I U{{A"}P'{B'}} F {A}P{B} is provable with (< n) cut rules. By induction hy-
pothesis, it is provable only by (IDENTITY), (WEAKENING), (Ex1sTs), (INv-CoONYJ),
and (CONSEQ).

Case 2.1. The (IDENTITY) does not use {A'}P'{B'}. Then {A’}P'{B'} is in-
troduced by (WEAKENING). Hence I' {A}P{B} is provable by (IDENTITY),
(WEAKENING), (Ex1sTs), (INV-CoNj), and (CONSEQ.).

Case 2.2. The (IDENTITY) uses {A’}P'{B'}.

Since {A}P{B} is false, by Theorem 5.1.8, {A’}P'{B'} is false. Since P = P
and I' = {A’}P{B'} is provable with (< n) cut rules, by induction hypothesis,
I' = {A’}P{B'} is provable only by (IDENTITY), (WEAKENING), (Ex15TS), (INV-
Cony), and (CONSEQ).

Since {A’}P'{B'} is in T, combining the proof of I' = {A"}P’{B'} and the proof
of T U {{A'"}P'{B'}} - {A}P{B},T F {A}P{B} is provable only by (IDENTITY),
(WEAKENING), (Ex1sTs), (INV-CoNj), and (CONSEQ.).

We have shown that if I' = {A}P{B} is provable with (< n) cut rules then T' |-
{A}P{B} has a proof only by (IDENTITY), (WEAKENING), (Ex1sTS), (INV-CONJ),
and (CONSEQ). O

Proposition 6.1.6 The ORDINARY FRAME RULE is not admissible.

Proof. BylettingT - {A}P{B} be {{emp}x := [1]{emp}} I {emp}x := [1]{emp}
in Definition 6.1.1 and Cbe 2 + o we will show that it gives a counterexample. By
(IpenTITY), {{emp}x := [1]{emp}} I {emp}x := [1]{emp} is provable. We will
show that {{emp}x := [1]{emp}} F {emp * 2 — o}x := [1]{emp * 2 — o} is not

provable.

Assume {{emp}x := [1]{emp}} F {emp * 2 > o}x := [1]{emp * 2 — o} is
provable. Here x := [1] is atomic and {emp }x := [1]{emp} is false. By Lemma 6.1.5,
{{emp}x := [1]{emp}} I {emp*2 — o}x := [1]{emp=2 > o} isprovable by first
(IpENTITY) and some of (WEAKENING), (Exists), (INv-ConjJ), and (CONSEQ).
Because of the shape of emp * 2 + o, (Ex1sTs) and (INv-CoNJ) are not used. Hence

for (ConNseQ), (emp * 2 > 0) — emp and emp — (emp * 2 > o) are used in the

6.1 Frame Rules 109

proof. But it contradicts since (emp * 2 +— o) — emp and emp — (emp * 2 — 0)

are false.

Thus, the ORDINARY FRAME RULE is not admissible. O

6.1.2 UNIFORM HYPOTHETICAL FRAME RULE

We define I * Cas { {A* C}P{B« C} | {A}P{B} €T'}.
We define Mod(T') as U{Ai}Pi{Bi}GF Mod(P;).
Definition 6.1.7 The UNIFORM HYPOTHETICAL FRAME RULE is defined as -

T+ {A}P{B}
'« Ck {A* C}P{BxC}

(FV(C) N (Mod(P) U Mod(T)) = ()

We will show that the UNtForRM HYPOTHETICAL FRAME RULEIs not sound in the

following lemma.
Proposition 6.1.8 The UNIFORM HYPOTHETICAL FRAME RULE is not sound.

Proof. 'This proof is inspired from the example given in Section 6 of [17]. We will

show the claim by a counterexample.

By letting I' - {A}P{B} be {{emp V —emp }skip{emp} } I {—emp }skip{False }

and C be —emp we will show that it gives a counterexample.

{{emp V —emp}skip{emp}} - {—emp}skip{False} is true. By the UNIFORM
HypoTHETICAL FRAME RULE, {{emp V —emp * —emp }skip{emp * —emp}} +
{—emp * —emp}skip{False * —emp} is true. But clearly {{emp V —emp *
—emp }skip{emp * —emp}} F {—emp * —emp }skip{False * —emp} is false. O

Now we will show that the UNiForRM HyPOTHETICAL FRAME RULE is not admis-
sible.

Proposition 6.1.9 The UNIFORM HYPOTHETICAL FRAME RULE is not admissible.

110 Chapter 6. Admissibility of Frame Rules

Proof. BylettingT = {A}P{B}be {{x = 1 Ay = a}skip{y = 2}} F {Ix(x =
1Ay = x)}skip{y = 2} and Cbe x = 3 we will show that it gives a counterexample.

By (IDENTITY), {{x = 1 Ay = x}skip{y = 2} } F {x = 1 Ay = x}skip{y = 2}
is provable. By (Exists), {{x = 1 Ay = «x}skip{y = 2}} F {Tx(x = 1Ay =
x) yskip{y = 2} is provable. If the uniform hypothetical frame rule were admissible
then {{x =1 Ay =axx=3}skip{y=2%x=3}} F {Ox(x =1 Ay =x) xx =
3}skip{y = 2 * x = 3} would be provable. By Theorem 5.1.8, it would be true. Since
x =1y =x*x = 3isfalse, wehave {x = 1\ y = xxx = 3}skip{y = 2% x = 3}
is true. But {Ix(x = 1 Ay = x) * x = 3}skip{y = 2 * x = 3} is false. Therefore,
{{x =1 Ay =xxx=3}skip{ly =2xx=3}} F {Ix(x = 1Ay =x) xax =
3}skip{y = 2 * x = 3} is false. So it would contradict. O

6.1.3 HYPOTHETICAL FRAME RULE

Definition 6.1.10 The HYPOTHETICAL FRAME RULE is defined as -

rur’' + {A}p{B}
TU ([*C)F {A*C}P{B=x C}

(EV(C) N (Mod(P) U Mod(T")) =)

The next two propositions are proved by Proposition 6.1.8 and Proposition 6.1.9
respectively, since the uniform hypothetical frame rule is a special case of HYPOTHET-
1cAL FRAME RULE. Proposition 6.1.12 is proved also by Proposition 6.1.6, since the

ORDINARY FRAME RULE is a special case of hypothetical frame rule.

Proposition 6.1.11 The HYPOTHETICAL FRAME RULE is not sound.

Proposition 6.1.12 The HYPOTHETICAL FRAME RULE is not admissible.

6.2 Conjunction Rule 111

6.1.4 HYPOTHESIS-FREE FRAME RULE

Definition 6.1.13 The HYPOTHESIS-FREE FRAME RULE is defined as -

- {A}P{B}
- {Ax C}P{B =« C}

(FV(C) N Mod(P) = 0)

Note that the HyPoTHESIS-FREE FRAME RULE is sound since the ORDINARY
FRAME RULE is sound. The following proposition shows that the HYPOTHESIS-FREE

FrRaAME RULE is admissible.

Proposition 6.1.14 The HYPOTHESIS-FREE FRAME RULE is admissible. Namely, if -
{A}P{B} is provable then = {Ax C}P{Bx* C} is provable where Mod(P) NFV(C) = .

Proof. Assume - {A}P{B} is provable. Then by Theorem s5.1.8, {A}P{B} is true.
Then by Proposition 6.1.4, = {A % C}P{B * C} is true. By Theorem 5.3.9, = {A %
C}P{B * C} is provable. 0

6.2 CONJUNCTION RULE

Definition 6.2.1 The CONJUNCTION RULE is defined as -

I+ {A}P{B} T+ {C}P{D}
I+ {AACIP{BAD}

The CoNjUNCTION RULE is trivially sound by the definition of semantics of as-

serted programs. Now we will show that the CoNyjuNncTION RULEis not admissible.
Proposition 6.2.2 The CONJUNCTION RULE is not admissible.

Proof. This proof is inspired from the example given in Section 6 of [17]. By letting
I = {A}P{B} be {{emp V —emp}skip{emp}} - {—emp}skip{emp} and T +
{C}P{D} be {{emp V —emp}skip{emp}} - {—emp}skip{—emp} we will show

that it gives a counterexample.

112 Chapter 6. Admissibility of Frame Rules

We have {{emp V —emp}skip{emp}} F {emp V —emp}skip{emp} by
(IpentiTY). Then {{emp V —emp}skip{emp}} F {—emp}skip{emp} by
(Conseq) since memp — emp V —emp. Again, - { ~emp }skip{ —emp} is provable
by (Skip). Then {{emp V —emp }skip{emp}} I {—emp}skip{—emp} is provable
by (WEAKENING). Therefore bothT - {A}P{B} and T {C}P{D} are provable.

We will show that ' = {A A C}P{B A D} is not provable. It is {{emp V
—emp }skip{emp}} F {—emp A —emp }skip{emp A —emp}. We have {{emp V
—emp }skip{emp}} F {emp V —emp }skip{emp} by (IDENTITY). But emp — False
is false and hence {{emp V —emp}skip{emp}} = {—emp A —emp}skip{emp A
—emp } is not provable by (IDENTITY), (WEAKENING) and (CoNSEQ) rules. Then by
Lemma6.1.5, {{emp V —emp }skip{emp} } I {—emp A —emp }skip{emp A —emp}
is not provable since { —emp A —emp }skip{emp A —emp} is false.

Therefore, the CONJUNCTION RULE is not admissible. O

This section has revealed the fine structure (and the subtlety) of the problem. The
completeness issue studied in this dissertation is much more subtle and more difficult
than what one might expect. So, a very careful choice of axioms and inference rules is
necessary. The discussion in this section is an evidence of such difficulty in the case

of hypothetical judgments.

113

Conclusion

In our work, we have presented a system that can verify all terminating programs
written in the language proposed in [18] extended with mutual recursive procedures.
Our assertion language is exactly the same as that of [18]. We have shown that our
proposed system is sound and relatively complete (in the sense of Cook [8]). The
adaptation completeness is straightforward, as the axioms of atomic commands are
chosen according to the weakest preconditions. Yet the completeness result could not
be achieved from the traditional Hoare’s logic for pointer programs simply by choos-
ing the set of appropriate rules. In [3], the expressiveness is assumed and the strongest
postcondition is obtained directly from the weakest precondition. In our work, the ex-
pressiveness is proved and the precondition for the abort-free execution is established

which is necessary to utilize the strongest postcondition.

A future work can be the completeness of the system with non-empty hypothesis.

Modification of some axioms and inference rules of this system along with inclusion

114 Chapter 7. Conclusion

of some new rules can be a starting point to achieve it. Besides, several extensions of
the current system are possible and it is important to study their completeness. More-
over, it is necessary to be able to verify programs written in modern programming lan-
guages which are enriched with newer features. Among them, enhancement of pro-
cedures that can handle parameters is important. For that it may require to extend the
programming language to local variables and parameters. It may pose a challenge to
correctly model the local scoping of store and heap. It will also be necessary to handle
different types of parameters like call by name, call by value and call by variable. One
direction can be the inclusion of the corresponding inference rules from [3]. How-
ever, it is necessary to investigate them carefully since not all the sound rules in [3]
are consistent in Separation Logic. It is out of the scope of the current work and in-

teresting for the future work.

Including implementation of the system, other future works can be bug tracking in

programs and program synthesizing using our system.

[1]

[3]

11§

References

M.F. Al Ameen. M. Tatsuta, New Complete System of Hoare’s Logic with Recur-
sive Procedures, Constructivism and Computability, JAIST Logic Workshop Se-
ries 2015, Kanazawa, Japan.

M.E. Al Ameen and M. Tatsuta, Completeness for recursive procedures in
separation logic, Theoretical Computer Science, 2016, Available online 11 April
2016, ISSN 0304-3975, DOI=http://dx.doi.org/10.1016/j.tcs.2016.
04.004. (http://www.sciencedirect.com/science/article/pii/
S0304397516300329).

K.R. Apt, Ten Years of Hoare’s Logic: A Survey — Part I, ACM Transactions on
Programming Languages and Systems 3 (4) (1981) 431-483.

[4] J. Berdine, C. Calcagno, and PW. O’Hearn, Symbolic Execution with Separa-

tion Logic, In: Proceedings of the Third Asian Symposium on Programming
Languages and Systems (APLAS2005), Lecture Notes in Computer Science 3780
(2005) 52-68.

[s] JBerdine, C Calcagno and PW O’Hearn, Smallfoot: Modular Automatic Asser-

tion Checking with Separation Logic, In: 4th Formal Methods for Components
and Objects, Lecture Notes in Computer Science 4111, (2006).

[6] J.A. Bergstra and J.V. Tucker, Expressiveness and the Completeness of Hoare’s

[7]

Logic, Journal Computer and System Sciences 2.5 (3) (1982) 267-284.

C. Calcagno, PW. O’Hearn, H. Yang. Local Action and Abstract Separation
Logic. In: ACM/IEEE Symposium on Logic in Computer Science (LICS 2007),
2007.

S.A. Cook, Soundness and completeness of an axiom system for program verifi-
cation, SIAM Journal on Computing 7 (1) (1978) 70-90.

116 References

[9] G.A.Gorelick, Complete axiomatic system for proving assertions about recursive
and non-recursive programs, Technical Report No. 75, Computer Science Dept,
University of Toronto, Toronto, Canada, Jan 1975.

[10] JY. Halpern, A good Hoare axiom system for an ALGOL-like language, In:
Proceedings of 11th ACM symposium on Principles of programming languages
(POPL384) (1984) 262—271.

[11] C.A.R.Hoare, An axiomatic basis for computer programming, Commun. ACM
12 (10) (1969) 576-580,583.

[12] M. Huth, M. Ryan, In: Logic in Computer Science: Modeling and Reasoning about
Systems, second edition, Cambridge University Press, 2004.

[13] S. Ishtiaq and PW. O’Hearn, BI as an Assertion Language for Mutable Data
Structures, In: Proceedings of 28th ACM Symposium on Principles of Programming
Languages (POPL2001) (2001) 14—26.

[14] B.Josko, On expressive interpretations of a Hoare-logic for Clarke’s language L4,
In: Proceedings of 1st Annual Symposium of Theoretical Aspects of Computer
Science (STACS 84), Lecture Notes in Computer Science 166 (1984) 73-84.

[15] H.H. Nguyen, C. David, S.C. Qin, and W.N. Chin, Automated Verification of
Shape and Size Properties Via Separation Logic, In: Proceedings of 8th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI 2007), Lecture Notes in Computer Science 4349 (2007) 251-266.

[16] H.H. Nguyen and W.N. Chin, Enhancing Program Verification with Lemmas,
In: Proceedings of 20th International Conference on Computer Aided Verifica-
tion (CAV 2008), Lecture Notes in Computer Science 5123 (2008) 355-3609.

[17] PW.O’Hearn, H. Yang, and J.C. Reynolds, Separation and Information Hiding,
In: Proceeding of the 31st Annula Symposium on Principles of Programming Lan-
guages (POPL 2004), 2004.

[18] J.C. Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures,
In: Proceedings of Seventeenth Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS2002) (2002) §5—74.

[19] M. Tatsuta, W.N. Chin, and M.F. Al Ameen, Completeness of Pointer Program
Verification by Separation Logic, In: Proceeding of 7th IEEE International Confer-
ence on Software Engineering and Formal Methods (SEFM 2009) 179-188.

[20] PW. O’Hearn and D. J. Pym, The logic of bunched implications In: Bulletin of
Symbolic Logic, 5(2), June 1999, 215-244

References 117

[21] Peter O’Hearn, John Reynolds, Hongseok Yang, Local Reasoning about Pro-
grams that Alter Data Structures In: Proceedings of CSL'0o1, LNCS 2142, Paris,
2001.1-19

[22] Tarski, Alfred. Alattice-theoretical fixpoint theorem and its applications. In: Pa-
cific . Math. 5 (1955), no. 2, 285-309.

[23] H. Yang, Local Reasoning for Stateful Programs, In: Ph.D. thesis, University of
Illinois at Urbana Champaign, 2001.

118

—
P[Pl])35

Q, 35

Asserted program, 33
Assertion langauge, 32

Base language, 30

Coding of assertions, 73
Coding of base language, 71
Coding of programs, 75
Completeness theorem, 101
Conjunction Rule, 111

Empty heap, emp, 32
Expressiveness theorem, 9o
Extended Free variable, 36

Frame Rule, 104
Free variable of a program, 36
Free variable of an assertion, 32

Hypothesis-Free Frame Rule, 110
Hypothetical Frame Rule, 110

Invariance axiom, 70

Logical system, 56

Modifiable variables, 37
Number of Procedures, 7o, 31

Ordinary Frame Rule, 104

Procedures dependencies, f\k», 33
Program unfolding to level k, P%), 5

S

Programming language, 30
Pure formula, 30

Recursive Procedures, 31

79

Semantics of a judgement, 47

Index

Representation Lemma for Assertions,

Representation Lemma for Programs, 32

Semantics of asserted programs, 46

Semantics of assertions, 46

Semantics of base language, 40

Semantics of programs in £, 45

Semantics of programs in L7, 41

Separation conjunction, *, 32
Separation implication, —, 32

Set of visible procedures, PN(P), 33

Singleton heap, —, 32
Soundness theorem, 70
Strongest Postcondition, 91

The language £, 31
The language £, 31

Unfolding of a judgment, 62

Uniform Hypothetical Frame Rule, 109

Weakest precondition, 88

	1 Introduction
	1.1 Motivation
	1.2 Main Contribution
	1.3 Outline of This Paper

	2 Background
	2.1 Hoare's Logic for Recursive Procedures
	2.2 Separation Logic

	3 New Complete System of Hoare's Logic with Recursive Procedures
	3.1 Language
	3.2 Semantics
	3.3 Logical System
	3.4 Completeness

	4 Separation Logic for Recursive Procedures
	4.1 Language
	4.2 Semantics
	4.3 Logical System

	5 Soundness and Completeness
	5.1 Soundness
	5.2 Expressiveness
	5.3 Completeness

	6 Admissibility of Frame Rules
	6.1 Frame Rules
	6.2 Conjunction Rule

	7 Conclusion

