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Chapter 1

Introduction

Thermonuclear fusion is a candidate for the relatively steady and sustainable en-

ergy source because fusion power is not restricted by weather unlike renewable en-

ergy, such as photovoltaic power, and its fuels are abundantly present in seawater.

There are two typical styles of thermonuclear fusion reactor: tokamak and stel-

larator/heliotron. Tokamak is a toroidally symmetric device and the coil system is

simpler than a stellarator/heliotron. The large toroidal current in tokamak is neces-

sary to sustain the magnetohydrodynamic (MHD) equilibrium magnetic field, which

confines the plasma. On the other hand, stellarator/heliotron has an advantage for

steady-state operation because only the coil systems can maintain its confinement

magnetic field. For the design of helical reactor that sufficiently satisfies the fusion

triple product, the optimization of the field geometry is necessary, as follows: (1)

minimize the neoclassical and turbulent transport, (2) stabilize the magnetohydro-

dynamics (MHD) equilibrium, (3) improve the fast particle confinement, and (4)

mitigate the heat load to the divertor.

In toroidal magnetic plasmas, the guiding-center motion of charged particles and

Coulomb collisions give rise to a characteristic diffusion process, which is called neo-

classical transport. The neoclassical transport in helical plasmas depends strongly
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2 Chapter 1. Introduction

on the magnetic geometry and the helical ripple enhances the neoclassical radial

particle and energy transport. In the helical plasmas, the neoclassical transport is

comparable to the turbulent transport. Therefore, the neoclassical transport anal-

ysis is important for the optimization of particle and energy confinement, and it is

fundamental for designing the helical reactor.

The future fusion reactor planned as FFHR-d1 will be operated in the higher-β

and temperature condition than that in the present experimental devices. In a

collisionless and high pressure gradient plasma, the bootstrap current is supposed

to be strong enough to affect the MHD equilibrium. The effect of the bootstrap

current in FFHR-d1 has not been investigated yet.

Unfortunately, there is no exact analytical formula to calculate the bootstrap current

in helical plasmas and it is difficult to diagnose the current experimentally. To design

and optimize a helical fusion reactor, a self-consistent method is required to track the

interaction between MHD equilibrium and bootstrap current. Both good efficiency

and reliability in the neoclassical simulation is required to conduct a quantitative

study.

The global neoclassical model has been developed in recent decades. Though it

is accurate and reliable because of minimum approximations considered in solving

the drift-kinetic equation, it requires immense amounts of computing resources. On

the other hand, the local neoclassical models discussed below resolve the computing

resource problem, but their reliability is still in question. The quantitative precision

of the local models has not been examined in detail yet.

The motivation of this work are shown as follows: (1)Benchmark of the Neoclassi-

cal Transport Models and Clarify the Impact of Several Approximations on Drift-

Kinetic Equation in the Evaluation of Neoclassical Transport in Helical Plasmas.

(2)Apply the Local Models for a Quantitative Evaluation of Bootstrap Current in a

FFHR-d1 DEMO.
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This work is composed of two parts as follows. (1) In part 1, it performs the

benchmark of neoclassical parallel flow between the conventional and the new model

(ZOW) in LHD, HSX, and W7-X. (2) In part 2, it demonstrates the the parallel

momentum conservation on the bootstrap current by the benchmarks between the

ZOW and PENTA models. Then, it verifies the reliability of the bootstrap current

calculation with the ZOW and PENTA models for FFHR-d1 and axisymmetirc

tokamaks.



Part I

Verification of the Neoclassical

Transport Models in Helical

Plasmas
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Chapter 2

Introduction

The magnetic field geometry of a fusion device is given by the external coil system

and the plasma current. One of the advantages of stellarator/heliotron configu-

ration compared to asymmetric tokamaks is that plasma current is not necessary

to sustain the confinement magnetic field. However, owing to the geometry, the

helical ripple enhances the neoclassical radial particle and energy transport. There-

fore, optimization of the field geometry is required for minimizing the neoclassical

transport together with stabilizing the magnetohydrodynamics (MHD) equilibrium

and improving the fast particle confinement.[13] The future fusion device will be

operated in the higher-beta and higher-temperature condition compared to that in

the present experimental devices. In such a collisionless and high pressure gradient

plasma, the neoclassical bootstrap current is supposed to increase enough to inter-

act with the MHD equilibrium. A self-consistent algorithm is required to investigate

both the optimization of the neoclassical transport and the MHD equilibrium. The

algorithm must satisfy both the efficiency and the accuracy in order to evaluate a

quantitative study for the design of a fusion reactor.

From this viewpoint, neoclassical transport in helical plasmas has been investigated

by transport codes based on several local approximations, for example, DKES[46]

5



6 Chapter 2. Introduction

[15], GSRAKE[3], EUTERPE[8], and NEO-2[21] et al. A comprehensive cross-

benchmark of several local codes has been presented in Ref. [4] In the local models,

the tangential grad-B and curvature drift on the flux surfaces is often assumed to

be negligibly small compared to the parallel motion and E × B drift. Further,

the mono-energy assumption is sometimes employed in the local neoclassical codes,

in which the momentum conservation of the collision operator is broken because

the Lorentz pitch-angle scattering operator is adopted. Note that momentum cor-

rection techniques by Taguchi[43], Sugama-Nishimura[42][39][38], and Maaßberg[28]

have been devised to recover the parallel momentum balance. Several benchmarks

have shown that the momentum correction affects the quantitative accuracy of neo-

classical transport calculations in helical plasmas[28][44], especially in the quasi-

axisymmetric HSX plasma.[27][6]

The recent studies have carried the contribution of the magnetic tangential drift[29][23]

[41] in the evaluation of radial neoclassical transport when the E×B drift velocity

is slower than the magnetic drift. Matsuoka[29] has devised a way to include the

tangential magnetic drift in the local drift-kinetic equation solver. There are also

some global neoclassical codes which treat the full 3-dimensional guiding-center mo-

tion including both the radial and tangential magnetic drift term. However, only a

few global neoclassical codes have been applied on helical plasmas.[35][33][45] Com-

pared with the local codes, the global codes are stricter solutions to evaluate the

drift-kinetic equation with the finite magnetic drift effect, but it takes more compu-

tational resources than the local codes. Therefore, it is almost impossible to utilize

the global codes to investigate the interaction between bootstrap current and MHD

equilibrium because it requires iterations between neoclassical transport and MHD

simulations. The local approximations are appropriate for the purpose, but this has

not been thoroughly verified among the neoclassical local models with global ones

to guarantee the quantitative reliability of the neoclassical radial flux and parallel

flow obtained from these local drift-kinetic models.
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In Part I, following the previous study by Matsuoka[29], the neoclassical transport

is examined with four types of neoclassical transport codes in Large Helical De-

vice(LHD), Helically Symmetric Experiment(HSX), and Wendelstein 7-X(W7-X).

The series of numerical simulations are carried out by the δf drift-kinetic equa-

tion solver FORTEC-3D. In the beginning, FORTEC-3D was developed as a global

neoclassical transport code; recently, it has been extended to treat several types

of the local drift-kinetic models[29]. The following approximations are employed

to evaluate the neoclassical transport. (a) The global model takes the minimum

assumption, which considers both the tangential and radial magnetic drift on the

convective derivative term on the perturbed distribution, vm · ∇δf . The global

model solves the drift-kinetic equation in 5-dimensional phase space. (b) The zero

orbit width model (ZOW) excludes the radial component of magnetic drift, and it

becomes a local neoclassical model. The magnetic drift term is treated as

v̂m ≡ vm − (vm · ∇ψ)eψ, (2.1)

where ψ is a flux-surface label and eψ ≡ ∂X/∂ψ. The local indicates the neglect

of radial drift in the guiding-center equation of motion. Therefore, the ZOW model

becomes a 4-dimensional model and reduces computational resources. However,

the ZOW model breaks Liouville’s theorem in the phase space. The ZOW model

requires a modification in the delta-f method to solve the model properly as will be

explained in Sec. 5.1. (c) The zero magnetic drift (ZMD) model takes a further

approximation. The ZMD model ignores not only the radial magnetic drift but also

the tangential magnetic drift from a particle orbit. Then, the magnetic drift term in

the drift-kinetic equation is treated as vm · ∇δf = 0. Liouville’s theorem is satisfied

in the ZMD. (d) The DKES model further employs mono-energetic assumption, i.e.,

v̇(∂δf/∂)v = 0, and the incompressible E×B drift approximation.[46][15] With the

Lorentz pitch-angle scattering operator, the drift-kinetic equation in DKES model

reduces to a 3-dimensional model.
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The remainder of this work is organized as follows. In Sec.3,the drift kinetic equa-

tions based on global, ZOW, ZMD and DKES models are described. The conser-

vation properties of the phase-space volume of each model is also discussed in this

section. The particle, parallel momentum, and energy balance equations in each

drift-kinetic model are examined in Sec.4. Furthermore, the derivation of viscosity

tensor for each model is presented in Sec.A. Then, the numerical scheme of the δf

method is explained briefly in Sec.5.1. In Sec.5.2 and 5.3, the linearized collision op-

erators and the source/sink term are discussed, respectively. In Sec.6, the simulation

results are presented. The drift-kinetic models are benchmarked by the neoclassical

fluxes such as the radial particle flux, radial energy flux, and flux-surface average

parallel mean flow. The effect of E×B, the effect of magnetic drift, and the electron

neoclassical transport are analyzed. Finally, the bootstrap current is presented. A

summary is given in Sec.7.



Chapter 3

DRIFT-KINETIC MODELS

The neoclassical transport simulations are carried out by the δf method under

the following transport ordering assumptions. The gyro-radius ρ is small compared

with the typical scale length L, i.e., ρ/L ∼ O(δ), where δ represents a small ordering

parameter. It is assumed that the plasma time evolution is slow,

∂

∂t
∼ O

(
δ2
vth
L

)

where vth =
√
2T/m is thermal velocity. The order of magnitude of the E×B drift

velocity is assumed as

vE
vth

∼ O
(
ρ

L

)
∼ O(δ),

where the E ×B drift velocity is given as

vE ≡ |E ×B|
B2

.

The poloidal Mach number of E ×B drift is defined as

Mp ≡
vE
vth

B

Bp
∼ Er
vthBax

qRax

r
(3.1)

9
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where Bp and Bax are the poloidal magnetic field strength and the magnetic field

strength on the magnetic axis, respectively. The minor radius, the major radius of

the magnetic axis, and the safety factor are denoted as r, Rax, and q, respectively.

In the present work, the order of magnitude Mp ∼ 1 for ions is allowed on the local

drift-kinetic simulations because (a) the ion thermal velocity is much slower than the

electron and (b) the order of the poloidal magnetic field magnitude is approximately

Bp ∼
r

qRax

Bax ∼ O(δB).

Even though Mp ∼ 1 is allowed, it still assumes that the slow-flow ordering is valid,

vE/vth ≪ 1.

The guiding-center distribution function of species a is denoted as fa(Z, t). The

guiding-center variable Z are chosen as Z ≡ (X, v, ξ; t) with the guiding-center

position X, guiding-center velocity v, and the cosine component of parallel velocity

pitch-angle ξ ≡ v‖/v. The parallel velocity v‖ is defined as v‖ ≡ v · b where b ≡

B/|B| is a unit vector of the magnetic field. In Boozer coordinates, the position

vector X is assigned as X ≡ (ψ, θ, ζ), where ψ, θ, and ζ are toroidal magnetic flux,

poloidal angle, and toroidal angles, respectively. The magnetic field B is given as

B = ∇ψ ×∇θ + ι(ψ)∇ζ ×∇ψ

= I(ψ)∇θ + G(ψ)∇ζ + β∗(ψ, θ, ζ)∇ψ.

where ι(ψ) is the rotational transform. The radial covariant component β∗(ψ, θ, ζ)

is assumed to be negligible because it does not influence the drift equation of motion

up to the standard drift ordering O(ρ/L).
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3.1 Liouville’s Theorem

The guiding center drift-kinetic equation of species a is given by

∂fa
∂t

+
dZi
dt

∂fa
∂Zi

= Ca + Sa, (3.2)

where Ca is Coulomb collision operator and Sa is a source/sink term. The conserva-

tion law in the phase-space or Liouville’s equation is presented as [26]

∂J
∂t

+
∂

∂Zi

(
J dZi
dt

)
= JG. (3.3)

Here, J represents the Jacobian of the phase space. G is given in order to generalize

Liouville’s equation to satify G 6= 0. G = 0 if the trajectory follows the guiding center

Hamiltonian property. As the recent studies showed, the local drift-kinetic models

are derived from approximation of the guiding center motion but do not satisfy

the Hamiltonian. Therefore, G = 0 is not guaranteed in general. For some local

neoclassical models, the approximated guiding-center equations of motion dZi/dt are

chosen ingeniously to maintain G = 0. To consider a general case, G 6= 0 is retained

in the following derivation. Combining Eqs.(3.2) and (3.3), the conservative form of

drift-kinetic equation is obtained as

∂
(
J fa

)

∂t
+

∂

∂Zi

(
J fa

dZi
dt

)
= J

[
Ca + Sa

]
+ J faG, (3.4)

which is used in taking the moments of drift-kinetic equation in Chapter 4.

3.2 Global Drift Kinetic Model

The original FORTEC-3D is a global drift-kinetic code of which guiding center

motion satisfies the Hamiltonian property. In the FORTEC-3D model, the perturbed
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distribution function is given as follows: the distribution function fa is decomposed

into a Maxwellian fa,M and perturbation fa,1

fa,1(X, v, ξ, t) ≡ fa(X, v, ξ, t)− fa,M(ψ, v), (3.5)

where the local Maxwellian fa,M is defined as

fa,M = na(ψ)




ma

2πTa(ψ)




3/2

· exp

− mav

2

2Ta(ψ)


 (3.6)

The drift-kinetic equation is treated as

(
∂

∂t
+ Ż · ∂

∂Z

)
fa,1 = Sa,0 + CL(fa,1) + Sa,1, (3.7)

where Ż = d
dt
(X, v, ξ) and CL(fa,1) is a linearized Fokker-Planck collision operator

CL(fa) =
∑

b

C(fa,M , fb,1) + C(fa,1, fb,M). (3.8)

Sa,0 is the source/sink term which is is discussed in Sec.5.3. Sa,1 is an additional

source/sink term, which helps the numerical simulation to reach a quasi-steady state.

The Sa,1 is discussed in Sec. 4.1 and 4.2.

The guiding-center trajectory is given as follows:[26]

Ẋ =vξb+
1

eaB∗
‖

b×
{
ma(vξ)

2b · ∇b+ µ∇B − eaE
∗

}
, (3.9a)

dv

dt
=

ea
mav

Ẋ ·E∗ +
µ

mav

∂B

∂t
, (3.9b)

dξ

dt
=− ξ

v

dv

dt
− b

mav
· (µ∇B − eaE

∗) + ξ
dX

dt
· κ, (3.9c)

where, ma and ea denote the mass and charge of the species a. respectively. Fur-
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thermore,

µ ≡ mav
2

2B
(1− ξ2), (3.10a)

A∗ ≡ A+
mavξ

ea
b, (3.10b)

E∗ ≡ −∂A
∗

∂t
−∇Φ, (3.10c)

B∗ ≡ ∇×A∗, (3.10d)

B∗
‖ ≡ b ·B∗, (3.10e)

κ ≡ (b · ∇) b. (3.10f)

The trajectory is derived from Hamiltonian so that it satisfies the Liouville equation,

i.e.,

JG = 0 (3.11)

Note that the phase-space Jacobian in Boozer coordinates is

J =
2πB∗

‖v
2

B

G+ ιI

B2
. (3.12)

3.3 Zero Orbit Width Model (ZOW)

The zero orbit width (ZOW) approximation[29] is a local drift-kinetic model, which

ignores only the radial drift ψ̇ ∂f1/∂ψ. The subscript of particle species is omitted

here and hereafter unless it is necessary. The drift-kinetic equation Eq.(3.7) becomes

(
∂

∂t
+ Żzow · ∂

∂Z

)
f1 = S0 + CL(f1) + S1 (3.13)

where Żzow = d
dt
(θ, ζ, v, ξ). In the present study, stationary electromagnetic field

approximation is assumed

∂B

∂t
=
∂Φ

∂t
= 0. (3.14)
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Thus, the electric field is approximated as

E∗ ≃ −∇ψdΦ
dψ

(3.15)

where Φ = Φ(ψ) is the electrostatic potential, which is assumed to be a flux-surface

function for simplicity. Other approximations employed in local models are B∗ ·b ≃

B and

κ ≃ ∇⊥B

B
. (3.16)

Here, the O(δ) correction in B∗
‖ is neglected. When β ≡ p/(B2/2µ0), one has

κ = b×
(∇B ×B

B2
− ∇×B

B

)

=
1

B
(∇B − b · ∇B) + µ0

J ×B

B2

=
∇⊥B

B
+ µ0

J ×B

B2

=
∇⊥B

B
+
µ0∇p
B2

≃ ∇⊥B

B
+O(β) (3.17)

where p = p(ψ) denotes the scalar pressure. The second term is negligible in low-β

approximation.

The particle trajectories Żzow are treated as if they are crawling on a specific flux

surface and given as follows:

Ẋ =vξb+ vE + v̂m, (3.18a)

v̇ =
−ea
mav

vm · ∇ψdΦ
dψ

, (3.18b)

ξ̇ =− 1− ξ2

2B

(
vb · ∇B

)

− ξ(1− ξ2)
dΦ

dψ

B ×∇B
2B3

· ∇ψ. (3.18c)
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Here, the E ×B drift is defined as

vE ≡ dΦ

dψ

B ×∇ψ
B2

(3.19)

and the magnetic drift is defined as

vm · ∇ψ ≡ mav
2

2eaB3

(
1 + ξ2

)
B ×∇B · ∇ψ. (3.20)

The radial virtual drift velocity ψ̇ in the local model is evaluated from ∇ψ· product

of Eq. (3.20), and the tangential magnetic drift v̂m is defined as in Eq.(2.1),

v̂m ≡ vm − ψ̇eψ.

The Jacobian of ZOW in phase space becomes

J =
2πB∗

‖v
2

B

G+ ιI

B2
≃ 2πv2

G+ ιI

B2
.

It should be pointed out that the magnetic drift velocity vm is assumed to be the

same order as the E×B drift, O(δvth). Therefore, the radial magnetic drift vm ·∇ψ

is still kept in the time evolution of velocity v̇, which is also O(δ). Even though the

ψ̇∂f1/∂ψ term is neglected in the LHS of Eq.(3.13), the source/sink term S0 ∝ ψ̇ in

the RHS is the same as Eq.(5.9) in the global model.

The guiding-center equations of motion Eq.(3.18) do not include the radial drift term

ψ̇ and they do not satisfy Hamiltonian property. As a result, Żzow is compressible

on 4-dimensional phase space where

G = ∇z · Żzow =
1

J
∂

∂Zi
· (J Żi) 6= 0. (3.21)

Here, ∇z represents the divergence in the phase space. Following (3.18) and (3.21),
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the variation of phase-space volume along the guiding-center trajectories is

∇z · Żzow =
mv2(1 + ξ2)

2eB(G+ ιI)

{
3

B

∂B

∂ψ

(
I
∂B

∂ζ
−G

∂B

∂θ

)

+

(
G
∂2B

∂ψ∂θ
− I

∂2B

∂ψ∂ζ

)}
. (3.22)

This term affects the balance equation of particle number, parallel momentum, and

energy, which will be discussed in Chapter 4.

3.4 Zero Magnetic Drift Model (ZMD)

The zero magnetic drift (ZMD) model is similar to ZOW. It follows Eq.(3.18) but

it excludes all the magnetic drift term in Ẋ. The particle trajectories of ZMD is

given as the following:

Ẋ =vξb+ vE , (3.23a)

v̇ =
−ea
mav

vm · ∇ψdΦ
dψ

, (3.23b)

ξ̇ =− 1− ξ2

2B

(
vb · ∇B

)

− ξ(1− ξ2)
dΦ

dψ

B ×∇B
2B3

· ∇ψ. (3.23c)

Following the ZMD 4-dimensional guiding-center orbit, the incompressibility of the

phase-space volume G = 0 is still retained.

3.5 DKES-like Model

The DKES-like model takes a further approximation on ZMD, that is, the mono-

energetic assumption v̇ = 0. Then, the DKES-like model is reduced to be a 3-

dimensional problem, in which Żdkes = d/dt(ψ, θ, ζ) on the LHS of the drift-kinetic
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equation. Following the trajectory Eq.(3.23) and the mono-energetic particle ap-

proximation v̇ = 0, the phase space volume is not conserved:

∇z · Żdkes =
3(1 + ξ2)

2B3J

(
G
∂B

∂θ
− I

∂B

∂ζ

)
dΦ

dψ
. (3.24)

In order to maintain G = 0, the electric potential ∇Φ is replaced by

∇Φ ≃ ∇Φ
B2

〈B2〉 (3.25)

and the incompressible E ×B drift is denoted as

v̂E ≡ E ×B

〈B2〉 . (3.26)

In summary, the guiding-center trajectory in the DKES-like model is given as follows:

Ẋ =vξb+ v̂E , (3.27a)

v̇ = 0, (3.27b)

ξ̇ =− (1− ξ2)v

2B
b · ∇B, (3.27c)

and the particle trajectory conserves the phase space volume, G = ∇z · Żdkes = 0.

Note that in Eqs.(3.27), vE is the only O(δ) term and the other terms are O(δ0).

In the original DKES code, the collision operator is simplified by the Lorentz pitch-

angle scattering operator

Lfa =
νab
2

∂

∂ξ
(1− ξ2)

∂

∂ξ
fa, (3.28)

where the particle does not change the magnitude the velocity either by guiding-

center motion or by collision. However, in the series of simulations in this work, all

models use the same linear collision operator to benchmark neoclassical transport.
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The linear collision operator includes the energy scattering term and field-particle

part to maintain the conservation property of Fokker-Plank operator[35]. Between

the original DKES and the DKES-like in the simulation, the effects of different

collision operators appear in a quasi-symmetric geometry because of the conservation

of momentum. It is essential to evaluate neoclassical transport as discussed in Sec.

6.1.

The properties of drift-kinetic models are summarized in the table below.

Global Local
Model FORTEC-3D ZOW ZMD DKES-Like
Orbit Full Orbit v̂m 6= 0 vm = 0 vm = 0

Dimensions 5 4 4 3
µ̇ = 0 6= 0 = 0 6= 0

E×B drift
compressible?

Yes Yes Yes No

∇ · ż = 0 6= 0 = 0 = 0
v̇ = 0

Table 3.1: The summary of the properties of the global and local drift-kinetic models



Chapter 4

Moments of the Drift-Kinetic

Equation in the Models

In this chapter, the balance equations of particle number, parallel momentum, and

energy are investigated for global and local models. The compressibility of phase

space G and the approximations on guiding-center trajectories in each model are

taken into account. The requirement of adaptive source-sink term S1 is explained,

which is essential for obtaining a steady-state solution in some models.

In order to take moments of Eq.(3.4), consider an arbitrary function A(X, v, ξ, t)

which is independent of the gyro-phase. For density variable
∫
d3vfA in X-space,

the balance equation is yielded by multiplying A with Eq.(3.4) and taking integral

over the velocity-space. By partial integral, Eq.(3.4) is rewritten as

∂

∂t

(∫
d3v faA

)
+∇ ·

(∫
d3v fa AẊ

)

=

∫
d3v

(
fa
dA
dt

+
[
Ca + Sa,1

]
A
)

+

∫
d3v faGA, (4.1)

19
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where the integral of velocity-space is given as

∫
d3v = 2π

∫
dvv2

∫
dξ.

Furthemore, the following equation is employed to derive Eq.(4.1)

dA
dt

≡
(
∂

∂t
+ Ż · ∂

∂Z

)
A.

4.1 The Particle and Energy Balance on the Local

DKE Models

In order to derive the conservation law of particle number, substituting A = 1 into

Eq.(4.1) yields

∂

∂t

(∫
d3v fa

)
+∇ ·

(∫
d3v faẊ

)

=

∫
d3v Sa +

∫
d3v faG (4.2)

where
∫
d3v Ca = 0 is used. The continuity equation is obtained as

∂na
∂t

+∇ · (naVa) =
∫
d3v Sa +

∫
d3vfaG. (4.3)

The density na and the mean flow velocity naVa are defined as

na ≡
∫
d3v fa, (4.4a)

naVa ≡
∫
d3v Ẋfa. (4.4b)
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The balance of kinetic energy is obtained by substituting A = K into Eq.(4.1),

∂

∂t

(∫
d3v faK

)
+∇ ·

(∫
d3v faKẊ

)

=

∫
d3v

(
fa
dK
dt

+
[
Ca + Sa

]
K
)

+

∫
d3v faGK. (4.5)

Here the kinetic energy K is defined as

K ≡ 1

2
mav‖

2 + µB = E − eaΦ (4.6)

where µ is the magnetic momentum, E is the total energy, and Φ is the electrostatic

potential. The time derivative of the kinetic energy is denoted as

dK
dt

=
dE
dt

− ea
dΦ

dt

= µ
∂B(X, t)

∂t
+ eaE

∗ · dX
dt

, (4.7)

where E∗ is defined in Eq.(3.10c). In the series of simulations, a stationary electro-

magnetic field approximation is employed, which is given in Eqs.(3.14) and (3.15).

Therefore, Eq.(4.7) is approximated as

dK
dt

≃ −ea
dΦ

dt
= −ea

dX

dt
· ∇Φ. (4.8)

According to Eqs.(4.3), (4.25), and (4.5), if the Liouville theorem is violated, G

affects the particle, momentum, and energy balance. The approximated trajectories

and balance equations in the local models are presented in the following subsections.

The flux-surface-average is denoted as

〈A〉 ≡
∫
dθdζ JA

V ′
, (4.9)
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where A is an arbitrary function and V ′ is defined as

V ′ ≡ dV
dψ

=

∫
dθdζ J . (4.10)

The particle density from f1 is denoted as

N1 ≡
∫
d3v f1(Z). (4.11)

The subscript of particle species is omitted here and hereafter unless it is necessary.

According to continuity equation Eq.(4.3), the time evolution of density is

∂ 〈N1〉
∂t

+

〈
∇ ·
(
N1V

)〉

=

〈∫
d3v S1

〉
+

〈∫
d3v f1 G

〉
. (4.12)

After taking the flux-surface-average, the contribution of S0 is zero because the

source/sink term is a Maxwellian Eq.(3.6) with flux-surface functions n and T . Note

here that in the global model the particle flow N1V contains the radial component

and G = 0. Then, Eq.(4.12) for the global model becomes

∂〈N1〉
∂t

+
d

dV
(
ΓψV ′

)
=

〈∫
d3vS1

〉
, (4.13)

where the particle flux is calculated by

Γψ ≡
〈∫

d3v f1ψ̇

〉
, (4.14)

and the following identity is employed

〈∇ ·A〉 = d

dV 〈A · ∇V〉 = 1

V ′

d

dψ
〈V ′A · ∇ψ〉 . (4.15)

The finite d(ΓψV ′)/dV term is a corollary of global simulation in which the actual
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radial particle flux across a flux surface is solved. Therefore, it is essentially required

to include the particle source to obtain a steady-state solution. On the other hand,

in the three local models, the N1V term has only the tangential component to the

flux surface. Therefore, the 〈∇·(N1V )〉 term vanishes in ZOW, ZMD and DKES-like

models. However, for ZOW, the artificial source/sink term S1 is required because

of the compressibility G 6= 0 [29],

∂ 〈N1〉
∂t

=

〈∫
d3v S1

〉
+

〈∫
d3v f1 G

〉
. (4.16)

According to Eq.(3.22), the last term in Eq.(4.16) is estimated as O(δ2). For ZMD

and DKES-like, the particle density N1 is constant naturally without S1, as pointed

out by Landreman,[23]

∂ 〈N1〉
∂t

= 0. (4.17)

The energy balance equation for each model is derived similarly, as follows. The

energy flux is introduced as

Q ≡
∫
d3vf1KẊ , (4.18)

and the flux-surface-average of radial energy flux is defined as

Qψ ≡
〈∫

d3vf1Kψ̇
〉
. (4.19)

The pressure perturbation on flux surface is given as

P1 ≡
2

3

∫
d3vf1K. (4.20)

According to balance of kinetic energy Eq.(4.5), the time evolution of P1 is rewritten
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as

3

2

∂

∂t
〈P1〉+ 〈∇ ·Q〉

=

〈∫
d3v f1

dK
dt

〉
+

〈∫
d3v S1 K

〉

+

〈∫
d3v f1 G K

〉
. (4.21)

In Eq.(4.21), the contribution from S0 vanishes again. The energy exchange by

collision is omitted because we neglect the ion-electron collision and the electron-ion

collision is approximated by pitch-angle scattering in the simulations. In the RHS

of Eq.(4.21), the time evolution of kinetic energy is approximated as

〈∫
d3v f1

dK
dt

〉

≃ eEψ

〈∫
d3v ψ̇ f1

〉
= eEψ Γψ, (4.22)

which represents the work done by the radial current. For the global model, the

finite 〈∇ ·Q〉 = d(QψV ′)/dV remains as in Eq.(4.13). Therefore, an energy source

S1K is essentially required to reach a steady-state. On the other hand, the radial

energy flux Qψ vanishes in the local models. For the ZOW and ZMD models, S1K

is required to satisfy the balance equation of energy because of dK/dt and G

3

2

∂

∂t
〈P1〉 =

〈∫
d3v S1 K

〉

+ eEψ Γψ +

〈∫
d3v f1 G K

〉
(4.23)

where G appears only in the ZOW model. Eq.(4.23) indicates that ZMD cannot

maintain the conservation law on energy when Eψ 6= 0, even if it holds the constant

particle number in Eq.(4.17). Finally, DKES-like maintains the energy balance

without S1K because of dK/dt = 0 and G = 0.

Recently, Sugama has derived another type of ZOW model[41] in which guiding-



4.2. The Parallel Momentum Balance and Parallel Flow 25

center variables are chosen as (X, v‖,K) and the tangential magnetic drift is defined

as

v̂m = vm − (vm · ∇ψ)
|∇ψ|2 ∇ψ. (4.24)

In this model, the magnetic moment µ is allowed to vary in time so that the kinetic

energy K is conserved. It is shown that the new local model satisfies both particle

and energy balance relations without source/sink term. Although such a conser-

vation property is desirable as a drift-kinetic model, we employ Matsuoka’s ZOW

model here for two reasons. First, the definition of tangential magnetic drift as in

Eq. (4.24) requires the geometric factor |∇ψ|2 on each marker’s position, which will

increase the computation cost. Second, it is necessary to find a modified Jacobian

with which the phase-space volume conservation is recovered in this local model. To

obtain such a modified Jacobian, another differential equation as Eq. (84) in Ref.

[41] is required to be solved. Instead, in this work, we adopt the source/sink term

in ZOW and ZMD models after the verification as discussed in Sec. 5.3. The verifi-

cation shows that the source/sink term does not affect the long-term time average

value of neoclassical fluxes after the simulation reaches a quasi-steady state.

4.2 The Parallel Momentum Balance and Parallel

Flow

he parallel momentum balance equation is derived from Eq.(4.1) with A = mav‖,

[41]

∂

∂t
(namaVa,‖) + b · (∇ · Pa)

= naeaE‖ + F‖,a +

∫
d3v Samav‖

+

∫
d3v faGmav‖, (4.25)
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where E‖ = b ·E and Pa is the pressure tensor. The parallel friction of collision Fa,‖

is given as

Fa,‖ ≡ b ·
∑

b6=a

Fab =
∑

b6=a

∫
d3v Cab(fa, fb)mav‖. (4.26)

In order to derive Eq.(4.25), the expression of the time derivative of the parallel

velocity v̇‖ is required. For the global model, it is given as

v̇‖ = − 1

m
b · (µ∇B − eE∗) + v‖Ẋ · κ (4.27)

following the particle orbit Eqs.(3.9) and (3.10f). We substitute Eq.(4.27) into the

parallel momentum equation Eq.(4.1). The pressure tensor P includes the diagonal

component, the Chew-Goldbeger-Low (CGL) tensor PCGL, and the Π2 term, the

viscosity tensorΠ2. See Appendix A for the derivation. According to the δf method,

the viscosity tensors become

b · ∇ · PCGL

= b · ∇ ·
[∫

d3v
(
( mv2‖ bb+ µB (I − bb)

)
f1

]
, (4.28a)

b · ∇ ·Π2

= b · ∇ ·
[∫

d3v mv‖

(
Ẋ⊥b+ bẊ⊥

)
f1

]
, (4.28b)

where f1 is an even function but v‖Ẋ⊥ is an odd function. Therefore, f1 does

not contribute to ∇ · Π2. According to Eq.(4.28a), ∇ · PCGL does not explicitly

depend on the approximations in vm and vE . Multiplying Eq.(4.25) with B, the

flux-surface-average of the parallel momentum balance equation becomes

〈
∂

∂t
(nmV‖B)

〉
+ 〈B · ∇ · (PCGL +Π2)〉

=
〈
neE‖B

〉
+
〈
F‖B

〉
+

〈
B

∫
d3v S1 mv‖

〉
. (4.29)

For the ZOW model, the parallel momentum balance equation is calculated with
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Ẋ⊥ = vE + v̂m and the time derivative of parallel velocity

v̇‖ = − µ

m
b · ∇B + v‖vE · ∇⊥B

B

= − µ

m
b · ∇B + v‖Ẋ⊥ · κ+ v‖

(
ψ̇

B

∂B

∂ψ

)
, (4.30)

following the particle orbit Eq.(3.18). Then, the parallel momentum balance equa-

tion becomes

〈
∂

∂t
(nmV‖B)

〉
+ 〈B · ∇ · (PCGL +Π2,ZOW)〉

=
〈
F‖B

〉
+

〈
B

∫
d3v S1 mv‖

〉

+

〈
B

∫
d3v f1 G mv‖

〉

−
〈∫

d3v mv‖B

(
ψ̇

B

∂B

∂ψ

)
f1

〉
. (4.31)

For the ZOW model, the PCGL term is the same form as Eq.(4.28a) and the Π2

term, Eq.(4.28b), is rewritten as

〈B · ∇ ·Π2,ZOW〉

=

〈
B · ∇ ·

[
mnV‖(bvE + vEb)

]〉

+

〈
B · ∇ ·

[∫
d3v mv‖

(
v̂mb+ bv̂m

)
f1

]〉
, (4.32)

where v̂m is defined by Eq.(2.1). Eq.(4.32) shows that Π2,ZOW includes not only the

E × B drift but also the partial magnetic drift. In the ZOW model, there is an

extra term in Eq.(4.31),

〈∫
d3v mv‖B

(
ψ̇

B

∂B

∂ψ

)
f1

〉
(4.33)

which comes from the last term of Eq.(4.30) and is estimated as O(δ2). Actually, the

∂B/∂ψ is O(δ) terms in MHD-equilibrium of helical devices, and Eq.(4.33) becomes
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O(δ3). Furthermore, there is an additional term on the RHS in Eq.(4.31),

〈
B

∫
d3v f1 G mv‖

〉
(4.34)

which is estimated as O(δ2). The effect of Eq.(4.34) on the parallel flow will be

discussed in Sec.6.2 below. Following the order of magnitude, the contribution of

Eq.(4.32) and (4.34) are comparable in the parallel momentum equation Eq.(4.31).

The parallel electric field E‖ and its contribution to the parallel momentum balance

are neglected in the local models for simplicity.

For the ZMD model, the parallel momentum balance equation is calculated with

Ẋ⊥ = vE and the time derivative of parallel velocity

v̇‖ = − µ

m
b · ∇B + v‖vE · ∇⊥B

B

= − µ

m
b · ∇B + v‖Ẋ⊥ · κ, (4.35)

following the particle orbit Eq.(3.23). If the scalar pressure is assumed as a function

of p = p(ψ), ∇⊥B/B · vE is rewritten as Ẋ⊥ · κ, according to Eq.(3.17). Then, the

parallel momentum balance equation becomes

〈
∂

∂t
(nmV‖B)

〉
+ 〈B · ∇ · (PCGL +Π2,ZMD)〉

=
〈
F‖B

〉
+

〈
B

∫
d3v S1 mv‖

〉
. (4.36)

Equation (4.28b) for ZMD is rewritten as

〈B · ∇ ·Π2,ZMD〉 =
〈
B · ∇ ·

[
mnV‖(bvE + vEb)

]〉
(4.37)

where vm does not exist in Π2. Compared to the ZOW model, the ZMD model

maintains not only G = 0 but also there is no extra term in the parallel momentum

balance equation.
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For the DKES model, the parallel momentum balance equation is calculated with

Ẋ⊥ = v̂E from Eq.(3.26) and the time derivative of parallel velocity

v̇‖ = − µ

m
b · ∇B, (4.38)

following the particle orbit Eq.(3.27). Then, the parallel momentum balance equa-

tion becomes

〈
∂

∂t
(nmV‖B)

〉
+ 〈B · ∇ · (PCGL +Π2,DKES)〉

=
〈
F‖B

〉
+

〈
B

∫
d3v S1 mv‖

〉
−
〈
BnmV‖v̂E · κ

〉
. (4.39)

With the incompressible E ×B flow, Eq.(4.28b) is rewritten as

〈B · ∇ ·Π2,DKES〉

=

〈
B · ∇ ·

[
mnV‖
〈B2〉 (bE ×B +E ×Bb)

]〉
. (4.40)

DKES maintains G = 0 but the extra term
〈
BnmV‖v̂E · κ

〉
appears in its parallel

momentum balance equation.

The viscosity tensors are different among the ZOW, ZMD, and DKES-like models

because of the approximation of incompressible E ×B drift. The effect of incom-

pressibility is discussed in Sec.6.1 below.

For the parallel momentum balance in all of the global and local models, the con-

straint imposed on the source/sink term S1 is that its contribution to parallel mo-

mentum should vanish;

∫
d3v S1mv‖ = 0. (4.41)

In fact, unlike the particle or energy balance relation, the drift-kinetic simulation

reaches a steady state of parallel flow without any additional source/sink term. Note
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that the parallel momentum source vanishes not by flux-surface averaging, but is

set to be zero anywhere on a flux surface. The effect of parallel friction F‖ and the

finite-G terms on the parallel momentum are discussed in Chapter. 6.



Chapter 5

Two-Weight δf Scheme

5.1 Weight Functions in the δf Scheme

The two-weight δf scheme[17][35] is employed to solve the global and local drift-

kinetic models derived in Section 3.2 - 3.5. In this section, the compressibility of

phase space G and the approximations of each model are taken into account in the

weight function. Then, the balance equations of particle number, parallel momentum

and energy are investigated for each models. The requirement of adaptive source-

sink term S1 is explained which is essential for obtaining a steady-state solution in

some models.

The distribution function fa is decomposed into a Maxwellian fa,M and perturbation

fa,1

fa(X, v, ξ, t) = fa,M(ψ, v) + fa,1(X, v, ξ, t). (5.1)

A Maxwellian fa,M is defined as

fa,M = na(ψ)




ma

2πTa(ψ)




3/2

exp


− mav

2

2Ta(ψ)
+
eZamaΦ(ψ)

Ta(ψ)


.
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The drift-kinetic equation is performed as the following by Eq.(3.7)

(
∂

∂t
+ Ẋ · ∇+ v̇

∂

∂v
+ ξ̇

∂

∂ξ

)
fa = C(fa, fb) + Sa,1 (5.2)

where C(fa, fb) and Sa,1 are Coulomb collision operator and source/sink, respectively.

The linearized Coulomb collision operator is employed

C(fa, fb) = C(fa,M , fb,M) + C(fa,M , fb,1)

+ C(fa,1, fb,M) + C(fa,1, fb,1), (5.3)

where the nonlinear term C(fa,1, fb,1) is to be omitted in the following derivation.

According to Eq.(5.1) and (5.2), the drift-kinetic equation becomes

(
∂

∂t
+ Ẋ · ∇ + v̇

∂

∂v
+ ξ̇

∂

∂ξ

)
(fa,M + fa,1) = C(fa, fb) + Sa,1. (5.4)

According to the order estimation in Chapter 3, one has

ξ̇, θ̇, ζ̇ ∼ O(δ0)

while

ψ̇, v̇ ∼ O(δ1).

Then, the lowest-order of Eq.(5.4) becomes

(
∂

∂t
+ θ̇

∂

∂θ
+ ζ̇

∂

∂ζ
+ ξ̇

∂

∂ξ

)
fa,M = C (fa,M , fb,M) . (5.5)

According to Eq.(5.2), the derivative of perturbation part δf becomes

(
∂

∂t
+ Ẋ · ∇ + v̇

∂

∂v
+ ξ̇

∂

∂ξ

)
fa,1 = CT + CF + Sa,0 + Sa,1 (5.6)

where the test particle collision operator CT and the field particle collision operator
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CF [35][24] are defined as

CT ≡ C(fa,1, fb,M), (5.7)

CF ≡ C(fa,M , fb,1), (5.8)

and the source term is denoted as

Sa,0 ≡ −
(
v̇
∂

∂ψ
+ ψ̇

∂

∂ψ

)
fa,M . (5.9)

Following Eq.(5.6), an operator includes the total derivative along the particle tra-

jectory and the test-particle collision is defined as

Df1
Dt

≡ ∂f1
∂t

+ Ż · ∂f1
∂Z

− CT (f1)

= S0 + S1 + CF (5.10)

The detail about the implementation of CT and CF is explained in Sec. 5.2.

Let us briefly explain the two-weight δf scheme in the case of G 6= 0. The weight

functions w and p are given as follows:

f1(Z) = g(Z)w(Z) (5.11a)

fM(Z) = g(Z)p(Z) (5.11b)

where g(Z) is the marker distribution function.

According to Eqs.(3.3) and (3.4), the drift-kinetic equation of marker distribution

g(Z) is obtained

Dg

Dt
= −g G. (5.12)
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Eq.(5.10) is extended with Eq.(5.11a)

Df1
Dt

= w
Dg

Dt
+ g

Dw

Dt
. (5.13)

Following (5.10), (5.12), and (5.13), the time evolution of the weight function w is

obtained

ẇ =
1

g

Df1
Dt

− w

g

Dg

Dt
(5.14)

=
p

fM

(
S0 + S1 + CF (fM)

)
+wG

Similarly, the time evolution of the weight function p is obtained as follows:

ṗ =
p

fM

(
Ż · ∂

∂Z

)
fM + pG. (5.15)

The time evolution of the weights w Eq.(5.14) and p (5.15) include G which is non-

zero in the ZOW model only. The last term in Eqs.(5.14) and (5.15) is required so

that the two-weight δf scheme is applicable to the case in which the phase-space

volume is not conserved[17]. Note that Ż in RHS of Eq.(5.15) depends on the

drift-kinetic models. For the global model, it is denoted as

Ż · ∂fM
∂Z

= −S0; (5.16)

for ZOW and ZMD, it is denoted as

Ż · ∂fM
∂Z

= v̇
∂

∂v
fM ; (5.17)

for the DKES-like, due to v̇ = 0, ψ̇ = 0, and G = 0, the weight function p becomes

constant as

ṗ = 0. (5.18)
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5.2 Collision Operator

The general Fokker-Planck collision operator is given as

Cab(fa, fb) =
∂

∂v
·
[
Aabfa +

∂

∂v
·
(
Dabfa

)]
, (5.19)

where

Aab ≡ −〈∆v〉ab
∆t

=

(
1 +

ma

mb

)
Kab

∂ϕb
∂v

(5.20)

and

Dab ≡ −〈∆vv〉ab
2∆t

= −Kab
∂2ψb
∂v

. (5.21)

The relative velocity is denoted as u ≡ v−v′ and the Rosenbluth potential is given

as

ϕb(v) ≡ − 1

4π

∫
1

u
fb(v

′)d3v′, (5.22)

ψb(v) ≡ − 1

8π

∫
ufb(v

′)d3v′. (5.23)

The collision operator Eq.(5.19) is written with the Rosenbluth potential to obtain

Cab(fa, fb) = Kab
∂

∂v
·
[
ma

mb

∂ϕb
∂v

fa −
∂2ψb
∂v∂v

· ∂fa
∂v

]
, (5.24)

where

Kab = lnΛ

(
eaeb
ǫ0ma

)2

(5.25)

5.2.1 Like-Species Collision

Following Eqs.(5.3), (5.7) and (5.8), Eq.(5.24) is divided into the test particle col-

lision operator CT (fa,1, fa,M) and the field particle collision operator CF (fa,M , fa,1),
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CT (fa,1, fb,M) = Kab
∂

∂v
·
[
ma

mb

∂ϕ(fb,M )

∂v
fa,1 −

∂2ψ(fb,M)

∂v∂v
· ∂fa,1
∂v

]
, (5.26a)

CF (fa,M , fb,1) = Kab
∂

∂v
·
[
ma

mb

∂ϕ(fb,1)

∂v
fa,M − ∂2ψ(fb,1)

∂v∂v
· ∂fa,M
∂v

]
. (5.26b)

In this subsection, we consider the case a = b for the like-species collision opera-

tor. In Eq.(5.26a), for the test particle collision operator CT , the explicit analytic

expressions of Rosenbluth potentials ϕa and ψa are available because there are inte-

grals of known function fa,M . In Eq.(5.26b), for the field particle collision operator

CF , the derivative of Rosenbluth potentials ϕa and ψa requires differentiation and

integral of fa,1. This processes will introduce the numerical error in CF . Therefore,

the field particle collision operator CF is evaluated by the conservation law instead

of Eq.(5.26b).

In the drift-kinetic theory, the distribution function f1 is regarded as gyro-phase

independent, f1 = f1(X, v‖, v⊥). By taking the gyro-phase average, the test particle

collision operator Eq.(5.26a) can be rewritten as [25]

CT (fa,1) =
∂

∂v‖

(
νs,‖fa,1

)
+

∂

∂v2⊥
(νs,⊥fa,1) +

∂

∂v‖∂ν2‖,⊥
(v⊥fa,1)

+
1

2

∂2

∂v2‖

(
ν‖fa,1

)
+

1

2

∂2

(∂v2⊥)
2
(ν⊥fa,1) (5.27)

where the coefficients are defined as

νs,‖ ≡ v‖F,

νs,⊥ ≡ v2⊥(2F− H)− (2v2‖ + v2⊥)G,

ν‖ ≡ v2‖H+ v2⊥G,

ν⊥ ≡ 4v2⊥(v
2

⊥H+ v2‖G),

ν‖,⊥ ≡ 2v2⊥v‖(H−G). (5.28)
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The F, G, amd H function are defined as

F(x) ≡ (1 +
ma

mb

)φ(x)ν0, (5.29)

G(x) ≡ ν0

[(
1− 1

2x

)
φ(x) +

dφ(x)

dx

]
, (5.30)

H(x) ≡ ν0
1

x
φ(x) (5.31)

where x ≡ v2/v2th,

φ(x) ≡ 2√
π

∫
dte−x

′
√
x′, (5.32)

and

ν0 ≡
nbe

2

ae
2

b lnΛab
4πǫ20m

2
av

3
. (5.33)

Then, the test particle collision operator is carried out as

v‖ = v‖,0 − νs,‖∆t +
√

12ν‖∆t(R1 − 0.5), (5.34)

v⊥ = v2⊥,0 − νs,⊥∆t+

√√√√12∆t

(
v⊥ −

v2‖,⊥
ν‖

)
(R2 − 0.5)

+
√

12ν‖∆t(R1 − 0.5)
ν‖,⊥
ν‖

(5.35)

where R1, R2 ∈ [0, 1] are two independent uniform random numbers.

The field particle operator is defined so that it satisfy the fellowing relations [34],

which are also satisfied by the original linearized operator, Eq.(5.26). First, it must

satisfy the conservation properties

∫
d3v M [CT (fa) + CF (fM,a)] = 0 (5.36)

where the operator M is defined as

M ≡
{
1, v‖, v

2
}
. (5.37)
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Second, the property is the adjointness of the linearized operator [22]. For the case

of like-species collisions,

∫
d3v

f1
fM

CT (g1) =
∫
d3v

g1
fM

CT (f1) (5.38a)
∫
d3v

f1
fM

CF (g1) =
∫
d3v

g1
fM

CF (f1) (5.38b)

Third, the linearized collision operator can describe the H-theorem

∫
d3v

f1
fM

[CT (f1) + CF (f1)] ≤ 0, (5.39)

where the equality is satisfied when f1 has the following form,

f1 =
(
c0 + c1v‖ + c2v

2
)
fM for ∀ci ∈ R. (5.40)

The form f1 in the above equation also satisfy the null space of the linearized oper-

ator,

CT (f1) + CF (f1) = 0. (5.41)

The field particle collision operator CF which satisfies the conditions Eqs.(5.36) to

(5.41) is given as follows:

CF = −1

n
[aF (x) + bξG(x) + cH(x)] fM . (5.42)

The F , G, amd H function are defined as

F (x) ≡ 1− 3

√
π

2x
(φ(x)− φ(x)′) , (5.43a)

G(x) ≡ 3

√
π

2x
φ(x), (5.43b)

H(x) ≡ 3

√
π

2x
(φ(x)− φ(x)′) . (5.43c)
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where x ≡ v2/v2th and φ(x) is defined in Eq.(5.32).

The coefficients (a, b, c) are determined by perturbation of particle number, momen-

tum, and energy in CT
{a, b, c} =

{
δn,

2δP

vth
,
2

3

δE

v3th

}
(5.44)

{δn, δP, δE} =

∫
d3v{1, v‖, v2}CT (δfa). (5.45)

The problem is that the coefficients (a, b, c) given by Eq.(5.44) are the solutions if

there is no numerical or statistic error in Monte-Carlo method. In practice, the

field particle operator cannot satisfy the conservation property with finite number

of simulation markers. The practical solution which keep the conservation property

is obtained by substituting (5.42), (5.44), and Eq.(5.45) into Eq.(5.36),




a

b

c




= −
∑

k




Fkpk Gkpk Hkpk

Fkx
1/2
k ξkpk Gkx

1/2
k ξ2kpk Hkx

1/2
k ξkpk

Fkxkpk Gkxkξkpk Hkxkpk




−1

·




δn

δP/vth

δE/v2th




(5.46)

where the summation is taken over markers (index k) within a small volume cell,

and the abbreviations Fk = F (xk) and so on are used. By Eq.(5.46), the linearized

collision operator satisfies the conservation law.

5.2.2 Unlike-Species Collision

If ma ≪ mb, the gerneral collision operator is simplified as follows.[14] Assume the

particle species a and b have the same order of magnitude of temperature, Tb ∼ Ta

so that

vth,b ≪ vth,a. (5.47)
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As a result, for the a species, the distribution of species b can be approximated as

a delta function,

fb(v) ≃ nbδ(v − Vb) (5.48)

where Vb is the average velocity of species b. Then,

ψb ≃ − nb
8π

|v − Vb| ≃ − nb
4π
v

(
1− v · Vb

v2

)
. (5.49)

Then, when Cab is linearized Cab = CT + CF as Eqs.(5.26a) and (5.26b), the approxi-

mation ma ≪ mb is used for CF . It yields

CF (fa,M , fb,1) ≃ −nbKab

4π

ma

Ta

Vb · v
v3

fM,a. (5.50)

In Eq.(5.50), the fist term in Eq.(5.26b) is neglected.

For CT , first, the gyro-phase average of Eq.(5.26a) is emplyed. It yields

CT (fa,1, fb,M) ≡ νabD L+
1

v2
∂

∂v

[
v3
(

ma

ma +mb

νab,sfa,1 +
1

2
νab,‖v

v∂fa,1
∂v

)]
, (5.51)

where the Lorentz scattering operator in spherical coordinates (r, θ, φ) is denoted as

L ≡ 1

2

[
1

sin θ

∂

∂θ

(
sin θ

∂fa
∂θ

)
+

1

sin2 θ

∂2fa
∂φ2

]
. (5.52)

The slowing-down frequency νabs , deflection frequency νabD , and parallel velocity diff-

sion frequency νab‖ denoted as

νabD (v) ≡ nb
4πv3Ta

Kab
erf(y)− Gch(yb)

y3a
, (5.53a)

νabs (v) ≡ nb
4πv3Ta

Kab
Ta
Tb

(
1 +

mb

ma

) Gch(ya)
ya

, (5.53b)

νab‖ (v) ≡ 2
nb

4πv3Ta
Kab

Gch(yb)
y3a

. (5.53c)
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where yb = v/vTb, erf(y) is the error function, and Gch is Chandrasekhar function,

Gch(y) ≡
erf(y)− y[erf(y)]′

2y2
. (5.54)

If the large-mass-ration limitma ≪ mb is assumed, ya ∼ O(1) and yb ∼ O(
√
mb/ma) ≫

1. In this case, one can estimate as

νab,D ∼ erf(yb)

y3a
∼ 1

y3a
, (5.55)

me

me +mi

νab,s ∼
ma

mb

1

yby2a
, (5.56)

νab,‖ ∼
Gch(yb)
y3a

∼ 1

y3by
2
a

, (5.57)

which allows ones to neglect the second and third terms in Eq.(5.51)

Finally, the unlike-species collision operator in the large-mass-ratio limit is obtain

as

Cab ≃ νab,D

(
L(fa) +

ma

Ta

Vb · v
v3

fM,a

)
. (5.58)

Following Eqs.(5.52) and (5.51), the test particle operator CT is rewritten as [30]

CT = νab,DL(fa)

=
νab,D
2

[
∂

∂ξ
(1 + ξ)

∂2δf

∂ξ

]
. (5.59)

where the pitch angle of particle is denoted as ξ ≡ v‖/v.

In this work, the Lorentz scattering operator in the Monte-Carlo simulation is carried

out as follows. According to Eq.(5.59), in the numerical simulation the pitch angle

ξ is presented as

ξn = ξn−1(1− νei,Dτ)±
√
1− ξ2n−1

νei,Dτ (5.60)

where τ an n are a time step and an index of time step, respectively. Note that

the sign, ±, is given randomly with equal probability, and Eq.(5.60) is applied
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for the markers which satisfy ξ2n−1
νei,Dτ < 1. For the slow markers which have

ξ2n−1
νei,Dτ ≥ 1, a random number ξn ∈ (−1,+1) is given in each time step to mimic

a large-angle scattering. Therefore, the pitch angle is restricted to −1 < ξ < 1 for

any particles.

The field particle operator CF is evolved with the weight function w

CF ((fM,a) =

[
d

dt
fa,1

]

CF

= gb (fM,a) ẇ

=
nbKab

4π

ma

Ta

Vb · v
v3

fM,a (5.61)

where fM,a can be obtained by the weight function p, fM,a = pgb (fM,a). Then, the

time derivative of weight function ẇ is obtained by Eq.(5.61)

ẇ =
nbKab

4π

ma

Ta

Vb · v
v3

p. (5.62)

In the part I, only the Lorentz scattering operator Lei is employed in Cei in order to

carried out the simulations. In the part II, the Vi,‖ is included in the simulations in

order to present the importance of the parallel friction between electron and ion.

5.3 Source/Sink Term

As explained in Sec. 4.1 and 4.2, an adaptive source and sink term is introduced

in the global and local FORTEC-3D codes. Thus, the flux-surface averaged density

and pressure perturbation from the f1 part, which are defined by Eqs. (4.11) and

(4.20), become negligible compared to the background density and pressure, i.e.,

〈N1〉 ≪ n and 〈P1〉 ≪ nT . Such a source/sink term is constructed according to the

following considerations.
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First, the source/sink term acts to reduce the flux-surface average perturbations

〈N1〉 and 〈P1〉. It is considered that the source/sink term should not smoothen the

spatial variation of them on the flux surface, because the non-uniform distribution

reflects the compressible flow on the flux surface. Therefore, the source-sink term is

constructed to reduce 〈N1〉 and 〈P1〉, while it maintains the fluctuation patterns on

the flux surface, N1 − 〈N1〉 and P1 − 〈P1〉. Second, the source-sink term should be

adaptive. The strength of the source-sink term is proportional to 〈N1〉 and 〈P1〉 so

that the users do not have to control the strength of the source-sink term. Third,

the source/sink term does not contribute as a parallel momentum source as shown

in Eq.(4.41), because the steady-state parallel momentum balance can be found

without giving an artificial source/sink term.

In the drift-kinetic equation for f1 (5.10), the source-sink term S1, which satisfies

the conditions explained above, is given in the form S1 = s(ψ, v, ξ, t)fM with the

following constraints:

∫
d3v sfM = −νS〈N1〉,

∫
d3v mav‖sfM = 0, (5.63)

∫
d3v

mav
2

2
sfM = −3

2
νS〈P1〉,

where νS is a numerical factor to control the strength of the adaptive source-sink

term. There is arbitrariness to make a source/sink term which satisfies Eq.(5.63).

The examples of the adaptive source/sink terms can be found in the references[23][20].

In FORTEC-3D code, the source/sink term is implemented by diverting the field-

particle collision operator CFfM , which is introduced in Sec. 5.2.1. The field-particle

operator is made so as to satisfy the conservation laws for the like-particle linearized

collision Eq.(5.36). By comparing Eqs. (5.63) and (5.36), one can see that operator

CF can be directly used to implement the source/sink term. In FORTEC-3D, the

source/sink term is operated in the (θ, ζ) cells on a flux-surface which is the same as
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those prepared for the collision terms. In this simulation, 20×10(20×20) cells on a

(θ, ζ)-plane are employed. The strength of the source/sink term νS is varied case by

case because the growth rate of 〈N1〉 and 〈P1〉 depends on the drift-kinetic model,

magnetic configuration, and parameters such as Eψ. See Eqs.(4.12) and (4.23). In

most cases, the moderate strength νS = 0.5 ∼ 1.0× νi is enough to suppress N1 and

P1 to O(10−2), where νi is the ion-ion collision frequency. As demonstrated in Fig.

5.1 for the ZOW and ZMD simulations in the LHD case, it is confirmed that the final

steady-state solutions of the neoclassical fluxes are not affected by the strength of

the source/sink term nor the timing from when the source/sink term is turned on. It

is obvious that without the source/sink term the ZMD model does not conserve 〈P1〉.

The 〈N1〉 and 〈P1〉 both continue to change in the ZOW model, as expected from

the particle and energy balance relations in Sec. 4.1. In the series of simulations

without source/sink, the neoclassical fluxes Γi and 〈V‖B〉 continue evolving and one

cannot obtain a quasi-steady state solution. By adopting νS = 0.5 or 1.0, the ZOW

and ZMD models both converge to a quasi-steady state at which one can take a

time average. It is observed that the pattern of the fluctuations on the flux surface,

N1 − 〈N1〉 and P1 − 〈P1〉, are sustained before and after turning on the source/sink

term. This scheme works well in the global, ZOW, and ZMD models. For the

DKES-like model, the source/sink term is not necessary because it preserves the

total particle number and energy ideally. However, the weak source/sink was given

in the DKES-like model in this work to reduce the numerical error accumulation in

N1 and P1.
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Figure 5.1: For the LHD ion, the time evolution of the LHD ion (a) the density
perturbation 〈N1〉, (b) the pressure perturbation 〈P1〉, (c) the neoclassical particle
flux Γi and (d) the parallel flow 〈V‖B〉 are shown in Sec. 6.1. Furthermore, Figs.(a)
and (b) are normalized by background density and pressure, respectively. In Fig.(d),
the parallel flows of the ZMD model are plotted offset by −4. The source/sink term
is turned on at t = 1.6τi or 2.7τi. The numbers after “SS” in the legend indicate the
strength of the source/sink term, νS.



Chapter 6

Benchmark of Local Drift-kinetic

Model

A series of simulations are carried out to benchmark the local and the global drift-

kinetic models. We compare the neoclassical radial particle flux Γψa Eq.(4.14), radial

energy flux Eq.(4.19), and the flux-surface average parallel mean flow multiplied by

B,

〈Va,‖B〉 ≡
〈∫

d3v fa,1va,‖B(ψ, θ, ζ)

〉
. (6.1)

To see the radial fluxes and the heat fluxes in the units [1/m2s] and [W/m2], respec-

tively, these are redefined as

Γa ≡
dr

dψ
Γψa , Qa ≡

dr

dψ
Qψ
a ,

where r = a
√
ψ/ψedge and a is the effective minor radius of the plasma boundary,

ψ = ψedge. a and ψedge are given from VMEC MHD equilibrium calculation code[16].

Note that in the local models even though f1 does not contribute to radial fluxes

in the particle and energy balance equations in Sec.4.1, Γa and Qa are evaluated by

the virtual radial displacement vm · ∇r-term in the local approximations.

46
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The plasma parameters are given as TABLE 6.1. Two types of normalized ion

collisionality ν∗i are given in the table : ν∗i,PS ≡ qRaxνii/vthi = 1 represents the

Plateau - PfirschSchlüter boundary and ν∗i,B ≡ ν∗i,PS/(r/Rax)
1.5 = 1 is the Banana-

Plateau boundary. For LHD, the inward-shift configuration is employed, in which

the neoclassical radial transport is expected to be suppressed compared to that in a

standard configuration. For W7-X, the magnetic geometry is adjustable by the coil

current system. Here, the standard configuration [9] in the zero-β limit is employed.

For HSX, the quasi-helically symmetric configuration is employed. The magnetic

field configurations of both W7-X and HSX are chosen so as to reduce the radial

guiding center excursion of trapped particles, while W7-X also aims at reducing the

bootstrap current[9][1] The artificial density and temperature profiles are given in

the LHD and W7-X investigations so that the plasmas are in 1/ν regime around

|Er| ∼ 0. The HSX kinetic profile is the diagnostic data from HSX experiment.[7]

Compared to the other devices, the collisionality of the HSX plasma is high in terms

of ν∗iB because of very low Ti. In TABLE 6.1, the ambipolar Er of the LHD and HSX

simulations are shown, which have been evaluated by GSRAKE and DKES/PENTA,

respectively.

In the following benchmarks, there are three types of DKES models, namely DKES,

DKES-like, and DKES/PENTA. First, DKES is the original code with the pitch an-

gle scattering collision operator. Thus, it does not guarantee the conservation of mo-

mentum. Second, DKES-like is the solver of Eq.(3.27) with the δf method and the

linearized collision operator as ZOW and ZMD. The test-particle portions of collision

operator include both the pitch-angle and energy scattering terms. The field-particle

term maintains the conservation of particle numbers, parallel momentum, and en-

ergy in the simulation.[35] The third model, DKES/PENTA, is the numerical result

from DKES and with momentum correction by Sugama-Nishimura method.[42][38]

For LHD, local models are also benchmarked with GSRAKE code[3], which solves

the mono-energy and the ripple-averaged drift-kinetic equations. GSRAKE is sim-
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Table 6.1: Simulation parameters on each configuration.

LHD W7-X HSX
r/a 0.7375 0.7500 0.3100
ι 0.740 0.886 1.051
Rax/a 3.60/0.64 5.51/0.51 1.21/0.126
ni [10

18/m3] 3.10 0.406 3.83
Ti [keV ] 0.891 0.350 0.061
Te [keV ] 0.891 0.350 0.544
Bax [T ] 2.99 2.77 1.00
ν∗i,B 0.0368 0.0910 17.3
ν∗i,PS 0.0017 0.0017 0.101

ilar to DKES but the magnetic field spectrum in GSRAKE is approximated.[3] It

should be emphasized that the E ×B drift term in GSRAKE is compressible, al-

though this point has not been clearly mentioned in previous studies. [3][4] The

original GSRAKE code is made so that it can include the tangential magnetic drift

term. However, the term is omitted in the present benchmarks because the magnetic

drift term is found to make the simulation result unstable[36].

6.1 Effect of E×B Compressibility

The radial electric field Er is given as a parameter in this series of investigations.

In Figs. 6.1 and 6.2, the ion radial particle and energy fluxes among the different

approximations are presented on LHD, W7-X, and HSX, respectively. The figures

of parallel flow simulation are shown in Fig. 6.3. The global simulations are carried

out for LHD only because the global simulation requires much more computational

resources than the local to reach a steady-state solution of 〈Vi,‖B〉. In Figs. 6.1 -

6.3, the good agreements appear among the local models in Γi, Qi, and 〈Vi,‖B〉 if the

radial electric field amplitude is moderate in terms of the poloidal Mach number,

that is, 0 ≪ |Mp| ≪ 1.

Let us first focus on the difference which appears on the neoclassical fluxes at large-

Er values. When the amplitude of Er rises, the discrepancies increase between
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DKES-like and the other local models. As shown in Figs. 6.1(a), 6.2(a), and 6.3(a),

the LHD radial and parallel fluxes of the ZOW, ZMD, and GSRAKE models agree

with the global model well. Thus, the discrepancies comes from the incompressibility

approximation of the E ×B drift on DKES-like according to Eq.(3.26). According

to Figs. 6.1-6.3, the E ×B compressibility effect is expected to be significant when

|Mp| > 0.4.

The Er-dependence of Γi, Qi, and 〈Vi,‖B〉 found in the HSX case need more expla-

nations. First, in Fig.6.1(d), all the cases, except for the original DKES, show a

good agreement. The disagreement between the DKES model and the others is also

found in the ion energy flux Fig. 6.2(c) and parallel flow Fig. 6.3(c). Recall that

our DKES-like simulation uses the collision operator which ensures the conservation

of parallel momentum in ion-ion collisions. The simulation result suggests that the

momentum conservation property of the collision operator is essential for neoclas-

sical transport calculation on quasi-symmetric devices like HSX. Secondly, as Er

increases, the neoclassical fluxes of all the models disagree with one another. As in

the LHD and W7-X cases, the E × B compressibility is supposed to be the main

cause of the disagreement. However, it should be pointed out that the ion parallel

flow in HSX becomes supersonic at Mp > 1 as shown in Fig.6.3. Here, the parallel

Mach number is defined as

M‖ ≡
〈V‖B〉
vthBax

. (6.2)

In the work, the drift-kinetic models are constructed under the assumption M‖ ≪ 1

because we just takes the zeroth order distribution as the Maxwellian without the

mean flow. See Eqs.(3.5) and (3.6). The parallel flow dependence on Er in HSX is

contrastive to that in W7-X, in which parallel mean flow remains very slow compared

to thermal velocity, as in Fig. 6.3(b). Both HSX and W7-X configurations aim at

reducing radial neoclassical flux. However, the magnetic configuration of W7-X

is chosen to reduce the parallel neoclassical flow, too. This leads to the different

dependence of parallel flow on Er in these two devices. Note also that Te ≫ Ti in
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HSX [27] while Ti = Te in LHD and W7-X cases. In such a Te ≫ Ti plasma, Mp of

E ×B flow by ambipolar-Er can be O(1) because of the slow ion thermal velocity

vth,i. For example, under the ambipolar condition, Mp ≃ −0.015 and Er ≃ −1.73

kV/m on LHD by GSRAKE, while Mp ≃ 0.95, and Er ≃ 3.47 kV/m on HSX by

DKES/PENTA. Such a large Mp with the quasi-symmetric configuration of HSX

results in M‖ ∼ O(1). When M‖ > 1, all the drift-kinetic models violate the

assumption of the slow-flow-ordering. Therefore, although Mp ∼ O(1) E ×B flow

is allowed in ZOW and ZMD models, the validation of the drift-kinetic models at

M‖ ∼ O(1) has to be reconsidered by taking account of the centrifugal force and

potential variation along the magnetic field lines[40]. This problem is beyond the

scope of the present study.
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Figure 6.1: Ion particle fluxes Γi of (a) LHD, (c) W7-X, and (d) HSX , respectively.
(b) is an enlarged view of (a) around Er ∼ 0. The multiple numerical results of
DKES model with the different collision operators are shown in (d). The vertical
line shows the value of poloidal Mach number Mp defined in Eq.(3.1).
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Figure 6.2: Ion energy flues Qi of (a) LHD, (b) W7-X, and (c) HSX, respectively.
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Figure 6.3: Ion parallel flow of (a) LHD, (b) W7-X, and (c) HSX, respectively. (d)
presents the enlarged details around Er ∼ 0 for the LHD and W7-X cases. The
vertical axis represents the parallel Mach number M‖ as defined in Eq. (6.2).
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6.2 Effect of Magnetic Drift

In Figs. 6.1-6.2, there are the very large peaks of Γi and Qi at Er = 0 in the LHD

and W7-X cases by the ZMD and the DKES-like models. On the contrary, the global

and the ZOW models show the reduction of radial fluxes at Er ≃ 0 and the peaks

shift to negative-Er side. This tendency has been found in the previous study[29],

and this greatly modifies the neoclassical transport in 1/ν-regime, especially in the

LHD case. For HSX, there is not such a peak at Er = 0 in the result of ZMD and

DKES-like models. What causes the reduction of Γi and Qi in ZOW, and what

makes the configuration dependence?

First of all, the problem is considered by analytical formulation. In a simple stel-

larator/heliotron magnetic configuration like LHD, the amplitude of the magnetic

field is given approximately

|B| ≈ B0[1− ǫh cos(lθ −mζ)− ǫ cos θ], (6.3)

where ǫh and ǫ are helical and toroidal magnetic field modulations, respectively. l

is the helical field coil number and m is the number of toroidal periods. Once a

particle is trapped by the helical ripples, its orbit drifts across the magnetic surface

and contributes to the radial flux. The estimation of particle flux is roughly given

as[32]

Γ ∼ −
〈∫

νeff
(νeff)2 + (ωh + ωE)2

V 2

⊥

∂fM
∂r

d3v

〉
. (6.4)

Here, νeff is the effective collision frequency of trapped particle and defined as νeff ≡

ν/ǫh. ωh and ωE represent the poloidal precession frequency of the trapped particles

by the magnetic drift and E × B drift, respectively. V⊥ denotes the radial drift
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velocity. For trapped particles, they are estimated as [2]

V⊥ ∼ vd
ǫtB0

∂B

∂θ
∼ vd

ǫ

ǫt
,

ωh ∼
vd
ǫtB0

∂B

∂r
, ωE ∼ Er

rB0

,

(6.5)

where vd ≡ K/eB0R0 and ǫt = r/R0. If (νeff)
2 ≫ (ωh+ωE)

2, then Eq.(6.4) indicates

that the particle transport is inversely proportional to the collision frequency.

Approximating ωh → 0 in Eq. (6.4) corresponds to ZMD and DKES models. Then,

around Er = 0, Γi shows 1/[νeff(1 + x2)]-type dependence where x = (ωE/νeff)
2.

The ωE is common for all the particles on a flux surface so that it makes a strong

resonance at ωE = 0. Once the finite ωh is considered, the peak of Γi appearing

at the poloidal resonance condition ωh + ωE = 0 becomes blurred because of ωh

dependence on v, θ, and ζ . This explains the difference between the ZOW and the

ZMD models in the LHD case.

The analytic model of the 1/ν-type diffusion infers that the strong resonance of

trapped-particles at Er = 0 in ZMD and DKES-like models is damped by Coulomb

collisions. To demonstrate this, the 10 times larger density simulations are carried

out for the LHD case as shown in Fig. 6.4. It is found that the strong peak in

Γi and 〈Vi,‖B〉 at Er = 0 in ZMD and DKES-like calculations are diminished, and

the difference from the ZOW result is small. It is concluded that the tangential

magnetic drift is more important for neoclassical transport calculation in the lower

collisionality case and when |ωE| < |ωh|.

Secondly, in the W7-X case, the magnetic field spectrum is much more complicated

than the simple model Eq. (6.3). It is generally expressed in a Fourier series as

follows:

B(ψ, θ, ζ) = B0

∑

m,n

bm,n(ψ) cos(mθ − 5nζ). (6.6)

Compared with LHD, W7-X has good modular coil feasibility to adjust bm,n [13]
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where the helical b1,1 and toroidal b1,0 magnetic field modulations are equal to ǫh

and ǫ respectively in Eq.(6.3). One of the neoclassical optimizations is performed

by the reduction of average toroidal curvature b1,0/ǫt ∼ 0.5[9] compared to that in

LHD, ǫ/ǫt ≃ 1. According to Eq. (6.8), this partially explains the smallness of

1/ν-regime transport in W7-X. However, the magnetic spectrum of W7-X contains

other Fourier components which are comparable to b1,0 and b1,1. Thus, the simple

analytic model, such as Eqs. (6.3) and (6.8), is insufficient to explain its optimized

neoclassical transport level.

The quasi-isodynamic concept of the neoclassical optimized stellarator configuration

is as follows: the trapped particles in the toroidal magnetic mirrors b0,1 precess in

the poloidal direction while their radial displacements are small and return to the

same flux surface after they circulate poloidally. The trapped particle trajectory in

quasi-isodynamic W7-X configuration has been analyzed using the second adiabatic

invariant[10]

J‖ =

∫
dl v‖ =

∫
dζ

√
(2K − 2µB)/m

b · ∇ζ

∝
∫
dζ

√
Bref − B

B
, (6.7)

where Bref represents the magnetic field strength at the reflecting point of a trapped

particle. Deeply-trapped particles move along the J‖ =const. surfaces. Then, if the

constant- J‖-contours on a poloidal cross-section are near a flux-surface function

and if the contours are closed, the radial transport of the trapped particles are sup-

pressed. However, the standard configuration, which we investigate, is not fully

optimized as is the quasi-isodynamic configuration. The J‖ = constant surfaces in

the standard configuration have small deviation from the flux surfaces[10]. There-

fore, in the limit ωE+ωh = 0, the deeply-trapped particles drift radially along the J‖

contours. Consequently, the radial flux in W7-X solved with ZMD and DKES-like

models shows the strong peak at Er = 0. As expected from the form of Eq. (6.4),
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either by increasing the collision frequency or by taking account of finite ωh as in

the ZOW model results in decreasing the radial transport at Er = 0. In Fig. 6.5 we

have examined the radial and parallel flux in 10 times larger density W7-X plasma

than those in Figs. 6.1(c) and 6.3(b). As found in the LHD case, the difference

among the ZOW, ZMD, and DKES-like models at Er = 0 diminished in the higher

collisionality W7-X case. It is worthwhile to note that it has already been pointed

out that the improvement of collisionless particle confinement in W7-X configura-

tion is realized not only in quasi-isodynamic geometry but also by enhancing the

poloidal magnetic drift in finite-β W7-X plasma because ∂b0,0/∂r ∝ ωh increases as

the plasma-β.[49]

In the simulations, steady-state solution of parallel flow is obtained when the parallel

momentum balance relation Eq.(4.29) is satisfied. As explored in Sec. 4.2, in the

parallel momentum balance relation, the differences among the drift-kinetic models

includes four parts: (1) the explicit difference of the tangential drift velocities in

〈B · ∇ ·Π2〉, (2) the implicit difference of 〈B · ∇ · PCGL〉 through f1, (3) the extra

term Eq.(4.33) which breaks the symmetry of Π2 in ZOW, and (4) the term (4.34)

related to G = ∇z · ŻZOW 6= 0. 〈B · ∇ ·Π2〉 in DKES-like and ZMD models do not

contain v̂m. These models disagree with each other gradually as Er increases. This

indicates that the discrepancy between Eqs.(4.37) and (4.40) on the compressibility

of E × B affects the evaluation of parallel flow. Meanwhile, the ZMD and ZOW

tendencies are similar in the wide range of Er in Figs.6.3. As a result, the two extra

parallel-viscosity terms appearing in the ZOW model do not influence the parallel

flow. In Fig.6.3(d), there are small peaks at Er = 0. When Er = 0, the poloidal

resonance leads to the extra large radial fluxes in Fig.6.1(a) and 6.1(c). Equations

(4.14) and (6.4) suggest that f1 becomes very large at the resonance. However, the

resonance occurs on trapped particles, which cannot contribute to parallel flow. The

influence of resonance is passed to the passing particles via collisions to change the

momentum balance through 〈B · ∇ · PCGL〉. The parallel flows peak at Er = 0 is
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much less than the radial flux peaks because it is driven by this indirect mechanism.
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Model Γ [1/m2s]
ZOW 1.72× 1015

ZMD 2.15× 1016

DKES-like 2.10× 1016

Table 6.2: The particle flux of HSX at Er = 0 with 0.01 times density than that in
Table 6.1.
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frequency test of LHD. The normalized collision frequency is 10 times higher than
ν∗ on LHD in Table 6.1.
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Figure 6.5: (a) The radial particle flux and (b) ion parallel flow of higher collision
frequency test on W7-X. The normalized collision frequency is 10 times higher than
ν∗ of W7-X in Table 6.1.
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6.3 Effect of Magnetic Collision Frequency

The diffusion coefficient in 1/ν-regime is approximated as[2]

Dh ≈ ǫh
1/2(∆h)

2νeff ∼ ǫh
3/2

(
T

eB0R0

ǫ

ǫt

)2
1

ν
, (6.8)

where ∆h = V⊥/νeff is the estimation of the radial step size of helically trapped

particles.

Quasisymmetric HSX can be regarded as the ǫ → 0 limit of Eq. (6.3).[1] The

bounce-average radial drift 〈V⊥〉 vanishes in the quasisymmetric limit ǫ/ǫt = 0 so

that HSX shows the low radial particle transport at Er ≃ 0 as in Fig.6.1(d) in all

local models. The radial flux is of comparable level to that in equivalent tokamaks.

However, it should be noted that the collisionality of the present HSX case is in

plateau-regime. Then, the discussion on the radial transport level in HSX using Eq.

(6.4) is inadequate. Following the previous benchmark study on local neoclassical

simulations[4], there are tiny magnetic ripples in the actual HSX magnetic field made

by the discrete modular coils, which causes 1/ν-type diffusion coefficient at very low-

collisionality, ν∗PS < 10−3, in the DKES calculation. Therefore, we benchmarked the

local drift-kinetic models in HSX with 100 times smaller plasma density (ν∗PS ≃

1.0 × 10−3) at Er = 0. The results are shown in Table 6.2. The radial flux in

very low-collisionality regime in HSX shows discrepancy among ZOW, ZMD, and

DKES-like models, as found in the LHD and W7-X cases. Though the 1/ν-regime

appears from lower ν∗ value in HSX than LHD, the effect of the tangential magnetic

drift on neoclassical transport appears in the same way.

Concerning the parallel flows, Fig.6.3 shows that all models agree with each other

well at 0 ≪ Mp ≪ 1. Compared to the radial flux, the magnetic drift does not

influence the parallel flow strongly at Er ∼ 0, even in the low-collisionality LHD and

W7-X cases. On the other hand, the discrepancies of parallel flows at large-|Mp|
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appear as clearly as that of the radial flux.

In summary, as long as the collisionality is low enough to present the 1/ν-type

diffusion at the condition |ωE | < |ωh|, the ZMD and DKES-like models, which

ignore the tangential magnetic drift term, tend to overestimate the neoclassical

flux at Er → 0 in all three helical configurations in this work. The ZOW model

reproduces the similar trend as the global simulation in which the finite ωh term

results in reducing the 1/ν-type diffusion. The strong poloidal resonance ωE = 0

without ωh term in these local models results in the strong modification in the

perturbed distribution function f1, and it indirectly affects the evaluation of parallel

flow 〈V‖B〉, too.

6.4 Electron Neoclassical Transport

In order to benchmark the bootstrap current calculation at ambipolar condition

among the local models, the electron neoclassical transport simulations were carried

out for the LHD case. The results are shown in Figs. 6.6. In the entire range of Er,

it is found that the differences of Γe, Qe, and 〈Ve,‖B〉 between the two groups, i.e.,

(global, ZOW) and (ZMD, DKES-like), are smaller than those in the ion calculations.

As the electron thermal velocity is much faster than the ions, the poloidal Mach

number for electrons is always regarded as Mp,e ∼ O(δ). Therefore, the E × B-

compressibility is not important for the electron calculation. Moreover, compared

with Fig.6.1(a), Fig.6.6(a) does not present any obviously unphysical peak of the

radial particle transport at Er ≃ 0. There is the same feature in the energy flux. (

See Fig.6.1(a) and 6.6(b).) Even though the normalized collision frequencies ν∗,B (or

ν∗,PS) are the same in the ion and electron simulations, it seems that the collision

effect is stronger in electrons than ions to blur the tangential magnetic drift effect

around Er = 0. Note that the precession drift frequency by the magnetic drift is

also the same order between ions and electrons. See Eq.(6.5). The difference of
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the tendency at Er ≃ 0 between ions and electrons is considered as follows. The

collision frequency of particle species a is proportional to [5]

νa ∝
(ea)

4na
m2
av

3
a

. (6.9)

For the LHD simulations, the temperature is set as Te = Ti. Thus, the ratio of

collision frequency between the electron and ion is

νe
νi

∝
(
mi

me

) 1

2

≫ 1 (6.10)

because of Zi = Ze = 1 in this work. On the other hand, the normalized collision

frequency ν∗(= ν∗,PS) is defined as ν∗,a ≡ qRaxνa/vth,a. Therefore, the ratio between

the normalized electron and ion collision frequency is

ν∗,i
ν∗,e

∝
(
me

mi

) 1

2 vth,e
vth,i

. (6.11)

Eqs. (6.10) and (6.11) suggest that νe ≫ νi though ν∗,e = ν∗,i. In Eq.(6.4), it is not

the normalized collision frequency but the real collision frequency that appears in

the form νa,eff = νa/ǫh. ωh and ωE are the same order between ions and electrons so

that the ratio between these terms in the denominator of Eq. (6.4),

(ωh + ωE)
2/ν2eff

is smaller for electrons than that for ions. Therefore, the finite-ωh effect in the ZOW

model is not as important for electrons than as for ions.
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Figure 6.6: (a) The electron radial particle flux, (b) the energy flux, and (c) the
parallel flow in the LHD case shown in Table 6.1.
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6.5 Bootstrap Current

The LHD bootstrap current is investigated among the drift-kinetic models. In

Fig.6.7, the bootstrap current is estimated by ion and electron parallel flows as

JBC = e(Zi〈vi,‖B〉ni − 〈ve,‖B〉ne)/Bax. (6.12)

It is found that the discrepancy of bootstrap current among the models increases

when Er rises. This indicates that the gap mainly comes from the effect of E ×

B compressibility on the ion parallel flow as it is found in Fig.6.3(a). The local

drift-kinetic models are divided into two groups, DKES-like and the others. In the

following discussion, the two extra terms in the ZOW model, Eqs.(4.33) and (4.34),

are ignored because it is found that the difference caused from these two terms is

negligible among the ZMD and the ZOW models. Neglecting the neE‖B term in

Eq.(4.29), the parallel momentum balance in a steady-state is written as

〈B · ∇ · (PCGL +Π2)〉a = 〈BFa,‖〉. (6.13)

The friction F‖ is estimated as follows: For ion, the friction between ions and elec-

trons is ignored because of large mass ratio. And, the parallel momentum balance

depends only on PCGL and Π2:

〈B · ∇ · (PCGL +Π2)〉i = 0. (6.14)

For electrons, not only the viscosity but also the electron-ion parallel friction Fei,‖

are considered. And the parallel friction is approximated by

Fei,‖ ≃ νei,‖mene(Vi,‖ − Ve,‖), (6.15)
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where νei,‖ is the parallel momentum-transfer frequency. The friction acting on ions

is ignored, Fie,‖ = −Fei,‖ so that the total parallel momentum is not conserved in

the simulation. Moreover, as explained in section 5.1, the electron-ion collision in

the simulation is simplified by the pitch-angle scattering operator Eq.(3.28) where

ion mean flow is ignored. Therefore, in the present simulation models, the electron

parallel momentum balance is approximated as

〈B · ∇ · (PCGL +Π2)〉e = −〈ν‖,eimeneVe,‖B〉. (6.16)

In Eqs.(6.15) and (6.16), the viscosity Π2 is directly influenced by the treatment of

the guiding center motion tangential to the flux surface. See Eqs.(4.32), (4.37), and

(4.40). JBS in the DKES-like model deviates from that in the ZOW and the ZMD

model. This shows that the incompressible-E ×B assumption in Π2 mainly causes

the difference in parallel momentum balance. Meanwhile, the contribution of the

tangential magnetic drift v̂m is minor in the parallel momentum balance equation be-

cause the difference is negligible between the ZMD and the ZOW models in Fig.6.7.

It should be noted that the approximation in the F‖,ei in our simulation is valid

when |V‖,e| ≫ |V‖,i|. Actually, the electron and ion parallel flows can become com-

parable. For a more quantitative evaluation of bootstrap current, the effect should

be considered when ion mean flow dominates the bootstrap current, for example,

when JBS is at Er > 30kV/m in Fig.6.7. This work is to investigate neoclassical

transport among the local drift-kinetic models so that the rigorous treatment of the

parallel friction is left in Part II.



6.5. Bootstrap Current 67

o
o
ts

tr
a
p
 c

u
rr

e
n
t 

[k
A

/m
2
]

Er [ kV/m ] 

  ZMD
  DKES-like

  ZOW
  FORTEC-3D

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

-20 -10  0  10  20  30  40  50

Figure 6.7: The bootstrap current in the LHD case
by combining Fig.6.3(a) with Fig.6.6(c).

Er [kV/m] Γ [1019/m2s] JBS [kA/m2] Qi[kW/m
2] Qe[kW/m

2]
Global -2.34 0.057 2.88 0.272 0.343
ZOW -2.59 0.089 3.23 0.614 0.515
ZMD -1.55 0.123 3.22 0.880 0.819
DKES -1.66 0.125 3.55 0.595 0.807
GSRAKE -1.73 0.089 N/A 0.519 0.628

Table 6.3: The ambipolar conditions of LHD in each model.
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Conclusions of Part I

A series of neoclassical transport benchmarks has been presented among the drift-

kinetic models in helical plasmas. The two-weight δf scheme is employed to carry

out the calculations of particle flux, energy flux, and parallel flow. The δf formu-

lation in this work allows the violation of Liouville’s theorem in a local drift-kinetic

approximation as in the ZOW model. The treatments of the convective derivative

term (vE + vm) · ∇fa,1 are different among the local drift-kinetic models. For ex-

ample, the ZOW model maintains the tangential magnetic drift v̂m which results in

the compressible phase-space flow, G 6= 0. On the contrary, in the ZMD and the

DKES models, the magnetic drift is completely neglected, but instead the phase-

space volume is conserved. The finite G term in ZOW brings O(δ2)-correction in

the particle, parallel momentum, and energy balance equations. The simulation

results have demonstrated that the ZOW and the ZMD models agree with each

other well in the wide range of Er value. This fact is a clear indication that the

O(δ2)-correction term is negligibly small in neoclassical transport calculation. The

only exception is around vE ≃ 0, where the ZMD and DKES-like models show the

very large peaks of neoclassical flux. Owing to the tangential magnetic drift v̂m, the

ZOW simulation evaluates the radial fluxes and parallel flows around Er ≃ 0 which

are much more smoothly dependent on Er and similar to those obtained from the
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global calculations.

Effects of the tangential magnetic drift v̂m becomes stronger under the following

conditions. First, according to the simulations, the tangential magnetic drift v̂m

is more obvious in LHD than W7-X and HSX. In W7-X and HSX, the magnetic

configuration is chosen so as to reduce the radial drift of trapped particles and

remains the neoclassical transport in 1/ν-regime. This reduces the peak value of

Γi at the poloidal resonance, ωE + ωh = 0 in Eq. (6.4), and results in the small

gap between the ZMD and the ZOW models in these machines compared to LHD.

Second, the effect is obvious in the low collisional plasma. At Er ≃ 0, the tangential

magnetic drift is required to avoid the poloidal resonance. Otherwise, the artificially

strong 1/ν-type neoclassical transport will occur. Third, the ZOW, ZMD, and

DKES-like models agree with one another in a series of electron simulations. The

discrepancies occur more clearly on the ions. This suggests that the conventional

local drift-kinetic models are sufficient for electron simulation.

The difference in the treatment of the E×B drift term has also been found to cause

a large error in neoclassical transport calculation. The assumption of incompressible

E×B drift in the DKES-like model results in the miscalculation of the neoclassical

transport for the larger poloidal Mach number of Mp > 0.4. Due to the mass

dependency of Mp ∝ vE/vth,a ∼ √
ma, the heavier ion Mp such as He and W

increases. Therefore, the parameter window in which the incompressible-E × B

approximation is valid will be narrower for heavier species.

Regarding the practical application, the neoclassical flux and bootstrap current are

evaluated at the ambipolar condition. The ion-root usually exists when Ti ≃ Te;

the electron-root appears when Ti ≪ Te[48]. The peak of Γi at Er = 0 is an

artifact of the ZMD and the DKES-like models. It suggests that the Te/Ti is the

threshold of transition between the ion-root and the electron-root. Therefore, the

magnitude of Te/Ti will be less/lower in the global and the ZOW models than in

the ZMD and the DKES models. The neoclassical transport varies drastically if
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the ambipolar-Er switches from an ion-root to an electron-root. Therefore, the

tangential magnetic drift term plays a decisive role in the local models for the

investigation of the ambipolar-root transition. Figure 6.7 indicates that the v̂m

term slightly affects the bootstrap current evaluation. Furthermore, the sign of the

bootstrap current may change when the ambipolar-Er transits from a negative to a

positive root. This will be also related to the study on the bootstrap current effect

on MHD equilibrium.

The dependence of neoclassical transport on radial electric field is studied. The obvi-

ous difference appears at Er ≃ 0 or Mp ∼ 1 among the drift-kinetic models. For the

practical application on helical devices, it is important for evaluating the neoclassical

fluxes at the ambipolar condition. The LHD ambipolar condition is investigated by

searching the Er value where ZiΓi = Γe. As shown in Table 6.3, the ambipolar-Er

values from different models are located between −2.6 and −1.5 [kV/m]. The ampli-

tude of electric field, radial flux, and bootstrap current at the ambipolar condition

are obtained by the interpolation as shown in Table 6.3. The ambipolar-Er magni-

tude of the ZMD model is close to the DKES-like and GSRAKE magnitudes, while

the ZOW model predicts closer Er to the global simulation. Around the ambipolar

condition, the bootstrap current amplitudes are just minor differences among the

drift-kinetic models. Owing to Ti ∼ Te, the ambipolar condition is on the ion-root.

In this case, the finite Er on the ion-root is sufficient to suppress the poloidal reso-

nance but insufficient to make an obvious gap by the E ×B compressibility. The

present case does not show any obvious advantage of the ZOW model compared to

the other local models. If the tangential magnetic drift v̂m increases or if the plasma

collisionality is lower, the ZOW model has a possibility that it becomes more reliable

than the other models in predicting the ambipolar-Er, bootstrap current, and radial

fluxes. The result of the ZOW model is close to the global simulation values so that

the code requires less computation resources than the global. For example, in the

LHD case, the ZOW model takes about 20% computational resources compared to
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a global calculation with the same number of radial flux surfaces. In local simula-

tion, one can choose a proper time step size according to the local parameters. On

the other hand, in a global code, the time step size is a common parameter for all

the markers. The step size must be small enough to resolve the fast guiding-center

motion in the core, but it is much too fine for the markers in the low-temperature

peripheral region. Another advantage of local simulation is fewer time steps to finish

a calculation than a global one. For a local model, the calculation can be stopped

after the time evolution converges on a single flux surface. For a global model, the

calculation has to be continued untill the whole the plasma reaches a steady state.

On the basis of the study in Part I, the particle flux, energy flux, and bootstrap

current of FFHR-d1 is studied in Part II. The FFHR-d1 magnetic configuration is

similar to LHD so that the present study on an LHD configuration provides useful

insight on the magnetic drift effect on the neoclassical transport in FFHR-d1. The

effect of the bootstrap current on the MHD equilibrium will play a more important

role in FFHR-d1 than that in present LHD operations because the central β will be

about 5%[11].

It is found that the v̂m term does not only decrease the height of the peak of Γi

but also changes the value of Er at which Γi(r, Er) peaks. The shift in Er in LHD

can be estimated by the bounce-averaged poloidal precession drift[3] of thermal ions

as in Eq.(6.5). The bounce-averaged magnetic drift for deeply-trapped particles is

approximated as

ωh ∼
vd
ǫtB0

∂B2,10(ρ)

∂r
〈cos(mθ − nζ)〉b

∼ −4vd
a

(7.1)

where ρ ≡ r/a and 〈· · · 〉b denotes the bounce-average over a particle trajectory

trapped in a helical magnetic ripple. The radial dependence of the helical component

is approximated as B2,10(ρ) ≃ 2(a/R0)B0ρ
2 according to the tendency found in the
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MHD equilibrium for LHD plasma. In Eq.(7.1), (θ, ζ) = (0, π/10) is chosen because

this is the bottom position of both toroidal and helical ripples. Substituting the

parameters B0, a, ǫt, and vd for the LHD case, the shift of the Γi-peak is estimated

as

Er ≃ −4Tiρ

eiR0

(7.2)

at which poloidal resonance ωE + ωh = 0 occurs. Eq.(7.2) agrees with the tendency

of the peak shift in Γi from the ZOW and the global models, which are Figs.8-10

in Matsuoka et al.[29] Since high-temperature discharge Ti > 10 keV is planned

in FFHR-d1, it is anticipated that the peak of Γi in the ZOW model will appear

more negative-Er which can be close to the ion-root Er value. In such a case, the

difference between the ZOW and ZMD models becomes significant in evaluating the

neoclassical transport level in the ambipolar condition.



Part II

Applications of the ZOW Model

to Bootstrap Current Calculations
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Chapter 8

Introduction

The study of the bootstrap current is necessary to reproduce accurately the MHD

equilibrium for high-beta plasmas. For the axisymmetric magnetic geometry, reliable

analytic formulas of bootstrap current is available[37]. For the non-axisymmetric

system, one needs to rely on numerical methods to evaluate the bootstrap current,

which is complicatedly dependent on the magnetic geometry, the collision frequency,

and the radial electric field. The past studies[31] presented the benchmark between

the Monte-Carlo global model VENUS+δf and the local semi analytical solution

SPBSC[47] in LHD. The bootstrap current between the VENUS+δf and the SPBSC

codes shows a systematic difference. Although the difference may be caused in

part by the finite-orbit-width effect, a missing discussion in that work is about

the treatment of collision term. The VENUS+δf code did not treat the friction

force between electrons and ions, while SPBSC solved the balance between parallel

viscosity and friction force as shown in later in Eq. (6.13) by analytic formula.

In order to carry out a more direct investigation on the impact of the parallel

friction on the bootstrap current calculations, this work performs the benchmark

among the ZOW model[29], DKES[46], and PENTA[38], which are all based on

local neoclassical models.
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In Part I, the benchmark of parallel flow is presented by the global, ZOW, ZMD

and DKES models. It found that the ZOW model agrees with the global model.

However, the collisions among the ions and electrons is expected to play an important

role, while the ZOW collision operator in Part I still does not certainty satisfy

Eq.(5.58). As discussed in Eqs.(6.15) and (6.16), for electron, the parallel momentum

balance is related to the electron-ion friction Fei,‖. For the investigation of the

parallel friction effect on the bootstrap current calculation, in Part II the benchmark

are performed among the ZOW[29], DKES[46], and PENTA[38] codes which are all

local neoclassical models.

The rest of Part II is organized as follows. In chapter 9, the improved collision oper-

ator in the ZOW Model are introduced. In chapter 10, it presents the application for

the FFHR-d1 DEMO reactor which includes the benchmark on the ion and electron

parallel flow, ambipolar condition and the collision frequency dependence. Then,

the conclusion of Part II is presented in chapter 11. In Appendix B, with tokamak

geometry, the benchmark are presented to investigate the intrinsic ambipolarity in

the ZOW model, the PENTA code, the DKES model.



Chapter 9

Collision Operator and Friction in

the ZOW Model

The ZOW model[19] solves the radially-local drift-kinetic equation by the δf Monte-

Carlo method, and the parallel friction F‖ is treated as follows. For the like-species

collisions, the linearized collision operators are employed and this satisfies the par-

allel momentum balance, i.e., F‖,ee = F‖,ii = 0. For ion, the ion-electron friction

F‖,ie is neglected because of the large mass ratio, me/mi ≪ 1. For electron, in the

previous work, the electron-ion collision was only approximated as the pitch-angle

scattering operator with the stationary background Maxwellian ion distribution,

i.e., Cei ≃ Lei. In the present work, not only the pitch-angle scattering but also the

parallel ion mean flow U‖,i are newly employed[18],

Cei ∼= Lei + νeiD
me

Te
U‖,iν‖feM. (9.1)

according to Eq.(5.58). With the new Cei operator, the electrons are exposed to the

friction F‖,ei which is roughly proportional to (U‖,e − U‖,i). In Eq.(9.1), the parallel
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ion mean flow U‖,i is given as

U‖,i =

〈
U‖,iB

〉

〈B2〉 B +

(
1

en

∂pi(ψ)

∂ψ
+
∂Φ(ψ)

∂ψ

)
Ũ‖. (9.2)

where 〈· · · 〉 represents a flux-surface average, and the pressure pi(ψ) and the elec-

trostatic potential Φ(ψ) are assumed as the flux-surface functions. The second term

in Eq. (9.2) represents the return flow of the diamagnetic and E × B flow, with

the assumption that these flows are divergence-free on the flux-surface[38]. The Ũ‖

term vanishes after taking the flux-surface average, i.e.,
〈
BŨ‖

〉
= 0. In Eq.(9.2),

the term
〈
U‖,iB

〉
is given from the ion simulations.

DKES solves the local and mono-energy drift-kinetic equation. Both ions and elec-

trons implement the pitch-angle scattering in the their collision operators

Ca ∼=
∑

b

La,b. (9.3)

Therefore, the momentum balance is not accurately satisfied in either the like- or

the unlike-species collision. Besides the original DKES in the work, the DKES-like

model is employed which is the DKES model with the same collision operators as the

ZOW model. For the PENTA model[38], Sugama-Nishimura method[42] is adapted

in order to re-interpret the diffusion coefficients from DKES so that the momentum

conservation is satisfied, i.e., F‖,ii = F‖,ee = 0 and F‖,ei = −F‖,ie.

Ideally, the PENTA model reproduces the intrinsic-ambipolarity in an axisymmetric

system. Verifications of the momentum correction method of PENTA and the new

electron-ion collision operator in the ZOWmodel in aximmetric tokamak is presented

in Appendix B.



Chapter 10

Application for the FFHR-d1

DEMO Reactor

10.1 Ion Parallel Flow

In Fig.10.1, the ZOW, DKES, and PENTA codes present the parallel flows under

the candiate of FFHR-d1 self-ignition operation.[11] The scale of FFHR-d1 is about

4 times larger than LHD. The plasma parameters on the magnetic axis are ne =

2× 1020/m3, T = 15 keV, B0 = 5.8T, and β0 ≃ 6%. It is assumed that the ion and

electron temperature are the same, and the pure deuterium plasma is assumed in

order to simplify the neoclassical transport simulation. Note here that the bootstrap

current effect on the MHD equilibrium is not taken into account in the simulations

results shown in this chapter. The neoclassical transport simulations are carried out

in the FFHR-d1 MHD equilibrium without toroidal current.

According to Eq.(6.14) and the models, the ion parallel flow depends on the viscosity

balance,

〈B · ∇ · (PCGL +Π2)〉i ≃ 0. (10.1)

In Fig.10.1(a), the parallel flow of the ZOW model agree with the PENTA well even
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though the F‖,ie is absent in the ZOW model. This suggests that the friction F‖,ie

is negligible as expected in the ZOW model in the Sec.9. Owing to the discrep-

ancy between the DKES and the PENTA models in Fig.10.1(a), the momentum

conservation is necessary even in the helical plasmas.
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10.2 Electron Parallel Flow

For the electrons, in Fig.10.1(b), the two ZOW simulation results are employed to

investigate the importance of the parallel ion mean flow U‖,i. The electron parallel

momentum equation is determined by

〈B · ∇ · (PCGL +Π2)〉e ≃
〈
F‖,eiB

〉
(10.2)

according to Eqs.(6.15) and (6.16). The friction F‖,ei with the finite U‖,i cause the

difference between the two ZOW simulation results. The PENTA result agrees with

the ZOW model with finite U‖,i better than the ZOW model without finite U‖,i.

The parallel momentum conservation is satisfied by finite U‖,i and the momentum

correction of the like-species collision, respectively. The proper parallel mean flow

U‖,i is necessary for the ZOW model to improve the collision operator on the electron

parallel flow calculation. Fig.10.1(b) shows the difference between the DKES and

the PENTA model as in the ion simulations.

10.3 Ambipolar Condition

In the estimation of neoclassical transport in helical plasmas, what is practically

important is to find the ambipolar radial electric field Eamb(r) which is determined

by the condition
∑
eaΓa(r, Er) = 0, and the radial profiles of Γa, Qa, and the

bootstrap current in the ambipolar condition. Here, the ambipolar neoclassical

transport in the FFHR-d1 canse is compared among the local models.

In Fig.10.2, the ambipolar-Er radial profile of ZOW, DKES, and PENTA simulation

results are shown. In this section, the result of GSRAKE code, which is used to

investigate the operation scenario of FFHR-d1 presently[11], is presented for refer-

ence, too. They shows the similar negative-Er profile, which are the ion-roots. In
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Fig10.3, the ion and electron parallel flows at the ambipolar conditions are presented,

respectively. According to the parallel flow profiles, in Fig.10.4, the radial profile of

the bootstrap current in the FFHR-d1 case is estimated by the ZOW, PENTA, and

DKES models. The bootstrap current from the ZOW model with finite U‖,i agrees

with PENTA. In the previous studies[29, 19] it is found that neglecting the tangential

magnetic drift in DKES and PENTA causes the overestimation of the ion radial par-

ticles flux when Er is small. This results in the difference in the ambipolar-Er values

as shown in Fig.10.1. However, in the present case, since 〈BJ‖〉 = 〈Bne(U‖,i−U‖,e)〉

from the ZOW model and PENTA have very weak dependence on Er, the bootstrap

current from these two codes agrees each other. The DKES result shows approxi-

mately 10 times larger magnitude of the bootstrap current than those from PENTA

and the ZOW models.

In Fig.10.5, the radial profile of radial flux is present. In Fig.10.6 and 10.7, the

heat fluxes of ion and electron both show the simular tendcy as the radial flux

in Fig.10.5. In Fig.10.5, the momentum-correction does not affect the radial flux

obviously compared to the bootstrap current. However, it shows that the radial

flux of the PENTA model is still twice as large as the ZOW. As it is discussed

in Sec. 7, the effect of the tangential magnetic drift on the determination of the

ambipolar condition is expected to be more significant in FFHR-d1 than LHD. It

is exected that the ZOW model will reproduce the dependence of Γi on Er close to

the global caclulation than DKES. Since PENTA relies on the DKES calculation

result, it has the same problem as DKES code when vE ∼ vm or Mp ∼ O(1).

However, to check which local model is closer to the global simulation result at

the ambipolar condition, it requires the huge amount of computation resource to

conduct the global code, especially to evaluate the ion mean flow U‖,i. This issue

will be studied in future work.
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10.4 Collision Frequency Dependence

In this section, the collision dependence of bootstrap current in FFHR-d1 Demo

are presented with the density which is four times denser than the particle density

shown in Sec. 10.1.To keep the plasma β value, the temperature is reduced by a

factor of 4. Therefore,the MHD equilibrium for test is the same as in Sec. 10.1. Note

that this choice of plasma parameter is not realistic for the helical reactor. We use

this case merely to study the effect of collisions on bootstrap current. Because the

collision frequency ν ∝ n/T 3/2, it increases 32 times from the original self-ingnition

condition.

In Fig.10.8, the ion and electron parallel flows are presented by the ZOW, DKES,

and PENTA models. In Fig.10.9, the bootstrap current are obtained from the results

in Fig.10.8. As the discussion in Sec.10.3, the ZOW and PENTA models agrees with

each other again. The maximum amplitude of 〈BJ‖〉/B2 on DKES is roughly ten

times as large as those from the ZOW and PENTA models. The positive peak

magnitude of bootstrap current density in PENTA and ZOW are both five times

lower than those in the original case in Fig.10.4. Consider the total toroidal current

It in FFHR-d1 Demo. They are evaluated by integrating the current density from

the magnetic axis to the plasma boundary. According to Table 10.1, the amplitude

of total toroidal currents It of ZOW and PENTA are decreased roughly by a factor

of ten. The negative It in the collisional case is due to the large negative 〈BJ‖〉 at

r/a > 0.8.

In the present benchmark, we do not try the self-consistent simulation between

the MHD equilibrium and bootstrap current. However, we find that the operation

under the high collision frequency is preferable to suppress the bootstrap current in

FFHR-d1 Demo.
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It[MA]
model / density n nc

PENTA 1.924 −0.188
DKES 13.85 0.251
ZOW 1.845 −0.203

Table 10.1: The total toroidal current It in FFHR-d1. The plasma density n and the
temperature T of the original self-ignition case in Table 6.1 is taken as the reference.
In the high collision frequency test, the plasma density nc and the temperature Tc
are given as nc = n ∗ 4, Tc = T/4 and nc ∗ Tc = const.
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Chapter 11

Conclusions of Part II

It is demonstrated that the pitch-angle scattering operator is sufficient for evaluating

the radial transport but it is insufficient for the bootstrap current calculation in

the helical plasmas. The collision operator is implemented as Eq.(9.1) in the ZOW

model. Besides the pitch-angle scattering, the proper friction is necessary to improve

the collision operator of the simulation, especially for the parallel electron mean flow.

The present study shows that both the momentum conservation in the like-species

collision and the friction on the electrons are important physics to estimate the

bootstrap current precisely. Furthermore, the ZOW model with the finite U‖,i and

the PENTA models present the intrinsic ambipolarity in the symmetric system as

shown in Appendix B. For the PENTA model, this is verification of the Sugama-

Nishimura method in the symmetric system. For the ZOWmodel, this demonstrates

the reliability of the new collision operator.

In the benchmark of the bootstrap current calculation in the FFHR-d1 case, a good

agreement between the ZOW model and PENTA are found. However, as demon-

strated in Appendix B, the PENTA simulation is affected by the incompressible-

E × B approximation used in DKES code when Er as the poloidal Mach number

Mp increases. Therefore, the applicability of the ZOW model for wider range of
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Mp value than DKES and PENTA codes can be regarded as the advantage of the

model, especially when we consider the ion impurity effect on the bootstrap current

and the radial fluxes in the future helical reactor, since Mp becomes larger for heavy

ions.

Following the demonstration in Sec.10.4, the magnitude of bootstrap current can be

decreased by increasing the collision frequency. The simulation shows that the high

collision frequency is preferable for suppressing the bootstrap current in FFHR-d1

Demo. According to the knowledge found in this study, a more collisional and low-β

operation scenario than the self-ignition example used here is recently proposed in

the study of the operation seraglio of FFHR-d1, in which β0 ∼ 2.5% and the fusion

gain is expected to be Q ∼ 10 [12]. It is shown in the work that the bootstrap

current amplitude solved self-consistently with the MHD equilibrium in the Q ∼ 10

case is reduced to the same level as in the high-collisionality case shown in Sec.10.4,

Fig.10.9. The present verification of the ZOW model and PENTA code contributes

to increasing the reliability of the numerical simulations applied to such prediction

studies of the operation of future reactors.



Chapter 12

Summary

12.1 Verification of the Neoclassical Transport Mod-

els in Helical Plasmas

The drift-kinetic models in helical plasmas are benchmarked via the series of the neo-

classical transport simulations. Here, the drift-kinetic models are the ZOW, ZMD,

DKES-like, and global models. The helical device geometries of LHD, W7-X, and

HSX are employed in the benchmarks. The two-weight delta-f scheme is employed

to carry out the calculations of particle flux, energy flux, and parallel flow. The

global model solves the drift-kinetic equation in 5-dimensional phase space (3D in

position × 2D in the velocity space) which solves the exact guiding-center trajecto-

ries in the phase space. The local models adopt approximation in the guiding-center

trajectories so as to reduce the dimension of the problem from 5 to 4 or 3. The

Zero-Orbit-Width (ZOW) model drops the radial component of magnetic drift mo-

tion while it maintains the tangential component to the flux surface. In the ZMD

and the DKES-like models, the magnetic drift is completely neglected, but instead

the phase-space volume is conserved. Furthermore, the kinetic energy is taken as

constant parameter in the DKES-like model. The ZOW model breaks the Liou-
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ville’s theorem because of the compressible phase-space flow. On the contrary, in

the ZMD and the DKES models, the phase-space volume is conserved. We adopted

a new delta-f method which enables the two-weight scheme adaptable to the case in

which the phase-space volume is not conserved. In the ZOW model, the variation in

the phase-space volume is estimated to bring the O(δ2) extra contributions in the

particle, parallel momentum, and energy balance equations, where δ is a small order-

ing parameter in the drift-kinetic theory. The simulation results have demonstrated

that the ZOW and the ZMD models agree with each other well in the wide range

of Er magnitude. This proves that the O(δ2) contributions are indeed negligible in

neoclassical transport calculation. Around Er ∼ 0 , the ZMD and DKES-like models

show the extra large neoclassical flux peaks. Owing to the tangential magnetic drift

in the ZOW model, the radial fluxes and parallel flows around Er ∼ 0 are smoothly

dependent on Er and similar to the global results.

The effects of the tangential magnetic drift become stronger under the following con-

ditions. First, the effect is related to the magnetic geometry and it is more obvious

in LHD than in W7-X and HSX. In W7-X and HSX, the magnetic configuration is

optimized in order to reduce the radial drift of trapped particles. This reduces the

magnitude of the particle fluxes at the poloidal resonance around Er ∼ 0. Then,

the difference strength of the poloidal resonance results in the small gap between

the ZMD and the ZOW models in these machines compared to LHD. Second, the

effect is obvious in the lower collision frequency case. Around Er ∼ 0, the tangen-

tial magnetic drift helps to avoid the poloidal resonance. Otherwise, the artificially

strong 1/ν-type neoclassical transport will occur. Third, the ZOW model agrees

with the ZMD, and DKES-like models in the electron simulations. The discrepan-

cies of the simulation occur on the ions only. This suggests that the conventional

local drift-kinetic models are sufficient for electron simulation.

It is found that the difference treatment of the E × B drift term is related to

the error in the neoclassical transport calculation. In the DKES-like model, the
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incompressible E×B drift assumption causes the mis-estimation of the neoclassical

transport as the poloidal Mach number is larger than 0.4, Mp > 0.4. Due to the

mass dependency of Mp,a > vE/vth,a, the Mp increases for the heavy ion. Therefore,

the parameter window in which the incompressible-E × B approximation is valid

will be narrower for the heavier species E ×B.

Regarding the practical application, the neoclassical flux and bootstrap current are

evaluated at the ambipolar condition. The ion-root usually exists as Ti ≃ Te ; the

electron-root that appears as Er ∼ 0 in low-collisionality plasma is an artifact in

the ZMD and the DKES-like models. The magnitude of the ratio Te/Ti represents

Ti ≪ Te. The strong ion particle flux peaks at the threshold of the transition between

the ion-root and the electron-root. The benchmark result suggests that the Te/Ti

threshold will be lower in the global and the ZOW models than in the ZMD and

the DKES models. The neoclassical transport varies drastically if the ambipolar-Er

switches from an ion-root to an electron-root. Therefore, the introduction of the

tangential magnetic drift in a local code plays an important role in investigating the

ambipolar-root transition. According to the simulations, the magnetic drift slightly

affects the parallel flow and the bootstrap current evaluation. However, the sign of

the bootstrap current may change when the ambipolar-Er transits from a negative

to a positive root. Then, the accurate expectation for the ambipolar-Er is also

important for bootstrap current evaluation in helical plasmas.

In the simulations, steady-state solution of parallel flow is obtained by the parallel

momentum balance equation. For the ZOW model, the extra terms, from compre-

hensibility in the phase space and the viscosity, do not influence the parallel flow.

Compared to the radial flux, the magnetic drift does not influence the parallel flow

strongly at Er ∼ 0, even in the low-collisionality LHD and W7-X cases. On the other

hand, the discrepancies of parallel flows at large-Mp appear as clearly as that of

the radial flux. The resonance occurs on trapped particles, which cannot contribute

to parallel flow. The influence of resonance is passed to the passing particles via
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collisions to change the momentum balance. The parallel flows peak at Er = 0 is

much less than the radial flux peaks because it is driven by this indirect mechanism.

In the work, it is found that the tangential magnetic drift not only decreases the

magnitude of the particle fluxes peak but also changes the peak position. Since the

discharge temperature could be up to Ti > 10 keV in the FFHR-d1 helical reactor,

it is anticipated that the radial ion flux peak in the ZOW model will tend to appear

much more negative Er side than that in LHD. This is related to the ion-root Er

magnitude. Therefore, the difference between the ZOW and ZMD models becomes

significant to evaluate the neoclassical transport in the ambipolar condition.

This work demonstrates the advantage of ZOW as follows. (1) The ZOW model

is able to mitigate the unphysical behavior in the radial neoclassical flux around

Er ∼ 0, and (2) it also improves the reliability of the bootstrap current evaluation

in helical plasmas compared to the conventional local models, i.e., ZMD and DKES.

ZOW also reduces the computation cost compared to the global model.

12.2 Applications of the ZOW Model to Boot-

strap Current Calculations

The importance of the parallel momentum conservation on the bootstrap current

evaluation in nonaxisymmetric systems is demonstrated by the benchmarks among

the local drift-kinetic equation solvers, i.e., the Zero-Orbit-width (ZOW), DKES,

and PENTA codes. The verification and application are carried out in an FFHR-

d1 helical DEMO reactor case. The ZOW model is extended to include the ion

parallel mean flow effect on the electron-ion parallel friction. In the DKES model,

collision term is approximated by the pitch-angle-scattering operator, which does not

ensure the momentum balance. The PENTA model employs the Sugama-Nishimura

method to correct the momentum balance of the DKES results. The ZOW and
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PENTA models agree with each other well on the calculations of the bootstrap

current. The DKES results without the parallel momentum conservation deviate

significantly from those from the ZOW and PENTA models. It is well-known that

the pitch-angle scattering operator is enough to evaluate the radial neoclassical fluxes

in helical plasmas. In the present study, however, it is clearly demonstrated that the

pitch-angle scattering operator is insufficient for the bootstrap current calculation.

The present study shows that both the momentum conservation in the like-species

collision and the friction on the electrons are the important physics for estimating

the bootstrap current correctly. The electron-ion collision operator in the ZOW

model drift-kinetic equation is improved in order to treat the correct friction force

on the electrons with the ions which have finite parallel mean flow. This work is

also the first report of verification of the ZOW and PENTA for bootstrap current

calculations. It is demonstrated that the PENTA result agrees with the result

of ZOW with the improved electron-ion collision operator. These two codes will

serve to improve the accuracy of the bootstrap current calculation in general helical

plasmas. In the application for FFHR-d1, it is found that the magnitude of the

bootstrap current becomes the order of MA, which may affect the MHD equilibrium.

However, the application for FFHR-d1 demonstrates that the bootstrap current is

drastically reduced by choosing a more collisional operation scenario.



Appendix A

Derivation of Viscosity Tensor

The parallel moment equation is derived from Eq.(4.1) with A = mv‖,

∂

∂t

(∫
d3vfmv‖

)
+∇ ·

(∫
d3vfmv‖Ẋ

)

=

(∫
d3vfmv̇‖

)
+

(∫
d3vfmv‖[S + C]

)

+

∫
d3vfmv‖G. (A.1)

With v̇‖ in the global model, Eq.(4.27), we have the following relation

∇ ·
(∫

d3vfmv‖Ẋ

)
−
(∫

d3vfmv̇‖

)

= ∇ ·
(∫

d3vfmv2‖b

)
+

∫
d3vfb · (µ∇B − eaE)

+∇ ·
(∫

d3vfmv‖Ẋ⊥

)
−
∫
d3vfmv‖Ẋ⊥ · κ

= b ·
{
∇ ·
(∫

d3vf
[
mv2‖bb+ µB (I − bb)

])}

+ b ·
{
∇ ·
[∫

d3vfmv‖

(
bẊ⊥ + Ẋ⊥b

)]}

− eaE‖

∫
d3vf. (A.2)
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Then, with G = 0 in the global model, Eq.(4.25) is obtained by rewriting Eq.(A.1),

∂

∂t
(nmV‖) + b · (∇ · P )

= neaE‖ + F‖ +

∫
d3v Smv‖, (A.3)

where

P ≡ PCGL +Π2, (A.4a)

PCGL ≡
∫
d3v [(mv2‖bb+ µB(I − bb)]f, (A.4b)

Π2 ≡
∫
d3v mv‖

(
Ẋ⊥b+ bẊ⊥

)
f. (A.4c)

It should be noted that the Ẋ⊥ ·κ term in Eq.(A.2) is involved in the symmetry of

the Π2 tensor. On the other hand, Eq.(A.2) is independent of the explicit form of

Ẋ⊥.

For the ZOW model, the parallel momentum balance equation is calculated with

ẊZOW = v‖b+ vE + v̂m and

v̇‖ = − 1

m
b · (µ∇B) + v‖vE · ∇⊥B

B
= − 1

m
b · (µ∇B) + v‖ẊZOW · κ

− v‖

(
ẊZOW · κ− vE · ∇⊥B

B

)
. (A.5)

Then, the last term in Eq.(A.5) is rewritten as

ẊZOW · κ− vE · ∇⊥B

B

= (v̂m + vE) · κ− vE · ∇⊥B

B

= (v̂m + vE) ·
(∇⊥B

B
+
µ0J ×B

B2

)
− vE · ∇⊥B

B

= [vm · (I −∇ψeψ)] ·
(∇⊥B

B
+
µ0∇p
B2

)
+ vE · µ0∇p

B2

= − 1

B

∂B

∂ψ
ψ̇. (A.6)
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Therefore, Eq.(4.30) is obtained. Here, according to the low-β approximation κ ≃

∇⊥B/B, the magnetic drift is approximated as

vm ≃ B ×∇B mv2

2eaB3

(
1 + ξ2

)
. (A.7)

Using this v̇‖ for the ZOW model, Eq.(A.2) is rewritten as

∂

∂t

(∫
d3vfmv‖

)

+ b · ∇ · [PCGL +Π2.ZOW]

= F‖ +

(∫
d3vfmv‖S

)
+

(∫
d3vfmv‖G

)

+

(∫
d3vfmv‖

1

B

∂B

∂ψ
ψ̇

)
, (A.8)

where

b · ∇ ·Π2,ZOW

= b ·
{
∇ ·
[∫

d3v f m v‖

(
bẊ⊥,ZOW + Ẋ⊥,ZOWb

)]}
. (A.9)

For the ZMD model, the parallel momentum balance equation is calculated with

ẊZMD = v‖b+ vE and

v̇‖ = − 1

m
b · (µ∇B) + v‖vE · ∇⊥B

B
. (A.10)

Because of the difference of Ẋ⊥ between ZOW and ZMD, one finds that

vE · ∇⊥B

B
− ẊZMD · κ

= vE · ∇⊥B

B
− vE ·

(∇⊥B

B
+
µ0J ×B

B2

)

= 0. (A.11)
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Then, the parallel momentum balance equation fo the ZMD model becomes

∂

∂t
(nmV‖B) +B · ∇ · (PCGL +Π2,ZMD)

= F‖B +B

∫
d3v S1 mv‖, (A.12)

where

b · ∇ ·Π2,ZMD

= b · ∇ ·
[∫

d3vfmv‖

(
bẊ⊥,ZMD + Ẋ⊥,ZMDb

)]

= b · ∇ ·
[
nmV‖ (bvE + vEb)

]
. (A.13)

Note that Eq.(A.13) is equivalent to Eq.(33) in Ref[23].

For the DKES model, the parallel momentum balance equation is calculated with

ẊDKES = v‖b+ v̂E and

v̇‖ = − 1

m
b · (µ∇B) , (A.14)

which lacks in the Ẋ ·κ term. Therefore, the balance equation of parallel momentum

becomes

∂

∂t

(∫
d3vfmv‖

)
+ b · ∇ · [PCGL +Π2.DKES]

= F‖ +

(∫
d3vfmv‖S

)
− nmV‖v̂E · κ, (A.15)

where Π2,DKES is

b · ∇ ·Π2,DKES = b ·
{
∇ ·
[
nmV‖ (bv̂E + v̂Eb)

]}
. (A.16)

Note that b · ∇ ·Π2.DKES + nmV‖v̂E · κ is equivalent to Eq.(34) in Ref[23], and in

the derivations shown in Appendix A, we use assumptions p = p(ψ), J ×B = ∇p,
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and E = −∇Φ(ψ).

In conclusion, if we define the Π2 as a symmetric tensor in local models, an extra

term appears in the right-hand-side of the parallel momentum balance equation for

the ZOW and DKES models.



Appendix B

Benchmark of the Intrinsic

Ambipolarity in Tokamak

Geometry

In axisymetric tokamak, the neoclassical flux is defined as

〈Γa · ∇ψ〉 ≡ −I
〈
Fa,‖ + naeAE‖

eaB

〉
, (B.1)

where I(ψ) = RBψ. Then,
∑

a

ea 〈Γa · ∇ψ〉 = 0 (B.2)

because of

∑

a

Fa = 0 and
∑

a

eana = 0.

Eq.(B.2) shows the intrinsic ambipolarity. The other important property of neo-

classical transport in tokamak is that the radial fluxes and bootstrap current are

independent of the radial electric field, as far as the momentum conservation prop-

erty of collision operator and the slow-flow ordering vE ≪ vth are satisfied. For
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example, the ion heat flux in the large-aspect-ratio limit in the banana regime is

given as

〈qi · ∇ψ〉 = −0.92ft
niTiI

2

miΩ2
i

dTi
dψ

(B.3)

where x ≡ v/(vth,i) and the effective fraction of trapped particle is denoted as ft.

Since the momentum conservation is the essential physics in these properties, bench-

marking the drift-kinetic models in a tokamak geometry is a good demonstration to

prove that the collision operator works correctly.

In the benchmark, a circular cross section tokamak is considered. The plasma pa-

rameters used in the simulations are shown in Table B.1. We benchmark the original

DKES code, PENTA code, and the ZOW model. The PENTA code utilizes with

Sugama-Nishimura method in Sec. 9. The ZOW models is extended to two types:

with and without the finite ion parallel flow U‖,i in the electron-ion collision operator

Eq.(9.1). In the section, the intrinsic ambipolarity in tokamak is demonstrated in

order to examine the momentum conservation property in each models.

In Fig.B.1, the ion radial fluxes are shown and there are three trendies. First, the

result of ZOW shows the independence of the magnitude of Er. As discussed in

Eq.(B.1), Γi depends on the ion-electron friction Fie,‖. Since Fie,‖ is neglected in the

ZOW model, the magnitude of ion raidal flux is almost zero. Second, the result of

DKES is strongly proportional of the magnitude of Er. This shows the pitch angle

scattering is deficient to evaluate the ion radial flux in tokamak. Third, the results of

DKES-like and PENTA are constant for small Er but they depend on Er at Er > 4

kV/m. The tendency can be consider as the effect of incompressible-E × B as

discussed in Part I. The Γi magnitude of DKES-like model is nearly zero for samll-

Er, because it employees the same collision operator as ZOW which conserves the

parallel momentum in the ion-ion collisions. In contrast to DKES-like and ZOW,

the momentum correction method of PENTA takes Fie,‖ into account. This leads to

the finite Γi in PENTA at |Er| < 4 kV/m.
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In Fig.B.2, the electron radial fluxes are shown and there are two groups:(1) ZOW

with U‖,i, PENTA, DKES-like with U‖,i and (2) DKES, and DKES-like. The result of

the first group is independent of the magnitude of Er but the second shows opposite

results. This implies that the requirement of the electron-ion friction with finite Ui,‖

in the calculation of electron neoclassical transport. In contrast with Γi in Fig.B.1,

in Fig.B.2 the effect of incompressible E ×B is weak. It comes from the difference

in the poloidal Mach number of ion and electron. In the work, we assume the same

temperature of ion and electron, Ti = Te. Then, the velocity of ion and electron

becomes vth,i ≪ vth,e because of mass ratio. Therefore, Mp,i ≫ Mp,e.

According to Figs.B.1 and B.2, the intrinsic ambipolarity Γi = Γe is satisfied only in

the PENTA calculation at at |Er| < 4 kV/m. This demonstrates that the momen-

tum conservation not only in like-species collisions, F‖,ii = F‖,ee = 0, but also the

exact momentum transfer between ions and electrons, F‖,ie = −F‖,ei, are necessary

to reproduce the intrinsic ambipolarity.

In Figs.B.3 and B.4, the tendencies of ion and electron energy fluxes are similar to

those of the radial fluxes, respectively. In the ion energy fluxes, finite and constant

difference is found between the results of PENTA and ZOW. Since Γi ≃ 0 in ZOW,

this small discrepancy will be attributed to the convective part in the energy flux,

Qi = qi +
5

2
ΓiTi, where q is the conductive heat flux.

In Fig.B.5, the the ion parallel flow 〈BU‖〉i and electron parallel flow 〈BU‖〉e from all

the models are plotted. It can be seen that the parallel flows have linear dependence

on Er. Then, Fig.B.6 is obtained by

〈BU‖〉i − 〈BU‖〉e
B2

∝ 〈BJ‖〉. (B.4)

The bootstrap current simulations are divided into parts:(1) ZOWwith U‖,i, PENTA,

DKES-like with U‖,i and (2) DKES, and DKES-like. The result of the first group

does not depends on the magnitude of Er as the analytic theory predicts. The boot-
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strap current are constant if the momentum conservation is satisfied by Sugama-

Nishimura method or if F‖,ei with finite U‖,i is considered. The result of DKES

depends on the magnitude of Er slightly and the DKES-like model without U‖,i

cannot evaluate the bootstrap current correctly. DKES-like with and without the

finite U‖,i consider the same like-species collision operator, Cii and Cee. The only

difference is that the U‖,i-term in Cei. This indicates the importance of U‖,i in the

parallel momentum balance equation of electrons if we would like to evaluate the

correct bootstrap current, since the parallel friction F‖,ei is roughly proportional

to 〈BU‖〉i − 〈BU‖〉e, that is, bootstrap current. On the other hand, the present

benchmark result ensures that the neglect of Cie in the parallel momentum balance

equation of ions is valid for bootstrap current calculation.
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Table B.1: Parameter for Benchmark of Local Drift-kinetic Model

x ≡ r/a R0[m] a[m] B0[T ] ι n[ 1

m3 ] T [kev] d
dx

lnn d
dx

lnT vth[m/s]
0.2950 2.35 0.47 1.90 0.97 9.22×1018 1.84 -0.58 -0.58 5.94×105
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Figure B.1: The radial ion flux in the tokamak
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Figure B.2: The radial electron flux in the tokamak
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Figure B.4: The electron heat flux in the tokamak
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