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Abstract 

The fitness of an existing phenotype and of a potential mutant should generally 

depend on the frequencies of other existing phenotypes. Adaptive evolution driven 

by such frequency-dependent fitness functions can be analyzed effectively using 

adaptive dynamics theory, assuming rare mutation and asexual reproduction. 

When possible mutations are restricted to certain directions due to developmental, 

physiological, or physical constraints, the resulting adaptive evolution may be 

restricted to subspaces (constraint surfaces) with fewer dimensionalities than the 

original trait spaces. To analyze such dynamics along constraint surfaces 

efficiently, we develop a Lagrange multiplier method in the framework of adaptive 

dynamics theory. On constraint surfaces of arbitrary dimensionalities described 

with equality constraints, our method efficiently finds local evolutionarily stable 

strategies, convergence stable points, and evolutionary branching points. We also 

derive the conditions for the existence of evolutionary branching points on 

constraint surfaces when the shapes of the surfaces can be chosen freely. 

1. Introduction 

Individual organisms have many traits undergoing selection simultaneously, 

inducing their simultaneous evolution. At the same time, evolutionary constraints 

(i.e., trade-offs) often exist, such that a mutation improving one trait inevitably 

makes another trait worse (Flatt and Heyland, 2011), e.g., trade-off between speed 

and efficiency in feeding activity of a zooplankton species (Daphnia dentifera) 

(Hall et al., 2012). In those cases, the second trait may be treated as a function of 

the first trait. In such a manner, evolution of populations in multi-dimensional trait 

spaces may be restricted to subspaces with fewer dimensionalities. We call such 

subspaces ‘constraint surfaces’ for convenience, although they may be one 

dimensional (curves), two dimensional (surfaces), or multi-dimensional (hyper-

surfaces). 

In adaptive dynamics theory (Metz et al., 1996; Dieckmann and Law, 1996), 

directional evolution along such a constraint surface can be analyzed easily by 

examining selection pressures tangent to the surface, which allows us to find 

evolutionarily singular points where directional selection along the surface 

vanishes (deMazancourt and Dieckmann, 2004; Parvinen et al., 2013). On the other 

hand, evolutionary stability (Maynard Smith, 1982) and convergence stability 

(Eshel, 1983) of those singular points can be affected by the local curvature of the 
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surface. At present, analytical methods for examining both evolutionary and 

convergence stabilities have been developed for one-dimensional constraint 

curves in two-dimensional trait spaces (deMazancourt and Dieckmann, 2004; 

Kisdi, 2006) and in arbitrary higher-dimensional trait spaces (Kisdi, 2015). In this 

paper, we develop a Lagrange multiplier method that allows us to analyze adaptive 

evolution along constraint surfaces of arbitrary dimensionalities in trait spaces of 

arbitrary dimensionalities, as if no constraint exists. We focus on evolutionary 

branching points (points that are convergence stable but evolutionarily unstable), 

which induce evolutionary diversification through a continuous process called 

evolutionary branching (Geritz et al., 1997). Points of other kinds defined by 

combinations of evolutionary stability and convergence stability (e.g., points that 

are locally evolutionarily stable as well as convergence stable) can be analyzed in 

the same manner. 

This paper is structured as follows. Section 2 contains a brief explanation of 

the basic assumptions of adaptive dynamics theory and a standard analysis of 

adaptive evolution along constraint surfaces. Section 3 presents the main 

mechanism of our method in the case of one-dimensional constraint curves in two-

dimensional trait spaces. In section 4, we describe a general form of our method 

for an arbitrary L-dimensional constraint surface embedded in an arbitrary M-

dimensional trait space. In section 5, the conditions for existence of candidate 

branching points (CBPs) along constraint surfaces when their shapes can be 

chosen freely are derived. Section 6 shows two simple application examples. In 

section 7, we discuss our method in relation to other studies. 

2. Basic assumptions and motivation 

To analyze evolutionary dynamics, we use adaptive dynamics theory (Metz et al., 

1996; Dieckmann and Law, 1996). For simplicity, we consider a single asexual 

population in a two-dimensional trait space 𝐬 = (𝑥, 𝑦)T with two scalar traits 𝑥 

and 𝑦, in which all possible mutants 𝐬′ = (𝑥′, 𝑦′)T are restricted to a constraint 

curve ℎ(𝐬′) = 0. The theory (sensu stricto) assumes sufficiently rare mutations 

and a sufficiently large population size, so that the population is monomorphic and 

almost at equilibrium density whenever a mutant emerges. In this case, whether a 

mutant can invade the resident population can be determined by the mutant’s 

initial per capita growth rate, called invasion fitness 𝐹(𝐬′; 𝐬∘), which is a function 

of the mutant phenotype 𝐬′ and the resident phenotype 𝐬∘ = (𝑥∘, 𝑦∘)T. The 

mutant can invade the resident only when 𝐹(𝐬′; 𝐬∘) is positive, resulting in 

substitution of the resident in many cases. Repetition of such a substitution is 
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called a trait substitution sequence, forming directional evolution toward greater 

fitness as long as the fitness gradient at the resident is not small. Under certain 

conditions, when the fitness gradient along the curve becomes small, a mutant may 

coexist with the resident, which may bring about evolutionary diversification into 

two distinct morphs, called evolutionary branching (Metz et al., 1996; Geritz et al., 

1997, 1998). In this paper, we assume for simplicity that the population is 

unstructured, although our results (Theorems 1–3) are also applicable to 

structured populations, as long as reproduction is asexual and the invasion fitness 

function is defined in the form of 𝐹(𝐬′; 𝐬∘). 

Denoting points on the constraint curve by 𝐬(𝜙) with a scalar parameter 𝜙, 

we can express the resident and mutant phenotypes as 𝐬∘ = (𝑥(𝜙∘), 𝑦(𝜙∘))T and 

𝐬′ = (𝑥(𝜙′), 𝑦(𝜙′))T, respectively. In this case, the evolutionary dynamics along the 

curve can be translated into that in a one-dimensional trait space 𝜙. The expected 

shift of the resident phenotype due to directional evolution can be described by an 

ordinary differential equation (Dieckmann and Law 1996): 

d𝜙∘

d𝑡
=

𝑛∘𝜇𝜎𝜇
2

2
𝑔(𝜙∘), (1a) 

where 𝑛∘ is the equilibrium population density for a monomorphic population of 

𝐬∘, 𝜇 is the mutation rate per birth, 𝜎𝜇 is the root mean square of mutational 

steps 𝜙′ − 𝜙∘, and 

𝑔(𝜙∘) = [
𝜕𝐹(𝐬′; 𝐬∘)

𝜕𝜙′
]
𝜙′=𝜙∘

(1b) 

is the fitness gradient along the curve at the position where the resident exists (Eq. 

(1a) is specific to unstructured populations; see also Durinx et al. (2008) for a 

general form for structured populations). Here, 𝑛∘ , 𝜇, and 𝜎𝜇, as well as 𝑔(𝜙∘), 

may depend on 𝜙∘, although they are denoted without (𝜙∘) for convenience. In 

adaptive evolution, along the parameterized constraint curve, the conditions for 

evolutionary branching are identical to those for one-dimensional trait spaces 

without constraint (Metz et al., 1996; Geritz et al., 1997). Specifically, along the 

constraint curve, a point 𝐬 = (𝑥(𝜙), 𝑦(𝜙))
T

 is an evolutionary branching point, if it 

is (i) evolutionarily singular, 

𝑔(𝜙) = 0 (2a) 

(i.e., no directional selection for a population located at 𝐬), (ii) convergence stable 

(Eshel, 1983), 
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𝐶(𝜙) ≡ [
𝜕g(𝜙∘)

𝜕𝜙∘
]
𝜙∘=𝜙

< 0 (2b) 

(i.e., 𝐬 is a point attractor in terms of directional selection), and (iii) 

evolutionarily unstable (Maynard Smith, 1982), 

𝐷(𝜙) ≡ [
𝜕2𝐹(𝐬′; 𝐬∘)

𝜕𝜙′2
]
𝜙′=𝜙∘=𝜙 

> 0 (2c) 

(i.e., for residents, 𝐬∘ = 𝐬, 𝐹(𝐬′; 𝐬) forms a fitness valley along 𝐬′ with its bottom 

𝐬′ = 𝐬 leading to disruptive selection). Eq. (2b) can be expressed alternatively by 

noting (1b) as 

𝐶(𝜙) = [
𝜕

𝜕𝜙∘
(
𝜕𝐹(𝐬′; 𝐬∘)

𝜕𝜙′
)
𝜙′=𝜙∘

]

𝜙∘=𝜙 

= 𝐷(𝜙) + [
𝜕2𝐹(𝐬′; 𝐬∘)

𝜕𝜙′𝜕𝜙∘
]
𝜙′=𝜙∘=𝜙 

< 0. (2d) 

However, in trait spaces with more than two dimensions, constraints may 

form surfaces or hyper-surfaces whose parametric expression may be difficult or 

complicated. To avoid such difficulty, we develop an alternative approach that does 

not require parametric expression of constraint spaces. 

3. One-dimensional constraint curves in two-

dimensional trait spaces 

The Lagrange multiplier method is a powerful tool for finding local maxima and 

minima of functions that are subject to equality constraints. In this section, we 

develop a method for adaptive dynamics under constraints in the form of Lagrange 

multiplier method. For clarity, we consider the simplest case: constraint curves 

ℎ(𝐬′) = 0 in two-dimensional trait spaces 𝐬 = (𝑥, 𝑦)T. The method is generalized 

to arbitrary dimensions in the subsequent section. 

3.1. Notations for derivatives 

For convenience, we introduce some notations for derivatives of functions by their 

vector arguments. For a function with a single vector argument, its derivative by 

that argument is denoted by ∇. For a function with more than one argument, its 

partial derivative by its argument 𝐳 is denoted by ∇𝐳. The same rule applies for 

second derivatives. We express first and second derivatives of the constraint 
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function ℎ(𝐬′) and the fitness function 𝐹(𝐬′; 𝐬∘) (at an arbitrary point 𝐬) as 

follows. For ℎ(𝐬′), we write the gradient and its transpose as 

∇ℎ(𝐬) =

(

 

𝜕ℎ(𝐬′)

𝜕𝑥′
𝜕ℎ(𝐬′)

𝜕𝑦′ )

 

𝐬′=𝐬

, (3𝑎) 

∇Tℎ(𝐬) = (
𝜕ℎ(𝐬′)

𝜕𝑥′

𝜕ℎ(𝐬′)

𝜕𝑦′
)
𝐬′=𝐬

, (3𝑏) 

and the Hessian matrix as 

∇∇Tℎ(𝐬) =

(

 
 

𝜕2ℎ(𝐬′)

𝜕𝑥′2
𝜕2ℎ(𝐬′)

𝜕𝑥′𝜕𝑦′

𝜕2ℎ(𝐬′)

𝜕𝑥′𝜕𝑦′
𝜕2ℎ(𝐬′)

𝜕𝑦′2 )

 
 

𝐬′=𝐬

. (3c) 

For the fitness function 𝐹(𝐬′; 𝐬∘), we write the first and second derivatives by 𝐬′ 

at the position where 𝐬∘ exists as 

∇𝐬′𝐹(𝐬
∘; 𝐬∘) =

(

 

𝜕𝐹(𝐬′; 𝐬∘)

𝜕𝑥′

𝜕𝐹(𝐬′; 𝐬∘)

𝜕𝑦′ )

 

𝐬′=𝐬∘

= 𝐠(𝐬∘), (4a) 

∇𝐬′∇𝐬′
T 𝐹(𝐬∘; 𝐬∘) =

(

 
 

𝜕2𝐹(𝐬′; 𝐬∘)

𝜕𝑥′2
𝜕2𝐹(𝐬′; 𝐬∘)

𝜕𝑥′𝜕𝑦′

𝜕2𝐹(𝐬ʹ; 𝐬∘)

𝜕𝑥′𝜕𝑦′
𝜕2𝐹(𝐬ʹ; 𝐬∘)

𝜕𝑦′2 )

 
 

𝐬′=𝐬∘

= 𝐃 (𝐬∘). (4b) 

When 𝐹(𝐬′; 𝐬∘) is regarded as a fitness landscape in the space of mutant trait 𝐬′ 

under a fixed resident trait 𝐬∘, Eq. (4a) gives its local gradient, and rescaling of Eq. 

(4b) gives its local curvature at 𝐬∘ (when 𝐠(𝐬∘) = 𝟎, rescaling is not needed; i.e., 

𝐯T𝐃 (𝐬∘)𝐯 gives the curvature along a unit vector 𝐯). In this paper, we refer to 

Eqs. (4a) and (4b) as ‘fitness gradient’ and ‘fitness curvature,’ respectively. For 

convenience, we introduce 𝐠 = 𝐠(𝐬) and 𝐃 = 𝐃(𝐬). We also introduce another 

second derivative, 𝐂, defined by the first derivative of 
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𝐠(𝐬∘) =

(

 

𝜕𝐹(𝐬′; 𝐬∘)

𝜕𝑥′

𝜕𝐹(𝐬′; 𝐬∘)

𝜕𝑦′ )

 

𝐬′=𝐬∘

≡

(

 

𝜕𝐹

𝜕𝑥′
(𝐬∘; 𝐬∘)

𝜕𝐹

𝜕𝑦′
(𝐬∘; 𝐬∘)

)

 (4c) 

at 𝐬, 

𝐂T = ∇𝐬∘
T 𝐠(𝐬) =

(

 
 

∂

𝜕𝑥∘
𝜕𝐹

𝜕𝑥′
(𝐬∘; 𝐬∘)

∂

𝜕𝑦∘
𝜕𝐹

𝜕𝑥′
(𝐬∘; 𝐬∘)

∂

𝜕𝑥∘
𝜕𝐹

𝜕𝑦′
(𝐬∘; 𝐬∘)

∂

𝜕𝑦∘
𝜕𝐹

𝜕𝑦′
(𝐬∘; 𝐬∘)

)

 
 

𝐬′=𝐬∘=𝐬 

, (4d) 

which describes variability of the fitness gradient at 𝐬, depending on 𝐬∘, and thus 

determines the convergence stability of 𝐬 when it is evolutionarily singular. We 

refer to 𝐂 as ‘fitness gradient-variability.’ Analogous to Eq. (2d), Eq. (4d) is 

alternatively expressed as 

𝐂 = 𝐃 + ∇𝐬∘∇𝐬′
T 𝐹(𝐬; 𝐬), (4e) 

where 

∇𝐬∘∇𝐬′
T 𝐹(𝐬; 𝐬) =

(

 
 

∂

𝜕𝑥′
𝜕𝐹

𝜕𝑥∘
(𝐬∘; 𝐬∘)

∂

𝜕𝑦′
𝜕𝐹

𝜕𝑥∘
(𝐬∘; 𝐬∘)

∂

𝜕𝑥′
𝜕𝐹

𝜕𝑦∘
(𝐬∘; 𝐬∘)

∂

𝜕𝑦′
𝜕𝐹

𝜕𝑦∘
(𝐬∘; 𝐬∘)

)

 
 

𝐬′=𝐬∘=𝐬 

. (4f) 

 

3.2. Lagrange functions for fitness functions in two-

dimensional trait spaces 

When no constraint exists, we can directly use 𝐠, 𝐂, and 𝐃 to check evolutionary 

singularity, convergence stability, and evolutionary stability of 𝐬, respectively. 

However, when possible mutants are restricted to the constraint curve ℎ(𝐬′) = 0, 

we need the elements of 𝐠, 𝐂, and 𝐃 along the curve to check those evolutionarily 

dynamical properties (Fig. 1). To facilitate such an operation, we integrate the 

fitness function 𝐹(𝐬′; 𝐬∘) and the constraint function ℎ(𝐬′) into 

𝐹L(𝐬
′; 𝐬∘; 𝜆) = 𝐹(𝐬′; 𝐬∘) − 𝜆[ℎ(𝐬′) − ℎ(𝐬∘)], (5) 
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with a parameter 𝜆. This function corresponds to the Lagrange function of 

invasion fitness 𝐹(𝐬′; 𝐬∘) with a Lagrange multiplier 𝜆, called the Lagrange fitness 

function in this paper. The second term is used to bind the population on the 

constraint curve. Here, the gradient of Lagrange fitness in 𝐬′ at 𝐬 is 

∇𝐬′𝐹L(𝐬; 𝐬; 𝜆) = ∇𝐬′𝐹(𝐬; 𝐬) − 𝜆∇ℎ(𝐬)

= 𝐠 − 𝜆|∇ℎ(𝐬)|𝐧,
(6) 

where 𝐧 = (𝑛𝑥, 𝑛𝑦)
T
= ∇ℎ(𝐬) |∇ℎ(𝐬)|⁄  is the normal vector of the constraint curve 

at 𝐬. Thus, by choosing 𝜆 at 

𝜆𝐬 =
𝐧 ⋅ 𝐠

|∇ℎ(𝐬)|
=
∇ℎ(𝐬) ⋅ ∇𝐬′𝐹(𝐬; 𝐬)

|∇ℎ(𝐬)|2
, (7) 

where the operator ‘⋅’ indicates the inner product of the two vectors, the second 

term of Eq. (6) becomes the element of 𝐠 orthogonal to the curve (i.e., 𝜆∇ℎ(𝐬) =

[𝐧 ⋅ 𝐠]𝐧). Consequently, Eq. (6) gives the tangent element of 𝐠, 

∇𝐬′𝐹L(𝐬; 𝐬; 𝜆) = 𝐠 − [𝐧 ⋅ 𝐠]𝐧

= [𝐞 ⋅ 𝐠]𝐞 
, (8) 

for any 𝐬, where 𝐞 = (𝑛𝑦, −𝑛𝑥)
T

 is the tangent vector of the curve at 𝐬. Note that 

the derivative of the second term of Eq. (5) subtracts the orthogonal element 

𝜆∇ℎ(𝐬) = [𝐧 ⋅ 𝐠]𝐧 from 𝐠 = [𝐞 ⋅ 𝐠]𝐞 + [𝐧 ⋅ 𝐠]𝐧. Hence, the second term of Eq. (5), 

𝜆[ℎ(𝐬′) − ℎ(𝐬∘)], may be interpreted as a ‘harshness’ of the constraint on the 

organism, which removes the possibility of evolution orthogonal to the constraint 

curve, even if a steep fitness gradient exists in that direction. 

3.3. Conditions for evolutionary branching along 

constraint curves 

When constraint curves in two-dimensional trait spaces have parametric 

expressions, the conditions for 𝐬 being an evolutionary branching point along the 

curves are given by Eq. (2). By using the Lagrange fitness function, we can express 

the left sides of those conditions into ones without parameters: 

𝑔(𝜙)𝐞 = ∇𝐬′𝐹L(𝐬; 𝐬; 𝜆𝐬), (9a) 

𝐶(𝜙) = 𝐞T[(∇𝐬′∇𝐬′
T + ∇𝐬∘∇𝐬′

T )𝐹L(𝐬; 𝐬; 𝜆𝐬)]𝐞 = 𝐶ℎ, (9b) 

𝐷(𝜙) = 𝐞T[∇𝐬′∇𝐬′
T 𝐹L(𝐬; 𝐬; 𝜆𝐬)]𝐞 = 𝐷ℎ, (9c) 
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where  (∇𝐬′∇𝐬′
T + ∇𝐬∘∇𝐬′

T )𝐹L(𝐬; 𝐬; 𝜆𝐬) = ∇𝐬′∇𝐬′
T 𝐹L(𝐬; 𝐬; 𝜆𝐬) + ∇𝐬∘∇𝐬′

T 𝐹L(𝐬; 𝐬; 𝜆𝐬), and 

appropriate scaling of 𝜙 is assumed so that |(
d𝑥(𝜙)

d𝜙
,
d𝑦(𝜙)

d𝜙
)| = 1 without loss of 

generality (Appendix A.3). Moreover, we have the following theorem for an 

arbitrary constraint curve described with h(𝐬′) = 0 (see Appendix A.1–2 for the 

proof). 

Theorem 1: Branching conditions along constraint (two-

dimensional trait spaces) 

In two-dimensional trait space 𝒔 = (𝑥, 𝑦)𝑇, a point 𝒔 is an evolutionary 

branching point along the constraint curve ℎ(𝒔) = 0, if 𝒔 satisfies the 

following three conditions of the Lagrange fitness function Eq. (5) with 

Eq. (7): 

(i) 𝒔 is evolutionarily singular along the constraint curve ℎ(𝒔) = 0, 

satisfying 

∇𝐬′𝐹L(𝐬; 𝐬; 𝜆𝐬) = 𝟎. (10a) 

(ii) 𝒔 is convergence stable along the constraint curve, satisfying 

𝐶h = 𝐞
T[(∇𝐬′∇𝐬′

T + ∇𝐬∘∇𝐬′
T )𝐹L(𝐬; 𝐬; 𝜆𝐬)]𝐞 < 0. (10b) 

(iii) 𝒔 is evolutionarily unstable along the constraint curve, satisfying 

𝐷h = 𝐞
T[∇𝐬′∇𝐬′

T 𝐹L(𝐬; 𝐬; 𝜆𝐬)]𝐞 > 0. (10c) 

 

By Eq. (8), we can transform Eq. (10a) into 

𝐞 ⋅ ∇𝐬′𝐹(𝐬; 𝐬 ) = 0, (11) 

which may be easier to check. Table 1 summarizes how the fitness gradient, 

gradient variability, and curvature along the constraint curve are expressed in 

terms of the Lagrange fitness function. 

3.4. Relationship with standard Lagrange multiplier 

method 
Since 𝜆 = 𝜆𝐬, defined by Eq. (7), can also be derived as the solution of condition 

(i), 𝜆 can be left as an unknown parameter satisfying condition (i), like a Lagrange 

multiplier in the standard Lagrange multiplier method. In this case, conditions (i) 

and (iii) are equivalent to the conditions for stationary points and local minima 

(‘second derivative test’) in the standard method. When the fitness function is 

independent of resident phenotypes, 𝐶h = 𝐷h always holds. In this case, condition 

(ii) 𝐶h < 0 is never satisfied when condition (iii) 𝐷h > 0 holds. However, when 

the fitness function depends on resident phenotypes (i.e., frequency-dependent 
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fitness functions), satisfying condition (ii) is decoupled from not satisfying 

condition (iii). Thus, Theorem 1 is a modification of the standard Lagrange 

multiplier method to analyze frequency-dependent fitness functions by adding 

condition (ii) for convergence stability. In the standard method, 𝐷h can be 

examined with the corresponding bordered Hessian matrix (Eq. (22b)). Analogous 

calculations can be used to examine 𝐶h (Eq. (22d)). 

The above relationships hold also for the higher-dimensional constraint 

surfaces explained in the next section. Like the standard method, our method is 

completely analytical. 

3.5. Effect of constraint curve curvature 

Here, we explain how the curvature of the constraint curve affects the conditions 

for evolutionary branching (Eq. (10)). The curvature does not affect evolutionary 

singularity because Eq. (10a) is equivalent to Eq. (11), since it does not contain 

second derivatives of the constraint. On the other hand, convergence stability and 

evolutionary stability are both affected by the curvature, as previous studies have 

shown graphically (Rueffler et al. 2004; deMazancourt and Dieckmann, 2004) and 

analytically with parameterization (Appendix A in deMazancourt and Dieckmann, 

2004; Kisdi, 2006). This feature is shown more clearly in our method without 

parameterization by transforming the left sides of Eqs. (10b) and (10c) into 

𝐶h = 𝐞
T[(∇𝐬′∇𝐬′

T + ∇𝐬∘∇𝐬′
T )𝐹(𝐬; 𝐬)]𝐞 − 𝐞T[𝜆𝐬∇∇

Tℎ(𝐬)]𝐞

= 𝐞T𝐂𝐞 + 𝛺,

𝐷h = 𝐞
T [∇𝐬′∇𝐬′

T 𝐹(𝐬; 𝐬)]𝐞 − 𝐞T[𝜆𝐬∇∇
Tℎ(𝐬)]𝐞

= 𝐞T𝐃𝐞 + 𝛺,

(12a) 

where, noting Eq. (7), 

𝛺 = −𝐞T[𝜆𝐬∇∇
Tℎ(𝐬)]𝐞

= 𝐠 ⋅ [−
𝐞T∇∇Tℎ(𝐬)𝐞

|∇ℎ(𝐬)|
𝐧] = 𝐠 ⋅ 𝐪.

(12b) 

The first terms in Eq. (12a), 𝐞T𝐂𝐞 and 𝐞T𝐃𝐞, give fitness gradient variability and 

fitness curvature, respectively, for 𝐬 along the curve when the constraint curve is 

a straight line. The effect of the constraint curvature is given by 𝛺, which is the 
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inner product of the fitness gradient 𝐠 and a curvature vector 𝐪 at 𝐬. The 

curvature vector is a scaled normal vector 

𝐪 = 𝑞𝐧 (13a) 

with  

𝑞 = −
𝐞T∇∇Tℎ(𝐬)𝐞

|∇ℎ(𝐬)|
, (13b) 

so that its length |𝑞| is equal to the reciprocal of the curvature radius. Specifically, 

the constraint curve ℎ(𝐬′) = 0 can be described locally with 

�̃�′ =
1

2
𝑞(�̃�′2) + O(�̃�′3), (13c) 

with the �̃�- and �̃�-axes given by 𝐞 and 𝐧, i.e., �̃�′ = 𝐞 ⋅ (𝐬′ − 𝐬) and �̃�′ = 𝐧 ⋅

(𝐬′ − 𝐬) (Fig. 2a). 

Note that 𝐶h and 𝐷h in Eq. (12a) have the same second term 𝛺 = 𝐠 ⋅ 𝐪. 

Thus, the effects of the curvature on 𝐶h and 𝐷h are large when the element of the 

fitness gradient orthogonal to the curve is large, as illustrated in Figure 2. If their 

directions, i.e., those of the fitness gradient and curvature vector, are opposite, the 

resulting negative curvature effect 𝛺 decreases both 𝐶h and 𝐷h (Fig. 2a), which 

makes the point 𝐬 more convergence and evolutionarily stable (Fig. 2c). 

Conversely, if they have the same direction, the resulting positive curvature effect 

increases both 𝐶h and 𝐷h (Fig. 2b), which makes the point 𝐬 less convergence 

and evolutionarily stable (Fig. 2d). When 𝛺 results in negative 𝐶h and positive 

𝐷h simultaneously, 𝐬 is an evolutionary branching point along the constraint 

curve. Note that even when the original two-dimensional fitness landscape is flat, 

i.e., 𝐃 = 𝟎, the fitness landscape along the constraint curve has a curvature 𝐷h =

Ω when Ω ≠ 0. In this sense, we refer to 𝛺 as apparent fitness curvature. 

4. Extension to higher dimensionalities 

In this section, we extend the two-dimensional method discussed above for higher 

dimensionalities. We consider an arbitrary M-dimensional trait space 𝐬 =

(𝑥1, … , 𝑥𝑀)
T and an invasion fitness function 𝐹(𝐬′; 𝐬∘). For an arbitrary position 𝐬, 

the fitness gradient, fitness gradient variability, and fitness curvature are written 

in the same manner as the two-dimensional case: 
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𝐠 = ∇𝐬′𝐹(𝐬; 𝐬),

𝐂 = ∇𝐬′∇𝐬′
T 𝐹(𝐬; 𝐬) + ∇𝐬∘∇𝐬′

T 𝐹(𝐬; 𝐬) = (∇𝐬′∇𝐬′
T + ∇𝐬∘∇𝐬′

T )𝐹(𝐬; 𝐬),

𝐃 =  ∇𝐬′∇𝐬′
T 𝐹(𝐬; 𝐬).

(14) 

We consider an arbitrary L-dimensional constraint surface defined by ℎ𝑗(𝐬′) = 0 

for 𝑗 = 𝐿 + 1,⋯ ,𝑀, to which all possible mutants 𝐬′ are restricted. To analyze 

adaptive evolution along the constraint surface, we obtain the elements 𝐠, 𝐂, and 

𝐃 along the surface as follows. 

4.1. Lagrange fitness function for constraint surface 
As described in Lemma 2 in Appendix C, the Lagrange fitness function for the 

constraint surface is constructed as 

𝐹L(𝐬
′; 𝐬∘; 𝛌) = 𝐹(𝐬′; 𝐬∘) − ∑ 𝜆𝑗[ℎ𝑗(𝐬

′) − ℎ𝑗(𝐬
∘)]

𝑀

𝑗=𝐿+1

, (15) 

with  𝛌 = (𝜆𝐿+1, … , 𝜆𝑀)
T. When the normal vectors 𝐧𝑗 = ∇ℎ𝑗(𝐬 ) |∇ℎ𝑗(𝐬)|⁄  for 

𝑗 = 𝐿 + 1,⋯ ,𝑀 are orthogonal, we can choose 

𝜆𝐬𝑗 =
𝐧𝑗 ⋅ 𝐠

|∇ℎ𝑗(𝐬)|
 , (16) 

such that the gradient of the second term of Eq. (15) with respect to 𝐬′ gives the 

element of 𝐠 orthogonal to the surface, 

∑ λ𝐬𝑗

𝑀

𝑗=𝐿+1

∇ℎ𝑗(𝐬) = ∑ [𝐧𝑗 ⋅ 𝐠]𝐧𝑗

𝑀

𝑗=𝐿+1

. (17) 

Thus, the gradient of Eq. (15) gives the tangent element of 𝐠, 

∇𝐬′𝐹L(𝐬; 𝐬; 𝛌𝐬) = − ∑ [𝐧𝑗 ⋅ 𝐠]𝐧𝑗

𝑀

𝑗=𝐿+1

=∑[𝐞𝑖 ⋅ 𝐠]𝐞𝑖

𝐿

𝑖=1

= 𝐄𝐄T𝐠,

(18) 

where 𝐄 = (𝐞1,⋯ , 𝐞𝐿) are the tangent vectors of unit lengths, which are chosen to 

be orthogonal (e.g., with Gram–Schmidt orthonormalization) without losing 

generality. 
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Even in general cases where the normal vectors may not be orthogonal, we 

can make ∇𝐬′𝐹L(𝐬; 𝐬; 𝛌𝐬) = ∑ [𝐞𝑖 ⋅ 𝐠]𝐞𝑖
𝐿
𝑖=1  hold [Eq. (C.15) in Appendix C] by 

choosing 𝛌 at 

𝛌𝐬 = 𝐁+∇𝐬′𝐹(𝐬; 𝐬) = 𝐁
+𝐠, (19) 

where 𝐁+ = [𝐁T𝐁]−1𝐁T is the pseudo inverse of 𝐁 = (∇ℎ𝐿+1(𝐬),⋯ , ∇ℎ𝑀(𝐬)), i.e., 

𝐁+𝐁 gives the (𝑀 − 𝐿)-dimensional identity matrix 𝐈𝑀−𝐿. In statistics, 𝛌𝐬 is the 

regression coefficients for predictor variables ∇ℎ𝐿+1(𝐬),⋯ , ∇ℎ𝑀(𝐬), to explain 𝐠. 

When the normal vectors are orthogonal, Eq. (19) yields Eq. (16). 

4.2. Conditions for the existence of CBPs along 

constraint surfaces 

The dimensionalities of constraint surfaces can be greater than one, in which case 

one-dimensional conditions for evolutionary branching cannot be applied. As for 

multi-dimensional conditions for evolutionary branching, numerical simulations of 

adaptive evolution in various eco-evolutionary settings (Vukics et al., 2003; 

Ackermann and Doebeli, 2004; Egas et al., 2005; Ito and Dieckmann, 2012) have 

shown that evolutionary branching arises in the neighborhood of a point 𝐬, if 𝐬 is 

(i) evolutionarily singular, (ii) strongly convergence stable (Leimar, 2005, 2009), 

and (iii) evolutionarily unstable. Among these three conditions, conditions (i) and 

(iii) are simply extensions of conditions (i) and (iii) in the one-dimensional case 

[Eq. (2)], respectively. Condition (i) means the disappearance of the fitness 

gradient for the resident located at 𝐬, and condition (iii) means that the fitness 

landscape is concave along at least one direction. On the other hand, condition (ii) 

introduces the new term ‘strongly convergence stable,’ which means convergence 

stability under any genetic correlation in the multi-dimensional mutant phenotype 

(see Leimar, 2005 for the proof of strong convergence stability).  

Currently, no formal proof has determined whether the existence of points 

satisfying (i–iii) is sufficient for evolutionary branching to occur in the 

neighborhood of those points, although substantial progress has been made (see 

section 7). In this paper, we refer to points satisfying (i–iii) as CBPs (candidate 

branching points). By applying the three conditions for CBPs, we establish the 

following multi-dimensional conditions for CBPs along the constraint surface (see 

Appendix C for the proof). 
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Theorem 2: Conditions for existence of CBPs along constraints 

(multi-dimensional) 

In an arbitrary M-dimensional trait space 𝐬 = (𝑥1, ⋯ , 𝑥𝑀)
T, a point 𝐬 is a 

CBP (i.e., a point that is strongly convergence and evolutionarily unstable) 

along an arbitrary L-dimensional constraint surface defined by ℎ𝑗(𝐬) = 0 

for 𝑗 = 𝐿 + 1,⋯ ,𝑀, if 𝐬 satisfies the following three conditions of the 

Lagrange fitness function Eq. (15) with Eq. (19): 

(i) 𝐬 is evolutionarily singular along the constraint surface, satisfying 

∇𝐬′𝐹L(𝐬; 𝐬; 𝛌𝐬) = 𝟎. (20a) 

(ii) 𝐬 is strongly convergence stable along the constraint surface, i.e., the 

symmetric part of an L-by-L matrix 

𝐂h = 𝐄T[(∇𝐬′∇𝐬′
T + ∇𝐬∘∇𝐬′

T )𝐹L(𝐬; 𝐬; 𝛌𝐬)]𝐄 (20b) 

is negative definite, where an M-by-L matrix 𝐄 = (𝐞1,⋯ , 𝐞𝐿)consists of 

orthogonal base vectors 𝐞1, … , 𝐞𝐿 of the tangent plane of the constraint 

surface at 𝐬. 

(iii) 𝐬 is evolutionarily unstable along the constraint surface, i.e., a 

symmetric L-by-L matrix 

𝐃h = 𝐄T∇𝐬′∇𝐬′
T 𝐹L(𝐬; 𝐬; 𝛌𝐬)𝐄 (20c) 

has at least one positive eigenvalue. 

 

Analogous to the two-dimensional case, we can transform Eq. (20a) using Eq. 

(18) into 

𝐄T∇𝐬′𝐹(𝐬; 𝐬) = 𝟎. (20d) 

Table 2 summarizes how the fitness gradient, gradient variability, and curvature 

along the constraint surface are expressed in terms of the Lagrange fitness 

function. 

4.3. Bordered second-derivative matrix 
In the standard Lagrange multiplier method, whether an extremum is maximum, 

minimum, or saddled along the constraint surface can be examined with the 

corresponding bordered Hessian matrix (Mandy, 2013), in which calculation of 𝐄, 

the base vectors of the tangent plane, is not needed. This technique is also useful 

for examining not only 𝐃h, but also 𝐂h, as explained below. For convenience, we 

denote the number of equality constraints by 𝑁 = 𝑀 − 𝐿. In this paper, we define 

the bordered Hessian for 𝐃h by a square matrix with size 𝑁 +𝑀, 

𝐃B = (
𝟎 𝐁T

𝐁 −𝐃L
) , (21a) 
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where 𝐁 = (∇ℎ𝐿+1(𝐬),⋯ , ∇ℎ𝑀(𝐬)), 𝐃L = ∇𝐬′∇𝐬′
T 𝐹L(𝐬; 𝐬; 𝛌𝐬), and trait axes are 

permutated appropriately so that separation of 𝐬 = (𝑥1, ⋯ , 𝑥𝑀)
T into 𝐱 =

(𝑥1, ⋯ , 𝑥𝐿)
T and 𝐲 = (𝑥𝐿+1, ⋯ , 𝑥𝑀)

T makes an 𝑁×𝑁 matrix 

(∇𝐲′ℎ𝐿+1(𝐬),⋯ , ∇𝐲′ℎ𝑀(𝐬)) nonsingular. Note that 𝐃L is multiplied by −1, which 

differentiates it slightly from the standard bordered Hessian, but simplifies the 

analysis of evolutionary stability along the surface (i.e., negative definiteness of 

𝐃h = 𝐄
T𝐃L𝐄). Similarly, to analyze strong convergence stability along the surface, 

we define a bordered second-derivative matrix 

𝐂B = (
𝟎 𝐁T

𝐁 −1/2(𝐂L + 𝐂L
T)
) , (21b) 

where 𝐂L = (∇𝐬′∇𝐬′
T + ∇𝐬∘∇𝐬′

T )𝐹L(𝐬; 𝐬; 𝛌𝐬). Then, we have the following two 

corollaries (see Appendix E for the derivation). 

Corollary 1: Evolutionary stability condition by bordered 

Hessian 

A point 𝒔 satisfying Eq. (20a) is locally evolutionarily stable along the 

constraint surface described in Theorem 2 (i.e., 𝑫ℎ is negative definite) if 

every principal minor of 𝑫𝐵 of order 𝑘 = 2𝑁 + 1,⋯ , 𝑁 +𝑀 has the sign 

(−1)𝑁, where 𝑁 = 𝑀 − 𝐿, and the 𝑘th principal minor of 𝑫𝐵 is given by 

the determinant of the upper left 𝑘×𝑘 submatrix of 𝑫𝐵, 

|𝐃B
(𝑘)| = |

𝐃B,11 ⋯ 𝐃B,𝑘1
⋮ ⋱ ⋮

𝐃B,1𝑘 … 𝐃B,𝑘𝑘

| . (22a) 

Conversely, 𝒔 is evolutionarily unstable along the constraint surface (i.e., 

𝑫ℎ has at least one positive eigenvalue) if Eq. (22a) for either of 𝑘 = 2𝑁 +

1,⋯ ,𝑁 +𝑀 has a sign other than (−1)𝑁. For one-dimensional constraint 

curves in two-dimensional trait spaces (𝐿 = 1,𝑀 = 2), 

𝐷h =
|𝐃B|

 |∇ℎ(𝐬)|2
. (22b) 

Corollary 2: Strong convergence stability condition by 

bordered second-derivative matrix 

A point 𝒔 satisfying Eq. (20a) is strongly convergence stable along the 

constraint surface described in Theorem 2 (i.e., 𝑪ℎ has a negative definite 

symmetric part) if every principal minor of 𝑪𝐵 of order 𝑘 = 2𝑁 +

1,⋯ ,𝑁 +𝑀 has the sign (−1)𝑁, where 𝑁 = 𝑀 − 𝐿, and the 𝑘th principal 

minor of 𝑪𝐵 is given by 
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|𝐂B
(𝑘)| = |

𝐂B,11 ⋯ 𝐂B,𝑘1
⋮ ⋱ ⋮

𝐂B,1𝑘 … 𝐂B,𝑘𝑘

| . (22c) 

For one-dimensional constraint curves in two-dimensional trait spaces (𝐿 =

1,𝑀 = 2), 

𝐶h =
|𝐂B|

 |∇ℎ(𝐬)|2
. (22d) 

 

4.4. Effect of constraint surface curvature 

The fitness landscape along the constraint surface is affected by the curvature of 

the surface, similar to the two-dimensional case. For example, if the surface curves 

along a tangent vector 𝐞𝑖 in the direction of original fitness gradient 𝐠, as in Fig. 

2b with 𝐞𝑖 = 𝐞 (�̃�-axis), the curvature makes the fitness landscape along 𝐞𝑖 more 

concave, as in Fig. 2d. Specifically, Eqs. (20b) and (20c) are transformed to 

𝐂h = 𝐄
T[(∇𝐬′∇𝐬′

T + ∇𝐬∘∇𝐬′
T )𝐹(𝐬; 𝐬)]𝐄 − ∑ 𝜆𝐬𝑗𝐄

T∇∇Th𝑗(𝐬)𝐄

𝑀

𝑗=𝐿+1

= 𝐄T𝐂𝐄 + 𝛀,

𝐃h = 𝐄
T[∇𝐬′∇𝐬′

T 𝐹(𝐬; 𝐬)]𝐄 − ∑ 𝜆𝐬𝑗

𝑀

𝑗=𝐿+1

𝐄T∇∇Tℎ𝑗(𝐬)𝐄

= 𝐄T𝐃𝐄 + 𝛀,

(23a) 

where the first terms in Eq. (23a), 𝐄T𝐂𝐄 and 𝐄T𝐃𝐄, give fitness gradient 

variability and fitness curvature, respectively, for 𝐬 along the surface when the 

surface is locally flat. The effect of the constraint curvature, i.e., apparent fitness 

curvature, is given by an 𝐿-by-𝐿 matrix 

𝛀 = − ∑ 𝜆𝐬𝑗

𝑀

𝑗=𝐿+1

𝐄T∇∇Tℎ𝑗(𝐬)𝐄. (23b) 

This effect can be expressed as a kind of inner product of the fitness gradient and 

local curvature of the constraint surface, analogous to the two-dimensional case 

(Eq. (12b); Appendix F). 
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5. Potential for evolutionary branching 
The method described in the above sections is used to find CBPs under given 

constraint surfaces. In this section, we consider cases in which we can freely 

choose dimensions and shapes. With this freedom, we can adjust 𝐂h and 𝐃h in 

Eq. (23a) using the apparent fitness curvature 𝛀, such that the point 𝐬 becomes a 

CBP. By applying this operation to all points in a trait space, we can examine 

whether the trait space has CBPs by choosing an appropriate constraint surface. 

This type of analysis was originally developed for one-dimensional constraint 

curves in two-dimensional trait spaces using graphical approaches (Bowers et al. 

2003, 2005; Rueffler et al. 2004; de Mazancourt and Dieckmann 2004) and 

analytical approaches with parameterization (de Mazancourt and Dieckmann 

2004; Kisdi 2006; Geritz et al. 2007). The latter approach has been extended 

further for one-dimensional constraint curves in trait spaces of arbitrary 

dimensions (Kisdi 2015). Here, we extend this analysis for constraint surfaces with 

arbitrary dimensions by using Theorem 2 from above. 

The basic idea is as follows. For an arbitrary point 𝐬, we first adjust 𝛀 in Eq. 

(23a) so that the symmetric part of 𝐂h becomes a zero matrix (i.e., neutrally 

convergence stable). If the largest eigenvalue of 𝐃h is still positive (evolutionarily 

unstable), then we can slightly adjust 𝛀 so that the symmetric part of 𝐂h 

becomes slightly negative definite (strongly convergence stable) while the largest 

eigenvalue of 𝐃h remains positive. This operation is possible whenever 

𝐯T(𝐃 − 𝐂)𝐯 > 0 holds for some vector 𝐯 orthogonal to the fitness gradient 𝐠. 

More specifically, we have the following theorem (see Appendix G for the proof). 

Theorem 3: Potential for evolutionary branching 

For a fitness function 𝐹(𝐬′; 𝐬∘) defined on an arbitrary 𝑀-dimensional 

trait space 𝐬 = (𝑥1,⋯ , 𝑥𝑀)
T, if a point 𝐬 satisfies the branching potential 

condition: the symmetric 𝑀-by-𝑀 matrix 

𝐏 =
1

2
𝐔T[𝐌 +𝐌T]𝐔 (24a) 

has at least one positive eigenvalue, then 𝒔 is a CBP (a point that is 

strongly convergence stable and evolutionarily unstable) along an (𝑀 − 1)-

dimensional constraint surface, given by 

ℎ(𝐬′) = 𝐠T[𝐬′ − 𝐬]

 +
1

2
[𝐬′ − 𝐬]T [

1

2
(𝐂 + 𝐂T) + ɛ̃𝐈] [𝐬′ − 𝐬] + O(|𝐬′ − 𝐬|3) = 0,

   (24b) 

with a positive 𝜀̃ that is smaller than the maximum eigenvalue of 𝑷, where 



 

18 

 

 

𝐔 = 𝐈 −
𝐠𝐠T

|𝐠|2
,

𝐌 = 𝐃 − 𝐂 = −∇𝐬∘∇𝐬′
T 𝐹(𝐬; 𝐬),

𝐠 = ∇𝐬′𝐹(𝐬; 𝐬),

𝐂 = ∇𝐬′∇𝐬′
T 𝐹(𝐬; 𝐬) + ∇𝐬∘∇𝐬′

T 𝐹(𝐬; 𝐬).

  (24c) 

The dimensionality of the constraint surface can be reduced arbitrarily by 

adding appropriate equality constraints. 

 

In this paper, we refer to the matrix 𝐏 as the ‘branching potential matrix.’ The 

branching potential condition is also expressed as 𝐯T𝐌𝐯 > 0 for some vector 𝐯 

orthogonal to 𝐠 (because 𝐯T𝐌𝐯 > 0 gives 𝐯T𝐏𝐯 > 0, which is sufficient for 𝐏 

to have at least one positive eigenvalue). This ensures the coexistence of two 

slightly different phenotypes in the neighborhood of 𝐬, i.e., 𝐹(𝐬1; 𝐬2) > 0 and 

𝐹(𝐬2; 𝐬1) > 0 for 𝐬1 = 𝐬 + 𝜀𝐯 and 𝐬2 = 𝐬 − 𝜀𝐯 for positive and sufficiently small 

𝜀.  

Analogous to Corollaries 1 and 2 in the previous section, we can translate 

Theorem 3 to one based on a bordered second-derivative matrix 

𝐌B = (
𝟎 𝐠T

𝐠 −1/2(𝐌L +𝐌L
T)
) , (24d) 

with 𝐌L = −∇𝐬∘∇𝐬′
T 𝐹L(𝐬; 𝐬) = −∇𝐬∘∇𝐬′

T 𝐹(𝐬; 𝐬) = 𝐌, as follows. 

Corollary 3: Branching potential condition by bordered second-

derivative matrix 

A point 𝒔 is a CBP (a point that is strongly convergence stable and 

evolutionarily unstable) along an (𝑀 − 1)-dimensional constraint surface, 

given by Eq. (24b), if either principal minor of 𝑴𝐵 

|𝐌B
(𝑘)| = |

𝐌B,11 ⋯ 𝐌B,𝑘1
⋮ ⋱ ⋮

𝐌B,1𝑘 … 𝐌B,𝑘𝑘

| . (24e) 

of order 𝑘 = 3,⋯ ,𝑀 + 1 has a sign other than −1. 
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6. Examples 
In this section, we show two application examples with explicit formulation of 

invasion fitness functions built from resource competition. In the first example, we 

show how our method works by analyzing a simple two-dimensional case. Then, 

we analyze its higher-dimensional extension in the second example. 

6.1. Example 1: Evolutionary branching along a 

constraint curve in a two-dimensional resource 

competition model 

Model 

We consider a two-dimensional trait space 𝐬 = (𝑥, 𝑦)T, which is treated as a two-

dimensional niche space with two niche axes 𝑥 and 𝑦. We assume a constraint 

curve 

ℎ(𝐬′) = 𝑦′ −
𝑎

2
𝑥′2 + 𝑏 = 0, (25) 

which is a parabolic curve 𝑦′ =
𝑎

2
𝑥′2 − 𝑏 with two constant parameters 𝑎 and 𝑏 

(solid curves in Fig. 3). 

The invasion fitness function is constructed in the two-dimensional 

MacArthur–Levins resource competition model (Vukics et al., 2003), explained 

below. When there exist N-phenotypes, the 𝑖th phenotype’s growth rate is defined 

by the Lotka–Volterra competition model, 

𝑑𝑛𝑖
𝑑𝑡

= 𝑛𝑖 [1 −∑
𝛼(𝐬𝑖; 𝐬𝑗)𝑛𝑗

𝐾(𝐬𝑖)

𝑁

𝑗=1

] , (26a) 

where carrying capacity 𝐾(𝐬𝑖) of 𝐬𝑖  and the competition effect 𝛼(𝐬𝑖; 𝐬𝑗) on 𝐬𝑖  

from 𝐬𝑗  are both given by two-dimensional isotropic Gaussian distributions 

𝐾(𝐬𝑖) = 𝐾0 exp (−
|𝐬𝑖|

2

2𝜎K
2) ,

𝛼(𝐬𝑖; 𝐬𝑗) = exp(−
(|𝐬𝑖 − 𝐬𝑗|

2)

2𝜎α2
) ,

  (26b) 

where 𝐾(𝐬𝑖) has its peak 𝐾0 at the origin with standard deviation 𝜎K, and 

𝛼(𝐬𝑖; 𝐬𝑗) has its peak 1 at 𝐬𝑖 = 𝐬𝑗  with standard deviation 𝜎α, i.e., the competition 

effect decreases with their phenotypic distance. As this model and the constraint 

curve Eq. (25) are both symmetric about the 𝑦-axis, we focus only on positive 𝑥 

without loss of generality. 
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Analysis of evolutionary branching 

We suppose a resident 𝐬∘ and a mutant 𝐬′ with population densities 𝑛∘ and 𝑛′, 

respectively. The invasion fitness 𝐹(𝐬′; 𝐬∘) of 𝐬′ against 𝐬∘ is defined by its 

initial growth rate (i.e., when 𝑛′ is very small) in the resident population at 

equilibrium density 𝑛∘ = 𝐾(𝐬∘), 

𝐹(𝐬′; 𝐬∘) = lim
𝑛′→+0

[
1

𝑛′
d𝑛′

d𝑡
]
𝑛∘=𝐾(𝐬∘)

= 1 −
𝛼(𝐬′; 𝐬∘)𝐾(𝐬∘)

𝐾(𝐬′)
. (27) 

The first and second derivatives of this fitness function at an arbitrary point 𝐬 

give 

𝐠 = ∇𝐬′𝐹(𝐬; 𝐬) = −
1

𝜎K
2 (
𝑥
𝑦) ,

𝐃 = ∇𝐬′∇𝐬′
T 𝐹(𝐬; 𝐬) = [

1

𝜎α2
−
1

𝜎K
2] (
1 0
0 1

) −
1

𝜎K
4 (
𝑥2 𝑥𝑦

𝑥𝑦 𝑦2
) ,

𝐂 = (∇𝐬′∇𝐬′
T + ∇𝐬∘∇𝐬′

T )𝐹(𝐬; 𝐬) = −
1

𝜎K
2 (
1 0
0 1

) ,

(28) 

and the derivatives of the constraint curve 

∇ℎ(𝐬) = (
−𝑎𝑥
1
) ,

∇∇Tℎ(𝐬) = (
−𝑎 0
0 0

)

(29) 

give its normal, tangent, and curvature vectors at 𝐬 

𝐧 =
∇ℎ(𝐬)

|∇ℎ(𝐬)|
=

1

√𝑎2𝑥2 + 1
(
−𝑎𝑥
1
) ,

𝐞 =
1

√𝑎2𝑥2 + 1
(
1
𝑎𝑥
) ,

𝐪 = −
𝐞T∇∇Tℎ(𝐬)𝐞

|∇ℎ(𝐬)|
𝐧 =

𝑎

√(𝑎2𝑥2 + 1)𝐧
.

 (30) 

The Lagrange fitness function is constructed as 

𝐹L(𝐬
′; 𝐬∘; 𝜆𝐬) = 𝐹(𝐬

′; 𝐬∘) − 𝜆𝐬[ℎ(𝐬
′) − ℎ(𝐬∘)]

= 1 −
𝛼(𝐬′; 𝐬∘)𝐾(𝐬∘)

𝐾(𝐬′)
− 𝜆𝐬[ℎ(𝐬

′) − ℎ(𝐬∘)]

 (31a) 

with 
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𝜆𝐬 =
∇ℎ(𝐬) ⋅ 𝐠

|∇ℎ(𝐬)|2
=

(𝑎𝑥2 − 𝑦)

𝜎K
2(𝑎2𝑥2 + 1)

. (31b) 

To apply Theorem 1, we calculate ∇𝐬′𝐹L(𝐬; 𝐬; 𝜆), 𝐶h, and 𝐷h as 

∇𝐬′𝐹L(𝐬; 𝐬; 𝜆𝐬) = 𝐠 − 𝜆𝐬∇ℎ(𝐬) = −
𝑥(1 + 𝑎𝑦)

𝜎K
2(𝑎2𝑥2 + 1)

 (
1
𝑎𝑥
) ,

𝐶h = 𝐞
T[𝐂 − 𝜆𝐬∇∇

Tℎ(𝐬)]𝐞 =
1

𝜎K
2 [
𝑎2𝑥2 − 𝑎𝑦

(𝑎2𝑥2 + 1)2
− 1] ,

𝐷h = 𝐞
T[𝐃 − 𝜆𝐬∇∇

Tℎ(𝐬)]𝐞 

=
1

𝜎K
2 [
𝜎K
2

𝜎α2
− 1 −

1

𝜎K
2

𝑥2(𝑎𝑦 + 1)2

(𝑎2𝑥2 + 1)
+
𝑎2𝑥2 − 𝑎𝑦

(𝑎2𝑥2 + 1)2
] .

(32) 

𝐶h and 𝐷h can also be obtained from bordered second-derivative matrices [Eqs. 

(22b) and (22d)]. 

By condition (i) in Theorem 1, the condition for evolutionary singularity along 

the curve is given by 

∇𝐬′𝐹L(𝐬; 𝐬; 𝜆𝐬) = −
𝑥(1 + 𝑎𝑦)

𝜎K
2(𝑎2𝑥2 + 1)

(
1
𝑎𝑥
) = 𝟎, (33) 

which yields two singular points 

𝐬1 = (
0
−𝑏
) , 𝐬2 =

(

 

√2(𝑎𝑏 − 1)

𝑎

−
1

𝑎 )

 (34) 

(𝐬1 and 𝐬2 can also be obtained by Eq. (11), which may be easier). 𝐬2 can exist 

only when 𝑎𝑏 > 1. The condition 𝑎𝑏 > 1 is understood as follows. The radius of 

the curvature of the constraint curve, given by 1/|𝐪|, has its minimum 1/𝑎 at 𝐬1, 

whereas that of its tangential contour curve of 𝐾(𝐬), 𝑥2 + 𝑦2 = 𝑏, is constant 𝑏. 

Thus, they have only a single tangent point 𝐬1 for 1/𝑎 > 𝑏 (Fig. 3a), but two 

tangent points 𝐬1 and 𝐬2 for 1/𝑎 < 𝑏 (Fig. 3b). 

Condition (ii) in Theorem 1 applied to each of two singular points defined 

above gives the conditions for their convergence stability along the constraint 

curve, 

𝐶h1 =
1

𝜎K
2
(𝑎𝑏 − 1) < 0, (35a) 

𝐶h2 = −
2(𝑎𝑏 − 1)

𝜎K
2(2𝑎𝑏 − 1)

< 0, (35b) 
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respectively, and condition (iii) gives the conditions for their evolutionary 

instability along the curve, 

𝐷h1 =
1

𝜎α2
−
1 − 𝑎𝑏

𝜎K
2 > 0, (36a) 

𝐷h2 =
1

𝜎α2
+
1

𝜎K
2 [

1

2𝑎𝑏 − 1
− 1] > 0, (36b) 

respectively. Clearly, when 𝑎𝑏 < 1, the unique singular point 𝐬1 is always 

convergence stable. Moreover, this point is an evolutionary branching point as long 

as 𝑎𝑏 is sufficiently close to 1, because Eq. (36a) is transformed into 

(
𝜎K
𝜎α
)
2

> 1 − 𝑎𝑏 (37a) 

(region A in Fig. 4). When 𝑎𝑏 > 1, there exist two singular points 𝐬1 and 𝐬2, in 

which case 𝐬2 is always convergence stable while 𝐬1 never is. By Eq. (36b), 𝐬2 is 

an evolutionary branching point when 

(
𝜎K
𝜎α
)
2

> 1 −
1

2𝑎𝑏 − 1
(37b) 

(region C in Fig. 4). 

Notice that evolutionary branching points exist even for 𝜎K/𝜎α < 1 as long as 

𝑎𝑏 is sufficiently close to 1 (i.e., when the constraint curve and its tangential 

contour of 𝐾(𝐬) have sufficiently similar curvature radii of at 𝐬1). Conversely, 

when the constraint curve is a straight line (𝑎 = 0), evolutionary branching points 

can exist only when 𝜎K/𝜎α > 1, equivalent to the case of one-dimensional trait 

spaces with no constraint (Dieckmann and Doebeli, 1999). 

6.2. Example 2: Potential for evolutionary branching 

through resource competition in multi-dimensional 

trait spaces 
We generalize the above two-dimensional model and apply the branching potential 

condition to determine whether each point in the trait space can become a CBP 

when we freely choose the shape of the constraint surface. 

Model 

We consider an arbitrary M-dimensional trait space 𝐬 = (𝑥1, ⋯ , 𝑥𝑀)
T, where the 

growth rate of phenotype 𝐬𝑖  is given by the same equation used for two-

dimensional resource competition [Eq. (26a)], which gives the same form of the 

invasion fitness function 
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𝐹(𝐬′; 𝐬∘) = lim
𝑛′→+0

[
1

𝑛′
𝑑𝑛′

𝑑𝑡
]
𝑛∘=𝐾(𝐬∘)

= 1 −
𝛼(𝐬′; 𝐬∘)𝐾(𝐬∘)

𝐾(𝐬′)
. (38) 

Unlike the two-dimensional case, we do not define explicit forms for the carrying 

capacity distribution 𝐾(𝐬) and competition kernel 𝛼(𝐬′; 𝐬∘). We assume that 

those functions are both smooth. For the competition kernel, we assume that 

𝛼(𝐬∘; 𝐬∘) = 1, and that competition strength is determined by the relative 

phenotypic difference of 𝐬′ from 𝐬∘, i.e., 𝛼(𝐬′; 𝐬∘) can be treated as a function 

with a single argument 𝐬′ − 𝐬∘, 

𝛼(𝐬′; 𝐬∘) = �̃�(𝐬′ − 𝐬∘). (39a) 

We also assume that the strength of competition is maximal between identical 

phenotypes, i.e., 

∇𝐬′𝛼(𝐬
∘; 𝐬∘) = 𝟎, (39b) 

and the symmetric matrix 

∇𝐬′∇𝐬′
T 𝛼(𝐬∘; 𝐬∘) (39c) 

is negative definite for any 𝐬∘. For example, the Gaussian competition kernel in the 

two-dimensional model given by Eq. (26b) fulfills these conditions. 

Potential for evolutionary branching 

At an arbitrary point 𝐬, the first and second derivatives of the invasion fitness are 

obtained as 

𝐠 = ∇𝐬′𝐹(𝐬; 𝐬) = ∇ln𝐾(𝐬),

𝐂 = ∇𝐬′∇𝐬′
T 𝐹(𝐬; 𝐬) + ∇𝐬∘∇𝐬′

T 𝐹(𝐬; 𝐬) = ∇∇Tln𝐾(𝐬),

𝐃 = ∇𝐬′∇𝐬′
T 𝐹(𝐬; 𝐬)

= −∇𝐬′∇𝐬′
T 𝛼(𝐬; 𝐬) + ∇∇Tln𝐾(𝐬) − ∇ln𝐾(𝐬)∇Tln𝐾(𝐬),

𝐌 = −∇𝐬∘∇𝐬′
T 𝐹(𝐬; 𝐬) = 𝐃 − 𝐂

= −∇𝐬′∇𝐬′
T 𝛼(𝐬; 𝐬) − ∇ln𝐾(𝐬)∇Tln𝐾(𝐬)

(40) 

(Appendix H). Then, by the branching potential condition in Theorem 3, we can 

quickly examine whether an arbitrary point 𝐬 has potential for being a CBP. In 

this model, the branching potential matrix (Eq. (24a)) is calculated as 
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𝐏 =
1

2
𝐔T[𝐌 +𝐌T]𝐔 = −𝐔T[∇𝐬′∇𝐬′

T 𝛼(𝐬; 𝐬) + 𝐠𝐠T]𝐔

= −𝐔T∇𝐬′∇𝐬′
T 𝛼(𝐬; 𝐬)𝐔 + 𝐔T𝐠𝐠T𝐔

= −𝐔T∇𝐬′∇𝐬′
T 𝛼(𝐬; 𝐬)𝐔,

(41) 

where 𝐔T𝐠 = 𝐠T𝐔 = 𝐠T[𝐈 − 𝐠𝐠T/|𝐠|2] = 𝐠T − 𝐠T = 𝟎 is used. As ∇𝐬′∇𝐬′
T 𝛼(𝐬; 𝐬) is 

assumed to be negative definite, Eq. (41) is positive semidefinite, i.e., 𝐯T𝐏𝐯 is zero 

for 𝐯 ∝ 𝐠, or positive otherwise. Thus, Eq. (41) has (𝑀 − 1) positive eigenvalues 

and a single zero eigenvalue in the direction of 𝐠. Therefore, any 𝐬 can become a 

CBP with the appropriate choice of local dimensionality and shape of the 

constraint surface around the point. Such a constraint surface is given by 

substituting Eq. (40) into Eq. (24b), yielding 

ℎ(𝐬′) = [∇ln𝐾(𝐬)]T[𝐬′ − 𝐬]

 +
1

2
[𝐬′ − 𝐬]T[∇∇Tln𝐾(𝐬) + ɛ̃𝐈][𝐬′ − 𝐬] + O(|𝐬′ − 𝐬|3)

= 𝑙𝑛𝐾(𝐬′) +
ɛ̃

2
|𝐬′ − 𝐬|2 + O(|𝐬′ − 𝐬|3) = 0,

   (42a) 

which gives 

∇ℎ(𝐬) = ∇ln𝐾(𝐬),

∇∇Tℎ(𝐬) = ∇∇Tln𝐾(𝐬) + ɛ̃𝐈,
 (42b) 

with a positive and sufficiently small ɛ̃. In other words, for an (𝑀 − 1)-

dimensional constraint surface with a tangent point 𝐬 of an isosurface of 𝐾(𝐬), if 

the constraint surface has slightly weaker curvature (by ɛ̃) than the isosurface at 

𝐬, then 𝐬 is a CBP along the surface, as illustrated in Figure 5. 

Multi-dimensional Lagrange multiplier method 

Although Appendix G proves that Eq. (42) makes 𝐬 become a CBP along the 

constraint surface in a general way, here we directly apply Theorem 2 to Eq. (42) 

and show how this theorem works. As the constraint surface has only a single 

equality condition ℎ(𝐬′) = 0, the Lagrange fitness function [Eq. (15)] for a focal 

point 𝐬 becomes 

𝐹L(𝐬
′; 𝐬∘; 𝜆𝐬) = 𝐹(𝐬′; 𝐬∘) − 𝜆𝐬[ℎ(𝐬

′) − ℎ(𝐬∘)], (43) 

with a scalar 𝜆𝐬 given by Eq. (19) 

𝜆𝐬 = 𝐁
+∇𝐬′𝐹(𝐬; 𝐬) =

∇Tln𝐾(𝐬)

|𝛻ln𝐾(𝐬)|2
∇ln𝐾(𝐬) = 1, (44) 



 

25 

 

 

where 𝐁 = ∇ℎ(𝐬) and 𝐁+ = [𝐁T𝐁]−1𝐁T = ∇Tℎ(𝐬)/|∇ℎ(𝐬)|2 = ∇Tln𝐾(𝐬)/

|∇ln𝐾(𝐬) ∣2 are column and row vectors, respectively. As for the choice of base 

vectors for the tangent plane of the constraint surface, we can use the eigenvectors 

corresponding to positive eigenvalues of the branching potential matrix [Eq. (41)] 

as the orthogonal base vectors, 𝐄 = (𝐞1, … , 𝐞𝑀−1), satisfying 𝐞𝑖 ⋅ 𝐧 = 0 for all 𝑖 =

1, … ,𝑀 − 1, where 𝐧 = ∇ℎ(𝐬)/∣ ∇ℎ(𝐬) ∣ is the normal vector of the surface. 

Then, by condition (i) in Theorem 2, any 𝐬 is evolutionarily singular along 

the surface, as it satisfies 

∇𝐬′𝐹L(𝐬; 𝐬; 𝜆𝐬) = ∇ln𝐾(𝐬) − 𝜆𝐬∇ℎ(𝐬)

= ∇ln𝐾(𝐬) − ∇ln𝐾(𝐬) = 𝟎.
(45a) 

As for condition (ii), we calculate 

𝐂h = 𝐄
T[𝐂 − 𝜆𝐬∇∇

Tℎ(𝐬)]𝐄

= 𝐄T[∇∇Tln𝐾(𝐬) − ∇∇Tln𝐾(𝐬) − ɛ̃𝐈]𝐄

= −ɛ̃𝐄T𝐄 = −ɛ̃𝐈𝑀−1.

(45b) 

Thus, 
1

2
[𝐂h + 𝐂h

T] = 𝐂h = −ɛ̃𝐈𝑀−1 is always negative definite with positive ɛ̃, in 

which case 𝐬 is always strongly convergence stable along the constraint surface. 

Condition (iii) gives its evolutionary stability condition 

𝐃h = 𝐄
T[𝐃 − 𝜆𝐬∇∇

Tℎ(𝐬)]𝐄

= −𝐄T[∇𝐬′∇𝐬′
T 𝛼(𝐬; 𝐬) + ∇ln𝐾(𝐬)∇Tln𝐾(𝐬) + ɛ̃𝐈]𝐄

= −𝐄T[∇𝐬′∇𝐬′
T 𝛼(𝐬; 𝐬) + ɛ̃𝐈]𝐄,

(45c) 

where 𝐄T∇ln𝐾(𝐬) = 𝐄T𝐠 = 𝟎 is used. As ∇𝐬′∇𝐬′
T 𝛼(𝐬; 𝐬) is negative definite by 

definition, 𝐃h is positive definite for sufficiently small ɛ̃. Therefore, 𝐬 is a CBP 

along the constraint surface for positive and sufficiently small ɛ̃. As 𝐂h and 𝐃h 

are negative definite and positive definite, respectively, in this case, any smooth 

subspace of this constraint surface that contains 𝐬 also has a CBP at 𝐬. 

7. Discussion 

7.1. Extension of Levins’ fitness set theory 
Adaptive evolution is multi-dimensional in nature, and it is a widespread 

phenomenon that evolutionary constraints (e.g., due to genetic, developmental, 

physiological, or physical constraints) restrict directions that allow mutants to 

emerge or to have sufficient fertility (Flatt and Heyland, 2011). For example, 
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genotypes of a zooplankton species (Daphnia dentifera) illustrate the trade-off 

between feeding speed and efficiency (Hall et al., 2012). This situation may be 

proximately due to genetic or developmental systems, but it might ultimately be 

imposed by physical laws because no system can maximize power and efficiency at 

the same time under the second law of thermodynamics. Due to those constraints, 

an evolutionary trajectory induced by selection may be bounded on subspaces 

with fewer dimensionalities (e.g., selection responses of butterfly wing spots 

(Allen et al., 2008)). If such a subspace, i.e., a constraint surface, is parameterized 

so that coordinates on the surface are described with those parameters, adaptive 

evolution along the surfaces can be translated into adaptive evolution in the 

parameter space without constraint. In such a case, conventional analysis of 

parameters such as directional selection, evolutionary stability, and convergence 

stability can apply directly. However, parameterization may be difficult or 

complicated when the constraint surfaces are multi-dimensional. 

Levins (1962, 1968) developed a geometric method for the analysis of 

adaptive evolution along constraint curves (or surfaces), which does not require 

their parameterization. This method, known as ‘Levins’ fitness set theory,’ can be 

used to analyze directional evolution and evolutionarily stable points along 

constraint curves by examining how the contours of fitness landscapes in the trait 

spaces cross or are tangent to the constraint curves. A limitation of this method is 

that fitness functions are assumed to be independent of existing resident 

phenotypes, i.e., frequency-independent, despite the expectation of such 

dependency in fundamental ecological interactions (e.g., resource competition, 

predator–prey interactions, mutualism) (Dieckmann et al., 2004). In this case, the 

resulting static fitness landscape cannot induce evolutionary branching (Metz et 

al., 1996; Geritz et al., 1997, 1998), although evolutionary branching is thought to 

be an important ecological mechanism for the evolutionary diversification of 

biological communities (Dieckmann et al., 2004). 

Recently, Levins’ method has been extended to the analysis of frequency-

dependent fitness functions for one-dimensional constraint curves in two-

dimensional trait spaces (Rueffler et al. 2004; deMazancourt and Dieckmann, 

2004; Bowers et al. 2005). The extended method can be used to analyze 

evolutionary branching along constraint curves by examining convergence 

stability as well as the evolutionary singularity and stability of focal points. 

In this paper, we further developed the extension of Levins’ method described 

above to analyze constraint surfaces of arbitrary dimensionalities in the form of 

Lagrange multiplier method. As our Lagrange multiplier method is completely 

analytic, one can easily use it to analyze adaptive evolution along constraint 
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surfaces of arbitrary dimensionalities without imaging them graphically. This 

feature may also be useful in numerical analysis. The core operation of our method 

is local parameterization of the constraint surface by using its tangent plane as the 

parameter space [Eq. (B.4) in Appendix B and Eq. (D.7) in Appendix D]. As this 

operation is performed in the simple procedure of making Lagrange fitness 

functions [Eqs. (15) and (19)], no explicit coordinate transformation is required, 

which enables efficient analysis. Our method is readily extended to infinite-

dimensional trait spaces, called function-valued traits, such as resource utilization 

distributions on continuous resource-quality axes and energy allocations to 

different organs or functions on a continuous time axis (Dieckmann et al. 2006; 

Parvinen et al. 2013). By this infinite-dimensional extension, the analysis of 

convergence stability in function-valued traits becomes more efficient (Ito and 

Sasaki , in preparation). 

7.2. Conditions for evolutionary branching in multi-

dimensional trait spaces 
In this paper, we refer to points that are strongly convergence stable and 

evolutionarily unstable in multi-dimensional trait spaces as CBPs. Those two 

conditions, respectively, ensure that monomorphic populations converge to points 

and that mutants still can invade against residents located at the points. However, 

whether they can coexist and evolutionarily diversify into distinct morphs, called 

‘dimorphic emergence’ and ‘dimorphic divergence,’ respectively, in Ito and 

Dieckmann (2014), is not clear. Geritz et al. (2016) proved that dimorphic 

emergence is ensured at CBPs in trait spaces of arbitrary dimensionality. As for 

dimorphic divergence, Geritz et al. (2016) provided a set of conditions ensuring 

that any initial small-scale polymorphism around CBPs results in diversifying 

evolution toward distinct dimorphism, where their directional coevolution are 

described with coupled Lande equations. As those conditions imply that morphs 

diversify sufficiently faster than their mean moves (Geritz et al. 2016), we refer to 

the condition as the ‘divergence-speed condition’ in this paper. In two-dimensional 

trait spaces, CBPs satisfy this condition, i.e., CBPs can be treated as evolutionary 

branching points (Geritz et al. 2016). In higher-dimensional trait spaces, however, 

whether any CBP satisfies the divergence-speed condition remains unclear (Geritz 

et al. 2016). Therefore, whether any CBP ensures evolutionary branching remains 

an open question. 
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7.3. Mutations 
In our analysis, we assume that mutation never occurs in directions orthogonal to 

the constraint surfaces. In reality, however, such mutations can occur, although 

their mutation rates may be very low and/or their mutational step sizes may be 

very small. If there exists a fitness gradient toward those orthogonal directions, the 

constraint surface itself may evolve directionally at a very slow speed. As long as 

directional selection along the constraint surfaces is not weak, such slow evolution 

of the surface can be neglected. On the other hand, when populations have come 

close to an evolutionarily singular point where directional selection along the 

surface becomes very weak, subsequent dynamics, including evolutionary 

branching, may be affected seriously by the slow evolution of the constraint 

surface. Conditions for evolutionary branching in this situation have been 

developed for flat constraint surfaces (Ito and Dieckmann 2007; 2012; 2014). 

Application of those conditions by extending our Lagrange multiplier method 

allows us to examine how the shapes of constraint surfaces and their slow 

evolution affect the likelihood of evolutionary branching along surfaces (Ito and 

Sasaki, in preparation). 

7.4. Branching potential conditions 
The evolutionary trajectories of species in a genus or a family may be expressed in 

a single multi-dimensional trait space, by assuming a sufficiently large number of 

trait axes. In the trait space, closely related species may share the same constraint 

surface (Schluter, 1996), whereas distant species may have different constraint 

surfaces due to those surfaces’ slow evolution, as mentioned above. We may then 

ask whether the trait space has regions that always favor (or always suppress) 

evolutionary diversification, irrespective of the shapes of constraint surfaces, or 

favor diversification only for particular shapes. When a fitness function for the trait 

space is given and the constraint is one-dimensional (i.e., constraint curves), this 

question can be addressed by analyzing each position of the trait space. The 

analysis examines the condition by which the point becomes an evolutionary 

branching point by adjusting the shapes of the constraint curves (Bowers et al. 

2003, 2005; Rueffler et al. 2004; deMazancourt and Dieckmann, 2004; Kisdi, 2006, 

2015). In this paper, we extended this condition to multi-dimensional constraint 

surfaces, and referred to it as a branching potential condition. 

The branching potential condition is particularly useful when we want to 

know whether a focal ecological interaction embedded in a mathematical model 

has the potential to induce evolutionary branching by adjusting all of the 

remaining ingredients of the model. By treating all constants and variables as 
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additional traits, and adding them to the original trait space, we can use the 

branching potential condition to examine whether each position in the hyper-trait 

space has the potential to be an evolutionary branching point. If we find that points 

have branching potential, then their positions and the obtained local shapes of 

constraint surfaces indicate how we can adjust the model to induce evolutionary 

branching. If the model is general, so that it covers a sufficiently wide range of life 

histories, this analysis may reveal the potential of the focal ecological interaction 

itself for inducing evolutionary diversification. 

Our branching potential condition corresponds to an extension of the ‘direct 

analysis’ for one-dimensional, parameterized constraint curves in Kisdi (2015). 

While our condition ensures CBPs on multi-dimensional constraint surfaces, the 

condition itself is mathematically equivalent to Kisdi’s condition. Kisdi (2015) also 

derived a condition for branching potential in terms of environmental feedback 

variables, which are variables through which resident phenotypes affect the 

invasion fitness of mutants (e.g., densities of different types of resource and 

predator). The environmental feedbacks are the source of frequency-dependent 

selection, and their effective number yields the maximum number of residents that 

can coexist in a system (Meszéna and Metz 1999; Meszéna et al., 2006; Metz et al., 

2008). Thus, by analyzing environmental variables, one may gain essential insight 

about evolutionary dynamics that potentially arise in the system (e.g., if the 

environmental feedback dimension is one, then evolutionary branching is 

impossible). Kisdi (2015) has shown that any combination of convergence stability 

and evolutionary stability can be realized for an arbitrary point in a trait space by 

choosing an appropriate one-dimensional constraint curve containing it, as long as 

the local region around the point has at least two effective environmental 

feedbacks and the dimension of the trait space is more than the number of 

feedbacks under certain non-degeneracy conditions (e.g., neither trait can be 

neutral). Those conditions are sufficient (but not necessary) for the branching 

potential matrix in this paper to have both positive and negative eigenvalues 

(because the transpose of 𝐌 in Eq. (24c) is identical to 𝐒𝐄 in Eq. (6) in Kisdi 

(2015)). While this condition seems important, some models may not satisfy both 

of the non-degeneracy conditions prohibiting neutral traits and the dimensionality 

condition requiring that the number of feedbacks is smaller than the trait space 

dimension. Thus, a future step would be to extend Kisdi’s condition to make it 

closer to a necessary and sufficient one for our branching potential condition (or 

Kisdi’s direct condition, equivalently), so that the potential of evolutionary 

branching along constraint surfaces is understood fully in terms of environmental 

feedbacks. 
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Figure Legends 

Figure 1 

Gradient of Lagrange fitness function. In a two-dimensional trait space 𝐬 = (𝑥, 𝑦)T, 

a constraint curve ℎ(𝐬′) = 0 and its tangent line 𝐬E at 𝐬, 𝐧 ⋅ (𝐬E − 𝐬) = 0 are 

indicated by the thick solid curve and thin solid straight line, respectively. 𝐧 and 

𝐞 are the normal and tangent vectors of the curve at 𝐬, respectively. The gradient 

of the original fitness function, 𝐠 = ∇𝐬′𝐹(𝐬; 𝐬), and that of its Lagrange fitness 

function, ∇𝐬′𝐹L(𝐬; 𝐬; 𝜆𝐬), are indicated by thick solid and thick dashed arrows, 

respectively. 

 

Figure 2 

Effect of curvature of the constraint curve on evolutionary stability for 

evolutionarily singular points along the curve, when the original fitness landscape 

has no curvature (𝐃 = 𝟎). Grayscale gradations in (a, b) show the fitness 

landscapes for 𝐬, i.e., invasion fitnesses of various mutants 𝐬′ for a fixed resident 

𝐬, 𝐹(𝐬′; 𝐬): lighter colors indicate higher fitnesses. In (a), opposite directions 

between the fitness gradient 𝐠 = ∇𝐬′𝐹(𝐬; 𝐬) and the curvature vector 𝐪 make the 

fitness landscape along the constraint curve (solid curve) more convex (the 

apparent fitness curvature 𝛺 = 𝐠 ⋅ 𝐪 is negative), as illustrated in panel (c). In (b), 
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they are in the same direction, which makes the fitness landscape more concave (𝛺 

is positive), as illustrated in panel (d). 

 

Figure 3 

Evolutionarily singular points in a two-dimensional resource competition model 

with a constraint. In the two-dimensional trait spaces 𝐬 = (𝑥, 𝑦)T, the black curves 

are the constraint curve (Eq. (25)). The grayscale gradations indicate the carrying 

capacity distributions, with lighter colors reflecting higher capacities. Dashed 

curves indicate the contours of the carrying capacities that are tangent to the 

constraint curves. (a) For 𝑎𝑏 < 1, there is only a single evolutionarily singular 

point 𝐬1, which is always convergence stable (filled with black). (b) For 𝑎𝑏 > 1, 

there are two evolutionarily singular points 𝐬1 and 𝐬2. Point 𝐬2 is always 

convergence stable (filled with black), whereas 𝐬1 never is (filled with white). 

Parameters: (𝑎, 𝑏) = (0.8, 1.0) for (a), and (𝑎, 𝑏) = (2.5, 1.0) for (b). 

 

Figure 4 

Parameter dependency on evolutionary branching in example 1. In regions A and 

C, respectively, 𝐬1 and 𝐬2 are unique convergence stable points, which are 

evolutionarily unstable (i.e., evolutionary branching points). 

 

Figure 5 

Illustration of the choice of constraint surface, with point 𝐬 being a candidate 

branching point (CBP) along the surface. In a three-dimensional trait space 𝐬 =

(𝑥1, 𝑥2, 𝑥3)
T, red surfaces indicate isosurfaces of the carrying capacity distribution 

𝐾(𝐬), and the blue surface indicates a constraint surface ℎ(𝐬′) = 0 on which point 

𝐬 becomes a CBP (strongly convergence stable and evolutionarily unstable point). 
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Appendix A: Proof of Theorem 1 
In the proof we first obtain the projection of 𝐹(𝐬′; 𝐬∘) along the constraint curve 

on its tangent line, which can be treated as a one-dimensional trait space without 

constraint. This operation corresponds to local parameterization of the constraint 

curve by using its tangent line as a parameter space. Then we apply the 

conventional one-dimensional conditions for evolutionary branching points. The 

proof is as follows. 

A.1. Local projection of invasion fitness function 
In an arbitrary two-dimensional trait space, we consider an arbitrary point 𝐬 on 

an arbitrary smooth constraint curve, i.e., ℎ(𝐬) = 0. To analyze selection pressures 

on a population located around an arbitrary point 𝐬 = (𝑥, 𝑦)T, we suppose a 

mutant 𝐬h
′ = (𝑥h

′ , 𝑦h
′ ) and a resident 𝐬h

∘ = (𝑥h
∘ , 𝑦h

∘)T close to 𝐬, so that ɛ =

max{|𝐬h
′ − 𝐬|, |𝐬h

∘ − 𝐬|} with 0 < ɛ ≪ 1. They are both on the constraint curve, 

satisfying ℎ(𝐬h
′ ) = 0 and ℎ(𝐬h

∘ ) = 0. We consider projection of 𝐬h
′  and 𝐬h

∘  on the 

tangent line of the constraint curve at 𝐬, expressed as 

𝐬E
′ = 𝐬 + 𝑢′𝐞,

𝐬E
∘ = 𝐬 + 𝑢∘𝐞,

(A. 1) 

where 𝑢′ = 𝐞 ⋅ (𝐬h
′ − 𝐬), 𝑢∘ = 𝐞 ⋅ (𝐬h

∘ − 𝐬 ), and 𝐞 is the tangent vector of the 

curve at 𝐬. Then the following lemma holds (see Appendix B for the proof). 

Lemma 1 
For a mutant 𝐬h

′  and a resident 𝐬h
∘  on constraint curve ℎ(𝐬′) = 0, and for 

their projection 𝐬E
′  and 𝐬E

∘  on its tangent line at 𝐬, the invasion fitness of 

𝐬′h against 𝐬h
∘  , 𝐹(𝐬′h; 𝐬h

∘ ), satisfies 

𝐹(𝐬h
′ ; 𝐬h

∘ ) = 𝐹L(𝐬E
′ ; 𝐬E

∘ ; 𝜆𝐬) + O(ɛ
3), (A. 2) 

where ɛ = max{|𝐬h
′ − 𝐬|, |𝐬h

∘ − 𝐬|}, and 

𝐹L(𝐬
′; 𝐬∘; 𝜆𝐬) = 𝐹(𝐬

′; 𝐬∘) − 𝜆𝐬[ℎ(𝐬
′) − ℎ(𝐬∘)],

𝜆𝐬 =
∇ℎ(𝐬) ⋅ ∇𝐬′𝐹(𝐬; 𝐬)

|∇ℎ(𝐬)|2
=

𝐧 ⋅ 𝐠

|∇ℎ(𝐬)|
.

(A. 3) 

Thus, whether 𝐬 is an evolutionary branching point along the constraint curve can 

be examined by analyzing whether 𝐬 is an evolutionary branching point along the 

tangent line for 𝐹L(𝐬E
′ ; 𝐬E

∘ ; 𝜆𝐬). Since 𝐹L(𝐬; 𝐬; 𝜆) = 0 holds for any 𝐬, we can 

expand 𝐹L(𝐬E
′ ; 𝐬E

∘ ; 𝜆𝐬) at 𝐬 as 
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𝐹L(𝐬E
′ ; 𝐬E

∘ ; 𝜆𝐬) = 𝐠L
T(𝐬E

′ − 𝐬E
∘ ) +

1

2
(𝐬E
′ − 𝐬E

∘ )T𝐃L(𝐬E
′ − 𝐬E

∘ )

+(𝐬E
∘ − 𝐬)T𝐂L(𝐬E

′ − 𝐬E
∘ ) + O(ɛ3).

(A. 4) 

with 

𝐠L
T = ∇𝐬′

T 𝐹L(𝐬; 𝐬; 𝜆𝐬),

𝐃L = ∇𝐬′∇𝐬′
T 𝐹L(𝐬; 𝐬; 𝜆𝐬),

𝐂L = ∇𝐬′∇𝐬′
T 𝐹L(𝐬; 𝐬; 𝜆𝐬) + ∇𝐬∘∇𝐬′

T 𝐹L(𝐬; 𝐬; 𝜆𝐬)

(A. 5) 

(see Ito and Dieckmann (2014) for details of this expansion). By substituting Eqs. 

(A.1) into Eq. (A.4), we define 𝐹U(𝑢
′; 𝑢∘) = 𝐹L(𝐬 + 𝑢

′𝐞; 𝐬 + 𝑢∘𝐞; 𝜆𝐬), which is 

transformed into 

𝐹U(𝑢
′; 𝑢∘) = 𝐠L

T𝐞(𝑢′ − 𝑢∘) +
1

2
 𝐞T𝐃L𝐞(𝑢

′ − 𝑢∘)2

+𝐞T𝐂L𝐞𝑢
∘(𝑢′ − 𝑢∘) + O(ɛ3).

(A. 6) 

Thus, 𝐹U(𝑢
′; 𝑢∘) can be treated as an invasion fitness function of mutant 𝑢′ 

against resident 𝑢∘ in a one-dimensional trait space 𝑢, where 𝐬 corresponds to 

𝑢 = 0. 

A.2. Conditions for evolutionary branching 
To one-dimensional space 𝑢, we apply the conventional one-dimensional 

conditions for evolutionary branching (Geritz et.al, 1997), which are (i) 

evolutionary singularity at 𝑢 = 0, 

[
𝜕𝐹U(𝑢

′; 𝑢∘)

𝜕𝑢′
]
𝑢′=𝑢∘=0

= 𝐠 L
T𝐞 = 0, (A. 7) 

and (ii) its convergence stability, i.e., 

[
𝜕2𝐹U(𝑢

′; 𝑢∘)

𝜕𝑢′2
+
𝜕2𝐹U(𝑢

′; 𝑢∘)

𝜕𝑢′𝜕𝑢∘
]
𝑢′=𝑢∘=0

= 𝐞T𝐂L𝐞 < 0, (A. 8) 

and (iii) its evolutionary instability, i.e., 

[
𝜕2𝐹U(𝑢

′; 𝑢∘)

𝜕𝑢′2
]
𝑢′=𝑢∘=0

= 𝐞T𝐃L𝐞 > 0. (A. 9) 

Because the element of 𝐠L orthogonal to the constraint curve is always absent 

(Eq. (8) in the main text), Eq. (A.7) is equivalent to 

𝐠L = 𝟎. (A. 10) 

Therefore, Eqs. (A.7-9) are identical to Eqs. (10) in Theorem 1, respectively. This 

completes the proof for Theorem 1. 
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A.3. Derivation of Eqs. (9) 
When the constraint curve is described with a parameter 𝜙 as in the main text, 

i.e., 𝐬h
∘ = 𝐬(𝜙∘) = (𝑥(𝜙∘), 𝑦(𝜙∘))

T
 and 𝐬h

′ = 𝐬(𝜙′) = (𝑥(𝜙′), 𝑦(𝜙′))
T

, Lemma 1 is 

expressed as 

𝐹(𝐬(𝜙′); 𝐬(𝜙∘)) = 𝐹U(𝑢
′; 𝑢∘) + O(ɛ3), (A. 11) 

where 𝑢′ = 𝐞 ⋅ [𝐬(𝜙′) − 𝐬], 𝑢∘ = 𝐞 ⋅ [𝐬(𝜙∘) − 𝐬]. As in the main text, we assume 

that the scale of 𝜙 is adjusted so that |(d𝑥(𝜙)/d𝜙, d𝑦(𝜙)/d𝜙)| = 1 always holds. 

Then the tangent vector at 𝐬(𝜙) is simply given by 

𝐞(𝐬(𝜙)) =
d𝐬(𝜙)

d𝜙
= (

d𝑥(𝜙)

d𝜙
,
d𝑦(𝜙)

d𝜙
)

T

(A. 12) 

and thus 𝐞(𝐬(𝜙)) = 𝐞, which gives 

[
𝜕𝑢∘

𝜕𝜙∘
]
𝜙∘=𝜙

= [
𝜕𝑢′

𝜕𝜙′
]
𝜙′=𝜙

= [
𝜕𝐞 ⋅ 𝐬(𝜙′)

𝜕𝜙′
]
𝜙′=𝜙

= 𝐞 ⋅ 𝐞 = 1,

[
𝜕2𝑢∘

𝜕𝜙∘2
]
𝜙∘=𝜙

= [
𝜕2𝑢′

𝜕𝜙′2
]
𝜙′=𝜙

= [
𝜕2𝐬(𝜙′)

𝜕𝜙′2
]
𝜙′=𝜙

=
1

2
[
𝜕𝐞(𝐬(𝜙′)) ⋅ 𝐞(𝐬(𝜙′))

𝜕𝜙′
]
𝜙′=𝜙

= 0,

(A. 13) 

while 𝑢′ and 𝑢∘ are independent of 𝜙∘ and 𝜙′, respectively. Then we see 

[
𝜕𝐹(𝐬(𝜙′); 𝐬(𝜙∘))

𝜕𝜙′
]
𝜙′=𝜙∘=𝜙

= [
𝜕𝑢′

𝜕𝜙′
]
𝜙′=𝜙∘=𝜙

[
𝜕𝐹U(𝑢

′; 𝑢∘)

𝜕𝑢′
]
𝑢′=𝑢∘=0

= [
𝜕𝐹U(𝑢

′; 𝑢∘)

𝜕𝑢′
]
𝑢′=𝑢∘=0

,

[
𝜕2𝐹(𝐬(𝜙′); 𝐬(𝜙∘))

𝜕𝜙′2
]
𝜙′=𝜙∘=𝜙

= [
𝜕2𝐹U(𝑢

′; 𝑢∘)

𝜕𝑢′2
]
𝑢′=𝑢∘=0

,

[
𝜕2𝐹(𝐬(𝜙′); 𝐬(𝜙∘))

𝜕𝜙∘𝜕𝜙′
]
𝜙′=𝜙∘=𝜙

= [
𝜕2𝐹U(𝑢

′; 𝑢∘)

𝜕𝑢∘𝜕𝑢′
]
𝑢′=𝑢∘=0

.

(A. 14) 

Therefore, by Eqs. (1b), (2c), (2d) in the main text and by Eq. (A.6), we obtain Eqs. 

(9) in the main text. 
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𝑔(𝜙) = [
𝜕𝐹U(𝑢

′; 𝑢∘)

𝜕𝑢′
]
𝑢′=𝑢∘=0

= 𝐠L
T𝐞 = ∇𝐬′

T 𝐹L(𝐬; 𝐬; 𝜆𝐬)𝐞,

𝐷(𝜙) = [
𝜕2𝐹U(𝑢

′; 𝑢∘)

𝜕𝑢′2
]
𝑢′=𝑢∘=0

= 𝐞T𝐃L𝐞

= 𝐞T∇𝐬′∇𝐬′
T 𝐹L(𝐬; 𝐬; 𝜆𝐬)𝐞

𝐶(𝜙) = [
𝜕2𝐹U(𝑢

′; 𝑢∘)

𝜕𝑢′2
]
𝑢′=𝑢∘=0

+ [
𝜕2𝐹U(𝑢

′; 𝑢∘)

𝜕𝑢∘𝜕𝑢′
]
𝑢′=𝑢∘=0

= 𝐞T𝐂L𝐞

= 𝐞T[(∇𝐬′∇𝐬′
T + ∇𝐬∘∇𝐬′

T )𝐹L(𝐬; 𝐬; 𝜆𝐬)]𝐞.

(A. 15) 

 

Appendix B: Proof of Lemma 1 
Here we prove Lemma 1. Around an arbitrary point 𝐬 = (𝑥, 𝑦)T on the constraint 

curve expressed by points 𝐬h = (𝑥h, 𝑦h)
T satisfying ℎ(𝐬h) = 0, we project 

invasion fitness 𝐹(𝐬h
′ , 𝐬h

∘ ) on the tangent line of the constraint curve at 𝐬. For the 

projection, we expand ℎ(𝐬h) at 𝐬 as 

ℎ(𝐬h) = ∇ℎ(𝐬)
T(𝐬h − 𝐬) +

1

2
(𝐬h − 𝐬)

T∇∇Tℎ(𝐬)(𝐬h − 𝐬) + O(𝜀
3) = 0. (B. 1) 

With the normal vector 𝐧 = (𝑛x, 𝑛y)
T
= ∇ℎ(𝐬) ∕ |∇ℎ(𝐬)| and the tangent vector 

𝐞 = (𝑛y, −𝑛x)
T

, we express 𝐬h as 

𝐬h = 𝐞𝑢 + 𝐧𝑤 + 𝐬 = (𝐞 𝐧) (
𝑢
𝑤
) + 𝐬. (B. 2) 

which upon substitution into Eq. (B.1) gives 

ℎ(𝐬h) = ∇ℎ(𝐬)
T(𝐞 𝐧) (

𝑢
𝑤
) +

1

2
(
𝑢
𝑤
)
T
(𝐞 𝐧)T∇∇Tℎ(𝐬)(𝐞 𝐧) (

𝑢
𝑤
) + O(𝜀3)

= |∇ℎ(𝐬)|𝑤 +
1

2
(
𝑢
𝑤
)
T

(
𝐞T∇∇Tℎ(𝐬)𝐞 𝐞T∇∇Tℎ(𝐬)𝐧

𝐧T∇∇Tℎ(𝐬)𝐞 𝐧T∇∇Tℎ(𝐬)𝐧
) (
𝑢
𝑤
) + O(𝜀3) = 0.

(B. 3) 

Solving this equation for 𝑤 gives 

𝑤 = −
𝐞T∇∇Tℎ(𝐬)𝐞

2|∇ℎ(𝐬)|
𝑢2 + O(𝜀3). (B. 4) 

By introducing the orthogonal projection of 𝐬h on the tangent line, denoted by 

𝐬E = 𝐞𝑢 + 𝐬 = 𝐞[𝐞
T(𝐬h − 𝐬)] + 𝐬, we see 
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𝐬h = 𝐞𝑢 + 𝐬 + 𝐧𝑤 = 𝐬E + 𝐧 [−
(𝐬E − 𝐬)

T∇∇Tℎ(𝐬)(𝐬E − 𝐬)

2|∇ℎ(𝐬)|
+ O(𝜀3)]

= 𝐬E −
𝐧

|∇ℎ(𝐬)|
[
1

2
(𝐬E − 𝐬)

T∇∇Tℎ(𝐬)(𝐬E − 𝐬) + O(𝜀
3)]

= 𝐬E −
𝐧

|∇ℎ(𝐬)|
[ℎ(𝐬) + ∇Tℎ(𝐬)(𝐬E − 𝐬) +

1

2
(𝐬E − 𝐬)

T∇∇Tℎ(𝐬)(𝐬E − 𝐬) + O(𝜀
3)]

= 𝐬E −
𝐧

|∇ℎ(𝐬)|
ℎ(𝐬E) + O(𝜀

3),

(B. 5) 

where ℎ(𝐬) + ∇Tℎ(𝐬)(𝐬E − 𝐬) = 0 is used. Comparing the first and last row gives 

𝐧ℎ(𝐬E)/|∇ℎ(𝐬)| = O(|𝐬E − 𝐬|
2) = O(𝜀2). Then we expand 𝐹(𝐬h

′ ; 𝐬h
∘ ) at 𝐬h

′ = 𝐬E
′  

and 𝐬h
∘ = 𝐬E

∘  as 

𝐹(𝐬h
′ ; 𝐬h

∘ ) = 𝐹 (𝐬E
′ + [−

𝐧

|∇ℎ(𝐬)|
ℎ(𝐬E

′ ) + O(𝜀3)] ; 𝐬E
∘ + [−

𝐧

|∇ℎ(𝐬)|
ℎ(𝐬E

∘ ) + O(𝜀3)])

= 𝐹(𝐬E
′ ; 𝐬E

∘ ) + ∇𝐬′
T 𝐹(𝐬E

′ ; 𝐬E
∘ ) [−

𝐧

|∇ℎ(𝐬)|
ℎ(𝐬E

′ ) + O(𝜀3)]

 +∇𝐬∘
T 𝐹(𝐬E

′ ; 𝐬E
∘ ) [−

𝐧

|∇ℎ(𝐬)|
ℎ(𝐬E

∘ ) + O(𝜀3)] + O(𝜀4).

(B. 6) 

By using 

∇𝐬′
T 𝐹(𝐬E

′ ; 𝐬E
∘ ) = ∇𝐬′

T 𝐹(𝐬; 𝐬) + O(𝜀),

∇𝐬∘
T 𝐹(𝐬E

′ ; 𝐬E
∘ ) = ∇𝐬∘

T 𝐹(𝐬; 𝐬) + O(𝜀) = −∇𝐬′
T 𝐹(𝐬; 𝐬) + O(𝜀),

(B. 7) 

we further transform Eq. (B.6) into 

𝐹(𝐬h
′ ; 𝐬h

∘ ) = 𝐹(𝐬E
′ ; 𝐬E

∘ ) − ∇𝐬′
T 𝐹(𝐬; 𝐬)

𝐧

|∇ℎ(𝐬)|
[ℎ(𝐬E

′ ) − ℎ(𝐬E
∘ )] + O(𝜀3)

= 𝐹(𝐬E
′ ; 𝐬E

∘ ) − 𝜆𝐬[ℎ(𝐬E
′ ) − ℎ(𝐬E

∘ )] + O(𝜀3)

(B. 8) 

with 

𝜆𝐬 =
∇𝐬′
T 𝐹(𝐬; 𝐬)∇ℎ(𝐬)

|∇ℎ(𝐬)|2
. (B. 9) 

This completes the proof. 

Appendix C: Proof of Theorem 2 
In a manner similar to the proof of Theorem 1, we first obtain the projection of 

𝐹(𝐬′; 𝐬∘) along the constraint surface on its tangent plane. This operation 
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corresponds to local parameterization of the constraint surface by using its 

tangent plane as a parameter space. Then we apply conditions for existence of 

CBPs (candidate branching points) in multi-dimensional trait spaces without 

constraint. 

C.1. Local projection of invasion fitness function 
In an arbitrary 𝑀-dimensional trait space, we consider an arbitrary point 𝐬 =

(𝑥1, ⋯ , 𝑥𝑀)
T on an arbitrary 𝐿-dimensional constraint surface, i.e., 𝐡(𝐬) =

(ℎ𝐿+1(𝐬),⋯ , ℎ𝑀(𝐬))
T
= 𝟎. To analyze selection pressures on a population located 

around 𝐬, we suppose a mutant 𝐬h
′ = (𝑥h1

′ , ⋯ , 𝑥h𝑀
′ )T and a resident 𝐬h

∘ =

(𝑥h1
∘ , ⋯ , 𝑥h𝑀

∘ )T close to 𝐬, so that ɛ = max{|𝐬h
′ − 𝐬|, |𝐬h

∘ − 𝐬|} with 0 < ɛ ≪ 1. 

They are both on the constraint surface, satisfying 𝐡(𝐬h
′ ) = 0 and 𝐡(𝐬h

∘ ) = 0. We 

consider projection of 𝐬h
′  and 𝐬h

∘  on the tangent plane of the surface at 𝐬, 

expressed as 

𝐬E
′ =∑𝑢𝑖

′𝐞𝑖

𝐿

𝑖=1

+ 𝐬 = (𝐞1,⋯ , 𝐞𝐿)(𝑢1
′ , ⋯ , 𝑢𝐿

′ )T + 𝐬 = 𝐄𝐮′ + 𝐬,

𝐬E
∘ =∑𝑢𝑖

∘

𝐿

𝑖=1

𝐞𝑖 + 𝐬 = (𝐞1,⋯ , 𝐞 𝐿)(𝑢1
∘ ,⋯ , 𝑢𝐿

∘)T + 𝐬 = 𝐄𝐮∘ + 𝐬,

(C. 1) 

where 𝑢𝑖
′ = [𝐞𝑖 ⋅ (𝐬h

′ − 𝐬)] and 𝑢𝑖
∘ = [𝐞𝑖 ⋅ (𝐬h

∘ − 𝐬)] with the orthogonal base 

vectors 𝐞1,⋯ 𝐞𝐿 of the surface, satisfying |𝐞𝑖| = 1, 𝐞𝑖 ⋅ 𝐞𝑖′ = 0, and 𝐞𝑖 ⋅ 𝐧𝑗 = 0 

for all 𝑗 = 𝐿 + 1,⋯ ,𝑀 and 𝑖, 𝑖′ = 1,⋯ , 𝐿 with 𝑖 ≠ 𝑖′, where 𝐧𝐿+1, ⋯ , 𝐧𝑀 are the 

normal vectors of the surface, given by 𝐧𝑗 = ∇ℎ𝑗(𝐬 )/[∇ℎ𝑗(𝐬)]. Then analogously to 

Lemma 1, the following lemma holds (see Appendix D for the proof). 

Lemma 2 
For mutants 𝐬h

′  and residents 𝐬h
∘  on constraint surface 𝐡(𝐬′) = 0, and for 

their projection 𝐬E
′  and 𝐬E

∘  on its tangent plane at 𝐬, the invasion fitness of 

𝐬h
′  against 𝐬h

∘ , 𝐹(𝐬h
′ ; 𝐬h

∘ ), satisfies 

𝐹(𝐬h
′ ; 𝐬h

∘ ) = 𝐹L(𝐬E
′ ; 𝐬E

∘ , 𝛌𝐬) + O(ɛ
3), (C. 2) 

where ɛ = max{|𝐬h
′ − 𝐬|, |𝐬h

∘ − 𝐬|}, and 

𝐹L(𝐬
′; 𝐬∘; 𝛌𝐬) = 𝐹(𝐬

′; 𝐬∘) + 𝛌𝐬
T[𝐡(𝐬′) − 𝐡(𝐬∘)],

𝛌𝐬 = 𝐁
+∇𝐬′𝐹(𝐬; 𝐬),

(C. 3) 

where 𝐁+ = [𝐁T𝐁]−1𝐁T is the pseudo inverse of the 𝑀-by-(𝑀 − 𝐿) 

matrix 𝐁 = (∇ℎ𝐿+1(𝐬),⋯ , ∇ℎ𝑀(𝐬)), i.e., 𝐁+𝐁 gives the identity matrix of 

size (𝑀 − 𝐿).  
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Thus, whether 𝐬 is a CBP along the constraint surface can be examined by 

analyzing whether 𝐬 is a CBP along the tangent plane at 𝐬 in terms of 

𝐹L(𝐬E
′ ; 𝐬E

∘ ; 𝛌𝐬). In the same manner with the two-dimensional case, we expand 

𝐹L(𝐬
′; 𝐬∘; 𝛌𝐬) at 𝐬 as 

𝐹L(𝐬
′; 𝐬∘; 𝛌𝐬) = 𝐠L

T(𝐬′ − 𝐬∘) +
1

2
(𝐬′ − 𝐬∘)T𝐃L(𝐬

′ − 𝐬∘)

    +(𝐬∘ − 𝐬)T𝐂L(𝐬
′ − 𝐬∘) + O(ɛ3),

(C. 4) 

with 

𝐠L
T = ∇𝐬′

T 𝐹L(𝐬; 𝐬; 𝛌𝐬),

𝐃L = ∇𝐬′∇𝐬′
T 𝐹L(𝐬; 𝐬; 𝛌𝐬),

𝐂L = ∇𝐬′∇𝐬′
T 𝐹L(𝐬; 𝐬; 𝛌𝐬) + ∇𝐬∘∇𝐬′

T 𝐹L(𝐬; 𝐬; 𝛌𝐬).

(C. 5) 

By substituting Eqs. (C.1) into Eq. (C.4), We define 𝐹U(𝐮
′; 𝐮∘) = 𝐹L(𝐄𝐮

′ + 𝐬; 𝐄𝐮∘ +

𝐬; 𝛌𝐬 ), which is transformed into 

𝐹U(𝐮
′; 𝐮∘) = 𝐠L

T𝐄(𝐮′ − 𝐮∘) +
1

2
(𝐮′ − 𝐮∘)T𝐄T𝐃L𝐄(𝐮

′ − 𝐮∘)

     +𝐮∘T𝐄T𝐂L𝐄(𝐮
′ − 𝐮∘) + O(ɛ3),

(C. 6) 

Thus, 𝐹U(𝐮
′; 𝐮∘) can be treated as an invasion fitness function of mutant 𝐮′ 

against resident 𝐮∘, in the 𝐿-dimensional trait space 𝐮, where 𝐬 corresponds to 

the origin 𝐮 = 𝟎. 

C.2. Conditions for existence of CBPs 
In an arbitrary M-dimensional trait space 𝐬 = (𝑥1, ⋯ , 𝑥𝑀)

T with no evolutionary 

constraint (mutation is possible in all directions), a point 𝐬 is a CBP (candidate 

branching point) when 𝐬 satisfies the following three conditions (Ito and 

Dieckmann, 2012, 2014; Geritz et al. 2016): 

 (i) 𝐬 is evolutionarily singular, satisfying 

∇𝐬′𝐹(𝐬; 𝐬) = 𝐠 =  𝟎. (C. 7) 

(ii) 𝐬 is strongly convergence stable (Leimar, 2005), i.e., the symmetric 

part of an 𝑀-by-𝑀 matrix 

(∇𝐬′∇𝐬′
T + ∇𝐬∘∇𝐬′

T )𝐹(𝐬; 𝐬) = 𝐂  (C. 8) 

is negative definite. 

(iii) 𝐬 is evolutionarily unstable, i.e., a symmetric 𝑀-by-𝑀 matrix 

∇𝐬′∇𝐬′𝐹(𝐬; 𝐬) = 𝐃 (C. 9) 

has at least one positive eigenvalue. 
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Here, condition (i) means vanishment of the fitness gradient for resident located at 

𝐬, while condition (iii) means that the fitness landscape is concave along the 

eigenvector of the positive eigenvalue, allowing invasion against resident 𝐬∘ = 𝐬 

by mutants deviated to that direction. Condition (ii) means convergence stability 

under any genetic correlation among directions (Leimar, 2005, 2009). More 

specifically, expected directional evolution of a monomorphic unstructured 

population located close to an evolutionary singular point 𝐬 can be described as 

shift of the monomorphic population’s resident phenotype 𝐬∘, 
d𝐬∘

d𝑡
=
𝑛∘𝜇

2
 𝐕(𝐬∘)𝐠(𝐬∘)

=
𝑛∘𝜇

2
𝐕(𝐬∘)𝐂T(𝐬∘ − 𝐬) + h. o. t.

(C. 10) 

with mutational variance-covariance matrix 𝐕(𝐬∘) having 𝑀 positive 

eigenvalues that give magnitudes of mutational steps in directions of the 

corresponding eigenvectors (Dieckmann and Law, 1996). Leimar (2005) has 

proved that when 𝐂 has negative definite symmetric part, then 𝐬 is a point 

attractor for Eq. (C.10) irrespective of 𝐕(𝐬∘), called ‘strongly convergence stable.’ 

On the basis of conditions (i-iii), we derive conditions for 𝐬 being a CBP along 

the constraint surface, as follows. By treating the tangent plane as an 𝐿-

dimensional trait space 𝐮 without constraint, from Eq. (C.6) we have 

𝐠U = ∇𝐮′
T 𝐹U(𝟎; 𝟎) = 𝐠L

T𝐄, (C. 11) 

𝐂U = ∇𝐮′∇𝐮′
T 𝐹U(𝟎; 𝟎) + ∇𝐮∘∇𝐮′

T 𝐹U(𝟎; 𝟎) = 𝐄
T𝐂L𝐄, (C. 12) 

𝐃U = ∇𝐮′∇𝐮′
T 𝐹U(𝟎; 𝟎) = 𝐄

T𝐃L𝐄, (C. 13) 

Replacing Eqs. (C.7-9) with 𝐠U = 𝟎, 𝐂U, and 𝐃U, respectively, we find conditions 

(ii) and (iii) in Theorem 2. As for condition (i), i.e., 

𝐠U = 𝐠L
T𝐄 = 𝟎, (C. 14) 

the element of 𝐠L orthogonal to the constraint surface is always absent, because 

𝐁T𝐠L = 𝐁
T[∇𝐬′𝐹(𝐬; 𝐬) − 𝐁𝛌𝐬]

= 𝐁T[𝐠 − 𝐁𝐁+𝐠]

= 𝐁T[𝐈 − 𝐁[𝐁T𝐁]−1𝐁T]𝐠 

= [𝐁T − [𝐁T𝐁 ][𝐁T𝐁 ]−1𝐁T]𝐠 

= 𝟎

 (C. 15) 

for 𝐁 = (∇ℎ𝐿+1(𝐬 ),… , ∇ℎ𝑀(𝐬 )), where 𝐁+ = [𝐁T𝐁]−1𝐁T is used. Thus, Eq. (C.14) 

is equivalent to 
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𝐠L = ∑[𝐞𝑖 ⋅ 𝐠 ]𝐞𝑖

𝐿

𝑖=1

= 𝟎, (C. 16) 

which gives condition (i) in Theorem 2. This completes the proof for Theorem 2. 

Appendix D: Proof of Lemma 2 
Here we prove Lemma 2 in a manner similar to the proof of Lemma 1 (Appendix 

B). Around an arbitrary point 𝐬 = (𝑥, 𝑦)T on the constraint surface expressed by 

points 𝐬h = (𝑥h, 𝑦h)
T satisfying 𝐡(𝐬h) = (ℎ𝐿+1(𝐬h),… , ℎ𝑀(𝐬h))

T
= 𝟎, we project 

invasion fitness 𝐹(𝐬h
′ , 𝐬h

∘ ) on the tangent plane of the constraint surface at 𝐬. For 

the projection, we first expand ℎ𝑗(𝐬h) at 𝐬 as 

ℎ𝑗(𝐬h) = ∇
Tℎ𝐿+1(𝐬)[𝐬h − 𝐬] +

1

2
[𝐬h − 𝐬]

T∇∇Tℎ𝐿+1(𝐬)[𝐬h − 𝐬] + O(ɛ
3), (D. 1) 

where ε = |𝐬h − 𝐬|. Combining Eq. (D.1) for all 𝑗 = 𝐿 + 1,⋯ ,𝑀, we get 

𝐡(𝐬h) = (
ℎ𝐿+1(𝐬h)

⋮
ℎ𝑀(𝐬h)

) =

(

 
 
∇Tℎ𝐿+1(𝐬)[𝐬h − 𝐬] +

1

2
[𝐬h − 𝐬]

T ∇∇Tℎ𝐿+1(𝐬)[𝐬h − 𝐬] + O(ɛ
3)

⋮

∇Tℎ𝑀(𝐬)[𝐬h − 𝐬] +
1

2
[𝐬h − 𝐬]

T∇∇Tℎ𝑀(𝐬)[𝐬h − 𝐬] + O(ɛ
3)

)

 
 

= (
∇Tℎ𝐿+1(𝐬)[𝐬h − 𝐬]

⋮
∇Tℎ𝑀(𝐬)[𝐬h − 𝐬]

) +
1

2
(
[𝐬h − 𝐬]

T∇∇Tℎ𝐿+1(𝐬)[𝐬h − 𝐬]
⋮

[𝐬h − 𝐬]
T∇∇Tℎ𝑀(𝐬)[𝐬h − 𝐬]

) + (
O(ɛ3)
⋮

O(ɛ3)
)

= 𝐁T[𝐬h − 𝐬] +
1

2
[𝐬h − 𝐬]

T𝖧[𝐬h − 𝐬] + 𝐎𝑀−𝐿(ɛ
3),

(D. 2) 

where 𝐁T = ∇T𝐡(𝐬) = (𝛻ℎ𝐿+1(𝐬),⋯ , 𝛻ℎ𝑀(𝐬))
T, 𝐎𝑀−𝐿(ɛ

3) = (O(ɛ3),⋯ , O(ɛ3))T 

of dimension 𝑀 − 𝐿, and 𝖧 is a column vector having 𝑀-by-𝑀 matrices as its 

components, given by 

𝖧 = {
𝐇𝐿+1
⋮
𝐇𝑀

} = {
∇∇Tℎ𝐿+1(𝐬)

⋮
∇∇Tℎ𝑀(𝐬)

} . (D. 3) 

To allow transformation of the second row to the third in Eqs. (D.2), we define 

multiplication of this kind of vector by usual vectors, and that by matrices, as 
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𝐬T𝖧 = (
𝐬T𝐇𝐿+1
⋮

𝐬T𝐇𝑀

) , 𝐬T𝖧𝐬 = (
𝐬T𝐇𝐿+1𝐬

⋮
𝐬T𝐇𝑀𝐬

) ,

𝐀T𝖧 = {
𝐀T𝐇𝐿+1
⋮

𝐀T𝐇𝑀

} , 𝖧𝐀 = {
𝐇𝐿+1𝐀
⋮

𝐇𝑀𝐀
} ,

(D. 4) 

where 𝐀 is an arbitrary 𝑀-by-𝐾𝐴 matrix with arbitrary column length 𝐾𝐴. With 

the non-scaled normal vectors 𝐁 = ∇𝐡T(𝐬) = [∇T𝐡(𝐬)]T and the tangent vector 

𝐄 = (𝐞1, ⋯ , 𝐞𝐿), we express 𝐬h as 

𝐬h = 𝐄𝐮 + 𝐁𝐰+ 𝐬 = (𝐄 𝐁) (
𝐮
𝐰
) + 𝐬, (D. 5) 

where 𝐮 = 𝐄T[𝐬h − 𝐬] and 𝐰 = [𝐁T𝐁]−𝟏𝐁[𝐬h − 𝐬] = 𝐁
+[𝐬h − 𝐬] because 

(𝐄 𝐁)−1 = (𝐄
T

𝐁+
). Substituting Eq. (D.5) into Eq. (D.2) gives 

𝐡(𝐬h) = 𝐁
T(𝐄 𝐁) (

𝐮
𝐰
) +

1

2
(
𝐮
𝐰
)
T
(𝐄 𝐁)T𝖧(𝐄 𝐁) (

𝐮
𝐰
) + 𝐎𝑀−𝐿(𝜀

3).

= 𝐁T𝐁𝐰+
1

2
(
𝐮
𝐰
)
T

(𝐄
T𝖧𝐄 𝐄T𝖧𝐁
𝐁T𝖧𝐄 𝐁T𝖧𝐁

) (
𝐮
𝐰
) + 𝐎𝑀−𝐿(𝜀

3) = 0.

(D. 6) 

Solving this equation for 𝐰 gives 

𝐰 = −
1

2
[𝐁T𝐁]−1𝐮T𝐄T𝖧𝐄𝐮 + 𝐎𝑀−𝐿(𝜀

3). (D. 7) 

By introducing 𝐬E = 𝐄𝐮 + 𝐬 = 𝐄[𝐄
T(𝐬h − 𝐬)] + 𝐬, we transform 𝐬h as 

𝐬h = 𝐄𝐮 + 𝐬 + 𝐁𝐰 = 𝐬E + 𝐁 [−
1

2
[𝐁T𝐁]−1(𝐬E − 𝐬)

T𝖧(𝐬E − 𝐬) + 𝐎𝑀−𝐿(𝜀
3)]

= 𝐬E − 𝐁[𝐁
T𝐁]−1 [𝐡(𝐬) + 𝐁T(𝐬E − 𝐬) +

1

2
(𝐬E − 𝐬)

T𝖧(𝐬E − 𝐬) + 𝐎𝑀−𝐿(𝜀
3)]

= 𝐬E − 𝐁
+T𝐡(𝐬E) + 𝐎𝑀−𝐿(𝜀

3),

(D. 8) 

where 𝐁T(𝐬E − 𝐬) = 𝟎 and 𝐁+T = 𝐁[𝐁T𝐁]−1. Comparing the first and second row 

in Eq. (D.8) gives 𝐁+T𝐡(𝐬E) = 𝐎𝑀(|𝐬E|
2) = 𝐎𝑀(𝜀

2). Then we expand 𝐹(𝐬h
′ ; 𝐬h

∘ ) at 

𝐬h
′ = 𝐬E

′  and 𝐬h
∘ = 𝐬E

∘  as 

𝐹(𝐬h
′ ; 𝐬h

∘ ) = 𝐹(𝐬E
′ − 𝐁+T𝐡(𝐬E

′ ) + 𝐎𝑀−𝐿(𝜀
3); 𝐬E

∘ − 𝐁+T𝐡(𝐬E
∘ ) + 𝐎𝑀−𝐿(𝜀

3))

= 𝐹(𝐬E
′ ; 𝐬E

∘ ) − ∇𝐬′
T 𝐹(𝐬E

′ ; 𝐬E
∘ )𝐁+T[𝐡(𝐬E

′ ) + 𝐎𝑀−𝐿(𝜀
3)]

  −∇𝐬∘
T 𝐹(𝐬E

′ ; 𝐬E
∘ )𝐁+T[𝐡(𝐬E

∘ ) + 𝐎𝑀−𝐿(𝜀
3)] + O(𝜀4).

(D. 9) 

By using 
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∇𝐬′
T 𝐹(𝐬E

′ ; 𝐬E
∘ ) = ∇𝐬′

T 𝐹(𝐬; 𝐬) + 𝐎𝑀(𝜀),

∇𝐬∘
T 𝐹(𝐬E

′ ; 𝐬E
∘ ) = ∇𝐬∘

T 𝐹(𝐬; 𝐬) + 𝐎𝑀(𝜀) = −∇𝐬′
T 𝐹(𝐬; 𝐬) + 𝐎𝑀(𝜀),

(D. 10) 

we find 

𝐹(𝐬h
′ ; 𝐬h

∘ ) = 𝐹(𝐬E
′ ; 𝐬E

∘ ) − ∇𝐬′
T 𝐹(𝐬; 𝐬)𝐁+T[𝐡(𝐬E

′ ) − 𝐡(𝐬E
∘ )] + O(𝜀3)

= 𝐹(𝐬E
′ ; 𝐬E

∘ ) − 𝛌𝐬
T[𝐡(𝐬E

′ ) − 𝐡(𝐬E
∘ )] + O(𝜀3)

(D. 11) 

with 

𝛌𝐬 = 𝐁
+∇𝐬′𝐹(𝐬; 𝐬) (D. 12) 

This completes the proof.  

Appendix E: Bordered second-derivative matrix 

E.1. Parametric expression of constraint surface 

We consider a local parameterization of 𝐡(𝐬) = (ℎ𝐿+1(𝐬),⋯ , ℎ𝑀(𝐬))
T
= 𝟎, by an 

𝐿-dimensional vector 𝛟 = (𝜙1, ⋯ , 𝜙𝐿)
T. Without loss of generality we permute 

components of 𝐬 = (𝑥1, ⋯ , 𝑥𝑀)
T, so that 𝐬 is separated into 𝐱 = (𝑥1, ⋯ , 𝑥𝐿)

T and 

𝐲 = (𝑥𝐿+1, ⋯ , 𝑥𝑀)
T that satisfies |∇𝐲

T𝐡(𝐬)| ≠ 0. Then at least locally we can choose 

𝛟 = 𝐱 so that a point on the constraint surface is expressed as 𝐬(𝛟) =

(𝐱(𝛟), 𝐲(𝛟))T = (𝛟, 𝐲(𝛟))
T

, in which case 𝐹(𝐬′; 𝐬∘) along the constraint surface 

is expressed as �̃�(𝛟′; 𝛟∘) = 𝐹(𝐬(𝛟′); 𝐬(𝛟∘)). We expand 𝐡(𝐬′) = 𝟎 in terms of 

𝛟′ at 𝐬 as 

𝐡(𝐬′) = ∇𝛟
T𝐡[𝛟′ −𝛟] +

1

2
[𝛟′ −𝛟]T∇𝛟∇𝛟

T𝐡[𝛟′ −𝛟] + 𝐎𝑀−𝐿(|𝛟
′ −𝛟|3) = 𝟎, (E. 1) 

where 
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∇𝛟
T𝐡 = (

∇𝛟
Tℎ𝐿+1
⋮

∇𝛟
Tℎ𝑀

) =

(

  
 

∂ℎ𝐿+1(𝐬(𝛟))

∂𝜙1
⋯

∂ℎ𝐿+1(𝐬(𝛟))

∂𝜙𝐿
⋮ ⋱ ⋮

∂ℎ𝑀(𝐬(𝛟))

∂𝜙1
⋯

∂ℎ𝑀(𝐬(𝛟))

∂𝜙𝐿 )

  
 
,

∇𝛟∇𝛟
T𝐡 = {

∇𝛟∇𝛟
Tℎ𝐿+1
⋮

∇𝛟∇𝛟
Tℎ𝑀

} ,

∇𝛟∇𝛟
Tℎ𝑗 =

(

  
 

∂ℎ𝑗(𝐬(𝛟))

∂𝜙1
2 ⋯

∂ℎ𝑗(𝐬(𝛟))

∂𝜙1 ∂𝜙𝐿
⋮ ⋱ ⋮

∂ℎ𝑗(𝐬(𝛟))

∂𝜙1 ∂𝜙𝐿
⋯

∂ℎ𝑗(𝐬(𝛟))

∂𝜙𝐿
2 )

  
 
,

(E. 2) 

and all derivatives are evaluated at 𝐬, corresponding to 𝛟 (see Eqs. (D.3-4) in 

Appendix D for operations for ∇𝛟∇𝛟
T𝐡). The first and second order terms in Eq. 

(E.1) are transformed as 

∇𝛟
T𝐡[𝛟′ −𝛟] = ∇𝐬

T𝐡∇𝛟
T𝐬[𝛟′ −𝛟],

1

2
[𝛟′ −𝛟]T∇𝛟∇𝛟

T𝐡[𝛟′ −𝛟] =
1

2
[𝛟′ −𝛟]T∇𝛟[∇𝐬

T𝐡∇𝛟
T𝐬][𝛟′ −𝛟]

=
1

2
[𝛟′ −𝛟]T [[∇𝛟

T𝐬]
T
∇𝐬∇𝐬

T𝐡∇𝛟
T𝐬 + ∇𝐬

T𝐡∇𝛟∇𝛟
T𝐬] [𝛟′ −𝛟],

(E. 3) 

where 

∇𝛟
T𝐬 = (

∇𝛟
T𝑥1
⋮

∇𝛟
T𝑥𝑀

) =

(

 
 

∂𝑥1
∂𝜙1

⋯
∂𝑥1
∂𝜙𝐿

⋮ ⋱ ⋮
∂𝑥𝑀
∂𝜙1

⋯
∂𝑥𝑀
∂𝜙𝐿)

 
 
,

∇𝛟∇𝛟
T𝐬 = {

∇𝛟∇𝛟
T𝑥1
⋮

∇𝛟∇𝛟
T𝑥𝑀

} , ∇𝛟∇𝛟
T𝑥𝑖 =

(

  
 

∂𝑥𝑖

∂𝜙1
2 ⋯

∂𝑥𝑖
∂𝜙1 ∂𝜙𝐿

⋮ ⋱ ⋮
∂ℎ𝑖

∂𝜙1 ∂𝜙𝐿
⋯

∂𝑥𝑖

∂𝜙𝐿
2 )

  
 
,

(E. 4) 

and 
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∇𝐬
T𝐡 = (

∇𝐬
Tℎ𝐿+1
⋮

∇𝐬
Tℎ𝑀

) =

(

 
 

∂ℎ𝐿+1(𝐬)

∂𝑥1
⋯

∂ℎ𝐿+1(𝐬)

∂𝑥𝑀
⋮ ⋱ ⋮

∂ℎ𝑀(𝐬)

∂𝑥1
⋯

∂ℎ𝑀(𝐬)

∂𝑥𝑀 )

 
 
,

∇𝐬∇𝐬
T𝐡 = {

∇𝐬∇𝐬
Tℎ𝐿+1
⋮

∇𝐬∇𝐬
Tℎ𝑀

} , ∇𝐬∇𝐬
Tℎ𝑗 =

(

  
 

∂ℎ𝑗(𝐬)

∂𝑥1
2 ⋯

∂ℎ𝑗(𝐬)

∂𝑥1 ∂𝑥𝑀
⋮ ⋱ ⋮

∂ℎ𝑗(𝐬)

∂𝑥1 ∂𝑥𝑀
⋯

∂ℎ𝑗(𝐬)

∂𝑥𝑀
2 )

  
 
,

(E. 5) 

where ∇𝐬
Tℎ𝑗   and ∇𝐬∇𝐬

Tℎ𝑗  are identical to ∇Tℎ𝑗  and ∇∇Tℎ𝑗  in the main text. 

Since Eq. (E.1) holds for any 𝛟′ −𝛟, from Eqs. (E.3) we see 

∇𝐬
T𝐡∇𝛟

T𝐬 = 𝐁T𝐄𝐑 = 𝟎, (E. 6) 

[∇𝛟
T𝐬]

T
∇𝐬∇𝐬

T𝐡∇𝛟
T𝐬 + ∇𝐬

T𝐡∇𝛟∇𝛟
T𝐬 = [𝐄𝐑]T∇𝐬∇𝐬

T𝐡𝐄𝐑 + 𝐁T∇𝛟∇𝛟
T𝐬 = 𝟎, (E. 7) 

where 𝐁T = ∇𝐬
T𝐡, 𝐄𝐑 = ∇𝛟

T𝐬, where 𝐑 is an appropriately chosen regular matrix 

whose inverse normalizes the base vectors of the tangent plane of the surface, 

∇𝛟
T𝐬 = (�̃�1,⋯ , �̃�𝐿), into orthogonal unit base vectors 𝐄 = (𝐞1,⋯ , 𝐞𝐿) (e.g., 𝐑−1 is 

Gram-Schmidt orthonormalization with scaling of each base vector). From Eq. 

(E.7), we see 

∇𝛟∇𝛟
T𝐬 = −𝐁+T[𝐄𝐑]T∇𝐬∇𝐬

T𝐡𝐄𝐑, (E. 8) 

where 𝐁+ = [𝐁T𝐁]−1𝐁. Thus, the first and second derivatives of unconstrained 𝐿-

dimensional invasion fitness �̃�(𝛟′; 𝛟∘; 𝛌𝛟) with respect to 𝛟′ at 𝛟 are 

expressed as 

∇𝛟′
T �̃� = ∇𝐬′

T 𝐹∇𝛟
T𝐬 = 𝐠T𝐄𝐑, (E. 9) 

and 

𝐃ϕ = ∇𝛟′∇𝛟′
T �̃� = [∇𝛟

T𝐬]
T
∇𝐬′∇𝐬′

T 𝐹∇𝛟
T𝐬 + ∇𝐬′

T 𝐹∇𝛟∇𝛟
T𝐬,

= [𝐄𝐑]T∇𝐬′∇𝐬′
T 𝐹𝐄𝐑 − 𝐠T𝐁+[𝐄𝐑]T∇𝐬∇𝐬

T𝐡𝐄𝐑

= [𝐄𝐑]T∇𝐬′∇𝐬′
T 𝐹𝐄𝐑 − 𝛌𝐬

T[𝐄𝐑]T∇𝐬∇𝐬
T𝐡𝐄𝐑

= [𝐄𝐑]T [∇𝐬′∇𝐬′
T 𝐹 − ∑ 𝜆𝐬,𝑗

𝑀

𝑗=𝐿+1

∇𝐬∇𝐬
Tℎ𝑗] 𝐄𝐑

= [𝐄𝐑]T[∇𝐬′∇𝐬′
T 𝐹𝐿]𝐄𝐑 = [𝐄𝐑]

T𝐃L𝐄𝐑,

(E. 10) 
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where ∇𝐬′∇𝐬′
T 𝐹𝐿 is the second derivative of the Lagrange fitness function defined 

by Eq. (15) with Lagrange multiplier for 𝛌𝐬 = 𝐁
+𝐠 given by Eq. (19).  

E.2. Stability conditions along constraint surface 
Symmetric matrix 𝐃ϕ is positive definite if its all principal minors given by 

|𝐃ϕ
(𝑖)| = |(

𝐷ϕ,11 ⋯ 𝐷ϕ,1𝑖
⋮ ⋱ ⋮

𝐷ϕ,𝑖1 ⋯ 𝐷ϕ,𝑖𝑖

)| (E. 11) 

𝑖 = 1,⋯ , 𝐿 are positive. According to Mandy (2013), |𝐃ϕ
(𝑖)| satisfies the following 

relationship 

|(
𝟎 𝐁T

𝐁 𝐃L
)
(�̃�)

| = (−1)𝑁|𝐁𝐲|
2
|𝐃ϕ
(𝑖)| (E. 12) 

with 𝑖̃ = 𝑖 + 2𝑁 (i.e., 𝑖̃ = 2𝑁 + 1,⋯ ,𝑁 +𝑀), where 𝑁 = 𝑀 − 𝐿 is the number of 

equality constraints, and 𝐁T = (𝐁𝐱
T, 𝐁𝐲

T) = (∇𝐱
T𝐡, ∇𝐲

T𝐡). Substituting Eq. (E.10) into 

Eq. (E.12) gives 

|(
𝟎 𝐁T

𝐁 𝐃L
)
(�̃�)

| = (−1)𝑁|𝐁𝐲|
2
|[𝐑T𝐄T𝐃L𝐄𝐑]

(𝑖)| (E. 13) 

Thus, if the left side of Eq. (E.13) has the sign (−1)𝑁 for all 𝑖̃ = 2𝑁 + 1,⋯ ,𝑁 +𝑀, 

then 𝐑T𝐄T𝐃L𝐄𝐑 is positive definite, in which case 𝐄T𝐃L𝐄 is also positive definite 

because 𝐯T𝐑T𝐄T𝐃L𝐄𝐑𝐯 > 0 for any 𝐯 gives �̃�T𝐄T𝐃L𝐄�̃� > 0 for any �̃� = 𝐑𝐯. 

Conversely, if the left side of Eq. (E.13) has different sign from (−1)𝑁 for either of 

𝑖̃ = 2𝑁 + 1,⋯ ,𝑁 +𝑀, then 𝐄T𝐃L𝐄 has at least one negative eigenvalue. 

Since Eq. (E.13) clearly holds good for an arbitrary 𝑀×𝑀 symmetric matrix, 

we can replace 𝐃L in Eq. (E. 13) with −𝐃L, and define 

𝐃B = (
𝟎 𝐁T

𝐁 −𝐃L
). (E. 14) 

Clearly, if |𝐃B
(�̃�)
| has the sign (−1)𝑁 for all 𝑖̃ = 2𝑁 + 1,⋯ ,𝑁 +𝑀, then 𝐄T𝐃L𝐄 is 

negative definite (i.e., evolutionarily stable). Conversely, if |𝐃B
(�̃�)
| has the opposite 

sign from (−1)𝑁 for either of 𝑖̃ = 2𝑁 + 1,⋯ ,𝑁 +𝑀, then 𝐄T𝐃L𝐄 has at least 

one positive eigenvalue (i.e., evolutionarily unstable). These statements are 

Corollary 1 in the main text. Similarly, by replacing 𝐃L with −1/2[𝐂L + 𝐂L
T] and 

−1/2[𝐌 +𝐌] in Eq. (E. 13) give Corollaries 2 and 3, respectively, in the main text.  

For a one-dimensional constraint curve in a two-dimensional trait space 𝐬 =

(𝑥, 𝑦)T, i.e., 𝑁 = 1 and 𝑀 = 2, the |𝐁𝐲|
2

, 𝐄, and 𝐑 in Eq. (E.13) are, respectively, 

a scalar [𝜕ℎ/𝜕𝑦]2, a unit vector 𝐞 = (𝑛y, −𝑛x)
T

 with (𝑛x, 𝑛y)
T
= ∇𝐬ℎ/|∇𝐬ℎ|, and a 



 

48 

 

 

scalar 𝑅 = |∇𝐬ℎ| [
𝜕ℎ

𝜕𝑦
]
−1

 (specified from 𝑅𝐞 =
d𝐬

d𝜙
= (

d𝑥

d𝜙
,
d𝑦

d𝜙
)
T

= (1,
d𝑦

d𝜙
)
T

). In this 

case, we can simplify Eq. (E.13), with replacement of 𝐃L with −𝐃L, into 

𝐞T𝐃L𝐞 =
|𝐃B|

|∇𝐬ℎ|2
, (E. 15) 

Similarly, we find 

𝐞T𝐂L𝐞 =
|𝐂B|

|∇𝐬ℎ|2
, (E. 16) 

𝐞T𝐌𝐞 =
|𝐌B|

|∇𝐬ℎ|2
. (E. 17) 

Appendix F: Curvature index for multi-

dimensional constraint surfaces 
As explained in the main text, in the case of two-dimensional trait spaces, the effect 

of the curvature of the constraint curve, 𝛺, is the inner product of the fitness 

gradient 𝐠 = ∇𝐬′𝐹(𝐬; 𝐬) and the curvature vector 𝐪 that specifies the local 

curvature and its orientation of the constraint curve. Similar relationship is 

derived in the higher-dimensional constraint surfaces, by extending the definitions 

of inner product and curvature vector. Specifically, as explained below, the effect of 

the curvature is expressed as 

𝛀 = ⟨𝐠T,Q⟩, (F. 1) 

where the apparent fitness curvature 𝛀 is extended to an 𝐿-by-𝐿 matrix given by 

an extended inner product ⟨, ⟩ of the fitness gradient 𝐠 and a constraint 

curvature 𝖰, which is a vector having matrices as its components. Below, we 

derive this equation from the definition of 𝛀 in the main text, Eq. (23b). 

First, we denote (𝑗, 𝑘)th component of the matrix 𝐁+ in Eq. (19) by 𝑏𝑗𝑘
+  for 

𝑗 = 𝐿 + 1,⋯ ,𝑀 and 𝑘 = 1,⋯ ,𝑀. Then 𝛌𝐬 is transformed as 
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𝛌𝐬 = 𝐁
+𝐠

= (

𝑏𝐿+1,1
+ ⋯ 𝑏𝐿+1,𝑀

+

⋮ ⋱ ⋮
𝑏𝑀,1
+ ⋯ 𝑏𝑀,𝑀

+
)(

𝑔1
⋮
𝑔𝑀
)

=

(

 
 
 
 
∑𝑏𝐿+1,𝑘

+

𝑀

𝑘=1

𝑔𝑘

⋮

∑𝑏𝑀,𝑘
+

𝑀

𝑘=1

𝑔𝑘
)

 
 
 
 

,

(F. 2) 

where 𝐠 = (𝑔1,⋯ , 𝑔𝑀)
T. Substituting this equation into Eq. (23b) gives 

𝛀 = − ∑ 𝜆𝐬𝑗

𝑀

𝑗=𝐿+1

𝐄T∇∇Tℎ𝑗(𝐬)𝐄.

= − ∑ ∑𝑏𝑗,𝑘
+

𝑀

𝑘=1

𝑔𝑘𝐄
T∇∇Tℎ𝑗(𝐬)𝐄 

𝑀

𝑗=𝐿+1

= −∑𝑔𝑘

𝑀

𝑘=1

∑ 𝑏𝑗,𝑘
+

𝑀

𝑗=𝐿+1

𝐄T∇∇Tℎ𝑗(𝐬)𝐄

= ∑𝑔𝑘

𝑀

𝑘=1

𝐐𝑘,

(F. 3) 

where 𝐐𝑘 is an 𝐿-by-𝐿 matrix given by 

𝐐𝑘 = − ∑ 𝑏𝑗,𝑘
+

𝑀

𝑗=𝐿+1

𝐄T∇∇Tℎ𝑗(𝐬)𝐄. (F. 4) 

Finally, Eq. (F.3) is transformed into Eq. (F.1) 𝛀 = ⟨𝐠T,Q⟩ by defining an inner 

product ⟨, ⟩, 

⟨𝐠T,Q⟩ = ⟨(𝑔1,⋯ , 𝑔𝑀), {
𝐐1
⋮
𝐐𝑀

}⟩ = ∑𝑔𝑘

𝑀

𝑘=1

𝐐𝑘, (F. 5) 

where 𝖰 is a vector having 𝐿-by-𝐿 matrices as its components, 

𝖰 = {
𝐐1
⋮
𝐐𝑀

} . (F. 6) 

Moreover, by the extended inner product, Eq. (F.4) is further transformed into 
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𝐐𝑘 = −⟨𝐛k
+T, 𝖧E⟩ (F. 7) 

with 𝐛k
+T = (𝑏𝐿+1,𝑘

+ ,⋯ , 𝑏𝑀,𝑘
+ ) and 

𝖧E = {

𝐇E,𝐿+1
⋮

𝐇E,𝑀

} = {
𝐄T∇∇Tℎ𝐿+1(𝐬)𝐄

⋮
𝐄T∇∇Tℎ𝑀(𝐬)𝐄

} = 𝐄T𝖧𝐄, (F. 8) 

𝖧 = {
∇∇Tℎ𝐿+1(𝐬)

⋮
∇∇Tℎ𝑀(𝐬)

} (F. 9) 

(see Eq. (D.4) in Appendix D for the last transformation in Eq. (E.8)). Then by 

defining 

⟨𝐁+T, 𝖧E⟩ = ⟨(
𝐛1
+T

⋮
𝐛𝑀
+T
) , 𝖧E⟩ = {

⟨𝐛1
+T, 𝖧E⟩

⋮
⟨𝐛𝑀
+T, 𝖧E⟩

} , (F. 10) 

we obtain 

𝖰 = {
⟨𝐛1
+T, 𝖧E⟩

⋮
⟨𝐛𝑀
+T, 𝖧E⟩

} = −⟨𝐁+T, 𝖧E⟩ = −⟨𝐁
+T, 𝐄T𝖧𝐄⟩. (F. 11) 

This 𝖰 has information about the local curvature of the constraint surface, and its 

form is similar to that of the constraint curvature vector 𝐪 for two-dimensional 

trait spaces, because Eqs. (13) can be transformed into 

𝐪 = −𝐛+T[𝐞T∇∇Tℎ(𝐬)𝐞],

𝐛+ =
∇ℎT

|∇ℎ|2
.

(F. 12) 

Notice that 𝐄 = (𝐞1,⋯ , 𝐞𝐿) and 𝖧 given by Eq. (F.9) are multi-dimensional 

extensions of 𝐞T and ∇∇Tℎ(𝐬), respectively. Also 𝐁+ = [𝐁T𝐁]−1𝐁T, the pseud 

inverse of 𝐁 = (∇ℎ𝐿+1(𝐬),⋯ , ∇ℎ𝑀(𝐬 )), is a multi-dimensional extension of of 𝐛+ 

that is the pseud inverse of ∇ℎ(𝐬 ), i.e., ∇ℎ(𝐬)+ = [∇ℎ(𝐬)T∇ℎ(𝐬)]−1∇ℎ(𝐬)T = 𝐛+. 

Appendix G: Proof of Theorem 3 
The branching potential matrix Eq. (24a) 

𝐏 =
1

2
𝐔T[𝐌 +𝐌T]𝐔  

has a zero eigenvalue in the direction of 𝐠, since 𝐔𝐠 = [𝐈 − (𝐠𝐠T)/|𝐠|2]𝐠 = 𝐠 −

𝐠 = 𝟎 gives 𝐏𝐠 = 𝟎. Thus, the symmetric matrix 𝐏 can be diagonalized as 
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𝐏 = (𝐯1, … , 𝐯𝑀−1, 𝐯𝑀)(

𝛼1 ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋮
⋮ ⋱ 𝛼𝑀−1 ⋮
0 ⋯ ⋯ 0

)

(

 

𝐯1
T

⋮
𝐯𝑀−1
T

𝐯𝑀
T )

 (G. 1) 

with the real eigenvalues 𝛼1, ⋯ , 𝛼𝑀−1, 0 and the corresponding orthogonal 

eigenvectors 𝐯1, ⋯ , 𝐯𝑀−1, 𝐯𝑀, where 

𝐯𝑀 =
𝐠

|𝐠|
. (G. 2) 

Below we prove that if either of 𝛼1, ⋯ , 𝛼𝑀−1 is positive then 𝐬 is a CBP along a 

constraint surface 𝐡(𝐬′) = (ℎ𝐿+1(𝐬′),⋯ , ℎ𝑀(𝐬′))
T
= 𝟎 of an arbitrary 𝐿-

dimension (1 ≤ 𝐿 ≤ 𝑀 − 1), with appropriate choice of its first and second 

derivatives. For convenience, we permute the column of (𝐯1, … , 𝐯𝑀−1, 𝐯𝑀) in Eq. 

(G.1) so that 𝛼1 > 𝛼2 > ⋯ > 𝛼𝑀−1, and assume that the first 𝐾 eigenvalues are 

positive, i.e., 𝛼1 > 𝛼2 > ⋯ > 𝛼𝐾 > 0, where 1 ≤ 𝐾 ≤ 𝑀 − 1. We choose 𝐡(𝐬′) to 

satisfy for 𝑗 = 𝐿 + 1, … ,𝑀 − 1, 

∇ℎ𝑗(𝐬) = 𝐯𝑗 , (G. 3) 

and for 𝑗 = 𝑀, 

∇ℎ𝑀(𝐬) = 𝐠 = |𝐠|𝐯𝑀,   (G. 4) 

∇∇Tℎ𝑀(𝐬) =
1

2
(𝐂 + 𝐂𝑇) + ɛ̃𝐈 , (G. 5) 

with a positive and sufficiently small ɛ̃. Note that Eqs. (G.4-5) are equivalent to Eq. 

(24b). The remaining eigenvectors 𝐯1, ⋯ , 𝐯𝐿 are used as the orthogonal base 

vectors 𝐞1,⋯ , 𝐞𝐿 for the tangent plane of the surface at 𝐬, combined into a matrix 

𝐄 = (𝐞1,⋯ , 𝐞𝐿) = (𝐯1, ⋯ , 𝐯𝐿). (G. 6) 

When 𝐿 = 𝑀 − 1, Eq. (G.3) is omitted. When 𝐿 = 1, the constraint surface is one-

dimensional (constraint curve), and 𝐄 becomes a vector 𝐞1. 

G.1. Lagrange fitness function 
According to Eqs. (15) and (19), the Lagrange fitness function is constructed as 

𝐹L(𝐬
′; 𝐬∘; 𝛌𝐬) = 𝐹(𝐬′; 𝐬∘) − 𝛌𝐬

T[𝐡(𝐬′) − 𝐡(𝐬∘)], (G. 7) 

with 𝛌𝐬 = (𝜆𝐬,𝐿+1, ⋯ , 𝜆 𝐬,𝑀)
T
= 𝐁+𝐠, where 𝐁+ = [𝐁T𝐁]−1𝐁T and 𝐁 =

(∇ℎ𝐿+1(𝐬),⋯ , ∇ℎ𝑀(𝐬)) = (𝐯𝐿+1, ⋯ , 𝐯𝑀−1, |𝐠|𝐯𝑀). Because 𝐯𝐿+1, ⋯ , 𝐯𝑀 are 

orthogonal, 𝐁+ is given by 
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𝐁+ = [𝐁T𝐁]−1𝐁T

= [(
∇ℎ𝐿+1(𝐬 )T

⋮
∇ℎ𝑀(𝐬 )T

)(∇ℎ𝐿+1(𝐬),⋯ , ∇ℎ𝑀(𝐬)) ]

−1

𝐁T

= (
|∇ℎ𝐿+1(𝐬)|

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ |∇ℎ𝑀(𝐬 )|2

)

−1

(
∇ℎ𝐿+1(𝐬 )T

⋮
∇ℎ𝑀(𝐬 )T

)

=

(

  
 

∇ℎ𝐿+1(𝐬 )T

|∇ℎ𝐿+1(𝐬)|2

⋮
∇ℎ𝑀(𝐬)

T

|∇ℎ𝑀(𝐬)|2 )

  
 

=

(

 

𝐯𝐿+1
T

⋮
𝐯𝑀−1
T

𝐯𝑀
T/|𝐠| )

 ,

   (G. 8) 

by which 𝛌𝐬 is transformed as 

𝛌𝐬 = 𝐁
+𝐠 =

(

  
 

𝐯𝐿+1
T

⋮
𝐯𝑀−1
T

𝐯𝑀
T

|𝐠| )

  
 
𝐠

=

(

  
 

𝐯𝐿+1
T 𝐠
⋮

𝐯𝑀−1
T 𝐠

𝐯𝑀
T𝐠

|𝐠| )

  
 

= (

0
⋮
0
1

) .

(G. 9) 
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G.2. Checking conditions for evolutionary branching 
Now we apply Theorem 2 to the Lagrange fitness function Eq. (G.7) with 𝛌𝐬 =

(0,⋯ ,0,1)T. First, 𝐬 satisfies condition (i) for evolutionary singularity along the 

constraint surface, 

∇𝐹L(𝐬; 𝐬; 𝛌𝐬) = 𝐠 − 𝛌𝐬
T∇𝐡(𝐬)

= 𝐠 − ∇ℎ𝑀(𝐬)

= 𝟎.

(G. 10) 

Second, in order to examine condition (ii) for the strong convergence stability of 𝐬, 

the effect of the curvature of the constraint surface is calculated by Eq. (23b) in the 

main text and Eq. (G.5) as 

𝛀 = − ∑ 𝜆𝐬,𝑗

𝑀

𝑗=𝐿+1

𝐄T∇∇Tℎ𝑗(𝐬)𝐄

= −𝐄T∇∇Tℎ𝑀(𝐬)𝐄

= −𝐄T [
1

2
(𝐂 + 𝐂T) + ɛ̃𝐈] 𝐄.

(G. 11) 

Then from Eq. (23a) the symmetric part of 𝐂h is calculated as 
1

2
(𝐂h + 𝐂h

T) =
1

2
 𝐄T(𝐂 + 𝐂T)𝐄 + 𝛀

=
1

2
 𝐄T(𝐂 + 𝐂T)𝐄 − 𝐄T (

1

2
(𝐂 + 𝐂T) + ɛ̃𝐈) 𝐄

= −ɛ̃𝐄T𝐈𝐄

= −ɛ̃𝐄T𝐄

= −ɛ̃𝐈𝐿 ,

(G. 12) 

which is always negative definite since ɛ̃ is positive. Thus, 𝐬 is strongly 

convergence stable along the constraint surface. Third, in order to examine 

condition (iii) for evolutionary stability, 𝐃h is calculated from Eq. (23a) as 
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𝐃h = 𝐄
T𝐃𝐄 + 𝛀 = 𝐄T𝐃𝐄 −

1

2
𝐄T(𝐂 + 𝐂T)𝐄 − ɛ̃𝐄T𝐈𝐄

= 𝐄T [𝐃 −
1

2
(𝐂 + 𝐂T)] 𝐄 − ɛ̃𝐈𝐿

=
1

2
𝐄T[𝐌 +𝐌T]𝐄 − ɛ̃𝐈𝐿 .

(G. 13) 

As shown in the subsequent subsection, the first term is expressed as 

1

2
𝐄T[𝐌 +𝐌T]𝐄 = (

𝛼1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛼𝐿

) , (G. 14) 

where 𝛼1, ⋯ , 𝛼𝐿 are the eigenvalues of the branching potential matrix 𝐏. Since 

𝛼1 > 𝛼2 > ⋯ > 𝛼𝐾 > 0 is assumed, 𝐃h has at least one positive eigenvalue as 

long as 0 < ɛ̃ < 𝛼1. Thus the point 𝐬 is evolutionarily unstable along the surface. 

Therefore, by choosing a sufficiently small ɛ̃, we can make the point 𝐬 a CBP 

along the surface. This completes the proof. 

Moreover, if 𝐿 = 𝐾 is chosen, then 𝐃h is positive definite as long as 0 < ɛ̃ <

𝛼𝐾. In this case 𝐂h and 𝐃h are negative definite and positive definite, 

respectively, in which case 𝐬 is a CBP along any smooth subspace that contains 𝐬. 

G.3. Derivation of Eq. (G.14) 
Because the eigenvectors 𝐯1, ⋯ , 𝐯𝐿 , ⋯ , 𝐯𝑀 of 𝐏 given by Eq. (G.1) are orthogonal, 

𝐄 = (𝐞1, ⋯ , 𝐞𝐿) = (𝐯1, ⋯ , 𝐯𝐿) and 𝐔 = [𝐈 −
𝐠𝐠T

|𝐠 |2
] with 𝐯𝑀 =

𝐠

|𝐠|
 satisfy 

𝐔𝐄 = [𝐈 −
𝐠𝐠T

|𝐠|2
] (𝐞1,⋯ , 𝐞𝐿)

= 𝐄 −
𝐠

|𝐠|
(𝐯𝑀
T𝐯1, … , 𝐯𝑀

T𝐯𝐿) = 𝐄,

(G. 15) 

which gives 

𝐄T𝐏𝐄 =
1

2
𝐄T𝐔T[𝐌 +𝐌T]𝐔𝐄 =

1

2
𝐄T[𝐌 +𝐌T]𝐄. (G. 16) 

On the other hand, 𝐄T𝐏𝐄 is transformed by Eq. (G.1) as 
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𝐄T𝐏𝐄 = 𝐄T(𝐄, 𝐍)(

𝛼1 ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋮
⋮ ⋱ 𝛼𝑀−1 ⋮
0 ⋯ ⋯ 0

)(
𝐄T

⋮
𝐍T
)𝐄

= (𝐈𝐿 𝟎(𝐿,𝑀−𝐿))(

𝛼1 ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋮
⋮ ⋱ 𝛼𝑀−1 ⋮
0 ⋯ ⋯ 0

)(
𝐈𝐿

𝟎(𝑀−𝐿,𝐿)
)

= (
𝛼1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛼𝐿

) ,

(G. 17) 

where 𝐍 = (𝐯𝐿+1, ⋯ , 𝐯𝑀), 𝟎(𝐿,𝑀−𝐿) and 𝟎(𝑀−𝐿,𝐿) are 𝐿-by-(𝑀 − 𝐿) and (𝑀 − 𝐿)-

by-𝐿 zero matrices. By combining Eqs. (G.16) and (G.17), we obtain Eq. (G.14). 

Appendix H: Derivatives in Example 2 
The first and second derivatives of 𝐹(𝐬′; 𝐬∘) are calculated as 

∇𝐬′
T 𝐹(𝐬′; 𝐬∘) = 𝐾(𝐬∘) [−

∇𝐬′
T 𝛼(𝐬; 𝐬∘)

𝐾(𝐬′)
+
𝛼(𝐬′; 𝐬∘)∇𝐬′

T 𝐾(𝐬′)

𝐾(𝐬′)2
]

=
𝐾(𝐬∘)

𝐾(𝐬′)
[−∇𝐬′

T 𝛼(𝐬′; 𝐬∘) + 𝛼(𝐬′; 𝐬∘)∇𝐬′
T ln𝐾(𝐬′)],

(H. 1) 

∇𝐬′∇𝐬′
T 𝐹(𝐬′; 𝐬∘) = −

𝐾(𝐬∘)

𝐾(𝐬′)2
∇𝐬′𝐾(𝐬

′)[−∇𝐬′
T 𝛼(𝐬′; 𝐬∘) + 𝛼(𝐬′; 𝐬∘)∇𝐬′

T ln𝐾(𝐬′)]

+
𝐾(𝐬∘)

𝐾(𝐬′)
[−∇𝐬′∇𝐬′

T 𝛼(𝐬′; 𝐬∘) + ∇𝐬′𝛼(𝐬
′; 𝐬∘)∇𝐬′

T ln𝐾(𝐬′) + 𝛼(𝐬′; 𝐬∘)∇𝐬′∇𝐬′
T ln𝐾(𝐬′)],

 (H. 2) 

∇𝐬∘∇𝐬′
T 𝐹(𝐬′; 𝐬∘) =

∇𝐬∘𝐾(𝐬
∘)

𝐾(𝐬′)
[−∇𝐬′

T 𝛼(𝐬′; 𝐬∘) + 𝛼(𝐬′; 𝐬∘)∇𝐬′
T ln𝐾(𝐬′)]

+
𝐾(𝐬∘)

𝐾(𝐬′)
[−∇𝐬∘∇𝐬′

T 𝛼(𝐬′; 𝐬∘) + ∇𝐬∘𝛼(𝐬
′; 𝐬∘)∇𝐬′

T ln𝐾(𝐬′)].

(H. 3) 

We obtain 𝐠, 𝐃, and 𝐂 at 𝐬 by exploiting 𝛼(𝐬; 𝐬) = 1, ∇𝐬′𝛼(𝐬; 𝐬) = ∇𝐬∘𝛼(𝐬; 𝐬) =

0, and ∇𝐬∘∇𝐬′
T 𝛼(𝐬; 𝐬) = −∇𝐬′∇𝐬′

T 𝛼(𝐬; 𝐬) (because 𝛼(𝐬′; 𝐬∘) = �̃�(𝐬′ − 𝐬∘)), as 
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𝐠 = ∇𝐬′𝐹(𝐬; 𝐬) = ∇ln𝐾(𝐬),

𝐃 = ∇𝐬′∇𝐬′
T 𝐹(𝐬; 𝐬)

= −∇𝐬′∇𝐬′
T 𝛼(𝐬; 𝐬) + ∇∇Tln𝐾(𝐬) − ∇ln𝐾(𝐬)∇Tln𝐾(𝐬)

= −∇𝐬′∇𝐬′
T 𝛼(𝐬; 𝐬) + ∇∇Tln𝐾(𝐬) − 𝐠𝐠𝑇 ,

𝐂 = ∇𝐬′∇𝐬′
T 𝐹(𝐬; 𝐬) + ∇𝐬∘∇𝐬′

T 𝐹(𝐬; 𝐬)

= [−∇𝐬′∇𝐬′
T 𝛼(𝐬′; 𝐬′) + ∇∇Tln𝐾(𝐬) − ∇ln𝐾(𝐬)∇Tln𝐾(𝐬)]

      +[−∇𝐬∘∇𝐬′
T 𝛼(𝐬; 𝐬) + ∇Tln𝐾(𝐬)∇Tln𝐾(𝐬)]

= ∇∇Tln𝐾(𝐬).

(H. 4) 
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Table 1   Ito and Sasaki 

 

 Original fitness for mutant 
𝐬′against resident 𝐬∘ 

𝐹(𝐬′; 𝐬∘)  

Lagrange fitness function 

𝐹L(𝐬
′; 𝐬∘; 𝜆) = 𝐹(𝐬′; 𝐬∘)  

    − 𝜆[ℎ(𝐬′) − ℎ(𝐬∘)] 

Fitness along  

constraint curve 

Gradient 

(Evolutionary 
singularity) 

𝐠  

= ∇𝐬′𝐹(𝐬; 𝐬)  

𝐠L  

= ∇𝐬′𝐹L(𝐬; 𝐬; 𝜆𝐬)  

= 𝐞[𝐞T𝐠]  

𝑔h  

= 𝐞T𝐠L  

= 𝐞T𝐠  

Gradient variability 

(Convergence 
stability) 

𝐂  

= (∇𝐬′∇𝐬′
T + ∇𝐬∘∇𝐬′

T )𝐹(𝐬; 𝐬)  

𝐂L  

=(∇𝐬′∇𝐬′
T + ∇𝐬∘∇𝐬′

T )𝐹L(𝐬; 𝐬; 𝜆𝐬) 

𝐶h  

= 𝐞T𝐂L𝐞  

= 𝐞T𝐂𝐞 + 𝛺  

Curvature 

(Evolutionary 
stability) 

𝐃  

= ∇𝐬′∇𝐬′
T 𝐹(𝐬; 𝐬)  

𝐃L  

= ∇𝐬′∇𝐬′
T 𝐹L(𝐬; 𝐬; 𝜆𝐬)  

𝐷h  

= 𝐞T𝐃L𝐞  

= 𝐞T𝐃𝐞+ 𝛺  

 

Table 1. Local fitness landscape at an arbitrary point 𝐬 along constraint curve 

ℎ(𝐬′) = 0 in two-dimensional trait space 𝐬 = (𝑥, 𝑦)T (Section 3). 𝜆𝐬 =

(∇ℎ(𝐬) ⋅ ∇𝐬′𝐹(𝐬; 𝐬))/|∇ℎ(𝐬)|
2, 𝛺 = 𝐞T[𝜆𝐬∇∇

Tℎ(𝐬)]𝐞, and 𝐞 is the tangent vector of 

the constraint curve at 𝐬. 
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Table 2   Ito and Sasaki 
 

 Original fitness for mutant 
𝐬′against resident 𝐬∘ 

𝐹(𝐬′; 𝐬∘)  

Lagrange fitness function 

𝐹L(𝐬
′; 𝐬∘; 𝛌) = 𝐹(𝐬′; 𝐬∘)  

 −∑ 𝜆𝑗[ℎ𝑗(𝐬
′) − ℎ𝑗(𝐬

∘)]𝑀
𝑗=𝐿+1   

Fitness along  

constraint surface 

Gradient 

(Evolutionary 
singularity) 

𝐠  

= ∇𝐬′𝐹(𝐬; 𝐬)  

𝐠L  

= ∇𝐬′𝐹L(𝐬; 𝐬; 𝛌𝐬)  

= 𝐄𝐄T𝐠  

𝐠h  

= 𝐄T𝐠L  

= 𝐄T𝐠  

Gradient variability 

(Convergence 
stability) 

𝐂  

= (∇𝐬′∇𝐬′
T + ∇𝐬∘∇𝐬′

T )𝐹(𝐬; 𝐬)  

𝐂L  

=(∇𝐬′∇𝐬′
T + ∇𝐬∘∇𝐬′

T )𝐹L(𝐬; 𝐬; 𝛌𝐬) 

𝐂h  

= 𝐄T𝐂L𝐄  

= 𝐄T𝐂𝐄 + 𝛀  

Curvature 

(Evolutionary 
stability) 

𝐃  

= ∇𝐬′∇𝐬′
T 𝐹(𝐬; 𝐬)  

𝐃L  

= ∇𝐬′∇𝐬′
T 𝐹L(𝐬; 𝐬; 𝛌𝐬)  

𝐃h  

= 𝐄T𝐃L𝐄  

= 𝐄T𝐃𝐄 + 𝛀  

 

Table 2. Local fitness landscape at an arbitrary point 𝐬 along L-dimensional 

constraint surface (ℎ𝐿+1(𝐬
′),⋯ , ℎ𝑀(𝐬

′)) = 𝟎 in M-dimensional trait space 𝐬 =

(𝑥1, ⋯ , 𝑥𝑀)
T (Section 4). 𝛌𝐬 = 𝐁

+𝐠 = [𝐁T𝐁]−1𝐁T𝐠 with 𝐁 =

(∇ℎ𝐿+1(𝐬),⋯ , ∇ℎ𝑀(𝐬)), 𝛀 = −∑ 𝜆𝐬𝑗
𝑀
𝑗=𝐿+1 𝐄T∇∇Tℎ𝑗(𝐬)𝐄, and 𝐄 = (𝐞1, ⋯ , 𝐞𝐿) are 

the orthogonal base vectors of the tangent plane of the constraint surface at 𝐬. 
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Figure 1   Ito and Sasaki 
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Figure 2   Ito and Sasaki 
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Figure 3   Ito and Sasaki 
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Figure 4   Ito and Sasaki 
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Figure 5   Ito and Sasaki 

 

 


