
Completeness of Verification System with

Separation Logic for Recursive Procedures

Mahmudul Faisal Al Ameen

Doctor of Philosophy

Department of Informatics

School of Multidisciplinary Sciences

SOKENDAI (The Graduate University for

Advanced Studies)

Completeness of Verification Systemwith
Separation Logic for Recursive Procedures

Mahmudul Faisal Al Ameen

Doctor of Philosophy

Department of Informatics
School of Multidisciplinary Sciences

SOKENDAI (TheGraduate University for Advanced Studies)
Tokyo, Japan

September 2016

A dissertation submitted to
the Department of Informatics

School of Multidisciplinary Sciences
SOKENDAI (TheGraduate University for Advanced Studies)

in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy

ReviewCommittee

Makoto TATSUTA National Institute of Informatics, SOKENDAI
Zhenjiang HU National Institute of Informatics, SOKENDAI
MakotoKANAZAWA National Institute of Informatics, SOKENDAI
Shin Nakajima National Institute of Informatics, SOKENDAI
Yukiyoshi Kameyama University of Tsukuba

Thesis advisor: Makoto Tatsuta Mahmudul Faisal Al Ameen

SOKENDAI (TheGraduateUniversity forAdvanced Studies)

Abstract
Completeness of Verification Systemwith Separation Logic for

Recursive Procedures

The contributions of this dissertation are two results; the first result gives a new

complete Hoare’s logic system for recursive procedures, and the second result proves

the completeness of the verification system based on Hoare’s logic and separation

logic for recursive procedures. The first result is a complete verification system for

reasoning aboutWHILE programs with recursive procedures that can be extended to

separation logic. To obtain it, this work introduces two new inference rules, shows

derivability of an inference rule and removes other redundant inference rules and an

unsound axiom for showing completeness. The second result is a complete verifica-

tion system, which is an extension of Hoare’s logic and separation logic for mutual

recursive procedures. To obtain the second result, the language ofWHILE programs

with recursive procedures is extended with commands to allocate, access, mutate and

deallocate shared resources, and the logical system from the first result is extended

with the backward reasoning rules of Hoare’s logic and separation logic. Moreover,

it is shown that the assertion language of separation logic is expressive relative to the

programs. It also introduces a novel expression that is used to describe the complete

information of a given state in a precondition. In addition, this work uses the nec-

essary and sufficient precondition of a program for the abort-free execution, which

enables to utilize the strongest postconditions.

iii

I would like to dedicate this thesis to my parents for their love, sac-
rifice and support all through my life.

Acknowledgments

I wish to express my deepest gratitude to my advisor, Prof. Makoto Tatsuta, for
giving me the opportunity, pre-admission supports and recommendations to study
in SOKENDAI with NII scholarship. His guidance with extreme patience is the key
driving force for my today’s success. His support not only encouraged but also nour-
ished me this last six years. Without his sincere efforts, I could not be in today’s posi-
tion. His lessons helped me realizing the rigid nature of mathematics and logic.

I am very grateful to my co-supervisor Asst. Prof. Makoto Kanazawa for being
one of the most important supporting force for my work. His suggestions at the logic
seminars have been a very good basis for elaborating and structuring my research; he
gave me enough feedback to mature my ideas while always pointing me interesting
directions.

I would like to thank Prof. Zhenjiang Hu for providing valuable remarks, allowing
me to improve the papers drafts and clarify my arguments. He has shown me a very
important horizon of program composition that enabled me to realize programs as
mathematical objects. His care and support especially kept me optimistic in my hard
times.

Valuable review and suggestionsmade by Prof. ShinNakajima of SOKENDAI and
Prof. Yukiyoshi Kameyama of University of Tsukuba helped me to enhance and fine
tuning the dissertation. I am very grateful them.

I am grateful to Prof. Kazushige Terui for his suggestions and support in the early

v

stage of my study.

I would like to express my sincere appreciation to Dr. Daisuke Kimura for giving
me a long time support as an elder brother. I am indebted toDr. Takayuki Koai for his
sinceremost effort tomakemy life easy in Japan. Indifferent occasions, their academic
tutoring, as well as mental supports, are never to be forgotten. Their explanation of
several basic and advanced topics often made me understand difficult mathematical
topics in an easy way. Special thanks toDr. Kazuhiro Inaba for an important criticism
to show a gap in one of my earlier solution. Dr. Kazuyuki Asada’s advice and Mr.
Toshihiko Uchida’s friendly support also helped me to reach in this position. I am
very grateful to all of them. Moreover, I thank to Mr. Koike Atsushi for sharing his
LATEX class file, based on which the class file for this dissertation is prepared.

I thank National Institute of Informatics for providing me the necessary financial
and resource support. Further, I also thankNII officials at the student support section
for their administrative assistances.

I owe to Prof. Dr. Shorif Uddin for driving me and directly helping me to apply to
NII for the doctoral study. I also thank Dr. Zahed Hasan and Mr. Enayetur Rahman
for their contributions in my life and research career.

Finally, I thank my parents for their love, sacrifices, long patience and endless en-
couragements. I thank my wife for her invaluable and direct care and support in the
final year. I also thank my sister, relatives and friends for their great mental support
that helped me to handle the challenging research situations.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Main Contribution . 3
1.3 Outline ofThis Paper . 6

2 Background 7
2.1 Hoare’s Logic for Recursive Procedures 8
2.2 Separation Logic . 17

3 New Complete System of Hoare’s Logic with Recursive Proce-
dures 19
3.1 Language . 20
3.2 Semantics . 21
3.3 Logical System . 21
3.4 Completeness . 23

4 Separation Logic for Recursive Procedures 29
4.1 Language . 30
4.2 Semantics . 40
4.3 Logical System . 58

5 Soundness and Completeness 63
5.1 Soundness . 64
5.2 Expressiveness . 74

1

5.3 Completeness . 95

6 Admissibility of Frame Rules 107
6.1 Frame Rules . 108
6.2 Conjunction Rule . 115

7 Conclusion 117

1

1
Introduction

1.1 Motivation

It is widely accepted that a program is needed to be verified to ensure that it is cor-
rect. A correct program guarantees to perform the given task as expected. It is very
important to ensure the safety of the mission-critical, medical, spacecraft, nuclear re-
actor, financial, genetic-engineering and simulator programs. Moreover, everyone de-
sires bug-free programs.

Formal verification is intended to deliver programs which are completely free of
bugs or defects. It verifies the source code of a program statically. So formal verifi-
cation does not depend on the execution of a program. The time required to verify a
program depends on neither its runtime andmemory complexity nor the magnitude
of its inputs. A program is required to be verified only once since it does not depend

2 Chapter 1. Introduction

on test cases. Hence, formal verification of programs is important to save both time
and expenses commercially and for its supremacy theoretically. Among formal verifi-
cation approaches, model checking andHoare’s logic are prominent. Model checking
computeswhether amodel satisfies a given specification, whereasHoare’s logic shows
it for all models by provability [12].

Since it was proposed by Hoare [11], numerous works on Hoare’s logic have been
done [3, 6, 8, 10, 14]. Several extensions have also been proposed [3], among which
some attempted to verify programs that access heap or shared resources. However,
until the twenty-first century begins, very few of themwere simple enough to use. On
the other hand, since the development of programming languages like C and C++,
the usage of pointers in programs (which are called pointer programs) gained much
popularity for their ability to use sharedmemory and other resources directly and for
faster execution. This ability also causes crashedprograms for some reasons because it
is difficult to keep track of eachmemory operation. Itmay lead unsafe heap operation.
A program crash occurs when the program tries to access a memory cell that has al-
ready been deallocated before or when amemory cell is accessed before its allocation.
So apparently it became necessary to have an extension ofHoare’s logic that can verify
such pointer programs. In 2002, Reynolds proposed separation logic [18]. It was a
breakthrough to achieve the ability to verify pointer programs. Especially it can guar-
antee safe heap operations of programs. Although recently we can find several works
on separation logic [4, 13] and its extensions and applications [5, 15, 16], there are few
works found to show their completeness [19]. Tatsuta et al. [19] show the complete-
ness of the separation logic for pointer programs which is introduced in [18]. In this
paper, we will show the completeness of an extended logical system. Our logical sys-
tem is intended to verify pointer programswithmutual recursive procedures. Among
several versions of the same inference rule, Reynolds offered in [18] for separation
logic, a concise set of backward reasoning rules has been chosen in [19]. The later
work in [19] also offers rigorous mathematical discussions. The problems regarding
the completeness ofHoare’s logic, the concept of relative completeness, completeness
ofHoare’s logicwith recursive procedures andmanyother important topics have been
discussed in detail in [3]. Our work begins with [19] and [3].

In modern days, programs are written in segments with procedures, which make

1.2Main Contribution 3

the programs shorter in size and logically structured, and increase the reusability of
code. So it is important to use procedures and heap operations (use of sharedmutable
resources) both in a single program. Theparametermechanism is an important part of
a procedure, and it enhances the flexibility in programming. However, theoretically,
the parameterless procedures are simpler to analyze, and it is much easier to extend it
with parameters. Moreover, there are different kinds of parameter mechanism such
as call-by-value, call-by-name, and call-by-reference. So verification of pointer pro-
grams with parameterless procedures is a significant starting point of verification of
programs with different parameter mechanisms. Therefore, it is important to achieve
a sound and complete verification system for pointer programs with parameterless
procedures first so that it can be extended to different parameter mechanisms later. It
is the main motivation of our work.

1.2 MainContribution

Our goal is to give a relatively complete logical system that can be used for reason-
ing about pointer programs with mutual recursive procedures. A logical system for
software verification is called complete if every true judgment can be derived using
that system. It ensures the strength of our system so that no further development is
necessary for the logical system. If all true asserted programs are provable in Hoare’s
system where all true assertions are provided, we call it a relatively complete system.
We will show the relative completeness of our system. A language is expressive if the
weakest precondition can be defined in the language. We will also show that our lan-
guage of specification is expressive for our programs. Relative completeness is dis-
cussed vastly in [3, 8]. In this paper, relative completeness is sometimes paraphrased
as completeness when it is not ambiguous.

Themain contributions of our paper are as follows:

(1) A new complete logical system for Hoare’s logic for recursive procedures [1].

(2) A new logical system for verification of pointer programs and recursive proce-
dures [2].

4 Chapter 1. Introduction

(3) Proving the soundness and the completeness theorems.

(4) Proving that our assertion language is expressive for our programs.

(5)Discussing soundness and admissibility of the frame rules and the conjunction
rule in our system.

We know that Hoare’s logic with recursive procedures is complete [3]. We also
know that Hoare’s logic with separation logic is complete [19]. But we do not know
if Hoare’s logic with separation logic for recursive procedures is complete.

To achieve our contributions, we will first construct our logical system by combin-
ing the axioms and inference rules of [3] and [19]. Then we will prove the expres-
siveness by coding the states in a similar way to [19]. At last, we will follow a similar
strategy in [3] to prove the completeness.

Although onemay feel it easy to combine these two logical systems to achieve such
a complete system, in reality, it is not the case. Now we will discuss some challenges
we face to prove its relative completeness.

(1) The axiom (Axiom 9: Invariance Axiom) is defined in [3] by {A}P{A}
where free variables of P and A are mutually exclusive, P is aWHILE program with
recursive procedures, and A is an assertion in Hoare’s logic. It is an essential axiom to
show completeness of Hoare’s logic but it is not sound in separation logic.

(2) In the completeness proof of the extension of Hoare’s logic for the recursive
procedures in [3], the expression−→x = −→z (−→x are all program variables, and−→z are
fresh) is used to describe the complete information of a given state in a precondition.
A state in Hoare’s logic is only a store, which is a mapping from the set of variables
to the set of natural numbers. In separation logic, a state is a pair of a store and a
heap. So the same expression cannot be used for a similar purpose for a heap because
a store information may contain variables x1, . . . , xm which are assigned z1, . . . , zm
respectively, while a heap information consists of the set of the physical addresses only
in the heap and their corresponding values. The vector notation cannot express the
general information of the size of the heap and its changes because of allocation and
deallocation of memory cells.

1.2Main Contribution 5

(3) Another challenge is to utilize the strongest postcondition of a precondition
and a program. In case a program aborts in a state for which the precondition is valid,
the strongest postcondition of the precondition and the program does not exist. But
utilizing the strongest postcondition is necessary for completeness proof because the
completeness proof of [3] depends on it.

Now it is necessary to solve these obstacles for the proof of the completeness of our
system. That is why it is quite challenging to solve the completeness theorem which
is our principal goal.

The solutions to the challenges stated above are as follows:

(1) We will give an inference rule (Inv-Conj) as an alternative to the axiom (Ax-
iom 9: Invariance Axiom) in [3]. It will accept a pure assertion which does not
have a variable common to the program. We will also give an inference rule (Exists)
that is analogous to the existential introduction rule in the first-order predicate calcu-
lus. We will show that the inference rule (Rule 10: Substitution Rule I) in [3]
is derivable in our system. Since the inference rules (Rule 11: Substitution Rule
II) and (Rule 12: Conjunction Rule) in [3] are redundant in our system, we will
remove them. It gives us the new complete system for Hoare’s logic for mutual recur-
sive procedures. We will extend this system with the inference rules in [19] to give
the verification system for pointer programs with mutual recursive procedures. As a
result, the set of our axioms and inference rules will be quite different from the union
of those of [3] and [19].

(2) We will give an appropriate assertion to describe the complete information of
a given state in a precondition. Beside the expression −→x = −→z for the store infor-
mation, we will additionally use the expression Heap(xh) for the heap information,
where xh keeps a natural number that is obtained by a coding of the current heap.

(3) For pointer programs, it is difficult to utilize the strongest postcondition be-
cause it is impossible to assert a postcondition for A and P where P may abort in a
state for which A is true. We use {A}P{True} as the abort-free condition of A and P.
For the existence of the strongest postcondition, it is necessary for {A}P{True} to be
true. We will give the necessary and sufficient preconditionWP,True(

−→x) for the fact

6 Chapter 1. Introduction

that the program Pwill never abort.

1.3 Outline of This Paper

Our background will be presented in Chapter 2. A new complete Hoare’s logic for
recursive procedures will be given in Chapter 3. It will be extended to a complete sys-
temwith separation logic in the next chapter. Wewill define our languages, semantics
and the logical system in Chapter 4. In Chapter 5, we will prove the soundness, ex-
pressiveness and completeness. Admissibility of some important inference rules in
our system will be discussed in Chapter 6. We will conclude in Chapter 7.

7

2
Background

Hoare introduced an axiomatic method, Hoare’s logic, to prove the correctness of
programs in 1969 [11]. Floyd’s intermediate assertion method was behind the ap-
proach of Hoare’s logic. Besides its great influence in designing and verifying pro-
grams, it has also been used to define the semantics of programming languages.

While Hoare’s logic is sound, it is not complete since Peano arithmetic is undecid-
able. If Hoare’s logic contains a proof system of Peano arithmetic, the Hoare’s logic
becomes undecidable. Cook indicated a way to overcome these difficulties by defin-
ing thenotionof completeness in1978[8]. If there exists an assertion inL thatdefines
the strongest postcondition of A ∈ L and P ∈ P , L is said to be expressive relative
toP . A proof system forP andL is complete in the sense of Cook ifL is expressive
relative to P and all true assertions are given. Cook also extended Hoare’s logic to
nonrecursive procedures and proved its completeness in the above sense. Gorelick
[9] extended Cook’s work to recursive procedures.

8 Chapter 2. Background

Amongmanyworkswhich extended the approachofHoare toprove aprogramcor-
rect, somewerenotuseful ordifficult touse. In1981,Aptpresenteda surveyof various
results concerning the approach of Hoare in [3]. His work emphasizedmainly on the
soundness and completeness issues. He first presented the proof system forWHILE
programs along with its soundness, expressiveness, and completeness in the sense of
Cook. He thenpresented theworkofGorelick, the extensionofHoare’s logic to recur-
sive procedures. He alsopresentedother extensions such as local variable declarations
and procedures with parameters with corresponding soundness and completeness.

2.1 Hoare’s Logic forRecursive Procedures

In this section, we will discuss the verification system forWHILE programs with
recursive procedures given in [3]. Here we will present the language of theWHILE
programs with recursive procedures and the assertions, their semantics, a logical sys-
tem to reason about the programs and the completeness proof. We will extend this
proof to pointer programs with recursive procedures later.

2.1.1 Language

The language of assertion in [3] is the first order language with equality of Peano
arithmetic. Its variables are denoted by x, y, z,w, Expressions, denoted by e, are
defined by e ::= x | 0 | 1 | e+ e | e× e. A quantifier-free formula b is defined by

b ::= e = e | e < e | ¬b | b ∧ b | b ∨ b | b→ b.

The formula (of the assertion language), denoted by A,B,C, is defined by

A ::= e = e | e < e | ¬b | b ∧ b | b ∨ b | b→ b | ∀xA | ∃xA.

Recursive procedures are denoted by R. WHILE programs extended to recursive

2.1Hoare’s Logic for Recursive Procedures 9

procedures, denoted by P,Q, is defined in [3] by

P,Q ::= x := e
| if (b) then (P) else (P)
| while (b) do (P)
| P; P
| skip
| R.

We assume that procedure R is declared with its bodyQ.

The basic formula of Hoare’s logic is composed with three elements. They are two
assertions A and B and a program P. It is expressed in the form

{A}P{B}

that is also called a correctness formula or an asserted program. Here A and B are
called the precondition and the postcondition of the program P respectively. When-
ever A is true before the execution of P and the execution terminates, B is true after
the execution.

2.1.2 Semantics

States, denotedby s, are defined in [3] as a function from the set of variablesV to the
set of natural numbersN. The semantics of the programming language is defined first
by JPK− for the programs that do not contain procedures, which is a partial function
from States to States.

The semantics of assertions is denoted by JAKs that gives us the truth value of A at
the state s.

10 Chapter 2. Background

Definition 2.1.1 The definition of semantics of programs is given below.

Jx := eK−(s) = s[x := JeKs],
Jif (b) then (P1) else (P2)K−(s) =

{ JP1K(s) if JbKs = TrueJP2K(s) otherwise,

Jwhile (b) do (P)K− =

{
s if JbKs = FalseJwhile (b) do (P)K−(JPK−(s)) otherwise,JP1; P2K−(s) = JP2K−(JP1K−(s))JskipK−(s) = s.

In order to define the semantics of programs which include recursive procedures,
Apt provided the approximation semantics of programs. He defined a procedure-less
program P(n) by induction on n:

P(0) = Ω,

P(n+1) = P[Q(n)/R].

He then defined the semantics of programs by

JPK =
∞∪
i=0

JP[Q(i)/R]K−

An asserted program (or a correctness formula) {A}P{B} is defined to be true if
and only if for all states s, s′, if JAKs = True and JPK(s) = s′ then JBKs′ = True.

2.1.3 Logical System

The logical system H given in [3] consists of the following axioms and inference
rules. Here Γ is used as a set of asserted programs. A judgment is defined as Γ ⊢
{A}P{B}. var(P) is defined as all the variables appeared in the execution of P.

2.1Hoare’s Logic for Recursive Procedures 11

Axiom 1: Assignment Axiom

Γ ⊢ {A[x := e]}x := e{A} (assignment)

Rule 2: Composition Rule

Γ ⊢ {A}P1{C} Γ ⊢ {C}P2{B}
Γ ⊢ {A}P1; P2{B}

(composition)

Rule 3: if-then-else Rule

Γ ⊢ {A ∧ b}P1{B} Γ ⊢ {A ∧ ¬b}P2{B}
Γ ⊢ {A}if (b) then (P1) else (P2){B}

(if-then-else)

Rule 4: while Rule

Γ ⊢ {A ∧ b}P{A}
Γ ⊢ {A}while (b) do (P){A ∧ ¬b} (while)

Rule 5: Consequence Rule

Γ ⊢ {A1}P{B1}
Γ ⊢ {A}P{B} (consequence)

(A→ A1, B1 → B true)

Rule 8: Recursion Rule

Γ ∪ {A}R{B} ⊢ {A}Q{B}
Γ ⊢ {A}R{B} (recursion)

Axiom 9: Invariance Axiom

Γ ⊢ {A}R{A} (invariance)
(FV(A) ∩ var(R) = ∅)

12 Chapter 2. Background

Rule 10: Substitution Rule I

Γ ⊢ {A}R{B}
Γ ⊢ {A[−→z := −→y]}R{B[−→z := −→y]}

(substitution I)
(−→y ,−→z ̸∈ var(R))

Rule 11: Substitution Rule II

Γ ⊢ {A}R{B}
Γ ⊢ {A[−→z := −→y]}R{B}

(substitution II)
(−→z ̸∈ var(R) ∪ FV(B))

Rule 12: Conjunction Rule

Γ ⊢ {A}R{B} Γ ⊢ {A′}R{C}
Γ ⊢ {A ∧ A′}R{B ∧ C} (conjunction)

An asserted formula {A}x := e{A[x := e]}may seems fitmore for the assignment
axiom. But it is not. For an example like {x = a ∧ b = a+ 1}x := b{(x = a ∧ b =
a+ 1)[x := b]}, that is {x = a∧b = a+ 1}x := b{(b = a∧b = a+ 1)}, is not obvi-
ously true. Rather {(x = b)[x := b]}x := b{x = b}, that is {b = b}x := b{x = b}
is true. The composition rule is similar to the cut rule in concept. When twoprograms
are executed one after another, the postcondition of the former one is the precondi-
tion of the later. Theprecondition of the former one and the postcondition of the later
one are preserved for the execution of the composition of those two programs. The
if-then-else rule comes from the fact that truth value of b determines the execution of
either P1 or P2. The rule itself is very natural. The while rule is a bit tricky. Here A
is called a loop invariant, which is an assertion that is preserved before and after the
execution of P. The truthness of b triggers execution of P and naturally the execution
terminates only when b is false.

The consequence rule is not any ordinary rule like others. Here the important fact
is that a stronger precondition and a weaker postcondition may replace respectively
the precondition and the postcondition of a valid asserted program without affecting
its validity. With an example, itmayhelp tounderstand it better. Theassertedprogram

2.1Hoare’s Logic for Recursive Procedures 13

{x = a}x := x+ 1{x = a+ 1} is indeed valid. But from assignment axiom we may
get only {(x = a+ 1)[x := x+ 1]}x := x+ 1{x = a+ 1}, that is {x+ 1 = a+ 1}x :=
x + 1{x = a + 1}. Since x = a→ x + 1 = a + 1, with the help of the consequence
rule now we finally get {x = a}x := x+ 1{x = a+ 1}.

Recursion rule states that if the assumption of a valid asserted program for a re-
cursive procedure gives us a valid asserted program for its body, we can say that the
asserted program for the procedure is indeed valid. The invariance axiom confirms
us that the precondition is preserved in the postcondition if none of its variables is
accessed by the execution of a recursive procedure. Substitution rule I allows vari-
able substitution in the assertions in an asserted program if the recursive procedure
does not access the substituted and substituting variables. Substitution rules II allows
the substitution of only the variables in the precondition if those neither appear in
the recursive procedure nor in the postcondition. Conjunction rule allows the pre-
conditions and the postconditions of two asserted programs for the same recursive
procedure to be conjoined.

2.1.4 Soundness

In [3], ⊢H {A}P{B} denotes the fact that {A}P{B} is provable in the logical sys-
temH, which uses the assumption that all the true assertions are provided (for conse-
quence rule). In his work, the notion of the truth of an asserted program is introduced
where he chose the standard interpretation of the assertion languagewith the domain
of natural numbers.

Apt called an asserted program valid if it is true under all interpretations. He also
called a proof rule sound if for all interpretations it preserves the truth of asserted pro-
grams. Since it is easy to prove that the axioms are valid and the proof rules are sound,
it can be said that the logical system is proved to be sound by induction on the length
of proofs.

His soundness theorem claims that for every asserted program {A}P{B} in the
logical systemH, if⊢H {A}P{B} is provable under the presence of all true assertions
then {A}P{B} is true.

14 Chapter 2. Background

2.1.5 Completeness in the sense ofCook

Thestrongest postcondition of an assertion and a programand theweakest precon-
dition of a program and an assertion have a key role in defining the completeness in
the sense of Cook of such a proof system where general completeness does not hold.
Now we will define the strongest postcondition and the weakest precondition.

Definition 2.1.2 Thestrongest postcondition of an assertionAanda programP is defined
by

SP(A, P) = { s′ | ∃s(JAKs ∧ JPK(s) = s′) }.

The weakest precondition of a program P and an assertion A is defined by

WP(P,A) = { s | ∀s′(JPK(s) = s′ → JAKs′) }.
Definition 2.1.3 An assertion languageL is said to be expressive relative to the set of
programs P if for all assertions A ∈ L and programs P ∈ P , there exists an assertion
S ∈ L which defines the strongest postcondition SP(A, P).

Definition 2.1.4 A proof system G for a set of programs P is said to be complete in the
sense of Cook if, for all L such that L is expressive relative to P and for every asserted
formula {A}P{B}, if {A}P{B} is true then ⊢G {A}P{B} is provable.

Apt presented the proof of the completeness of the system in the sense of Cook in
[3] using two central lemmas. We will present them and discuss their proof. Assume
that−→x is the sequence of all variables which occur in P and−→z is a sequence of some
new variables and both of their lengths are same. Assume that the assertion language
is expressive for the logical system. So, there exists an assertion S that defines the
strongest postcondition of−→x = −→z and R. The asserted program {−→x = −→z }R{S}
is the most general formula for R, since any other true asserted program about R can
be derived from {−→x = −→z }R{S}. This claim is the contents of the first lemma.

Lemma 2.1.5 (Apt 1981) if {A}P{B} is true then {−→x = −→z }R{S} ⊢ {A}P{B} is
provable provided that all the true assertions are given.

Proof. It is proved by induction on Pwhere themost interesting case is P = R. Other

2.1Hoare’s Logic for Recursive Procedures 15

cases are similar to that of the systemH in [3].

Suppose that P is R. Assume {A}R{B} is true. We have

⊢ {−→x = −→z }R{S}.

Let A1 be A[−→z := −→u] and B1 be B[−→z := −→u] where −→u ̸∈ FV(B) ∪ var(R). By
invariance axiom,

⊢ {A1[
−→x := −→z]}R{A1[

−→x := −→z]}

is provable. By the conjunction rule,

⊢ {−→x = −→z ∧ A1[
−→x := −→z]}R{S ∧ A1[

−→x := −→z]}

is provable since FV(A1[
−→x := −→z]) ∩ var(R) = ∅. We now show that S ∧ A1[

−→x :=
−→z]→ B1.

Assume JS ∧ A1[
−→x := −→z]Ks = True. By definition JSKs = True. By the prop-

erty of the strongest postcondition, there exists a state s′ such that JRiK(s′) = s andJ−→x = −→z Ks′ = True.

By invariance axiom,

⊢ {¬A1[
−→x := −→z]}R{¬A1[

−→x := −→z]}

is provable. The by conjunction rule

⊢ {−→x = −→z ∧ ¬A1[
−→x := −→z]}Ri{S ∧ ¬A1[

−→x := −→z]}.

By soundness,

{−→x = −→z ∧ ¬A1[
−→x := −→z]}Ri{S ∧ ¬A1[

−→x := −→z]}

is true. Now suppose that ¬JA1[
−→x := −→z]Ks′ = True. HenceJ−→x = −→z ∧ ¬A1[

−→x := −→z]Ks′ = True. Therefore, ¬JA1[
−→x := −→z]Ks = True.

But JA1[
−→x := −→z]Ks = True by the assumption for s′. It contradicts the assumption

16 Chapter 2. Background

and hence JA1[
−→x := −→z]Ks′ = True.

Since−→x = −→z ∧A1[
−→x := −→z]→A1, wehave JA1Ks′ = True. Then JAK

s′[−→z :=
−−→
s′(u)]

=

True. Then JRK(s′[−→z :=
−−→
s′(u)]) = s[−→z :=

−→
s(u)] since−→z ,−→u ̸∈ var(R). Then by

definition, JBKs[−→z :=−→u]True. Then by definition, JB1Ks = True. Hence S ∧ A1[
−→x :=

−→z]→ B1 is true.

Then by the consequence rule,

⊢ {−→x = −→z ∧ A1[
−→x := −→z]}R{B1}

is provable. Then by the substitution rule II,

⊢ {−→x = −→x ∧ A1}R{B1}

is provable. Then by the consequence rule,

⊢ {A1}Ri{B1}

is provable. By the substitution rule I,

⊢ {A1[
−→u := −→z]}Ri{B1[

−→u := −→z]}.

We have A→ A1[
−→u := −→z] and B1[

−→u := −→z]→ B. Then by the consequence rule,

⊢ {A}P{B}

provable. ⊓⊔

Lemma 2.1.6 (Apt 1981) The next lemma in [3] claims that ⊢ {−→x = −→z }R{S} is
provable.

Proof. By definition of S, {−→x = −→z }R{S} is true and hence {−→x = −→z }Q{S} is true
since JRK = JQK. By the Lemma 2.1.5, {−→x = −→z }R{S} ⊢ {−→x = −→z }Q{S} is
provable. By the recursion rule, ⊢ {−→x = −→z }R{S} is provable. ⊓⊔

2.2 Separation Logic 17

Thecompleteness theorem states that if an asserted program {A}P{B} is true then
⊢ {A}P{B} is provablewhere all the true assertions are given. It is the central concept
of completeness in the sense of Cook.

Theorem 2.1.7 (Apt 1981) If {A}P{B} is true then ⊢ {A}P{B} is provable.

Proof. Assume {A}P{B} is true. By Lemma 2.1.5, {−→x = −→z }R{S} ⊢ {A}P{B}
is provable. By Lemma 2.1.6, ⊢ {−→x = −→z }R{S} is provable. Then ⊢ {A}P{B} is
provable. ⊓⊔

2.2 Separation Logic

In system programming, use of shared mutable data structures is widespread. For
three decades, approaches to reasoning about this technique has been studied. Most
of them either have extremely complexity or limited applicability. Until the work of
Reynolds in 2002 [18], an extension to pointer programs was missing. Reynolds in-
troduced separation logic, which is an extension of Hoare’s logic that permits reason-
ing about pointer programs that have the ability to use sharedmutable data structure.
He extended the simpleWHILE programs with commands for allocating, deallocat-
ing, accessing and modifying shared resources. He also extended the assertions by
incorporating separating conjunction and separating implication that resembles mul-
tiplicative conjunction andmultiplicative implication in the logic of bunched implica-
tion byO’Hearn and Pym [20]. In his work, he also extendedHoare’s logic to pointer
programs with several sets of logical rules. Although Reynolds provided the logical
system and mentioned that it is sound, he did not provide the proof. The detail tech-
nical description of separation logic is given in Chapter 4.

Tatsuta et al. gave the detailed proof of completeness in [19]. In his work he has
taken all the axioms and rules from basic Hoare’s logic and only the backward rea-
soning axioms from the rules proposed by Reynolds and proved that his system is
complete in the sense of Cook. On the way of proving completeness, he also proved
the expressiveness of the separation logic for pointer programs.

Thework ofO’Hearn gives us local reasoning of Programs [21] using frame rule. It

18 Chapter 2. Background

is important to simplify verification since it gives an information hiding mechanism.
Yang investigated the “adaptation completeness” (completeness of atomic programs)
using the frame rule for programs with procedures, which indicates that all properties
can be inferred with the rule [23].

This dissertation is based on [3, 19], that intends to extend Hoare’s logic and sep-
aration logic to mutual recursive procedures, and discuss admissibility of frame rules
in it.

19

3
NewComplete System ofHoare’s Logic

with Recursive Procedures

We introduce a complete system of Hoare’s logic with recursive procedures. Apt
gave a system for the same purpose and showed its completeness in [3]. Our sys-
tem is obtained fromApt’s systemby replacing the INVARIANCEAXIOM, the SUB-
STITUTION RULE I, the SUBSTITUTION RULE II, and the CONJUNCTION
RULEby the rules (Inv-Conj) and (Exists). Apt suggestedwithout proofs that one
could replace them by his SUBSTITUTION RULE I, (Inv-Conj), and (Exists) to
get another complete system. We prove that the substitution rule I can actually be de-
rived in our system. We also give a detailed proof of the completeness of our system.

20 Chapter 3. NewComplete System ofHoare’s Logic with Recursive Procedures

3.1 Language

Our assertion is a formula A of Peano arithmetic. We define the language L as
follows.

Definition 3.1.1 Formulas A are defined by

A ::= e = e | e < e | ¬A | A ∧ A | A ∨ A | A→ A | ∀xA | ∃xA

We will sometimes call a formula an assertion.

We define FV(A) as the set of free variables in A. We define FV(e) similarly.

Our program is a while-program with parameterless recursive procedures.

Definition 3.1.2 Programs, denoted by P,Q, are defined by

P,Q ::= x := e
| if (b) then (P) else (P)
| while (b) do (P)
| P; P
| skip
| Ri.

b is a formula without the quantifiers. Ri is a parameter-less procedure name having
Qi as its definition body. We define the languageL− asL excluding the construct R.

An asserted program is defined by {A}P{B}, which means the partial correctness.

3.2 Semantics

Definition 3.2.1 We define the semantics of our programming language. For a program
P, its meaning JPK is defined as a partial function from States to States. We will define

3.3 Logical System 21

JPK(r1) as the resulting state after termination of the execution of P with the initial state r1.
If the execution of P with the initial state r1 does not terminate, we leave JPK(r1) undefined.
In order to define JPK, we would like to define JPK− for all P in the language L−. We defineJPK− by induction on P inL− as follows:

Jx := eK−(s) = s[x := JeKs],
Jif (b) then (P1) else (P2)K−(s) =

{ JP1K(s) if JbKs = TrueJP2K(s) otherwise,

Jwhile (b) do (P)K− =

{
s if JbKs = FalseJwhile (b) do (P)K−(JPK−(s)) otherwise,JP1; P2K−(s) = JP2K−(JP1K−(s))JskipK−(s) = s.

Definition 3.2.2 For an asserted program {A}P{B}, the meaning of {A}P{B} is de-
fined as True or False. {A}P{B} is defined to be True if the following holds.

For all s and s′, if JAKs = True and JPK(s) = s′, then JBKs′ = True.

Definition 3.2.3 The semantics of P inL is defined by

JPK(s) = {
s′ if {JP(i)K−(s)|i ≥ 0} = {s′}
undefined if {JP(i)K−(s)|i ≥ 0} = ∅

3.3 Logical System

This section defines the logical system.

We will write A[x := e] for the formula obtained from A by replacing x by e.

Definition 3.3.1 Our logical system consists of the following inference rules. As men-
tioned in previous section, wewill use Γ for a set of asserted programs. A judgment is defined
as Γ ⊢ {A}P{B}.

22 Chapter 3. NewComplete System ofHoare’s Logic with Recursive Procedures

Skip

Γ ⊢ {A}skip{A}

Identity

Γ, {A}P{B} ⊢ {A}P{B}

Assignment

Γ ⊢ {A[x := e]}x := e{A}

If
Γ ⊢ {A ∧ b}P1{B} Γ ⊢ {A ∧ ¬b}P2{B}

Γ ⊢ {A}if (b) then (P1) else (P2){B}

While
Γ ⊢ {A ∧ b}P{A}

Γ ⊢ {A}while (b) do (P){A ∧ ¬b}

Composition
Γ ⊢ {A}P1{C} Γ ⊢ {C}P2{B}

Γ ⊢ {A}P1; P2{B}

Conseq
Γ ⊢ {A1}P{B1}
Γ ⊢ {A}P{B} (A→ A1,B1 → B)

Recursion

Γ ∪ {{Ai}Ri{Bi}|i = 1, . . . , nproc} ⊢ {A1}Q1{B1}
...

Γ ∪ {{Ai}Ri{Bi}|i = 1, . . . , nproc} ⊢ {Anproc}Qnproc{Bnproc}
Γ ⊢ {Aj}Rj{Bj}

1 ≤ j ≤ nproc

3.4 Completeness 23

Inv-Conj
Γ ⊢ {A}P{C}

Γ ⊢ {A ∧ B}P{C ∧ B} (FV(B) ∩Mod(P) = ∅)

Exists
Γ ⊢ {A}P{B}

Γ ⊢ {∃x.A}P{B} (x /∈ FV(B) ∪ EFV(P))

We say {A}P{B} is provable and we write ⊢ {A}P{B}, when ⊢ {A}P{B} can be
derived by these inference rules.

The rule (Exists) is analogous to the rule existential introduction of propositional
calculus.

3.4 Completeness

Lemma 3.4.1 If {A}P1{B} is true and JP1K = JP2K then {A}P2{B} is true.
Proof. By definition. ⊓⊔

Definition 3.4.2 X is called the strongest postcondition of P and A if and only if the fol-
lowing holds.

(1) For all s, s′, if JAKs = True and JPK(s) = s′ then s′ ∈ X.

(2) For all Y, if ∀s, s′(JAKs = True ∧ JPK(s) = s′ → s′ ∈ Y) then X ⊆ Y.

Definition 3.4.3 SA,P(−→x) is defined as the strongest postcondition for A and P.

SA,P(−→x) gives the strongest assertion S such that {A}P{S} is true.

Lemma 3.4.4 If⊢ {A}P{B} then⊢ {A[−→x := −→z]}P{B[−→x := −→z]}where−→z ,−→x ̸∈
EFV(P).

24 Chapter 3. NewComplete System ofHoare’s Logic with Recursive Procedures

Proof. Assume ⊢ {A}P{B} and−→z ̸∈ EFV(P). Then by (Inv-Conj),

⊢ {A ∧ −→x = −→z }P{B ∧ −→x = −→z }.

We have B ∧ −→x = −→z → B[−→x := −→z]. Then by (Conseq),

⊢ {A ∧ −→x = −→z }P{B[−→x := −→z]}.

Then by (Exists),

⊢ {∃−→z (A ∧ −→x = −→z)}P{B[−→x := −→z]}.

We have A[−→x := −→z]→∃−→z (A ∧ −→x = −→z). Then by (Conseq),

⊢ {A[−→x := −→z]}P{B[−→x := −→z]}.

⊓⊔

Lemma 3.4.5 If {A}P{B} is true and −→z ̸∈ EFV(P) then Γ ⊢ {A}P{B} where
Γ = {{−→x = −→z }Ri{S−→x =−→z ,Ri(

−→x)}|i = 1, . . . , n}, −→x = x1, . . . , xm and {xj|j =
1, . . . ,m} = EFV(P).

Proof. Wewill prove it by induction on P. We will consider the cases of P.

If P is other than Ri, the proof of these cases are similar to those of completeness
proof of H given in [3].

Case P is Ri.

Assume {A}Ri{B} is true and z⃗ ̸∈ EFV(Ri). We have

Γ ⊢ {−→x = −→z }Ri{S−→x =−→z ,Ri(
−→x)}.

LetA1 beA[−→z := −→u] and B1 be B[−→z := −→u]where−→u ̸∈ FV(B)∪ EFV(Ri). By the
rule (Inv-Conj),

Γ ⊢ {−→x = −→z ∧ A1[
−→x := −→z]}Ri{S−→x =−→z ,Ri(

−→x) ∧ A1[
−→x := −→z]}

3.4 Completeness 25

since FV(A1[
−→x := −→z]) ∩Mod(Ri) = ∅.

We now show that S−→x =−→z ,Ri(
−→x) ∧ A1[

−→x := −→z]→ B1.

Assume JS−→x =−→z ,R(
−→x) ∧ A1[

−→x := −→z]Ks = True. By definitionJS−→x =−→z ,Ri(
−→x)Ks = True. By the property of the strongest postcondition,

there exists a state s′ such that JRiK(s′) = s and J−→x = −→z Ks′ = True.

Now suppose that¬JA1[
−→x := −→z]Ks′ = True. By (Inv-Conj),

Γ ⊢ {−→x = −→z ∧ ¬A1[
−→x := −→z]}Ri{S−→x =−→z ,Ri(

−→x) ∧ ¬A1[
−→x := −→z]}.

Since Γ is true by definition, by soundness, {−→x = −→z ∧ ¬A1[
−→x :=

−→z]}Ri{S−→x =−→z ,Ri(
−→x) ∧ ¬A1[

−→x := −→z]} is true. Then by definition
¬JA1[

−→x := −→z]Ks = True. But JA1[
−→x := −→z]Ks = True. It contradicts the assump-

tion and hence JA1[
−→x := −→z]Ks′ = True.

Since−→x = −→z ∧A1[
−→x := −→z]→A1, wehave JA1Ks′ = True. Then JAK

s′[−→z :=
−−→
s′(u)]

=

True. Then JRiK(s′[−→z :=
−−→
s′(u)]) = s[−→z :=

−→
s(u)] since−→z ,−→u ̸∈ EFV(Ri). Then by

definition, JBKs[−→z :=−→u]True. Then by definition, JB1Ks = True. Hence S−→x =−→z ,R(
−→x)∧

A1[
−→x := −→z]→ B1 is true. Then by the rule (Conseq),

Γ ⊢ {−→x = −→z ∧ A1[
−→x := −→z]}Ri{B1}.

Then by the rule (Exists),

Γ ⊢ {∃−→z (−→x = −→z ∧ A1[
−→x := −→z])}Ri{B1}.

We have A1 →∃−→z (−→x = −→z ∧ A1[
−→x := −→z]). Then by the rule (Conseq),

Γ ⊢ {A1}Ri{B1}.

By Lemma 3.4.4,
Γ ⊢ {A1[

−→u := −→z]}Ri{B1[
−→u := −→z]}.

26 Chapter 3. NewComplete System ofHoare’s Logic with Recursive Procedures

We have A→ A1[
−→u := −→z] and B1[

−→u := −→z]→ B. Then by (conseq),

Γ ⊢ {A}P{B},

which was to be proved. ⊓⊔

Next lemma shows that the hypothesis {−→x = −→z (−→x)}R{S−→x =−→z ,R(
−→x)} used in

lemma 5.3.7 is provable in the our system.

Lemma 3.4.6 ⊢ {−→x = −→z }Rj{S−→x =−→z ,Rj(
−→x)} for j = 1, . . . , n where −→x =

x1, . . . , xm, {xj|j = 1, . . . ,m} =
∪n

i=1 EFV(Ri) and−→z ̸∈
∪n

i=1 EFV(Ri).

Proof. Assume−→z ̸∈
∪n

i=1 EFV(Ri) and−→x = x1, . . . , xm where {xj|j = 1, . . . ,m} =∪n
i=1 EFV(Ri).

Fix j. Assume J−→x = −→z Ks = True. Assume JQjK(s) = r where Qj is the body
of Rj. Then by Lemma 3.4.1, JRjK(s) = r. By definition, JS−→x =−→z ,Rj(

−→x)Kr = True.
Then by definition, {−→x = −→z }Qj{S−→x =−→z ,Rj(

−→x)} is true. By Lemma 3.4.5, {{−→x =
−→z }Ri{S−→x =−→z ,Ri(

−→x)}|i = 1, . . . , n} ⊢ {−→x = −→z }Qj{S−→x =−→z ,Rj(
−→x)}. Hence,

{{−→x = −→z }Ri{S−→x =−→z ,Ri(
−→x)}|i = 1, . . . , n} ⊢ {−→x = −→z }Qj{S−→x =−→z ,Rj(

−→x)}
for all j = 1, . . . , n. Then by the rule (Recursion),⊢ {−→x = −→z }Rj{S−→x =−→z ,Rj(

−→x)}.
⊓⊔

The following theorem is the key theorem of this paper. It says that our system is
complete.

Theorem 3.4.7 If {A}P{B} is true then ⊢ {A}P{B} is provable.

Proof. Assume {A}P{B} is true. Let−→z be such that−→z ̸∈
∪n

i=1 EFV(Ri) ∪ EFV(P)
and−→x = x1, . . . , xm where {xj|j = 1, . . . ,m} =

∪n
i=1 EFV(Ri) ∪ EFV(P). Then by

Lemma3.4.5,{{−→x = −→z }Ri{S−→x =−→z ,Ri(
−→x)}|i = 1, . . . , n} ⊢ {A}P{B}. ByLemma

3.4.6, ⊢ {−→x = −→z }Ri{S−→x =−→z ,Ri(
−→x)} for i = 1, . . . , n. Then we have ⊢ {A}P{B}.

⊓⊔

Apt’s system cannot be extended to separation logic, because his invariance axiom

3.4 Completeness 27

is inconsistentwith separation logic. On theother hand,we can extendour system to a
verification systemwith separation logic and recursiveprocedures in a straightforward
way.

29

4
Separation Logic for Recursive Procedures

30 Chapter 4. Separation Logic for Recursive Procedures

4.1 Language

This section defines our programming language and our assertion language. Our
programming language inherits from the pointer programs in Reynolds’ paper [18].
Our assertion language is also the same as in [18], which is basedonPeano arithmetic.

4.1.1 Base Language

We first define our base language, which will be used later for both a part of our
programming language and a part of our assertion language. It is essentially a first-
order language for Peano arithmetic. We call its formula a pure formula. We will use
i, j, k, l,m, n for natural numbers. Our base language is defined as follows. We have
variables x, y, z,w, . . . and constants 0, 1, null, denoted by c. The symbol null means
the null pointer. We have function symbols +,× and we do not have any predicate
constants. Our predicate symbols are= and<. Terms and expressions, denoted by
e, are defined by e ::= x | c | e+ e | e× e. Terms mean natural numbers or pointers.
Our pure formulas, denoted by A, are defined by

A ::= e = e | e < e | ¬A | A ∧ A | A ∨ A | A→ A | ∀xA | ∃xA.

The formula constructions mean usual logical connectives. We will sometimes write
the number n to denote the term 1+ (1+ (1+ . . . (1+ 0))) (n times of 1+).

4.1.2 Programming Language

Next we define our programming language, which is an extension of while pro-
grams to pointers and procedures. Its expressions are terms of the base language.
Its boolean expressions, denoted by b, are quantifier-free pure formulas and defined
by b ::= e = e | e < e | ¬b | b ∧ b | b ∨ b | b→ b. Boolean expressions are used as
conditions in a program.

4.1 Language 31

We assume procedure names R1, . . . ,Rnproc for some nproc. We will write R for these
procedure names.

Definition 4.1.1 Programs, denoted by P,Q, are defined by

P ::= x := e (assignment)
| if (b) then (P) else (P) (conditional)
| while (b) do (P) (iteration)
| P; P (composition)
| skip (no operation)
| x := cons(e, e) (allocation)
| x := [e] (lookup)
| [e] := e (mutation)
| dispose(e) (deallocation)
| R (mutual recursive procedure name)

Rmeans a procedure name without parameters.

We write L for the set of programs. We write L− for the set of programs that do
not contain procedure names.

The statement x := cons(e1, e2) allocates two new consecutive memory cells, puts
the values of e1 and e2 in the respective cells, and assigns the first address to x. The
statement x := [e] looks up the content of thememory cell at the address e and assigns
it to x. The statement [e1] := e2 changes the content of thememory cell at the address
e1 by e2. The statement dispose(e) deallocates the memory cell at the address e.

The programs x := e, skip, x := cons(e1, e2), x := [e], [e1] := e2 and dispose(e) are
called atomic programs.

We call Procedure R(Q) a procedure declaration where R is a procedure name and
Q is a program. The programQ is said to be the body of R. This means that we define
the procedure name Rwith its procedure bodyQ.

32 Chapter 4. Separation Logic for Recursive Procedures

We assume the procedure declarations

{Procedure R1(Q1), . . . , Procedure Rnproc(Qnproc)}

that gives procedure definitions to all procedure names in the rest of the paper. We
allowmutual recursive procedure calls.

4.1.3 Assertion Language andAsserted Programs

Our assertion language is a first-order language extended by the separating con-
junction ∗ and the separating implication −∗ as well as emp and 7→. Its variables,
constants, function symbols, and terms are the same as those of the base language.
We have predicate symbols=,< and 7→ and a predicate constant emp. Our assertion
language is defined as follows.

Definition 4.1.2 Formulas A are defined by

A ::= emp | e = e | e < e | e 7→ e | ¬A | A ∧ A | A ∨ A | A→ A | ∀xA |
∃xA | A ∗ A | A −∗ A

We will sometimes call a formula an assertion.

We define FV(A) as the set of free variables in A. We define FV(e) similarly.

The symbol emp means the current heap is empty. The formula e1 7→ e2 means
the current heap has only one cell at the address e1 and its content is e2. The formula
A ∗ Bmeans the current heap can be split into some two disjoint heaps such that the
formula A holds at one heap and the formula B holds at the other heap. The formula
A −∗ Bmeans that for any heap disjoint from the current heap such that the formula
A holds at the heap, the formula B holds at the new heap obtained from the current
heap and the heap by combining them.

We use vector notation to denote a sequence. For example, −→e denotes the se-
quence e1, . . . , en of expressions.

4.1 Language 33

Definition 4.1.3 The expression {A}P{B} is called an asserted program, where A,B are
formulas and P is a program.

This means the program Pwith its precondition A and its postcondition B.

4.1.4 Unfolding of Procedures

We define the set of procedure names which are visible in a program. It will be
necessary later in defining the dependency relation between two procedures.

Definition 4.1.4 The set PN(P) of procedure names in P is defined as follows.

PN(P) = ∅ if P is atomic,
PN(if (b) then (P1) else (P2)) = PN(P1) ∪ PN(P2),
PN(P1; P2) = PN(P1) ∪ PN(P2),
PN(while (b) do (P)) = PN(P),
PN(Ri) = {Ri}.

We define the dependency relation between two procedures. When a procedure
name appears in the body of another procedure, we say the latter procedure depends
on the former procedure at level 1. When one procedure depends on another and the
latter one again depends on the third one, we say the first one also depends on the
third one. In this case, the level of the third dependency is determined by summing
up the levels of first and second dependencies mentioned above.

Definition 4.1.5 We define the relation Ri
k
; Rj as follows:

Ri
0
; Ri,

Ri
1
; Rj if PN(Qi) ∋ Rj,

Ri
k
; Rj if Ri = R′

0
1
; R′

1
1
; . . .

1
; R′

k = Rj for some R′
0, . . . ,R′

k.

Procedures dependency PD(Ri, k) of a procedure name Ri up to level k is defined by
PD(Ri, k) = {Rj | Ri

l
; Rj, l ≤ k }.

34 Chapter 4. Separation Logic for Recursive Procedures

This relation will be used to define EFV(P) andMod(P) as well as the semantics of P.

Note that (1) PD(Ri, k) ⊆ PD(Ri, k+ 1) for all k and (2) PD(Ri, k) ⊆ {Ri | i =
1, . . . , nproc }where nproc is the number of procedures in the declaration.

The following first lemma will show that once procedures dependencies of a pro-
cedure up to two consecutive levels are the same, it is the same up to any higher level
too. The second claim states that nproc − 1 is sufficient for the largest level.

Lemma 4.1.6 (1) If PD(Ri, k) = PD(Ri, k + 1) then PD(Ri, k) = PD(Ri, k + l) for
all k, l ∈ N.

(2) PD(Ri, k) ⊆ PD(Ri, nproc − 1) for all k.

Proof. (1) It is proved by induction on l.

Case 1. l be 0.

Its proof is immediate.

Case 2. l be l′ + 1.

Assume PD(Ri, k) = PD(Ri, k + 1). We can show that if R′
i ∈ PD(Ri, k) then

R′
i ∈ PD(Ri, k + l′ + 1). Now we will show that if R′

i ∈ PD(Ri, k + l′ + 1) then
R′
i ∈ PD(Ri, k). Assume R′

i ∈ PD(Ri, k + l′ + 1). Then we have Rj such that Rj ∈
PD(Ri, k + l′) and Rj

1
; R′

i . By induction hypothesis, PD(Ri, k) = PD(Ri, k + l′).
Then Rj ∈ PD(Ri, k). Then by definition, R′

i ∈ PD(Ri, k + 1). Then R′
i ∈ PD(Ri, k)

by the assumption. Therefore, PD(Ri, k) = PD(Ri, k+ l′ + 1).

(2) We will show that PD(Ri,m) = PD(Ri,m + 1) for some m < nproc by
contradiction. Assume for all m < nproc, PD(Ri,m) ̸= PD(Ri,m + 1). Then
PD(Ri,m) ⫋ PD(Ri,m + 1). Then we have | PD(Ri,m) | ≥ m + 1 and hence
| PD(Ri, nproc) | ≥ nproc + 1. But PD(Ri, nproc) ⊆ {Ri | i = 1, . . . , nproc } and then
| PD(Ri, nproc) | ≤ nproc. It is a contradiction. Therefore, PD(Ri,m) = PD(Ri,m+1)
for some m < nproc. By (1), we have now PD(Ri, nproc − 1) = PD(Ri, nproc − 1 + l)
for all l.

Therefore, PD(Ri, k) ⊆ PD(Ri, nproc − 1) for all k. ⊓⊔

4.1 Language 35

We need to define some closed program that never terminates in order to define
unfolding of a program for a specific number of times. First we will defineΩ.

Definition 4.1.7 We defineΩ as

while (0 = 0) do (skip)

Substitution of a program for a procedure name is defined below.

Definition 4.1.8 Let −→P ′ = P′1, . . . , P′nproc where P
′
i is a program. P[

−→P ′] is defined by
induction on P as follows:

P[−→P ′] = P if P is atomic,
(if (b) then (P1) else (P2))[

−→P ′] = (if (b) then (P1[
−→P ′]) else (P2[

−→P ′])),

(while (b) do (P))[−→P ′] = (while (b) do (P[−→P ′])),

(P1; P2)[
−→P ′] = (P1[

−→P ′]; P2[
−→P ′]),

(Ri)[
−→P ′] = P′i.

P[−→P ′] is a programobtained fromPby replacing theprocedurenamesR1, . . . ,Rnproc

by P′1, . . . , P′nproc respectively.

Unfolding transforms a program in languageL into a program in languageL−. Dis-
cussions on the programs in languageL can be reduced to those inL−, which are ei-
ther easy or already shown elsewhere. P(k) denotes P where each procedure name is
unfolded only k times. P(0) just replaces a procedure name by Ω, since a procedure
name is not unfolded any more, which means the procedure name is supposed to be
not executed. Here we present the unfolding of a program.

Definition 4.1.9 LetΩi = Ω for 1 ≤ i ≤ nproc. We define P(k) for k ≥ 0 as follows:

P(0) = P[Ω1, . . . ,Ωnproc],

P(k+1) = P[Q(k)
1 , . . . ,Q(k)

nproc].

Sometimes we will call P(k) as the k-times unfolding of the program P.

36 Chapter 4. Separation Logic for Recursive Procedures

We present some basic properties of unfolded programs.

Proposition 4.1.10 (1) P(k) = P[
−→
R(k)].

(2) R(0)
i = Ω.

(3) R(k+1)
i = Qi[

−→
R(k)].

Proof. (1) By case analysis of k.

Case 1. k = 0.

P(0) = P[
−→
Ω] by definition. By (2), P[

−→
Ω] = P[

−→
R(0)]. Therefore, P(0) = P[

−→
R(0)].

Case 2. k = k′ + 1.

P(k′+1) = P[
−−→
Q(k′)]. Since R(k′+1)

i = Ri[
−−→
Q(k′)] = Q(k′)

i , P[
−−→
Q(k′)] = P[

−−−→
R(k′+1)]. There-

fore, P(k′+1) = P[
−−−→
R(k′+1)].

(2) By definition we have R(0)
i = Ri[

−→
Ω] = Ω.

(3) By definition we have R(k+1)
i = Ri[

−−→
Q(k)] = Q(k)

i . By (1), Q(k)
i = Qi[

−→
R(k)].

Therefore, R(k+1)
i = Qi[

−→
R(k)]. ⊓⊔

Thenext two definitionswill define the set of the free variables (FV(P)) and the set
of the variables that can bemodified (Mod1(P)). Generally speaking, the left variable
of the symbol := in a program is a modifiable variable. First we will define above
mentioned two sets for a program in its syntactic structure. Next, it will be used to
define the set of free variables (extended free variables, EFV) and the set ofmodifiable
variables (Mod(P)) that may appear in the execution of the program. Since ‘a free
variable’ has an ordinary meaning without procedure calls, we will use ‘an extended
free variable’ for that with procedure calls.

4.1 Language 37

Definition 4.1.11 We define FV(P) for P inL− and EFV(P) for P inL as follows:

FV(x := e) = {x} ∪ FV(e),
FV(if (b) then (P1) else (P2)) = FV(b) ∪ FV(P1) ∪ FV(P2),
FV(while (b) do (P)) = FV(b) ∪ FV(P),
FV(P1; P2) = FV(P1) ∪ FV(P2),
FV(skip) = ∅,
FV(x := cons(e1, e2)) = {x} ∪ FV(e1) ∪ FV(e2),
FV(x := [e]) = {x} ∪ FV(e),
FV([e1] := e2) = FV(e1) ∪ FV(e2),
FV(dispose(e)) = FV(e),
EFV(P) = FV(P(nproc)).

The expression FV(P) is the set of variables that occur in P. EFV(P) is the set of vari-
ables that may be used in the execution of P.

The expression FV(O1, . . . ,Om) is defined as FV(O1)∪ . . .∪ FV(Om)whenOi is
a formula, an expression, or a program.

Definition 4.1.12 We define Mod1(P) for P inL− andMod(P) for P inL as follows:

Mod1(x := e) = {x},
Mod1(if (b) then (P1) else (P2)) = Mod1(P1) ∪Mod1(P2),
Mod1(while (b) do (P)) = Mod1(P),
Mod1(P1; P2) = Mod1(P1) ∪Mod1(P2),
Mod1(skip) = ∅,
Mod1(x := cons(e1, e2)) = {x},
Mod1(x := [e]) = {x},
Mod1([e1] := e2) = ∅,
Mod1(dispose(e)) = ∅,
Mod(P) = Mod1(P(nproc)).

The expressionMod(P) is the set of variables that may be modified by P.

38 Chapter 4. Separation Logic for Recursive Procedures

Lemma 4.1.13 (1) FV(R(k+1)
i) =

∪
Rj∈PD(Ri,k) FV(Qj).

(2) Mod1(R
(k+1)
i) =

∪
Rj∈PD(Ri,k)Mod1(Qj).

Proof. (1) It is proved by induction on k.

Case 1. k = 0.

By definition, FV(R(1)
i) = FV(Ri[

−−→
Q(0)]) = FV(Q(0)

i) = FV(Qi[
−→
Ω]) = FV(Qi).

Since PD(Ri, 0) = {Ri}, we have FV(Qi) =
∪

Rj∈PD(Ri,0) FV(Qj).

Case 2. k to be k′ + 1.

By Proposition 4.1.10 (3), FV(R(k′+2)
i) = FV(Qi[

−−−→
R(k′+1)]). Then we have

FV(R(k′+2)
i) = FV(Qi) ∪

∪
Ri

1
;Rj FV(R

(k′+1)
j). By induction hypothesis, we

have FV(R(k′+2)
i) = FV(Qi) ∪

∪
Ri

1
;Rj

∪
Rm∈PD(Rj,k′) FV(Qm). Then we have

FV(R(k′+2)
i) = FV(Qi) ∪

∪
Rm∈PD(Ri,k′+1) FV(Qm). Therefore, FV(R(k′+2)

i) =∪
Rj∈PD(Ri,k′+1)(FV(Qj)).

(2) Its proof is similar to (1). ⊓⊔

Proposition 4.1.14 (1) FV(P(k)) ⊆ EFV(P) for all k.

(2) Mod1(P(k)) ⊆ Mod(P) for all k.

Proof. (1) Fix k. If k = 0, the claim trivially holds. Assume k > 0. By Lemma
4.1.6 (2), we have PD(Ri, k− 1) ⊆ PD(Ri, nproc − 1). Then

∪
Rj∈PD(Ri,k−1) FV(Qj) ⊆∪

Rj∈PD(Ri,nproc−1) FV(Qj). Then by Proposition 4.1.13 (1), FV(R(k)
i) ⊆ FV(R(nproc)

i).

Then we have FV(P)∪
∪

Ri∈PN(P) FV(R
(k)
i) ⊆ FV(P)∪

∪
Ri∈PN(P) FV(R

(nproc)
i). Then

byProposition4.1.10 (1)wehaveFV(P(k)) ⊆ FV(P(nproc)). Bydefinition, FV(P(k)) ⊆
EFV(P).

(2) Its proof is similar to (1). ⊓⊔

4.2 Semantics 39

4.2 Semantics

The semantics of our programming language and our assertion language is defined
in this section. Our semantics is based on the same structure as that in Reynolds’
paper [18] except the following simplification: (1) values are natural numbers, (2)
addresses are non-zero natural numbers, and (3) null is 0.

The setN is defined as the set of natural numbers. The set Vars is defined as the set
of variables in the base language. The set Locs is defined as the set {n ∈ N|n > 0}.

For sets S1, S2, f : S1 → S2 means that f is a function from S1 to S2. f : S1 →fin S2
means that f is a finite function from S1 to S2, that is, there is a finite subset S′1 of S1
and f : S′1 → S2. Dom(f) denotes the domain of the function f. The expression p(S)
denotes the power set of the set S. For a function f : A → B and a subset C ⊆ A, the
function f|C : C → B is defined by f|C(x) = f(x) for x ∈ C.

A store is defined as a function fromVars → N, and denoted by s. A heap is defined
as a finite function from Locs →fin N, and denoted by h. A value is a natural number.
An address is a positive natural number. The null pointer is 0. A store assigns a value
to each variable. A heap assigns a value to an address in its finite domain.

The store s[x1 := n1, . . . , xk := nk] is defined by s′ such that s′(xi) = ni and
s′(y) = s(y) for y ̸∈ {x1, . . . , xk}. The heap h[m1 := n1, . . . ,mk := nk] is defined
by h′ such that h′(mi) = ni and h′(y) = h(y) for y ∈ Dom(h) − {m1, . . . ,mk}.
The store s[x1 := n1, . . . , xk := nk] is the same as s except values for the variables
x1, . . . , xk. The heap h[m1 := n1, . . . ,mk := nk] is the same as h except the contents
of the memory cells at the addressesm1, . . . ,mk.

We will write h = h1 + h2 when Dom(h) = Dom(h1) ∪ Dom(h2), Dom(h1) ∩
Dom(h2) = ∅, h(x) = h1(x) for x ∈ Dom(h1), and h(x) = h2(x) for x ∈ Dom(h2).
The heap h is divided into the two disjoint heaps h1 and h2 when h = h1 + h2.

A state is defined as (s, h). The set States is defined as the set of states. The state
for a pointer program is specified by the store and the heap, since pointer programs
manipulate memory heaps as well as variable assignments.

40 Chapter 4. Separation Logic for Recursive Procedures

Definition 4.2.1 We define the semantics of our base language by the standard model of
natural numbers and JnullK = 0. That is, we suppose J0K = 0, J1K = 1, J+K = +,J×K = ×, J=K = (=), and J<K = (<). For a store s, an expression e, and a pure
formula A, according to the interpretation of a first-order language, the meaning JeKs is
defined as a natural number and the meaning JAKs is defined as True or False.
Theexpression JeKs and JAKs are the value of e under the store s, and the truth value of
A under the store s, respectively.

4.2.1 Semantics of Programs

The relation⊆ over the functions of type States∪{abort} → p(States∪{abort})
is necessary to define the semantics for while (b) do (P).

Definition 4.2.2 We define ⊆ for functions F,G: States ∪ {abort} → p(States ∪
{abort}). F ⊆ G is defined to hold if ∀r ∈ States (F(r) ⊆ G(r)).

Definition 4.2.3 We define the semantics of our programming language. For a program
P, its meaning JPK is defined as a function from States ∪ {abort} to p(States ∪ {abort}).
We will define JPK(r1) as the set of all the possible resulting states after the execution of P
terminates with the initial state r1. In particular, if the execution of P with the initial state r1
does not terminate, we will define JPK(r1) as the empty set ∅. The set JPK({r1, . . . , rm}) is
defined as

∪m
i=1JPK(ri). In order to define JPK we would like to define JPK− for all P in the

4.2 Semantics 41

languageL−. We define JPK− by induction on P inL− as follows:

JPK−(abort) = {abort},

Jx := eK−((s, h)) = {(s[x := JeKs], h)},
Jif (b) then (P1) else (P2)K−((s, h)) = { JP1K((s, h)) if JbKs = True,JP2K((s, h)) otherwise,

Jwhile (b) do (P)K− is the least function satisfyingJwhile (b) do (P)K−(abort) = {abort},Jwhile (b) do (P)K−((s, h)) = {(s, h)} if JbKs = False,Jwhile (b) do (P)K−((s, h)) =∪
{ Jwhile (b) do (P)K−(r) | r ∈ JPK−((s, h)) } otherwise,

JP1; P2K−((s, h)) = ∪
{ JP2K−(r) | r ∈ JP1K−((s, h)) },JskipK−((s, h)) = {(s, h)},

Jx := cons(e1, e2)K−((s, h)) =
{(s[x := n], h[n := Je1Ks, n+ 1 := Je2Ks]) | n > 0, n, n+ 1 ̸∈ Dom(h)},

Jx := [e]K−((s, h)) =

{
{(s[x := h(JeKs)], h)}
{abort}

if JeKs ∈ Dom(h),
otherwise,

J[e1] := e2K−((s, h)) =

{
{(s, h[Je1Ks := Je2Ks])}
{abort}

if Je1Ks ∈ Dom(h),
otherwise,

Jdispose(e)K−((s, h)) =

{
{(s, h|Dom(h)−{JeKs})}
{abort}

if JeKs ∈ Dom(h),
otherwise.

We present two propositions which together state that the semantics of a
while (b) do (P) can be constructed by the semantics of P.

Proposition 4.2.4 r ∈ Jwhile (b) do (P)K−((s, h)) if and only if there exist m ≥ 0,
r0, . . . , rm such that r0 = (s, h), rm = r, JbKri = True and ri+1 ∈ JPK−(ri) for 0 ≤ i <
m, and one of the following holds:

(1) r ̸= abort and JbKr = False,
(2) r = abort,

42 Chapter 4. Separation Logic for Recursive Procedures

where we write JbK(s′,h′) for JbKs′ .
Proof. First we will show the only-if-part. Let F((s, h)) = { r | m ≥
0, r0 = (s, h), rm = r, ri = (si, hi), JbKsi = True, ri+1 ∈ JPK−(ri) (0 ≤ ∀i <

m), (r = (sm, hm) ∧ JbKsm = False) ∨ r = abort } and F(abort) = {abort}.
We will show that F satisfies the inequations obtained from the equations forJwhile (b) do (P)K− by replacing= by⊇. That is, we will show

F(abort) ⊇ {abort},
F((s, h)) ⊇ {(s, h)} if JbKs = False,
F((s, h)) ⊇

∪
{ F(r) | r ∈ JPK−((s, h)) } if JbKs = True.

By the well-known least fixed point theorem [22], these inequations imply our
only-if-part.

The first inequation immediately holds by the definition of F. For the second in-
equation, since JbKs = False, by takingm to be 0, we have (s, h) ∈ F((s, h)). We will
show the third inequation. Assume JbKs = True and r is in the right-hand side. We
will show r ∈ F((s, h)).

We have q ∈ JPK−((s, h)) and r ∈ F(q).

Case 1. q = (s′′, h′′).

By the definition of r ∈ F(q), we have m ≥ 0, r0 = (s′′, h′′), rm = r, ri =

(si, hi), JbKsi = True, ri+1 ∈ JPK−(ri) (0 ≤ ∀i < m), and one of the following
holds: either r = (sm, hm) and JbKsm = False, or r = abort.

Letm′ = m+ 1, r′0 = (s, h), and r′i = ri−1 for 0 < i ≤ m′. By takingm and ri to be
m′ and r′i respectively in the definition of F, we have r ∈ F((s, h)).

Case 2. q = abort.

By the definition of F we have r = abort. By taking m = 1, we have abort ∈
F((s, h)).

Next we will show the if-part by induction on m. We assume the right-hand side.

4.2 Semantics 43

Wewill show r ∈ Jwhile (b) do (P)K−((s, h)).
If m = 0 then we have JbKs = False and r = (s, h). Hence r ∈Jwhile (b) do (P)K−((s, h)).
Suppose m > 0. We have m and r0, . . . , rm satisfying the conditions (1) or

(2). If r1 = abort, we have m = 1 and abort ∈ JPK−((s, h)). Hence r ∈Jwhile (b) do (P)K−((s, h)) in this case. Suppose r1 ̸= abort. By induction hy-
pothesis for m − 1, we have r ∈ Jwhile (b) do (P)K−(r1). Since JbKs = True and
r1 ∈ JPK−((s, h)), by the definition we have r ∈ Jwhile (b) do (P)K−((s, h)). ⊓⊔

The following proposition characterizes the two properties of the semantics ofΩ.

Proposition 4.2.5 (1) JΩK−(abort) = {abort}.

(2) JΩK−((s, h)) = ∅.

Proof. (1) By definition, JΩK−(abort) = {abort}.

(2) By definition, JΩK−((s, h)) = Jwhile (0 = 0) do (skip)K−((s, h)). SinceJskipK−((s′, h′)) ̸∋ abort for all s′, h′, by Proposition 4.2.4, abort ̸∈Jwhile (0 = 0) do (skip)K−((s, h)). Since J0 = 0Ks′ = True for all s′, by Proposition
4.2.4 we have (s′, h′) ̸∈ Jwhile (0 = 0) do (skip)K−((s, h)) for all s′, h′. Therefore,Jwhile (0 = 0) do (skip)K−((s, h)) = ∅. ⊓⊔

Lemma 4.2.6 If P′i, P′′i ∈ L− (1 ≤ i ≤ nproc) and JP′iK− ⊆ JP′′i K− for all i thenJP[−→P′]K− ⊆ JP[−→P′′]K− where P ∈ L and P[
−→
P′] ∈ L−.

Proof. (1) By induction on P. Assume JP′iK− ⊆ JP′′i K− for all i.

Case 1. P is atomic.

Since P[
−→
P′]=P=P[

−→
P′′], the claim holds.

Case 2. P is if (b) then (P1) else (P2).

We will show that JP[−→P′]K−(r) ⊆ JP[−→P′′]K−(r).
Case 2.1. r is abort.

44 Chapter 4. Separation Logic for Recursive Procedures

By definition, JP[−→P′]K−(abort) = {abort} = JP[−→P′′]K−(abort). HenceJP[−→P′]K− ⊆ JP[−→P′′]K−.
Case 2.2. r is (s, h).

Let r to be (s, h). Suppose JbKs = True. Then by definition, JP[−→P′]K−(r) =JP1[−→P′]K−(r) and JP[−→P′′]K−(r) = JP1[−→P′′]K−(r). By induction hypothesis,JP1[−→P′]K− ⊆ JP1[−→P′′]K−. Therefore, JP[−→P′]K− ⊆ JP[−→P′′]K−. In the case JbKs = False,
it can be proved similarly.

Case 3. P is while (b) do (P1).

We will show that JP[−→P′]K−(r) ⊆ JP[−→P′′]K−(r).
Case 3.1. r is abort.

The case is similar to 2.1.

Case 3.2. r to be (s, h).

Case JbKs = False. By definition, Jwhile (b) do (P1[−→P′])K−((s, h)) = {(s, h)} =Jwhile (b) do (P1[−→P′′])K−((s, h)). Hence JP[−→P′]K− ⊆ JP[−→P′′]K−.
Case JbKs = True. Assume Jwhile (b) do (P1[−→P′])K−((s, h)) ∋ r′. By Proposi-

tion 4.2.4, we have m ≥ 0, r0, . . . , rm such that r0 = (s, h), ri+1 ∈ JP1[−→P′]K−(ri)
and JbKri = True for 0 ≤ i < m such that either r′ ̸= abort andJbKr′ = False, or r′ = abort. By induction hypothesis, ri+1 ∈ JP1[−→P′′]K−(ri). ThenJwhile (b) do (P1[−→P′′])K−(r) ∋ r′.

Then Jwhile (b) do (P1[−→P′])K−(r) ⊆ Jwhile (b) do (P1[−→P′′])K−(r). Therefore,JP[−→P′]K− ⊆ JP[−→P′′]K−.
Case 4. P is P1; P2.

By induction hypothesis, JP1[−→P′]K− ⊆ JP1[−→P′′]K− and JP2[−→P′]K− ⊆ JP2[−→P′′]K−.
Therefore, JP[−→P′]K− ⊆ JP[−→P′′]K−.

Case 5. Ri.

We have Ri[
−→
P′] = P′i and Ri[

−→
P′′] = P′′i . Hence JRi[

−→
P′]K− ⊆ JRi[

−→
P′′]K−. ⊓⊔

4.2 Semantics 45

We have already defined the semantics of P in the language L−. We define the
semantics of P in L. The semantics we will define is usually called an approximating
semantics.

Definition 4.2.7 The semantics of P inL is defined by JPK(r) = ∪∞
i=0(JP(i)K−(r)).

Note thatQ(k)
i is a program of the languageL− and doesn’t contain Ri.

Remark that for P inL−, we have JPK = JPK− since P(k) = P.

Lemma 4.2.8 For all k, JP(k)K− ⊆ JP(k+1)K−.
Proof. By induction on k.

Case 1. k = 0.

We have JΩK−(r) = ∅ for all r by Proposition 4.2.5 (2). Then for all i, we haveJΩK− ⊆ JQ(0)
i K−. Then by Lemma 4.2.6, JP[−→Ω]K ⊆ JP[−−→Q(0)]K. Then JP(0)K− ⊆JP(1)K−.

Case 2. k > 0.

Let k be k′ + 1. We have Q(k) = Q(k′+1) = Q[
−−→
Q(k′)] and Q(k+1) = Q(k′+2) =

Q[
−−−→
Q(k′+1)]. By induction hypothesis, JQ(k′)K− ⊆ JQ(k′+1)K−. By Lemma 4.2.6, we

now have JP[−−→Q(k′)]K− ⊆ JP[−−−→Q(k′+1)]K−. Then JP(k)K− ⊆ JP(k+1)K−. ⊓⊔

4.2.2 Semantics of Assertions

Definition 4.2.9 We define the semantics of the assertion language. For an assertion A
and a state (s, h), themeaning JAK(s,h) is defined as True or False. JAK(s,h) is the truth value

46 Chapter 4. Separation Logic for Recursive Procedures

of A at the state (s, h). JAK(s,h) is defined by induction on A as follows:

JempK(s,h) = True if Dom(h) = ∅,Je1 = e2K(s,h) = (Je1Ks = Je2Ks),Je1 < e2K(s,h) = (Je1Ks < Je2Ks),Je1 7→ e2K(s,h) = True if Dom(h) = {Je1Ks} and h(Je1Ks) = Je2Ks,J¬AK(s,h) = (not JAK(s,h)),JA ∧ BK(s,h) = (JAK(s,h) and JBK(s,h)),JA ∨ BK(s,h) = (JAK(s,h) or JBK(s,h)),JA→ BK(s,h) = (JAK(s,h) implies JBK(s,h)),J∀xAK(s,h) = True if JAK(s[x:=m],h) = True for all m ∈ N,J∃xAK(s,h) = True if JAK(s[x:=m],h) = True for some m ∈ N,JA ∗ BK(s,h) = True if h = h1 + h2 andJAK(s,h1) = JBK(s,h2) = True for some h1, h2,JA −∗ BK(s,h) = True if h2 = h1 + h andJAK(s,h1) = True implies JBK(s,h2) = True for all h1, h2.

We say A is true when JAK(s,h) = True for all (s, h).

4.2.3 Semantics of Asserted Program

Finally we need to define the semantics of the asserted programs. It is basically the
same as in [18].

Definition 4.2.10 For an asserted program {A}P{B}, the meaning of {A}P{B} is de-
fined as True or False. {A}P{B} is defined to be True if both of the following hold.

(1) for all (s, h), if JAK(s,h) = True, then JPK((s, h)) ̸∋ abort.

(2) for all (s, h) and (s′, h′), if JAK(s,h) = True and JPK((s, h)) ∋ (s′, h′), thenJBK(s′,h′) = True.

Remark that the semantics of an asserted programwith a non-terminating program
is always True. Because, according to the definition of semantics, a resulting abort
state of a program implies termination of its execution.

4.2 Semantics 47

In our system, judgments are in the form Γ ⊢ {A}P{B}where Γ is a set of asserted
programs. Here we will define semantics of a judgment.

We say Γ is true if all {A}P{B} in Γ are true.

Definition 4.2.11 We say Γ ⊢ {A}P{B} is true when the following holds: {A}P{B} is
true if {Ai}Pi{Bi} is true for all {Ai}Pi{Bi} ∈ Γ.

We say Γ is true if all {A}P{B} in Γ are true.

The asserted program {A}P{B}means abort-free partial correctness and also im-
plies partial correctness in the standard sense. Namely, it means that the execution of
the programPwith all the initial states which satisfyA never aborts, that is, P does not
access any of the unallocated addresses during the execution. It is one of the strongest
feature of the system.

The next lemma shows that the semantics of a procedure call (or procedure name)
is the same as that of its body.

Lemma 4.2.12 JRiK = JQiK.
Proof. By definition we have JQiK(r) =

∪∞
k=0(JQ(k)

i K−(r)). Since Q(k)
i =

Ri[
−−→
Q(k)] = R(k+1)

i , we have
∪∞

k=0(JQ(k)
i K−(r)) =

∪∞
k=0(JR(k+1)

i K−(r)). Then by
Proposition 4.2.5 (2), JQiK(r) =

∪∞
k=0(JR(k+1)

i K−(r)) ∪ JΩK−(r). Then JQiK(r) =∪∞
k=0(JR(k+1)

i K−(r)) ∪ JR(0)
i K−(r) by Proposition 4.1.10(2). Then JQiK(r) =∪∞

k=0(JR(k)
i K−(r)). Therefore, JQiK = JRiK. ⊓⊔

We define the equality of two stores over a set of variables. Suppose some stores
are equal over the set of free variables of a program. If we execute the program with
those stores in the states, then the stores in the resulting states are still equal over the
same set of free variables.

Definition 4.2.13 For a set V of variables, we define=V as follows: s =V s′ if and only if
s(x) = s′(x) for all x ∈ V.

Definition 4.2.14 We first define [s1, s2,V] to denote the store s such that s =V s1 and
s =Vc s2 for stores s1, s2 and a set of variables V.

48 Chapter 4. Separation Logic for Recursive Procedures

Lemma 4.2.15 Suppose P ∈ L−.

(1) If JPK−((s, h)) ∋ (s1, h1) then s1 =Mod1(P)c s.

(2) If s =FV(P) s′, JPK−((s, h)) ∋ (s1, h1) and s′1 = [s1, s′, FV(P)] thenJPK−((s′, h)) ∋ (s′1, h1).

(3) If s =FV(P) s′ and JPK−((s, h)) ∋ abort, then JPK−((s′, h)) ∋ abort.

Proof. (1)We will show the claim by induction on P. We consider cases according to
P.

Case 1. x := e.

Assume Jx := eK−((s, h)) ∋ (s1, h1). By definition, s1 = s[x := JeKs] and h = h1.
Then for all y ̸= x, s(y) = s1(y). By definition, Mod1(x := e) = {x}. Therefore,
s1 =Mod1(P)c s.

Case 2. P is if (b) then (P1) else (P2).

Assume JPK−((s, h)) ∋ (s1, h1).

Case JbKs = True. By definition, we have JP1K−((s, h)) ∋ (s1, h1). By induction
hypothesis, s =Mod1(P1)c s1. WehaveMod1(P)c ⊆ Mod1(P1)c. Therefore, s =Mod1(P)c s1.

Case JbKs = False can be shown as above.

Case 3. P is while (b) do (P1).

Assume JPK−((s, h)) ∋ (s1, h1).

Case JbKs = True. By Proposition 4.2.4, we have s2, . . . , sm, h2, . . . , hm such that
(s, h) = (s2, h2), (s1, h1) = (sm, hm), for all i = 2, . . . ,m − 1, JP1K−((si, hi)) ∋
(si+1, hi+1), JbKsi = True and JbKsm = False. By induction hypothesis, for all i =
2, . . . ,m− 1, si =Mod1(P1)c si+1. SinceMod1(P)c ⊆ Mod1(P1)c, for all i = 2, . . . ,m− 1,
si =Mod1(P)c si+1. Therefore, s =Mod1(P)c s1.

Case JbKs = False. Then by definition, s = s1. Then s =Mod1(P)c s1.

Case 4. P1; P2.

4.2 Semantics 49

Assume JP1; P2K−((s, h)) ∋ (s1, h1). By definition, we have s2, h2 such thatJP1K−((s, h)) ∋ (s2, h2) and JP2K−((s2, h2)) ∋ (s1, h1).

By induction hypothesis, s2 =Mod1(P1)c s and s1 =Mod1(P2)c s2. Since Mod1(P)c ⊆
Mod1(P1)c and Mod1(P)c ⊆ Mod1(P2)c, we have s2 =Mod1(P)c s and s1 =Mod1(P)c s2.
Therefore, s1 =Mod1(P)c s.

Case 5. skip.

Its proof is immediate.

Case 6. x := cons(e1, e2).

Assume Jx := cons(e1, e2)K−((s, h)) ∋ (s1, h1). By definition, (s1, h1) is in
{ (s[x := m], h[m := Je1Ks,m+ 1 := Je2Ks]) | m > 0, m, m+ 1 ̸∈ Dom(h) }. So,
for all y ̸= x, s(y) = s1(y). By definition, Mod1(x := cons(e1, e2)) = {x}. Therefore,
s =Mod1(x:=cons(e1,e2))c s1.

Case 7. x := [e].

Assume Jx := [e]K−((s, h)) ∋ (s1, h1). By definition, {(s[x := h(JeKs)], h)}. So,
for all y ̸= x, s(y) = s1(y). By definition, Mod1(x := [e]) = {x}. Therefore,
s =Mod1(x:=[e])c s1.

Case 8. [e1] := e2.

Assume J[e1] := e2K−((s, h)) ∋ (s1, h1). By definition, s = s1. Therefore,
s =Mod1([e1]:=e2)c s1.

Case 9. dispose(e).

Assume Jdispose(e)K−((s, h)) ∋ (s1, h1). By definition, s = s1. Therefore,
s =Mod1(dispose(e))c s1.

(2)We will show the claim by induction on P. We consider cases according to P.

Case 1. P is x := e.

Assume s =FV(x:=e) s′, Jx := eK−((s, h)) ∋ (s1, h1) and s′1 = [s1, s′, FV(x := e)].
Then by definition, s1 = s[x := JeKs] and s′1 =FV(x:=e) s1. Then s′1(x) = s1(x) = JeKs =

50 Chapter 4. Separation Logic for Recursive Procedures

JeKs′ . We have s′1 =FV(x:=e)c s′ and for all y ∈ FV(e) and y ̸= x, s′1(y) = s1(y) = s(y) =
s′(y). Then we have s′1 = s′[x := JeKs′]. Therefore, Jx := eK−((s′, h)) ∋ (s′1, h1).

Case 2. P is if (b) then (P1) else (P2).

Assume s =FV(if (b) then (P1) else (P2)) s′, Jif (b) then (P1) else (P2)K−((s, h)) ∋ (s1, h1)
and s′1 = [s1, s′, FV(if (b) then (P1) else (P2))].

Let JbKs = True. Then by definition JP1K−((s, h)) ∋ (s1, h1). By (1), s =Mod1(P1)c s1
and since FV(P1)c ⊆ Mod1(P1)c, we have s =FV(P1)c s1. We also have s =FV(P) s′ by
assumption and s′1 =FV(P) s1 by definition and hence s′ =FV(P1) s and s′1 =FV(P1) s1
because FV(P1) ⊆ FV(P). Then for all y ∈ FV(P)− FV(P1), s′(y) = s(y) = s1(y) =
s′1(y). Since s′1 =FV(P)−FV(P1) s′ and s′1 =FV(P)c s′ are true, we have that s′ =FV(P1)c s′1
holds. Then s′1 = [s1, s′, FV(P1)]. By induction hypothesis, JP1K−((s′, h)) ∋ (s′1, h1).
Then by definition JPK−((s′, h)) ∋ (s′1, h1).

Again let JbKs = False. In the sameway as abovewe can prove that JPK−((s′, h)) ∋
(s′1, h1).

Case 3. P is while (b) do (P1).

Assume s =FV(while (b) do (P1)) s′, Jwhile (b) do (P1)K−((s, h)) ∋ (s1, h1) and s′1 =
[s1, s′, FV(while (b) do (P1))]. We have (s, h) = (q0, h′0), …, (qm, h′m) = (s1, h1) such
that JP1K−((qi, h′i)) ∋ (qi+1, h′i+1) and JbKqi = True for all 0 ≤ i < m and JbKqm =

False by Proposition 4.2.4. Let q′i = [qi, s′, FV(P1)] for all 0 ≤ i ≤ m.

We will show that s′ = q′0 and s′1 = q′m. We have q′0 = [s, s′, FV(P1)]. Then
q′0 =FV(P1)c s′. Since s =FV(P1) s′ and q′0 =FV(P1) s, we have q′0 =FV(P1) s′. Therefore,
s′ = q′0. We have q′m = [s1, s′, FV(P1)]. We also have s′1 = [s1, s′, FV(P)]. Then
q′m =FV(P1) s′1. By (1), s =Mod1(P)c s1. Then s =FV(P1)c s1 since Mod1(P)c = Mod1(P1)c

and Mod1(P1)c ⊇ FV(P1)c. We have q′m =FV(P)c s′ since FV(P)c ⊆ FV(P1)c and
q′m =FV(P1)c s′. Then q′m =FV(P)c s′1. Since q′m =FV(P1)c s′, s′ =FV(P) s and s1 =FV(P) s′1,
for all y ∈ FV(P) − FV(P1), q′m(y) = s′(y) = s(y) = s1(y) = s′1(y). Therefore,
s′1 = q′m. Hence s′ = q′0, s′1 = q′m.

Since q′i =FV(P1)c s′ by definition, q′i+1 = [qi+1, q′i, FV(P1)] for 0 ≤ i < m.
By induction hypothesis, JP1K−((q′i, hi)) ∋ (q′i+1, hi+1). We also have JbKq′i =

4.2 Semantics 51

True for 0 ≤ i < m and JbKq′m = False. Hence by Proposition 4.2.4,Jwhile (b) do (P1)K−((s′, h)) ∋ (s′1, h1).

Case 4. P is P1; P2.

Assume s =FV(P1;P2) s′, JP1; P2K−((s, h)) ∋ (s1, h1) and s′1 = [s1, s′, FV(P1; P2)].
By definition, we know that JP1K−((s, h)) ∋ (s2, h2) and JP2K−((s2, h2)) ∋ (s1, h1)
for some s2, h2. By (1), s =Mod1(P1)c s2 and s1 =Mod1(P2)c s2 and then s =FV(P1)c s2
and s1 =FV(P2)c s2. Let take s′2 such that s′2 = [s2, s′, FV(P1)]. Then s′2 =FV(P1) s2 and
s′2 =FV(P1)c s′. Then for all y ∈ FV(P1)∩ FV(P2), s′2(y) = s2(y). For all y ∈ FV(P2)−
FV(P1), s′2(y) = s′(y) = s(y) = s2(y). So, s′2 =FV(P2) s2. Since s′1 =FV(P1;P2) s1 we have
s′1 =FV(P2) s1. For all y ∈ FV(P1) − FV(P2), s′1(y) = s1(y) by s′1 = [s1, s′, FV(P1; P2)],
s1(y) = s2(y) by s1 =FV(P2)c s2, s2(y) = s′2(y) by s′2 =FV(P1) s2 and hence s′1(y) = s′2(y).
For all y ̸∈ FV(P1; P2), s′1(y) = s′(y) by s′1 = [s1, s′, FV(P1; P2)] and s′(y) = s′2(y)
by s′2 = [s2, s′, FV(P1)] and hence s′2(y) = s′1(y). Then we have s′2 =FV(P2)c s′1. Then
s′1 = [s1, s′2, FV(P2)].

Hence, by induction hypothesis JP1K−((s′, h)) ∋ (s′2, h2) and JP2K−((s′2, h2)) ∋
(s′1, h1). Therefore, by definition JP1; P2K−((s′, h)) ∋ (s′1, h1).

Case 5. P is skip.

Its proof is immediate.

Case 6. P is x := cons(e1, e2).

Assume s =FV(x:=cons(e1,e2)) s′, Jx := cons(e1, e2)K−((s, h)) ∋ (s1, h1) and s′1 =

[s1, s′, FV(x := cons(e1, e2))]. Then by definition, s1 = s[x := m] for some m > 0
where m,m + 1 ̸∈ Dom(h) and s′1 =FV(x:=cons(e1,e2)) s1. Then s′1(x) = s1(x) = m.
We have s′1 =FV(x:=cons(e1,e2))c s′. For all y ∈ FV(x := cons(e1, e2)) − {x},
s′1(y) = s1(y) = s(y) = s′(y). Then we have s′1 = s′[x := m]. Therefore, by defi-
nition Jx := cons(e1, e2)K−((s′, h)) ∋ (s′1, h1).

Case 7. P is x := [e].

Assume s =FV(x:=[e]) s′, Jx := [e]K−((s, h)) ∋ (s1, h1) and s′1 = [s1, s′, FV(x :=

[e])]. Then by definition, s1 = s[x := h(JeKs)] and s′1 =FV(x:=[e]) s1. Then s′1(x) =

52 Chapter 4. Separation Logic for Recursive Procedures

s1(x) = h(JeKs) = h(JeKs′). We have s′1 =FV(x:=[e])c s′ and hence for all y ̸= x and
y ∈ FV(x := [e]), s′1(y) = s1(y) = s(y) = s′(y). Then we have s′1 = s′[x := h(JeKs′)].
Therefore, Jx := [e]K−((s′, h)) ∋ (s′1, h1).

Case 8. P is [e1] := e2.

Assume s =FV([e1]:=e2) s′, J[e1] := e2K−((s, h)) ∋ (s1, h1) and s′1 = [s1, s′, FV([e1] :=
e2)]. Then by definition, s1 = s and s′1 =FV([e1]:=e2) s1. For all y ∈ FV([e1] := e2), we
have s′1(y) = s1(y) = s(y) = s′(y). Then we have s′1 = s′. Since h1 = h[Je1Ks := Je2Ks],
we have h1 = h[Je1Ks′ := Je2Ks′]. Therefore, J[e1] := e2K−((s′, h)) ∋ (s′1, h1).

Case 9. P is dispose(e).

Assume s =FV(dispose(e)) s′, Jdispose(e)K−((s, h)) ∋ (s1, h1) and s′1 =

[s1, s′, FV(dispose(e))]. Then by definition, s1 = s and s′1 =FV(dispose(e)) s1. For
all y ∈ FV(dispose(e)), we have s′1(y) = s1(y) = s(y) = s′(y). Then we
have s′1 = s′. Since h1 = h|Dom(h)−JeKs , we have h1 = h|Dom(h)−JeKs′ . Therefore,Jdispose(e)K−((s′, h)) ∋ (s′1, h1).

(3)We will show the claim by induction on P. We consider cases according to P.

Case 1. x := e.

Assume s =FV(x:=e) s′ and Jx := eK−((s, h)) ∋ abort. By definition,Jx := eK−((s, h)) = {(s[x := JeKs], h)}. Therefore, Jx := eK−((s, h)) ∋ abort is
False. Then Jx := eK−((s, h)) ∋ abort implies Jx := eK−((s′, h)) ∋ abort.

Case 2. P is if (b) then (P1) else (P2).

Assume s =FV(P) s′.

Case 2.1. JbKs = True. Then JbKs′ = True. Assume JPK−((s, h)) ∋ abort.
By definition, JP1K((s, h)) ∋ abort. By definition FV(P1) ⊆ FV(P) and then
s =FV(P1) s′. By induction hypothesis, JP1K−((s′, h)) ∋ abort. Therefore, by defi-
nition JPK−((s′, h)) ∋ abort.

Case 2.2. JbKs = False can be proved similarly.

Case 3. P is while (b) do (P1).

4.2 Semantics 53

Assume s =FV(while (b) do (P1)) s′.

Case 3.1. JbKs = True. Then JbKs′ = True. Assume Jwhile (b) do (P1)K((s, h)) ∋
abort. By Proposition 4.2.4, we have s1, . . . , sm, h1, . . . , hm such that (s, h) =

(s1, h1), JP1K−((si, hi)) ∋ (si+1, hi+1) and JbKsi = True for all i = 1, . . . ,m −
1, JP1K−((sm, hm)) ∋ abort and JbKsm = True. By definition FV(P1) ⊆
FV(while (b) do (P1)) and then s =FV(P1) s′. Let s′i = [si, s′, FV(P)] for all i =

1, . . . ,m. Then s′1 =FV(P)c s′ and s′1 =FV(P) s1 = s =FV(P) s′ and hence s′1 = s′.
We will show that s′i+1 = [si+1, s′i, FV(P1)] for i = 1, . . . ,m− 1.

For that we will show that s′i+1 =FV(P1)c s′i . By (1), si+1 =Mod1(P1)c si and hence
si+1 =FV(P1)c si. For all y ∈ FV(P) − FV(P1), s′i+1(y) = si+1(y) = si(y) = s′i(y). For
all y ̸∈ FV(P), s′i+1(y) = s′(y) = s′i(y). Hence we have s′i+1 =FV(P1)c s′i .

Since s′i =FV(P) si, we have s′i+1 =FV(P1) si+1 and then s′i+1 = [si+1, s′i, FV(P1)].

Then by (2), we have JP1K−((s′i, hi)) ∋ (s′i+1, hi+1) for all i = 1, . . . ,m − 1. Since
s′m =FV(P) sm, we also have JbKs′m = True, s′m =FV(P1) sm and then by induction hy-
pothesis JP1K−((s′m, hm)) ∋ abort. Now we have (s′, h) = (s′1, h1), JP1K−((s′i, hi)) ∋
(s′i+1, hi+1) and JbKs′i = True for all i = 1, . . . ,m− 1, JP1K−((s′m, hm)) ∋ abort andJbKs′m = True. Therefore, by Proposition 4.2.4, Jwhile (b) do (P)K−((s′, h)) ∋ abort.

Case 3.2. JbKs = False. Then JbKs′ = False. AssumeJwhile (b) do (P)K−((s, h)) ∋ abort. By definition it is false.

Case 4. P1; P2.

Assume s =FV(P1;P2) s′ and JP1; P2K((s, h)) ∋ abort. By definition,∪
{ JP2K−(r) | r ∈ JP1K−((s, h)) } ∋ abort. Then either JP1K−((s, h)) ∋ abort

or JP1K−((s, h)) ∋ (s1, h1) and JP2K−((s1, h1)) ∋ abort for some s1, h1. AssumeJP1K−((s, h)) ∋ abort. Since FV(P1) ⊆ FV(P1; P2), we have s =FV(P1) s′. By in-
duction hypothesis, JP1K−((s′, h)) ∋ abort. Since JP2K−(abort) ∋ abort, we haveJP1; P2K−((s′, h)) ∋ abort.

Now assume, JP1K−((s, h)) ∋ (s1, h1) and JP2K−((s1, h1)) ∋ abort. We have
s =FV(P1) s′. Let s′1 = [s1, s′, FV(P1)]. Then by induction hypothesis (2),JP1K−((s′, h1)) ∋ (s′1, h1).

54 Chapter 4. Separation Logic for Recursive Procedures

By (1), s1 =FV(P1)c s and s′1 =FV(P1)c s′. Then for all y ∈ FV(P2) ∩ FV(P1),
s1(y) = s′1(y). Since FV(P2) − FV(P1) ⊆ Mod1(P1)c, for all y ∈ FV(P2) − FV(P1),
we have s1(y) = s(y) = s′(y) = s′1(y). Then s1 =FV(P2) s′1. By induction hypothesis,JP2K−((s′1, h1)) ∋ abort. Then, JP1; P2K−((s′1, h1)) ∋ abort.

Case 5. skip.

Its proof is immediate.

Case 6. x := cons(e1, e2).

Assume s =FV(x:=cons(e1,e2)) s′ and Jx := cons(e1, e2)K−((s, h)) ∋ abort. But bydef-
inition, Jx := cons(e1, e2)K−((s, h)) ̸∋ abort. Then Jx := cons(e1, e2)K−((s, h)) ∋
abort implies Jx := cons(e1, e2)K−((s′, h)) ∋ abort.

Case 7. x := [e].

Assume s =FV(x:=[e]) s′ and Jx := [e]K−((s, h)) ∋ abort. Then by definition,JeKs /∈ Dom(h). Since s =FV(x:=[e]) s′, we have JeKs = JeKs′ . Then JeKs′ /∈ Dom(h).
Therefore, Jx := [e]K−((s′, h)) ∋ abort.

Case 8. [e1] := e2.

Assume s =FV([e1]:=e2) s′ and J[e1] := e2K−((s, h)) ∋ abort. Then by definition,Je1Ks /∈ Dom(h). Since s =FV([e1]:=e2) s′, we have Je1Ks = Je1Ks′ . Then Je1Ks′ /∈
Dom(h). Therefore, J[e1] := e2K−((s′, h)) ∋ abort.

Case 9. dispose(e).

Assume s =FV(dispose(e)) s′ and Jdispose(e)K−((s, h)) ∋ abort. Then by definition,JeKs /∈ Dom(h). Since s =FV(dispose(e)) s′, we have JeKs = JeKs′ . Then JeKs′ /∈ Dom(h).
Therefore, Jdispose(e)K−((s′, h)) ∋ abort. ⊓⊔

Lemma 4.2.16 Suppose P ∈ L.

(1) If s =EFV(P) s′ and JPK((s, h)) ∋ abort, then JPK((s′, h)) ∋ abort.

(2) If s =EFV(P) s′ and JPK((s, h)) ∋ (s1, h1) and s′1 = [s1, s′, EFV(P)] thenJPK((s′, h)) ∋ (s′1, h1).

4.2 Semantics 55

(3) If JPK((s, h)) ∋ (s1, h1) then s1 =Mod(P)c s.

Proof. (1) Assume s =EFV(P) s′ and JPK((s, h)) ∋ abort. Then by definition,JP(k)K−((s, h)) ∋ abort for some k. Since we have FV(P(k)) ⊆ EFV(P) by
Proposition 4.1.14 (1), we have s =FV(P(k)) s′. By Lemma 4.2.15 (3), we haveJP(k)K−((s′, h)) ∋ abort. Then by definition, JPK((s′, h)) ∋ abort.

(2) Assume s =EFV(P) s′, JPK((s, h)) ∋ (s1, h1) and s′1 = [s1, s′,EFV(P)]. Then by
definition, JP(k1)K((s, h)) ∋ (s1, h1) for some k1. By definition, EFV(P) = FV(P(nproc))
where nproc is the number of our procedure names. Let k = max(k1, nproc). Then by
Lemma 4.2.8, JP(k)K((s, h)) ∋ (s1, h1). Since FV(P(nproc)) = FV(P(k)) by Proposi-
tion 4.1.14 (1), we have FV(P(k)) = EFV(P). Then s′1 = [s1, s′, FV(P(k))]. Then by
Lemma 4.2.15 (2), JP(k)K−((s′, h)) ∋ (s′1, h1). Therefore, JPK((s′, h)) ∋ (s′1, h1).

(3)We can show the claim in a similar way to (1). ⊓⊔

56 Chapter 4. Separation Logic for Recursive Procedures

4.3 Logical System

This section defines our logical system. It is the extension of Reynolds’ system pre-
sented in [18] for mutual recursive procedure call.

We will write A[x := e] for the formula obtained from A by replacing x by e. We
will write the formula e 7→ e1, e2 to denote (e 7→ e1) ∗ (e+ 1 7→ e2).

Definition 4.3.1 Our logical system consists of the following inference rules. As men-
tioned in the previous section, we will use Γ for a set of asserted programs. A judgment
is defined as Γ ⊢ {A}P{B}.

Skip

⊢ {A}skip{A}

Identity

{{A}P{B}} ⊢ {A}P{B}

Assignment

⊢ {A[x := e]}x := e{A}

If
Γ ⊢ {A ∧ b}P1{B} Γ ⊢ {A ∧ ¬b}P2{B}

Γ ⊢ {A}if (b) then (P1) else (P2){B}

While
Γ ⊢ {A ∧ b}P{A}

Γ ⊢ {A}while (b) do (P){A ∧ ¬b}

Composition

Γ ⊢ {A}P1{C} Γ ⊢ {C}P2{B}
Γ ⊢ {A}P1; P2{B}

4.3 Logical System 57

Conseq
Γ ⊢ {A1}P{B1}
Γ ⊢ {A}P{B} (A→ A1, B1 → B)

Cons

⊢ {∀x′((x′ 7→ e1, e2) −∗ A[x := x′])}x := cons(e1, e2){A}
(x′ ̸∈ FV(e1, e2,A))

Lookup

⊢ {∃x′(e 7→ x′ ∗ (e 7→ x′ −∗ A[x := x′]))}x := [e]{A} (x′ ̸∈ FV(e,A))

Mutation

⊢ {(∃x(e1 7→ x)) ∗ (e1 7→ e2 −∗ A)}[e1] := e2{A}
(x ̸∈ FV(e1))

Dispose

⊢ {(∃x(e 7→ x)) ∗ A}dispose(e){A} (x ̸∈ FV(e))

Recursion

Γ ∪ {{Ai}Ri{Bi}|i = 1, . . . , nproc} ⊢ {A1}Q1{B1}
...

Γ ∪ {{Ai}Ri{Bi}|i = 1, . . . , nproc} ⊢ {Anproc}Qnproc{Bnproc}
Γ ⊢ {Aj}Rj{Bj} (1 ≤ j ≤ nproc)

Inv-Conj

Γ ⊢ {A}P{C}
Γ ⊢ {A ∧ B}P{C ∧ B} (FV(B) ∩Mod(P) = ∅,B is pure)

58 Chapter 4. Separation Logic for Recursive Procedures

Exists
Γ ⊢ {A}P{B}

Γ ⊢ {∃x.A}P{B} (x /∈ FV(B) ∪ EFV(P))

Cut
Γ ⊢ {A1}P1{B1} Γ ∪ {{A1}P1{B1}} ⊢ {A}P{B}

Γ ⊢ {A}P{B}

Weakening
Γ ⊢ {A}P{B}

Γ ∪ Γ′ ⊢ {A}P{B}

We say {A}P{B} is provable and we write ⊢ {A}P{B}, when ⊢ {A}P{B} can be
derived by these inference rules.

We explain inference rules by the following simple example.

4.3.1 Example

LetAbe the abbreviation of∀y(y ≥ x∧y < z ↔ ∃w(y 7→ w)∗True). SoA asserts
about the heap which has the domain {x + 0, x + 1, . . . , x + k} where k + 1 = z.
Suppose we have the procedure declaration

Procedure R1(if (x < z) then (dispose(x); x := x+ 1;R1) else (skip))

We will show that ⊢ {A}R1{emp} is provable in our system. This means we have a
heap with some consecutive allocation of cells and the program R1 deallocates them
all.

Let Γ be {{A}R1{emp}}. The axiom (Assignment) and the rule (Weakening)
gives

Γ ⊢ {A[x := x+ 1]}x := x+ 1{A}.

4.3 Logical System 59

The axiom (Identity) gives

Γ ⊢ {A}R1{emp}.

By the inference rule (Composition), we have

Γ ⊢ {A[x := x+ 1]}x := x+ 1;R1{emp}.

The axiom (Dispose) and the rule (Weakening) gives

Γ ⊢ {(∃y(x 7→ y)) ∗ A[x := x+ 1]}dispose(x){A[x := x+ 1]}.

Then by the inference rule (Composition), we have

Γ ⊢ {(∃y(x 7→ y)) ∗ A[x := x+ 1]}dispose(x); x := x+ 1;R1{emp}.

The axiom (Skip) and the rule (Weakening) gives

Γ ⊢ {A ∧ ¬(x < z)}skip{A ∧ ¬(x < z)}.

Indeed A ∧ ¬(x < z) is true only for the empty heap. Now we have A ∧ x < z →
(∃y(x 7→ y)) ∗ A[x := x+ 1] and A ∧ ¬(x < z)→ emp. Then by the inference rule
(Conseq), we have

Γ ⊢ {A ∧ x < z}dispose(x); x := x+ 1;R1{emp}

and
Γ ⊢ {A ∧ ¬(x < z)}skip{emp}.

By applying the inference rule (if), we get

Γ ⊢ {A}if (x < z) then (dispose(x); x := x+ 1;R1) else (skip){emp}.

Finally, by the inference rule (Recursion), we have ⊢ {A}R1{emp} is provable.

60 Chapter 4. Separation Logic for Recursive Procedures

4.3.2 NewRules

Wehave twonew rules, (Inv-Conj) and (Exists), which appear neither in [3] nor
in [18].

We have found that the axiom (Axiom 9: Invariance Axiom) in [3] is not
sound for our system. The definition of the axiom will be given in the next chap-
ter. The asserted program {x = 0}[y] := 0{x = 0} is a counter example
since it is not true although it is provable by the axiom. It causes abort for the state
(s, h) = (s′[x := 0, y := 1], ∅) though Jx = 0K(s,h) is true. Another counter example
is {emp}x := cons(0, 0){emp}. Although it does not abort, it is not true. So, we
have introduced the rule (Inv-Conj). It is a variant of the combination of the axiom
(Axiom 9: Invariance Axiom) and the rule (Rule 12: Conjunction Rule) of
[3]. That is, an arbitrary assertion, also called an invariant [23], can be conjuncted to
the precondition and postcondition of an asserted program if none of its free variables
can be modified by the program. Note that it is the frame rule [18] restricted to pure
formulas.

The rule (Exists) is analogous to the rule existential introduction of propositional
calculus. Rule 15: Elimination Rule in [3] is similar to this inference rule.

61

5
Soundness andCompleteness

62 Chapter 5. Soundness andCompleteness

5.1 Soundness

In this section we will prove soundness of our system. That means we will show
that if a judgment Γ ⊢ {A}P{B} is derivable in our system then Γ ⊢ {A}P{B} is also
true.

We say an unfolded program is correct when eac level of the unfolding of the pro-
gram is correct. For a given specification, correctness of a program is the same as that
of its unfolded transformation.

It is straightforward toconstruct a logical systembycollecting axiomsand inference
rules from both Hoare’s logic for recursive procedure and separation logic to verify
pointer programswith recursive procedures. But this system is unsound. It is because
the invariance axiom is not sound in separation logic. At the end of this section, we
will give an unsound example.

Proposition 5.1.1 {A}P{B} is true if and only if for all k, {A}P(k){B} is true.

Proof. First we will show from the left-hand side to the right-hand side. Assume
{A}P{B} is true. Assume JAKr = True. Then by definition, JPK(r) ̸∋ abort. Then
by definition,

∪∞
k=0(JP(k)K−(r)) ̸∋ abort. Then for all k, JP(k)K−(r) ̸∋ abort. Fix

k. Assume JP(k)K−(r) ∋ r′. Then we have
∪∞

k=0(JP(k)K−(r)) ∋ r′. Then again by
definition, JPK(r) ∋ r′. Then JBKr′ = True. Then {A}P(k){B} is true for all k.

Next we will show the right-hand side to the left-hand side. Assume {A}P(k){B}
is true for all k. Assume JAKr = True. Fix k. Then by definition, JP(k)K(r) ̸∋ abort.
Then JP(k)K−(r) ̸∋ abort. Then

∪∞
k=0(JP(k)K−(r)) ̸∋ abort. Then by definition,JPK(r) ̸∋ abort. Assume JPK(r) ∋ r′. Then by definition,

∪∞
k=0(JP(k)K−(r)) ∋ r′.

Then we have JP(k)K−(r) ∋ r′ for some k. Then by definition, JP(k)K(r) ∋ r′. ThenJBKr′ = True. Then {A}P{B} is true. ⊓⊔

Definition 5.1.2 For a set Γ of asserted programs, Γ(k) is defined by { {Ai}Pi{Bi} |
1 ≤ i ≤ n }(k) = { {Ai}P(k)i {Bi} | 1 ≤ i ≤ n }.

If the truth of an assertion depends only on a store, it is not altered in the presence
of any heap. This easy lemma will be necessary for some formal discussions later.

5.1 Soundness 63

Lemma 5.1.3 JAKs = JAK(s,h) for a pure formulaAwhere the left-hand side is the seman-
tics for the base language and the right-hand side is the semantics for the assertion language.

Proof. This is proved by induction on A. If A is B ∧ C, we have JAKs = (JBKs andJCKs) and JAK(s,h) = (JBK(s,h) and JCK(s,h)), and both sides are the same, since by the
induction hypothesis we have JBKs = JBK(s,h) and JCKs = JCK(s,h). Other cases are
similarly proved. ⊓⊔

The following lemma is important for the soundness of the inference rule
(Recursion).

Lemma 5.1.4 If { {Ai}R(k)
i {Bi} | 1 ≤ i ≤ nproc } ⊢ {Ai}Q(k)

i {Bi} is true for all i and
k then ⊢ {Ai}R(k)

i {Bi} true for all i.

Proof. Assume { {Ai}R(k)
i {Bi} | 1 ≤ i ≤ nproc } ⊢ {Ai}Q(k)

i {Bi} is true for all i and
k. We will show {Ai}R(k)

i {Bi} true for all i by induction on k.

Case 1. k = 0.

By Proposition 4.1.10 (2) R(0)
i = Ω. Then {Ai}Ω{Bi} is true.

Case 2. k = k′ + 1.

We assume that { {Ai}R(k)
i {Bi} | 1 ≤ i ≤ nproc } ⊢ {Ai}Q(k)

i {Bi} is true for all k.
By induction hypothesis, {Ai}R(k′)

i {Bi} is true for all i. By the assumption for k′, we
have { {Ai}Rk′

i {Bi} | 1 ≤ i ≤ nproc } ⊢ {Ai}Qk′
i {Bi} true. Hence {Ai}Q(k′)

i {Bi} is
true. By Proposition 4.1.10 (3), R(k′+1)

i = Q(k′)
i . Hence {Ai}R(k)

i {Bi} is true for all i.
⊓⊔

In the following lemma we consider an assertion and a program such that the as-
sertion has no free variable that can be modified by the program. In such a case, the
truth of the assertion is preserved even after the execution of the program.

Lemma 5.1.5 If A is pure, P doesn’t contain any procedure names, JAK(s,h) = True,
FV(A) ∩Mod1(P) = ∅ and JPK−((s, h)) ∋ (s′, h′) then JAK(s′,h′) = True.

Proof. Assume A is pure, P doesn’t contain any procedure names, JAK(s,h) = True,

64 Chapter 5. Soundness andCompleteness

FV(A)∩Mod1(P) = ∅ and JPK−((s, h)) ∋ (s′, h′). By Lemma 4.2.15 (1), s =Mod(P)c

s′. Since FV(A) ⊆ Mod1(P)c, we have s =FV(A) s′. By Lemma 5.1.3, JAKs=True.
Hence JAKs′=True. By Lemma 5.1.3, JAK(s′,h′) = True. ⊓⊔

The following lemmawill be necessary to show the soundness of the inference rule
(Inv-Conj).

Lemma 5.1.6 If Pdoesn’t contain anyprocedure names, B is pure,Mod1(P)∩FV(B) = ∅
and {A}P{C} is true, then {A ∧ B}P{C ∧ B} is true.

Proof. Assume B is pure, Mod1(P) ∩ FV(B) = ∅ and {A}P{C} is true. We have to
prove {A ∧ B}P{C ∧ B} is true.

Assume JA ∧ BK(s,h) = True. Then JAK(s,h) = True and JBK(s,h) = True. ThenJPK((s, h)) ̸∋ abort. Assume JPK((s, h)) ∋ (s′, h′). Then JCK(s′,h′) = True. By
Lemma5.1.5, JBK(s′,h′) = True. Then JB ∧ CK(s′,h′) = True. Hence,{A∧B}P{C∧B}
is true. ⊓⊔

Lemma 5.1.7 If Γ ⊢ {A}P{B} is provable then Γ(k) ⊢ {A}P(k){B} is true for all k.

Proof. It is proved by induction on the proof. We consider cases according to the last
rule.

Case 1. (Skip).

Its proof is immediate.

Case 2. (Identity).

Assume Γ, {A}P{B} ⊢ {A}P{B} is provable. Then Γ(k), {A}P(k){B} ⊢
{A}P(k){B} is true for all k.

Case 3. (Assignment).

Assume Γ ⊢ {A[x := e]}x := e{A} is provable. Assume JA[x := e]K(s,h) =

True. Let n be JeKs. By the definition we have Jx := eK((s, h)) = {(s1, h)} where
s1 = s[x := n]. Since JA[x := e]K(s,h) = JAK(s1,h), we have JAK(s1,h) = True. Hence
{A[x := e]}x := e{A} is true. Thenby definition, Γ(k) ⊢ {A[x := e]}(x := e)(k){A}

5.1 Soundness 65

is true.

Case 4. (If).

We have the asserted program Γ ⊢ {A ∧ b}P1{B} and Γ ⊢ {A ∧ ¬b}P2{B}
which are provable. By induction hypothesis, Γ(k) ⊢ {A ∧ b}P(k)1 {B} and
Γ(k) ⊢ {A ∧ ¬b}P(k)2 {B} are true.

Now we will show that Γ(k) ⊢ {A}(if (b) then (P1) else (P2))(k){B} is true for all
k. Assume Γ(k) is true. Then {A ∧ b}P(k)1 {B} and {A ∧ ¬b}P(k)2 {B} are true.

Assume JAK(s,h) is true.
Case 4.1. JbKs is true. By Lemma 5.1.3, we have JbK(s,h) is true. By def-

inition, JA ∧ bK(s,h) is true. Assume J(if (b) then (P1) else (P2))(k)K((s, h)) =JP(k)1 K((s, h)) ∋ r. Then r ̸= abort and JBKr is true.
Case 4.2. JbKs is false. Then the fact that r ̸= abort and JBKr is true is similarly

proved to Case 1.

Then {A}(if (b) then (P1) else (P2))(k){B} is true. Then by definition Γ(k) ⊢
{A}(if b then P1 else P2)(k){B} is true for all k.

Case 5. (While).

B is in the form A ∧ ¬b and by (while) rule we have the asserted program Γ ⊢
{A ∧ b}P{A}which is provable. By induction hypothesis, Γ(k) ⊢ {A ∧ b}P(k){A} is
true for all k.

Now we will show that Γ(k) ⊢ {A}(while (b) do (P))(k){¬b ∧ A} is true. Assume
Γ(k) is true. Then {A ∧ b}P(k){A} is true.

Let define the function F : States ∪ {abort} → p(States ∪ {abort}) by

F(abort) = {abort},
F((s, h)) = {(s0, h0) | JA ∧ ¬bK(s0,h0) = True} ∪ {r ∈ States | JAK(s,h) = False}.

We will show that F satisfies the inequations obtained from the equations for

66 Chapter 5. Soundness andCompleteness

J(while (b) do (P))(k)K by replacing= by⊇. That is, we will show

F(abort) ⊇ {abort},
F((s, h)) ⊇ {(s, h)} if JbKs = False,
F((s, h)) ⊇

∪
{ F(r) | r ∈ JP(k)K((s, h)) } if JbKs = True.

Thefirst inequation immediately holds by thedefinitionofF. Wewill show the second
inequation. Assume JbKs = False. By Lemma 5.1.3, we have JbK(s,h) = False. IfJAK(s,h) = False, then the inequation holds by the definition of F. If JAK(s,h) = True,
then JA ∧ ¬bK(s,h) = True, and the inequation holds by the definition of F.

Wewill show the last inequation. If JAK(s,h) = False, then it holds by the definition
of F. Assume JAK(s,h) = True, JbKs = True, and r′ is in the right-hand side. We
will show that r′ ∈ F((s, h)). We have some r1 such that JP(k)K((s, h)) ∋ r1 and
F(r1) ∋ r′. By Lemma 5.1.3, we have JbK(s,h) = True. Hence JA ∧ bK(s,h) = True.
Since {A ∧ b}P(k){A} is true we have r1 ̸= abort and JAKr1 = True. Then we have
r′ ̸= abort and JA ∧ ¬bKr′ = True. Hence r′ ∈ F((s, h)).

We have shown that F satisfies the inequations. By the least fixed point theo-
rem [22], we have F ⊇ J(while (b) do (P))(k)K. If JAK(s,h) = True and r′ ∈J(while (b) do (P))(k)K((s, h)), then r′ ∈ F((s, h)), and we have r′ ̸= abort andJA ∧ ¬bKr′ = True. Therefore Γ(k) ⊢ {A}(while (b) do (P))(k){A ∧ ¬b} is true.

Case 6. (Composition).

We have the asserted program Γ ⊢ {A}P1{C} and Γ ⊢ {C}P2{B}which are prov-
able for some C. By induction hypothesis, Γ(k) ⊢ {A}P(k)1 {C} and Γ ⊢ {C}P(k)2 {B}
are true for all k.

Now we will show that Γ(k) ⊢ {A}(P1; P2)(k){B} is true for all k. Assume Γ(k) is
true. Then {A}P(k)1 {C} and {C}P(k)2 {B} are true.

Assume JAK(s,h) = True and J(P1; P2)(k)K((s, h)) ∋ r. We will show r ̸= abort
and JBKr = True. We have r1 such that JP(k)1 K((s, h)) ∋ r1 and JP(k)2 K(r1) ∋ r. Hence
we have r1 ̸= abort and JCKr1 = True. Since JP(k)2 K(r1) ∋ r, we have r ̸= abort andJBKr = True. Hence {A}(P1; P2)(k){B} is true. Then Γ(k) ⊢ {A}(P1; P2)(k){B} is

5.1 Soundness 67

true for all k.

Case 7. (Conseq).

We have the asserted program Γ ⊢ {A′}P{B′} which is provable where A → A′

and B′→B. By induction hypothesis for the assumption, Γ(k) ⊢ {A′}P(k){B′} is true
for all k.

Now we will show that Γ(k) ⊢ {A}P(k){B} is true for all k. Assume Γ(k) is true.
Then {A′}P(k){B′} is true.

Assume JAK(s,h) = True and JP(k)K((s, h)) ∋ r. We will show r ̸= abort andJBKr = True. By the side condition JA→ A1K(s,h) = True, we have JA1K(s,h) = True.
Hence r ̸= abort and JB1Kr = True. By the side condition JB1 → BKr = True, we
have JBKr = True. Hence {A}P(k){B} is true. Then Γ(k) ⊢ {A}P(k){B} is true for all
k.

Case 8. (Cons).

Assume Γ ⊢ {∀x′((x′ 7→ e1, e2) −∗ A[x := x′])}x :=

cons(e1, e2){A} is provable. Assume J∀x′(x′ 7→ e1, e2 −∗ A[x := x′])K(s,h) = True
and Jx := cons(e1, e2)K((s, h)) ∋ r. We will show r ̸= abort and JAKr = True. Let
P be x := cons(e1, e2), n1 be Je1Ks, and n2 be Je2Ks. By the definition of JPK, r ̸= abort
and r = (s1, h1)where s1 = s[x := n] and h1 = h[n := n1, n+1 := n2] for some n such
that n > 0 and n, n+ 1 ̸∈ Dom(h). By J∀x′(x′ 7→ e1, e2 −∗ A[x := x′])K(s,h) = True,
we have Jx′ 7→ e1, e2 −∗ A[x := x′]K(s′,h) = True where s′ = s[x′ := n]. Let
h2 = ∅[n := n1, n+ 1 := n2]. We have h1 = h+ h2. Then Jx′ 7→ e1, e2K(s′,h2) = True
since x′ ̸∈ FV(e1, e2). Since Jx′ 7→ e1, e2 −∗ A[x := x′]K(s′,h) = True, we haveJA[x := x′]K(s′,h1) = True. Hence JAK(s1,h1) = True, since x′ ̸∈ FV(A). Now
we have {∀x′((x′ 7→ e1, e2) −∗ A[x := x′])}x := cons(e1, e2){A} is true. Then
Γ(k) ⊢ {∀x′((x′ 7→ e1, e2) −∗ A[x := x′])}(x := cons(e1, e2))(k){A} is true for all k.

Case 9. (Lookup).

Assume Γ ⊢ {∃x′(e 7→ x′ ∗ (e 7→ x′ −∗ A[x := x′]))}x := [e]{A}
is provable. Assume J∃x′((e 7→ x′) ∗ ((e 7→ x′) −∗ A[x := x′]))K(s,h) = True andJx := [e]K((s, h)) ∋ r. We will show r ̸= abort and JAKr = True. Let n be

68 Chapter 5. Soundness andCompleteness

JeKs. We have some n1 such that J(e 7→ x′) ∗ (e 7→ x′ −∗ A[x := x′])K(s′,h) = True
where s′ = s[x′ := n1]. Hence we have h1, h2 such that h1 = ∅[n := n1],
h = h1 + h2 and Je 7→ x′ −∗ A[x := x′]K(s′,h2) = True. By Je 7→ x′K(s′,h1) = True,JA[x := x′]K(s′,h) = True. Since x′ ̸∈ FV(e), we have JeKs′ = JeKs = n. Since
n ∈ Dom(h), we have r ̸= abort and r = (s1, h) where s1 = s[x := n1].
Since JA[x := x′]K(s′,h) = JAK(s1,h) by x′ ̸∈ FV(A), we have JAKr = True. Then
{∃x′(e 7→ x′ ∗ (e 7→ x′ −∗ A[x := x′]))}x := [e]{A} is true. Then we have
{Γ(k) ⊢ ∃x′(e 7→ x′ ∗ (e 7→ x′ −∗ A[x := x′]))}(x := [e])(k){A} is true for all k.

Case 10. (Mutation).

Assume Γ ⊢ {(∃x(e1 7→ x)) ∗ (e1 7→ e2 −∗ A)}[e1] := e2{A} is provable. AssumeJ(∃x(e1 7→ x)) ∗ (e1 7→ e2 −∗ A)K(s,h) = True and J[e1] := e2K((s, h)) ∋ r. We will
show r ̸= abort and JAKr = True. Let n be Je1Ks and n2 be Je2Ks. We have h1, h2 such
that Je1 7→ e2 −∗ AK(s,h2) and h = h1 + h2 and J∃x(e1 7→ x)K(s,h1) = True. Hence
we have some n1 such that Je1 7→ xK(s′,h1) = True where s′ = s[x := n1]. Since
x ̸∈ FV(e1), we have Je1Ks′ = Je1Ks = n. We also have Dom(h1) = {n}. Since
n ∈ Dom(h), r ̸= abort and r = (s, h′) where h′ = h[n := n2]. Let h′1 be ∅[n := n2].
Then h′ = h′1 + h2 and Je1 7→ e2K(s,h′1) = True. Since Je1 7→ e2 −∗ AK(s,h2) = True, we
have JAK(s,h′) = True. Hence {(∃x(e1 7→ x)) ∗ (e1 7→ e2 −∗ A)}[e1] := e2{A} is true.
Therefore Γ(k) ⊢ {(∃x(e1 7→ x)) ∗ (e1 7→ e2 −∗ A)}([e1] := e2)(k){A} is true for all k.

Case 11. (Dispose).

Assume Γ ⊢ {(∃x(e 7→ x)) ∗ A}dispose(e){A} is provable. AssumeJ(∃x(e 7→ x)) ∗ AK(s,h) = True and Jdispose(e)K((s, h)) ∋ r. We will show
r ̸= abort and JAKr. Let n be JeKs. Then we have h1, h2 such that h = h1 + h2,J∃x(e 7→ x)K(s,h1) = True and JAK(s,h2) = True. Hence we have some n1 such thatJe 7→ xK(s′,h1) = True where s′ = s[x := n1]. Since JeKs′ = JeKs = n by x ̸∈ FV(e),
Dom(h1) = {n} and h1(n) = n1. Since n ∈ Dom(h), r ̸= abort and r = (s, h′2)
where h′2 = h|Dom(h)−{n}. Hence h2 = h′2. Therefore JAKr = True. Hence {(∃x(e 7→
x)) ∗ A}dispose(e){A} is true. Then Γ(k) ⊢ {(∃x(e 7→ x)) ∗ A}(dispose(e))(k){A}
is true for all k.

Case 12. (Recursion).

5.1 Soundness 69

We have the asserted program Γ ∪ { {Ai}Ri{Bi} | 1 ≤ i ≤ nproc } ⊢ {Ai}Qi{Bi}
that are provable for all i. Fix i and k. By induction hypothesis, Γ(k)∪{ {Ai}R(k)

i {Bi} |
1 ≤ i ≤ nproc } ⊢ {Ai}Q(k)

i {Bi} is true. Assume Γ(k) is true. Then { {Ai}R(k)
i {Bi} |

1 ≤ i ≤ nproc } ⊢ {Ai}Q(k)
i {Bi} is true.

By Lemma 5.1.4, ⊢ {Ai}R(k)
i {Bi} is true. Then Γ(k) ⊢ {Ai}R(k)

i {Bi} is true.

Case 13. (Inv-Conj).

We have Γ ⊢ {A}P{C} is provable and Mod(P) ∩ FV(B) = ∅. By induction
hypothesis, Γ(k) ⊢ {A}P(k){C} is true for all k.

Fix k. Now we will show that Γ(k) ⊢ {A ∧ B}P(k){C ∧ B} is true. Assume Γ(k) is
true. Then {A}P(k){C} is true.

By definition, Mod(P) = Mod1(P(nproc)).

Since we have Mod1(P(k)) ⊆ Mod1(P(nproc)) hence FV(B) ∩ Mod1(P(k)) = ∅. By
Lemma 5.1.6, we have {A ∧ B}P(k){C ∧ B} is true.

Case 14. (Exists).

We have the asserted program Γ ⊢ {A}P{B}, which is provable and x ̸∈ FV(B)∪
EFV(P). By induction hypothesis, Γ(k) ⊢ {A}P(k){B} is true for all k. Since x ̸∈
EFV(P), by definition x ̸∈ FV(P(nproc)). Since FV(P(k)) ⊆ FV(P(nproc)), we have x ̸∈
FV(P(k)).

Fix k. Now we will show that Γ(k) ⊢ {∃xA}P(k){B} is true. Assume Γ(k) is true.
Then {A}P(k){B} is true.

Assume J∃xAK(s,h) = True and JP(k)K−((s, h)) ∋ r. Then by definitionJAK(s[x:=m],h) = True for somem. By definition JP(k)K−((s[x := m], h)) ̸∋ abort. We
have s =FV(P(k)) s[x := m] since x ̸∈ FV(P(k)). Then by Lemma 4.2.15(3), r ̸= abort.
Assume r = (s′, h′). Then by Lemma 4.2.15(1), we have s′ =Mod1(P(k))c s and hence
s′ =FV(P(k))c s. Now let s′1 = [s′, s[x := m], FV(P(k))]. Then by Lemma 4.2.15(2),JP(k)K−((s[x := m], h)) ∋ (s′1, h′). Then by definition, JBK(s′1 ,h′) = True. We have
s′1(y) = s′(y) for all y ∈ FV(P(k)). We also have s′1(y) = s(y) = s′(y) for all y ̸= x and

70 Chapter 5. Soundness andCompleteness

y ̸∈ FV(P(k)). Hence s′1 ={x}c s′. Since x ̸∈ FV(B), we have JBK(s′,h′) = True. Then
by definition {∃xA}P(k){B} is true. Therefore, Γ(k) ⊢ {∃xA}P(k){B} is true. ⊓⊔

We present the soundness theorem. It is one of the important theorems in our
paper.

Theorem 5.1.8 (Soundness) If Γ ⊢ {A}P{B} is provable, Γ ⊢ {A}P{B} is true.

Proof. Assume Γ ⊢ {A}P{B} is provable. By Lemma 5.1.7, Γ(k) ⊢ {A}P(k){B} true
for all k. By Proposition 5.1.1, Γ ⊢ {A}P{B} is true. ⊓⊔

We will give an unsound example for the naive logical system obtained by taking
the union of axioms and inference rules from Hoare’s logic for recursive procedures
and separation logic.

Definition 5.1.9 The axiom (Axiom 9: Invariance Axiom) has been defined in [3]
as:

⊢ {A}P{A} (invariance)
(FV(A) ∩ EFV(P) = ∅)

Definition 5.1.10 We define the logical system ‘Separation+Invariance Logic’ as the log-
ical system obtained from the separation logic by adding the axiom (invariance).

Proposition 5.1.11 The axiom (invariance) is not sound in Separation+Invariance
Logic.

Proof. ⊢ {emp}x := cons(e1, e2){emp} is provable by the axiom (invariance) in the
system Separation+Invariance Logic since FV(emp) ∩ EFV(x := cons(e1, e2)) = ∅.
However it is apparently false. ⊓⊔

5.2 Expressiveness 71

5.2 Expressiveness

5.2.1 Coding of Assertions

This section proves the expressiveness theorem. Our technique is to extend the
expressiveness theorem given in [19] tomutual recursive procedure calls. In this sec-
tion, we first assume that for given assertions and programs, we fix some sequence−→x
of variables that contains the free variables of the assertions and the extended free vari-
ables of the programs. We will next define the formulas Store−→x (m) and Heap(m) for
describing the current store and the current heap respectively. Next we will provide
the pure formulas EEvale,−→x (n, k) and BEvalA,−→x (n), which express the meaning of the
expression e and the pure formulaA respectively. Thenwewill define the pure formula
HEvalA(m) for expressing the meaning of the assertion A at the heap bym. By using
it, we will define the pure formula EvalA,−→x (n,m), which expresses the meaning of the
assertionA. Wewill also define the pure formulaExecP,−→x (n,m) for themeaningof the
program P. Finally we will define the formulaWP,A(

−→x) for the weakest precondition
of the program P and the assertion A, and we will prove the expressiveness theorem
that statesWP,A(

−→x) indeed expresses the weakest precondition.

We assume a standard surjective pairing function on natural numbers. For natural
numbers n,m, we will write (n,m) to denote the number that represents the pair of n
andm. We also assume a standard surjective coding of a sequence of natural numbers
by a natural number. We will write ⟨n1, . . . , nk⟩ for the number that represents the
sequencen1, . . . , nk. When thenumbern represents a sequence, lh(n) and (n)i denote
the length of the sequence and the i-th element of the sequence respectively.

The following predicates for handling sequences are known to be definable in the
language of Peano arithmetic. Pair(k, n,m) is defined to hold if k is the number
that represents the pair of n and m. Lh(n, k) is defined to hold if k is the length of
the sequence represented by n. That is, Lh(⟨n1, . . . , nk⟩, k) holds. Elem(n, i, k) is
defined to hold if k is the i-th element in the sequence represented by n. That is,
Elem(⟨n1, . . . , nk⟩, i− 1, ni) holds.

72 Chapter 5. Soundness andCompleteness

We code the piece of the store s for variables x1, . . . , xk by the number ⟨n1, . . . , nk⟩
where s(xi) = ni. We code the heap h by the number ⟨m1, . . . ,mk⟩whereDom(h) =
{n1, . . . , nk}, 0 < n1 < . . . < nk andmi is the number that represents the pair of ni
and h(ni). We code the result of a program execution by coding abort and (s, h) by
0 and k + 1 respectively where the piece of s is coded by n, h is coded by m, and k is
the pair of numbers n andm. The number that represents a given heap is unique. For
example, the number ⟨(1, 5), (3, 8)⟩ represents the heap h such thatDom(h) = {1, 3}
and h(1) = 5, h(3) = 8. Note that for heap representation we do not think the
numbers ⟨(3, 8), (1, 5)⟩ or ⟨(1, 5), (1, 5), (3, 8)⟩ since n1 < n2 is violated.

We say A is true at (s, h) when JAK(s,h) = True. The formula A ↔ B is defined as
(A→ B) ∧ (B→ A).

∅ sometimes denotes the empty heap, that is, ∅(x) is undefined for all x ∈ N.

We define the following pure formulas. First we define coding of our assertion lan-
guage. It is the same as [19].

Lesslh(i, n) = ∃x(Lh(n, x) ∧ i < x),
Addseq(k, n,m) = ∃x(Lh(n, x) ∧ Lh(m, x+ 1)) ∧ Elem(m, 0, k)∧

∀yx(Lesslh(y, n) ∧ Elem(n, y, x)→ Elem(m, y+ 1, x)).

The predicate Lesslh(i, n) means i < lh(n). The predicate Addseq(k, n,m) means
⟨k⟩ · n = mwhere · denotes the concatenation of sequences.

Definition 5.2.1 We define the formulas Storex1,...,xn(m) and Heap(m).

Storex1,...,xn(m) = Lh(m, n) ∧ Elem(m, 0, x1) ∧ . . . ∧ Elem(m, n− 1, xn),
Lookup(m, l, k) = ∃yz(Lesslh(y,m) ∧ Elem(m, y, z) ∧ Pair(z, l, k)),

IsHeap(m) = ∀ix1y1z1x2y2z2(Lesslh(i+ 1,m) ∧ Elem(m, i, x1)∧
Pair(x1, y1, z1) ∧ Elem(m, i+ 1, x2) ∧ Pair(x2, y2, z2)→
0 < y1 ∧ y1 < y2),

Heap(m) = IsHeap(m) ∧ ∀xy(Lookup(m, x, y) ↔ (x 7→ y ∗ True)).

The predicate Storex1,...,xn(⟨m1, . . . ,mn⟩) means s(xi) = mi where s is the current

5.2 Expressiveness 73

store. The predicate Lookup(m, l, k) means h(l) = k where m represents the heap
h. The predicate IsHeap is defined so that IsHeap(m)means that there is some heap
that the number m represents. The predicate Heap(⟨(l1, n1), . . . , (lk, nk)⟩) means
Dom(h) = {l1, . . . , lk}, 0 < l1 < . . . < lk and h(li) = ni where h is the current
heap.

Definition 5.2.2 We define the pure formulas EEvale,−→x (n, k) for the expression e and
BEvalA,−→x (n) for the pure formula A where we suppose−→x includes FV(e) and FV(A) re-
spectively.

EEvale,−→x (n, k) = ∃−→x (Store−→x (n) ∧ e = k),
BEvalA,−→x (n) = ∃−→x (Store−→x (n) ∧ A).

EEvale,−→x (n, k)means JeKs = kwhere n represents the store s. BEvalA,−→x (n)means JAKs =
True where n represents the store s.

We define the following pure formulas.

Pair2(z, x, y) = ∃w(z = w+ 1 ∧ Pair(w, x, y) ∧ IsHeap(y)),
Domain(k,m) = ∃yLookup(m, k, y),

Separate(m,m1,m2) = IsHeap(m) ∧ IsHeap(m1) ∧ IsHeap(m2)∧
∀x(∃y(Elem(m, y, x)) ↔ ∃y(Elem(m1, y, x)∨
Elem(m2, y, x))) ∧ ∀x1x2y1y2(Lookup(m1, x1, y1)∧
Lookup(m2, x2, y2)→ x1 ̸= x2).

Domain(k,m) means k ∈ Dom(h) where m represents the heap h.
Separate(m,m1,m2) means h = h1 + h2 where m, m1, and m2 represent the
heaps h, h1, and h2 respectively.

Definition 5.2.3 We define the pure formula HEvalA(x) for the assertion A by induction

74 Chapter 5. Soundness andCompleteness

on A.

HEvalA(m) = A (A is a pure formula),
HEvalemp(m) = ¬∃xyLookup(m, x, y),

HEvale1 7→e2(m) = e1 > 0 ∧ ∀xy(Lookup(m, x, y) ↔ x = e1 ∧ y = e2),
HEval¬A(m) = ¬HEvalA(m),
HEvalA∧B(m) = HEvalA(m) ∧ HEvalB(m),
HEvalA∨B(m) = HEvalA(m) ∨ HEvalB(m),
HEvalA→B(m) = HEvalA(m)→ HEvalB(m),
HEval∀xA(m) = ∀xHEvalA(m),
HEval∃xA(m) = ∃xHEvalA(m),
HEvalA∗B(m) = ∃y1y2(Separate(m, y1, y2) ∧ HEvalA(y1) ∧ HEvalB(y2)),
HEvalA−∗B(m) = ∀y1y2(HEvalA(y2) ∧ Separate(y1,m, y2)→ HEvalB(y1)).

HEvalA(m)means JAK(s,h) = True where s is the current store and m represents the
heap h.

Definition 5.2.4 We define the pure formula EvalA,−→x (n,m) for the assertion A. We sup-
pose−→x includes FV(A).

EvalA,−→x (n,m) = ∃−→x (Store−→x (n) ∧ IsHeap(m) ∧ HEvalA(m)).

EvalA,−→x (n,m)means JAK(s,h) = True where n represents the store s andm represents
the heap h.

5.2 Expressiveness 75

5.2.2 Coding of Programs

We define the following pure formulas.

New2(n,m) = n > 0 ∧ ¬Domain(n,m) ∧ ¬Domain(n+ 1,m),
ChangeStorex0,...,xn,xi(m1, k,m2) = Lh(m1, n+ 1) ∧ Lh(m2, n+ 1)∧

∀yx(y < n+ 1 ∧ y ̸= i ∧ Elem(m1, y, x)→ Elem(m2, y, x))∧
Elem(m2, i, k),

ChangeHeap(m1, l, k,m2) = ∀xy(x ̸= l→ (Lookup(m1, x, y) ↔
Lookup(m2, x, y))) ∧ Lookup(m2, l, k).

New2(n,m) means n is the address of free cells in h where m represents the heap
h. That is, the address n can be used by the next x := cons(e1, e2) statement.
ChangeStorex0,...,xn,xi(m1, k,m2) means m2 represents the store s[xi := k] where m1

represents the store s. ChangeHeap(m1, l, k,m2)meansm2 represents the heap h[l :=
k]wherem1 represents the heap h.

We say the number n represents the result r if r = abort and n = 0 or r = (s, h)
and n = (m, k) + 1wherem represents the store s and k represents the heap h.

Next we extend coding of programs used in [19] to mutual recursive procedure
calls.

Definition 5.2.5 We define the pure formula ExecUP,−→x (m, n1, n2) by induction on
(m, P) in Figure 5.2.1. We define

ExecP,−→x (n1, n2) = ∃k(ExecUP,−→x (k, n1, n2))

ExecUP,−→x (k, n1, n2) is true if and only if the following: when we execute the k-level
unfolding P(k) of the program P from the state coded by n1, one of the possible result-
ing states is the state coded by n2. The predicate ExecP,−→x (n1, n2)means JPK(r1) ∋ r2
where n1 and n2 represent r1 and r2 respectively.

76 Chapter 5. Soundness andCompleteness

ExecUx:=e,−→x (m, n1, n2) = (n1 = 0→ n2 = 0)∧
(n1 > 0→∃y1z1y2w(Pair2(n1, y1, z1) ∧ EEvale,−→x (y1,w)∧
ChangeStore−→x ,x(y1,w, y2) ∧ Pair2(n2, y2, z1))),

ExecUif (b) then (P1) else (P2),−→x (m, n1, n2) = (n1 = 0→ n2 = 0)∧
(n1 > 0→∃xy(Pair2(n1, x, y) ∧ (BEvalb,−→x (x)→
ExecUP1,−→x (m, n1, n2)) ∧ (¬BEvalb,−→x (x)→ ExecUP2,−→x (m, n1, n2)))),

ExecUwhile (b) do (P),−→x (m, n1, n2) = (n1 = 0→ n2 = 0)∧
(n1 > 0→∃wz(Lh(w, z+ 1) ∧ Elem(w, 0, n1) ∧ Elem(w, z, n2)∧
∀w1(w1 < z→∃z1z2w2w3(Elem(w,w1, z1) ∧ Elem(w,w1 + 1, z2)∧
z1 > 0 ∧ Pair2(z1,w2,w3) ∧ BEvalb,−→x (w2) ∧ ExecUP,−→x (m, z1, z2))))
∧(n2 > 0→∃yz(Pair2(n2, y, z) ∧ ¬BEvalb,−→x (y)))),

ExecUP1;P2,−→x (m, n1, n2) = ∃z(ExecUP1,−→x (m, n1, z) ∧ ExecUP2,−→x (m, z, n2)),

ExecUskip,−→x (m, n1, n2) = (n1 = n2),

ExecUx:=cons(e1,e2),−→x (m, n1, n2) = (n1 = 0→ n2 = 0)∧
(n1 > 0→∃y1z1y2z2ww1w2(Pair2(n1, y1, z1) ∧ EEvale1,−→x (y1,w1)∧
EEvale2,−→x (y1,w2) ∧ New2(w, z1) ∧ ChangeStore−→x ,x(y1,w, y2)∧
∀xy(x ̸= w ∧ x ̸= w+ 1→ (Lookup(z1, x, y) ↔ Lookup(z2, x, y)))∧
Lookup(z2,w,w1) ∧ Lookup(z2,w+ 1,w2) ∧ Pair2(n2, y2, z2))),

ExecUx:=[e],−→x (m, n1, n2) = (n1 = 0→ n2 = 0)∧
(n1 > 0→∃y1z1y2ww1(Pair2(n1, y1, z1) ∧ EEvale,−→x (y1,w)∧
(¬Domain(w, z1)→ n2 = 0) ∧ (Domain(w, z1)→
Lookup(z1,w,w1) ∧ ChangeStore−→x ,x(y1,w1, y2) ∧ Pair2(n2, y2, z1)))),

ExecU[e1]:=e2,−→x (m, n1, n2) = (n1 = 0→ n2 = 0)∧
(n1 > 0→∃y1z1z2w1w2(Pair2(n1, y1, z1) ∧ EEvale1,−→x (y1,w1)∧
EEvale2,−→x (y1,w2) ∧ (¬Domain(w1, z1)→ n2 = 0)∧
(Domain(w1, z1)→ ChangeHeap(z1,w1,w2, z2) ∧ Pair2(n2, y1, z2)))),

ExecUdispose(e),−→x (m, n1, n2) = (n1 = 0→ n2 = 0)∧
(n1 > 0→∃y1z1z2w(Pair2(n1, y1, z1) ∧ EEvale,−→x (y1,w)∧
(¬Domain(w, z1)→ n2 = 0) ∧ (Domain(w, z1)→
∀xy(Lookup(z1, x, y) ∧ x ̸= w ↔ Lookup(z2, x, y)) ∧ Pair2(n2, y1, z2)))),

ExecURi,−→x (0, n1, n2) = (n1 = 0 ∧ n2 = 0),

ExecURi,−→x (k+ 1, n1, n2) = ExecUQi,
−→x (k, n1, n2).

Figure 5.2.1: Definition of ExecU

5.2 Expressiveness 77

We define the following abbreviations. Note that they are not formulas.

Storecodex1,...,xn(m, s) = Lh(m, n) ∧ ∀i < n(Elem(m, i, s(xi+1))),

Heapcode(m, h) = IsHeap(m) ∧ ∀ln(h(l) = n ↔ Lookup(m, l, n)),
Result−→x (n, r) = n = 0 ∧ r = abort∨

n > 0 ∧ ∃shyz(r = (s, h) ∧ Pair2(n, y, z)∧
Storecode−→x (y, s) ∧Heapcode(z, h)).

Storecodex1,...,xn(m, s)means that the numberm is the code that represents the store
s for variables x1, . . . , xn. Heapcode(m, h)means the numberm is the code that rep-
resents the heap h. Result−→x (n, r)means the number n represents the result r.

The following lemma says that ExecUP,−→x (k, n1, n2) simulates the execution of the
k level of unfolding of the program P.

Lemma 5.2.6 (1) ExecUΩ,−→x (0, n1, n2) is true if and only if n1 = n2 = 0.

(2) ExecUP,−→x (k, n1, n2) is true if and only if ExecUP(k),−→x (0, n1, n2) is true.

(3) ExecUP,−→x (k, n1, n2) is true if and only if ExecP(k),−→x (n1, n2) is true.

Proof. (1) We will show from the left-hand side to the right-hand side. Assume that
ExecUΩ,−→x (0, n1, n2) is true. By definition, ExecUwhile (0=0) do (skip),−→x (0, n1, n2) is true.

Case 1. n1 = 0. Then by definition, n2 = 0.

Case 2. n1 > 0. Then ∃wz(Lh(w, z + 1) ∧ Elem(w, 0, n1) ∧ Elem(w, z, n2) ∧
∀w1(w1 < z → ∃z1z2w2w3(Elem(w,w1, z1) ∧ Elem(w,w1 + 1, z2) ∧ z1 > 0 ∧
Pair2(z1,w2,w3) ∧ BEval0=0,−→x (w2) ∧ ExecUskip,−→x (0, z1, z2)))) ∧ (n2 > 0 →
∃yz(Pair2(n2, y, z) ∧ ¬BEvalb,−→x (y))) holds.

Case 2.1. n2 > 0. Since BEval0=0,−→x (y) is true, ∃yz(Pair2(n2, y, z) ∧
¬BEval0=0,−→x (y)) is false. Hence we do not have this case.

Case 2.2. n2 = 0. We have w = ⟨w1, . . . ,wn⟩ and w1 = n1,wn = n2 and for all
1 ≤ i < n,ExecUskip,−→x (0,wi,wi+1) is true. Then for all 1 ≤ i < n, wi = wi+1. Since,
n2 = 0, we have n1 = 0. It contradicts the assumption.

78 Chapter 5. Soundness andCompleteness

Therefore, n1 = n2 = 0.

The opposite direction can be shown directly by definition.

(2) Proved by induction on (k, P). We will consider the cases of k.

Case 1. k = 0.

Here only important case is when P is Ri. Because, induction hypothesis proves
other cases in a similar way to those in Case 2.

Case 1.1. P is Ri.

By definition, ExecUP,−→x (k, n1, n2) is n1 = n2 = 0. By Proposition 4.1.10 (2),
ExecUP(k),−→x (0, n1, n2) is ExecUΩ,−→x (0, n1, n2). By (1), they are equivalent.

Case 2. k = k1 + 1.

Case 2.1. P is atomic.

P is P(k), by definition.

Since ExecUP,−→x (k, n1, n2) does not depend on k, ExecUP,−→x (k, n1, n2) is the same
as ExecUP(k),−→x (0, n1, n2).

Case 2.2. P is if (b) then (P1) else (P2).

Suppose we have some x and y such that Pair2(n1, x, y) is true. ExecUP,−→x (k, n1, n2)
is equivalent to ExecUP1,−→x (k, n1, n2) when BEvalb,−→x (x) is true and
ExecUP2,−→x (k, n1, n2)when¬BEvalb,−→x (x) is true. By induction hypothesis, it is equiv-
alent to ExecUP(k)1 ,−→x (0, n1, n2) when BEvalb,−→x (x) is true and ExecUP(k)2 ,−→x (0, n1, n2)
when¬BEvalb,−→x (x) is true. Hence it is equivalent to ExecUP(k),−→x (0, n1, n2).

Case 2.3. P is P1; P2.

ExecUP,−→x (k, n1, n2) is true if and only if ExecUP1,−→x (k, n1, n3) is true and
ExecUP1,−→x (k, n3, n2) is true for some n3. By induction hypothesis, it equivalent to the
fact that ExecUP(k)1 ,−→x (0, n1, n3) is true and ExecUP(k)2 ,−→x (0, n3, n2) is true. Therefore, it
is equivalent to ExecUP(k),−→x (0, n1, n2).

5.2 Expressiveness 79

Case 2.4. P is while (b) do (P1).

ExecUP,−→x (k, n1, n2) is true if and only if ExecUP1,−→x (k,mi,mi+1) is true for all 1 ≤
i < l for some l, wherem1 = n1 andml = n2 by definition. By induction hypothesis, it
is equivalent to ExecUP(k)1 ,−→x (0,mi,mi+1) for all such i. Therefore, ExecUP,−→x (k, n1, n2)
is true if and only if ExecUP(k),−→x (0, n1, n2) is true.

Case 2.5. P is Ri.

By definition ExecUP,−→x (k, n1, n2) is ExecUQi,
−→x (k1, n1, n2). By induction hypoth-

esis, it is equivalent to ExecUQ(k1)
i ,−→x (0, n1, n2). Since R

(k)
i = Ri[

−−→
Q(k1)] = Q(k1)

i by
definition, ExecUR(k)i ,−→x (0, n1, n2) is ExecUQ(k1)

i ,−→x (0, n1, n2).

Therefore, ExecUP,−→x (k, n1, n2) is equivalent to ExecUR(k)i ,−→x (0, n1, n2).

(3) From the left-hand side to the right-hand side. Assume the left-hand side. By
(2), ExecUP(k),−→x (0, n1, n2) is true. Hence ExecP(k),−→x (n1, n2) is true.

From the right-hand side to the left-hand side. Assume the right-hand side. Then
ExecUP(k),−→x (m, n1, n2) is true for some m. It is the same as ExecUP(k),−→x (0, n1, n2).
Therefore, by (2), ExecUP,−→x (k, n1, n2) is true. ⊓⊔

5.2.3 Representation Lemma forAssertions

The next lemma shows that the pure formulas EEvale,−→x (n, k), BEvalA,−→x (n),
HEvalA(m) and EvalA,−→x (n,m) actually have the meaning we explained above. The
next lemma can be proved in the same way as [19].

Lemma 5.2.7 (Representation of Assertions) (1) EEvale,−→x (n, k) is true if and only
if ∃s(Storecode−→x (n, s) ∧ JeKs = k) holds.

(2) BEvalA,−→x (n) is true if and only if ∃s(Storecode−→x (n, s) ∧ JAKs = True) holds.

(3) If Heapcode(m, h) holds then JHEvalA(m)Ks = JAK(s,h) also holds.
(4) EvalA,−→x (n,m) is true if and only if ∃sh(Storecode−→x (n, s) ∧ Heapcode(m, h) ∧JAK(s,h) = True) holds.

80 Chapter 5. Soundness andCompleteness

Proof. (1)This is similarly proved to (2).

(2) The left-hand side is equivalent to ∀s(J∃−→x (Store−→x (n) ∧ A)Ks = True).
It is equivalent to ∃s(JStore−→x (n) ∧ AKs = True). Hence it is equivalent to
∃s(JStore−→x (n)Ks = True ∧ JAKs = True). Since JStore−→x (n)Ks = True is equiv-
alent to Storecode−→x (n, s), we have the claim.

(3) By induction on A, we will show that ∀mh(Heapcode(m, h) →
(JHEvalA(m)Ks = True ↔ JAK(s,h) = True)) holds. Assume that Heapcode(m, h)
holds. We will show that JHEvalA(m)Ks = True ↔ JAK(s,h) = True holds. We
consider cases according to A.

Case 1. A is a pure formula. We have HEvalA(m) = A and the claim holds.

Case 2. A = emp. By definition HEvalA(m) = ¬∃xyLookup(m, x, y). By defi-
nition, JempK(s,h) = True if and only if Dom(h) = ∅. Dom(h) = ∅ if and only if
¬∃xyLookup(m, x, y) is true. Hence we have the claim.

Case 3. A = e1 7→ e2. Let ki be JeiKs. All of JHEvalA(m)Ks = True, k1 > 0 ∧
∀xy(Lookup(m, x, y) ↔ x = k1 ∧ y = k2), h = ∅[k1 := k2], and JAK(s,h) = True are
equivalent. Hence the claim holds.

Case 4. A = A1 ∗ A2.

From the left-hand side to the right-hand side. AssumeJHEvalA(m)Ks = True. We will show JAK(s,h) = True. We haveJSeparate(m, y1, y2) ∧HEvalA1(y1) ∧HEvalA2(y2)Ks[y1:=m1,y2:=m2] = True for
some m1,m2. Then JHEvalAi(mi)Ks = True. We have hi such that Heapcode(mi, hi)
holds. Then h = h1 + h2. By induction hypothesis with JHEvalAi(mi)Ks = True, we
have JAiK(s,hi) = True. Hence JAK(s,h) = True.

From the right-hand side to the left-hand side. Assume JAK(s,h) = True. We will
show JHEvalA(m)Ks = True. There are h1, h2 such that h = h1 + h2 and JAiK(s,hi) =
True. We have m1,m2 such that Heapcode(mi, hi) holds. Then Separate(m,m1,m2)

is true. By induction hypothesis for Ai, we have JHEvalAi(mi)Ks = True. HenceJHEvalA(m)Ks = True holds by taking y1 = m1 and y2 = m2.

5.2 Expressiveness 81

Case 5. A = A1 −∗ A2.

From the left-hand side to the right-hand side. Assume JHEvalA(m)Ks =

True. We will show JAK(s,h) = True. Assume JA1K(s,h1) = True and
h + h1 exists. We will show JA2K(s,h+h1) = True. We have m1,m2 such that
Heapcode(m2, h1) and Heapcode(m1, h + h1) hold. By induction hypothesis for A1,
we have JHEvalA1(m2)Ks = True. We also have Separate(m1,m,m2) is true. From the
assumption, we have JHEvalA2(m1)Ks = True. By induction hypothesis for A2, we
have JA2K(s,h+h1) = True.

From the right-hand side to the left-hand side. Assume JAK(s,h) =

True. We will show JHEvalA(m)Ks = True. Fix m1,m2 and assumeJHEvalA1(m2) ∧ Separate(m1,m,m2)Ks = True. We will show JHEvalA2(m1)Ks =

True. We have h1, h2 such that Heapcode(m1, h1) and Heapcode(m2, h2) hold. Then
h1 = h + h2. By induction hypothesis for A1, we have JA1K(s,h2) = True. From the
assumption, we have JA2K(s,h1) = True. By induction hypothesis for A2, we haveJHEvalA2(m1)Ks = True.

CasesA = ¬A1,A1∧A2,A1∨A2,A1→A2, ∀xA1,∃xA1 are proved straightforwardly
by using induction hypothesis.

(4) The right-hand side is equivalent to ∃h(Heapcode(m, h) ∧
∃s(Storecode−→x (n, s) ∧ JAK(s,h) = True)). Since JAK(s,h) = JHEvalA(m)Ks
under Heapcode(m, h) by (3), it is equivalent to ∃h(Heapcode(m, h) ∧
∃s(Storecode−→x (n, s) ∧ JHEvalA(m)Ks = True)). It is equivalent to
∃s(IsHeap(m) ∧ Storecode−→x (n, s) ∧ JHEvalA(m)Ks = True). It can
be shown from (2) that BEvalHEvalA(m),−→x (n) = True if and only if
∃s(Storecode−→x (n, s) ∧ JHEvalA(m)Ks = True) holds. Hence it is equiva-
lent to IsHeap(m) ∧ BEvalHEvalA(m),−→x (n). By definition, it is equivalent to
∃−→x (IsHeap(m) ∧ Store−→x (n) ∧ HEvalA(m)), which is the left-hand side by the
definition of EvalA,−→x . ⊓⊔

82 Chapter 5. Soundness andCompleteness

5.2.4 Representation Lemma for Programs

The next lemma shows that the pure formula ExecUP,−→x (k, n1, n2) actually have the
meaning we explained above.

Lemma 5.2.8 (Representation of Programs) (1) If ExecUP,−→x (k, n1, n2) is true, then
for all r1 such that Result−→x (n1, r1), we have r2 such that Result−→x (n2, r2) and JP(k)K−(r1) ∋
r2.

(2) If JP(k)K−(r1) ∋ r2, Result−→x (n1, r1), and Result−→x (n2, r2) hold, then
ExecUP,−→x (k, n1, n2) is true.

Proof. (1)We will prove it by induction on (k, P). We will consider the cases of P.

Case 1. P is x := e.

Assume that ExecUx:=e,−→x (k, n1, n2) is true and r1 is given. If n1 = 0, then n2 = 0
and r1 = abort, and by taking r2 to be abort we have r2 ∈ J(x := e)(k)K−(r1). As-
sume n1 > 0. Then Pair2(n1, y1, z1), EEvale,−→x (y1,w), ChangeStore−→x ,x(y1,w, y2) and
Pair2(n2, y2, z1) are true for some values for y1, y2, z1,w. Now we have s, h such that
r1 = (s, h). Let n be the value of w. Let r2 = (s[x := n], h). Then we have JeKs = n.
Therefore Result−→x (n2, r2) and r2 ∈ J(x := e)(k)K−(r1).

Case 2. P is P1; P2.

Assume that ExecUP1;P2,−→x (k, n1, n2) is true and r1 is given. We have z such that
ExecUP1,−→x (k, n1, z) ∧ ExecUP2,−→x (k, z, n2) is true. By induction hypothesis for P1, we
have r0 such that Result−→x (z, r0) and r0 ∈ JP(k)1 K−(r1) hold. By induction hypoth-
esis for P2, we have r2 such that Result−→x (n2, r2) and r2 ∈ JP(k)2 K−(r0). Therefore
r2 ∈ J(P1; P2)(k)K−(r1).

Case 3. P is if (b) then (P1) else (P2).

Assume that ExecUif (b) then (P1) else (P2),−→x (k, n1, n2) is true and r1 is given. If n1 =

0, then n2 = 0 and r1 = abort, and by taking r2 to be abort we haveJ(if (b) then (P1) else (P2))(k)K−(r1) ∋ r2. Assume n1 > 0. We have x,y such that
Pair2(n1, x, y) is true. Let r1 = (s, h). Then Storecode−→x (x, s) holds.

5.2 Expressiveness 83

Case 3.1. JbKs = True. By Lemma 5.2.7 (2), BEvalb,−→x (x) is
true. Then ExecUP1,−→x (k, n1, n2) is true. By induction hypothesis, we
have r2 such that Result−→x (n2, r2) and JP(k)1 K−(r1) ∋ r2. By definition,J(if (b) then (P1) else (P2))(k)K−(r1) ∋ r2.

Case 3.2. JbKs = False. In the same way as above, we can show this case.

Case 4. P is while (b) do (P1).

Assume that ExecUwhile (b) do (P1),−→x (k, n1, n2) is true and r1 is given. If n1 =

0, then n2 = 0 and r1 = abort, and by taking r2 to be abort we haveJ(while (b) do (P1))(k)K−(r1) ∋ r2. Assume n1 > 0. Let y1, z1 be such that
Pair2(n1, y1, z1) is true. We have w = ⟨w1, . . . ,wn⟩, w1 = n1,wn = n2 and
ExecUP1,−→x (k,wi,wi+1) for all 0 < i < n. We also have either wn = 0 or wn > 0
and the fact that BEvalb,−→x (yn) is true where Pair2(n2, yn, zn) is true for some yn, zn.
By repeatedly using induction hypothesis for P1, we have r′1, . . . , r′n such that r′1 = r1,
Result−→x (wi, r′i) for all 0 < i ≤ n, and JP(k)1 K−(r′i) ∋ r′i+1 for all 0 < i < n. By Lemma
5.2.7 (2), we also have either rn = abort or JbKsn = False and rn ̸= abort where
rn = (sn, hn). Let r2 = r′n. By Proposition 4.2.4, Jwhile (b) do (P(k)1)K−(r1) ∋ r2.
Then by definition, J(while (b) do (P1))(k)K−(r1) ∋ r2.

Case 5. P is skip.

Its proof is immediate.

Case 6. P is x := cons(e1, e2).

Assume that ExecUx:=cons(e1,e2),−→x (k, n1, n2) is true and r1 is given. If n1 = 0,
then n2 = 0 and r1 = abort, and by taking r2 to be abort we have r2 ∈J(x := cons(e1, e2))(k)K−(r1). Assume n1 > 0. We have s, h such that r1 = (s, h).
Let n be the value of w in the definition of ExecUx:=cons(e1,e2),−→x (k, n1, n2). Let r2 =

(s[x := n], h[n := Je1Ks, n+ 1 := Je2Ks]). Then n, n + 1 ̸∈ Dom(h). Therefore
r2 ∈ J(x := cons(e1, e2))(k)K−(r1). We also have Result−→x (n2, r2).

Case 7. P is x := [e].

Assume that ExecUx:=[e],−→x (k, n1, n2) is true and r1 is given. If n1 = 0, then n2 = 0

84 Chapter 5. Soundness andCompleteness

and r1 = abort, and by taking r2 to be abort we have r2 ∈ Jx := [e]K−(r1). Assume
n1 > 0. We have s, h such that r1 = (s, h). Take r2 such that either r2 = (s[x :=

h(JeKs)], h) and JeKs ∈ Dom(h) or r2 = abort and Je1Ks ̸∈ Dom(h). Then r2 ∈J(x := [e])(k)K−(r1). We also have Result−→x (n2, r2).

Case 8. P is [e1] := e2.

Assume that ExecU[e1]:=e2,−→x (k, n1, n2) is true and r1 is given. If n1 = 0, then n2 = 0
and r1 = abort, and by taking r2 to be abort we have r2 ∈ J[e1] := e2K−(r1). Assume
n1 > 0. We have s, h such that r1 = (s, h). Take r2 such that either Je1Ks ∈ Dom(h)
and r2 = (s, h[Je1Ks := Je2Ks]) or Je1Ks ̸∈ Dom(h) and r2 = abort. Then r2 ∈J([e1] := e2)(k)K−(r1). We also have Result−→x (n2, r2).

Case 9. P is dispose(e).

Assume that ExecUdispose(e),−→x (k, n1, n2) is true and r1 is given. If n1 = 0, then
n2 = 0 and r1 = abort, and by taking r2 to be abort we have r2 ∈ Jdispose(e)K−(r1).
Assume n1 > 0. We have s, h such that r1 = (s, h). Take r2 such that either
r2 = (s, h|Dom(h)−{JeKs}) and JeKs ∈ Dom(h) or r2 = abort and Je1Ks ̸∈ Dom(h).
Then r2 ∈ J(dispose(e))(k)K−(r1). We also have Result−→x (n2, r2).

Case 10. P is Ri. We consider cases according to k.

Case 10.1. k = 0.

Assume ExecURi,−→x (0, n1, n2) is true and r1 is given. By definition, n1 = n2 = 0 and
r1 = abort. Let r2 be abort. Then the claim holds.

Case 10.2. k = k′ + 1.

By definition ExecURi,−→x (k′ + 1, n1, n2) = ExecUQi,
−→x (k′, n1, n2) and Q(k′)

i =

R(k′+1)
i . By induction hypothesis for k′, the claim holds for ExecUQi,

−→x (k′, n1, n2)
and JQ(k′)

i K−(r1) ∋ r2. Hence the claim holds for ExecURi,−→x (k′ + 1, n1, n2) andJR(k′+1)
i K−(r1) ∋ r2.

(2)We will prove it by induction on (k, P). We will consider the cases of P.

Case 1. P is x := e.

5.2 Expressiveness 85

Assume the conditions. We will show that ExecUx:=e,−→x (k, n1, n2) is true. If r1 =
abort, then r2 = abort and we have n1 = n2 = 0, and hence ExecUx:=e,−→x (k, n1, n2)
is true. Now assume r1 = (s, h). We have some n1, n2 such that Result−→x (n1, r1) and
Result−→x (n2, r2) hold. Then n1 > 0. We have y1, z1 such that Pair2(n1, y1, z1) is true and
Storecode−→x (y1, s) and Heapcode(z1, h) hold. We also have EEvale,−→x (y1, n).

Then r2 = (s2, h) where s2 = (s[x := n]). Then we have y2, z2 such that
Storecode(y2, s2) and Heapcode(z2, h) hold. Then ChangeStore−→x ,x(y1, n, y2) is true
and z1 = z2. Then by definition, ExecUx:=e,−→x (k, n1, n2) is true.

Case 2. P is P1; P2.

Assume the conditions. We will show that ExecUP,−→x (k, n1, n2) is true. We haveJ(P1; P2)(k)K−(r1) ∋ r2. By definition, we have r0 such that r0 ∈ JP(k)1 K−(r1) and r2 ∈JP(k)2 K−(r0). Suppose z is such that Result−→x (z, r0) holds. By induction hypothesis for
P1, ExecUP1,−→x (k, n1, z) is true. By induction hypothesis for P2, ExecUP2,−→x (k, z, n2) is
true. Hence by definition ExecUP,−→x (k, n1, n2) is true.

Case 3. P is if (b) then (P1) else (P2).

Assume the conditions. We will show that ExecUP,−→x (k, n1, n2) is true. We haveJP(k)K−(r1) ∋ r2. If r1 = abort, then r2 = abort and we have n1 = n2 = 0, and hence
ExecP,−→x (k, n1, n2) is true. Assume r1 = (s, h). Then n1 > 0. We have y1,z1 such that
Pair2(n1, y1, z1) is true.

Case 3.1. BEvalb,−→x (y1) is true. By Lemma 5.2.7 (2), Storecode−→x (y1, s) andJbKs = True hold. Then by definition, JP(k)1 K−(r1) ∋ r2. By induction hypothesis,
ExecUP1,−→x (k, n1, n2) is true. Then by definition, ExecUP,−→x (k, n1, n2) is true.

Case 3.2. BEvalb,−→x (y1) is false. In the same way as above we can show the claim.

Case 4. P is while (b) do (P1).

Assume the conditions. We have J(while (b)(P1))(k)K−(r1) ∋ r2. If
r1 = abort, then r2 = abort and we have n1 = n2 = 0. Hence
ExecUwhile (b) do (P1),−→x (k, n1, n2) is true. Now assume r1 = (s, h). By Proposition 4.2.4,
we have (s1, h1), . . . , (sm−1, hm−1), rm such that (s, h) = (s1, h1), for all i = 1, . . . ,m−

86 Chapter 5. Soundness andCompleteness

2, JP(k)1 K−((si, hi)) ∋ (si+1, hi+1), JbKsi = True, JP(k)1 K−((sm−1, hm−1)) ∋ rm, eitherJbKsm−1 = True and rm = abort or rm = (sm, hm) and JbKsm = False for some sm, hm.

Then we have z1, . . . , zm such that for all i = 1, . . . ,m − 1, Result−→x (zi, (si, hi))
holds and either zm = 0 or Result−→x (zm, (sm, hm)) holds. Then z1 = n1 and zm = n2.
We also have y1, . . . , ym, y′1, . . . , y′m such that for all i = 1, . . . ,m − 1, BEvalb,−→x (yi)
is true where Pair2(zi, yi, y′i) is true, and either zm = 0 or Pair2(zm, ym, y′m) is true
and BEvalb,−→x (ym) is false. For all i = 1, . . . ,m − 1, by induction hypothesis,
ExecUP1,−→x (k, zi, zi+1) is true. Then by definition, ExecUwhile (b) do (P1),−→x (k, n1, n2) is
true.

Case 5. P is skip.

Its proof is immediate.

Case 6. P is x := cons(e1, e2).

Assume the conditions. We will show that ExecUx:=cons(e1,e2),−→x (k, n1, n2) is true.
We have r2 ∈ J(x := cons(e1, e2))(k)K−(r1). If r1 = abort, then r2 = abort and
we have n1 = n2 = 0, and hence ExecUx:=cons(e1,e2),−→x (k, n1, n2) is true. Now as-
sume r1 = (s, h). Then r2 = (s2, h2) where s2 = (s[x := n]), h2 = h[n :=Je1Ks, n+ 1 := Je2Ks] and n, n+ 1 ̸∈ Dom(h). Then n1 > 0. We also have y1, z1, y2, z2
such that Pair2(n1, y1, z1) and Pair2(n2, y2, z2) are true. Then Storecode−→x (y1, s),
Heapcode(z1, h), Storecode−→x (y2, s2) and Heapcode(z2, h2) hold. Let w = n, w1 =Je1Ks and w2 = Je2Ks. Then by Lemma 5.2.7 (1), EEvale1,−→x (y1,w1), EEvale2,−→x (y1,w2)

and New2(w, z1) are true. Then ChangeStore−→x ,x(y1,w, y2), ∀xy(x ̸= w ∧ x ̸= w +

1→(Lookup(z1, x, y) ↔ Lookup(z2, x, y))) andLookup(z2,w,w1)∧Lookup(z2,w+
1,w2) are true. Then by definition, ExecUx:=cons(e1,e2),−→x (k, n1, n2) is true.

Case 7. P is x := [e].

Assume the conditions. Wewill show that ExecUx:=[e],−→x (k, n1, n2) is true. We have
r2 ∈ J(x := [e])(k)K−(r1). If r1 = abort, then r2 = abort and we have n1 = n2 = 0,
and hence ExecUx:=[e],−→x (k, n1, n2) is true. Now assume r1 = (s, h). Then n1 > 0. We
have y1, z1 such thatPair2(n1, y1, z1) is true andStorecode−→x (y1, s) andHeapcode(z1, h)
hold. Let w be JeKs.

5.2 Expressiveness 87

Assume that Domain(w, z1) is true. By Lemma 5.2.7 (1), EEvale,−→x (y1,w) is true.
Then JeKs ∈ Dom(h). Then r2 = (s2, h2) where h(w) = w1, s2 = (s[x := w1])

and h2 = h. Then we have y2 such that Pair2(n2, y2, z1) is true and Storecode−→x (y2, s2)
and Heapcode(z1, h2) hold. Then Lookup(z1,w,w1) and ChangeStore−→x ,x(y1,w1, y2)
are true. Now assume that ¬Domain(w, z1) is true. Then JeKs ̸∈ Dom(h). Then
r2 = abort and hence n2 = 0. Then by definition, ExecUx:=[e],−→x (k, n1, n2) is true in
both cases.

Case 8. P is [e1] := e2.

Assume the conditions. We will show that ExecU[e1]:=e2,−→x (k, n1, n2) is true. We
have r2 ∈ J([e1] := e2)(k)K−(r1). If r1 = abort, then r2 = abort and we have n1 =
n2 = 0, and hence ExecU[e1]:=e2,−→x (k, n1, n2) is true. Now assume r1 = (s, h). Then
n1 > 0. We have y1, z1 such that Pair2(n1, y1, z1) is true and Storecode−→x (y1, s) and
Heapcode(z1, h) hold. Let w be Je1Ks and w1 be Je2Ks. Assume that Domain(w, z1) is
true. By Lemma 5.2.7 (1), EEvale1,−→x (y1,w) and EEvale2,−→x (y1,w1) are true. Then we
have w ∈ Dom(h). Then r2 = (s2, h2) where s2 = s and h2 = h[w := w1]. Then we
have z2 such that Pair2(n2, y1, z2) is true and Storecode−→x (y1, s2) andHeapcode(z2, h2)
hold. Then ChangeHeap(z1,w,w1, z2) is true. Now assume that ¬Domain(w, z1) is
true. Then JeKs ̸∈ Dom(h). Then r2 = abort and hence n2 = 0. Then by definition,
ExecU[e1]:=e2,−→x (k, n1, n2) is true in both cases.

Case 9. P is dispose(e).

Assume the conditions. We will show that ExecUdispose(e),−→x (k, n1, n2) is true. We
have r2 ∈ J(dispose(e))(k)K−(r1). If r1 = abort, then r2 = abort and we have
n1 = n2 = 0, and hence ExecUdispose(e),−→x (k, n1, n2) is true. Now assume r1 = (s, h).
Then n1 > 0. We have y1, z1 such that Pair2(n1, y1, z1) is true and Storecode−→x (y1, s)
and Heapcode(z1, h) hold. Let w be JeKs. By Lemma 5.2.7 (1), EEvale,−→x (y1,w) is
true. Assume that Domain(w, z1) is true. Then we have JeKs ∈ Dom(h). Then
r2 = (s2, h2) where s2 = s and h2 = h|Dom(h)−{JeKs}. Then we have z2 such
that Pair2(n2, y1, z2) is true and Storecode−→x (y1, s2) and Heapcode(z2, h2) hold. Then
∀xy(Lookup(z1, x, y) ∧ x ̸= w ↔ Lookup(z2, x, y)) is true. Now assume that
¬Domain(w, z1) is true. Then JeKs ̸∈ Dom(h). Then r2 = abort and hence n2 = 0.
Then by definition, ExecUdispose(e),−→x (k, n1, n2) is true in both cases.

88 Chapter 5. Soundness andCompleteness

Case 10. P is Ri. We consider cases according to k.

Case 10.1. k = 0.

Assume that the conditions. By Proposition 4.2.5 JR(0)
i K−(abort) ∋ abort and

for all s, h, JR(0)
i K−((s, h)) = ∅. Hence we have r1 = r2 = abort. Since

Result−→x (n1, r1) and Result−→x (n2, r2) hold, by definition n1 = n2 = 0. Then by def-
inition ExecURi,−→x (0, n1, n2) is true.

Case 10.2. k = k′ + 1.

This case is proved in a similar way to that in (1). ⊓⊔

The next lemma shows that the pure formula ExecP,−→x (n1, n2) actually have the
meaning we explained above.

Lemma 5.2.9 (1) If ExecP,−→x (n1, n2) is true, then for all r1 such that Result−→x (n1, r1), we
have r2 such that Result−→x (n2, r2) and JPK(r1) ∋ r2.

(2) If JPK(r1) ∋ r2, Result−→x (n1, r1), and Result−→x (n2, r2) hold, then ExecP,−→x (n1, n2) is
true.

Proof. (1) By using Lemma 5.2.8 (1), we can prove the claim in a similar way to (2).

(2) Assume JPK(r1) ∋ r2, Result−→x (n1, r1), and Result−→x (n2, r2). Then we have k
such that JP(k)K−(r1) ∋ r2. FromLemma5.2.8 (2), ExecUP,−→x (k, n1, n2) is true. Hence
ExecUP,−→x (k, n1, n2) is true. ⊓⊔

5.2.5 Weakest Precondition

We define the weakest precondition for a program and a postcondition. We also
define a formulaWP,A(

−→x) and show that it is theweakest preconditionof theprogram
P and the postcondition A.

Definition 5.2.10 For a program P and an assertion A, the weakest precondition for P
and A under the standard interpretation is defined as the set { (s, h) | ∀r(JPK((s, h)) ∋
r→ r ̸= abort ∧ JAKr = True) }.

5.2 Expressiveness 89

Since we have defined Exec and have shown Lemma 5.2.9 for our extended pro-
gramming language with procedure calls, we can show the existence of the assertion
of the weakest precondition in the same way as [19].

Definition 5.2.11 We define the formula WP,A(
−→x) for the program P and the assertion

A. We fix some sequence−→x of the variables that includes EFV(P) ∪ FV(A).

WP,A(
−→x) = ∀xyzw(Store−→x (x) ∧ Heap(y) ∧ Pair2(z, x, y) ∧ ExecP,−→x (z,w)→
w > 0 ∧ ∃y1z1(Pair2(w, y1, z1) ∧ EvalA,−→x (y1, z1))).

WP,A(
−→x) means the weakest precondition for P and A. That is, WP,A(

−→x) gives the
weakest assertion W such that {W}P{A} is true. Note that all the free variables in
WP,A(

−→x) are−→x and they appear only in Store−→x (x).

The next lemma says thatWP,A(
−→x) indeed describes the weakest precondition for

P and A.

Lemma 5.2.12 (1) {WP,A(
−→x)}P{A} is true.

(2) If JPK((s, h)) ∋ r implies r ̸= abort and JAKr = True for all r, thenJWP,A(
−→x)K(s,h) = True.

Proof. (1) Assume JWP,A(
−→x)K(s,h) = True and JPK((s, h)) ∋ r. We will show

r ̸= abort and JAKr = True. We have n1,n2,n and m such that Result−→x (n1, (s, h))
and Result−→x (n2, r) hold and Pair2(n1, n,m) is true. We have JStore−→x (n)K(s,h) andJHeap(m)K(s,h) are true and Storecode−→x (n, s) and Heapcode(m, h) hold. By Lemma
5.2.9 (2), ExecP,−→x (n1, n2) is true.

By letting x = n, y = m, z = n1,w = n2 in the definition of WP,A(
−→x),

from JWP,A(
−→x)K(s,h) = True, we have n2 > 0 ∧ ∃y1z1(Pair2(n2, y1, z1) ∧

EvalA,−→x (y1, z1)). By n2 > 0, r ̸= abort. Let r = (s1, h1). We have n′,m′

such that Pair2(n2, n′,m′) and EvalA,−→x (n′,m′) are true. By Lemma 5.2.7 (4), we
have s′1, h′1 such that Storecode−→x (n′, s′1) ∧ Heapcode(m′, h′1) ∧ JAK(s′1 ,h′1) holds. Since
Storecode−→x (n′, s1) andHeapcode(m′, h1) hold, we have s′1 =−→x s1 and h′1 = h1. HenceJAK(s1,h1) = True, that is, JAKr = True.

90 Chapter 5. Soundness andCompleteness

(2) Assume that for all r, JPK((s, h)) ∋ r implies r ̸= abort ∧ JAKr = True. We
will show JWP,A(

−→x)K(s,h) = True. Fix n,m, n1, n2 and assume Store−→x (n), Heap(m),
Pair2(n1, n,m), and ExecP,−→x (n1, n2) are true at (s, h). We will show that n2 > 0 and
∃y1z1(Pair2(n2, y1, z1) ∧ EvalA,−→x (y1, z1)) is true.

We have Result−→x (n1, (s, h)). By Lemma 5.2.9 (1) with ExecP,−→x (n1, n2), we have
r2 such that JPK((s, h)) ∋ r2 and Result−→x (n2, r2). By the assumption, JAKr2 =

True. Let r2 be (s2, h2). We have n′,m′ such that Pair2(n2, n′,m′) is true. Then
Storecode−→x (n′, s2) and Heapcode(m′, h2) hold. Since the right-hand side of Lemma
5.2.7 (4) holds by letting s = s2 and h = h2, we have EvalA,−→x (n′,m′). Hence
∃y1z1(Pair2(n2, y1, z1) ∧ EvalA,−→x (y1, z1)) is true by taking y1 = n′ and z1 = m′.

Therefore, ∀xyzw′(Store−→x (x) ∧ Heap(y) ∧ Pair2(z, x, y) ∧ ExecP,−→x (z,w′) →
w′ > 0 ∧ ∃y1z1(Pair2(w′, y1, z1) ∧ EvalA,−→x (y1, z1))) is true at (s, h), that is,JWP,A(

−→x)K(s,h) = True. ⊓⊔

We present the main theorem about expressiveness.

Theorem 5.2.13 (Expressiveness) Our assertion language is expressive for our pro-
gramming language under the standard interpretation. Namely for every program P and
assertion A, there is a formula W such that JWK(s,h) is true if and only if (s, h) is in the
weakest precondition for P and A under the standard interpretation.

Proof. Since Lemma 5.2.12 (1) and (2) showWP,A(
−→x) defines the weakest precon-

dition for P and A under the standard interpretation, the weakest precondition is de-
finable in our language. ⊓⊔

5.3 Completeness 91

5.3 Completeness

This section is the most important section of this paper. It shows that our system
is complete. Although the proof technique here is inspired from [3], we introduce
some important concepts to show the completeness of our system. We also define
the strongest postcondition in the same way as the weakest precondition in order to
follow a similar story of proofs in [3].

For the form of Γ ⊢ {A}P{B}where Γ is empty, we will write ⊢ {A}P{B}.

5.3.1 Strongest Postcondition

{A}P{True} is true when P does not abort at a state for which A is true. We call
{A}P{True} the abort-free condition for A and P.

The set S of states is called the strongest postcondition for A and P if
(1) For all r, r′, JAKr = True and JPK(r) ∋ r′ implies r′ ̸= abort and r′ ∈ S.
(2) For all S′, we have S ⊆ S′ if for all r, r′, JAKr = True and JPK(r) ∋ r′ implies

r′ ̸= abort and r′ ∈ S′.
Note that the strongest postcondition S forA and P exists if P does not abort at any

state that satisfies A. Since we have defined Exec and have shown Lemma 5.2.9 for
our extendedprogramming languagewith procedure calls, we candefine the assertion
that describes the strongest postcondition of A and P.

Definition 5.3.1 We define the pure formula SA,P(−→x) for the assertion A and the pro-
gram P. We fix some sequence−→x of the variables that includes EFV(P) ∪ FV(A).

SA,P(−→x) = ∃xyzw(EvalA,−→x (x, y) ∧ Pair2(z, x, y) ∧ ExecP,−→x (z,w)∧
∃y1z1(Pair2(w, y1, z1) ∧ Store−→x (y1) ∧ Heap(z1))).

SA,P(−→x) describes the strongest postcondition for A and P. That is, SA,P(−→x) gives
the strongest assertion B such that {A}P{B} is true, under the condition that P does
not abort at any state that satisfiesA. Note that all the free variables in SA,P(−→x) are−→x

92 Chapter 5. Soundness andCompleteness

and they appear only in Store−→x (x).

Lemma 5.3.2 (1) If {A}P{True} is true then {A}P{SA,P(−→x)} is true.

(2) If JSA,P(−→x)K(s′,h′) is true then there exists s, h such that JAK(s,h) is true andJPK((s, h)) ∋ (s′, h′).

Proof. (1) Assume that {A}P{True} is true. Assume JAK(s,h) = True. ThenJPK((s, h)) ̸∋ abort. Assume JPK((s, h)) ∋ (s′, h′). Let −→x = x0, . . . , xn. Let
n1 be ⟨s(x0), . . . , s(xn)⟩ and m1 be ⟨(l0, h(l0)), . . . , (lm, h(lm))⟩ where Dom(h) =

{ li | i ≤ m }. Let n2 be ⟨s′(x0), . . . , s′(xn)⟩, m2 be ⟨(l′0, h′(l′0)), . . . , (l′m′ , h′(l′m′))⟩
where Dom(h′) = { l′i | i ≤ m′ }. Let p1 be (n1,m1) + 1 and p2 be (n2,m2) +

1. Then Pair2(p1, n1,m1) and Pair2(p2, n2,m2) are true. Then Storecode−→x (n1, s),
Heapcode(m1, h), Storecode−→x (n2, s′) and Heapcode(m2, h′) hold. Then we
have Result−→x (p1, (s, h)) and Result−→x (p2, (s′, h′)). Then ∃sh(Storecode−→x (n1, s) ∧
Heapcode(m1, h) ∧ JAK(s,h) = True) holds. By Lemma 5.2.7 (4), EvalA,−→x (n1,m1)

is true. By Lemma 5.2.9 (2), ExecP,−→x (p1, p2) is true. By definition, we also
have JStore−→x (n2) ∧Heap(m2)K(s′,h′) is true. By taking y, z,w,w1, y1, z1 to be
n1,m1, p1, p2, n2,m2, J∃yzww1y1z1(EvalA,−→x (y, z) ∧ Pair2(w, y, z) ∧ ExecP,−→x (w,w1) ∧
Pair2(w1, y1, z1) ∧ Store−→x (y1) ∧ Heap(z1))K(s′,h′) is true. Then by definition,JSA,P(−→x)K(s′,h′) = True. Therefore, {A}P{SA,P(⃗x)} is true.

(2) Assume that JSA,P(−→x)K(s′,h′) is true. By definition, we have n1,m1, p1, p2, n2,m2

such that EvalA,−→x (n1,m1), Pair2(p1, n1,m1), ExecP,−→x (p1, p2), Pair2(p2, n2,m2),JStore−→x (n2)K(s′,h′) = True and JHeap(m2)K(s′,h′) = True hold. Then we have
Storecode−→x (n2, s′) andHeapcode(m2, h′). By Lemma5.2.7 (4)with EvalA,−→x (n1,m1),
we have s1, h such that Storecode−→x (n1, s1), Heapcode(m1, h), and JAK(s1,h) = True.
Then we have Result−→x (p1, (s1, h)). Since we have ExecP,−→x (p1, p2), by Lemma 5.2.9
(1), we have r2 such that Result−→x (p2, r2) and JPK((s1, h)) ∋ r2. Since p2 > 0, we
have r2 ̸= abort. Take s2, h′ such that r2 = (s2, h′). We define s to be [s1, s′,−→x]. Since
s =EFV(P) s1, by Lemma 4.2.16 (2), JPK((s, h)) ∋ ([s2, s,EFV(P)], h′).

We will show s′ = [s2, s,EFV(P)]. We have s2 =−→x s′ since Storecode(n2, s2) and
Storecode(n2, s′). Hence s′ =EFV(P) s2. By the definition of s, we have s′ =(−→x)c s.
Since s =−→x s1 by the definition of s, s1 =EFV(P)c s2 by Lemma 4.2.16 (3), and s2 =−→x s′,

5.3 Completeness 93

we have s =−→x −EFV(P) s′. Hence s =EFV(P)c s′. Therefore s′ = [s2, s,EFV(P)].

Hence JPK((s, h)) ∋ (s′, h′). We also have JAK(s,h) is true since s =−→x s1. ⊓⊔

Remark. The following is shown by Lemma 5.3.2 (2): if {A}{P}{B} is true, then
SA,P(−→x)→ B is true.

5.3.2 Auxiliary Lemmas

Lemma 5.3.3 A→∃x(Heap(x) ∧ HEvalA(x)) is true.

Proof. Assume JAK(s,h) = True. Let m be ⟨(k0, l0), . . . , (kn, ln)⟩ where h(ki) = li
for i = 0, . . . , n and Dom(h) = { ki | i = 0, . . . , n } and 0 < k0 < . . . < kn.
Then Heapcode(m, h) holds. Then JHeap(m)K(s,h) = True. Then by Lemma 5.2.7
(3), JHEvalA(m)K(s,h) = True. By taking x to be m, ∃x(Heap(x) ∧ HEvalA(x)) is
true. 2

Lemma 5.3.4 If {A}P{B} is true, then A→WP,B(
−→x) is true.

Proof. Assume JAK(s,h) = True. We will show JWP,B(
−→x)K(s,h) = True.

Assume JPK((s, h)) ∋ r. Since {A}P{B} is true, r ̸= abort and JBKr = True.
Hence we have JPK((s, h)) ∋ r implies r ̸= abort and JBKr = True. By Lemma
5.2.12 (2), we have JWP,B(

−→x)K(s,h) = True.

Hence A→WP,B(
−→x) is true. ⊓⊔

The following lemma (1) shows that the inference rule (RULE 10: SUBSTITU-
TIONRULE I) in [3] is derivable in our system.

Lemma 5.3.5 (1) If Γ ⊢ {A}P{B} is provable,−→u and−→w are mutually exclusive, and
−→u ,−→w ̸∈ EFV(P), then Γ ⊢ {A[−→u := −→w]}P{B[−→u := −→w]} is provable.

(2) If Γ ⊢ {A}P{B} is true,−→u and−→w aremutually exclusive, and−→u ,−→w ̸∈ EFV(P),
then Γ ⊢ {A[−→u := −→w]}P{B[−→u := −→w]} is true.

94 Chapter 5. Soundness andCompleteness

Proof. (1) Assume Γ ⊢ {A}P{B}, −→u and −→w are mutually exclusive, and
−→u ,−→w ̸∈ EFV(P). Then by (Inv-Conj), Γ ⊢ {A ∧ −→u = −→w }P{B ∧
−→u = −→w }. We have B ∧ −→u = −→w → B[−→u := −→w]. Then by (Conseq),
Γ ⊢ {A ∧ −→u = −→w }P{B[−→u := −→w]}. Then by (Exists), Γ ⊢ {∃−→u (A ∧
−→u = −→w)}P{B[−→u := −→w]}. We have A[−→u := −→w]→∃−→u (A ∧ −→u = −→w). Then by
(Conseq), Γ ⊢ {A[−→u := −→w]}P{B[−→u := −→w]}.

(2) Assume Γ ⊢ {A}P{B} is true,−→u and−→w are mutually exclusive, and−→u ,−→w ̸∈
EFV(P). Let A1 be A[−→u := −→w] and B1 be B[−→u := −→w].

Assume JA1K(s1,h1) = True and r2 ∈ JPK((s1, h1)). We will show r2 ̸= abort andJB1Kr2 = True.

Let s′1 be s1[
−→u := s1(−→w)]. Then JAK(s′1 ,h1) = True. Since s1 =EFV(P) s′1, by Lemma

4.2.16 (1), we have r2 ̸= abort. Let r2 be (s2, h2) and s′2 be [s2, s′1,EFV(P)]. By Lemma
4.2.16 (2), we have (s′2, h2) ∈ JPK((s′1, h1)). Then JBK(s′2,h2) = True.

We will show s′2 = s2[−→u := s2(−→w)]. Since s′1 = s1[−→u := s1(−→w)] by the defi-
nition and s1[−→u := s1(−→w)] =EFV(P)c s2[−→u := s2(−→w)] by −→w ̸∈ EFV(P), we have
s′1 =EFV(P)c s2[−→u := s2(−→w)]. By combining it with s2[−→u := s2(−→w)] = [s2, s2[−→u :=

s2(−→w)],EFV(P)] by −→u ̸∈ EFV(P), we have s2[−→u := s2(−→w)] = [s2, s′1,EFV(P)].
Hence s2[−→u := s2(−→w)] = s′2 by the definition of s′2.

Hence JBK(s2[−→u :=s2(−→w)],h2) = True. Therefore JB1K(s2,h2) = True. ⊓⊔

Let V be
∪nproc

i=1 EFV(Ri). We next take the sequence of mutually distinct variables
−→y = y1, . . . , yl such that{y1, . . . , yl} = V. Thenwe choose the sequence of variables
−→z = z1, . . . , zl, −→z ′ = z′1, . . . , z′l , and variable xh, x′h such that

−→y and they are all
mutually distinct. From now, we assume that for given assertions and programs that
wewill discuss, we fix some sequence−→x of variables that containsV, the free variables
of the assertions, the extended free variables of the programs, and−→z ′, x′h. Finally we
use this−→x for construction of the weakest preconditions and the variables−→y ,−→z , xh
for construction of the strongest postconditions.

We will explain the roles of these variables. For simplicity we sometimes write−→x
for the set of elements contained in the sequence −→x . The expressiveness theorem

5.3 Completeness 95

(Theorem 5.2.13) assumed the coding of a store by using some fixed interesting vari-
ables−→x . The variables inV in−→x are necessary to define the weakest preconditions of
procedures since procedures are defined with V. The variables −→z ′, x′h are necessary
to define the weakest preconditions of some assertions that are used in Lemma 5.3.8.
After fixing the set−→x of variables, we only consider assertions and programs whose
free variables and extended free variables are contained in the set−→x −V∪−→z ′∪{x′h}.
Since our choice of the set−→x of variables is arbitrary, this works for arbitrary given
assertions and programs. By these definitions, we also have the variables−→z , xh that
are not in−→x and are used in Definition 7.6.

The next definition plays a key role in our completeness proof.

Definition 5.3.6 We define Wi as WRi,True(
−→y), Gi as−→y = −→z ∧ Heap(xh) ∧Wi, and

Si as SGi,Ri(
−→y ,−→z , xh). We also define Fi as {Gi}Ri{Si}.

HereGi has three purposes. First, the expression−→y = −→z enables us to describe com-
plete information of a given store, which is inspired from [3]. Second, the expression
Heap(xh) enables us to describe complete information of a given heap. Third,Wi en-
sures abort-free execution of the program, which enables us to use the strongest post-
condition.

5.3.3 Main Proofs

The following Lemma is the key lemma to prove the completeness theorem.

Lemma 5.3.7 If {A}P{B} is true then F1, . . . , Fnproc ⊢ {A}P{B} is provable.

Proof. Wewill prove it by induction on P. We will consider the cases of P.

Case 1. P is x := e.

Wewill show thatA→B[x := e] is true. Assume JAK(s,h) = True. Let n be JeKs. We
have Jx := eK((s, h)) = {(s1, h)} where s1 = s[x := n]. Since {A}x := e{B} is true,JBK(s1,h) = True. Since JBK(s1,h) = JB[x := e]K(s,h), we have JB[x := e]K(s,h) = True.
Hence A→ B[x := e] is true.

96 Chapter 5. Soundness andCompleteness

Byapplying the rule (Conseq) to the fact thatA→B[x := e] is true and⊢ {B[x :=
e]}x := e{B} from the axiom (Assignment), we have ⊢ {A}x := e{B}. Therefore,
F1, . . . , Fnproc ⊢ {A}x := e{B}.

Case 2. P is if (b) then (P1) else (P2).

Assume that {A}P{B} is true. First, we will show that {A ∧ b}P1{B} is true. As-
sume JA ∧ bK(s,h) = True and JP1K((s, h)) ∋ r. We have JbKs = JbK(s,h) = True
by Lemma 5.1.3. Hence JPK((s, h)) = JP1K((s, h)) ∋ r. Then r ̸= abort andJBKr = True. Hence {A ∧ b}P1{B} is true.

Similarly {A ∧ ¬b}P2{B} is true.

By induction hypothesis for P1 and P2, we have F1, . . . , Fnproc ⊢ {A ∧ b}P1{B} and
F1, . . . , Fnproc ⊢ {A ∧ ¬b}P2{B}. By the rule (If), therefore, we have F1, . . . , Fnproc ⊢
{A}if (b) then (P1) else (P2){B}.

Case 3. P is while (b) do (P1).

Assume that {A}P{B} is true. Let C beWP,B(
−→x).

We will show that {C ∧ b}P1{C} is true. Assume JC ∧ bK(s,h) = True andJP1K((s, h)) ∋ r. We will show r ̸= abort and JCKr = True. We have JbKs =JbK(s,h) = True by Lemma 5.1.3. By the definition of JPK, we have JPK((s, h)) ⊇JPK(r). Since {C}P{B} is true by Lemma 5.2.12 (1), from JCK(s,h) = True, we haveJPK((s, h)) ̸∋ abort. Hence r ̸= abort. Assume JPK(r) ∋ r′. Then r′ ∈ JPK((s, h))
and we have r′ ̸= abort and JBKr′ = True. By Lemma 5.2.12 (2), we have JCKr =
True. Hence {C ∧ b}P1{C} is true.

By induction hypothesis for P1, we have F1, . . . , Fnproc ⊢ {C ∧ b}P1{C}.

By Lemma 5.3.4 with {A}P{B} being true, A→ C is true.

Wewill show thatC∧¬b→B is true. Assume JC ∧ ¬bK(s,h) = True. Wewill showJBK(s,h) = True. We have J¬bKs = J¬bK(s,h) = True. Hence JPK((s, h)) = {(s, h)}.
Since {C}P{B} is true by Lemma 5.2.12 (1), from JCK(s,h) = True and JPK((s, h)) =
{(s, h)}, we have JBK(s,h) = True. Hence C ∧ ¬b→ B is true.

5.3 Completeness 97

Since F1, . . . , Fnproc ⊢ {C∧b}P1{C}, by the rule (While), we have F1, . . . , Fnproc ⊢
{C}P{C ∧ ¬b}. Since A→ C and C ∧ ¬b→ B are true, by the rule (Conseq), we
have F1, . . . , Fnproc ⊢ {A}P{B}.

Case 4. P is P1; P2.

Assume that {A}P1; P2{B} is true. Let P be P1; P2 and we can take C to be
WP2,B(

−→x) by theorem 5.2.13. By Lemma 5.2.12 (1), {C}P2{B} is true.

Wewill show that {A}P1{C} is true. Assume JAK(s,h) = True and JP1K((s, h)) ∋ r.
We will show r ̸= abort and JCKr = True. Since {A}P{B} is true, JPK((s, h)) ̸∋
abort. Since JPK((s, h)) ⊇ JP2K(r) by the definition of JPK, r ̸= abort. We will showJCKr = True. Assume JP2K(r) ∋ r1. Then JPK((s, h)) ∋ r1. Then we have r1 ̸= abort
and JBKr1 = True. By Lemma 5.2.12 (2), JCKr = True. Hence {A}P1{C} is true.

By induction hypothesis for P1 and P2, we have F1, . . . , Fnproc ⊢ {A}P1{C}
and F1, . . . , Fnproc ⊢ {C}P2{B}. By the rule (Composition), we have therefore
F1, . . . , Fnproc ⊢ {A}P1; P2{B}.

Case 5. P is x := cons(e1, e2).

Assume {A}x := cons(e1, e2){B} is true. Let x′ be such that x′ ̸∈ FV(e1, e2,B) and
C be ∀x′((x′ 7→ e1, e2) −∗ B[x := x′]).

We will show that A → C is true. Assume JAK(s,h) = True. Fix n. Let
s′ = s[x′ := n]. We will show J(x′ 7→ e1, e2) −∗ B[x := x′]K(s′,h) = True. AssumeJx′ 7→ e1, e2K(s′,h1) = True. Then h1 = ∅[n := Je1Ks′ , n + 1 := Je2Ks′]. Assume that
h+ h1 exists. Let h2 = h+ h1. Now we will prove that JB[x := x′]K(s′,h2) = True.

Let s1 = s[x := n]. Since Jx := cons(e1, e2)K((s, h)) ∋ (s1, h2) by definition, we
have JBK(s1,h2) = True. Since JB[x := x′]K(s′,h2) = JBK(s1,h2) by x′ ̸∈ FV(B), we haveJB[x := x′]K(s′,h2) = True. Therefore J(x′ 7→ e1, e2) −∗ B[x := x′]K(s′,h) = True.

Hence J(x′ 7→ e1, e2) −∗ B[x := x′]K(s′,h) = True for all n. HenceJ∀x′((x′ 7→ e1, e2) −∗ B[x := x′])K(s,h) = True. Hence A→ C is true.

Since ⊢ {C}x := cons(e1, e2){B} is provable by the axiom (cons) and A → C
is true, we have ⊢ {A}x := cons(e1, e2){B} by the rule (Conseq). Therefore, by

98 Chapter 5. Soundness andCompleteness

(Weakening) F1, . . . , Fnproc ⊢ {A}x := cons(e1, e2){B}.

Case 6. P is x := [e].

Assume that {A}x := [e]{B} is true. Let x′ ̸∈ FV(e,B), and C be ∃x′(e 7→ x′ ∗
(e 7→ x′ −∗ B[x := x′])).

We will show A→ C. Assume JAK(s,h) = True. We will show JCK(s,h) = True.

Let n be JeKs. Since {A}P{B} is true, JPK((s, h)) ̸∋ abort. Hence n ∈ Dom(h).
Let h(n) = n1. We have JPK((s, h)) = {(s1, h)} and JBK(s1,h) = True where s1 =
s[x := n1]. Let h1 = h|{n}, h2 = h|Dom(h)−{n}, and s′ = s[x′ := n1]. Then h = h1 + h2.

We have Je 7→ x′K(s′,h1) = True since JeKs′ = JeKs = n by x′ ̸∈ FV(e).

We will show Je 7→ x′ −∗ B[x := x′]K(s′,h2) = True. Assume Je 7→ x′K(s′,h′1) =

True and h2 + h′1 exists. We have h1 = h′1. Hence h′1 + h2 = h. From JBK(s1,h) =JB[x := x′]K(s′,h) byx′ ̸∈ FV(B) and JBK(s1,h) = True,wehave JB[x := x′]K(s′,h2+h′1) =

True. Hence Je 7→ x′ −∗ B[x := x′]K(s′,h2) = True.

Combining them,wehave Je 7→ x′ ∗ (e 7→ x′ −∗ B[x := x′])K(s′,h) = True. HenceJCK(s,h) = True. Hence A→ C is true.

By the axiom (Lookup),⊢ {C}P{B} is provable. SinceA→C is true, by the rule
(Conseq), we have ⊢ {A}P{B}. Therefore, F1, . . . , Fnproc ⊢ {A}x := [e]{B}.

Case 7. P is [e1] := e2.

Assume that {A}[e1] := e2{B} is true. Let x ̸∈ FV(e1) and C be (∃x(e1 7→ x)) ∗
(e1 7→ e2 −∗ B).

Wewill show thatA→C is true. Assume JAK(s,h) = True. Wewill show JCK(s,h) =
True.

Let n1 = Je1Ks. Since {A}P{B} is true, JPK((s, h)) ̸∋ abort. Hence n1 ∈ Dom(h).
Let h2 = h|{n1} and h3 = h|Dom(h)−{n1}. Nowwewill show J∃x(e1 7→ x)K(s,h2) = True
and Je1 7→ e2 −∗ BK(s,h3) = True.

Let n2 be h2(n1). Then Je1 7→ xK(s[x:=n2],h2) = True. Then J∃x(e1 7→ x)K(s,h2) =

5.3 Completeness 99

True.

Assume Je1 7→ e2K(s,h4) = True. Then h4 = ∅[Je1Ks := Je2Ks]. By definitionJPK((s, h)) = {(s, h1)} where h1 = h4 + h3. Then JBK(s,h1) = True. ThenJe1 7→ e2 −∗ BK(s,h3) = True.

Hence A→ C is true.

By the axiom (Mutation), ⊢ {C}P{B} is provable. Since A→ C is true, by the
rule (Conseq), we have ⊢ {A}P{B}. Therefore, F1, . . . , Fnproc ⊢ {A}[e1] := e2{B}.

Case 8. P is dispose(e).

Assume that {A}dispose(e){B} is true. Let x ̸∈ FV(e) andC be (∃x(e 7→ x)) ∗B.

Wewill show thatA→C is true. Assume JAK(s,h) = True. Wewill show JCK(s,h) =
True. Let n = JeKs. Since{A}P{B} is true, JPK((s, h)) ̸∋ abort. Hence n ∈ Dom(h).
Hence JPK((s, h)) = {(s, h1)} and JBK(s,h1) = True where h1 = h|Dom(h)−{n}. Let
n1 = h(n), h2 = ∅[n := n1], and s′ = s[x := n1]. We have h = h1 + h2. Since JeKs′ =JeKs = n by x ̸∈ FV(e), we have Je 7→ xK(s′,h2) = True. Hence J∃x(e 7→ x)K(s,h2) =
True. Hence JCK(s,h) = True. Hence A→ C is true.

By the axiom (Dispose),⊢ {C}P{B} is provable. SinceA→C is true, by the rule
(Conseq), we have ⊢ {A}P{B}. Therefore, F1, . . . , Fnproc ⊢ {A}dispose(e){B}.

Case 9. P is Ri.

Assume that {A}Ri{B} is true. We have F1, . . . , Fnproc ⊢ Fi. Note that the variables
in −→z ,xh,FV(A) ∪ FV(B) ∪ EFV(Ri) are mutually distinct according to our global
assumption. By the rule (Inv-Conj),

F1, . . . , Fnproc ⊢ {Gi ∧HEvalA[−→y :=−→z](xh)}Ri{Si ∧HEvalA[−→y :=−→z](xh)}

since FV(HEvalA[−→y :=−→z](xh)) ∩Mod(Ri) = ∅.

We will prove Si ∧ HEvalA[−→y :=−→z](xh) → B. Assume thatJSi ∧HEvalA[−→y :=−→z](xh)K(s′,h′) is true. Then JSiK(s′,h′) and JHEvalA[−→y :=−→z](xh)K(s′,h′)
are true. By Lemma 5.3.2 (2), we have s, h such that JGiK(s,h) is true and

100 Chapter 5. Soundness andCompleteness

JRiK((s, h)) ∋ (s′, h′).

Now we will show JHEvalA[−→y :=−→z](xh)K(s,h) = True by contradiction. AssumeJHEvalA[−→y :=−→z](xh)K(s,h) = False. Then J¬HEvalA[−→y :=−→z](xh)K(s,h) = True. By (Inv-
Conj),

F1, . . . , Fnproc ⊢ {Gi ∧ ¬HEvalA[−→y :=−→z](xh)}Ri{Si ∧ ¬HEvalA[−→y :=−→z](xh)}.

By Theorem 5.1.8, F1, . . . , Fnproc ⊢ {Gi ∧ ¬HEvalA[−→y :=−→z](xh)}Ri{Si ∧
¬HEvalA[−→y :=−→z](xh)} is true. Since F1, . . . , Fnproc are true by Lemma 5.3.2
(1) with the fact that {Gi}Ri{True} is true by Lemma 5.2.12 (1), {Gi ∧
¬HEvalA[−→y :=−→z](xh)}Ri{Si ∧ ¬HEvalA[−→y :=−→z](xh)} is true.

By the definition of the truth of asserted programs, we haveJ¬HEvalA[−→y :=−→z](xh)K(s′,h′) = True. Then JHEvalA[−→y :=−→z](xh)K(s′,h′) = False. But it
contradicts with JHEvalA[−→y :=−→z](xh)K(s′,h′) = True. Thus JHEvalA[−→y :=−→z](xh)K(s,h) =
True.

Then s(−→z) = s(−→y) and JHeap(xh) ∧Wi ∧HEvalA(xh)K(s,h) is true. Since
Heapcode(s(xh), h) holds and JHEvalA(xh)K(s,h) is true, by Lemma 5.2.7 (3), we haveJAK(s,h) = True.

Since {A}Ri{B} is true, JBK(s′,h′) is true. Then Si ∧HEvalA[−→y :=−→z](xh)→ B is true.
Then by (Conseq) rule,

F1, . . . , Fnproc ⊢ {Gi ∧HEvalA[−→y :=−→z](xh)}Ri{B}

is provable. By (Exists) rule,

F1, . . . , Fnproc ⊢ {∃−→z xh(−→y = −→z ∧Heap(xh) ∧Wi ∧HEvalA[−→y :=−→z](xh))}Ri{B}.

Naturally {A}Ri{True} is true. Then by Lemma 5.3.4, A → Wi is true. By Lemma
5.3.3, A → ∃−→z xh(−→y = −→z ∧ Heap(xh) ∧ HEvalA[−→y :=−→z](xh)) is true and then we
haveA→∃−→z xh(−→y = −→z ∧Heap(xh)∧HEvalA[−→y :=−→z](xh)∧Wi). Then by (conseq)
rule,

F1, . . . , Fnproc ⊢ {A}Ri{B}

5.3 Completeness 101

, which was to be proved. ⊓⊔

Next Lemma shows that the hypothesis F1, . . . , Fnproc used in lemma 5.3.7 are prov-
able in the our system.

Lemma 5.3.8 ⊢ Fi is provable for i = 1, . . . , nproc.

Proof. Fix i. Note that we have fresh variables −→z ′ and x′h according to our global
assumption. Let G′

i be Gi[
−→z := −→z ′, xh := x′h] and S′i be Si[

−→z := −→z ′, xh := x′h].
By Lemma 5.2.12 (1), {Wi}Ri{True} is true. Then {Gi}Ri{True} is true. Then by
Lemma 5.3.2 (1), {Gi}Ri{Si} is true. By Lemma 4.2.12, JRiK = JQiK where Qi is
the body of Ri. Hence {Gi}Qi{Si} is true. By Lemma 5.3.5 (2), {G′

i}Qi{S′i} is true.
Then by Lemma 5.3.7, F1, . . . , Fnproc ⊢ {G′

i}Qi{S′i} is provable. By Lemma 5.3.5 (1),
F1, . . . , Fnproc ⊢ {Gi}Qi{Si} is provable. By (Recursion) rule, ⊢ Fi is provable. ⊓⊔

The following theorem is our central result of this paper. It says that our system is
complete.

Theorem 5.3.9 If {A}P{B} is true then ⊢ {A}P{B} is provable.

Proof. Assume {A}P{B} is true. Then by Lemma 5.3.7, F1, . . . , Fnproc ⊢ {A}P{B}
is provable. By Lemma 5.3.8, ⊢ Fi is provable for i = 1, . . . , nproc. By (Cut), ⊢
{A}P{B} is also provable. ⊓⊔

103

6
Admissibility of Frame Rules

We have the soundness for Γ ⊢ {A}P{B} (Theorem 5.1.8), but we have the com-
pleteness only for ⊢ {A}P{B} (Theorem 5.3.9). Hence for sequents of the shape
⊢ {A}P{B}, a rule is sound if and only if the rule is admissible. On the other hand,
for rules that use sequents of the shape Γ ⊢ {A}P{B}, this equivalence may fail. This
section shows

• the ordinary frame rule is sound, but not admissible,

• the uniform hypothetical frame rule is not sound nor admissible,

• the hypothetical frame rule is not sound nor admissible,

• the hypothesis-free frame rule is sound and admissible,

• the conjunction rule is sound, but not admissible.

The ordinary frame rule and the hypothetical frame rule are important for the local
reasoning in separation logic as discussed in [7, 17, 23]. It is because we can use the

104 Chapter 6. Admissibility of Frame Rules

hypothetical judgments as for the specifications of the procedures in terms of their
actually used memory to reason a program in an extended memory space. A natural
question is how important these rules are for the completeness of our system. Since
we can achieve the completeness for asserted programswithout hypothesis in our sys-
temwithout these rules, indeed they arenot necessary for the completeness. However
whenwe think completeness for assertedprogramswith ahypothesis, theymaybe im-
portant. In fact, the ordinary frame rule is not admissible in our system, and we will
show it in this section. Moreover, the uniform hypothetical frame rule, where all the
specifications in the hypothesis are extended with the invariant uniformly, is neither
sound nor admissible. As a consequence, the hypothetical frame rule is not admissi-
ble as well since the frame rules mentioned above are special forms of it. However, a
frame rule with an empty hypothesis, called the hypothesis-free frame rule, is admis-
sible and sound in our system. Another interesting question is about the role of the
conjunction rule [17] in our system. It is clear that the conjunction rule is not nec-
essary for the completeness for asserted programs without a hypothesis. In fact, the
conjunction rule is not admissible in the system. In this section, we will investigate
the soundness and the admissibility of these rules.

6.1 FrameRules

6.1.1 Ordinary FrameRule

Definition 6.1.1 TheOrdinary Frame Rule is defined as -

Γ ⊢ {A}P{B}
Γ ⊢ {A ∗ C}P{B ∗ C} (FV(C) ∩Mod(P) = ∅)

The following lemmas are used to prove the soundness of the Ordinary Frame
Rule.

Lemma 6.1.2 Suppose P ∈ L−. If JPK−((s, h1 + h2)) ∋ (s′, h′) and JPK−(s, h1) ̸∋
abort then h′ = h′1 + h2 and JPK−((s, h1)) ∋ (s′, h′1) for some h′1.

6.1 Frame Rules 105

Proof. Proved by induction on P. We will consider the cases of P.

Case 1. P is x := e.

Assume JPK−((s, h1 + h2)) ∋ (s′, h′). Then h′ = h1 + h2 by definition. Take h′1 to
be h1. Then h′ = h′1 + h2 and JPK−((s, h1)) ∋ (s′, h′1).

Case 2. P is if (b) then (P1) else (p2).

Assume JPK−((s, h1 + h2)) ∋ (s′, h′) and JPK−(s, h1) ̸∋ abort.

Case JbKs = True. Then JP1K−((s, h1 + h2)) ∋ (s′, h′) and JP1K−(s, h1) ̸∋ abort
by definition. Then we have h′1 such that h′ = h′1 + h2 and JP1K−((s, h1)) ∋ (s′, h′1) by
induction hypothesis. Then JPK−((s, h1)) ∋ (s′, h′1) for some h′1 by definition.

Case JbKs = False can be shown as above.

Case 3. P is while (b) do (P1).

Assume JPK−((s, h1 + h2)) ∋ (s′, h′) and JPK−((s, h1)) ̸∋ abort. By Proposi-
tion 4.2.4, we have m ≥ 0, s′′0 , . . . , s′′m, h′′0 , . . . , h′′m such that (s′′0 , h′′0) = (s, h1 + h2),
(s′, h′) = (s′′m, h′′m), JbKs′′i = True, JP1K−((s′′i , h′′i)) ∋ (s′′i+1, h′′i+1) for 0 ≤ i < m,
and JbKs′′m = False. Take h′′′0 = h1. Then JP1K−((s′′i , h′′′i)) ̸∋ abort and by induction
hypothesis we have h′′′i+1 such that h′′i+1 = h′′′i+1+ h2 and JP1K−((s′′i , h′′′i)) ∋ (s′′i+1, h′′′i+1)

for 0 ≤ i < m. Take h′1 be h′′′m . Then by Proposition 4.2.4, JPK−((s, h1)) ∋ (s′, h′1).

Case 4. P is P1; P2.

Assume JPK−((s, h1 + h2)) ∋ (s′, h′) and JPK−(s, h1) ̸∋ abort. ThenJP1K−((s, h1)) ̸∋ abort and we have s′′, h′′ such that JP1K−((s, h1 + h2)) ∋ (s′′, h′′)
and JP2K−((s′′, h′′)) ∋ (s′, h′). By induction hypothesis, we have h′′1 such that
h′′ = h′′1 + h2 and JP1K−((s, h1)) ∋ (s′′, h′′1). Then JP2K−((s, h′′1)) ̸∋ abort sinceJPK−((s, h1)) ̸∋ abort. By induction hypothesis, we have h′1 such that h′ = h′1 + h2
and JP2K−((s′′, h′′1)) ∋ (s′, h′1). Then JPK−((s, h1)) ∋ (s′, h′1).

Case 5. P is skip.

Its proof is immediate.

106 Chapter 6. Admissibility of Frame Rules

Case 6. P is x := cons(e1, e2).

Assume JPK−((s, h1 + h2)) ∋ (s′, h′) and JPK−((s, h1)) ̸∋ abort. By definition,
h′ = (h1+h2)[n := Je1Ks, n+1 := Je2Ks]where n > 0, n, n+1 ̸∈ Dom(h1+h2). Then
h′ = (h1[n := Je1Ks, n+ 1 := Je2Ks])+ h2. Take h′1 to be h1[n := Je1Ks, n+ 1 := Je2Ks].
Then h′ = h′1 + h2 and JPK−((s, h1)) ∋ (s′, h′1) by definition.

Case 7. P is x := [e].

Assume JPK−((s, h1 + h2)) ∋ (s′, h′) and JPK−((s, h1)) ̸∋ abort. Then h′ = h1 +
h2 and JeKs ∈ Dom(h1) by definition. Take h′1 to be h1. Then h′ = h′1 + h2 andJPK−((s, h1)) ∋ (s′, h′1).

Case 8. P is [e1] := e2.

Assume JPK−((s, h1 + h2)) ∋ (s′, h′) and JPK−((s, h1)) ̸∋ abort. By definition,
h′ = (h1 + h2)[Je1Ks := Je2Ks] where Je1Ks ∈ Dom(h1). Then h′ = (h1[Je1Ks :=Je2Ks]) + h2. Take h′1 to be h1[Je1Ks := Je2Ks]. Then h′ = h′1 + h2 and JPK−((s, h1)) ∋
(s′, h′1) by definition.

Case 9. P is dispose(e).

Assume JPK−((s, h1 + h2)) ∋ (s′, h′) and JPK−((s, h1)) ̸∋ abort. By defi-
nition, h′ = (h1 + h2)|Dom(h1+h2)−{JeKs}) where JeKs ∈ Dom(h1). Then h′ =

(h1|Dom(h1)−{JeKs}) + h2. Take h′1 to be h1|Dom(h1)−{JeKs}. Then h′ = h′1 + h2 andJPK−((s, h1)) ∋ (s′, h′1) by definition. ⊓⊔

Lemma 6.1.3 Suppose P ∈ L. If JPK((s, h1 + h2)) ∋ (s′, h′) and JPK(s, h1) ̸∋ abort
then h′ = h′1 + h2 and JPK((s, h1)) ∋ (s′, h′1) for some h′1.

Proof. Assume JPK((s, h1 + h2)) ∋ (s′, h′) and JPK((s, h1)) ̸∋ abort. By definition,JP(k)K−((s, h1 + h2)) ∋ (s′, h′) for some k and JP(k′)K−((s, h1)) ̸∋ abort for all k′.
Hence JP(k)K−((s, h1)) ̸∋ abort. By Lemma6.1.2, h′ = h′1+h2 and JP(k)K−((s, h1)) ∋
(s′, h′1) for some h′1. Hence by definition JPK((s, h1)) ∋ (s′, h′1). ⊓⊔

Below we show that the Ordinary Frame Rule is sound.

6.1 Frame Rules 107

Proposition 6.1.4 TheOrdinary Frame Rule is sound. Namely, if Γ ⊢ {A}P{B} is
true then Γ ⊢ {A ∗ C}P{B ∗ C} is true where Mod(P) ∩ FV(C) = ∅.

Proof. Assume Γ ⊢ {A}P{B} is true. Assume Γ is true, JAK(s,h1) = True, JCK(s,h2) =
True, and JPK((s, h1 + h2)) ∋ (s′, h′). We will show that JB ∗ CK(s′,h′) = True.

Then {A}P{B} is true since Γ ⊢ {A}P{B} and Γ are true. Then JPK((s, h1)) ̸∋
abort. By Lemma 6.1.3, h′ = h′1 + h2 and JPK((s, h1)) ∋ (s′, h′1) for some h′1. ThenJBK(s′,h′1) = True. Then JCK(s′,h2) = True since s =FV(C) s′. Then by definition,JB ∗ CK(s′,h′) = True. Therefore, Γ ⊢ {A ∗ C}P{B ∗ C} is true. ⊓⊔

Below we will show that the Ordinary Frame Rule is not admissible.

Lemma 6.1.5 If {A}P{B} is false, P is atomic, and Γ ⊢ {A}P{B} has a proof with
(≤ n) cut rules, then Γ ⊢ {A}P{B} is provable only by (Identity), (Weakening),
(Exists), (Inv-Conj), and (Conseq).

Proof. By induction on n, we will show that, if Γ ⊢ {A}P{B} is provable with (≤
n) cut rules then Γ ⊢ {A}P{B} has a proof only by (Identity), (Weakening),
(Exists), (Inv-Conj), and (Conseq).

Assume that Γ ⊢ {A}P{B} has some proof with (≤ n) cut rules. We consider the
cases of n.

Case 1. n = 0.

The proof does not have (If), (While), (Composition), and (Recursion)
since P is atomic. Hence the proof has some first axiom (Skip), (Assignment),
(Cons), (Lookup), (Mutation), and (Dispose) and it is followed by some of
(Weakening), (Conseq), (Exists), (Inv-Conj), or (Identity). Since {A}P{B}
is False, byTheorem 5.1.8, the first axiom is (Identity).

Case 2. n > 0.

If the last rule is (Weakening), (Conseq), (Exists), or (Inv-Conj), we can
move it upward. Hence we can assume that the last rule is (Cut). Then we have
Γ ⊢ {A′}P′{B′} and Γ ∪ {{A′}P′{B′}} ⊢ {A}P{B} for some {A′}P′{B′}. Then

108 Chapter 6. Admissibility of Frame Rules

Γ ∪ {{A′}P′{B′}} ⊢ {A}P{B} is provable with (< n) cut rules. By induction hy-
pothesis, it is provable only by (Identity), (Weakening), (Exists), (Inv-Conj),
and (Conseq).

Case 2.1. The (Identity) does not use {A′}P′{B′}. Then {A′}P′{B′} is in-
troduced by (Weakening). Hence Γ ⊢ {A}P{B} is provable by (Identity),
(Weakening), (Exists), (Inv-Conj), and (Conseq).

Case 2.2. The (Identity) uses {A′}P′{B′}.

Since {A}P{B} is false, by Theorem 5.1.8, {A′}P′{B′} is false. Since P′ = P
and Γ ⊢ {A′}P{B′} is provable with (< n) cut rules, by induction hypothesis,
Γ ⊢ {A′}P{B′} is provable only by (Identity), (Weakening), (Exists), (Inv-
Conj), and (Conseq).

Since {A′}P′{B′} is in Γ, combining the proof of Γ ⊢ {A′}P′{B′} and the proof
of Γ ∪ {{A′}P′{B′}} ⊢ {A}P{B}, Γ ⊢ {A}P{B} is provable only by (Identity),
(Weakening), (Exists), (Inv-Conj), and (Conseq).

We have shown that if Γ ⊢ {A}P{B} is provable with (≤ n) cut rules then Γ ⊢
{A}P{B} has a proof only by (Identity), (Weakening), (Exists), (Inv-Conj),
and (Conseq). ⊓⊔

Proposition 6.1.6 TheOrdinary Frame Rule is not admissible.

Proof. By lettingΓ ⊢ {A}P{B}be{{emp}x := [1]{emp}} ⊢ {emp}x := [1]{emp}
in Definition 6.1.1 and C be 2 7→ 0 we will show that it gives a counterexample. By
(Identity), {{emp}x := [1]{emp}} ⊢ {emp}x := [1]{emp} is provable. We will
show that {{emp}x := [1]{emp}} ⊢ {emp ∗ 2 7→ 0}x := [1]{emp ∗ 2 7→ 0} is not
provable.

Assume {{emp}x := [1]{emp}} ⊢ {emp ∗ 2 7→ 0}x := [1]{emp ∗ 2 7→ 0} is
provable. Here x := [1] is atomic and {emp}x := [1]{emp} is false. By Lemma 6.1.5,
{{emp}x := [1]{emp}} ⊢ {emp∗2 7→ 0}x := [1]{emp∗2 7→ 0} is provable byfirst
(Identity) and some of (Weakening), (Exists), (Inv-Conj), and (Conseq).
Because of the shape of emp∗ 2 7→ 0, (Exists) and (Inv-Conj) are not used. Hence
for (Conseq), (emp ∗ 2 7→ 0)→ emp and emp→ (emp ∗ 2 7→ 0) are used in the

6.1 Frame Rules 109

proof. But it contradicts since (emp ∗ 2 7→ 0)→ emp and emp→ (emp ∗ 2 7→ 0)
are false.

Thus, the Ordinary Frame Rule is not admissible. ⊓⊔

6.1.2 UniformHypothetical FrameRule

We define Γ ∗ C as { {A ∗ C}P{B ∗ C} | {A}P{B} ∈ Γ }.

We defineMod(Γ) as
∪

{Ai}Pi{Bi}∈Γ Mod(Pi).

Definition 6.1.7 TheUniformHypothetical Frame Rule is defined as -

Γ ⊢ {A}P{B}
Γ ∗ C ⊢ {A ∗ C}P{B ∗ C} (FV(C) ∩ (Mod(P) ∪Mod(Γ)) = ∅)

Wewill show that the UniformHypothetical Frame Ruleis not sound in the
following lemma.

Proposition 6.1.8 TheUniformHypothetical Frame Rule is not sound.

Proof. This proof is inspired from the example given in Section 6 of [17]. We will
show the claim by a counterexample.

By letting Γ ⊢ {A}P{B} be {{emp∨¬emp}skip{emp}} ⊢ {¬emp}skip{False}
and C be¬emp we will show that it gives a counterexample.

{{emp ∨ ¬emp}skip{emp}} ⊢ {¬emp}skip{False} is true. By the Uniform
Hypothetical Frame Rule, {{emp ∨ ¬emp ∗ ¬emp}skip{emp ∗ ¬emp}} ⊢
{¬emp ∗ ¬emp}skip{False ∗ ¬emp} is true. But clearly {{emp ∨ ¬emp ∗
¬emp}skip{emp ∗ ¬emp}} ⊢ {¬emp ∗ ¬emp}skip{False ∗ ¬emp} is false. ⊓⊔

Now we will show that the UniformHypothetical Frame Rule is not admis-
sible.

Proposition 6.1.9 TheUniformHypothetical Frame Rule is not admissible.

110 Chapter 6. Admissibility of Frame Rules

Proof. By letting Γ ⊢ {A}P{B} be {{x = 1 ∧ y = x}skip{y = 2}} ⊢ {∃x(x =

1 ∧ y = x)}skip{y = 2} and C be x = 3we will show that it gives a counterexample.

By (Identity), {{x = 1 ∧ y = x}skip{y = 2}} ⊢ {x = 1 ∧ y = x}skip{y = 2}
is provable. By (Exists), {{x = 1 ∧ y = x}skip{y = 2}} ⊢ {∃x(x = 1 ∧ y =

x)}skip{y = 2} is provable. If the uniform hypothetical frame rule were admissible
then {{x = 1 ∧ y = x ∗ x = 3}skip{y = 2 ∗ x = 3}} ⊢ {∃x(x = 1 ∧ y = x) ∗ x =
3}skip{y = 2 ∗ x = 3}would be provable. ByTheorem 5.1.8, it would be true. Since
x = 1∧ y = x ∗ x = 3 is false, we have {x = 1∧ y = x ∗ x = 3}skip{y = 2 ∗ x = 3}
is true. But {∃x(x = 1 ∧ y = x) ∗ x = 3}skip{y = 2 ∗ x = 3} is false. Therefore,
{{x = 1 ∧ y = x ∗ x = 3}skip{y = 2 ∗ x = 3}} ⊢ {∃x(x = 1 ∧ y = x) ∗ x =

3}skip{y = 2 ∗ x = 3} is false. So it would contradict. ⊓⊔

6.1.3 Hypothetical FrameRule

Definition 6.1.10 TheHypothetical Frame Rule is defined as -

Γ ∪ Γ′ ⊢ {A}P{B}
Γ ∪ (Γ′ ∗ C) ⊢ {A ∗ C}P{B ∗ C} (FV(C) ∩ (Mod(P) ∪Mod(Γ′)) = ∅)

The next two propositions are proved by Proposition 6.1.8 and Proposition 6.1.9
respectively, since the uniformhypothetical frame rule is a special case of Hypothet-
ical Frame Rule. Proposition 6.1.12 is proved also by Proposition 6.1.6, since the
Ordinary Frame Rule is a special case of hypothetical frame rule.

Proposition 6.1.11 TheHypothetical Frame Rule is not sound.

Proposition 6.1.12 TheHypothetical Frame Rule is not admissible.

6.2 Conjunction Rule 111

6.1.4 Hypothesis-Free FrameRule

Definition 6.1.13 TheHypothesis-free Frame Rule is defined as -

⊢ {A}P{B}
⊢ {A ∗ C}P{B ∗ C} (FV(C) ∩Mod(P) = ∅)

Note that the Hypothesis-free Frame Rule is sound since the Ordinary
Frame Rule is sound. The following proposition shows that the Hypothesis-free
Frame Rule is admissible.

Proposition 6.1.14 The Hypothesis-free Frame Rule is admissible. Namely, if ⊢
{A}P{B} is provable then⊢ {A∗C}P{B∗C} is provable whereMod(P)∩FV(C) = ∅.

Proof. Assume ⊢ {A}P{B} is provable. Then byTheorem 5.1.8, ⊢ {A}P{B} is true.
Then by Proposition 6.1.4, ⊢ {A ∗ C}P{B ∗ C} is true. By Theorem 5.3.9, ⊢ {A ∗
C}P{B ∗ C} is provable. ⊓⊔

6.2 ConjunctionRule

Definition 6.2.1 TheConjunction Rule is defined as -

Γ ⊢ {A}P{B} Γ ⊢ {C}P{D}
Γ ⊢ {A ∧ C}P{B ∧ D}

The Conjunction Rule is trivially sound by the definition of semantics of as-
serted programs. Now we will show that the Conjunction Ruleis not admissible.

Proposition 6.2.2 TheConjunction Rule is not admissible.

Proof. This proof is inspired from the example given in Section 6 of [17]. By letting
Γ ⊢ {A}P{B} be {{emp ∨ ¬emp}skip{emp}} ⊢ {¬emp}skip{emp} and Γ ⊢
{C}P{D} be {{emp ∨ ¬emp}skip{emp}} ⊢ {¬emp}skip{¬emp} we will show
that it gives a counterexample.

112 Chapter 6. Admissibility of Frame Rules

We have {{emp ∨ ¬emp}skip{emp}} ⊢ {emp ∨ ¬emp}skip{emp} by
(Identity). Then {{emp ∨ ¬emp}skip{emp}} ⊢ {¬emp}skip{emp} by
(Conseq) since¬emp→ emp∨¬emp. Again,⊢ {¬emp}skip{¬emp} is provable
by (Skip). Then {{emp ∨ ¬emp}skip{emp}} ⊢ {¬emp}skip{¬emp} is provable
by (Weakening). Therefore both Γ ⊢ {A}P{B} and Γ ⊢ {C}P{D} are provable.

We will show that Γ ⊢ {A ∧ C}P{B ∧ D} is not provable. It is {{emp ∨
¬emp}skip{emp}} ⊢ {¬emp ∧ ¬emp}skip{emp ∧ ¬emp}. We have {{emp ∨
¬emp}skip{emp}} ⊢ {emp∨¬emp}skip{emp} by (Identity). But emp→False
is false and hence {{emp ∨ ¬emp}skip{emp}} ⊢ {¬emp ∧ ¬emp}skip{emp ∧
¬emp} is notprovableby (Identity), (Weakening)and(Conseq) rules. Thenby
Lemma 6.1.5, {{emp∨¬emp}skip{emp}} ⊢ {¬emp∧¬emp}skip{emp∧¬emp}
is not provable since {¬emp ∧ ¬emp}skip{emp ∧ ¬emp} is false.

Therefore, the Conjunction Rule is not admissible. ⊓⊔

This section has revealed the fine structure (and the subtlety) of the problem. The
completeness issue studied in this dissertation ismuchmore subtle andmore difficult
than what onemight expect. So, a very careful choice of axioms and inference rules is
necessary. The discussion in this section is an evidence of such difficulty in the case
of hypothetical judgments.

113

7
Conclusion

In our work, we have presented a system that can verify all terminating programs
written in the language proposed in [18] extended withmutual recursive procedures.
Our assertion language is exactly the same as that of [18]. We have shown that our
proposed system is sound and relatively complete (in the sense of Cook [8]). The
adaptation completeness is straightforward, as the axioms of atomic commands are
chosen according to theweakest preconditions. Yet the completeness result could not
be achieved from the traditional Hoare’s logic for pointer programs simply by choos-
ing the set of appropriate rules. In [3], the expressiveness is assumed and the strongest
postcondition is obtaineddirectly from theweakest precondition. Inourwork, the ex-
pressiveness is proved and the precondition for the abort-free execution is established
which is necessary to utilize the strongest postcondition.

A future work can be the completeness of the system with non-empty hypothesis.
Modification of some axioms and inference rules of this system along with inclusion

114 Chapter 7. Conclusion

of some new rules can be a starting point to achieve it. Besides, several extensions of
the current system are possible and it is important to study their completeness. More-
over, it is necessary to be able to verify programswritten inmodern programming lan-
guages which are enriched with newer features. Among them, enhancement of pro-
cedures that can handle parameters is important. For that it may require to extend the
programming language to local variables and parameters. It may pose a challenge to
correctlymodel the local scoping of store and heap. It will also be necessary to handle
different types of parameters like call by name, call by value and call by variable. One
direction can be the inclusion of the corresponding inference rules from [3]. How-
ever, it is necessary to investigate them carefully since not all the sound rules in [3]
are consistent in Separation Logic. It is out of the scope of the current work and in-
teresting for the future work.

Including implementation of the system, other future works can be bug tracking in
programs and program synthesizing using our system.

115

References

[1] M.F. Al Ameen.M. Tatsuta, NewComplete System ofHoare’s Logic with Recur-
sive Procedures, Constructivism and Computability, JAIST Logic Workshop Se-
ries 2015, Kanazawa, Japan.

[2] M.F. Al Ameen and M. Tatsuta, Completeness for recursive procedures in
separation logic, Theoretical Computer Science, 2016, Available online 11 April
2016, ISSN 0304-3975, DOI=http://dx.doi.org/10.1016/j.tcs.2016.
04.004. (http://www.sciencedirect.com/science/article/pii/
S0304397516300329).

[3] K.R. Apt, Ten Years of Hoare’s Logic: A Survey — Part I, ACM Transactions on
Programming Languages and Systems 3 (4) (1981) 431–483.

[4] J. Berdine, C. Calcagno, and P.W. O’Hearn, Symbolic Execution with Separa-
tion Logic, In: Proceedings of the Third Asian Symposium on Programming
Languages and Systems (APLAS2005), Lecture Notes in Computer Science 3780
(2005) 52–68.

[5] J Berdine, C Calcagno and PWO’Hearn, Smallfoot: Modular Automatic Asser-
tion Checking with Separation Logic, In: 4th Formal Methods for Components
and Objects, Lecture Notes in Computer Science 4111, (2006).

[6] J.A. Bergstra and J.V. Tucker, Expressiveness and the Completeness of Hoare’s
Logic, Journal Computer and System Sciences 25 (3) (1982) 267–284.

[7] C. Calcagno, P.W. O’Hearn, H. Yang. Local Action and Abstract Separation
Logic. In: ACM/IEEE Symposium on Logic in Computer Science (LICS 2007),
2007.

[8] S.A. Cook, Soundness and completeness of an axiom system for program verifi-
cation, SIAM Journal on Computing 7 (1) (1978) 70–90.

116 References

[9] G.A.Gorelick,Complete axiomatic system forproving assertions about recursive
and non-recursive programs, Technical Report No. 75, Computer Science Dept,
University of Toronto, Toronto, Canada, Jan 1975.

[10] J.Y. Halpern, A good Hoare axiom system for an ALGOL-like language, In:
Proceedings of 11th ACM symposium on Principles of programming languages
(POPL84) (1984) 262–271.

[11] C.A.R. Hoare, An axiomatic basis for computer programming, Commun. ACM
12 (10) (1969) 576–580,583.

[12] M.Huth,M. Ryan, In: Logic in Computer Science: Modeling and Reasoning about
Systems, second edition, Cambridge University Press, 2004.

[13] S. Ishtiaq and P.W. O’Hearn, BI as an Assertion Language for Mutable Data
Structures, In: Proceedings of 28th ACM Symposium on Principles of Programming
Languages (POPL2001) (2001) 14–26.

[14] B. Josko,Onexpressive interpretationsof aHoare-logic forClarke’s languageL4,
In: Proceedings of 1st Annual Symposium of Theoretical Aspects of Computer
Science (STACS 84), Lecture Notes in Computer Science 166 (1984) 73–84.

[15] H. H. Nguyen, C. David, S.C. Qin, and W.N. Chin, Automated Verification of
Shape and Size Properties Via Separation Logic, In: Proceedings of 8th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI 2007), Lecture Notes in Computer Science 4349 (2007) 251–266.

[16] H.H. Nguyen and W.N. Chin, Enhancing Program Verification with Lemmas,
In: Proceedings of 20th International Conference on Computer Aided Verifica-
tion (CAV 2008), Lecture Notes in Computer Science 5123 (2008) 355–369.

[17] P.W.O’Hearn, H. Yang, and J.C. Reynolds, Separation and InformationHiding,
In: Proceeding of the 31st Annula Symposium on Principles of Programming Lan-
guages (POPL 2004), 2004.

[18] J.C. Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures,
In: Proceedings of Seventeenth Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS2002) (2002) 55–74.

[19] M. Tatsuta, W.N. Chin, andM.F. Al Ameen, Completeness of Pointer Program
Verification by Separation Logic, In: Proceeding of 7th IEEE International Confer-
ence on Software Engineering and Formal Methods (SEFM 2009) 179–188.

[20] P.W. O’Hearn and D. J. Pym, The logic of bunched implications In: Bulletin of
Symbolic Logic, 5(2), June 1999, 215–244

References 117

[21] Peter O’Hearn, John Reynolds, Hongseok Yang, Local Reasoning about Pro-
grams that Alter Data Structures In: Proceedings of CSL’01, LNCS 2142, Paris,
2001. 1–19

[22] Tarski, Alfred. A lattice-theoretical fixpoint theoremand its applications. In: Pa-
cific J. Math. 5 (1955), no. 2, 285–309.

[23] H. Yang, Local Reasoning for Stateful Programs, In: Ph.D. thesis, University of
Illinois at Urbana Champaign, 2001.

118

Index

P[−→P ′], 35
Ω, 35

Asserted program, 33
Assertion langauge, 32

Base language, 30

Coding of assertions, 73
Coding of base language, 71
Coding of programs, 75
Completeness theorem, 101
Conjunction Rule, 111

Empty heap, emp, 32
Expressiveness theorem, 90
Extended Free variable, 36

Frame Rule, 104
Free variable of a program, 36
Free variable of an assertion, 32

Hypothesis-Free Frame Rule, 110
Hypothetical Frame Rule, 110

Invariance axiom, 70

Logical system, 56

Modifiable variables, 37

Number of Procedures, nproc, 31

Ordinary Frame Rule, 104

Procedures dependencies, k
;, 33

Program unfolding to level k, P(k), 35

Programming language, 30
Pure formula, 30

Recursive Procedures, 31
Representation Lemma for Assertions,

79
Representation Lemma for Programs, 82

Semantics of a judgement, 47
Semantics of asserted programs, 46
Semantics of assertions, 46
Semantics of base language, 40
Semantics of programs inL, 45
Semantics of programs inL−, 41
Separation conjunction, ∗, 32
Separation implication,−∗, 32
Set of visible procedures, PN(P), 33
Singleton heap, 7→, 32
Soundness theorem, 70
Strongest Postcondition, 91

The languageL, 31
The languageL−, 31

Unfolding of a judgment, 62
UniformHypothetical Frame Rule, 109

Weakest precondition, 88

	1 Introduction
	1.1 Motivation
	1.2 Main Contribution
	1.3 Outline of This Paper

	2 Background
	2.1 Hoare's Logic for Recursive Procedures
	2.2 Separation Logic

	3 New Complete System of Hoare's Logic with Recursive Procedures
	3.1 Language
	3.2 Semantics
	3.3 Logical System
	3.4 Completeness

	4 Separation Logic for Recursive Procedures
	4.1 Language
	4.2 Semantics
	4.3 Logical System

	5 Soundness and Completeness
	5.1 Soundness
	5.2 Expressiveness
	5.3 Completeness

	6 Admissibility of Frame Rules
	6.1 Frame Rules
	6.2 Conjunction Rule

	7 Conclusion

