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Abstract

This study focuses on simultaneous confidence bands and the volume-of-tube method.
Simultaneous confidence bands have been used in various statistical problems. The
volume-of-tube method can be used in the construction of simultaneous confidence
bands.

The problem concerning the construction of simultaneous confidence bands in a
regression model originates with Working and Hotelling (1929). They formalized this
problem as the construction of confidence intervals for an estimated regression line,
and provided a critical value by making use of the Cauchy-Schwarz inequality. Sub-
sequently, many reports concerning the relaxation of these conditions have appeared.

In the case of one regression model, Wynn and Bloomfield (1971) pointed out
that the use of the Cauchy-Schwarz inequality leads to conservative bands for simple
regression with unrestricted domain of the explanatory variables. Uusipaikka (1983)
constructed exact confidence bands for linear regression when X is a finite interval.

In the case of the linear regression models, there are a lot of research in literature.
For example, simultaneous confidence intervals are used in Scheffé (1953) to assess
any contrasts between several normal means. In this study, the problem of assessing
any contrasts between several simple linear regression models is considered by using
simultaneous confidence bands. Using numerical integration, Spurrier (1999) con-
structed exact simultaneous confidence bands for all of the contrasts between several
regression lines over the whole range (−∞,∞) of the explanatory variable when the
design matrices of the regression lines are all equal. Jamshidian, Liu, and Bretz (2010)
proposed a simulation-based method to construct simultaneous confidence bands for
all of the contrasts between the linear regression models when the explanatory vari-
able is restricted to an interval and the design matrices of the regression lines may be
different. Naiman (1986) gives a method for constructing conservative Scheff é-type
simultaneous confidence bands for a single curvilinear regression model over finite in-
tervals. Unlike these studies, we consider constructing simultaneous confidence bands
for all of the contrasts between several nonlinear regression models. The tube formula
is given in a mathematical form via the volume-of-tube method.

The chapters are arranged as follows. We provide a brief review of multiple re-
gression models in Chapter 1. Chapter 2 summarizes simultaneous confidence bands
for simple and multiple regression models, and we then address the problem of the
construction of simultaneous confidence bands for all of the contrasts between sev-
eral nonlinear regression models. We propose simultaneous confidence bands of the
hyperbolic type for the contrasts between several nonlinear (curvilinear) regression
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curves. Chapter 3 looks at the volume-of-tube method. We give the definition of
the tube and critical radius, and then we summarize the volume-of-tube method for
evaluating the upper tail probability. In addition, we discuss the expectation of the
Euler-Poincaré characteristic heuristic. Moreover, we prove that the formula obtained
is equivalent to the expectation of the Euler-Poincaré characteristic of the excursion
set of the chi-square random process and, hence, is conservative. Using this result,
Takemura and Kuriki (2002) provide an alternative proof that the confidence band
of Naiman (1986) is conservative. Chapter 4 uses the volume-of-tube method to
derive an upper tail probability formula for the maximum of a chi-square random
process, which is sufficiently accurate in commonly used tail regions. The critical
value of a confidence band is determined from the distribution of the maximum of a
chi-square random process defined on the domain of the explanatory variables. The
tube formula is given in a mathematical form. We prove that the simultaneous confi-
dence bands we propose are conservative. This result is therefore a generalization of
Naiman’s inequality for Gaussian random processes. In order to test our method, we
give a numerical example to determine the accuracy of the approximation formula we
propose, which further demonstrate that the confidence bands obtained by the tube
method are always conservative and very accurate. To investigate what happens un-
der model misspecification, we conduct a Monte Carlo simulation study. The study
shows, too small of a model should surely be avoided, whereas, a larger model has
the disadvantage of having a wider confidence band.

As an illustrative example, the growth curves of consomic mice are analyzed in
Chapter 5. A study under model misspecification is also conducted in the application.
Chapter 6 considers the statistical parametric mapping approach as future work.
Details of the proofs are in the Appendix.
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Chapter 1

Introduction

Multiple regression analysis is a powerful technique used for predicting the relation-
ship between a continuous random variable Y and several independent variables. Let
Y1, Y2, . . . , Yp be a set of predictors believed to be related to a response variable Y .
Let Y = (Y1, . . . , Yn)

⊤ and xi = (x1i, . . . , xni)
⊤ be the sequences of observations that

follow the regression model.

Yj = β0 + β1xj1 + . . .+ βpxjp + εj, j = 1, . . . , n,

where βi, i = 0, 1, . . . , p are unknown regression coefficients and εj represents mutually
independent N (0, σ2) random variables. We rewrite the regression model in matrix
form as

Y = Xβ + ε,

where X = (1, x1, . . . , xp), β = (β0, β1, . . . , βp)
⊤, ε = (ε1, . . . , εn)

⊤, and 1 is a column
vector of size n with all elements equal to one. The matrix X is defined as a design
matrix. Without loss of generality, we assume that X is of full column rank.

For more details, see Anderson (2009).

1.1 Parameter estimation

The method of least squares estimation is a standard approach to estimating β in
regression analysis. We can obtain the least squares estimator β̂ of β by minimizing
the least squares criterion, as in Liu (2010), given by

L(β) = ||Y −Xβ||2 = (Y −Xβ)⊤(Y −Xβ).

1



1.2. Confidence intervals 2

Thus, the least squares estimator must satisfy

∂L(β)

∂β
|β=β̂ = −2X⊤Y + 2X⊤Xβ̂ = 0.

Because X is of full column rank, X⊤X is non-singular, and the normal equation
leads to the least squares estimator

β̂ = (X⊤X)−1X⊤Y.

Fitting the model, we can obtain

Ŷ = Xβ̂ = X(X⊤X)−1X⊤Y = HY,

where H = X(X⊤X)−1X⊤ is called the hat matrix such that H(I − H) = 0 since
H2 = H.

The vector of residuals is defined as

ε̂ = Y − Ŷ = (I −H)Y.

The estimator σ̂2 of σ2 is defined as

σ̂2 = ||ε̂||2/(n− p− 1).

Because y is a realization of a random vector Y with E(Y ) = Xβ, we obtain the
following theorem.

Theorem 1.1.1. Under the standard normality assumptions, we have the following
properties.

(i) β̂ ∼ Np+1(β, σ
2(X⊤X)−1).

(ii) ε̂ ∼ Nn(0, σ
2(I −H)).

(iii) σ̂2 ∼ σ2

n−p−1
χ2
n−p−1.

(iv) β̂ and ε̂ are independent.

(v) β̂ and σ̂2 are independent.

1.2 Confidence intervals

It is clear that x⊤β can be estimated by x⊤β̂, since

x⊤(β̂ − β) ∼ N (0, σ2x⊤(X⊤X)−1x).
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When σ is known,

x⊤(β̂ − β)

σ
√
x⊤(X⊤X)−1x

follows a normal distribution. Hence, a 1− α confidence interval for x⊤β is given by

Pr
{
x⊤β ∈ x⊤β̂ ± Zα/2σ

√
x⊤(X⊤X)−1x

}
= 1− α,

where Zα/2 is the upper α/2 point of the normal distribution.
When σ is unknown, it follows from Theorem 1.1.1 that β is independent of σ̂.

x⊤(β̂ − β)

σ̂
√
x⊤(X⊤X)−1x

follows a t distribution with n− p− 1 degrees of freedom. Hence, a 1− α confidence
interval for x⊤β is given by

Pr
{
x⊤β ∈ x⊤β̂ ± tα/2σ̂

√
x⊤(X⊤X)−1x

}
= 1− α,

where tα/2 is the upper α/2 point of the t distribution with n − p − 1 degrees of
freedom, as in Liu (2010).

1.3 The layout of this thesis

The following is a brief outline of this thesis. Chapter 1 provides a brief review of mul-
tiple regression models. In Chapter 2, we review simultaneous confidence bands for
simple and multiple regression models, and we then address the problem of the con-
struction of simultaneous confidence bands for nonlinear regression models. Chapter
3 looks at the volume-of-tube method, and we summarize the volume-of-tube method
for evaluating the upper tail probability of the maximum of a Gaussian random field.
The volume-of-tube method and its related method, referred to as the expected Euler-
characteristic heuristic, are briefly summarized in Chapter 3. In Chapter 4, we define
a Gaussian random field and a chi-square random process as pivotal quantities. We
show that the critical value is determined from the upper tail probability of the max-
imum of a Gaussian random field or a chi-square random process. The main results
are provided in Chapter 4. Then, we discuss a simulation study under model mis-
specification. Chapter 5 is devoted to the analysis of growth curve data. Chapter 6
considers the statistical parametric mapping approach as future work. Details of the
proofs are in the Appendix.



Chapter 2

Simultaneous Confidence Bands

Simultaneous confidence bands are useful statistical inferential tools that can be used
in many statistical branches. In this chapter, we summarize simultaneous confidence
bands for simple and multiple regression models.

2.1 Confidence bands for one simple regression model

It is an important task to assess where the true model x⊤β lies in regression analysis
from which the observed data have been generated.

When σ is known, a 1− α confidence region β is given by{
β :

(β − β̂)⊤(X⊤X)(β − β̂)

(p+ 1)σ2
≤ χ2

α(p+ 1)
}
,

where χ2
α(p + 1) is the upper α point of the χ2 distribution with p + 1 degrees of

freedom.
When σ is unknown, a 1− α confidence region β is given by{

β :
(β − β̂)⊤(X⊤X)(β − β̂)

(p+ 1)||Y −Xβ̂||2/(n− p− 1)
≤ fαp+1,n−p−1

}
,

where fαp+1,n−p−1 is the upper α point of the F distribution with degrees of freedom
of p+ 1 and n− p− 1.

4
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2.2 Confidence bands for one multiple regression

model

The most well-known simultaneous confidence band of level 1− α for the regression
model x⊤β for all x ∈ Rp is given by Hotelling (1951) and Scheffé (1953, 1959).
Working and Hotelling (1929) generalizes the band for a simple linear regression
model. When σ is known,

x⊤β ∈ x⊤β̂ ±
√
χ2
α(p+ 1)σ

√
x⊤(X⊤X)−1x.

When σ is unknown,

x⊤β ∈ x⊤β̂ ±
√

(p+ 1)fαp+1,n−p−1σ̂
√
x⊤(X⊤X)−1x.

The lower parts and the upper parts of the band are symmetric about the fitted model
x⊤β̂.

2.3 Confidence bands for more than two multiple

regression models

Suppose k linear regression models are defined as follows

Yi = Xiβi + εi, i = 1, . . . , k,

where Yi = (yi,1, . . . , yi,ni
)⊤ is a vector of random observations, Xi is a ni× (p+1) full

column-rank design matrix with the lth (1 ≤ l ≤ n) row given by (1, xl,1, . . . , xl,p),
βi = (βi,0, . . . , βi,p)

⊤, and εi = (εi,1, . . . , εi,n) with all the εi,j, j = 1, . . . , ni, i = 1, . . . , k
being independent and identically distributed (i.i.d.) N (0, σ2) random variables. Si-
multaneous confidence bands for all of the contrasts between the k regression models
are given as

k∑
i=1

cix
⊤βi, for all c = (c1, . . . , ck)

⊤ ∈ C,

where C is the set of all contrasts

C =
{
c = (c1, . . . , ck)

⊤ ∈ Rk :
k∑
i=1

ci = 0
}
.
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When σ is known,

k∑
i=1

cix
⊤βi ∈

k∑
i=1

cix
⊤β̂i ± cασ

√√√√ k∑
i=1

c2ix
⊤(X⊤

i Xi)−1x, ∀x ∈ Rp+1, ∀c ∈ C.

When σ is unknown,

k∑
i=1

cix
⊤βi ∈

k∑
i=1

cix
⊤β̂i ± dασ̂

√√√√ k∑
i=1

c2ix
⊤(X⊤

i Xi)−1x, ∀x ∈ Rp+1, ∀c ∈ C,

where cα and dα are determined by simulations. This provides a set of simultaneous
confidence bands for all of the contrasts between the k regression models.

2.4 Comparisons of nonlinear regression curves

Considering multiple comparisons of k (≥ 3) nonlinear (curvilinear) regression curves
estimated from independent k groups. Suppose that for each group i = 1, . . . , k, and
for each explanatory variable xj ∈ X , j = 1, . . . , n, we have observations yij1, . . . , yijri
as objective variables with ri replications, which are assumed to follow the model

yijh = gi(xj) + εijh, i = 1, . . . , k, j = 1, . . . , n, h = 1, . . . , ri. (2.4.1)

Here, X ⊆ R is the domain of explanatory variables, and random errors εijh are
assumed to be independently distributed as the normal distribution N (0, σ(xj)

2).
The variance function σ(x)2 is supposed to be known, or at least known up to a
constant σ(x)2 = σ2σ0(x)

2. In the case of the latter, we suppose that an independent
estimator σ̂2 of σ2 is available. In addition, we assume that the true regression curve
has the form

gi(x) = β⊤
i f(x), x ∈ X , (2.4.2)

where f(x) = (f1(x), . . . , fp(x))
⊤ is a known regression basis vector function, and βi =

(βi1, . . . , βip)
⊤ is an unknown parameter vector. Then, the least squares estimator β̂i

of βi has the multivariate normal distribution Np(βi, r
−1
i Σ), where

Σ =

(
n∑
j=1

1

σ(xj)2
f(xj)f(xj)

⊤

)−1

is the inverse of the p × p information matrix. When σ(x)2 = σ2σ0(x)
2, we have

Σ = σ2Σ0, where Σ0 is Σ with σ(xj) replaced by σ0(xj).
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Let C denote the set of vectors c = (c1, . . . , ck)
⊤ such that

∑k
i=1 ci = 0. The focus

of this thesis is the construction of 1 − α simultaneous confidence bands for all the
contrasts

∑k
i=1 cigi(x) =

∑k
i=1 ciβ

⊤
i f(x) between the k regression curves for all x ∈ X

and c ∈ C, where X is a given finite interval [a, b], a finite union of intervals
⊔
i[ai, bi],

or an infinite interval (−∞,∞), with the symbol ‘
⊔
’ denoting a disjoint union.

Specifically, according to the traditional form of the point estimate plus or mi-
nus a probability point times the estimated standard error, we construct a 1 − α
simultaneous confidence band of the form

k∑
i=1

ciβ
⊤
i f(x) ∈

k∑
i=1

ciβ̂
⊤
i f(x)± b1−α

√√√√( k∑
i=1

c2i
ri

)
f(x)⊤Σf(x), (2.4.3)

where β̂⊤
i f(x) is the estimator of β⊤

i f(x) in (2.4.2). This form is referred to as a
hyperbolic-type (Liu, 2010). The critical value b1−α is determined such that the
event in (2.4.3) for all x ∈ X and c ∈ C holds with a probability of at least 1−α. Our
problem typically arises from growth curve analysis and longitudinal data analysis.

Throughout this paper, we assume that the regression curve gi(x) is a linear
combination of a finite number of known basis functions in (2.4.2). Although it is a
conventional regression model, we must always be careful regarding the approximation
bias caused by model misspecification. This issue is examined in Section 4.4.

2.5 The problem we considered

The problem concerning the construction of simultaneous confidence bands in a re-
gression model originates with Working and Hotelling (1929). They formalized this
problem as the construction of confidence intervals for an estimated regression line,
and provided a critical value by making use of the Cauchy-Schwarz inequality. Specif-
ically, Working and Hotelling (1929) treated the case of

(i) one regression model (equivalent to case k = 2 in our problem),

(ii) the simple regression f(x) = (1, x)⊤, and

(iii) the unrestricted domain of the explanatory variables X = (−∞,∞).

Subsequently, many reports concerning the relaxation of these conditions have ap-
peared in literature.

In the case of one regression model, Wynn and Bloomfield (1971) pointed out that
the use of the Cauchy-Schwarz inequality leads to conservative bands unless both (ii)
and (iii) hold. They illustrated improved confidence bands for the quadratic regression
f(x) = (1, x, x2)⊤. Uusipaikka (1983) constructed exact confidence bands for linear
regression when X is a finite interval. See Liu, Lin, and Piegorsch (2008) and Liu
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(2010) for historical reviews. The problem of k ≥ 3 regression curve comparisons
was considered by Spurrier (1999, 2002) and Lu and Chen (2009), who proposed
procedures based on simple linear regression. However, it is difficult to extend these
methods to nonlinear regression.

One exception is Naiman (1986)’s integral-geometric approach. In the unit sphere
Sp−1 of the p-dimensional Euclidean space, he defined a trajectory

Γ = {ψ(x) | x ∈ X} ⊂ Sp−1 (2.5.1)

of a normalized basis vector function

ψ(x) =
Σ1/2f(x)

∥Σ1/2f(x)∥
, (2.5.2)

and evaluated the volume of the Γ tubular neighborhood. In the case of one regression
model, he constructed a simultaneous confidence band with the critical value obtained
from this volume. The volume formula for such tubes originated from Hotelling
(1939) and Weyl (1939). Currently, this idea is understood in the volume-of-tube
method framework (Adler and Taylor (2007), Kuriki and Takemura (2001), Kuriki
and Takemura (2009), Sun (1993), Takemura and Kuriki (2002)). As shown in Section
4.1, we require the tail probability of the maximum of a Gaussian random field or
chi-square random process as a pivotal quantity. Volume-of-tube is a methodology to
evaluate such tail probabilities.

In this paper, we adopt this integral-geometric approach. In the case of k ≥ 3,
we define a subset M in (4.2.1) of a unit sphere, and by evaluating the volume of
its tubular neighborhood, we obtain the critical value b1−α in (2.4.3) by means of
the volume-of-tube method. Moreover, we prove that the proposed confidence band
is conservative. It is known that Naiman (1986)’s confidence band is conservative
(Naiman’s inequality, see also Johnstone and Siegmund (1989)), and our result is
regarded as its generalization.

Note that, in the setting of this paper, the covariance matrices of the estimators β̂i
are identical up to a multiplicative constant. This property arises from the condition
that the explanatory variables xj are common between k groups in the model (2.4.1).
This represents the purported balanced case. For the unbalanced case, the problem
of constructing simultaneous confidence bands is quite tedious and only simulation-
based approaches are available (Jamshidian, Liu, and Bretz (2010), Liu (2010), Liu,
Jamshidian, and Zhang (2004), Liu, Wynn, and Hayter (2008)). In this paper, we
address only the balanced case.

Moreover, note that in the one-group case (k = 1), various simultaneous confi-
dence bands by means of the volume-of-tube method have been proposed. Johansen
and Johnstone (1990) demonstrated the usefulness of Hotelling’s volume formula for
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the construction of simultaneous bands. The application to the B-spline regression is
found in Shen, Wolfe, and Zhou (1998). Sun and Loader (1994) proposed a modifica-
tion to the volume-of-tube formula when a small approximation bias caused by model
misspecification exists. In succeeding papers, Sun and her coauthors developed this
idea further in various model settings (Faraway and Sun (1995), Sun, Loader, and
McCormick (2000), Sun, Raz, and Faraway (1999)). See also Krivobokova, Kneib,
and Claeskenset (2010). The crucial difference between this paper and existing work
is that in this paper, we need to treat a Gaussian random field with a general dimen-
sional (k− 1 dimensional) index set, and need the volume formula up to an arbitrary
order.



Chapter 3

The Volume-of-Tube Method

3.1 Definition of the tube

Considering general case, let Sn−1 = S(Rn) be the unit sphere in Rn and letM ⊂ Sn−1

be a closed subset of Sn−1. Let the elements of ξ = (ξ1, . . . , ξn) be independent and
standard normal random variables. (We write this as ξ ∼ Nn(0, In).) ⟨·, ·⟩ denotes
the standard inner product of Rn. Our problem is to find the distribution of the
maximum of the Gaussian random field X(p) = ⟨ξ, p⟩, p ∈M :

Pr
(
max
p∈M

⟨ξ, p⟩ ≥ c
)
. (3.1.1)

Definition 3.1.1 (Tube). The tube (spherical tube) of radius θ about M is defined
to be the set of points on Sn−1 whose great-circle distance to M is less than or equal
to θ :

Mθ =
{
q ∈ Sn−1 | dist(q,M) ≤ θ

}
=
{
v ∈ Sn−1

∣∣ min
u∈M

cos−1
(
u⊤v

)
≤ θ
}
.

For an n-dimensional standard normal random vector ξ ∼ Nn(0, In), its “length”
∥ξ∥ and its “direction” ζ = ξ/∥ξ∥ are independently distributed and the distribution
of ζ is the uniform distribution over the unit sphere Unif(Sn−1). Hence,

Pr
(
max
p∈M

⟨ξ, p⟩ ≥ c
)
=E

[
Pr
(
max
p∈M

⟨ζ, p⟩ ≥ c

∥ξ∥
| ∥ξ∥

)]
=E

[
Pr
(
dist(ζ,M) ≤ cos−1

( c

∥ξ∥

)
| ∥ξ∥

)]
=

1

Vol(Sn−1)
E
[
Vol
(
Mcos−1(c/∥ξ∥)

)]
,

10
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where Vol(·) is the (n − 1)-dimensional volume. If the volume of the tube Vol(Mθ)
can be evaluated for every θ, then we can integrate it once (that is, we can take the
expected value with respect to ∥ξ∥) to obtain the tail probability of the maximum
(3.1.1).

3.2 Definition of the critical radius

The support cone (or tangent cone) of M at u ∈M is denoted by SuM . (See Section
1.2 of Takemura and Kuriki (2002) for the definition.) The cone with base set M is
denoted by

co(M) =
⊔
λ≥0

λM.

Then, the support cone of co(M) at u ∈ M is decomposed as Su(co(M)) = SuM ⊕
span{u}, where span{u} is the linear space spanned by u. The normal cone of co(M)
at u ∈M is defined by the dual of the support cone: Nu(co(M)) = Su(co(M))∗.

Definition 3.2.1 (Critical radius). We say that the tube Mθ does not have a self-
intersection if every point q ∈Mθ \M is uniquely written as

q = p cosψ + v sinψ, p ∈M, v ∈ Nu(co(M)) ∩ Sn−1, ψ ∈ (0, θ].

The supremum of the radius θ such that Mθ does not have a self-intersection

θc = sup{θ ≥ 0 |Mθ does not have a self-intersection}

is the critical radius (reach) of M(Figure 3.2.1). Let θc = π/2 when θc is more than
π/2.
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M

M

Figure 3.2.1: Tubes with a radius equal to the critical radius (Kuriki and Takemura,
2009).

3.3 Volume-of-tube method and upper tail proba-

bility

In this section, we summarize the volume-of-tube method for evaluating the upper
tail probability of the maximum of a Gaussian random field.

Let ξ be a Gaussian random vector distributed as Nn(0, I). Let M be a closed
subset of Sn−1, the unit sphere (the set of unit column vectors) of Rn. Then, the
random map u 7→ ξ⊤u, u ∈ M , is a Gaussian random field with mean 0, variance
1, and a covariance function Cov(ξ⊤u, ξ⊤v) = u⊤v. The volume-of-tube method
approximates the distribution of the maximum maxu∈M ξ⊤u. To apply the volume-
of-tube method, we require the following assumption on M .

Assumption 3.3.1. M is a d-dimensional closed piecewise C2-manifold, or M is a
d-dimensional C2-manifold with piecewise C2-boundary. We write M = IntM ⊔ ∂M ,
where IntM and ∂M denote the interior and the boundary of M , respectively. In the
former case, ∂M = ∅.

Under Assumption 3.3.1, we can prove that θc > 0.
Note that the (m − 1)-dimensional volume of Sm−1 is Ωm = 2πm/2/Γ(m/2). For

m×m matrix A = (aij), let tr0A = 1 and

treA =
∑

1≤k1<...<ke≤m

det(akikj)1≤i,j≤e, 1 ≤ e ≤ m

(Muirhead (2005), Appendix A.7). Note that tr1A = trA, trmA = detA. The upper
probability of the chi-square distribution with m degrees of freedom is denoted by
Gm(·). Now we can provide the upper tail probability formula for the Gaussian field
ξ⊤u, u ∈M . The theorem below is a special case of Proposition 2.2 of Takemura and
Kuriki (2002).



3.3. Volume-of-tube method and upper tail probability 13

Proposition 3.3.1. As b→ ∞,

Pr

(
max
u∈M

ξ⊤u ≥ b

)
= P tube(b) +O(Gn(b

2(1 + tan2 θc))), (3.3.1)

where

P tube(b) =
∑

0≤e≤d, e:even

wd+1−eGd+1−e(b
2) +

∑
0≤e≤d−1

w′
d−eGd−e(b

2), (3.3.2)

with

wd+1−e =
1

Ωd+1−eΩn−d−1+e

∫
IntM

{∫
Nu(co(M))∩Sn−1

treH(u, v) dv

}
du, (3.3.3)

w′
d−e =

1

Ωd−eΩn−d+e

∫
∂M

{∫
Nu(co(M))∩Sn−1

treH
′(u, v) dv

}
du. (3.3.4)

Here, H(u, v) is the second fundamental form of IntM at u in the direction of v, and
H ′(u, v) is the second fundamental form of ∂M at u in the direction of v. du is the
volume element of IntM or ∂M , and dv is the volume element of Nu(co(M))∩ Sn−1.

In (3.3.1), because θc > 0, the error termO
(
Gn(b

2(1+tan2 θc))
)
= O(bn−2e−b

2(1+tan2 θc)/2)

is exponentially smaller than each term Gj(b
2) = O(bj−2e−b

2/2). Hence, (3.3.2) can be
used as an approximation formula when b is large. The method in which P tube(b) is
used as an approximate value is referred to as the volume-of-tube method, or simply,
the tube method. This name comes from the volume formula for Mθ below.

Remark 3.3.1. For the radius θ ∈ [0, θc], the (n − 1)-dimensional spherical volume
of the tube Mθ is given by

Voln−1(Mθ) = Ωn

{ ∑
0≤e≤d, e:even

wd+1−eB 1
2
(d+1−e), 1

2
(n−d−1+e)(cos

2 θ)

+
∑

0≤e≤d−1

w′
d−eB 1

2
(d−e), 1

2
(n−d+e)(cos

2 θ)

}
,

where wd+1−e and w
′
d−e are given in (3.3.3) and (3.3.4), Ba,b(·) is the upper probability

of the beta distribution with parameter (a, b).

The critical radius θc can be evaluated using the following characterization (Theo-
rem 4.18 of Federer (1959), Proposition 4.3 of Johansen and Johnstone (1990), Lemma
2.2 of Takemura and Kuriki (2002)). For a proof, see Theorem 2.9 of Kuriki and Take-
mura (2009).
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Proposition 3.3.2. The critical radius θc of M is given by

tan2 θc = inf
u ̸=v∈M

(1− u⊤v)2

∥P⊥
v (u− v)∥2

, (3.3.5)

where P⊥
v is the orthogonal projection onto the normal cone Nv(co(M)) of co(M) at

v.

The local critical radius θc,loc is defined as

tan2 θc,loc = lim inf
u̸=v∈M, ∥u−v∥→0

(1− u⊤v)2

∥P⊥
v (u− v)∥2

. (3.3.6)

From the definition, it holds that θc ≤ θc,loc. In general, θc,loc is easier to evaluate
than θc.

3.4 Expected Euler-characteristic heuristic

We have summarized the volume-of-tube method to evaluate the upper tail probabil-
ities of the maximum of random fields thus far. There is another method utilized for
the same purpose, known as the expected Euler-characteristic heuristic (Adler and
Taylor (2007), Worsley (1995)). When applied to the Gaussian random field ξ⊤u,
u ∈M , this method is stated as follows: For each b, define the excursion set by

Ab = {u ∈M | ξ⊤u ≥ b}.

Let χ(·) be the Euler-Poincaré characteristic of a set, and 1(·) be the indicator
function for an event. The expected Euler-characteristic heuristic assumes that
1(Ab ̸= ∅) ≈ χ(Ab) for large b, and

Pr

(
max
u∈M

ξ⊤u ≥ b

)
= E{1(Ab ̸= ∅)} ≈ E{χ(Ab)}.

Note that χ(Ab) can be evaluated by Morse’s theorem, and is more tractable than
1(Ab ̸= ∅). Takemura and Kuriki (2002) proved the equivalence of the volume-of-tube
method and expected Euler-characteristic heuristic as follows.

Proposition 3.4.1 (Proposition 3.3 of Takemura and Kuriki (2002)).

E{χ(Ab)} = P tube(b), for all b ≥ 0.

Using this, Takemura and Kuriki (2002) provided an alternative proof that the
confidence band of Naiman (1986) is conservative.



Chapter 4

Construction of Simultaneous
Confidence Bands

4.1 Random fields as pivotal quantities

Our problem is to determine the critical value b1−α in (2.4.3). First, assume that Σ
is fully known. Define a pivotal quantity:

T (x, c) =

∑k
i=1 ci(β̂i − βi)

⊤f(x)√(∑k
i=1

c2i
ri

)
f(x)⊤Σf(x)

. (4.1.1)

Then, the critical value b1−α is solution b of the equation:

Pr
{
T (x, c) ≤ b, ∀x ∈ X , ∀c ∈ C

}
= Pr

{
max

x∈X ,c∈C
T (x, c) ≤ b

}
= 1− α.

In this expression, we use T (x, c) instead of |T (x, c)|, because c ∈ C implies −c ∈ C
and |T (x, c)| is equal to T (x, c) or T (x,−c). Inverting |T (c, x)| ≤ b1−α yields the 1−α
simultaneous confidence band in (2.4.3).

In the following, we show that b21−α is the upper α point of the maximum of a

chi-square random process. We can assume that
∑k

i=1 c
2
i /ri = 1 without the loss of

generality, because T (x, c) is a homogeneous function in c. Let ρ = (
√
r1, . . . ,

√
rk)

⊤,
and define a k × (k − 1) matrix H such that ρ⊤H = 0, H⊤H = Ik−1, and HH

⊤ =
Ik − ρρ⊤/(ρ⊤ρ). (An example of H is given in Remark 4.2.1 below.) Then, the
c = (c1, . . . , ck)

⊤ such that
∑k

i=1 c
2
i /ri = 1 and

∑k
i=1 ci = 0 are represented as

c = diag(
√
r1, . . . ,

√
rk)Hh, h ∈ Sk−2,

15
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where Sk−2 is the set of (k − 1)-dimensional unit column vectors.
Let Σ1/2 be a matrix such that (Σ1/2)⊤Σ1/2 = Σ, and let Σ−1/2 be its inverse.

Then, ηi =
√
ri(Σ

−1/2)⊤(β̂i − βi) is distributed normally as Np(0, I), independently
for i = 1, . . . , k. Let ψ : X → Sp−1 as defined in (2.5.2). Then, T (x, c) is rewritten as

T (x, c) =
k∑
i=1

ci√
ri

√
ri{(Σ−1/2)⊤(β̂i − βi)}⊤

Σ1/2f(x)

∥Σ1/2f(x)∥

=c⊤diag(
√
r1, . . . ,

√
rk)

−1

η
⊤
1
...
η⊤k


k×p

ψ(x)

=h⊤

 ξ⊤1
...

ξ⊤k−1


(k−1)×p

ψ(x)

=ξ⊤{h⊗ ψ(x)}, (4.1.2)

where ξi are p × 1 vectors defined by (ξ1, . . . , ξk−1)p×(k−1) = (η1, . . . , ηk)p×kH, ξ =
(ξ⊤1 , . . . , ξ

⊤
k−1)

⊤ is a p(k − 1) × 1 vector, and ‘⊗’ is the Kronecker product. Vectors
ηi consist of independent standard Gaussian random variables N (0, 1), therefore, so
does vector ξ. When x and h are fixed, because ∥ψ(x)∥ = ∥h⊗ ψ(x)∥ = 1, ξ⊤i ψ(x) is
distributed as N (0, 1) independently for i = 1, . . . , k, and ξ⊤{h⊗ψ(x)} is distributed
as N (0, 1).

From (4.1.2), we can see that

max
c∈C

T (x, c) =

√√√√k−1∑
i=1

{
ξ⊤i ψ(x)

}2
. (4.1.3)

For each fixed x, this is distributed as the square root of the chi-square distribution
χ2
k−1 with k − 1 degrees of freedom.
When Σ = σ2Σ0 with Σ0 known, and an independent estimator σ̂2 ∼ σ2χ2

ν/ν of
unknown σ2 is available, we redefine T (x, c) in (4.1.1) by replacing Σ in the denomi-
nator with σ̂2Σ0. Thus, instead of (4.1.2) and (4.1.3) we have

T (x, c) =
1

τ
ξ⊤{h⊗ ψ(x)}, max

c∈C
T (x, c) =

√√√√ 1

τ 2

k−1∑
i=1

{
ξ⊤i ψ(x)

}2
, τ 2 =

σ̂2

σ2
.
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4.2 Tube formula

In the particular case of the problem we consider, the maximum of Z(x, h) in (4.2.2)
can be treated in this framework by setting

M = {h⊗ ψ(x) | (x, h) ∈ X × Sk−2} and n = p(k − 1). (4.2.1)

The dimension of M is d = dimM = k − 1.
WhenM is defined by (4.2.1), we can provide a sufficient condition for Assumption

3.3.1.

Assumption 4.2.1. ψ : X → Sp−1 is a one-to-one map of class piecewise C2. There
does not exist x, x̃ ∈ X such that ψ(x) = −ψ(x̃).

Under Assumption 4.2.1, the map (x, h) 7→ h⊗ ψ(x) is a piecewise C2 one-to-one
map.

Example 4.2.1. Consider the polynomial regression with a basis function vector
f(x) = (1, x, . . . , xp−1)⊤. When the domain of x is a finite interval X = [a, b], we
have

IntM ={h⊗ ψ(x) | x ∈ (a, b), h ∈ Sk−2},
∂M ={h⊗ ψ(a) | h ∈ Sk−2} ⊔ {h⊗ ψ(b) | h ∈ Sk−2}.

When X = (−∞,∞), ψ(±∞) = (±1)p−1Σ1/2ep/
√
e⊤p Σep with ep = (0, . . . , 0, 1)⊤,

and hence h⊗ψ(∞) = (−1)p−1h⊗ψ(−∞). This denotes that M is a closed manifold
without boundary.

Example 4.2.2. Consider the trigonometric regression with a basis function vector

f(x) =
(
1,
√
2 cos x,

√
2 sin x, . . . ,

√
2 cosmx,

√
2 sinmx

)⊤
.

When X = [0, 2π), M is a closed manifold without boundary.

Now, we consider the object in (4.1.2) as a random function of (x, h):

Z(x, h) = ξ⊤{h⊗ ψ(x)}, (x, h) ∈ X × Sk−2, (4.2.2)

where ξ ∼ Np(k−1)(0, I). Then, Z(x, h) is the Gaussian random field with mean 0,
variance 1, and covariance function

Cov
[
Z(x, h), Z(x̃, h̃)

]
= ψ(x)⊤ψ(x̃) · h⊤h̃.
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Similarly, we define the chi-square random process with k − 1 degrees of freedom:

Y (x) =
k−1∑
i=1

{
ξ⊤i ψ(x)

}2
, x ∈ X . (4.2.3)

We summarize the results of this section below.

Theorem 4.2.1. When Σ is known, the critical value b1−α is determined as the
solution b = b1−α of

Pr

{
max

x∈X ,h∈Sk−2
Z(x, h) ≥ b

}
= Pr

{
max
x∈X

Y (x) ≥ b2
}

= α,

where Z(x, h) is the Gaussian random field defined in (4.2.2), and Y (x) is the chi-
square random process defined in (4.2.3).

When Σ = σ2Σ0 with Σ0 known, the critical value b1−α is determined as the
solution b = b1−α of

E

[
Pr

{
max

x∈X ,h∈Sk−2
Z(x, h) ≥ bτ

∣∣ τ 2}] = E

[
Pr

{
max
x∈X

Y (x) ≥ b2τ 2
∣∣ τ 2}] = α,

where the expectation is taken over τ 2 ∼ χ2
ν/ν, with ν being the degrees of freedom of

the estimator of σ2.

Remark 4.2.1. An example of k×(k−1) matrix H such that ρ⊤H = 0, H⊤H = Ik−1,
HH⊤ = Ik − ρρ⊤/(ρ⊤ρ) with ρ = (

√
r1, . . . ,

√
rk)

⊤ is given as

H =



√
r1r2√
R1R2

√
r1r3√
R2R3

. . .
√
r1rk√

Rk−1Rk

− R1√
R1R2

√
r2r3√
R2R3

. . .
√
r2rk√

Rk−1Rk

− R2√
R2R3

. . .
√
r3rk√

Rk−1Rk

. . .
...

0 − Rk−1√
Rk−1Rk


k×(k−1)

,

where Ri =
∑i

j=1 rj.

Theorem 4.2.2. Let ξ ∼ Nn(0, I), n = p(k − 1). Let Γ ⊂ Sp−1 and M ⊂ Sn−1 be
defined by (2.5.1) and (4.2.1), and let |Γ| denote the length of Γ. Assume Assumption
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4.2.1 on ψ. Then, as b→ ∞,

Pr

{
max

(x,h)∈X×Sk−2
Z(x, h) ≥ b

}
=Pr

{
max
x∈X

Y (x) ≥ b2
}

=Pr

(
max
u∈M

ξ⊤u ≥ b

)
=P tube(b) +O

(
bn−2e−(1+tan2 θc)b2/2

)
,

where

P tube(b) =
Γ(k

2
)

√
π Γ(k−1

2
)
|Γ|
{
Gk(b

2)−Gk−2(b
2)
}
+ χ(Γ)Gk−1(b

2). (4.2.4)

Note that if Γ (and hence M) has no boundary, then Γ is homeomorphic to S1, and
therefore χ(Γ) = 0. Otherwise, χ(Γ) is the number of connected components of Γ.

Theorem 4.2.3. Assume Assumption 4.2.1. Suppose that Γ has boundaries. The
approximation formula given in Theorem 4.2.2 is a conservative bound, specifically,

Pr

(
max
u∈M

ξ⊤u ≥ b

)
≤ P tube(b) for all b ≥ 0.

Proof. Arrange the p(k − 1)× 1 vector ξ = (ξ⊤1 , . . . , ξ
⊤
k−1)

⊤, and define a (k − 1)× p
matrix Ξ = (ξ1, . . . , ξk−1)

⊤. Let

Ab ={u ∈M | ξ⊤u ≥ b} = {h⊗ q | (q, h) ∈ Γ× Sk−2, h⊤Ξq ≥ b} ⊂ Sp(k−1)−1,

Ãb ={(q, h) ∈ Γ× Sk−2 | h⊤Ξq ≥ b} ⊂ Sp−1 × Sk−2,

Bb ={q ∈ Γ | q⊤Ξ⊤Ξq ≥ b2} ⊂ Sp−1.

Note that Ab is the excursion set of the Gaussian random field ξ⊤u, u ∈M , Ãb is the
excursion set of the Gaussian random field

∑k−1
i=1 hi(ξ

⊤
i q) = h⊤Ξq, (q, h) ∈ Γ× Sk−2,

and Bb is the excursion set of the chi-square random process
∑k−1

i=1 (ξ
⊤
i q)

2 = q⊤Ξ⊤Ξq,

q ∈ Γ. We will prove that for each fixed ξ, 1(Ab ̸= ∅) = 1(Ãb ̸= ∅) = 1(Bb ̸= ∅) and
χ(Ab) = χ(Ãb) = χ(Bb).

First, note that owing to Assumption 4.2.1, the map (q, h) 7→ h⊗ q is one-to-one.

Hence, Ab and Ãb are homeomorphic and therefore 1(Ab ̸= ∅) = 1(Ãb ̸= ∅) and

χ(Ab) = χ(Ãb).

Moreover, noting that Ãb ̸= ∅ ⇔ maxh h
⊤Ξq ≥ b for some q ⇔ q⊤ΞΞ⊤q ≥ b2 for
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some q ⇔ Bb ̸= ∅, that is, 1(Ãb ̸= ∅) = 1(Bb ̸= ∅), we can write

Ãb =
⊔
q∈Bb

{(q, h) | h ∈ Sk−2, h⊤Ξq ≥ b}.

Given b ≥ 0, the set {h ∈ Sk−2 | h⊤Ξq ≥ b} is contractible and star-shaped about the
point h∗(q) = Ξq/∥Ξq∥. That is, the map

φ : Ãb × [0, 1] → Ãb, (q, h, t) 7→
(
q,

(1− t)h+ th∗(q)

∥(1− t)h+ th∗(q)∥

)
is continuous, and φ

(
Ãb × {0}

)
= Ãb is homotopy equivalent to the set φ

(
Ãb ×

{1}
)
=
⊔
q∈Bb

{(q, h∗(q))}. This is homotopy equivalent to
⊔
q∈Bb

{q} = Bb. Hence,

χ(Ãb) = χ(Bb).
Recall that Bb is the excursion set of the chi-square random process on the one-

dimensional index set Γ. This means that Bb is also one-dimensional, and χ(Bb) is
only the number of connected components of Bb. Therefore 1(Bb ̸= ∅) ≤ χ(Bb). By
taking expectations,

Pr

(
max
u∈M

ξ⊤u ≥ b

)
= E{1(Ab ̸= ∅)} = E{1(Bb ̸= ∅)}

≤ E{χ(Bb)} = E{χ(Ab)} = P tube(b).

The last equality is owing to Proposition 3.4.1.

Remark 4.2.2. Naiman (1986) proved that application of the volume-of-tube method
to a Gaussian random process with a one-dimensional index set always provides a
conservative band. Theorem 4.2.3 is a generalization of Naiman (1986)’s inequality
to a chi-square random process.

Theorem 4.2.4. The interior and boundary of Γ are denoted by IntΓ and ∂Γ, re-
spectively. The critical radius θc of M is given by

tan2 θc = min

{
inf

x ̸=x̃, ψ(x)∈IntΓ

(1− αs)2

1− s2 − α2t2
, inf
x ̸=x̃, ψ(x)∈∂Γ

(1− αs)2

1− s2 −max{0, ε(x)αt}2

}
,

where the infima are taken over x, x̃ ∈ X , and α ∈ [−1, 1] as well as additional
conditions (arguments of inf), and

s = s(x, x̃) = ψ(x)⊤ψ(x̃), t = t(x, x̃) =
ψx(x)

⊤ψ(x̃)

∥ψx(x)∥
,
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ψx(x) = ∂ψ(x)/∂x,

ε(x) =

{
1 (ψx(x) is inward to Γ),

−1 (ψx(x) is outward to Γ).

ψx(x) is said to be inward or outward to Γ if the support cone of Γ at ψ(x) is Sψ(x)Γ =
{λψx(s) | λ ≥ 0} or {λψx(s) | λ ≤ 0}, respectively.

Theorem 4.2.5. Assume Assumption 4.2.1. Moreover, assume that ψ : X → Sp−1

is of C4-class. Then, the local critical radius θc,loc is given by

tan2 θc,loc = min

{
inf

x∈X :κ(x)≤2

{
1− κ(x)

4

}
, inf
x∈X :κ(x)≥2

1

κ(x)

}
with

κ(x) =
ψxx(x)

⊤ψxx(x)

{ψx(x)⊤ψx(x)}2
− {ψxx(x)⊤ψx(x)}2

{ψx(x)⊤ψx(x)}3
− 1, (4.2.5)

where ψx(x) = ∂ψ(x)/∂x and ψxx(x) = ∂2ψ(x)/∂x2.

The proofs of Theorems 4.2.4 and 4.2.5 are included in the Appendix.

4.3 A numerical example

In this section, we provide a numerical example to determine the accuracy of the
approximation formula given in Theorem 4.2.2, and degree of conservativeness proved
by Theorem 4.2.3.

Suppose that f(x) = (1, x, x2)⊤, X = [−1, 1], and

Σ =

1 0 2
3

0 2
3

0
2
3

0 1

 , Σ1/2 =

1 0 2
3

0
√

2
3

0

0 0
√
5
3

 .

Then,

ψ(x) =
1

3(1 + x2)

(
3 + 2x2,

√
6x,

√
5x2
)⊤
, |Γ| =

∫
X
∥ψ̇(x)∥ dx =

∫ 1

−1

√
2

3

1

1 + x2
dx =

π√
6
.

κ(x) in (4.2.5) is always 5. Hence, the local critical radius is θc,loc = tan−1(1/
√
5) =

0.134π. Further, we can also confirm that the critical radius is the same as θc = θc,loc
using Mathematica (Wolfram Research, Inc., 2016).
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Under this setting, we suppose the case of k = 3. The probability we need is

Pr

{
max
x∈[−1,1]

Y (x) ≥ b2
}

= 1− Pr
{
T (x, c) ≤ b, ∀x ∈ [−1, 1], ∀c ∈ C

}
, (4.3.1)

where

Y (x) =
2∑
i=1

{ξ⊤i ψ(x)}2, ξ1, ξ2 ∼ N3(0, I) i.i.d.

is a chi-square random process Y (x) with two degrees of freedom. The tube formula
for the upper tail probability (4.3.1) is

P tube(b) =
π

2
√
6

{
G3(b

2)−G1(b
2)
}
+G2(b

2) =

( √
π

2
√
3
b+ 1

)
e−b

2/2. (4.3.2)

Figure 4.3.1 depicts the upper tail probability of the maximum (4.3.1) and its approx-
imate value (4.3.2). We can see that the tube formula approximates the true upper
tail probability with sufficient accuracy in the moderate tail regions (for example,
the upper probability is less than 0.2), and it provides a conservative bound as per
Theorem 4.2.3.

Figure 4.3.1: Upper tail probability of the maximum of chi-square process Y (x).

(solid line: tube formula, dashed line: Monte Carlo with 10,000 replications)

We have proposed that the threshold for the confidence band should be deter-
mined as the solution b = btube,1−α for P tube(b) = α. Figure 4.3.2 depicts the actual
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confidence coefficient (coverage probability)

Pr

{
max
x∈[−1,1]

Y (x) ≥ b2tube,1−α

}
, α ∈ [0, 1].

This further demonstrates that the confidence bands obtained by the tube method
are always conservative and very accurate.

Figure 4.3.2: Nominal confidence coefficient vs. Actual confidence coefficient.
(solid line: actual confidence coefficient, dashed line: 45-degree line)

4.4 Simulation study under model misspecification

Throughout this section, it is assumed that the nonlinear model has a finite number
of basis functions gi(x) = β⊤

i f(x) in (2.4.2). However, we can only approximate the
true model in practice. Under a slight misspecification of the model, Sun and Loader
(1994) estimated the bias of the coverage probability, and proposed an adjustment to
the volume-of-tube formula. Although their approach may be applied to our model,
the result would be more complicated. Instead, to investigate what happens under
model misspecification, we conducted a Monte Carlo simulation study in the following
setting.

The domain of explanatory variable is set to be X = [0, 1]. The data are generated
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from the model

yij = gi(xj) + εij, εij ∼ N (0, 1), i = 1, . . . , k, j = 1, . . . , n,

where k = 3, n = 11, and xj = (j − 1)/n, j = 1, . . . , n. As the true regression curve
is gi(x), we assume three models.

Model 1:

gi(x) = β⊤
i f2,5,0,1(x), β1 = (0, . . . , 0)⊤, β2 = K(0, 0, 1/2, 1, 1)⊤, β3 = K(0, 0, 4/3, 0, 0)⊤,

where K = 1, 3, or 9,

fd,m,a,b =

(
Bd

(
x− a

b− a
(m− d)− (i− d− 1)

))
i=1,...,m

,

and Bd(·) is the B-spline function

Bd(x) =
d+1∑
r=0

(−1)d+1−r
(
d+ 1

r

)
(r − x)d+

d!
(4.4.1)

(de Boor (1978), p. 89).
Model 2:

g1(x) = 0, g2(x) = K sin(xπ/2), g3(x) = K sin(xπ), K = 1, 3, 9.

Model 3:

g1(x) = 0, g2(x) = K
e−x/2 − e−x

e−1/2 − e−1
, g3(x) = K

cosh(x− 1/2)− 1

cosh(1/2)− 1
, K = 1, 3, 9.

For all models, g2(x) is unimodal, and g3(x) is increasing. g2(x) and g3(x) are designed
to have the range [0, K].

We fit the curve β⊤
i f2,m,0,1(x) to the generated data yij, where m = 3, . . . , 10.

Using these models, we constructed a 1−α = 0.95 confidence band. Coverage proba-
bilities were estimated based on Monte Carlo simulations with 1,000,000 replications,
and are summarized in Table 4.4.1. In this table,

δ = max
x∈X , c∈C

∣∣∣∣∣
∑k

i=1 ci{(β∗
i )

⊤f2,m,0,1(x)− gi(x)}√
f2,m,0,1(x)⊤Σf2,m,0,1(x)

∣∣∣∣∣ , Σ =

(
n∑
i=1

f2,m,0,1(xi)
⊤f2,m,0,1(xi)

)−1

(4.4.2)
is the bias of regression function, where β∗

i is the best parameter in the assumed
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model β⊤
i f2,m,0,1(x).

∆ = max
{
α− P tube(btube,1−α + δ), P tube(btube,1−α − δ)− α

}
(4.4.3)

is an approximate upper bound of the bias of coverage probability, where btube,1−α is
the approximate value of b1−α obtained by the tube method. (See Appendix A.4 for
the detail.)

From this table, we first see that, for the true models (m = 5, 8 when model 1
is true), the coverage probabilities are more than, but approximately equal to, the
nominal value 0.95, meaning that the proposed method is valid. The most remarkable
point is that, throughout the study, the coverage probabilities are kept at approxi-
mately 0.95, unless the assumed model is too small, and the bias δ is large.

Table 4.4.2 shows the average width of the confidence band defined by

W =

∫
X btube,1−α

√
f(x)⊤Σf(x) dx∫

X dx
= btube,0.95

∫ 1

0

√
f2,m,0,1(x)⊤Σf2,m,0,1(x) dx.

When the model is increasing in size, W is increasing in size. This suggests that a
smaller model is preferable, unless it is too small to cause serious bias.

In summary, too small of a model should surely be avoided, whereas, a larger
model has the disadvantage of having a wider confidence band. This trade-off is
crucially important in practice, and a promising future research topic, although it is
out of scope for this paper. For related topics, refer to Casella and Hwang (2012), for
shrinkage confidence bands, and Leeb et al. (2015), for confidence band post-model
selection.
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Table 4.4.1: Coverage probability under model misspecification (1− α = 0.95)
(prob: coverage probability, δ: bias (4.4.2), ∆: bound for coverage probability bias (4.4.3))

m
Model 1 (K = 1) Model 1 (K = 3) Model 1 (K = 9)

prob δ ∆ prob δ ∆ prob δ ∆

3 0.9365 0.4692 0.1155 0.7872 1.4076 0.8240 0.0000 4.2227 1.3542

4 0.9422 0.3996 0.0965 0.8509 1.1987 0.6909 0.0076 3.5961 1.6907

5 0.9512 0.0000 0.0000 0.9512 0.0000 0.0000 0.9512 0.0000 0.0000

6 0.9511 0.1006 0.0176 0.9477 0.3018 0.0694 0.9111 0.9053 0.4550

7 0.9514 0.0448 0.0074 0.9509 0.1343 0.0251 0.9465 0.4030 0.1100

8 0.9515 0.0000 0.0000 0.9515 0.0000 0.0000 0.9515 0.0000 0.0000

9 0.9515 0.0175 0.0029 0.9514 0.0526 0.0090 0.9504 0.1578 0.0316

10 0.9516 0.0218 0.0036 0.9515 0.0653 0.0116 0.9508 0.1959 0.0421

m
Model 2 (K = 1) Model 2 (K = 3) Model 2 (K = 9)

prob δ ∆ prob δ ∆ prob δ ∆

3 0.9509 0.06491 0.0099 0.9486 0.1947 0.0346 0.9277 0.5842 0.1640

4 0.9511 0.04999 0.0077 0.9498 0.1500 0.0264 0.9374 0.4499 0.1157

5 0.9512 0.01271 0.0019 0.9511 0.0381 0.0060 0.9504 0.1143 0.0199

6 0.9516 0.00494 0.0008 0.9516 0.0148 0.0023 0.9515 0.0445 0.0072

7 0.9514 0.00234 0.0004 0.9514 0.0070 0.0011 0.9514 0.0211 0.0034

8 0.9515 0.00137 0.0002 0.9515 0.0041 0.0007 0.9515 0.0123 0.0020

9 0.9515 0.00119 0.0002 0.9515 0.0036 0.0006 0.9515 0.0107 0.0017

10 0.9516 0.00076 0.0001 0.9516 0.0023 0.0004 0.9516 0.0068 0.0011

m
Model 3 (K = 1) Model 3 (K = 3) Model 3 (K = 9)

prob δ ∆ prob δ ∆ prob δ ∆

3 0.9512 0.02384 0.0034 0.9508 0.07152 0.0109 0.9483 0.2146 0.0390

4 0.9513 0.00766 0.0011 0.9512 0.02299 0.0034 0.9511 0.0690 0.0109

5 0.9512 0.00218 0.0003 0.9512 0.00653 0.0010 0.9512 0.0196 0.0030

6 0.9516 0.00095 0.0002 0.9516 0.00285 0.0004 0.9516 0.0086 0.0013

7 0.9514 0.00046 0.0001 0.9514 0.00138 0.0002 0.9514 0.0042 0.0006

8 0.9515 0.00028 0.0000 0.9514 0.00083 0.0001 0.9515 0.0025 0.0004

9 0.9515 0.00024 0.0000 0.9515 0.00071 0.0001 0.9515 0.0021 0.0003

10 0.9516 0.00014 0.0000 0.9516 0.00042 0.0001 0.9516 0.0013 0.0002
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Table 4.4.2: Average band-width W (1− α = 0.95)

m 3 4 5 6 7 8 9 10

W 1.463 1.752 2.017 2.275 2.546 2.764 2.990 3.211



Chapter 5

Analysis of Growth Curve

5.1 Growth curve

In this chapter we demonstrate the analysis of mouse growth as an illustration. Sun,
Raz, and Faraway (1999) proposed simultaneous confidence bands for a growth curve
by virtue of the volume-of-tube method. Differently from their analysis, we focus on
the contrast of several growth curves.

Mice are one of the most popular model organisms, and are often used in ge-
nomic research. Figure 5.1.1 depicts the average body weights of male mice from
four different strains measured from 2 to 20 weeks after birth. The four strains
are C57BL/6 (referred to as B6), MSM/Ms (MSM), B6-Chr17MSM(B6-17), and B6-
ChrXTMSM(B6-XT). Among these, B6 is the most common laboratory strain and
serves as the standard. MSM is a wild-derived strain having contrasting properties
to B6 such as non-black color, small size, and aggressive behavior. B6-17 and B6-XT
are artificial strains known as consomic mice made from B6 and MSM. B6-17 has all
the chromosomes from B6, and only chromosome 17 from MSM; B6-XT has all the
chromosomes from B6, and only half of the X chromosome from MSM. By comparing
the consomic strains with B6, we expect to reveal the role of each chromosome.

The dataset we utilized is publicly available as Supplemental Table S1 of Takada
et al. (2008). In their experiments, the weight (unit: gram) yijh of the hth individual
from strain i was measured at time point xj. The measurement time points were
{x1, . . . , x10} = {2, 4, . . . , 20} (n = 10). This dataset includes the average body
weight yij of strain i at time xj, and its standard error

yij =
1

ri

ri∑
h=1

yijh, ŝ.e.(yij) =

√√√√ 1

r2i

ri∑
h=1

(yijh − yij)2,

as well as the number ri of individuals of strain i.

28
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Figure 5.1.1: Average body weights of mice from four strains.

(sample mean: ◦ (B6), + (B6-17), ⋄ (B6-XT), △ (MSM);

fitted curve: — (B6), · · · (B6-17), – – (B6-XT), – · – (MSM))

In the following analysis, we use k = 3 groups (strains) B6 (i = 1), B6-17 (i = 2),
and B6-XT (i = 3). The number of individuals are r1 = 12, r2 = 24, and r3 = 12.

We fit the model (2.4.1) to these data. We estimate the variance as

σ̂(xj)
2 =

1∑k
i=1(ri − 1)

k∑
i=1

ri∑
h=1

(yijh − yij)
2 =

1∑k
i=1(ri − 1)

k∑
i=1

r2i ŝ.e.(yij)
2,

which is used as the true value σ(xj)
2 hereafter. Figure 5.1.2 plots the estimated

standard error σ̂(xj). One particular feature of this dataset is that the experiment is
well controlled and measurement errors are quite small.
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Figure 5.1.2: Estimated standard error σ̂(xj).

5.2 Model selection

As the basis function f(x), we consider a family of basis functions

f(x) = fd,m,2,20(x) =

(
Bd

(
x− 2

20− 2
(m− d)− (i− d− 1)

))
1≤i≤m

,

with Bd(x) given in (4.4.1). fd,m,2,20(x) consists of m B-spline bases with equally-
spaced knots at intervals of (20 − 2)/(m − d). Note that fd,m,2,20(x) is piecewise of
class Cd.

In the range d = 2, 3, 4 and m = d + 1, d + 2, . . . , n (= 10), we searched for the
best model that minimizes AIC and BIC defined below:

AICd,m = Ld,m+2km, BICd,m = Ld,m+
k∑
i=1

ln(rin)m, Ld,m =
k∑
i=1

ri

n∑
j=1

(yij − ŷij)
2

σ(xj)2

with k = 3, n = 10, where ŷij = β̂⊤
i fd,m,2,20(xj). In both criteria, the minimizer was

(d,m) = (2, 5), which we use as the true value hereafter.
Suppose that we are interested in the period X = [a, b] = [2, 20]. An approximate
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value of the length of Γ in (2.5.1) is given by

|Γ| ≈
N∑
t=1

∥∥ψ(xt)− ψ(xt−1)
∥∥,

where xt = a+ t(b−a)/N , t = 0, 1, . . . , N . When N = 10, 000, the approximate value
of |Γ| is 6.989 = 2.225π. Using this, the critical value is b1−α = 3.258 (α = 0.05).

5.3 Difference in body weight

To compare k groups, various types of contrasts are used. For a pairwise comparison
between group i and group j, we choose c = (. . . , 0, 1

ith
, 0, . . . , 0,−1

jth
, 0, . . .). For the

comparison of groups {i, j} and group k, we use

c =

(
. . . , 0,

ri
ri + rj
ith

, 0, . . . , 0,
rj

ri + rj
jth

, 0, . . . , 0,−1
kth
, 0, . . .

)
.

Figure 5.3.1 depicts the difference curves of strains B6-17 vs. B6 (left) and B6-XT vs.
B6 (right), and their 95% simultaneous confidence bands. In the left panel, the hori-
zontal line representing zero difference is almost between the confidence bands. This
indicates that there is no significant difference between B6-17 and B6. In contrast,
in the right panel, after around week 14, the horizontal line is outside the confidence
bands, thereby indicating that B6-XT and B6 are different during this period.
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Figure 5.3.1: Differences of body weights and 95% confidence bands.

For a fixed x, the test statistic for the null hypothesis H0,x : β⊤
1 f(x) = . . . =
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β⊤
k f(x) is

χ2(x) =
1

f(x)⊤Σf(x)

k∑
i=1

ri

{
β̂⊤
i f(x)−

∑k
i=1 riβ̂

⊤
i f(x)∑k

i=1 ri

}2

.

For a fixed x, the null distribution is the chi-square distribution with k − 1 degrees
of freedom. However, for the overall null hypothesis H0 : β

⊤
1 f(x) = . . . = β⊤

k f(x) for
all x ∈ X , the distribution of the maximum of the chi-square random process should
be used. Figure 5.3.2 shows χ2(x) and its upper 5% critical value b20.95. As already
shown in Figure 5.3.1, after around week 14, the hypothesis of equality is rejected.
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Figure 5.3.2: Chi-square process χ2(x) and its upper 5% critical value.

Throughout this paper, it is assumed that the nonlinear model (2.4.2) is known
to be true in advance. However, we hardly know the true model in practice. Under a
slight misspcification of the model, Sun and Loader (1994) estimated the bias of the
confidence probability, and proposed an adjustment to the volume-of-tube formula.
Although their approach may be applied to our model, the result could be more
complicated. This would have to form part of our future research.

5.4 Simulation study under model misspecifications

To investigate what happens under model misspecifications, we conducted a Monte
Carlo simulation study in the following setting: In section 5, we obtained estimates
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β̂i, i = 1, 2, 3, under the model with f(x) = f2,5(x). Here, by assuming the estimates

β̂⊤
i f2,5(xj) and σ̂(xj)

2 to be the true values for E[yijh] and Var(yijh), we generate the
data yijh, i = 1, . . . , k (= 3), j = 1, . . . , n (= 10), and h = 1, . . . , ri, and then fit the
models with f(x) = f2,m(x), m = 3, 4, . . . , 10.

The model withm = 5 is a true model. The model withm = 8 is also a true model,
since the set of knots for m = 8 is {2, 5, 8, 11, 14, 17, 20}, which includes the set of
knots {2, 8, 14, 20} for m = 5. On the other hand, the models with m = 3, 4, 6, 7, 9, 10
are not true and should have some biases.

Figure 5.4.1 depicts the simultaneous confidence probabilities estimated by Monte
Carlo simulation with 1,000,000 replications per point. We first see that for the true
models (m = 5, 8), the confidence probabilities are more than but almost equal to
the nominal values, which means that the proposed method is valid. Including these
cases, when m ≥ 5, the confidence probabilities are almost equal to the nominal
values. For the case m = 4, a slight bias is observed, whereas for the case m = 3,
serious bias occurs.

3 4 5 6 7 8 9 10

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

number of bases m

co
nf

id
en

ce
 p

ro
b.

 1
−

α

3 4 5 6 7 8 9 10

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

3 4 5 6 7 8 9 10

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

3 4 5 6 7 8 9 10

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Figure 5.4.1: Confidence probability 1 − α under basis vector f2,m. True model:
m = 5.

(Nominal confidence coefficient 0.95: —◦—, 0.90: · · ·+· · · , 0.85: – –⋄– –, 0.80: – · –△– · –)

On the other hand, since m is the dimension of parameters to be estimated,
the smaller m is, the narrower the bandwidth is. Figure 5.4.2 depicts the average
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bandwidth of the 1− α simultaneous confidence bands:

|X |−1

∫
X
bα
√
f(x)⊤Σf(x)dx, |X | =

∫
X
dx.

Considering the observation that the model with m = 4 yields shorter bandwidth
and has almost no bias, the model with m = 4 may be more favorable than the true
model with m = 5 in practice.
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Figure 5.4.2: Average bandwidth under basis vector f2,m. True model: m = 5.

(Nominal confidence coefficient 0.95 : —◦—, 0.90 : · · ·+· · · , 0.85 : – –⋄– –, 0.80 : – · –△– · –)

In summary, extensive model misspecification (i.e., m = 3) causes serious bias,
and should surely be avoided. Whereas a smaller and slightly misspecified model (i.e.,
m = 4) may lead to good performance, i.e., almost no bias and narrower bandwidth.
The use of a lower dimensional model reminds us of a confidence band based on a
shrinkage estimator, which is still under development (Casella and Hwang, 2012). The
construction of optimized simultaneous confidence bands using a lower dimensional
and possibly misspecified model might be a challenging future research topic
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Conclusion

In this study, we review simultaneous confidence bands and the volume-of-tube method.
In the literature, there are several works on confidence bands for linear regression
models, such as Working and Hotelling (1929), Hotelling (1951), Spurrier (1999), and
Jamshidian, Liu, and Bretz (2010). Unlike these studies, we consider the construc-
tion of simultaneous bands for all of the contrasts between several nonlinear regression
models. The tube formula is given in a mathematical form via the volume-of-tube
method. The critical value of a confidence band is determined from the distribution of
the maximum of a chi-square random process defined on the domain of the explana-
tory variables. We use the volume-of-tube method to derive an upper tail probability
formula for the maximum of a chi-square random process, which is sufficiently accu-
rate in commonly used tail regions. Moreover, we prove that the formula obtained is
equivalent to the expectation of the Euler-Poincaré characteristic of the excursion set
of the chi-square random process and, hence, is conservative. This result is therefore
a generalization of Naiman’s inequality for Gaussian random processes. We provide
a numerical example to address this method. The simulation study under model mis-
specification is given thereafter. Growth curves of consomic mice are analyzed as an
illustrative example.

As a future research topic, we consider another application of the volume-of tube
method on the statistical parametric maps (SPMs) problem. Statistical parametric
mapping is an important tool to detect significantly activated regions of cerebral
tissue. The threshold to render the probability of one or more activated regions of
one voxel or larger is suitably small (e.g., 0.05). Friston et al. (1994) present an
approximate analysis giving the probability that one or more activated regions of or
larger than a specified volume could have occurred by chance.

SPMs are spatially extended statistical processes that are used to test hypotheses
about regionally specific effects in neuroimaging data. The voxel values of SPMs
are distributed according to some known probability density function under the null
hypothesis (Friston et al., 1990). Any continuous probability density function can be

35
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transformed to the Gaussian distribution or a z-statistic. If the degrees of freedom
of the original distribution are reasonably high, the resulting SPM approximates a
Gaussian field or an SPMz.

We define the following three characteristics of an SPM:
(1) The number (N) of voxels above a threshold (the number of voxels in the

excursion set that have values greater than a threshold)
(2) The number (m) of activated regions (clusters or connected subsets of the

excursion set)
(3) The number (n) of voxels in each of these clusters.
Each of these numbers has its own probability density function: Pr(N = x),

Pr(m = x), and Pr(n = x), respectively. These probability functions provide a
fairly complete characterization of the SPM and allow a number of hypotheses to
be addressed. The particular probability we are interested in is the probability of
obtaining at least one activation with k or more voxels. This is the same as the
probability that the largest region has k or more voxels = Pr(nmax ≥ k), where
nmax is the number of voxels in the largest region. Friston et al. (1992) solves this
problem by using the Euler characteristic, whereas we will use the volume-of-tube
method. Here are two points that need to be reconsidered. First, the assumptions
that the image data has stationarity and that it follows a Gaussian random field are
not realistic since brain image data is completely different from a Gaussian random
field. Second, the formula given by the Euler characteristic is highly simplified, which
may cause low accuracy. We try to give a more complex formula with higher accuracy
by using the volume-of-tube method.



Appendix A

Appendix: Proofs

A.1 Proof of Theorem 4.2.2

Contribution of the inner points IntM

Here, we obtain the coefficients wd+1−e in (3.3.3) when M is given in (4.2.1).
Let h = h(θ), θ = (θi)1≤k−2, be a local coordinate system of Sk−2. For example,

h = h(θ) =



cos θ1
sin θ1 cos θ2
sin θ1 sin θ2 cos θ3
...

sin θ1 . . . sin θk−3 cos θk−2

sin θ1 · · · sin θk−3 sin θk−2


(k−1)×1

,

where

θ ∈ Θ = {(θ1, . . . , θk−2) | 0 ≤ θi ≤ π (i = 1, . . . , k − 3), 0 ≤ θk−2 < 2π}.

Let (x, θ) ∈ X × Θ be fixed, and let ϕ(x, θ) = h(θ) ⊗ ψ(x) ∈ M . We write
ψ = ψ(x), h = h(θ) and ϕ = ϕ(x, θ) for simplicity. We first assume that x ∈ IntX ,
hence, ϕ(x, θ) ∈ IntM .

By applying the Gram-Schmidt orthonormalization to the sequence ψ, ∂ψ/∂x, ∂2ψ/∂x2, . . .,
we construct the orthonormal basis (ONB) ψ(i), i = 0, . . . , p−1, of Rp. The first three
bases are

ψ(0) = ψ, ψ(1) =
1
√
g

∂ψ

∂x
, ψ(2) =

1√
η − γ2

g
− g2

(
∂2ψ

∂x2
+ gψ − γ

g

∂ψ

∂x

)
,

37
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where

g = g(x) =

(
∂ψ

∂x

)⊤(
∂ψ

∂x

)
, γ = γ(x) =

(
∂2ψ

∂x2

)⊤(
∂ψ

∂x

)
, η = η(x) =

(
∂2ψ

∂x2

)⊤(
∂2ψ

∂x2

)
.

Similarly, from the sequence h, ∂h/∂θi, i = 1, . . . , k − 2, we obtain ONB h(i), i =
0, . . . , k − 2, of Rk−1. We prepare a (k − 2) × (k − 2) upper triangle matrix D such
that(
h,
∂h

∂θ1
, . . . ,

∂h

∂θk−2

)
=
(
h(0), h(1), . . . , h(k−2)

)(1 0
0 D

)
, or D =

(
h⊤(i)

∂h

∂θj

)
1≤i,j≤k−2

.

Now we have the ONB h(i) ⊗ ψ(j), i = 0, . . . , k − 2, j = 0, . . . , p − 1, of the ambient
space Rn with n = p(k − 1). Note that ϕ = h(0) ⊗ ψ(0).

The tangent space TϕM is spanned by

∂ϕ

∂x
= h⊗ ∂ψ

∂x
,

∂ϕ

∂θi
=
∂h

∂θi
⊗ ψ, i = 1, . . . , k − 2.

The metric matrix of TϕM with respect to the parameter x, θ1, . . . , θk−2 is(
g 0
0 G

)
, where G =

((
∂h

∂θi

)⊤(
∂h

∂θj

))
1≤i,j≤k−2

= D⊤D. (A.1.1)

TϕM has the ONB h(0) ⊗ ψ(1), h(i) ⊗ ψ(0), i = 1, . . . , k − 2.
The normal space perpendicular to Tϕ(co(M)) = TϕM ⊕ span{ϕ} is

Nϕ(co(M)) = span
{
h(0) ⊗ ψ(j), j = 2, . . . , p− 1;

h(i) ⊗ ψ(j), i = 1, . . . , k − 2, j = 1, . . . , p− 1
}
. (A.1.2)

The second order derivatives of ϕ = ϕ(x, θ) are

∂2ϕ

∂x2
= h⊗ ∂2ψ

∂x2
,

∂2ϕ

∂x∂θi
=
∂h

∂θi
⊗ ∂ψ

∂x
,

∂2ϕ

∂θi∂θj
=

∂2h

∂θi∂θj
⊗ ψ.

Taking the inner product of the second derivatives and the ONB of Nϕ(co(M)) listed
in (A.1.2), we see that the nonzero elements of the second fundamental form are

−
(
h⊗ ∂2ψ

∂x2

)⊤

(h(0) ⊗ ψ(2)) = −
(
∂2ψ

∂x2

)⊤

ψ(2) = −ζ,
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where

ζ = ζ(x) =

√
η − γ2

g
− g2

and

−
(
∂h

∂θi
⊗ ∂ψ

∂x

)⊤

(h(j) ⊗ ψ(1)) = −
(
∂h

∂θi

)⊤

h(j)
√
g = −Dji

√
g.

We renumber the ONB of Nϕ(co(M)) as

N1 = h(0) ⊗ ψ(2), Ni = h(i−1) ⊗ ψ(1), i = 2, . . . , k − 1,

and Nk, . . . , Npk−p−k are the other vectors. Write N(t) =
∑pk−p−k

i=1 Niti, where t =
(t1, . . . , tpk−p−k). Then,

−
(
∂2ϕ

∂x2

)⊤

N(t) =− ζt1,

−
(

∂2ϕ

∂x∂θi

)⊤

N(t) =−
k−2∑
j=1

Djitj+1
√
g,

−
(

∂2ϕ

∂θi∂θj

)⊤

N(t) =0.

Therefore, the second fundamental form (unnormalized version) in the direction N(t)
is 

−ζt1 −(t2, . . . , tk−1)D
√
g

−D⊤

 t2
...

tk−1

√
g 0

 . (A.1.3)

Multiplication of the inverse of the metric (A.1.1) enables us to obtain the normalized
version of the second fundamental form. Noting that(

g 0
0 G

)−1

=

(
g 0
0 D⊤D

)−1

=

(
1/
√
g 0

0 D−1

)(
1/
√
g 0

0 (D⊤)−1

)
,

we multiply (
1/
√
g 0

0 (D⊤)−1

)
and

(
1/
√
g 0

0 D−1

)
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from the left and right to (A.1.3), respectively, to obtain

(
1/
√
g 0

0 (D⊤)−1

)
−ζt1 −(t2, . . . , tk−1)D

√
g

−D⊤

 t2
...

tk−1

√
g 0


(
1/
√
g 0

0 D−1

)

=


−(ζ/g)t1 −(t2, . . . , tk−1)

−

 t2
...

tk−1

 0

 = H(x, θ;N(t)).

This is the second fundamental form with respect to the orthonormal coordinates.
Now we have

treH(x, θ;N(t)) =


1 (e = 0),

−(ζ/g)t1 (e = 1),

−
∑k−1

j=2 t
2
j (e = 2),

0 (otherwise).

(A.1.4)

Next, we evaluate the integral∫
v∈Nϕ(co(M))∩Sn−1

treH(x, θ; v) dv, (A.1.5)

where n = p(k − 1), dv is the volume element of Nϕ(co(M)) ∩ Sn−1, by following
Section 4.2.2 of Kuriki and Takemura (2001). Recall that d = dimM = k − 1.

Because Nϕ(co(M)) is a linear space of dimension n−d−1 = p(k−1)−(k−1)−1 =
pk−p−k, Nϕ(co(M))∩Sn−1 is nothing but a (pk−p−k−1)-dimensional unit sphere.
Hence, ∫

v∈Nϕ(co(M))∩Sn−1

dv = Vol(Spk−p−k−1) = Ωpk−p−k.

Therefore, if V is distributed as the uniform distribution on NϕM ∩Sn−1, denoted by
Unif(NϕM ∩ Sn−1), then (A.1.5) = Ωpk−p−k × E{treH(x, θ;V )}.

Suppose that T = (T1, . . . , Tpk−p−k) ∼ Npk−p−k(0, I), and letN(T ) =
∑pk−p−k

i=1 NiTi.
Then,

∥N(T )∥2 =
pk−p−k∑
i=1

T 2
i ∼ χ2

pk−p−k and V =
N(T )

∥N(T )∥
∼ Unif(NϕM ∩ Sn−1)
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are independently distributed. Hence,

E{treH(x, θ;N(T ))} = E{∥N(T )∥etreH(x, θ, V )} = E{∥N(T )∥e}E{treH(x, θ, V )},

and

E{treH(x, θ, V )} =
E{treH(x, θ;N(T ))}
E
{
(χ2

pk−p−k)
e/2
} .

From (A.1.4),

E{treH(x, θ;N(T ))} =


1 (e = 0),

0 (e = 1),

−
∑k−1

i=2 E(T
2
i ) = −(k − 2) (e = 2),

0 (otherwise),

hence,

E{treH(x, θ;V )} =


1 (e = 0),

− k − 2

pk − p− k
(e = 2),

0 (otherwise).

Therefore,

∫
v∈Nϕ(co(M))∩Sn−1

treH(x, θ, v) dv =


Ωpk−p−k (e = 0),

− k − 2

pk − p− k
Ωpk−p−k (e = 2),

0 (otherwise).

Note that the results are independent of x and θ. This implies that the integral
in (3.3.3) with respect to the volume element

du =
√
g dx× |G(θ)|1/2 dθ1 . . . dθk−2

is simply multiplying the constant

Vol(M) = |Γ| × Vol(Sk−2) = |Γ|Ωk−1.
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Finally, from (3.3.3) of Proposition 3.3.1,

wd+1 = wk =
1

ΩkΩpk−p−k
× |Γ|Ωk−1Ωpk−p−k,

wd−1 = wk−2 =
1

Ωk−2Ωpk−p−k+2

× |Γ|Ωk−1 ×
(
− k − 2

pk − p− k

)
Ωpk−p−k,

and the other w’s are zero. Simple calculations give

wk = −wk−2 =
Γ(k

2
)

√
πΓ(k−1

2
)
|Γ|. (A.1.6)

Contribution of the boundary ∂M

We obtain here the coefficients w′
d−e in (3.3.4) when M is given in (4.2.1).

Suppose that X = [a, b]. Then,

∂M = {ϕ(a, θ) | θ ∈ Θ} ⊔ {ϕ(b, θ) | θ ∈ Θ}.

Let x = a and θ ∈ Θ be fixed. Then, ϕ(a, θ) ∈ ∂M . The metric of the boundary ∂M
at ϕ(x, θ) is (

∂ϕ

∂θi

)⊤(
∂ϕ

∂θj

) ∣∣∣∣
(a,θ)

= (G(θ))ij.

Note that ∂(co(M)) = co(∂M). The support cone of co(M) at ϕ(a, θ) ∈ ∂(co(M))
is

Sϕ(a,θ)(co(M)) = L⊕K1,

where

L = span

{
h⊗ ψ,

∂h

∂θi
⊗ ψ, i = 1, . . . , k − 2

}
, K1 =

{
λ

(
h⊗ ∂ψ

∂x

)
| λ ≥ 0

}
.

This is a direct sum (the Minkowski sum) of a linear subspace and a cone. To obtain
its dual cone, the following lemma is useful.

Lemma. Let K1 be a cone, and let L be a linear subspace. Let K = K1 ⊕ L. Then,
the dual cone of K is K∗ = K∗

1 ∩ L⊥.

Because
K∗

1 =
{
λ(h(0) ⊗ ψ(1)) | λ ≤ 0

}
⊕ span

{
h(0) ⊗ ψ(1)

}⊥
and

L⊥ = span
{
h(0) ⊗ ψ(j), j = 1, . . . , p− 1; h(i) ⊗ ψ(j), i = 1, . . . , k − 2, j = 1, . . . , p− 1

}
,



A.2. Proof of Theorem 4.2.4 43

we have

Nϕ(a,θ)(co(M)) = K∗ = K∗
1 ∩ L⊥ =

{
λ(h(0) ⊗ ψ(1)) | λ ≤ 0

}
⊕ span

{
h(0) ⊗ ψ(j), j = 2, . . . , p− 1;

h(i) ⊗ ψ(j), i = 1, . . . , k − 2, j = 1, . . . , p− 1
}
,

with dimNϕ(a,θ)(co(M)) = pk − p− k + 1.
The second fundamental form of co(∂M) at ϕ(a, θ) is(

∂2ϕ(a, θ)

∂θi∂θj

)⊤

v =

(
∂2h

∂θi∂θj
⊗ ψ

)⊤

v, v ∈ Nϕ(a,θ)(co(M)). (A.1.7)

We can easily see that the second fundamental form (A.1.7) is always zero. Therefore,
the contribution of the boundary to w′

d−e in (3.3.4) is only to case e = 0. That is, all
w′
i but w

′
k−1 are zero. The contribution of the boundary {ϕ(a, θ) | θ ∈ Θ} to w′

k−1 is

1

Ωk−1−0Ωp(k−1)−(k−1)+0

∫
∂M

|G|
1
2dθ

∫
Nϕ(a,θ)(co(M))∩Sn−1

dv =
Vol(Sk−2)Vol(half of Spk−p−k)

Ωk−1Ωpk−p−k+1

=
1

2
.

The contribution of the other boundary {ϕ(b, θ) | θ ∈ Θ} to wk−1 has the same value
of 1/2. Moreover, if the number of connected components of Γ exceeds one, we need
to select all boundaries. Since the number of boundaries is 2χ(Γ), we have

w′
k−1 =

1

2
× 2χ(Γ) = χ(Γ). (A.1.8)

Substituting (A.1.6) and (A.1.8) into (3.3.2) yields (4.2.4).

A.2 Proof of Theorem 4.2.4

We apply the formula (3.3.5) for θc to the case where M is given in (4.2.1).
Let

u = ϕ(x̃, θ̃) = h(θ̃)⊗ ψ(x̃), v = ϕ(x, θ) = h(θ)⊗ ψ(x),

and write h = h(θ), h̃ = h(θ̃), ψ = ψ(x), ψ̃ = ψ(x̃). We discuss the two cases (i)
ψ ∈ IntΓ and (ii) ψ ∈ ∂Γ separately.

Case (i). Suppose that ψ(x) ∈ IntΓ. Write ϕθi = (∂h(θ)/∂θi) ⊗ ψ(x), ϕx =
h(θ)⊗ ψx(x), ψx = ∂ψ(x)/∂x.



A.2. Proof of Theorem 4.2.4 44

The orthogonal projection matrix onto the space Tϕ(co(M)) = span{ϕ, ϕθi , ϕx} is

Pv =
(
ϕ ϕθi ϕx

)
p(k−1)×k

ϕ⊤

ϕ⊤
θi

ϕ⊤
x

(ϕ ϕθi ϕx
)−1

k×k

ϕ⊤

ϕ⊤
θi

ϕ⊤
x


k×p(k−1)

=
(
ϕ ϕθi ϕx

)1 0 0
0 G(θ) 0
0 0 g(x)

−1ϕ⊤

ϕ⊤
θi

ϕ⊤
x


= ϕϕ⊤ + (ϕθi)G(θ)

−1(ϕθi)
⊤ +

1

g(x)
ϕxϕ

⊤
x

= hh⊤ ⊗ ψψ⊤ + (Ik−1 − hh⊤)⊗ ψψ⊤ +
1

g
hh⊤ ⊗ ψxψ

⊤
x

= Ik−1 ⊗ ψψ⊤ +
1

g
hh⊤ ⊗ ψxψ

⊤
x .

As P⊥
v (w) = I(w)− Pv(w),

(1− u⊤v)2

∥(In − Pv)u∥2
=

(1− (h̃⊗ ψ̃)⊤(h⊗ ψ))2

∥(Ik−1 ⊗ Ip − Ik−1 ⊗ ψψ⊤ − 1
g
hh⊤ ⊗ ψxψ⊤

x )(h̃⊗ ψ̃)∥2
. (A.2.1)

Let s = ψ⊤(x)ψ(x̃) = ψ⊤ψ̃, r = ψ⊤
x (x)ψ(x̃) = ψ⊤

x ψ̃, α = h(θ)⊤h(θ̃) = h⊤h̃. The
numerator in (A.2.1) is (1− αs)2. The denominator in (A.2.1) is∥∥∥∥h̃⊗ ψ̃ − sh̃⊗ ψ − αr

g
h⊗ ψx

∥∥∥∥2 =1 + s2 +
α2r2

g
− 2s2 − 2

αr

g
αr

=1− s2 − α2r2

g
= 1− s2 − α2t2,

where t = r/
√
g = ψx(x)

⊤ψ(x̃)/∥ψx(x)∥. Hence,

(A.2.1) =
(1− αs)2

1− s2 − α2t2
.

The infimum is taken over “x ̸= x̃ or θ ̸= θ̃”, or equivalently, “x ̸= x̃ or α ̸= 1”.
However, when x = x̃ and α ̸= 1, the argument of the infimum is (1 − α)2/0 = ∞.
Therefore, we can exclude this case x = x̃ from the infimum argument.

Case (ii). Suppose that ψ(x) ∈ ∂Γ. Fix a point on the boundary

v = ϕ(x, θ) = h(θ)⊗ ψ(x) ∈ ∂M.
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The support cone of co(M) at v is

Sv(co(M)) = span{ϕ, ϕθi} ⊕ {λεϕx | λ ≥ 0}

where ε = ε(x) = 1 if ψx is inward to Γ, ε = −1 if ψx is outward to Γ.
The orthogonal projection operator onto the cone Sv(co(M)) is w 7→ Pv(w), where

Pv(w) =ϕϕ
⊤w + ϕθG

−1(θ)ϕ−1
θ w +

ϕx
∥ϕx∥2

max{0, εϕ⊤
xw}

=(Ik−1 ⊗ ψψ⊤)w +
ϕx

∥ϕx∥2
max{0, εϕ⊤

xw}.

Hence,

P⊥
v (w) = w − Pv(w) = w − (Ik ⊗ ψψ⊤)w − h⊗ ψx

g
max{0, ε(h⊗ ψx)w}.

Substituting u = ϕ(x̃, θ̃) = h̃⊗ ψ̃,

P⊥
v (u− v) = h̃⊗ ψ̃ − sh̃⊗ ψ − max{0, εαr}

g
h⊗ ψx,

∥P⊥
v (u− v)∥2 =1 + s2 +

max{0, εαr}2

g
− 2s2 − 2αr

max{0, εαr}
g

=1− s2 − max{0, εαr}2

g
= 1− s2 −max{0, εαt}2,

and we have

(1− u⊤v)2

∥P⊥
v (u− v)∥2

=
(1− αs)2

1− s2 −max{0, εαt}2
.

For the same reason as in case (i), the infimum is taken over the set x ̸= x̃ and
α ∈ [−1, 1].
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A.3 Proof of Theorem 4.2.5

We use the same notations as in the proofs of Theorems 4.2.2 and 4.2.4. The local
critical radius θc,loc defined by (3.3.6) is rewritten as

tan2 θc,loc = lim inf
|x−x̃|→0, α→1

(1− αs)2

1− s2 − α2t2
.

Let x̃ = x + ∆ and α = 1 − δ, and consider ∆ → 0 and δ → 0. Write ψx = ∂ψ/∂x,
ψxx = ∂2ψ/∂x2, etc., and g = ψ⊤

x ψx, γ = ψ⊤
xxψx, and η = ψ⊤

xxψxx as before. Noting
that

0 = d(ψ⊤ψ)/dx = 2ψ⊤
x ψ,

0 = d2(ψ⊤ψ)/dx2 = 2ψ⊤
xxψ + 2ψ⊤

x ψx,

0 = d3(ψ⊤ψ)/dx3 = 2ψ⊤
xxxψ + 6ψ⊤

xxψx,

0 = d4(ψ⊤ψ)/dx4 = 2ψ⊤
xxxxψ + 8ψ⊤

xxxψx + 6ψ⊤
xxψxx,

we have
ψ⊤
xxψ = −g, ψ⊤

xxxψ = −3γ, ψ⊤
xxxxψ + 4ψ⊤

xxxψx = −3η.

Substituting these, we have

s = ψ(x)⊤ψ(x̃) =ψ⊤
(
ψ + ψx∆+

1

2
ψxx∆

2 +
1

6
ψxxx∆

3 +
1

24
ψxxxx∆

4

)
+ o(∆4)

=1− 1

2
g∆2 − 1

2
γ∆3 +

1

24
ψ⊤
xxxxψ∆

4 + o(∆4),

r = ψx(x)
⊤ψ(x̃) =ψ⊤

x

(
ψ + ψx∆+

1

2
ψxx∆

2 +
1

6
ψxxx∆

3

)
+ o(∆3)

=g∆+
1

2
γ∆2 +

1

6
ψ⊤
xxxψx∆

3 + o(∆3),

t2 =
r2

g
=g∆2 + γ∆3 +

1

4g
γ2∆4 +

1

3
ψ⊤
xxxψx∆

4 + o(∆4),
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and

1− s2 − t2 =(1− s)(2− (1− s))− t2 = 2(1− s)− (1− s)2 − t2

=2

(
1

2
g∆2 +

1

2
γ∆3 − 1

24
ψ⊤
xxxxψ∆

4

)
−
(
1

2
g∆2

)2

−
(
g∆2 + γ∆3 +

1

4g
γ2∆4 +

1

3
ψ⊤
xxxψx∆

4

)
+ o(∆4)

=
1

4

(
η − g2 − γ2

g

)
∆4 + o(∆4) =

1

4
κg2∆4 + o(∆4),

where

κ = κ(x) =
η

g2
− γ2

g3
− 1.

Note that κ is nonnegative because

0 ≤ det

 ψ⊤

ψ⊤
x

ψxx . . .

(ψ ψx ψxx
)
= det

 1 0 −g
0 g γ
−g γ η

 = κg3.

For the order of δ, we consider two cases: (i) δ/∆2 ∼ gc (0 ≤ c < ∞) and (ii)
∆2/δ ∼ 0.

For case (i), noting that α = 1− δ, 1− s ∼ 1
2
g∆2, t2 ∼ g∆2,

(1− αs)2 = (1− s+ δ − δ(1− s))2 ∼ (1− s+ δ)2 ∼
(
1

2
g∆2 + gc∆2

)2

=
1

4
g2(1 + 2c)2∆2,

1− s2 − α2t2 = 1− s2 − t2 + 2δt2 − δ2t2 ∼ 1

4
g2(κ+ 8c)∆4,

and hence

(1− αs)2

1− s2 − α2t2
∼ (1 + 2c)2

κ+ 8c
. (A.3.1)

We consider the minimum value of (A.3.1) for c ≥ 0. For c > −κ/8, (A.3.1) has a
unique minimum value 1− κ/4 at c = (2− κ)/4. Therefore,

min
c≥0

(1 + 2c)2

κ+ 8c
=

1− κ

4
(κ ≤ 2),

1

κ
(κ ≥ 2).
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For case (ii),
(1− αs)2 = (1− s+ δ − δ(1− s))2 ∼ δ2,

1− s2 − α2t2 = 1− s2 − t2 + 2δt2 − δ2t2 ∼ 2g∆2δ,

and
(1− αs)2

1− s2 − α2t2
∼ δ

2g∆2
→ ∞.

In summary, we have

tan2 θc,loc = min

{
inf

x:κ(x)≤2

(
1− κ(x)

4

)
, inf
x:κ(x)≥2

1

κ(x)

}
.

A.4 Coverage probability under model misspecifi-

cation

First, note that the best parameter under the model β⊤
i f(x) is given by β∗

i = ΣX⊤gi,
where

X =

f(x1)
⊤

...
f(xn)

⊤

 , Σ = (X⊤X)−1 =

(
n∑
i=1

f(xi)f(xi)
⊤

)−1

, gi =

gi(x1)...
gi(xn)

 .

Let

yi =

yi1...
yin

 , εi =

εi1...
εi1

 .

The least square estimator for β∗
i is β̂∗

i = ΣX⊤yi, which is distributed as Np(β
∗
i ,Σ).

Let b1−α be the threshold for 1−α bands when the assumed model is the true model.
The approximate value of b1−α can be obtained by the tube method.
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On the other hand, when the true model is gi(x), the coverage probability becomes

Pr

{∣∣∣∣ k∑
i=1

ci(β̂
∗
i )

⊤f(x)−
k∑
i=1

cigi(x)

∣∣∣∣ ≤ b1−α
√
f(x)⊤Σf(x) for all x ∈ X , c ∈ C

}

= Pr

{
max

x∈X , c∈C

∑k
i=1 ci(β̂

∗
i )

⊤f(x)−
∑k

i=1 cigi(x)√
f(x)⊤Σf(x)

≤ b1−α

}

= Pr

(
max

x∈X , c∈C

[∑k
i=1 ci(β̂

∗
i − β∗

i )
⊤f(x)√

f(x)⊤Σf(x)
+

∑k
i=1 ci{(β∗

i )
⊤f(x)− gi(x)}√

f(x)⊤Σf(x)

]
≤ b1−α

)
.

(A.4.1)

Noting that, for the two functions h1(y) and h2(y) on Y , if maxy∈Y(−hi(y)) =
maxy∈Y hi(y), then

max
y
h1(y) ≤ max

y
(h1(y) + h2(y)) + max

y
(−h2(y)) = max

y
(h1(y) + h2(y)) + max

y
h2(y),

hence,

max
y
h1(y)−max

y
h2(y) ≤ max

y
(h1(y) + h2(y)) ≤ max

y
h1(y) + max

y
h2(y).

Therefore, (A.4.1) is bounded below and above by 1−P (b1−α−δ) and 1−P (b1−α+δ),
respectively, where

δ = max
x∈X , c∈C

∑k
i=1 ci{(β∗

i )
⊤f(x)− gi(x)}√

f(x)⊤Σf(x)

= max
x∈X

√∑k
i=1[(β

∗
i )

⊤f(x)− gi(x)− 1
k

∑k
i=1{(β∗

i )
⊤f(x)− gi(x)}]2

f(x)⊤Σf(x)

as given in (4.4.2), and

P (b) = Pr

{
max

x∈X , c∈C

∑k
i=1 ci(β̂

∗
i − β∗

i )
⊤f(x)√

f(x)⊤Σf(x)
≥ b

}
.

An upper bound for the bias of coverage probability for a 1− α confidence band is

max
{
α− P (b1−α + δ), P (b1−α − δ)− α

}
,
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which is approximated by

∆ = max
{
α− P tube

(
btube,1−α + δ

)
, P tube

(
btube,1−α − δ

)
− α

}
in (4.4.3), where P tube(b) is the tube approximation formula for P (b) given in (4.2.4),
and btube,1−α is the solution of P tube(b) = α.

Note that (A.4.1) is

Pr

(
max
x∈X

∑k
i=1[(β̂

∗
i )

⊤f(x)− gi(x)− 1
k

∑k
i=1{(β̂∗

i )
⊤f(x)− gi(x)}]2

f(x)⊤Σf(x)
≤ b21−α

)
,

which is used for the simulation study.
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