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Abstract

This thesis describes how to tackle problems in bioinformatics and cheminformatics using

Bayesian methods. Bayesian methods can be used to solve inverse problems in various

fields in academia and industry, but their application to real-world problems is usually

complex. To capture the behavior of complex systems, the models of these systems also

need to be complex and often contain various unknown and interacting parameters. For

these reasons, obtaining solutions to these problems is difficult, and cannot be achieved only

through a conjugate prior distribution or standard Monte Carlo methods. When dealing with

a problem involving a high-dimensional parameter space, simple Monte Carlo methods such

as rejection sampling or importance sampling are numerically intractable due to the curse of

dimensionality. Although the Markov chain Monte Carlo (MCMC) method is often used as

an alternative approach, it suffers from the local-trap problem. To deal with the local-trap

problem, many existing methods use a tempering technique to lower the energy barrier

between two different modes. In this thesis, a new MCMC method is developed, called the

repulsive parallel MCMC (RPMCMC) method. It generates parallel Markov chains, and uses

repulsive forces among the chains to explore the entire sampling space. A few methods which

used RPMCMC were confirmed to work well for a synthetic multi-modal target distribution

when compared to a simple Metropolis sampler.

One of the main contributions of this thesis is the introduction of two novel applications

of the RPMCMC method in the context of Bayesian modeling. The first application we

consider is in the field of bioinformatics, and is called the motif discovery problem. The aim

of this problem is to find recurring patterns of conserved short strings that appear in a large

fraction of nucleotide sequences. These patterns and locations can aid in the understanding
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of important biological processes since the pattern preservation indicates the important

biological processes occur there. Since recent experimental technologies called ChIP-seq

can produce large numbers of fractions, many existing algorithms need to be reconstructed

to deal with the increasing volume of data within an acceptable time. One major drawback

of the existing methods, such as Gibbs sampling, arises from the highly multimodal posterior

distribution since many and diverse motifs are present in a given sequence. Once the generated

Markov chain is stuck in a locally high-probability region, it is difficult for an algorithm to

escape from that region within a finite time. This problem has received little attention in

previous studies. The aim of the RPMCMC approach is to achieve a high detection accuracy

while keeping the computational efficiency at an acceptable level. The proposed method is

designed to detect a greater diversity of motifs which existing methods are unable to discover.

In experiments, compared to the original method using a standard Gibbs sampler, this all-at-

once interacting parallel run can detect many more diverse motifs. Furthermore, this method

was comprehensively tested on synthetic promoter sequences and real ChIP-seq datasets.

In a synthetic promoter analysis, the RPMCMC algorithm found around 1.5 times as many

embedded motifs as existing methods. For the ChIP-seq datasets, the RPMCMC algorithm

obtained far more reliable cofactors than other recently published ChIP-tailored algorithms.

Computational molecular design has great potential to save time and reduce costs in the

discovery and development of functional molecules. Our second objective is to discover

promising molecules that exhibit various kinds of desirable properties. Some previous studies

tackled this issue with genetic algorithms (GAs) and molecular graph enumeration. The

primary problem with these methods, the generation of unfavorable structures, was avoided

by introducing many incomprehensive rules. An alternative approach, called the fragment

assembly method, suffers from restricted design space and large computational loads. Our

Bayesian molecular design begins by introducing a set of machine learning models that

forwardly predict properties of a given molecule for multiple design objectives. These

forward models are inverted to the backward model through Bayes’ law, in combination

with a prior distribution. This gives a posterior probability distribution conditioned on a

desired property region. Exploring high-probability regions of the posterior distribution with
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the sequential Monte Carlo (SMC) method, molecules that exhibit the desired properties

are identified. The most notable feature of this workflow is it’s novel backward prediction

algorithm. In this study, a molecule is described by an ASCII string in the SMILES format.

To reduce the occurrence of chemically unfavorable structures, a chemical language model

is trained, which acquires commonly occurring patterns of chemical substructures by the

natural language processing for the SMILES language of existing compounds. The trained

model is used in the SMC algorithm to recursively refine SMILES strings of seed molecules

such that the properties of the resulting molecules fall in the desired property region while

eliminating the creation of unfavorable chemical structures. The effectiveness of this method

was demonstrated with case studies in multi-objective molecular design aimed at investigating

the physical properties (HOMO-LUMO gap and internal energy) and bio-activities of 10

target proteins.
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Chapter 1

Introduction

1.1 Bayesian analysis

To model physically realistic and complex systems with statistical models, it is necessary

to use methods which have a high expressive power. One of the most widely used models

is the Gaussian mixture model. Estimation and inference of the Gaussian mixture model

parameters can be achieved by the EM algorithm [104, 86]; however, typically this requires

iteration and may not converge to the globally optimal parameter estimates, as there are often

multiple peaks in the likelihood function. In addition, estimating the number of components

in the model is also nontrivial [39].

Bayesian methods provide powerful tools to solve inverse problems in scientific and

industrial fields [118, 83, 114, 10, 65, 97]. Consider a typical feature of inverse problems,

the number of output dimensions is more than the number of input dimensions, meaning this

problem is ill-posed; however, these problems can be solved by introducing prior information

in the form of the prior distribution and incorporating this information into the statistical

models. Bayesian models can be fitted even when the number of observations is small,

and these models avoid the overfitting often encountered with frequentist approaches such

as maximum likelihood estimation (MLE). When Bayesian methods first started to gain

widespread attention, computational resources were scarce, so prior distributions had to be

restricted to the conjugate prior form. The conjugate prior gives a posterior distribution
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having the same form as the prior distribution, thus reducing the computation time required

for model fitting and inference. This, however, narrows the range of applications for the

Bayesian approach.

With advances in computer power, the above restrictions are being gradually relaxed,

making it easier to use more flexible Bayesian techniques, including non-linear models

such as Gaussian processes [34], deep hierarchical models with complex interactions [16],

or structures such as trees [19, 4] and graphs [91, 36]. A representative method using a

non-conjugate prior is Monte Carlo inference, which uses particles or a sequence of random

variables to approximate the posterior distribution.

However, the problem is not so simple. Most parts of things that appear in our world show

diversity. This diversity is necessary to provide robustness to the biological system, resulting

in the furnishing of more opportunities to survive under critical environmental changes over

a long period of time. Problems can arise when we try to analyze a system containing such

diversity; that is to say, the posterior distribution consists of a mixture of many components,

making the shape of the distribution non-convex with multiple peaks. When dealing with the

inference problem in a high-dimensional parameter space, simple Monte Carlo methods such

as rejection sampling or importance sampling are numerically infeasible due to the curse of

dimensionality. Although the Markov chain Monte Carlo (MCMC) method is often used as

an alternative, it suffers from the local-trap problem for target distributions with multiple

peaks.

To deal with the local-trap problem, many existing methods use a tempering technique

to lower the energy barrier between two different modes [35]. Here, we developed the new

MCMC method, called the repulsive parallel MCMC (RPMCMC), using a novel approach.

It generates parallel Markov chains, and uses repulsive forces among the chains in order to

explore the entire sampling space. A few methods using RPMCMC were confirmed to work

well for a synthetic multi-modal target distribution, when compared with a simple Metropolis

sampler [79] in an experiment.
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1.2 Applications

This thesis considers applications of Bayesian modeling for problems in biology and chem-

istry. Past research has shown for events in these fields that latent factors have an observable

effect on final outcomes [26, 75, 99].

Two novel applications based on Bayesian techniques were introduced in this thesis[63,

62]. The first problem is considered important in bioinformatics, and is called the motif

discovery problem. The goal of this problem is to find recurring patterns of conserved short

strings that appear in a large fraction of nucleotide sequences. Identification of these patterns

can lead to the discovery and understanding of important biological processes. Recently,

the experimental ChIP-seq technologies have produced many more fractions than before,

requiring existing algorithms to be reconstructed to handle large volumes of data within

an acceptable time. Recent de novo motif discovery methods can be classified into either

model-based optimization ([105]) or word-count approaches (DREME [115], Hegma [61]).

Although they increase computational efficiency, they reduce the accuracy in motif detection

since they use heuristics to speed up their computation. For the motif discovery problem, we

obtained a superior result by using the RPMCMC algorithm.

The second problem focuses on the design of new molecules having desired properties.

Computational molecular design has great potential to achieve enormous savings in time

and cost during the discovery and development process of functional molecules, and it

can be applied to a wide range of chemicals such as drugs, dyes, solvents, polymers, and

catalysts. The objective of this problem is to computationally create novel molecules that have

several desired properties. Some previous studies tackled this issue using genetic algorithms

(GAs) [90] and molecular graph enumeration [129]. The main drawback of these methods,

the generation of unfavorable structures during operation, needs to be avoided by introducing

many incomprehensive rules. An alternative set of methods, called fragment assembly

methods [122], suffer from a restricted design space and large computational loads. The

distinguishing feature of our proposed algorithm is that a pattern of molecules expressed by

ASCII strings called SMILES is learned using a method for natural language processing. The

trained model is incorporated in the sequential Monte Carlo (SMC) algorithm to recursively
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refine SMILES strings of seed molecules such that the properties of the resulting molecules

fall in the desired property region while eliminating the creation of unfavorable chemical

structures. The effectiveness of the method was demonstrated with case studies in multi-

objective molecular design aimed at obtaining desired physical properties (HOMO-LUMO

gap and internal energy) and bio-activities of 10 target proteins.

1.3 Thesis outline

This thesis is divided into three parts: the development of a Bayesian sampling method

to overcome the local-trap problem encountered when inferring parameters of a posterior

distribution, and its applications in two distinct fields.

Chapter 2 introduces the Bayesian techniques, including approaches with a non-conjugate

prior, which are used in this thesis. These techniques are grouped into two types, deterministic

or stochastic algorithms. Chapter 2 will provide a few examples of both types, with a special

focus on Monte Carlo inference. Beginning from elementary methods such as importance

sampling, we describe the basic idea of the Markov chain Monte Carlo (MCMC) method

and its variants, and how to deal with problems when considering the posterior distribution

having multiple isolated peaks. Before going into the specifics of algorithms, we show that

a basic MCMC algorithm based on a random walk transition is ineffective. After that, we

show several approaches, including the RPMCMC method, to overcome the problem arising

with the standard MCMC through a simple comparison.

Chapters 3 and 4 describe applications of the above methods to problems in biology and

chemistry. Chapter 3 shows that the RPMCMC algorithm avoids the local-trap problem

arising when using the standard Gibbs sampler which is a widely used MCMC algorithm

for motif discovery. The RPMCMC algorithm outperformed other existing methods for

both a synthetic dataset and a real dataset. Furthermore, using the RPMCMC algorithm led

to previously published discoveries although other existing methods missed to find them.

Chapter 4 describes an attempt to construct the model for Bayesian sampling for one of the

most important problems in cheminformatics, the inverse-QSPR problem. Although it is an
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important problem, few researchers have tackled it, since it entails too large a chemical space

to find an optimal solution. The proposed chemical structure representation based on the

statistical language model is used for constructing an informative prior distribution, and this

prior can be easily incorporated into the SMC sampler to achieve the generation of diverse

chemical structures from the posterior distribution corresponding to the inverse-QSPR model.





Chapter 2

Bayesian analysis and Monte Carlo

methods

In this chapter, we will describe the basic ideas of the Bayesian inference and some examples

strongly relating to applications described in chapter 3 and chapter 4. Some of elementary or

theoretical items are left in Appendices.

2.1 Posterior inference in Bayesian models

In a Bayesian perspective, a target quantity containing uncertainties wants to be inferred

from observed data. Various types of Bayesian approaches have been reported [8, 109, 9].

The Bayesian model can be generalized as follows:

1. the sampling model that data Y is obtained from, with unknown parameter θθθ ∈ΘΘΘ for

the conditional distribution, is given by

Y∼ p(Y|θ), (2.1)

2. a marginal distribution p(θθθ) for a quantity θθθ ∈ΘΘΘ, which is called the prior distribution,

is given by

θθθ ∼ p(θθθ). (2.2)
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Bayes’ theorem can convert prior knowledge into posterior knowledge by incorporating

observations. When observing data Y, Bayes’ theorem gives the posterior distribution as

p(θθθ |Y) =
p(Y|θθθ)p(θθθ)

p(Y)
, (2.3)

where p(Y|θθθ) is the likelihood function which shows how likely it is that the observations Y

occurred under parameter θθθ . The denominator of the right-hand side does not depend on θθθ .

2.1.1 Conjugate prior

Conjugate priors are useful for simplifying the computation of the posterior distribution.

When a conjugate prior is chosen for a particular model (likelihood form), the corresponding

posterior distribution belongs to the same family as the prior distribution.

Multinomial likelihood and Dirichlet prior

The example shown here is a model widely used for sequence analysis such as DNA

and protein sequences in bioinformatics [73, 37]. The ZOOPs model used in Chapter 3 is a

variant of this model which contains latent variables.

Here, it is assumed that a DNA string with N letters, y = {y1, · · · ,yN} is observed,

where yi ∈ Σ = {a, t,c,g} for every i. Suppose that these letters are i.i.d. samples from the

multinomial distribution with unknown parameters θθθ ; then the corresponding likelihood

function is

p(y|θθθ) = ∏
k∈Σ

θ
∑

N
i=1 I(yi=k)

k , (2.4)

where I is the indicator function, and the parameter vector θθθ must satisfy ∑k θk = 1. In this

case, the Dirichlet prior is conjugate. Using the Dirichlet distribution with hyperparameter ααα

for the prior of θθθ to determine the strength of prior belief, given by

p(θθθ |ααα) ∝ ∏
k∈Σ

θ
αk−1
k , (2.5)
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the posterior distribution can be derived by multiplication of the likelihood function and the

prior distribution given by

p(θθθ |y,ααα) ∝ ∏
k∈Σ

θ
∑

N
i=1 I(yi=k)

k ×∏
k∈Σ

θ
αk−1
k (2.6)

= ∏
k∈Σ

θ
∑

N
i=1 I(yi=k)+αk−1

k . (2.7)

This is the Dirichlet distribution.

Bayesian linear regression with known variance

Linear regression is widely used in many research fields, and the Bayesian version can

deal with additional uncertainty. Here, a simple model which assumes that the variance of

the observational noise is constant is shown. In subsection 4.2, a more sophisticated model

with unknown noise variance is considered to model the Quantitative Structure-Property

Relationship, which has long been used in cheminformatics for predicting target properties

of new chemical structures. Linear regression assumes that the response variable y ∈ R can

be modeled as a linear function of the input variables x ∈ Rd by

y = wT

 1

x

+ ε, (2.8)

where w ∈Rd+1 is a vector of weights and ε is a residual assumed to be normally distributed,

N(0,σ2) where σ is a positive constant. It is easy to extend to multivariate output y ∈ RL,

but we show a simpler case here.

If it is assumed that observed N data are i.i.d., and are represented with the design matrix

X = (x1, . . . ,xN)
T ∈ RN×d and n response variables y ∈ RN , then the likelihood function for

the linear regression model is given by

p(y|F,w,σ2) = N(y|Fw,σ2IN)

∝ exp(− 1
2σ2 (y−Fw)T (y−Fw)), (2.9)
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where F = (1,X) with 1 = (1, . . . ,1)T and IN is the N ×N identity matrix. The prior

distribution of the weight vector w is introduced using the Gaussian distribution as

p(w) = N(w|w0,V0)

∝ exp(−1
2
(w−w0)

T V−1
0 (w−w0)), (2.10)

where V0 is a positive definite matrix.

The corresponding posterior distribution is given by the product of the likelihood and the

prior as

p(w|F,y) ∝ p(y|F,w,σ2)p(w|σ2)

∝ exp(− 1
2σ2 (y−Fw)T (y−Fw))

×exp(−1
2
(w−w0)

T V−1
0 (w−w0))

∝ exp(−1
2
(w−w∗)T V−1

∗ (w−w∗)), (2.11)

where w∗ = V∗V−1
0 w0 +

1
σ2 V∗FT y, (2.12)

V−1
∗ = V−1

0 +
1

σ2 FT F, (2.13)

V∗ = σ
2(σ2V−1

0 +FT F)−1. (2.14)

For predicting the output ỹ for a new coming data x̃, the posterior predictive distribution,

which is obtained by integrating over the parameter w of the posterior, is given by

p(ỹ|f̃,F,y) =
∫

N(ỹ|wT f̃)N(w|w∗,V∗)dw

= N(ỹ|wT
∗ f̃,σ2

∗(f̃)) (2.15)

σ
2
∗(f̃) = σ

2 + f̃T V∗f̃, (2.16)

where f̃ = (1, x̃T )T . The variance of the posterior predictive distribution comes from two

sources. One is the observation noise and the other is the uncertainty about how close the

new input f̃ is to the observation.
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2.1.2 Non-conjugate prior

When a prior distribution is not a conjugate, integration of the corresponding posterior∫
p(θ |Y)dθ is analytically intractable, and thus the expectation of functions over the pos-

terior distribution is also intractable. For this case, there are two common approaches for

approximating the posterior. One is to approximately transform the likelihood function

to make the prior conjugate, the other is to obtain the Monte Carlo approximation of the

posterior. Although the Monte Carlo approach is one of the main concerns of this thesis,

we first show some examples of deterministic methods for approximating the intractable

posterior such as the Laplace approximation and variational inference. Later, we show several

types of Monte Carlo methods.

Laplace approximation for the Bayesian logistic regression

The first example shown here often arises in Bayesian logistic regression. Here, it is

supposed that the likelihood function is given by p(Y|θθθ), and is not conjugate with the

Gaussian prior N(θθθ |θθθ 0,V−1
0 ). In this setting, the log-posterior distribution is given by

log p(θθθ |Y) =−1
2
(θθθ −θθθ 0)

TV0(θθθ −θθθ 0)+ log p(Y|θθθ). (2.17)

However, the integration of this is not analytically available since the product of two different

forms does not follow a standard distribution. The Laplace approximation tries to approximate

the posterior distribution p(θθθ |Y) with the Gaussian distribution as

q(θθθ) = N(θθθ |θθθ ∗,V), (2.18)

where θθθ ∗ satisfies ∇θθθ∗ log p(θθθ ∗|Y) = 0 obtained by an optimization algorithm such as

iterative reweighted least squares (IRLS) [24], and V =−∇∇ log p(θθθ |Y)|θθθ=θθθ∗ is the Hessian

of the log-posterior distribution evaluated at θθθ ∗. This approximation, however, is not accurate

when the likelihood function deviates from the Gaussian distribution.

Variational inference
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Suppose that what has to be done is to infer the posterior distribution p∗(θθθ) = p(θθθ |D)

for observed data D , however this quantity is hard to be evaluated since it can decompose as

p(θθθ |D) =
p(θθθ ,D)∫

θθθ∈ΘΘΘ
p(θθθ ,D)dθθθ

(2.19)

and the denominator p(D) =
∫

θθθ∈ΘΘΘ
p(θθθ ,D)dθθθ in the right hand of this equation is often

intractable. In other words, p(θθθ ,D) can be computed pointwise since it is just the product of

the likelihood and the prior. Let that product p(θθθ |D)p(D) be denoted as p̃(θθθ).

Variational inference uses a tractable distribution q(θθθ) with some additional free parame-

ters to approximate the intractable distribution p(θθθ |D). The widely used objective is the KL

divergence between p(θθθ |D) and q(θθθ), which is given by

KL(p||q) =
∫

θθθ∈ΘΘΘ

p(θθθ |D) log
p(θθθ |D)

q(θθθ)
. (2.20)

This objective is obviously intractable since p(θθθ |D) is intractable in this setting. As an

alternative, the reverse KL divergence is often used,

KL(q||p) =
∫

θθθ∈ΘΘΘ

q(θθθ) log
q(θθθ)

p(θθθ |D)
(2.21)

=
∫

θθθ∈ΘΘΘ

q(θθθ) log
q(θθθ)

p(θθθ ,D)/p(D)
(2.22)

=
∫

θθθ∈ΘΘΘ

q(θθθ) log
q(θθθ)
p̃(θθθ)

+ p(D) (2.23)

= KL(q||p̃)+ p(D). (2.24)

Since p(D) does not depend on θθθ , minimizing this objective makes q close to the tractable

target p̃. The most widely used form of the variational inference is the mean field approxi-

mation [95]. Assuming that the parameter of the posterior is multivariate θθθ ∈ RM, the mean

field approximation uses a fully factorized form,

q(θθθ) =
M

∏
i

qi(θi). (2.25)
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The objective is to find qi, · · · ,qM to minimize the following expression iteratively:

min
q1,··· ,qM

KL(q||p̃), (2.26)

where for each qi the optimization is conducted over the parameters of the marginal distribu-

tion. This approximation deviates from the true distribution if the parameters are correlated.

Monte Carlo approximation

Monte Carlo methods provide an effective alternative for approximating posterior distri-

butions. Suppose that random samples Z1, · · · ,ZN can be obtained from the posterior p(z|Y)

with non-conjugate prior. In the Monte Carlo approximation, the posterior distribution is

represented pointwise as

p̂(z) =
1
N

N

∑
i=1

δZi(z), (2.27)

where δZ(z) is the delta function which returns 1 when z = Z and 0 otherwise. Using this

form of the distribution, the expectation of a bounded function f with respect to the posterior

distribution can be given by

Ep(z|Y)[ f (Z)] =
1
N

N

∑
i=1

f (z)δZi(z) (2.28)

=
1
N

N

∑
i=1

f (Zi). (2.29)

As simple examples, the posterior mean and variance are given by µ∗ = 1
N ∑

N
i=1 Zi and

σ∗ = 1
N ∑

N
i=1(Zi−µ∗)2, respectively. The details of Monte Carlo inference methods will be

discussed in the next subsection.

2.2 Monte Carlo inference

To achieve efficient posterior inference, a variety of Monte Carlo sampling methods will

be discussed here. In Monte Carlo methods, it is necessary to consider how to generate

random variables from standard distributions such as the Gaussian, gamma, and Dirichlet
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distributions, as illustrated in the examples of Chapters 3 and 4. Methods for generating

various types of random variables are explained in Appendix A.

2.2.1 Importance sampling

Since, for non-conjugate distributions, analytic expressions for the corresponding posterior

distributions are usually not available, the standard random variable generators shown in

Appendix A cannot be used for the inference. Importance sampling is one of the simplest

methods for Monte Carlo inference. Here, the goal is to determine the expectation of some

bounded function f over the intractable non-standard density p(x) which is called the target

distribution. The expectation is given by

Ep(x)[ f (x)] =
∫

f (x)p(x)dx. (2.30)

It is assumed that this expectation cannot be computed and nor can samples be obtained

from p(x) directly, but random variables can be obtained from the standard distribution q(x)

that should be close to p(x). In importance sampling, samples from q(x) are generated then

used to estimate the expectation with respect to the target distribution p(x) as

Ep(x)[ f (X)] =
∫

f (x)p(x)dx

=
∫

f (x)
p(x)
q(x)

q(x)dx

≃ 1
N

N

∑
i=1

f (x)
p(x)
q(x)

δXi(x)

=
1
N

N

∑
i=1

f (Xi)
p(Xi)

q(Xi)

=
1
N

N

∑
i=1

f (Xi)wi, (2.31)

where Xi, · · · ,XN are obtained from the standard distribution q(x), and wi =
p(Xi)
q(Xi)

(i= 1, . . . ,N)

are called the importance weights.
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2.2.2 Sampling importance resampling

The sampling importance resampling generates samples from the unnormalized target prob-

ability density function (pdf) p(x) by using the following weighted particle distribution

obtained in the importance sampling introduced before, which is given as

p̂(x)≈∑
i

WiδXi(x), (2.32)

where Wi is the normalized importance weight for the ith particle as ∑
N
i=1Wi = 1. It is

straightforward to show that when these particles are replaced with the probability Wi (i =

1, . . . ,N) allowing duplication, the updated particles also approximately follow the target

distribution,

P̂(x ∈ A) =
N

∑
i=1

I(Xi ∈ A)Wi

=
∑

N
i=1 I(Xi ∈ A) p̃(Xi)

q(Xi)

∑
N
j=1

p̃(X j)
q(X j)

−−−→
N→∞

∫
I(xi ∈ A) p̃(x)

q(x)q(x)∫ p̃(x)
q(x)q(x)

=

∫
I(xi ∈ A)p̃(x)∫

p̃(x)

=
∫

I(xi ∈ A)p(x) = P(x ∈ A), (2.33)

where p̃ is the unnormalized density of distribution P.

This procedure is called sampling importance resampling [108], which is necessary for

sequential approaches such as the particle filter [31, 5] and the sequential Monte Carlo (SMC)

sampler [28].

2.2.3 Markov chain Monte Carlo

When generating i.i.d. random samples from the target distribution is difficult due to high

dimensionality or other technical issues, dependent samples under some generation rules
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can be exploited to approximate the target distribution. One of the most useful concepts for

generating dependent samples is the Markov chain. A Markov chain is a sequence of random

variables X1,X2, · · · with the Markov property stipulating that the current state only depends

on a finite number of past states. This relation is given by

P(X (t+1) ∈ A|X (0) = x(0), · · · ,X (t) = x(t)) = P(X (t+1) ∈ A|X (t) = x(t)), (2.34)

for all measurable sets A ∈ χ for time t = 0,1,2, · · · . Here, the marginal distribution of X (t)

over states χ at time t is written as Pt(dx). From the initial distribution P0(dx), the marginal

distribution of the Markov chain {X (t)} evolves from time t to time t +1 as

Pt+1(dx) =
∫

χ

Pt(dz)Pt(z,dx), (2.35)

where Pt(z,dx) is called the transition kernel at time t which is the probability measure for

X (t+1) given X (t) = z. In particular, the Markov chain Monte Carlo (MCMC) approach uses

time-homogeneous Markov chains by setting Pt(z,dx) = P(z,dx) for all t. Under this setting,

Eq. 2.35 becomes

Pt+1(dx) =
∫

χ

Pt(dz)P(z,dx). (2.36)

It is noted that when using the time-homogeneous transition kernel, Pt(dx) can be uniquely

determined from the initial distribution P0(dx) and the transition kernel P(z,dx). From this

fact, one can write the conditional distribution of X (t) given X (0) = x using Pt(x, ·).

The focus of this thesis is on Bayesian inference using Monte Carlo sampling. In order to

approximate E[ f (X)] with respect to the target distribution π(x), a transition kernel P(z,dx)

is required which is invariant for the target distribution π(dx), that is, the following balance

condition

π(dx) =
∫

χ

π(dz)P(z,dx) (2.37)
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should be satisfied. This means that if Xt is obtained from π(x), then X (t+1) is also ob-

tained from π(x), but dependent on X (t). When the following convergence limt→∞ Pt(X (t) ∈

A|X (0) = x) = π(x) for π-almost x and all measurable sets A ∈ χ is achieved, this π(x) is

called the equilibrium distribution of the Markov chain. The convergence properties of the

MCMC approach are shown in Appendix B. In later subsections, we will introduce several

methods based on the MCMC approach that are useful for solving the problems in Chapters

3 and 4.

2.2.4 Gibbs sampling

The random variable generation methods introduced in the previous subsections, such as

importance sampling and rejection sampling, become infeasible when dealing with a high-

dimensional space. A typical obstacle in rejection sampling is that the acceptance probability

tends to zero as the number of dimensions increases because of the curse of dimensionality.

Similarly, the weight distribution of the importance sampling degenerates to one particle

when the number of dimensions becomes sufficiently high. The Gibbs sampling technique

has been widely used for high-dimensional problems in Bayesian analysis [43, 40]. This

technique is based on iterative sampling procedures from conditional distributions of the

target. Let the target distribution be f (x),x ∈ χ . The first step is to make a partition of x,

which has K blocks, to satisfy dim(x1)+ · · ·+ dim(xK) = d where x = (x1, · · · ,xK). The

second step is to obtain the corresponding conditional distributions, for example, a blocked

variable xk in the kth block can be expressed as

f (xk|x1, · · · ,xk−1,xk+1, · · · ,xK) =
f (x)

f (x1, · · · ,xk−1,xk+1, · · · ,xK))
, (2.38)

for k = 1, · · · ,K. Under this setting, the procedure for Gibbs sampling is iterative from the K

conditional distributions. We show a simple case when K = 3 in the following.

1. Initialize the variable x(0) = (x(0)1 ,x(0)2 ,x(0)3 )

2. at time t, x(t+1)
1 ∼ f (x|x(t)2 ,x(t)3 )
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3. x(t+1)
2 ∼ f (x|x(t)1 ,x(t+1)

3 )

4. x(t+1)
3 ∼ f (x|x(t+1)

1 ,x(t+1)
2 )

5. set t = t +1, then go back to step 2.

When this Markov chain satisfies the regularity conditions such as irreducibility and aperiod-

icity described in Appendix B, the distribution of x(t) is considered to have converged to the

target distribution f (x).

Data Augmentation

Even if some of the data are missing, the Gibbs sampler can be used to complement

them [117]. It is equivalent to the stochastic version of the missing data analysis in the

EM algorithm [29]. In this thesis, this method is used to analyze motif models including

unobserved motif positions in the Motif discovery problem (Chapter 3). Let Xobs ∈ χobs and

Xmis ∈ χmis be the observed data and the missing data, respectively. X = (Xobs,Xmis) is called

the complete data, assumed to come from some distribution p(Xobs,Xmis|θθθ) where θθθ ∈ΘΘΘ is

the parameter of interest. Since Xmis is not observed, the goal of the Bayesian inference is to

obtain the marginal posterior distribution p(θθθ |Xobs) with prior distribution p(θθθ).

p(Xobs|θθθ) =
∫

Xmis

p(Xobs,Xmis|θθθ)dXmis. (2.39)

The procedure for the data augmentation is as follows.

1. Initialize θθθ
(0)

2. At time t, obtain X (t+1)
mis ∼ p(Xmin|θθθ (t),Xobs)

3. obtain θθθ
(t+1) ∼ p(θθθ |Xobs,X

(t+1)
min )

4. t := t +1, then go back to 2.

This is a simple form of the Gibbs samplers with only two conditional distributions that have

to be considered.
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2.2.5 Metropolis-Hastings method

Gibbs sampling is effective for a variety of problems, but it can be used only when the

posterior distribution has a conditional distribution that is a standard distribution such

as Gaussian, Dirichlet, or a discrete distribution, whereas the Metropolis-Hastings (MH)

algorithm [79, 54] can be applied to a wider variety of distributions. Suppose that the

target distribution is π(dx) with pdf f (x) on sample space χ and σ -field Bχ . As shown in

the previous subsection, the Markov chain uses a transition kernel P(x,dy) with invariant

distribution π(x),

π(dx) =
∫

χ

π(dz)P(z,dx). (2.40)

In the MH algorithm, the transition kernel is constructed to satisfy the reversibility condition.

More precisely, a Markov chain with transition kernel P(z,dx) and invariant distribution

π(dx) is reversible if it satisfies the detailed balance condition

∫
B

∫
A

π(dz)P(z,dx) =
∫

A

∫
B

π(dx)P(x,dz), (2.41)

for ∀A,B ∈Bχ . Using a form of pdf, the detailed balance condition can be

f (x)p(z|x) = f (z)p(x|z), (2.42)

where p(z|x) is the pdf of the transition kernel P(x,dz) given a fixed x. To maintain this

condition, the MH algorithm adopts the acceptance-rejection rules

1. At time t, z is generated from the proposal distribution q(z|xt)

2. xt+1 = z with acceptance probability α = min{1, f (z)q(z|xt)
f (xt)q(xt |z)}, and xt+1 = xt with prob-

ability 1−α .

This acceptance probability is chosen to satisfy the following reversible condition:

f (x)q(z|x)α(x,z) = f (z)q(x|z)α(z,x). (2.43)
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Using this condition, the condition in Eq. 2.42 can be verified in the general case. Here,

if it is assumed that α(z,x) is measurable with respect to Q(dz|x) = q(z|x)ν(dz) for some

probability measure ν , then the transition kernel in the MH sampler can be shown as

P(x,A) =
∫

A
Q(dz|x)α(x,z)+ Ix∈A

(∫
χ

Q(dz|x)(1−α(x,z))
)

=
∫

A
Q(dz|x)α(x,z)+ Ix∈A

(
1−

∫
χ

Q(dz|x)α(x,z)
)
, (2.44)

for A ∈Bχ , that is,

P(x,dz) = Q(dz|x)α(x,z)+δx(dz)r(x)

= q(dz|x)α(x,z)ν(dz)+δx(dz)r(x), (2.45)

where r(x) is
∫

χ
Q(dz|x)α(x,z), which represents the average rejection probability for state

x. Therefore, the reversibility condition of the Markov chain when using the MH kernel can

be proven through the following. For ∀A,B ∈Bχ ,

∫
B

∫
A

π(dx)P(x,dz)

=
∫

B

∫
A

f (x)q(z|x)α(x,z)ν(dx)ν(dz)+
∫

B

∫
A

δx(dz) f (x)r(x)ν(dx)ν(dz)

=
∫

B

∫
A

f (x)q(z|x)α(x,z)ν(dx)ν(dz)+
∫

A∩B
f (x)r(x)ν(dx)

=
∫

B

∫
A

f (z)q(x|z)α(z,x)ν(dx)ν(dz)+
∫

A∩B
f (x)r(x)ν(dx) (using conditon Eq.2.43)

=
∫

B

∫
A

f (z)q(x|z)α(z,x)ν(dz)ν(dx)+
∫

B∩A
f (z)r(z)ν(dz)

=
∫

A

∫
B

π(dz)P(z,dx) (2.46)

2.2.6 Slice sampler

The slice sampler is an alternative method for obtaining samples from a non-standard

conditional distribution, when Gibbs sampling is not appropriate [55]. In the applications

considered in this thesis, the slice sampler is used to sample from the full conditional
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distribution in the repulsive parallel MCMC sampler for the motif discovery problem (details

will be given in Section 3.2.3).

Assume that the density function of the target distribution is f (x) (x ∈ χ). As considered

in the rejection sampling (shown in Appendix A), obtaining a sample from f (x) is equivalent

to sampling uniformly from the following area

A = {(x,u) : 0≤ u≤ f (x)}. (2.47)

The solution is obtained by augmenting a random variable U from the conditional distribution

Unif(0, f (x)) given x. Then, the joint density of (X ,U) is

f (x,u) = f (x) f (u|x) ∝ 1(x,u)∈A. (2.48)

Therefore, with the Gibbs sampler, samples from the joint distribution are obtained with the

following algorithm.

1. At time t, ut ∼ Unif(0, f (xt))

2. xt ∼ Unif{x : f (x)≥ ut+1}

3. set t = t +1, then go back to 1

For a multivariate distribution, the same number of augmented variables are prepared and the

above steps are repeated for each variable in turn. In practice, it is difficult to determine the

region A, and thus the stepping out method is used to identify the interval xmin ≤ x≤ xmax

[88]. Starting from x∗, the stepping out method moves the current point in both the positive

and negative directions as x∗+∆, x∗−∆ for a positive constant ∆, repeatedly until those

points are near the border of the region A. The slice sampler has been proven to converge.

Roberts and Rosenthal showed that the slice sampler is geometrically ergodic under particular

conditions [107], and Miya ad Tierney showed that the slice sampler is uniformly ergodic

under slightly stronger conditions [80]. The property of ergodicity is described in Appendix

B.
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2.2.7 Reversible jump MCMC for Bayesian model selection

There is an issue with how many parameters are required to define a suitable model for the

observed data. With too many parameters there can be issues with overfitting, while with too

few parameters the model does not have enough power to fully reflect the true distribution

underlying the data, which causes bias. A simple example for the linear regression problem

is shown in many textbooks such as [15, 85]. In this thesis, the reversible jump MCMC

(RJMCMC) method is used for the motif discovery problem (Chapter 3) to specify motif

lengths using Bayesian modeling.

In the RJMCMC, let {Mk : k ∈ K} be a countable set of models to fit the observation

X . Each model has its own parameters θθθ k ∈ ΘΘΘk. Without loss of generality, it is supposed

that each model has different parameter dimensions. The prior distribution of the number

of model parameters and conditional prior of the parameters given model k are p(k) and

p(θθθ k|k), respectively.

Under this assumption, the target distribution with the RJMCMC method is given by

π(k,θθθ k|Y ) ∝ p(Y |k,θθθ k)p(θθθ k|k)p(k). (2.49)

The RJMCMC method tries to construct a homogeneous Markov chain whose invariant

distribution is the target. Consider the proposal distribution q(k∗|k) to generate the dimension

k∗ from k; if the generated dimension k∗ is different from the current k, it is necessary to

make those two dimensions equal using augment vectors u∗ generated from a distribution

ψkt→k∗(u), and introduce the bijection T as

(θθθ k∗,u∗) = T (θθθ (t)
k ,u), (2.50)

where the concatenated vectors on both sides have the same dimensions. From the above

setting, the RJMCMC algorithm can be iterated as follows.

1. At time t, obtain model Mk(t+1) from the proposal distribution q(k(t+1)|k(t))

2. generate u from ψk(t)→k∗(u)
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3. generate (θθθ k∗,u∗) from T (θθθ (t)
k ,u)

4. compute r =
π(k∗,θθθ∗k∗ |Y )q(k

(t+1)|k(t))ψ
k(t)→k∗(u

∗)

π(k(t),θθθ (t)
k |Y )q(k(t)|k(t+1))ψ

k∗→k(t)
(u)

∣∣∣∣∂ (θθθ∗k∗ ,u
∗)

∂ (θθθ
(t)
k ,u)

∣∣∣∣,
where

∣∣∣∣∂ (θθθ∗k∗ ,u
∗)

∂ (θθθ
(t)
k ,u)

∣∣∣∣ is the determinant of the Jacobian of the transformation in Eq. 2.50.

5. X (t+1) = (θθθ k∗,u∗) with probability min{1,r}, or X (t+1) = X (t) with probability 1−

min{1,r}.

The RJMCMC can be said to be a MH-like procedure with an initial distribution including

auxiliary variables. In many actual applications, T is an identity transformation and ψ is an

independent sampler; thus, the Jacobian can be reduced to 1.

2.3 Multi-modality

When the target distribution π(x) is multi-modal, the regular MCMC methods described

above suffer from the local-trap problem. In MCMC simulations for a complex distribution

having a lot of lags between multiple modes, the trajectory of the Markov chain becomes

trapped in a region around a single mode, and never transits into regions around other modes.

As a result, the Markov chain cannot converge to the target distribution in finite time. We

show a simple example using the Metropolis algorithm for a mixture of Gaussian distributions

as shown in [74].

2.3.1 Simple Metropolis-Hastings case

Here, the target pdf is a mixture of two Gaussian distributions, given by

π(x) = 0.4N(µµµ1,1.5I)+0.6N(µµµ2,1.5I), (2.51)

where µµµ1 = (0,0)T , µµµ2 = (10,10)T . In this example, the pdf of the initial distribution from

the previous state x′ is q(x|x′) = N(x′,32I), and is chosen so as to achieve an acceptance

ratio of around 30% as recommended in [41]. Starting from a point x0 = (5,5)T , the MH
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sampler is iterated 5000 times. The trajectories of four independent samplers are given in

Fig. 2.1, and show that the local trap problem occurred after the burn-in period in two out of

four trials. The resulting kernel density estimates (rightmost ones in Fig. 2.1) of samples

generated for each Markov chain thus surely deviate from the true distribution.

Many researchers have tried to develop sampling techniques for multi-modal distributions.

Below, methods based on the MCMC method or the SMC sampler targeting a sequence of

annealed target distributions are outlined.

2.3.2 Simulated tempering

Suppose that the target distribution can be represented as π(x) ∝ exp(−H(x)) for x ∈ χ ,

where H is an energy function. The temperature behaves as in simulated annealing [60, 70],

which is a popular global optimization method. The simulated tempering uses an augmented

variable T taking a finite number of discrete values T1 > T2, · · · ,Tm = 1. The final mth

temperature is 1, which is treated as the target temperature; thus, the augmented target

distribution is given by π(x,T ) ∝ exp(−H(x)
T ). x and T are updated iteratively in the same

manner as in Gibbs sampling. The trial distribution is defined as π(x,Ti) = exp(−H(x)
Ti

)/Zi,

where Zi is the normalizing constant for i = 1, · · · ,m. In addition to the procedure in the

MH algorithm using the transition kernel Ki at temperature Ti, the simulated tempering

requires the proposed probability of transition between different temperatures. Let qi, j

be the proposed probability from Ti to Tj. With no prior information, this probability is

set to be uniform and the transition is restricted only to the current or neighboring states

to avoid a high rejection probability, that is, qi,i−1 = qi,i = qi,i+1 = 1/3 for 1 < i < m− 1,

q1,1 = q1,2 = qm,m−1 = qm,m = 1/2. Under this setting, the whole procedure for the simulated

tempering can be described as follows.

1. Initialize Ti0 and x0

2. At time t, transition to temperature Tj with probability qit , j.

3. xt+1 ∼ K j(xt ,)



2.3 Multi-modality 25

Fig. 2.1 Metropolis sampler for a bimodal distribution
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4. If j = it , it+1 is set to j. If not, it+1 = j with acceptance probability

min{1,
Ẑ j

Ẑi
exp(−H(xt+1))(

1
Tj
− 1

Ti
)
q j,it

qit , j
}, (2.52)

where Ẑi is an estimate of Z j using the reverse logistic regression method proposed in

[44]. Otherwise, it+1 = it .

5. t := t +1, then go back to step 2.

This procedure is iterated until convergence. The multi-layered structure of the algorithm

allows the full exploration of the target distribution.

2.3.3 Parallel tempering

Suppose that the pdf of the target distribution is π(x); then a general form of the augmented

distribution used in the population based MCMC is given by

π(x) = π(x1, · · · ,xm) =
m

∏
i=1

πi(xi), (2.53)

where x ∈ χm is the augmented random variable, and m is the population size.

In parallel tempering (PT), the target distribution is defined similarly as in the simulated

tempering with a temperature ladder T1 > T2 > .. . > Tm = 1 such that πm(x) = π(x). The

parallel sequence of annealed distributions is shown below.

πi(x) ∝ exp
(
−H(x)

Ti

)
, for i = 1, · · · ,m. (2.54)

where Ti is the temperature for annealing for each component. Each temperature is determined

as in the simulated tempering. By increasing the temperature, each distribution is flattened,

making the MH transition easier to traverse over the entire space. In addition, an exchange

operation effectively transmits samples into different temperature levels.

Suppose that x(t) =
(

x(t)1 , . . . ,x(t)m

)
is the population of samples at time t. The PT iterates

the following two steps.
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1. Update each x(t)i with the MH kernel Ki as done in the simulated tempering.

2. Replace the states of the chain i and j with the probability qi, j. Accept this exchange

with probability α = min{1, q j,i
qi, j

exp
([

H(xt+1
i )−H(x(t+1)

j )
][

1
Ti
− 1

Tj

])
}

The sequence of temperatures Ti, . . . ,Tm needs to be controlled in practice. The PT has been

proven effective for simulations of complicated system such as polymer dynamics [89, 133],

and the spin-glass model [59, 25].

2.3.4 Sequential Monte Carlo sampler with annealing

The SMC sampler is used to obtain samples sequentially from a sequence of probability

distributions [27, 31, 77]. In this thesis, this method works well for avoiding the local-trap

problem, and is applied to the inverse-QSPR problem in Chapter 4, which is expected to have

many isolated peaks in the target distribution (corresponding to a wide variety of chemical

structures satisfying the target properties). When it is difficult to obtain samples from an

intricate distribution π(x), one can prepare a sequence of annealed target distributions as

πt(x) ∝ π(x)βt , for t = 1, · · · ,T, (2.55)

where βt is a non-decreasing sequence of inverse temperatures 0≤ β1 ≤ β2 ≤ . . .≤ βs−1 ≤

βs = . . .= βT = 1. This is equivalent to the sampling version of the simulated annealing.

In the SMC sampler, the unnormalized artificial joint distribution γ̃1:t(x1:t) is introduced

as

π̃1:t(x1:t) = γ̃1:t(x1:t)/Zt , (2.56)

γ̃1:t(x1:t) = γt(xt)
t−1

∏
l=1

Ll(xl+1,xl), (2.57)

where Lt−1 : χ × χ → [0,1] is the backward Markov kernel with pdf Lt−1(xt ,xt−1) for

xt ,xt−1 ∈ χ , Zt is a normalization constant, and γt(xt) is the true unnormalized marginal

target density at time t. This artificial joint distribution admits that the marginalization of this

joint distribution over the history until at time t−1 is equal to γt(xt).
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Assume that the representation of the marginal proposal distribution at time t can be

obtained pointwise as

η
N
t (xt) =

∫
η

N
t−1(z)Kt(z,xt)dz =

N

∑
i=1

Kt(X
(i)
t−1,xt), (2.58)

where Kt(z,x) : χ×χ→ [0,1] is the Markov kernel which is the probability density around z.

At time t−1, it is also assumed that the particle distribution {W (i)
t−1,X

(i)
1:t−1}(i= 1, · · · ,N,W (i)

t >

0,∑N
i=1W (i)

t−1 = 1) represents the target distribution π̃1:t−1, that is to say

π̃
N
1:t(dx1:t) =

N

∑
i=1

W (i)
t−iδX (i)

1:t−1
(dx1:t). (2.59)

This propagated density at each time can be incorporated into the importance sampling

framework. The importance weights at time t are given by

wt(x1:t) =
γ̃t(x1:t)

ηt(x1:t)

= wt−1(x1:t−1)w̃t(xt−1,xt), (2.60)

where

w̃t(xt−1,xt) =
γt(xt)Lt−1(xt ,xt−1)

γt−1(xt−1)Kt(xt−1,xt)
, (2.61)

Since the discrepancy between ηt and π̃t tends to increase with increasing t, the variance

of the weight distribution also tends to increase. This often causes a degeneracy of the

particle approximation. This degeneracy can be evaluated with the effective sample size

(ESS) defined as {∑N
i=1(W

(i)
t )2}−1 [76]. To prevent degeneracy, a resampling is done through

the sampling importance resampling when the ESS exceeds a predefined threshold, and the

weights are reset. The whole procedure for the SMC sampler is as follows.

step 1 :Initialization

• set t = 1.

• draw x(i)1 ∼ η1 for i = 1, . . . ,N.
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• evaluate weights w1 =
γ1(x)
η1(x)

, and normalize weights as W (i)
1 = w(i)

1 /∑
N
j w( j)

1 for

i = 1 . . . ,N.

step 2 :resampling

if ESS < T ( for some threshold T ), resample the particles and set W (i)
t = 1/N.

step 3 :sampling

• draw x(i)t ∼ K(X (i)
t , ·) for i = 1 . . . ,N.

• update weights {w̃(i)
t }i=1,...,N by using Eq. 2.61 and normalize them as in step 1.

• set t := t +1.

• go back to step 2.

2.3.5 Repulsive parallel Markov chain Monte Carlo

The RPMCMC is our proposed method, and is shown to capture the latent motif structures

better than other existing methods in Chapter 3. The RPMCMC algorithm is derived by

creating an augmented system πA(x1, . . . ,xM|β ) which consists of M exact copies of the

target distribution πi(x) = π(x) (i = 1, . . . ,M) and the repulsive force function ψ(x1, . . . ,xM):

πA(x1, · · · ,xM|β ) ∝

M

∏
i=1

π(xi)ψ(x1, . . . ,xM)β , β ≥ 0. (2.62)

Each xi is called a replica. The repulsive force function ψ imposes a stronger penalty on

closer replicas. The parameter β controls force intensity; that is, a greater β produces a

stronger repulsion and vice versa. Drawing samples of x1, . . . ,xM simultaneously from Eq.

2.62, the M sample paths tend to move toward different regions. Furthermore, a replica

trapped in a locally high-probability state can be pushed to other regions by the repulsive

force generated when approaching other replicas (Fig. 2.2). To obtain a sample from each

conditional distribution, the Metropolis sampler or the slice sampler can be used. It is

important to see that the use of a non-zero force severity biases the samples from πA with
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respect to the posterior distribution. When β = 0, which removes the repulsion from πA, an

unbiased sample set can be obtained.

Fig. 2.2 Schematic view of the repulsive parallel MCMC algorithm

The repulsive function should be chosen such that it is bounded in the sample space.

For example, for a distribution with bounded support such as the Dirichlet distribution, the

following repulsive function can be used.

ψ(x1, . . . ,xM) =
M−1

∏
i=1

min
j<i

exp(||xi−x j||2). (2.63)

This repulsive function is effective in the motif discovery problem shown in Chapter 3.

However, it cannot be applied to distributions with unbounded support such as the Gaussian

distribution since the value of the repulsive function goes to infinity as an argument goes to

infinity. In this case, the following repulsive function is more effective.

ψ(x1, . . . ,xM) =
M−1

∏
i=1

(
1− 2

1+min j<i exp ||xi−x j||2

)
. (2.64)
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This function takes a value between 0 and 1, so it is bounded even when a target distribution is

supported in unbounded space. Fig. 2.3 shows the conditional distributions of the augmented

Gaussian distributions (M = 2) given a fixed replica using the two types of repulsive functions

introduced above. The upper row in Fig. 2.3 shows that repulsion from Eq. 2.63 works well

since the probability of region around other replicas decreases, but when looking at a distant

region from these two modes, the value of this function grows exponentially. Once a sampler

tends towards these regions, it never returns to the region around the modes of the target

distribution, whereas the repulsion from Eq. 2.64 remains constant when replicas are located

far from each other.
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Table 2.1 Mean vectors of the components of the mixture Gaussian distribution

k µµµ1 µµµ2 k µµµ1 µµµ2 k µµµ1 µµµ2 k µµµ1 µµµ2
1 2.18 5.76 6 3.25 3.47 11 5.41 2.65 16 4.93 1.50
2 8.67 9.59 7 1.70 0.50 12 2.70 7.88 17 1.83 0.09
3 4.24 8.48 8 4.59 5.60 13 4.98 3.70 18 2.26 0.31
4 8.41 1.68 9 6.91 5.81 14 1.14 2.39 19 5.54 6.86
5 3.93 8.82 10 6.87 5.40 15 8.33 9.50 20 1.69 8.11

Suppose that we are given a sample set of size N×M from Eq. 2.62 with nonzero β ,

denoted by {x( j)
i |i = 1, . . . ,M, j = 1, . . . ,N} where each x( j)

i denotes the jth sample of the

ith replica. Obviously, the repulsive force leads to biased samples with respect to the target

πA(x1, · · · ,xM|0) in Eq. 2.62 when the repulsive force is zero. To correct this bias, importance

sampling is used, which assigns weights to each sample by

w( j)
i =

πA(x
( j)
1 , . . . ,x( j)

M |0)
πA(x

( j)
1 , . . . ,x( j)

M |β )
∝

1

ψ(x( j)
1 , . . . ,x( j)

M )
. (2.65)

The ratio between the target (zero force) and the biased distribution (β > 0) becomes the

inverse of the repulsive force function. Note that the M replicas x( j)
i (i = 1, . . . ,M) in the jth

ensemble share the same weight.

2.3.6 Experiment

In the following experiment, the objective is not to compare the algorithms, but to confirm

that the RPMCMC and the SMC can sample from the multi-modal distributions as effectively

as the PT does. Consider a synthetic 2D mixture of Gaussian distributions, as

π(x) =
1√

2πσ

20

∑
k=1

wk exp{− 1
2σ2 (x−µµµk)

T (x−µµµk)}, (2.66)

where σ = 0.1,wi = 0.05 for all i, ([74]). The mean values µµµ1, . . . ,µµµ20 are shown in Table

2.1. This distribution is shown in Fig. 2.4.
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In this experiment, with initial values generated from the uniform distribution Unif(0,10)2,

each sampler is run for the target distribution π(x). The setting used for each method is

shown in the following list.

Fig. 2.4 Mixture of 20 Gaussian distributions used in the experiment.

1. RPMCMC with 40 replicas with repulsive function ψ(x,y) = 1− 2
1+exp(||x−y||) where

|| · || is a Euclidean norm, generates 3.0×104 samples (5.0×103 samples were dis-

carded in the burn-in period).
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Table 2.2 Comparison three Monte Carlo methods for multi-modal distribution with the
standard Metropolis sampler

RPMCMC SMC PT Metropolis
parameters true values est. sd est. sd est. sd est. sd

µ1 4.48 4.54 0.083 4.53 0.294 4.69 0.406 4.62 2.09
µ2 4.91 4.90 0.118 4.98 0.445 4.72 0.441 3.90 1.76
Σ11 5.61 5.55 0.111 5.45 0.71 5.79 0.753 2.22 1.23
Σ22 9.77 9.84 0.234 9.49 0.67 8.55 0.742 5.41 3.14
Σ12 2.63 2.59 0.148 2.00 1.03 -0.13 1.192 0.55 1.40

2. PT with 20 parallel chains as in [74] generated 1.8×105 samples (3.0×104 samples

were discarded as in the burn-in period) taking almost the same computation time as

the RPMCMC did. The temperatures used in the PT were equally spaced between 1

and 5. The proposal distribution is N(x′|x,0.252T I), where T is the temperature.

3. The SMC sampler iterates 200 steps with 2500 particles and κ(t) = 500.97t
. The transi-

tion of particles is followed by the MCMC kernel [28] with the proposal distribution

N(x′|x,0.252T I) where T is the temperature.

4. The Metropolis sampler generated 3.6× 106 samples (6.0× 105 samples were dis-

carded as in the burn-in period) taking almost the same computation time as the

RPMCMC did. The proposal distribution is the Gaussian distribution N(x′|x,0.252I).

Table 2.2 shows the estimates for the global mean, variance, and covariance of the target

distribution π(x). Here, est. denotes the mean of the 10 independent trials and sd denotes

their standard deviations. The estimates by the RPMCMC, SMC, and PT methods have much

smaller standard deviations than the regular Metropolis sampler. The Metropolis sampler

gives different results for the estimation each time due to the local-trap problem, and only

generated samples around one mode in three of 10 trials. For the RPMCMC, SMC, and PT

methods, the local-trap problem was not observed in these 10 trails, and thus these methods

can be said to avoid it.





Chapter 3

Motif discovery problem

3.1 Introduction

The motif discovery problem is a research field that is focus on by many researcher for a

long time but is recently receiving renewed attention since recent experimental technologies,

such as ChIP-seq, posed new challenges. A genome-wide ChIP study produces thousands or

more DNA fragments consisting of several hundred base pairs, which cover the binding sites

of a transcription factor (TF). This mechanism is very important for biological systems from

the fact that once the TF binds on the target region called the transcription factor binding

sites (TFBSs), the corresponding gene is activated, leading to the next biological process for

surviving (Fig. 3.1). The problem can be identified as finding recurring patterns of conserved

short strings that appear in a large fraction of nucleotide sequences (Fig.3.2) since important

regions tend to be preserved in the process of evolution. Motifs are visualized by using

SeqLogos of the position weight matrix (PWM) as shown in Fig.3.3. By discovering motifs

in the given sequences, which are associated with known TF-binding motifs in a database,

e.g. JASPAR [110], TRANSFAC [127], we can predict not only the regions bound by the

primary TF but also the cofactors that modulate the TF activity. Finding cofactor can also be

important issue to elucidate complicated biological processes [115, 45, 112].

Early methods of de novo motif discovery can be classified into either a model-based

(MEME [116], AlignACE [58], ANN-Spec [130]) or a word-count approach (Weeder [96]).
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Fig. 3.1 A schematic view of the gene activation by binding a transcription factor to the
transcription factor binding site. Once the transcription factor binds to the transcription factor
binding sites, it triggers to activate the corresponding genes.

Fig. 3.2 Under an assumption that important structures should be preserved, the objective
here is to find similar subsequences called motifs (colored in blue) on the upper region of
genes in which transcription factors usually bind.
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Fig. 3.3 The representation of the position weight matrix. The vertical axis represents the
information content for each letter (shown with the size of each letter). The horizontal axis
indicates the position in a motif. This example shows that this motif tends to have A, T and
A at the first, third and sixth position, respectively.
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These methods were designed on the assumption that the input sequences of ∼ 103 base

pairs would range in size between 102 and 103. Hence, they do not scale to larger size

of data from ChIP-seq experiment and their fundamental methodologies have undergone

reconstruction. However, most ChIP-tailored algorithms emphasize computational efficiency,

and they sacrifice accuracy of motif detection because they use heuristics to speed up their

computation.

The model-based methods employ either the EM algorithm [116] or Gibbs sampling [73].

The main computational load arises in the process of computing the posterior probabilities

over all fixed-length subsequences at each iteration. STEME [105], a ChIP-tailored version

of MEME, uses a branch-and-bound technique so that negligible oligomers with significantly

low probabilities are effectively removed. The word-count methods, regardless of old or

new, rely on essentially the same strategy. All possible oligomers are counted with exact or

the fuzzy matching for input sequences. Then, overrepresented oligomers are determined

against background sequences. Similar motifs are merged to generate output motifs. To

reduce the computational load in the counting operation, DREME [115] and CisFinder [111]

adopt similar strategies. Starting from ≃ 100 oligomers with no wildcards, each oligomer is

either left or removed recursively by adding a wildcard and by assessing its significance in

turn. Such methods run the risk of missing important motifs in earlier steps of the recursion.

Hegma [61] is the fastest of current developed algorithms. A highly specific strategy based

on Gray codes [46] is employed to avoid fuzzy matching so as to speed up the merging of

similar motifs. However, this novel idea results in a degradation of the detection accuracy as

will be shown later.

The aim of this study is to confirm high detection accuracy of a new proposed algorithm

while keeping the computational efficiency at an acceptable level. In particular, the proposed

method is designed to detect many diverse motifs that previous methods are unable to discover.

The RPMCMC algorithm shown in the chapter 2 is a parallel version of the widely-used

Gibbs motif sampler. One critical drawback of the standard Gibbs sampling, as with the EM

algorithm, arises from the following fact: the posterior distribution can be considered highly

multimodal because many diverse motifs are possibly present in given sequences. Once the
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generated Markov chain is stuck in a locally high probability region, it is difficult to escape

from that region within a finite time. This problem has received little attention in previous

studies. MEME adopts a serial implementation of the EM algorithm that repeats the search

with different initial conditions [116]. To reduce the possibility of becoming trapped in the

same local optima, low prior probabilities are assigned to already-discovered motif sites in

consecutive serial runs. However, such iterative methods take too long to be used for large

ChIP data.

Again, RPMCMC is run on parallel interacting Gibbs samplers. A repulsive force comes

into play when the trajectories of different chains near each other. Therefore, different

chains are facilitated to explore entire regions. Compared to the original method using a

single chain, this all-at-once interacting parallel run can detect much more diverse motifs.

In addition, the proposed method has other unique characteristics, for instance, automated

control of variable-length motifs, and the fast-clustering algorithm for many generated motifs

in the summarization step. The method was comprehensively tested on synthetic promoter

sequences and 228 TF ChIP-seq datasets of the ENCODE project. In the synthetic promoter

analysis, RPMCMC found around 1.5 times as many embedded motifs as existing methods

did. For the ChIP-seq datasets, the RPMCMC algorithm reported 444 reliable cofactors in

total, 219 of which were not discovered by either of the recently published ChIP-tailored

algorithms: DREME and Hegma.

3.2 Proposed method

3.2.1 ZOOPS model

We use the ZOOPS model [116] that allows zero or one motif occurrence per sequence.

Assume that we are given a set of n sequences, S+ = {s+1 , . . . ,s+n }, where sequence s+i is of

length Li (i = 1, . . . ,n). The reverse complement of the given sequence set is denoted by

S− = {s−1 , . . . ,s−n }. Our model uses the set of n concatenated sequences, S = {s1, . . . ,sn},

where si = (s+i ,s
−
i ) (i = 1, . . . ,n). The motif presence indicator zi takes the value one or zero

according to the presence or absence of a motif in sequence si. In a sequence si with zi = 1,
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Fig. 3.4 The schematic view of the ZOOP model. Here, although all sequences look same
length, there is no such a restriction.

a K-mer motif is positioned at the start site ui ∈ {1, . . . ,Li−K +1,Li +1, · · · ,2Li−K +1}.

The kth element of the motif follows the position-specific multinomial distribution with

θk = (θk,a,θk,c,θk,g,θk,t)
T, which represents the nucleotide preference of the kth element

to A, C, G, T. Thus, we have Θ = (θ1, . . . ,θK), a position probability matrix (PPM). We

treat the motif length K as an unknown parameter. The background sequences are assumed

to follow independent multinomial trials with the background probability denoted by θ0 =

(θ0,a,θ0,c,θ0,g,θ0,t)
T.

Given an input S, the objective is to estimate the PPM Θ with the unknown motif length

K and the background probability θ0 where the latent variables comprise U = {u1, . . . ,un}

and Z = {z1, . . . ,zn}. The likelihood is then

p(S|U,Z,K,Θ,θ0) ∝ ∏
σ∈{a,c,g,t}

θ
∑

n
i=1 ∑

2Li
j=1 I(si, j=σ)

0,σ

×
K

∏
k=1

∏
σ∈{a,c,g,t}

(
θk,σ

θ0,σ

)
∑

n
i=1 ziI(si,ui+k−1=σ)

, (3.1)
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where si, j denotes the types of bases at the jth position in si, and I(·) is the indicator function.

The first component of the right-hand side in the first line is the probability of all letters in

the n input sequences, which is calculated under the background multinomial distribution.

The second component is the likelihood ratio that assesses overrepresentation of the K-mer

segmented sequences against the background.

As the priors for the multinomial likelihood, we use the Dirichlet distributions

p(Θ|K) ∝

K

∏
k=1

∏
σ∈{a,c,g,t}

(θk,σ )
βk,σ−1,

p(θ0) ∝ ∏
σ∈{a,c,g,t}

(θ0,σ )
ασ−1,

p(K = j) =
I(Kmin ≤ j ≤ Kmax)

Kmax−Kmin +1
,

where βk = (βk,a,βk,c,βk,g,βk,t)
T (k = 1, · · · ,K) and α = (αa,αc,αg,αt)

T are the concentra-

tion parameters fixed at set values. The prior on Θ is conditioned by the motif length K. The

equal probabilities are assigned to any K with a range between the predetermined minimum

and maximum motif lengths, Kmin and Kmax.

To complete the joint posterior of all the unknown parameters, we prescribe the priors on

U and Z as follows:

p(ui = u|K) =
1

2(Li−K +1)
for i = 1, . . . ,n,

p(zi = 1|K) = γ
K for i = 1, . . . ,n.

The start site ui of a motif occurs with equal probability in all the possible positions in

sequence si. The motif presence indicator zi follows the binomial distribution with the

success probability γK for each i (0≤ γ ≤ 1).

Note that although a specific type of modeling is presented here, our current program

allows for a certain amount of flexibility in the model specification. For instance, a user

can choose a higher-order Markov background model up to third order [23] and a position

specific prior for the motif start sites [7].
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3.2.2 Multi-modality of posterior distribution

Let x denote all the unknowns, U,Z,K,Θ and θ0. To obtain an approximate estimate for the

posterior p(x|S), we can employ the Gibbs sampler with an data augmentation explained in

chapter 2.2.4. However, the Gibbs motif sampler has a serious drawback in that inherent

presence of a great many different motifs causes a complex energy landscape of the posterior

distribution. In particular, once the trajectory of a Markov chain comes around a locally

high-probability region which corresponds to one of the existing motifs, it is difficult to effect

a transfer into another region within a finite runtime. The EM algorithm might exhibit the

same defects.

As an illustration, we show a result of the simple Gibbs motif sampling. The dataset

consists of 103-bp-long synthetic promoter sequences of 300 human genes. The Gibbs

sampling was repeated 20 times under different initial conditions. As shown in Fig. 3.5,

all the chains were trapped at similar AT-rich motifs for a long duration. Exceedingly high

probabilities might be concentrated on the AT-rich segments and all the chains were absorbed

to those domains of the posterior distribution. This is a typical scenario. Fig. 3.5 also

shows the result of RPMCMC, which was run with 20 interacting parallel Gibbs samplers as

described in chapter 2.3.5. By performing just an all-at-once parallel run, RPMCMC could

capture much more diverse motifs than the independent Gibbs sampling could.

3.2.3 Inference with the RPMCMC

The RPMCMC algorithm is again shown here to denote an augmented system πA(x1, . . . ,xM|β )

which consists of M exact copies πi(x) = p(x|S) (i = 1, . . . ,M) of the posterior distribution

and the repulsive force function ψ(x1, . . . ,xM):

πA(x1, · · · ,xM|β ) ∝

M

∏
i=1

π(xi)ψ(x1, . . . ,xM)β , β ≥ 0. (3.2)

The repulsive force function is defined as a function of PPMs, ψ(x1, . . . ,xM)≡ψ(Θ1, . . . ,ΘM).

Let D(Θi,Θ j) be an increasing function of the dissimilarity between Θi and Θ j. With this,
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Fig. 3.5 A drawback of the independent Gibbs motif sampler, which is highlighted on 300
promoter sequences. The top and bottom panels display the processes of produced PPMs
(sequence-logos) for RPMCMC with 20 replicas and independent Gibbs sampling under 20
different initial conditions. Five of the 20 sampling paths are shown for each method.
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Fig. 3.6 A schematic view of the RPMCMC algorithm.

the repulsion is modeled by

ψ(x1, . . . ,xM) =
M

∏
i=1

exp(min
j: j<i

D(Θi,Θ j)). (3.3)

Replica i interacts with its nearest neighbor j∗ such that j∗ = argmin j: j<i D(Θi,Θ j). The

dissimilarity D is measured by

D(Θi,Θ j) =
1

K∗
(

min
(k,h)∈A

∥Θi,k:k+K∗−Θ j,h:h+K∗∥F

+ c×|Ki−K j|
)
, (3.4)

where A = {(k,h)|k = 1, . . . ,max(1,K j−Ki+1),h = 1, . . . ,max(1,Ki−K j +1)} and K∗ =

min{Ki,K j}. In general, Ki and K j, the column sizes of Θi and Θ j, are different. The

distance of the PPMs is assessed after associating a smaller-sized PPM with the same-sized

submatrix of the other as in Fig.3.7, Θi,k:k+K∗ and Θ j,h:h+K∗ , and by choosing the smallest

Frobenius norm in all possible alignments (k,h) ∈A . The second term is a gap penalty for

the difference of motif lengths where c > 0.
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Fig. 3.7 The pairing rule when measuring the distance between two different sized matrices.
In this example, Θ j has larger column, it is considered to have three positions to be aligned.
The first term in Eq. 3.4 returns the minimum values of Frobenius norms of differences in
three pairs of matrices.

To obtain an estimate from the augmented posterior, Gibbs sampling is combined with

several techniques such as the reversible-jump MCMC method [47] and the slice sampler

[88]. The full details of the RPMCMC procedure are described in the following paragraph.

The RPMCMC algorithm renews each of the M replicas, xm = {Um,Zm,Km,Θm,θ m
0 }

(m = 1, . . . ,M) by alternatively drawing a sample from the full conditional distribution of

the extended target (Eq. 3.2) while fixing all others at the current values. The procedure

for sampling Um,Zm, and θ m
0 is the same as that for the conventional Gibbs motif sampler

because these components are independent of the repulsive force function. The procedure for

updating Θ and K involves a reversible-jump MCMC algorithm and a slice sampler, which

are used to treat the varying-width PPM and the repulsive force acting upon the PPMs. Each

sampling procedure is detailed while omitting the replica index (m = 1, . . . ,M) except for the

description of Θ and K:
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Motif start site: The conditional posterior probability of ui (i = 1, . . . ,n) given the others

is

p(ui|x\{ui},S) ∝

K

∏
k=1

∏
σ∈(a,c,g,t)

(
θk,σ

θ0,σ

)I(σ=si,ui+k−1)

, (3.5)

ui ∈ {1, . . . ,Li−K +1,Li +1, . . . ,2Li−K +1}.

We draw a value of ui after normalizing the above so as to sum up to one over ui ∈ {1, . . . ,Li−

K + 1,Li + 1, . . . ,2Li −K + 1}. The process of sampling ui (i = 1, . . . ,n) can be fully-

parallelized into n independent calculations. We run this with an OpenMP implementation of

multi-threading.

Motif presence indicator: The conditional posterior of each zi (i = 1, . . . ,n) is

p(zi|x\{zi},S) ∝

 γK
∏

K
k=1 ∏σ (

θk,σ
θ0,σ

)I(si,ui+k−1=σ) (zi = 1)

1− γK (zi = 0)

This process was also parallelized into n independent threads in the OpenMP implementation.

PPM: For the mth replica, the kth column θ m
k of PPM is updated by drawing a sample

from the following full conditional distribution:

θ
m
k ∼ p(θ m

k |xm \{θ m
k },S) ∝ ∏

σ∈{a,c,g,t}
θ

m
k,σ

∑
n
i=1 I(si,um

i +k−1=σ)+βk,σ−1 exp( min
j: j ̸=m

D(Θm,Θ j)),

for k = 1, . . . ,K.

Here, it is impossible to obtain samples directly from this analytically intractable distri-

bution which is the product of a Dirichlet density function and the repulsive function. The

current version of RPMCMC uses a slice sampler.

Without loss of generality, we let θ m
k,t = 1−θ m

k,a−θ m
k,c−θ m

k,g be fixed. In the slice sampler,

for each σ ∈ a,g,c, a new θ m
k,σ is sampled from the uniform distribution in the range between

θmin and θmax as follows:

(i) Generate ε from the uniform distribution in the range [0,1].
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(ii) Find θmax such that p(θmax|x\θ m
k,σ ,S) = ε× p(θ m

k,σ |x\θ m
k,σ ,S) by incrementing θmax

from the current θ m
k,σ by a small value δ .

(iii) Find θmin such that p(θmin|x\θ m
k,σ ,S) = ε× p(θ m

k,σ |x\θ m
k,σ ,S) by decrementing θmin

from θ m
k,σ by δ .

(iv) Generate the new θ m
k,σ from the uniform distribution in the range [θmin, θmax].

Background probability: θ0 is updated by drawing a Dirichlet random variable from the

full conditional distribution

p(θ0|x\{θ0},S) ∝ ∏
σ∈{a,c,g,t}

θ
∑

n
i=1(∑

2Li
j=1 I(si, j=σ)−∑

K
k=1 I(si,ui+k−1=σ))+β0,σ−1

0,σ .

Motif length: Θ and K are updated by the reversible jump MCMC algorithm [47], as

shown in the following procedure:

Suppose that the currently obtained Θ has the width K = k. To renew {Θ,k} to {Θ∗,k∗}

at a step, we first generate a candidate according to the proposal distribution:

q(Θ∗,K∗ = k∗ |Θ,K = k) =



qlc k∗ = k−1 : Θ∗ = Θ2:k

qrc k∗ = k−1 : Θ∗ = Θ1:k−1

q0 k∗ = k : Θ∗ = Θ

qle k∗ = k+1 : Θ∗ = (θ ∗,Θ)

qre k∗ = k+1 : Θ∗ = (Θ,θ ∗∗)

The first two transitions indicate the contraction proposals that drop the first and last columns

of Θ = (θ1,Θ2:k) = (Θ1:k−1,θk), respectively, from the current Θ. The third transition is

to retain the current state. The last two transitions expand the size of the current PPM

to K∗ = k+ 1 by adding the new components, θ ∗ and θ ∗∗, to the leftmost and rightmost

columns of Θ. Conditioned by Z, U , and K = k, these additional components are given by

the frequencies of each nucleotide at the first and last elements of the currently occupied
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motif region:

θ
∗
σ =

∑
n
i=1 I(si,ui−1 = σ)

∑σ′∑
n
i=1 I(si,ui−1 = σ ′)

and θ
∗∗
σ =

∑
n
i=1 I(si,ui+k = σ)

∑σ′∑
n
i=1 I(si,ui+k = σ ′)

.

After one of the move types is chosen according to the probabilities qlc,qrc,q0,qle,qre, we

determine the acceptance or rejection according to the probability,

α(Θ∗) = min
(

1,
p(U,Z,K = k∗,Θ∗,θ0|S)q(Θ,K = k|Θ,K = k)

p(U,Z,K = k,Θ,θ0|S)q(Θ∗,K = k∗|Θ∗,K = k∗)

)
.

If accepted, Θ∗→Θ, and otherwise Θ→Θ.

We can discover a much wider variety of motifs with an all-at-once interacting parallel

simulation than with the independent method. Conventional Gibbs sampling with M different

initial seeds (as shown in the previous subsection) can be derived by setting the zero force

severity, β = 0, to RPMCMC.

Our current implementation does not parallelize the process of updating the M Markov

chains. We use multi-core processors only for counting the nucleotide frequencies when

renewing the motif start sites.

Post-processing: Clustering and Ranking

RPMCMC produces many redundant outputs with slight variations. We reduce the

redundancy by grouping the outputs into g clusters, C1, . . . ,Cg, based on the dissimilarity of

the sampled PPMs. The procedure is as follows (see Fig. 3.8 for a schematic illustration):

(i) Samples of size p = M×N are arranged as η = {x(1), . . . ,x(p)} by sorting realized

values of the likelihood (Eq. 3.1) in decreasing order.

(ii) Set λ > 0, a threshold for the within-cluster variability.

(iii) Set k = 1, and repeat (a)-(d) until no samples are left:

(a) Initiate the kth cluster Ck = {x(1)} by a singleton of the sample that is ranked first

in η . Let µk = x(1) be the cluster representative.
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Fig. 3.8 A schematic illustration of the post-processing process.

(b) Collect all samples satisfying the condition D(Θ(1),Θ(i)) ≤ λ where Θ(i) de-

notes the PPM of x(i). These samples are integrated into cluster Ck; Ck =

{x(i)|D(Θ(1),Θ(i))≤ λ , i = 1, . . . , p} .

(c) Discard the collected samples in Ck from the ordered sequence; η ← η \Ck. Let

p be the length of η , and rearrange η according to the likelihood values.

(d) If η is empty, terminate the computation. Otherwise, let k← k+1 and go back

to step (a).
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The method operates with a single input parameter λ that controls the number g of

clusters. Samples within D≤ λ are assigned to the cluster representative µk, which is the

one to achieve the highest likelihood within the kth cluster members.

Denote the p = M×N samples and their importance weights by {x(i),w(i)}p
i=1. With the

g reduced samples {µ1, . . . ,µg}, we define an approximated posterior distribution by

p̂(x|S) ∝

g

∑
k=1

I(x = µk)w∗k , w∗k ∝ ∑
i∈Ck

w(i).

This is a mixture of the g probability mass functions I(x = µk) at µk. Mixing rate w∗k is the

sum of the importance weights associated with the corresponding cluster Ck. PPMs and the

motif start sites in {µ1, . . . ,µg} are of primary interest for motif discovery. We generate a

ranked list of the reduced discovered motifs which are ordered according to the weights w∗k .

3.3 Experiment

Performance Evaluation

We report the performance of several motif discovery algorithms on two types of data: (i)

promoter sequences into which strings generated from PPMs in the JASPAR CORE database

are planted, and (ii) 228 TF ChIP-seq datasets of the ENCODE project. We evaluate the

performance for each type of data as follows:

(i) Given the nucleotide positions of known and predicted motifs, recall (SN, sensitivity)

and precision (PPV, positive predicted value) are evaluated at a nucleotide level. These

criteria have commonly been used, for instance, in [121] (we use the abbreviations SN and

PPV according to convention). For given J known motifs, we define slightly modified SN

and PPV for the evaluation of multiple output motifs.

Let p j be the output that achieves the most overlapping predicted sites with the jth known

motif among the g outputs (if there are two or more outputs having the same number of

overlapped nucleotides, the one with the higher rank given by a motif finder is chosen). Then,
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the recall and the precision are computed as

SN =
1
J

J

∑
j=1

SN j and PPV =
1
J

J

∑
j=1

PPV j,

SNj =
# of nucleotides in motif j overlapped by output p j

# of nucleotides in motif j
,

PPVj =
# of nucleotides in motif j overlapped by output p j

# of nucleotides in output pj
.

A low SN statistic indicates the lack of ability to discover planted multiple motifs and a low

PPV statistic can be a signal for less identification accuracy, for instance, the occurrence of

over- or under-estimates of the planted motif regions.

(ii) From contiguous segments around the TFBSs of the primary TF in each dataset, we

obtain a list of cofactor interacting motifs and their annotations that are implicated in the

regulatory module of the primary TF. To identify the cooperative cofactors of the primary TF,

each predicted motif (PPM) is matched to JASPAR CORE motifs by using the TOMTOM

program [49]. For a given predicted PPM, TOMTOM outputs the matching scores to all

annotated TFBSs (the name of TFs) in JASPAR with the statistical significances (E-values).

For each algorithm, a diversity of the discovered motifs is evaluated with the number of

known motifs in JASPAR CORE that are matched significantly to the produced PPMs with

the acceptable level of significance at E-value less than 0.05.

In addition, we use the log-likelihood ratio (LLR) to evaluate K-mer binding sites of a

predicted motif:

LLR(U,K) =
K

∑
k=1

∑
σ∈{a,c,g,t}

n′ fk,σ log
(

fk,σ

bσ

)
,

where fσ ,k (σ ∈ {a,c,g, t}, k ∈ {1, . . . ,K}) is the relative frequency of nucleotides at each

position in a predicted site, b = (ba,bc,bg,bt)
T is the relative frequency of nucleotides of the

background. The output consists of n′ motif subsequences. A higher LLR indicates a better

likeliness of the K-mer instances to be a motif in terms of a combined characterization on the

degree of overrepresentation relative to the background and the total information content.
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3.3.1 Synthetic dataset

The performance of RPMCMC was tested on synthetic datasets against two ChIP-tailored

algorithms, DREME and Hegma, and a classical algorithm, Weeder. The datasets were

derived from non-redundant sets of randomly selected n ∈ {300,600,1200,2500,5000}

promoter sequences obtained from UCSC.hg19 with two different kinds; one composed of

fixed-length sequences of 1,000 bp and the other of variable-length sequences varied between

200 and 2,000 bp. Oligomers generated by randomly chosen 10 JASPAR CORE PPM

collections were planted into randomly selected start sites so that each sequence has eight

motifs on average. For each data size n, we prepared 20 different sequence sets. With this

ground truth, we measured the change in recall and precision. All parameters of RPMCMC

and the specified Weeder options are shown in Table 3.1. For DREME and Hegma, we

employed the default parameters. The parameters of RPMCMC were empirically chosen.

Table 3.1 Default parameters of RPMCMC and Weeder options that were used in all experi-
ments. Hegma and DREME were executed using the default settings.

RPMCMC
parameter value
prior on zi γ = 0.755
max/min motif width Kmax = 8,Kmin = 15
Dirichlet priors ασ = 1,βk,σ = 1
# of replicas M = 50
# of MCMC iterations N = 520
burn-in period (fixed) N ≤ 20
repulsive force severity β = 10×∑i zi

motif clustering λ = 0.3
gap penalty c = 0.3

Weeder
option value
species code HS
analysis type medium

Fig. 3.9(a) summarizes the SN and PPV values as a function of n for RPMCMC, Hegma

and Weeder. DREME was removed from this figure because there was no way of calculating
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Fig. 3.9 Performance comparison among RPMCMC, Hegma and Weeder on synthetic
datasets: (a) fixed-length sequence sets and (b) variable-length sequence sets. Motifs were
generated according to the JASPAR CORE PPM collection and were inserted randomly into
a set of promoter sequences. SN (left) and PPV (right) values of each method are plotted
against the varying sequence sizes, n ∈ {300,600,1200,2500,5000}.
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Fig. 3.10 Computational efficiency of RPMCMC, Hegma, DREME and Weeder (a) the
synthetic promoter sequence and (b) the ChIP-seq datasets, shown as a function of the
number of nucleotides. The vertical axis indicates CPU times. The right figure is an enlarged
display of the left figure to make clear the computation time of Hegma.
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SN and PPV due to the lack of outputs on motif sites in the distributed program. The

numbers of outputs from RPMCMC, Hegma and Weeder were 85.7, 214.76 and 13.3 on

average, respectively. It can be seen that RPMCMC outperformed the other methods. For the

fixed-length datasets, RPMCMC delivered SN values around 1.7 times higher than those of

the other two methods. The PPVs of RPMCMC were around 1.5 times higher than those of

Hegma. As shown in Fig. 3.9(b), the results on the variable-length datasets were similar to

those on the fixed-length datasets except that the performance of Hegma was significantly

degraded.

We analyzed the cause of the observed low SN and PPV statistics for Hegma and Weeder,

as illustrated with the results on the fixed-length datasets. It was found that Hegma has a

strong tendency to divide planted regions of a motif into a few different predicted motifs.

Such incorrectly fragmented outputs acted to increase PPV slightly but resulted in the

observed low SN. A distinctive characteristic of Weeder is the fairly low PPV while several

comparative studies reported Weeder to be one of the best performing algorithms among

early motif finders [121]. A region predicted by Weeder tends to include not only a planted

motif region but also many background regions. RPMCMC could achieve much higher SN

and PPV than the others could.

Fig. 3.10(a) gives the computation time for each method. RPMCMC was implemented

in C++. We used the C programs for DREME, Hegma and Weeder, which are available on

the authors’ websites. All the tests were conducted on Intel Xeon Phi™coprocessors with

61-core CPUs and 48 GB of main memory. In terms of computation efficiency, Hegma

outperformed the others, and RPMCMC was comparable to DREME. In particular, the

computation times of RPMCMC and DREME were about a ten-thousandth those of Hegma.

RPMCMC would sustain an acceptable level of computation time, and furthermore, it might

be possible to render the algorithm more efficient. The bottleneck in RPMCMC is in the

process of calculating the posterior probabilities of the motif start sites ui (see details in

Supplementary Method S1): with a given PPM, K×∑i 2(Li−K+1) times calculations were

necessary to perform in every iteration over all possible K-mer consecutive subsequences in S.

This process can fully be parallelized into independent processing elements. Alternatively, we
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Fig. 3.11 Series of the likelihood values in RPMCMC for a synthetic dataset with 300
sequences. Default burn-in is set at 20 steps (red vertical line).

could use a branch-and-bound technique as in STEME that effectively prunes subsequences

with negligibly low probabilities.

We remark on the difficulty in detecting the burn-in time for RPMCMC. An initial

portion of the Markov chain samples should be discarded because the chain approaches

its stationary distribution [22] following a sufficient burn-in period. Fig. 3.11 shows the

process of evolving the likelihood during a RPMCMC run. The series of the likelihood

values remained instable, which indicates a fairly slow mixing of the Markov chain because

the target distribution was inherently multimodal and the parallel interacting chains switched

their target local modes successively. In general, it is difficult to deal with a diagnostic of

burn-in periods that looks for multimodality of the posterior distribution. At the current

moment, we do not have a specific idea other than an obvious approach of giving as long as

possible for a trial move.
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3.3.2 ChIP-Seq data

Using RPMCMC with the default parameters given in Table 3.1, we predicted the cofactor

motifs of the primary TF for each of the 228 datasets of ChIP-seq experiments in the

ENCODE project [20]. FASTA files were produced by clipping the sequences of UCSC.hg19

at the locations recorded in SYDH TFBS narrowPeak files (available from NCBI’s Gene

Expression Omnibus using the accession number GSE31477). We removed datasets that

had only a few sequences after removing fragments with lengths less than 200 or more than

500 from the obtained FASTA files. Also, we removed datasets which have more than one

percent of sequences including blacklist regions reported on

https://sites.google.com/site/anshulkundaje/projects/blacklists. In this way, we obtained the

228 datasets from the total of 359 datasets. The numbers of the input sequences ranged from

205 to 49,211. RPMCMC produced 51–149 output motifs for each dataset. A discovered

motif, for instance, {Uk,Θk} in µk, was regarded as being significantly enriched if it appeared

in 5% or more of the input sequences, i.e. ∑
n
i=1 zi/n ≥ 0.05. At the acceptable level of

significance on the TOMTOM’s E-values ≤0.05, approximately 15 significantly enriched

outputs on average could have correspondence to one of the experimentally validated TFBSs

in JASPAR CORE.

In the experiments, Hegma produced a far greater number of outputs (1,081 outputs

on average over all datasets) than RPMCMC (110 outputs) and DREME (49 outputs).

The outputs of Hegma possibly included many redundant motifs. Removing motifs with

∑
n
i=1 zi/n< 0.05 from the total outputs, the average numbers of outputs of Hegma, RPMCMC

and DREME dropped to 24, 110 and 33, respectively.

The computation times of each algorithm for 10 selected datasets including the smallest

and the largest dataset are shown in Fig. 3.10(b). Compared to the experiment with the

synthetic datasets, the computation times of RPMCMC were a little inferior to those of

DREME for the ChIP-seq datasets. RPMCMC would still sustain an acceptable level of

computation time. As discussed in the previous subsection, the current implementation of

the RPMCMC algorithm is yet to be optimized for speed.
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P/A
predicted motif E-value ranking Hegma DREME
SP1 2.71×10−4 1 P P
EGR1 1.09×10−3 1 P P
SP2 1.10×10−3 1 P P
KLF5 3.75×10−3 1 P P
NRF1 3.80×10−9 2 P P
FUS3 5.07×10−3 2 P P
E2F4 4.52×10−2 45 A P
REST 3.92×10−3 47 A A
GABPA 1.57×10−2 51 A A
DAF-12 1.41×10−2 56 A A
MET31 1.56×10−2 62 A A
RPN4 3.49×10−2 62 A A
TYE7 1.43×10−3 70 A A
PIF5 4.35×10−2 70 A A
USF1 4.56×10−2 70 A A
RDS1 3.37×10−2 71 A A

Table 3.2 A list of 16 predicted motifs obtained by RPMCMC that are implicated in the
transcriptional module of NRF1 in HepG2. NRF1 is the ChIPed TF and the rest are the
predicted cofactors. All motifs, which could be annotated at E-value ≤ 0.05 according to
JASPAR, are shown with the E-values of TOMTOM (second column) and the ranking by
RPMCMC (third column). The last two columns indicate the presence (P) or absence (A) of
the motif in the outputs of Hegma and DREME, respectively.

As shown in Fig. 3.12(a), the numbers of known motifs significantly matched to the

outputs of RPMCMC (E-values ≤ 0.05) were larger than those of Hegma and DREME for

74% of the 228 datasets. While RPMCMC produced the largest numbers of outputs among

the three methods, the LLR values of the discovered motifs of RPMCMC were much higher

than those of the others as in Fig. 3.12(b). This indicates that RPMCMC has a great potential

to mine many reliable diverse motifs that are undetected by the existing methods.

Table 3.2 shows 15 cofactors that were predicted by RPMCMC on a ChIP dataset

(wgEncodeSydhTfbsHepg2Nrf1IggrabPk) in which the binding sites of NRF1 were studied

in HepG2. The binding sites of RPN4 and USF1 were detected only by RPMCMC. It was

reported that both RPN4 and NRF1 are involved in the same proteasome activity [102, 131],

and the interaction of USF1 and Nrf1 is involved in the transcriptional regulation of FMP1

gene [98].
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Fig. 3.12 Comparison of RPMCMC with Hegma and DREME on the 228 ENCODE datasets.
(a) The number of motifs in JASPAR CORE that were matched to outputs of each algorithm
for each of the 228 datasets (blue: RPMCMC; magenta: Hegma; green: DREME). The
datasets are arranged by gathering together the subsets with which each method achieved
the most matching to JASPAR. (b) The LLR values of the predicted sites are shown across
arbitrary-chosen 10 datasets with different sizes (log10). Each number on the box indicates
the number of sequences in each dataset.

Fig. 3.13 summarizes the detection ability to discover diverse motifs based on a Venn

diagram of all matching motifs produced from the analyses of the 228 datasets. The outputs

of RPMCMC contained almost all of the outputs of DREME and Hegma, and, notably, 219

annotated cofactors were uniquely discovered by RPMCMC.
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Fig. 3.13 Venn diagram for total numbers of significantly annotated motifs over all the 228
datasets, reported by RPMCMC, Hegma and DREME.

3.4 Conclusion

In the motif discovery problem, the direct use of a Gibbs sampling method revealed an

inability to find latent diverse motifs even in a fairly small number of input sequences. In the

application for only 300 input sequences, all simulations with different initializations became

trapped in the AT-rich motifs which are of little significance in practice. This highlighted a

critical drawback of the Gibbs sampling methods. The same is true for the EM algorithm.

Because biological sequences generally contain rather diverse conserved patterns, which

are sometimes biologically meaningless, the posterior distribution exhibits a very complex

landscape as it includes many locally high probability regions. Our view is that solving

this problem is the essence of improving the accuracy of motif discovery. Motivated by

this, we presented a new motif discovery method called RPMCMC, which is a parallel

variant of the widely used Gibbs motif samplers. The rather simple idea is to run the Gibbs

motif samplers in parallel by making use of the repulsive force on different samplers. With



3.4 Conclusion 63

all-at-once sampling, we could discover diverse motifs by which the parallel samplers divide

their responsibility in the overall search region.

As another contribution, we provided a list of predicted cofactor motifs that were overrep-

resented in the 228 ENCODE ChIP-seq datasets. RPMCMC can potentially mine promising

annotated motifs which other word-count methods fail to find. To narrow down things to

truly functional cofactor sets, it is necessary to conduct further validation experiments.





Chapter 4

Molecular design problem

4.1 Introduction

Computational molecular design has a great potential to promote enormous savings in time

and cost in the discovery and development of functional molecules and assembles including

drugs, dyes, solvents, polymers, and catalysis. The objective is to computationally create

novel promising molecules that exhibit desired properties of various kinds, simultaneously.

For instance, the chemical space of small organic molecules is known to consist of more than

1060 candidates. The problem entails a considerably complicated multi-objective optimization

where it is impractical to fully explore the vast landscape of structure-property relationships.

In general, the molecular design process involves two different types of prediction; the

forward prediction is aimed at predicting physical, chemical and electric properties of a

given molecular structure, and the backward prediction is to inversely identify appropriate

molecular structures with the given desired properties. While the former design process is

referred to as the quantitative structure-property relationship (QSPR) analysis, the latter is

known as the inverse-QSPR analysis [14, 90, 68, 122, 123, 81, 66, 129]. In this study, a

Bayesian perspective is employed to unify the forward and backward prediction processes.

Therefore, the present method is called the Bayesian molecular design.

In the relevant areas called chemical or materials informatics, there have been extensive

studies on the forward prediction; however, there has been considerably less progress made
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in the backward prediction. An obvious approach to the inverse problem is the use of

combinatorial optimization techniques. The objective is to minimize the difference between

given desired properties and those attained by the designed molecules. Some previous

studies tackled this issue with genetic algorithms (GAs) [90, 122, 123, 81, 66, 32, 87, 71]

and molecular graph enumeration [129, 3]. Graph enumeration is generally less effective

due to the combinatorial complexity of the design space. To narrow down the candidates,

several ways of introducing a restricted class of molecular graphs have been investigated [129,

3]. Using GAs [125], which have been more intensively studied, searches for optimal or

suboptimal designs by successively modifying chemical structures with genetic operators

consisting of mutation, crossover, and selection.

The major difficulty of using a GA lies in the procedure of mutating molecules such that

unfavorable structures are successfully excluded, for instance, unfavorable and/or unrealistic

chemical bonds such as F-N and C=O=C. This issue is common to the graph enumeration.

To avoid the emergence of unfavorable structures, exclusion rules were employed in some

studies, particularly those aimed at the design of drug-like molecules [56, 67]. However, such

rules might be incomprehensive, and it is impractical to establish a general rule of chemically

favorable structures. A promising alternative is fragment assembly methods [122, 123, 81, 66,

30, 38]. In a structure manipulation step of these methods, randomly chosen substructures are

replaced by fragments of existing compounds. While the fragment assembly methods have a

certain appeal, as is evident from their widespread use, they suffer from critical disadvantages:

(i) the design space is restricted to possible combinations of collected fragments, (ii) the use

of a vast amount of fragments entails unacceptably large computational loads to homology

search in the fragment exchange operation, and (iii) mutation and crossover operations

require computationally intractable graph manipulations. The proposed method circumvents

all these issues.

The Bayesian molecular design begins by obtaining a set of machine learning models

that forwardly predict properties of a given molecule for multiple design objectives. These

forward models on QSPR are inverted to the backward model through Bayes’ law, combined

with a certain prior distribution. This gives a posterior probability distribution for the inverse-
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QSPR analysis, which is conditioned by a desired property region. Exploring high-probability

regions of the posterior with the sequential Monte Carlo (SMC) method [28], molecules that

exhibit the desired properties are computationally created. The most distinguished feature of

this workflow lies in the backward prediction algorithm. In this study, a molecule is described

by a ASCII string according to the well-known SMILES chemical language notation. To

reduce the occurrence of chemically unfavorable structures, a chemical language model

is trained, which acquires commonly occurring patterns of chemical substructures by the

natural language processing of the SMILES language of existing compounds. The trained

model is used to recursively refine SMILES strings of seed molecules such that the properties

of the resulting molecules fall in the desired property region while eliminating the creation

of unfavorable chemical structures. The key contributions of the newly proposed method are

summarized below.

• String-based structure refinement. The string representation of molecules enables

much faster structure refinements in the backward prediction than those based on graph

representation.

• Generator for chemically favorable structures. The method is designed according

to a fragment-free strategy. Structural patterns of known compounds or implied

contexts of ‘chemically favorable structures’ are captured by the probabilistic model.

Afterward, the resulting SMILES generator will be shown to be very effective in

creating chemically plausible hypothetical molecules. The trained model serves as a

substitute for a fragment library, and also forms the prior distribution in the Bayesian

analysis.

The forward and backward predictions are pipelined in the R package iqspr which

is provided at the CRAN repository [100]. The proposed method is illustrated through

the design of small organic molecules exhibiting properties within prescribed ranges of

HOMO-LUMO gap and internal energy. The properties of created molecules are verified

with a quantum chemistry calculation based on density functional theory (DFT) as done for

the design of organic photovoltaics in [51]. Finally, through case studies, we highlight a
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significant issue and the ultimate goal of the machine learning-driven material discovery to

which less attention has so far been paid.

4.2 Bayes law for molecular design

The objective of the backward prediction is to create a chemical structure S with p properties

Y = (Y1, . . . ,Ym)
T ∈ Rm lying in a desired region U . The Bayesian molecular design relies

on the statement of Bayes’ law, which is sometimes called the inverse law of conditional

probability,

p(S|Y ∈U) ∝ p(Y ∈U |S)p(S). (4.1)

This law states that the posterior distribution p(S|Y ∈U) is proportional to the product of

the likelihood p(Y ∈U |S) and the prior p(S). Exploring high-probability regions of the

posterior, we aim to identify promising hypothetical structures S that exhibit the desired U .

Along with Eq. 4.1, three internal steps linking the forward and backward analyses are

outlined (see also Fig. 4.1):

• Forward prediction. A set of QSPR models on the p properties is trained with structure-

property relationship data. This defines the forward prediction model p(Y|S) =

∏
p
j=1 p(Yj|S) on the right-hand side of Eq. 4.1.

• Prior. The prior distribution p(S) serves as a regularizer that imposes low probability

masses on chemically unfavorable structures in the posterior distribution.

• Backward prediction. Bayes’ law inverts the forward model p(Y|S) to the backward

p(S|Y ∈U) in which a desired property U is specified for the conditional. A Monte

Carlo calculation is conducted to generate a random sample of molecules {Sr|r =

1, . . . ,R} of size R according to the posterior distribution.

In this study, a chemical structure is described by a SMILES string. As will be detailed,

a chemical language model defines the conditional distribution S′ ∼ p(S′|S) to which the

current structure S is randomly modified to a new S′. By the machine learning of the SMILES
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Fig. 4.1 Outline of the Bayesian molecular design method
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Fig. 4.2 The schematic description of the finger print.

language in tens of thousands of existing compounds, structural patterns of real molecules

are compressed to the probabilistic language model. In combination with SMC, the trained

model, which acquires the implicit meaning of chemically unfavorable structures, is utilized

to modify SMILES strings under a given U while reducing the emergence of structures

unlikely to occur. Furthermore, the trained language model serves as the prior in Eq. 4.1.

4.3 QSPR model

4.3.1 Bayesian linear regression

A data set D j = {Yi j,Si|i = 1, . . . ,N} on property j is given where Yi j ∈ R1 and Si consist of

the ith sample. With the N observations, the forward model is trained by a Bayesian linear

regression Yj = wT
j ψψψ j(S)+ ε with a d-dimensional fingerprint descriptor ψψψ j(S) ∈ {0,1}d

which contains 2D or 3D information of chemical structures as shown in Fig.4.2. To simplify

the notation, the property index j is omitted here. The noise ε is independently and identically

distributed according to the normal distribution N(ε|0,σ2). The unknown parameters consist

of the coefficient vector w ∈ Rd and the noise variance σ2 ∈ R1
+. Placing the normal and

inverse-gamma priors to the unknowns, we derive the predictive distribution p(Y |S,D) on

the property Y with respect to an arbitrary input S.

Putting the normal prior w∼N(w|0,V−1
0 ), and the inverse gamma prior σ2∼ IG(σ2|a,b)

on the unknown parameters of the linear regression model, we derive the predictive distribu-
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tion on the property Y with respect to an arbitrary input S:

p(Y |S,D) = T2a∗

(
Y
∣∣∣wT
∗ψψψ(S),

b∗
a∗

(1+ψψψ(S)TV∗ψψψ(S))

)
,

V∗ = (V−1
0 +ΨΨΨ

T
ΨΨΨ)−1,

w∗ = V∗ΨΨΨTy,

a∗ = a+N/2, and

b∗ = b+
1
2
(y−ΨΨΨw∗)T(I−ΨΨΨV∗ΨΨΨT)−1(y−ΨΨΨw∗),

where ΨΨΨ
T = (ψψψ(S1), . . . ,ψψψ(SN)) and yT = (Y1, . . . ,YN). Here, I denotes the identity matrix,

and Tν(Y |µ,λ ) denotes the density function of the t-distribution with mean µ , scale λ and

the degree of freedom ν . The predicted value of the property is given by the mean wT
∗ψψψ(S)

of the predictive distribution.

The prediction models on the p properties, p(Yj|S,D j) ( j = 1, . . . , p), are obtained

individually from the respective training sets. We then define the likelihood in Bayes’

law with a desired property region U =U1× . . .×Up as

p(Y ∈U |S) =
p

∏
j=1

∫
U j

p(Yj|S,D j)dYj. (4.2)

For brevity, we write p(Y ∈U |S) = p(Y ∈U |S,D).

Though a simple instance of QSPR models is described here, we can exploit more

advanced techniques of supervised learning such as state-of-the art deep learning or a class

of the ensemble learning algorithms. When dealing with a discrete-valued property, the

regression should be replaced by a classification model such as the logistic regression

model as shown in the next subsection. This study is developed along with the use of

conventional fingerprints as the descriptor, but it is highly beneficial in practice to use more

advanced descriptors, for example, molecular graph kernels coupled with kernel machine

learning[103, 82, 132].
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4.3.2 Logistic regression

Supposed that all the same type of dataset but the binary variables Yi ∈ {0,1}d are obtained,

the logistic regression is widely used to quantify the relationship between features of chemical

structures and response variables in output as shown below.

p(Y = 1|S) = σ(wT
∗ψψψ(S)), (4.3)

where σ(·) is the sigmoid function {1+ exp(·)}−1. Here, no prior is assumed for www and the

estimation of www with the dataset D is done to maximize the following a cross entropy J(www)

w∗ = argmax
w

J(www) (4.4)

= −argmax
w

N

∑
i=1
{yi log(σ(wT

ψψψ(Si)))+(1− yi) log(1−σ(wT
ψψψ(Si)))} (4.5)

This is the convex function with respect to w but analytically intractable to find the point

to maximize J. This optimization is regularly achieved by the iteratively reweighted least

squares (IRLS) [24] and Quasi-Newton methods such as BFGS [92].

4.4 Chemical language model

4.4.1 N-gram model

With the SMILES chemical language, a molecule is translated to a linearly arranged string

S = s1s2 . . .sg of length g. A SMILES string consists entirely of symbols that indicate element

types, bond types, and the start and terminal for ring closures and branching components.

The start and terminal of a ring closure is designated by a common digit, ‘1’, ‘2’, and so

on. A branch is enclosed in parentheses, ‘(’ and ‘)’. Substrings corresponding to multiple

rings and branches can be nested or overlapped. In addition to the formal rule, all strings

are revised as ending up with the termination code ‘$’. Inclusion of this symbol is necessary

to automatically terminate a recursive string elongation process. For instance, once a string
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Table 4.1 Correspondence table between the formal and modified rules of SMILES

Type Original Modified
Start of a ring closure n ∈ {1,2, . . .} &

End of a ring closure n (same to the start) &i for the i-
th ring termina-
tors to the last
of a string

Bond followed by atom A =A (double), #A (triple) =A or #A form
a single charac-
ter

Terminal character of a molecule N/A $

String in a square bracket [abcde] [abcde] form
a single charac-
ter

pattern ...CCC=O is present, any further elongation is prohibited and should be terminated

at once by appending ‘$’. In addition, digits indicating the starts and terminals of rings are

represented by ‘&’. The revised representation rule is listed in Table 4.1 .

With no loss of generality, the prior p(S) can be expressed as the product of the conditional

probabilities:

p(S) = p(s1)
p

∏
i=2

p(si|s1:i−1). (4.6)

The occurrence probabiquivalent forms that correspond to different atom orderings. We treat

such structurally equivalent strings as different S.

The fundamental idea of the chemical language modeling is as follows: (i) the conditional

probability p(si) depends on the preceding s1:i−1 = s1 . . .si−1. In general, the non-canonical

SMILES encodes a chemical structure into many p(si|s1:i−1) is estimated with the observed

frequencies of substring patterns in known compounds, and (ii) the trained model is an-

ticipated to successfully learn an implied context of the chemical language. For a given

substructure s1:i−1, the model is used to modify the rest of the components: until the termina-
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tion code appears, subsequent characters are recursively added according to the conditional

probabilities while putting the acquired chemical reality into the resulting structure.

The SMILES generator should create grammatically valid strings. In particular, we focus

on two technical difficulties to be addressed, which are relevant to the rules of grammar on

the expression of rings and branching components.

• Unclosed ring and branch indicators must be prohibited. For instance, any strings

extended rightward from a given s1:6 = CC(C(C should contain two closing characters,

‘)’, somewhere in the rest.

• Neighbors in a chemical string are not always adjacent in the original molecular graph.

Consider a structure expressed by CCCCC(CCCCC)C. The substring in the parentheses

is a branch of the main chain. The main chain consists of six tandemly arranged

carbons that are split into before and after the branch. In this case, the occurrence

probability of the final character s13 = C should be affected more by characters in the

main chain than those in the branch. In other words, the conditional probability of si

should depend selectively on a preferred subset of the conditional s1:i−1 according to

the overall context of s1:i−1 and si. The same holds when one or more rings appear in

the conditional, e.g., c1ccc2ccccc2c1C.

To remedy these issues, the conditional probability in Eq. 4.6 is modeled as

p(si|s1:i−1) =
20

∏
k=1

p(si|φn−1(s1:i−1),Ak)
I(s1:i−1∈Ak), (4.7)

where I(·) denotes the indicator function which takes value one if the argument is true and

zero otherwise. One of the 20 different models p(·|·,Ak) (k = 1, . . . ,20) becomes active when

the state of the preceding sequence s1:i−1 falls into any of the mutually exclusive “conditions”

Ak (k = 1, . . . ,20). The 20 (= 2× 10) conditions are classified according to the presence

or absence of unclosed branches and the numbers {0,1, . . . ,9} of unclosed ring indicators

in s1:i−1. For instance, if s1:i−1 contains two unclosed ring indicators, e.g., CCCC(CC(, the

corresponding models should be probabilistically biased toward producing the two terminal
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Fig. 4.3 Illustration of the substring selector φn−1(·) with three examples. In the contraction
operation, a substring inside of the outermost closed parentheses (red) is reduced to the
character in its first position (blue). The extraction operation is to remove the rest (green) of
the last n−1 (= 9) characters from the reduced string. The corresponding graphs are shown
on the right where the atoms in the boxes indicate the last characters in the inputs of φn−1(·)
(left).

characters ‘)’ in subsequent characters. In addition, the substring selector φn−1(s1:i−1) is

introduced for the treatment of the second problem. The definition is as follows:

• Contraction. Suppose that s1:i−1 contains a substring t = t1 . . . tq enclosed by the closed

parentheses such that t itself is never enclosed by any other closed parentheses. In

other words, t is a substring inside of the outermost closed parentheses. The substring

is then reduced to be t → t ′ = t1 by removing all characters in t except for the first

character, t1. In other words, t1 is the character that is the right-hand neighbor of the

opening ‘(’ of the outermost closed parentheses.

• Extraction. The selector φn−1(s1:i−1) outputs the last n−1 characters in the reduced

string of s1:i−1.

The substring selector is illustrated with several examples in Fig. 4.3. This operation reduces

a substring in any nested closed parentheses to a single character that indicates the atom

adjacent to the branching point. The occurrence probability of si is then conditioned by

its n− 1 preceding characters in the reduced strings that correspond to neighbors in the

molecular graph.
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Under the maximum likelihood principle, the conditional probability for Ak in Eq. 4.7

was estimated by the relative frequency of co-occurring n-gram, si and ψn−1(s1:i−1), in

training instances of known compounds as follows.

Let fAk(si,φn−1(s1:i−1)) denote the count of the n-grams in which the conditional string

s1:i−1 is in condition Ak. We then conduct the back-off procedure [17] separately with all

possible substrings s1:i whose the conditionals s1:i−1 belong to Ak:

p(si|φn−1(s1:i−1),Ak)

=


fAk

(si,φn−1(s1:i−1))

∑
si∈Σ

fAk
(si,φn−1(s1:i−1)

if ∑
si∈Σ

fAk(si,φn−1(s1:i−1))> 0

p(si|φn−2(s1:i−1),Ak) otherwise

,

where Σ denotes the set of all possible characters. This is a recursive formula across

n = 1,2, . . . ,nmax. In the upper formula, the estimate is given by the relative frequency of

each instance of an n-gram in the Ak-conditioned substrings. If there are no instances, the

estimate at the previous (n−1)-gram is substituted as in the lower formula.

To determine the order n of the chemical language model and to verify its learning ability

in the chemical language context, ten training sets of 1,000 compounds were randomly

produced from the PubChem compounds. Each set was halved for training Dtrain and testing

Dtest.

The models with varying orders, n ∈ {4,7,10}, were trained with two different proce-

dures, the back-off (BO) and the Kneaser-Nay smoothing (KN) methods [17]. As a control

group in the comparison, we added a conventional n-gram that learned the (n− 1)-order

Markov relationship among the chemical strings simply without using the stratification Ak

(k = 1, . . . ,20) and the substring selector φn−1(·). Model performances were evaluated with

two criteria: the perplexity measure[64] and the grammatical validity of produced chemical

strings.

Perplexity is a commonly used measure in the natural language processing that evaluates

the generalization capability of a language model M with the trained probability function
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Fig. 4.4 Perplexity scores (left) and valid grammar rate (1 - the syntax error rate) (right)
with respect to 1,000 SMILES strings generated from trained chemical language models.
The conventional n-gram and the extended language models were trained with the BO and
KN algorithms. The error bars represent the standard deviations across the 10 experiments
corresponding to different training sets.

pM (S) in Eq. 4.6,

perplexity(M ) = exp
(
− 1
|Dtest| ∑

i∈Dtest

log pM (Si)
)
.

For each model, the goodness-of-fit, i.e., the likelihood, to the 1,000 test instances was

measured. As shown in Fig. 4.4, the models resulting from BO outperformed the others

in terms of perplexity. In the comparison among the BO-derived models with the different

orders, there were no significant differences in the generalization capability. Furthermore, this

experiment showed the significance of the stratification Ak (k = 1, . . . ,20) and the substring

selector φn−1(·), as significant improvements of perplexity were observed in the extended

models relative to the conventional models.

In light of grammatical validity, the syntax error rates were evaluated for 1,000 hypo-

thetical molecules generated from each of the ten trained models. The grammar check was

done with the SMILES parser function ‘parse.smiles’ in the rcdk package with the option

‘kekulise = TRUE’. As shown in Fig. 4.4, the error rate was monotonically reduced with an
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Fig. 4.5 Examples of molecules generated from the trained chemical language model with
n = 10 (top). The bottom row displays the most similar PubChem compounds that had the
Tanimoto coefficient ≥ 0.9 on the PubChem fingerprint.

increase in the Markov order in the extended models. The minimum error rate (≤ 2.7%) was

attained at n = 10. The performances of the BO and KN algorithms were much the same. In

conclusion, we selected the BO-derived model with n = 10 on the basis of perplexity and

grammatical validity.

To further validate the learning ability of the BO-derived model with n = 10, 50 randomly

created molecules were associated with PubChem compounds in which the training com-

pounds were removed. Approximately 72% of the 50 virtual molecules exhibited extensive

similarities to one or more existing compounds meeting the acceptance criterion of the

Tanimoto coefficient ≥ 0.9 on the PubChem fingerprint. Fig. 4.5 shows five instances of

the created molecules; these instances indicate the great ability of the chemical language

model. Conventional structure generators could never reproduce such structurally complex

molecules.
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4.5 Posterior inference using the sequential Monte Carlo

sampler

The objective of the backward prediction is to generate chemical strings from the posterior

distribution in Eq. 4.1, conditioned on a desired property region U . The forward models and

the trained language model define the posterior as in Eq. 4.2 and Eq. 4.6.

We here use the SMC sampler to create novel molecules from the result in the Table 2.2

that the it produced a more accurate estimate than the simple Metropolis sampler as well

as the RPMCMC. The pseudo code of the SMC algorithm that we developed is shown in

Algorithm 1. In general, diverse molecules exhibit significantly high probabilities in the

posterior. In order to better capture the diversity of promising structures, we create a series of

tempered target distributions, γt(S) (t = 1, . . . ,T ), with a non-decreasing sequence of inverse

temperatures 0≤ β1 ≤ β2 ≤ . . .≤ βs−1 ≤ βs = . . .= βT = 1.

γt(S) ∝ p(Y ∈U |S)βt p(S).

The likelihood function becomes flatter as the inverse temperature decreases, and vice versa.

The algorithm begins with a small β1 ≃ 0. The series of target distributions monotonically

approaches as the iteration number increases, and bridges to the posterior at βt = 1, ∀t ≥ s.

The pseudo code of the SMC algorithm is shown in Algorithm 1. At the initial step

t = 0, R structures {S(r)0 |r = 1, . . . ,R} are created. For each subsequent t, a currently obtained

structure S(r)t−1 is transformed randomly to S(r)∗ according to a structure manipulation model

Gθ (S
(r)
t−1,S

(r)
∗ ) with a set of parameters, θ = (κ,η), as detailed below. This procedure is

available simply by replacing K(S(r)t−1,S
(r)
∗ ) = Gθ (S

(r)
t−1,S

(r)
∗ ), L(S(r)∗ ,S(r)t−1) = Gθ (S

(r)
∗ ,S(r)t−1)

in the sequential Monte Carlo sampler introduced in the subsection 4.2.3. The structure

manipulation model Gθ (S,S′) is designed with the trained SMILES generator as summarized

below.

(i) Draw a uniform random number z ∼ Unif(0,1). If S is grammatically correct and

z is less than the reordering execution probability κ (= 0.2), reorder the string S→
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S∗ of length g, otherwise set the unprocessed string to S∗. With the first character

chosen randomly using a uniform distribution, Open Babel 2.3.2 [94] is used from the

command line with an argument ‘-xf’ for the reordering.

(ii) Discard the rightmost b characters of the reordered string to derive S∗∗ = s∗∗1:g−b.

The deletion length b is sampled from the binomial distribution b∼ B(b|L,0.5) with

binomial probability and the maximum length L (= 5 by default).

(iii) Extend the reduced string by sequentially adding a new character to the terminal

point L− b times. A newly added character follows the trained language model

si ∼ p(si|s1:i−1). Once the termination code appears, the elongation is stopped, and

then we have S′.

The reordering of strings plays a key role in preventing a series of designed molecules from

getting stuck in local states. Note that temporally, the SMC algorithm can create structures

containing unclosed rings and branching components. Then, the corresponding start codes

for the unclosed rings or branches are temporally removed to avoid the syntax error when

obtaining a descriptor for the likelihood calculation. In addition, the atom order is rearranged

only when a current string is grammatically valid.
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Algorithm 1 Backward prediction algorithm

Input T,R,E,θ ,{S(r)0 |r = 1, . . . ,R}, {βt |t = 1, . . . ,T}

Output {S(r)t |r = 1, . . . ,R, t = 1, . . . ,T}

Set t = 0, and w(r)
t = 1/R for r = 1, . . . ,R.

for t = 1, . . . ,T do

for r = 1, . . . ,R do

Transform S(r)t−1 to an intermediate state S(r)∗ using the structure manipulation model

Gθ (S
(r)
t−1,S

(r)
∗ ) (the procedure is detailed in the main body of this chapter).

Update the weight of the rth structure as

wr
t = w(r)

t−1
γt(S

(r)
∗ )

γt(S
(r)
t−1)

Note that if the modified S(r)∗ contains unclosed ring or branch specifications, those

indicators must be temporally removed before the conversion of the chemical string

to a descriptor in the likelihood calculation.

end for

The weights are normalized to obtain the selection probabilities W (r)
t ∝ w(r)

t such that

∑r W (r)
t = 1.

Calculate the effective sample size ESS = R(∑r W (r)
t

2
)−1.

if ESS≤ E then

Perform the resampling of {S(r)∗ |r = 1, . . . ,R} with the selection probabilities.

Set w(r)
t = 1/R for r = 1, . . . ,R.

The resampled set forms a new population {S(r)t |r = 1, . . . ,R}.

else

S(r)t = S(r)∗ for r = 1, . . . ,R.

end if

end for
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4.6 Applications

4.6.1 Physical properties

Dataset

The molecular design process is demonstrated through the creation of small organic

molecules with the design objective intended to the HOMO-LUMO gap (HL) and the internal

energy (E). With the quantum chemistry calculation based on DFT, the two properties

were obtained for 16,674 compounds which were selected randomly from PubChem [69].

The 16,674 pairs of structures and properties are used for learning of forward model. In

addition, randomly chosen 50,000 structures from pubchem were used for learning chemical

structures with the chemical language model. Before learning, molecules including one or

more inorganic or ionic elements were excluded.

Estimation

Before going to backward prediction, a forward model has to be constructed. In the

process to determine a combination of fingerprints, the entire data set was divided into 10,000

and 6,674 items for training and testing, respectively. As shown in Table 4.2, eight different

descriptors ψ(S) were derived by using six types of molecular fingerprints in combination;

which these fingerprints are implemented in the R package rcdk [48]. The mean of the

predictive distribution was employed as the predicted value of each property. The parameters

of the normal and gamma priors in regression were set as in Table 4.3. The performance of

the trained models was assessed with the mean absolute error (MAE). As shown in Table 4.2,

the augmented descriptor that combined the ‘standard’, ‘extended’, ‘circular’ and ‘pubchem’

fingerprints delivered the highest predictive accuracy. However, the average runtime for

the likelihood calculation per 100 molecules (∼ 7.71 sec) was significantly greater than the

others because the translation into the ‘pubchem’ fingerprint involves an intractable graph

pattern matching. This led to a significant increase in the runtime for the backward prediction.

We therefore employed the second-best descriptor containing ‘standard’, ‘extended’ and

‘circular’, which delivered relatively small MAEs, 0.54 eV and 23.5 kcal/mol, for the HOMO-



4.6 Applications 83

Table 4.2 MAEs of the QSPR models with the eight different fingerprint descriptors for
the internal energy and the HOMO-LUMO gap. The six fingerprints in the rcdk package
(bottom) and their combinations were tested. The last column denotes the average runtime
for the QSPR score (likelihood) calculation per 100 molecules, which run on an Intel Xeon
2.0GHz processor with 128GB memory using the iqspr package

Fingerprint Energy (kcal/mol) HOMO-LUMO gap (eV) Runtime (sec)
1 32.6 0.53 0.50
2 30.4 0.54 0.41
3 29.3 1.37 2.57
4 28.3 1.66 0.36
5 22.1 0.55 5.32
6 46.8 0.84 0.39

1,2,4 23.5 0.54 1.61
1,2,4,5 18.9 0.50 7.71

1. ‘standard’: paths of a default length (1024 bits)
2. ‘extended’: the ‘standard’ fingerprint is modified such that ring and atomic properties are taken into account
(1024 bits)
3. ‘maccs’: MDL MACCS keys (166 bits)
4. ‘circular’: ECFP6 finterprint (1024 bits)
5. ‘pubchem’: PubChem fingerprint (881 bits)
6. ‘graph’: ‘standard’ is modified by taking into account connectivity (1024 bit)

LUMO gap and internal energy, respectively. With this, the runtime was reduced by nearly

80% (to ∼1.61 sec per 100 molecules), compared with the best performing model.

The performance of the backward prediction was tested on three different property

regions of Y = (YHL,YE)
T: (i) U1 = [100,200]× [4,5.5], (ii) U2 = [250,400]× [5,6], and (iii)

U3 = [100,250]× [2.5,3.5]. Table 4.3 summarizes the parameters of the backward prediction.

Phenol ’c1cccccc1O’ was assigned to the 100 initial structures (R = 100) which were refined

across t = 1, . . . ,T with T = 500 as a desired property region was sought. Fig. 4.6 shows

snapshots of these processes. The created molecules underwent substantial changes in

size, geometry and composition. A visual inspection of the movies verifies that backward

calculation prevents structures from getting stuck in locally high-probability regions (data

not shown).

Fig. 4.7 illustrates the early stages (t ∈ {1,20,50,200}) of the property refinements,

during which they are moving in toward their respective target regions. For each t, a non-
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Fig. 4.6 Snapshots of structure alteration during the early phase of the inverse-QSPR calcula-
tion (t ∈ {10,20,50,200}) with the desired property region set to U1, U2 or U3. The initial
molecule (phenol) is shown at the top. The created molecules shown here were those ranked
in the top four by the likelihood score at each t.
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Fig. 4.7 Property refinements resulting from the backward prediction at t ∈ {1,20,50,200}.
Results on the three different property regions, U1, U2 and U3, are displayed together, and
color-coded by red, green and blue, respectively. The shaded rectangles indicate the target
regions. The dots indicate the HOMO-LUMO gaps and internal energies of the designed
molecules that were calculated by the predicted values of the QSPR models. For each Ui and
t, the 10 non-redundant molecules exhibiting the greater likelihoods are shown.
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Table 4.3 Parameters and experimental conditions for the backward prediction

Process Description Parameter
Forward prediction Number of training data N = 10,000

Fingerprint descriptor 1, 2, 4
The normal prior V = I
The Gamma prior (a,b) = (0,0)

Chemical language model Number of training data 50,000
Markov-order n = 10
Estimation algorithm Back-off method

Backward prediction Size of population R = 100
Number of iterations T = 500
Reordering probability κ = 0.2
Total changing length L = 0.5
Cooling schedule βt = 50.95t−1

for t ≤ 250, βt =
1 for t ≥ 251

Threshold on ESS E = 50
Initial structures phenol c1ccccc1O

Fig. 4.8 Properties of 50 molecules which were selected from the overall backward prediction
process for U1 (red), U2 (green), and U3 (blue). The HOMO-LUMO gap and internal energy
were calculated by the trained QSPR models (left) and the DFT calculation (right). The
gray dots indicate the training data points. In each Ui, the 50 non-redundant molecules that
achieved the highest likelihoods are shown.
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redundant set of created molecules is shown: molecules ranked in the top 10 by the likelihood

score were selected from a ranking list in which a molecule was removed from the list

if its Tanimoto coefficient on the PubChem fingerprint exceeded 0.9 with respect to any

of the higher ranking molecules. The reported HOMO-LUMO gap and internal energy

correspond to the means of the predictive distributions for the trained forward models. At

t = 1, the properties were very far from the desired regions. As the calculation proceeds, the

resulting properties approached the targets quite rapidly. At t = 200, almost all of the created

molecules have properties falling within their respective target region, U1, U2, or U3. This

observation indicates that the proposed method is capable of drastic and rapid refinements of

the properties of seed molecules.

Fig. 4.8 shows the properties of molecules created at t = 251 and 500 with their verifica-

tions by the DFT calculation. In the same way described above, 50 non-redundant molecules

were selected from the likelihood-based prioritized list of 25,000 candidates: similar to the

results shown in Fig. 4.7, 50 non-redundant molecules were selected, in this case selected

from a prioritized list of the 25,000 candidates corresponding to the 100 particles produced

between t = 251 and 500. The physical properties were evaluated by the QSPR models

(left) and the DFT calculation (right). For the DFT calculation, the created SMILES strings

were first converted into the 3D structures by using OpenBabel with the ‘-gen3d’ option.

Such initial conformations were fully optimized using Gaussian09 with B3LYP/6-31+G(d).

Finally, the electronic properties at the equilibrium geometries were computed at the same

level of theory. As shown, all the QSPR-derived properties of the created molecules fell

within the respective desired regions. However, in the verification by the DFT calculation, the

arrival rates for U2 and U3 were significantly reduced to 25/50 and 7/50, while the high rate

(45/50) was maintained on U1. The cause of the performance depression in the former cases

is apparent. As shown in Fig. 4.8, the number of known compounds used for the training

was fairly small in neighborhoods of U2 and U3. By necessity, the trained forward models

had much lower accuracies in prediction in neighborhoods of U2 and U3 relative to U1. The

ability of the backward prediction therefore declined as the desired properties were placed

within regions where data are more sparsely populated. The proposed method has a great
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ability to discover molecules when a desired property lies within a region where enough data

are given, but the creation of truly novel molecules that reside in a far tail of the distribution

of known molecules is an issue yet to be addressed. This will be discussed more in later

section.

The novelty of derived molecules was investigated by seeking structurally similar com-

pounds in PubChem. For a created S that appeared in Ui in terms of DFT, we calcu-

lated the Tanimoto coefficient T (S,S∗) on the PubChem fingerprint with respect to all

PubChem compounds S∗ after removing the training instances. Under the acceptance crite-

rion T (S,S∗)≥ 0.9, significantly similar known compounds were identified for S. Fig. 4.9

illustrates an instance of promising hypothetical molecules and the results of the similarity

search. Thus, it has been confirmed that the proposed method is capable of reproducing the

highly complex and diverse molecules in the database. As expected, molecules that emerged

in U2 and U3 were less well matched to existing compounds. More importantly, it has been

proved that various types of molecules can exist in the same property region and that many

of these have yet to be identified. In practice in science and industry, such molecules could

be truly important candidates for further testing and synthesis.

The backward prediction algorithm was run on an Intel Xeon 2.0GHz processor with

128GB memory using the iqspr package. The average execution time was about five seconds

per step in SMC. The essential part of the current implementation was all developed in the

R language and does not support parallel processing. The development of more advanced

software is a future subject.

4.6.2 Bioactivity

Dataset

Datasets for structure-bioactivity relationship were obtained from the pubchem BioAssay

database [124]. This database has 500000 types of assay protocols with 5000 target proteins,

30000 target genes and over 130 million bioactivity outcomes. The 10 bioactivities are

selected with keyword "qHTS". The list of targets is shown in Table 4.4. Since these dataset
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Fig. 4.9 Newly created molecules in the predefined property regions. The bottom row of each
pair shows instances of significantly similar PubChem compounds that had the Tanimoto
index ≥ 0.9.
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Table 4.4 QSAR bioaasay data

Index PubChem AID Target name Target activity
1 540303 Cell surface uPA generation Active
2 588579 Polymerase Kappa Inactive
3 588590 Polymerase Iota Inactive
4 588591 Polymerase Eta Inactive
5 588855 TGF-b Inactive
6 651635 ATXN expression Inactive
7 651768 WRN Helicase Inactive
8 652105 PI5P4K Inactive
9 686978 TDF1 Inactive

10 720504 PLK1-PDB Inactive

usually contains much more negative data than positive data, positive and negative data are

chosen randomly to be equal in number up to 2000, respectively.

The dataset for learning the 1922 chemical structures was obtained from the drugbank

[128]. These are SMILES strings of FDA approved small molecule drugs. By learning from

it, it will be expected to generate drug-like chemical structures.

Estimation

The QSPR model we used here was the logistic regression with elastic net regularization

as shown in [134]. A set of the parameters used in this experiment was shown in Table 4.4.

The purpose of learning QSPR is to confirm how accurate QSPR model predicts if an input

molecule has the target bioactivities, which directly connects to the confidence that newly

generated structures in the inverse-QSPR model have actually target bio-activity since the

inverse-QSPR model is represented as the product of the QSPR model and the structure

model. Fig.4.10 shows the prediction accuracy of the QSPR model using the true positive

rate (TPR) and the true negative rate (TNR) with two decision boundary (m = 0.5,0.9) for the

target 1 and the rest of targets, respectively. The actual generated chemical structures from

the inverse-QSPR model are obtained with strong confidence (high predictive probability for

the target activity) in usual cases. From this result, the accuracy of QSPR model with high

confidence (m = 0.9) was judged to be good enough (at least above 0.7) for checking in the

backward prediction.
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Fig. 4.10 The result of QSAR predictions for 10 targets of bioactivities.
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Table 4.5 Parameters and experimental conditions for the backward prediction

Process Description Parameter
Forward prediction Maximum number of training data N = 2,000

Fingerprint descriptor 1, 2, 4
L1 regularization parameter λ = 0.01
Elastic net parameter α = 0.1

Chemical language model Number of training data 1,922
Markov-order n = 10
Estimation algorithm Back-off method

Backward prediction Size of population R = 1000
Number of iterations T = 100
Reordering probability κ = 0.2
Total changing length L = 5
Cooling schedule βt = 200.9t−1

for t ≤ 80, βt = 1
for t ≥ 81

Threshold on ESS E = 50
Initial structures phenol c1ccccc1O

For the inverse-QSPR, the score function q(s) was defined as

q(S) = σ(w1
T
∗ΨΨΨ(S))r1

10

∏
j=2

σ(w j
T
∗ΨΨΨ(S))r j , (4.8)

where w j∗ is the weight of the predictive model for activity j and r = (r1, . . . ,r10) is the

parameter to control the balance between active targets and inactive targets since inactive

tend to be selected more than active to avoid the side effect caused by attacking unnecessary

targets in usual settings. Here, (r1, . . . ,r10) is set as (5,5/18,5/18, . . . ,5/18).

As done for the physical properties, the SMC sampler was employed to generate chemical

structures from the inverse-QSPR model. The parameter setting is shown in Table 4.6.

Fig.4.11 shows the transition of score distributions. At the beginning in the SMC sampler,

since all molecules are similar to the phenol, scores are almost close to zero. As time

passed, their structures were gradually changed to preferred ones as shown in the previous

experiment, resulting in obtaining relatively high scores until t = 100 in this experiment.

The chemical structures in Fig.4.12 are some of the highest scored molecules with the score

function (eqn. 4.8). QSPR prediction of these chemical structures are shown high activity for
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Fig. 4.11 Score distribution of particles of the SMC sampler at each time

Fig. 4.12 generated three chemical structures with the highest scores

target 1 and low activities for the rest of targets (Table 4.5), thus this attempts can be said to

successfully generate possible drug candidates.
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Table 4.6 QSAR predictions of chosen 3 chemical structures for bioactivities in 10 target
proteins

Index score 1 2 3 4 5 6 7 8 9 10
str1 0.816 0.983 0.00 0.02 0.03 0.01 0.06 0.00 0.00 0.00 0.08
str2 0.785 0.990 0.02 0.08 0.04 0.07 0.03 0.00 0.04 0.04 0.02
str3 0.751 0.985 0.00 0.01 0.01 0.01 0.17 0.00 0.01 0.10 0.04
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4.7 Conclusion

This study developed a principled approach to computational molecular design thorough a

unified perspective of the Bayesian analysis to the forward and backward predictions. The

method was demonstrated with case studies in multi-objective molecular design aimed at

the physical properties (HOMO-LUMO gap and internal energy) and bio-activities for 10

target proteins. The presented analyses can be performed with the R package iqspr that we

developed. Despite potentially great impacts on science and industry, practical applications

of computer-aided molecular design methods have not been widely adopted. The lack of

easy-to-access software and benchmark data has restrained the proliferation of the use of

inverse-QSPR and the growth of methodologies and tools has been hampered due to the

difficulty of performance competition.

The main contribution of this study lies in the newly proposed structure refinement

algorithm based on the chemical language model. As mentioned earlier, most existing

methods utilize chemical fragments of real compounds for the reduction of creating chem-

ically unfavorable molecular graphs. The drawback of the fragment-based methods is the

limited diversity of the created structures. To enhance diversity and novelty, a vast amount of

fragments should be used, but this makes the operations for structure transformations in the

fragment exchange process and similarity search on the large fragment library much more

computationally expensive. The present study showed the great promise of a fragment-free

strategy based on a chemical language model. The trained model acquired the implicit mean-

ing of chemically favorable structures and succeeded in the creation of seemingly realistic

molecules. Surprisingly, more than 70% of the generated molecules had significantly similar

known compounds, and in addition, some of these were structurally very complex to the point

that no conventional structure creators would ever be able to reproduce them. The proposed

method demonstrated a new way to make computationally efficient structure refinements

based on the string representation of molecules. It is important to see that the acquired

context of the chemical language is not well defined, but rather is ambiguous. Possibly, the

trained language model did not recognize higher-level chemical knowledge such as chemical
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stability, synthesizability, and drug-likeliness. The creation of much more realistic and valid

structures is an important consideration in future work.

As demonstrated, the backward method is enormously powerful in the exploration when

enough data are observed in a neighborhood of a specified property region. However, the

prediction ability declines as the desired properties are placed around regions where data are

more sparse. The ultimate goal of computational molecular design is the creation of truly

novel molecules that reside in an exceedingly far tail of the distribution of known molecules.

The apparent cause of the limited ability is that the trained forward models become less

accurate in property prediction in far tails of the training set. This is an issue common to

all existing methods but less attention has been paid to this important problem. Ultimately,

we wish to arrive in yet-unexplored property regions where no one has gone before. In

Fig.4.13, we have provided snapshots of the property refinement process that explored a

yet-unexplored property region, in order to emphasize the significance of overcoming this

limitation. Within early steps, the resulting properties approached the desired region quite

rapidly, but the search trajectories became more disperse as they got closer to the target.

A promising solution to this problem might be the integration of computer experiments

and the backward prediction algorithm with experimental design techniques. Once created

molecules get fairly close to an unexplored property region, a new set of structure-property

data could be produced in a neighborhood of the region by conducting, for instance, a

first-principle or a molecular dynamics computation with respect to a preferred subset of

the currently created structures. Then, one could refine the forward models using the newly

added data. Possibly, the query points of the computer experiment should rationally be

selected under a sequential design strategy by maximizing the expected improvement of

prediction under a given constraint of computational costs. The refined backward prediction

might acquire a greater ability to move a step closer to the target region. The integration of

the backward prediction algorithm and rationally designed adaptive data production is the

next challenge in future work.



4.7 Conclusion 97

Fig. 4.13 As done in Fig. 4.7 and Fig. 4.8, properties in 10 chemical structures with highest
scores at each time-step were computed with the Gaussian09.
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4.8 R Package

The iqspr package can be installed thorough the CRAN repository. With this package,

the molecular design process shown below can be reproduced. Installation of Open Babel

2.3.2 [94] is required for getting started. The package consists of a set of functions for

the building of the forward prediction model (QSPRpred reference class) with molecular

fingerprints implemented in the rcdk package [48], the backward prediction (SmcChem

reference class), and the training and simulation of the SMILES generator (ENgram reference

class) with user-specified input SMILES strings. This example is for generating chemical

structures from the inverse-QSPR model with the structure - physical properties dataset.
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Usage of iqspr package

install.packages ("iqspr ")

library(iqspr)

#obtain training data for QSPR

data(qspr.data)

idx <- sample(nrow(qspr.data), 5000)

smis <- paste(qspr.data[idx ,1])

y <- qspr.data[idx ,c(2 ,5)]

#learn a pattern of chemical strings

data(trainedSMI)

my_engram <- ENgram$new(trainedSMI , order = 10)

#learn QSPR model

my_qspr <- QSPRpred$new(smis = smis , y = as.matrix(y), v_fpnames = "graph ")

#set target properties

qsprpred_EG_5k$ymin <- c(200, 1.5)

qsprpred_EG_5k$ymax <- c(350, 2.5)

#get chemical strings from the Inverse -QSPR model

smchem <- SmcChem$new(smis = rep(" c1ccccc1O", 25), v_qsprpred = my_qspr ,

v_engram = my_engram , temp = 3 ,decay = 0.95)

smchem$smcexec(niter = 100, preorder = 0.2, nview = 4)

#check

smiles <- get_smiles(smchem)

predict(my_qspr , smiles [1:100])





Chapter 5

Conclusion

The Bayesian methods presented here, combined with Monte Carlo sampling, are so powerful that

they can be used to discover new structures through the Bayesian model. This thesis has mainly

considered the application of these methods to problems in bioinformatics and cheminformatics.

In Chapter 3, we presented a new motif discovery method using our proposed algorithm,

RPMCMC, which is a parallel variant of the widely-used Gibbs motif samplers. Compared to

the standard Gibbs sampler, this all-at-once interacting parallel run of RPMCMC could detect a

more diverse range of motifs. In addition, this algorithm was comprehensively tested on synthetic

promoter sequences and real ChIP-seq datasets. In the synthetic promoter analysis, the RPMCMC

algorithm found around 1.5 times as many embedded motifs as the existing methods. For the

ChIP-seq datasets, the RPMCMC algorithm reported far more reliable cofactors than the recently

published ChIP-tailored algorithms.

In Chapter 4, we developed a principled approach to computational molecular design, through

a unified perspective of the Bayesian analysis, for the forward and backward predictions. The

method was demonstrated with case studies in multi-objective molecular design aimed at deter-

mining the physical properties (HOMO-LUMO gap and internal energy) and bio-activities for

10 target proteins. The presented analyses can be performed with the R package iqspr that we

developed. Despite potentially great impacts on science and industry, practical applications of

computer-aided molecular design methods have not been widely adopted. The lack of easy-to-
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access software and benchmark data has restricted the use of inverse-QSPR and the growth of

methodologies and tools has been hampered due to the difficulty of performance comparison.

As shown in the latter part of Chapter 2, the RPMCMC and the SMC methods can correctly

obtain samples from a target distribution even if the distribution has multiple peaks. These

properties could accelerate the discovery of more diverse structures in inverse problems as shown

in Chapters 3 and 4. This technology for structure generation is expected to be applicable to

a wide variety of research fields. The structure models used in this thesis were dedicated to

suit for targets by observing their patterns and compositions. This might be a problem when

making a structure model for complicated objects. Recently, in the field of machine learning,

many researchers have considered methods with deep neural network frameworks for generating

images[101] and texts[13]. Some researchers have tried to use this framework for molecular

design[50]. We should investigate the advantages and disadvantages of their methods and ours,

and whether parts of their methods can be incorporated into our method.

5.1 Future work

5.1.1 Theoretical analysis of RPMCMC

One area for future work is further theoretical analysis of the RPMCMC algorithm. Here, we have

only considered a simple comparison of the RPMCMC with other algorithms. Further properties

remain to be investigated, for example, convergence, unbiased sampling to allow the exclusion of

importance sampling, and ways to determine the strength of the repulsive force. Furthermore,

our RPMCMC algorithm should be compared with other recently proposed algorithms[1, 72].

5.1.2 Possible applications in other fields

In the future, we are also interested in developing new applications in many other fields as

outlined below.

□ Tracking system [113] The Bayesian inference framework can solve tracking problems

with multiple targets, multiple sensors, and multiple platforms.
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□ 3D visual generation [52] The prior information of 3D shapes and scenes is incorpo-

rated into probabilistic models. The inference algorithm tries to sample from the prior

model under certain constraints, which corresponds to the posterior distribution of 3D

images given the observed image/sketch.

□ Network construction

• Causal networks [6] With a graph sampler based on a new energy-domain Monte

Carlo method, it is possible to design an efficient algorithm to generate Bayesian

net structures from the marginal posterior distribution given experimental data.

• Biological network [93] Network inference methods are widely applied to bio-

logical applications to quantify the regulatory relationships between intracellular

components such as genes or proteins. Many methods have been proposed in this

setting, but the connections in their statistical formulations have received less

attention.

□ Bayesian inference of phylogenetic trees [57, 33] The posterior probability of phylo-

genetic trees conditioned on an alignment of DNA sequences can be calculated using

Bayes theorem.

□ Medical image reconstruction

• PET image [84] The Bayesian method was used for reconstruction of transmission

and emission PET images.

• Multi-slice CT [119] Multi-slice helical computed tomography scanning is an

important technology for instant acquisition of information on internal organs,

and is used for clinical diagnosis. Bayesian iterative algorithms applied to real

3D multi-slice helical data were developed to improve the image quality.

In these research fields, there is a massive amount of accumulated knowledge. To make a model

of the inverse problem, some of this knowledge may be necessary. It might be useful for many

researchers who are not familiar with statistics or machine learning to use a framework based on
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the deep neural network to achieve a properly working generative model. We will endeavor to

create a more general environment for iqspr which non-specialists from other fields can easily

use to generate informative structures.



Appendix A

Random sample generation from

standard distributions

In this appendix, various random variable generation methods, especially ones used in this thesis

such as for the Gaussian, gamma, and Dirichlet distributions, will be explained. Before going

into detail, we introduce a method for generating a pseudo random field on [0,1]. A sequence of

random numbers generated by a computer is not genuinely random but pseudo random since it is

completely determined by a relatively small number of initial values called the seeds. One of the

most widely used random number generation methods is the Mersenne Twister [78]. This method

was designed to correct most of the flaws found in older pseudo random generators, and is used

as the default pseudo random generator in many programming languages, including Python and

R, which are widely used for statistical computation.

A.1 Sampling from the inverse cdf (Exponential distribution)

If a cdf F(x) =
∫ x
−∞

p(z)dz for a pdf p(x) is available, there is a very simple way to generate

samples from the pdf. This basic idea is used in many other methods, including in this thesis for

the slice sampler (Chapter 2.2.6). Once Z ∼ Unif(0,1) is obtained, its inverse F−1(Z) from p(z)

can also be obtained.



106 Random sample generation from standard distributions

Proof

Pr(F−1(Z)< z) = Pr(Z < F(z)) (A.1)

= F(z) ( since Z ∼ Unif(0,1) ) (A.2)

Here, a simple example of a pdf is the exponential distribution p(x) = λe−λx(x > 0). In

this case, the inverse cdf F−1(x) = − log(1−x)
λ

(x > 0). This technique, however, only applies

to a univariate distribution since it requires the cdf; thus it is difficult to use for inference of

complicated models.

A.2 Box-Muller method (for sampling from the Gaussian dis-

tribution)

The Gaussian distribution is used for a wide range of applications. In order to obtain random

variables from the Gaussian distribution, the Box-Muller method is useful. This involves transfor-

mations of continuous random variables. Suppose there exists a simple one-to-one transformation

g from a random variable X to Y ; then h(y) which is a pdf of Y transformed using g from a

random variable X that comes from pdf f (x) is as follows:

h(y) = f (g−1(x))| d
dy

g−1(y)|, (A.3)

where | d
dyg−1(y)| is the Jacobian representing the change in volume between two spaces. If X

and Y are both 2D random variables, then this Jacobian J is a determinant of the transformation

matrix as follows.

|J|=

∣∣∣∣∣∣
∂g−1(y)1

∂y1

∂g−1(y)1
∂y2

∂g−1(y)2
∂y1

∂g−1(y)2
∂y2

∣∣∣∣∣∣ (A.4)

In the Box-Muller method, random variables U1 and U2 are obtained from the uniform

distribution Unif(0,1). The following transformation changes them into Gaussian random

variables.

X1 =
√
−2logU1 cos2πU2, (A.5)
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X2 =
√
−2logU1 sin2πU2, (A.6)

The proof can be obtained by using the characteristic function. A characteristic function of U1

and U2 is

φX1(ξ ) =
∫ 1

0

∫ 1

0
e−iξ

√
−2logu1 cos2πu2du1du2. (A.7)

Here, when using the transformation u1 = e−
r2
2 , u2 =

θ

2π
, the Jacobian matrix is |J| = r

2π
e−

r2
2 .

The transformed characteristic function is

φX1(ξ ) =
1

2π

∫
∞

0

∫ 2π

0
e−iξ cosθ− r2

2 drdθ . (A.8)

Furthermore, when transforming variables z = r cosθ , w = r sinθ with the Jacobian |J|= r, the

characteristic function is

φX1(ξ ) =
1

2π

∫
∞

−∞

∫
∞

−∞

e−iξ z− z2+w2
2 dzdw

=
1

2π
e−

ξ 2
2

∫
∞

−∞

e−
(z−iξ )2

2 dz
∫

∞

−∞

e−
w2
2 dw

=
1

2π
e−

ξ 2
2 . (A.9)

This is just the characteristic function of the Gaussian distribution. Therefore, the transformed

samples from Eqs. A.5 and A.6 are Gaussian random variables.

A.3 Rejection sampling (for sampling from the gamma distri-

bution)

In rejection sampling, the first step is to find a proposal distribution q(x), from which it is easy to

obtain samples, satisfying

p(x)≤ cq(x), (A.10)

where c is a constant and p(x) is the target distribution. The sampling step starts by generating

samples from the proposal distribution q(x), then follows the weight computation w(x) = p(x)
cq(x) ,
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and discards a sample with probability 1−w(x). Obviously, finding a proposal q(x) that is close

to the target makes this sampling procedure more efficient.

Here we show a very important example to obtain gamma random variables. The gamma

random variables and subsequently obtained Dirichlet random variables described later in this

section are necessary for the Monte Carlo inference in the motif discovery problem considered in

Chapter 3. This is achieved by using rejection sampling. The pdf of the gamma distribution is

given by

f (x) =
β−α

Γ(α)
xα−1e−βx(x > 0), (A.11)

where Γ(·) is the gamma function. This pdf is a monotonically decreasing function when

0 < α < 1 and the unimodal function has a mode at α − 1. For this reason, two different

approaches are used for the difference interval of α . For 0 < α < 1, Ahrens and Dieter [2]

proposed that cq(x) in the rejection sampling be taken as

cq(x) =


xα−1

Γ(x) (0 < x < 1)

e−x

Γ(x) (x≥ 1)
. (A.12)

Here, c is
∫

cq(x)dx = e+α

eαΓ(α) . Thus, the proposal distribution q(x) is given by

q(x) =
e

α + e
αxα−1I(0 < x < 1)+

α

α + e
e−x+1I(x≥ 1). (A.13)

From the above, the proposed sample is obtained from αxα−1 by using the inverse cdf

with probability e
α+e , and the exponential distribution with probability α

α+e . The corresponding

acceptance probabilities are

w(x) =

e−x (0 < x < 1)

xα−1 (x≥ 1)
. (A.14)

For α ≥ 1, Cheng proposed that the proposal distribution q(x) be the log-logistic function

q(x) = λ µ
xλ−1

(µ + xλ )2 , (A.15)
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where µ = αλ , λ = (2α−1)
1
2 [18]. A random variable from q(x) can be obtained through the

inverse cdf. The cdf
∫ x
−∞

q(z)dz = xλ

µ+xλ
, so using U ∼ Unif(0,1), the random variable X from

the proposed distribution q(x) is given by

X =

(
µU

1−U

) 1
λ

. (A.16)

In this case, the constant c in the rejection sampling is 4αα e−α

Γ(α)λ , and the quantity g(x)
cg(x) , which

represents the acceptance probability, is 0.68, 0.8, 0.85, and 0.87 for αs of 1, 2, 5, and 10,

respectively.

Dirichlet random variables are necessary to obtain the posterior distribution in the ZOOPs

model used in Chapter 3 with the Gibbs sampler, although the full conditional distribution with

repulsion is different from the Dirichlet variables, and thus the slice sampler was used. In addition

to motif modeling, Dirichlet random variable generation is useful to infer natural language models

such as the N-gram model and the topic model [12, 11], which may potentially be an extension

of our chemical language model. Dirichlet random variables can be obtained by normalizing

independent gamma random variables [126]. Let X1, . . . ,Xd be random variables from the gamma

distribution Gamma(α1,1), . . . ,Gamma(αd,1), respectively. Then Y1, . . . ,Yd(Yi =
Xi

∑
N
j X j

) follow

the d-dimensional Dirichlet distribution Dir( α1
∑ j α j

, . . . , αd
∑ j α j

).





Appendix B

Convergence of Markov chain Monte

Carlo

Some conditions for the convergence of the Markov chain Monte Carlo method are irreducibility

and aperiodicity. A Markov chain having invariant distribution π(dx) is irreducible if for any

initial state, positive probabilities are assigned on sets where π(dx)> 0. A chain is called periodic

if there is a part of the state space χ that is visited at certain regularly spaced times. If not, that

chain is called aperiodic. A fundamental result, which will be proven in the later subsection as

in [120], is that if a chain has a proper invariant distribution π(dx) and is also irreducible and

aperiodic, then π(dx) is the unique equilibrium distribution of the chain.

To determine the convergence of the Markov chain, the following concepts of recurrence and

ergodicity are introduced.

B.1 Definition of recurrence

Assume that {Xn} is a π-irreducible chain with invariant distribution π(·).

1. The chain is recurrent if for ∀B with π(B)> 0

Pr(Xn ∈ B i.o.|X0 = x)> 0 for allx
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and

Pr(Xn ∈ B i.o.|X0 = x) = 1 for π−almostx,

where {Xn ∈ A i.o.} denotes ∑i I(Xi ∈ A) = ∞ with probability 1, which demonstrates

that a particular set appears in the sequence infinitely often.

2. The chain is Harris recurrent if Pr(Xn ∈ B i.o|X0 = x) = 1 for π-almost all x

B.2 Definitions of ergodicity

The total variation norm between two measures on the same space is used for the definition of

ergodicity. The total variation norm for a signed measure λ on A ∈ χ is

||λ ||= sup
A∈χ

λ (A)− inf
A∈χ

λ (A). (B.1)

Here, we show three different ways to define the ergodicity of the Markov chain.

1. A Markov chain is ergodic if it is positive Harris recurrent and aperiodic.

2. An ergodic chain with invariant distribution π(dx) is called geometrically ergodic if

there exists a real-valued function M such that M(x)> 0 and E(|M(X)|)< ∞, and for

a positive constant r < 1 satisfying

||Pn(x,)−π|| ≤M(x)rn. (B.2)

3. The chain in 2) is called uniformly ergodic if there exists a constant M < ∞, and for a

positive constant r < 1 satisfying

||Pn(x,)−π|| ≤Mrn. (B.3)
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B.3 Convergence result

The result regarding the convergence that will be shown in this subsection is from Tierney

[120], and Hernandez-Lerma and Lasserre [53]. Suppose that the transition kernel P(x,dy) is

π-irreducible and π-invariant; then P(x,dy) is positive recurrent and π(dx) is the unique invariant

distribution of P(x,dy). If P(x,dy) is also aperiodic, then for π-almost all x,

||Pn(x,)−π|| → 0, (B.4)

where || · || is the total variance norm. If P(x,dz) is Harris recurrent, convergence occurs for all x.

B.4 Asymptotic behavior of the expectation

Revez (1975) first showed the following asymptotic behavior of the expectations [106]. Assume

that Xn is ergodic with equilibrium distribution f (x) and h(x) is a real-valued function satisfying

E f [|h(X)|]< ∞; then for any initial distribution,

h̄n =
1
n

n

∑
i=m

h(Xi), (B.5)

Eπ [h(X)] =
1

N−m+1

N

∑
i=m

h(Xi), (B.6)

where m is the burn-in period, and goes to E f (h(X)) almost surely.

B.5 Central limit theorem

The central limit theorem has also been proven in several different forms, but all of them require

stronger assumptions for the Markov chain than the law of large numbers shown above. Suppose

that the Markov chain Xn is uniformly ergodic with its equilibrium distribution f (x) and a real-

valued function h(x) such that E f [h2(X)] < ∞; then, for any initial distribution, there exists a



114 Convergence of Markov chain Monte Carlo

positive constant σh and the following quantity

√
n(h̄n−E f [h(X)]) (B.7)

converges weakly to a normal distribution with mean 0 and variance σ2
h .

B.6 Convergence diagnostics

When using MCMC for inference, it is necessary to decide until when to throw away samples in

the burn-in period and until when to generate samples to ensure the Markov chain has converged.

Although there have been many criteria proposed by many researchers [42, 21], these criteria

cannot be used to determine whether the Markov chain gets stuck in some local modes.
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