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Abstract

The 21st century has witnessed the advent of the Big Data era. Given the important
data-related challenges, interest in analyzing and processing large datasets became
more prominent than ever.

Whenever performing a task on a large data set fails, it is very hard to assess with
certainty whether the failure is related to the difficulty of the task, to the choice of
the algorithm and its settings, or to the data itself. In fact, data can sometimes be
intrinsically hard.

The number of instances or the number of features alone do not fully describe
the degree of difficulty in the data. Therefore many metrics have been designed in
order to quantify data complexity. Many metrics such as entropy attempt to de-
scribe the data complexity from an information-theoretic point of view. Other met-
rics such as Intrinsic Dimensionality (ID) describe the geometric complexity. Intrin-
sic Dimensionality can be defined as the minimum number of attributes required
to describe the data without information loss, or as the space-filling capacity of the
data.

The accuracy and efficiency of many algorithms in the areas of Artificial Intel-
ligence, Data Mining, Machine Learning, Pattern Recognition and Similarity Search
depend on the quality of ID measures. Therefore, many algorithms for estimating
ID have been proposed.

The main focus in this thesis is the estimation of Intrinsic Dimensionality.
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Statement of Originality

In this statement, I list the contributions reported in this dissertation. Some of these
contributions were obtained as part of collaborations with my co-advisors and fellow
researchers. This statement aims at discerning my contributions from the work of
my collaborators for the purposes of evaluation of this dissertation. My collaborators
deserve all the credit for the guidance, the constructive comments, and the advice
they provided.

• In Chapter 2 I surveyed the state of the art of Intrinsic Dimensionality esti-
mation.

• In Chapter 3 I surveyed the elements of Extreme Value Theory which are nec-
essary to the understanding of this work, as well as the main methods for es-
timating the tail index of probability distributions.

• In Chapter 4 I summarized the main results on Local Intrinsic Dimensionality
obtained by Houle [Hou15] upon which parts of this work are based.

• Chapter 5 presents research work done in collaboration with Laurent Am-
saleg, Teddy Furon, Stéphane Girard, Michael E. Houle, Ken-ichi Kawara-
bayashi, and Michael Nett. An initial version of this work appeared in the
paper entitled “Estimating Local Intrinsic Dimensionality” [ACF+15] pre-
sented in the 21st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD 2015). A more complete version entitled “Extreme-Value-
Theoretic Estimation of Local Intrinsic Dimensionality” has been accepted for
publication in the Journal of Data Mining and Knowledge Discovery (DAMI).
Concretely, the MLE, MoM, and PWM estimators were obtained by Michael
Nett and myself under the guidance of Michael E. Houle, and verified by the
other coauthors. The work on RV estimators was carried out by Stéphane
Girard and myself. Specifically, I proved that both Hill’s and Karger & Ruhl’s
estimators are special cases within the RV family, and proved the main the-
oretical result on RV estimators in Lemma 1 which shows how to obtain an
estimator with minimum variance. The experiments on artificial distance dis-
tributions, on artificial manifolds, and the entire framework involving approxi-
mate nearest neighbor distances were done by myself, while Laurent Amsaleg,
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Teddy Furon, Michael Nett, and I worked together on experimentation with
real world data sets. I took the lead in writing the research papers that sum-
marize the outcomes of this research. These papers were polished by Michael
E. Houle, and had inputs and comments from all coauthors.

• Chapter 6 presents research I carried out under the co-supervision of Michael
E. Houle and Ken-ichi Kawarabayashi. The theoretical result on the cumu-
lated volume of internally tangent balls was obtained by Michael E. Houle and
myself. The rest of the results as well as the experimental study are my own
work.

• Chapter 7 is unpublished research I performed under the co-supervision of
Michael E. Houle and Ken-ichi Kawarabayashi.

Every contribution that is not listed above is my own work.

— Oussama Chelly, December 2016
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Chapter 1
Introduction

The 21st century has witnessed the advent of the Big Data era. Given the important
data-related challenges, interest in analyzing and processing large datasets became
more prominent than ever.

Whenever performing a task on a large data set fails, it is very hard to assess with
certainty whether the failure is related to the difficulty of the task, to the choice of
the algorithm and its settings, or to the data itself. In fact, data can sometimes be
intrinsically hard. The number of instances or the number of features alone do not
fully describe the degree of difficulty in the data.

Both the efficiency and efficacy of fundamental operations in areas such as search
and retrieval, data mining, and machine learning commonly depend on the inter-
play between measures of data similarity and the choice of features by which objects
are represented. In settings where the number of features (the so-called representa-
tional dimension) is high, similarity values tend to concentrate strongly about their
respective means, a phenomenon widely referred to as ‘the curse of dimensionality’.
Consequently, as the dimensionality increases, the discriminative ability of similar-
ity measures diminishes to a point where methods that depend on them lose their
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Chapter 1. Introduction

effectiveness [WSB98,BGRS99,Pes00].
Many metrics such as entropy attempt to describe the data complexity from an

information-theoretic point of view. Other metrics such as Intrinsic Dimensionality
(ID) describe the geometric complexity. Intrinsic Dimensionality can be defined as
the minimum number of attributes required to describe the data without informa-
tion loss, or as the space-filling capacity of the data.

The representational dimension alone cannot explain the curse of dimensional-
ity. This can be seen from the fact that the number of degrees of freedom within
a subspace or manifold is independent of the dimension of the space in which it is
embedded. This number is often described as the ‘intrinsic dimensionality’ of the
manifold or subspace.

In an attempt to improve the discriminability of similarity measures, and the
scalability of methods that depend on them, much attention has been given in the
areas of machine learning, databases, and data mining to the development of dimen-
sional reduction techniques. Linear techniques for dimensionality reduction include
Principal Component Analysis (PCA) and its variants [Jol86, BCG11,GR70]. Non-
linear dimensionality reduction methods (also known as manifold learning meth-
ods) include Isometric Mapping [TDSL00], Multi-Dimensional Scaling [TDSL00,
VK06], Locally Linear Embedding and its variants [RS00], Hessian Eigenmapping
Spectral Embedding [DG03], Local Tangent Space Alignment [ZZ04], and Non-
Linear Component Analysis [SSM98]. Most dimensional reduction techniques re-
quire that a target dimension be provided by the user, although some attempt to
determine an appropriate dimension automatically. Ideally, the supplied dimension
should depend on the intrinsic dimensionality (ID) of the data. This has served as
a prime motivation for the development of models of ID, as well as accurate estima-
tors.

Over the past few decades, many practical models of the intrinsic dimensionality
of datasets have been proposed. Examples include the previously mentioned Princi-
pal Component Analysis and its variants [Jol86, BCG11], as well as several mani-
fold learning techniques [SSM98, RS00, VK06, KJ94]. Topological approaches to
ID estimate the basis dimension of the tangent space of the data manifold from local
samples [FO71,BS98,PBJD79,VD95]. Fractal measures such as the Correlation Di-
mension (CD) estimate ID from the space-filling capacity of the data [FK94,CV02,
GKL03]. Graph-based methods use the k-nearest neighbor graph along with density
in order to measure ID [CHI04]. Parametric modeling and estimation of distribu-
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tion often allow for estimators of intrinsic dimension to be derived [LL02,LB04].
The aforementioned ID measures can be described as ‘global’, in that they con-

sider the dimensionality of a given set as a whole, without any individual object be-
ing given a special role. In contrast, ‘local’ intrinsic dimensionality models can pro-
vide different ID measurements depending on the location within the same dataset.
These local approaches can be very useful when the data underlying model con-
sists of several manifolds of heterogeneous dimensionality. Several local intrinsic di-
mensionality models have been proposed recently, such as the expansion dimension
(ED) [KR02], the generalized expansion dimension (GED) [HKN12], the mini-
mum neighbor distance (MiND) [RLC+12], and local continuous intrinsic dimen-
sion (LID) [Hou13]. These models quantify ID in terms of the rate at which the
number of encountered objects grows as the considered range of distances expands
from a reference location.

In general, machine learning techniques that rely too strongly on local informa-
tion can be accused of overfitting the data. This has motivated the development
of global techniques for manifold learning such as Local Tangent Space Alignment,
which first identifies manifolds restricted to neighborhoods of selected points, and
then optimizes the alignment of these local structures in order to produce a more
complex description of the data [ZZ04]. The alignment process often involves an
explicit penalty for overfitting. In general, local learning can compensate for overfit-
ting by accounting for it in the final optimization process for the alignment of the
local manifolds.

In addition to applications in manifold learning, measures of local ID have been
used in the context of similarity search, where they are used to assess the complexity
of a search query [KR02], or to control the early termination of search [HMNO12,
HMOS14]. They have also found applications in outlier detection, in the analy-
sis of a projection-based heuristic [dVCH12], and in the estimation of local den-
sity [vBHZ15]. The efficiency and effectiveness of the algorithmic applications of lo-
cal intrinsic dimensional estimation (such as [HMNO12,HMOS14]) depends heav-
ily on the quality of of the estimators employed.

In contexts where the end application uses local ID measurements only with-
out any need for locally modeling data in terms of manifolds [KR02, HMNO12,
HMOS14, dVCH12, vBHZ15], distance-based ID models are often very useful. In-
deed, these local ID models such as the ED [KR02] and the LID [Hou13] rely on
the distances to the nearest neighbors in order to assess dimensionality. This type
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Chapter 1. Introduction

of local estimators is well-suited for many of the applications in question since the
nearest neighbor distances are precomputed and available for the estimators.

When data points are viewed as a sample drawn from an underlying continuous
distribution, distances from a fixed query location to the data points can be seen
as realizations of a continuous positive random distance variable. In this case, the
smallest distances (i.e. distances to the nearest neighbors) encountered would be
‘extreme events’ associated with the lower tail of the distance distribution.

In Extreme Value Theory (EVT), a discipline of statistics concerned with the
study of tails of continuous probability distributions, the random variable associated
with nearest neighbor distances can be assumed to follow a power-law distribution,
where the exponent can be viewed as a form of dimension [CBTD01]. Specifically,
continuous lower-bounded random variables are known to asymptotically converge
to the Weibull distribution as the sample size grows, regardless of the original dis-
tance measure and its distribution. In an equivalent formulation of EVT due to
Karamata, the cumulative distribution function of a tail distribution can be repre-
sented in terms of a regularly-varying (RV) function whose dominant factor is a
polynomial in the distance [CBTD01,Hou15]; the degree (or ’index’) of this poly-
nomial factor determines the shape parameter of the associated Weibull distribution,
or equivalently the exponent of the associated power law. The index has been in-
terpreted as a form of intrinsic dimension [CBTD01]. Maximum likelihood esti-
mation of the index leads to the well-known Hill estimator for power-law distribu-
tions [H+75].

While EVT provides an asymptotic description of tail distributions, in the case
of continuous distance distributions, the distribution can be exactly characterized in
terms of LID [Hou15]. The LID model introduces a function that assesses the dis-
criminative power of the distribution at any given distance value [Hou13,Hou15]. A
distance measure is described as ‘discriminative’ when an expansion in the distance
results in a relatively small increase in the number of observations. This function is
shown to fully characterize the cumulative distribution function without the explicit
involvement of the probability density [Hou15]. The limit of this function yields the
skewness of the Weibull distribution (or equivalently, the Karamata representation
index, or power law exponent) associated with the lower tail.

Within the LID model, intrinsic dimensionality can be interpreted interms of the
indiscriminability of the distance measure. In fact, when the cumulative distribu-
tion function is differentiable, intrinsic dimensionality is the inverse of an expansion-
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based measure of indiscriminability. Hence, in addition to the more traditional ap-
plications stated earlier, LID has the potential for wide application in many machine
learning and data mining contexts, as it makes no assumptions on the nature of the
data distribution other than continuity. Moreover, the interpretation of LID in terms
of the the indiscriminability of the distance measure naturally lends itself to the de-
sign of outlier detection techniques [vBHZ15], and in the understanding of density-
related phenomena such as the hubness of data [RNI10a,RNI10b,Hou15].

The main focus of this thesis is the estimation of Local Intrinsic Dimensional-
ity. The central chapters of the dissertation propose an elaborate way of estimat-
ing LID. The proposed estimators have better theoretical foundations than state-of-
the-art distance-based estimators since they make weaker assumptions. Precisely, the
proposed estimators assume a continuous distance with a differentiable cumulative
distribution function unlike their counterparts where assumptions on the nature of
the underlying manifolds are necessary [LB04, RLC+12]. In practice, the theoreti-
cal foundations of LID allow the use of any distance sample not necessarily radial
(i.e. from a reference point) provided that the associated distance variable is well
defined and follows the previously mentioned assumptions. In addition, our best es-
timators are more practical in terms of computational time complexity than many
of the state-of-the-art estimators and have the advantage of converging faster than
other distance-based estimators.

Part I of this thesis contains the introductory material. The next Chapter is ded-
icated to surveying the state of the art of ID estimation. We first describe the at-
tributes desired from an ID estimator, Then we survey both global and local ID
estimation methods. In Chapter 3 we introduce the notions of Extreme Value The-
ory that are related to this work. We then summarize the different approaches used
in EVT to model the tails of probability distributions, and we survey some of the
estimators of the index of EVT distributions. In the last introductory chapter, we
introduce Local Intrinsic Dimensionality (LID), a recent model of ID upon which
our estimators are built.

Part II is the core of this thesis. Chapters 5 and 6 establish connections between
the estimation of tail indices in EVT on the one hand, and the estimation of LID
in the theory of machine learning and data mining on the other hand. In Chap-
ter 5, we use statistical methods to estimate LID. The main theoretical contribu-
tions made in this chapter include a framework for the estimation of LID based on
commonly-used statistical estimation techniques such as Maximum Likelihood Esti-
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Chapter 1. Introduction

mation, the Method of Moments, and the method of Probability-weighted moments;
a new family of estimators based on the Regularly-Varying functions model of EVT
where several existing models are shown to be special cases; as well as confidence
intervals for the proposed estimators. The main experimental contributions include
an empirical study using both artificial and real data to show the advantages and the
limitations of our methods when compared with the state of the art global and local
estimators; experiments on artificial distance distributions confirming the theoretical
convergence of our estimators; experiments validating the advantage of using local
ID estimators over their global counterparts in the case of non-linear manifolds; pro-
files of well-known real-world datasets in terms of LID highlighting the variability of
data complexity from region to region within one same dataset; and an experimental
study showing the robustness of our estimators when approximate nearest-neighbor
distances are used instead of exact distances.

In Chapter 5, the proposed estimators use direct distances from a reference point
to its neighbors. In order to enhance the distance sample size, it is possible to use
‘auxiliary’ distances which are the distances between pairs of neighbors without in-
creasing the neighborhood size. In Chapter 6, we develop a new family of ID esti-
mators that improve the convergence of our previously proposed estimators by using
these auxiliary distances. Using all pairwise distances within a neighborhood leads to
biased estimators. Our main contribution in this chapter is choice of distances that
do not introduce bias, which are those between a neighbor and its neighbors con-
tained in a ball internally tangent to the original locality. Other contributions made
in this Chapter include a new local ID estimator that uses auxiliary distances, a theo-
retical analysis on the expected number of distance samples available to the estima-
tor; an experimental comparison of our estimators with state-of-the-art estimators
that extends the experiments of Chapter 5, and which shows the convergence and
bias of our estimators on both synthetic and real data.

Part III of this thesis provides an example of how ID estimates can be used as
indiscriminability measurements in feature selection. Unlike other feature selection
algorithms where ID is only used to estimate the number of features to be con-
served, we propose in Chapter 7 new feature selection algorithms where ID is used
to guide the selection process. Two algorithms are proposed, one being univariate
and the other being multivariate. They are a use case for LID as an indiscriminabil-
ity measure. The proposed algorithms perform better than the state of the art on
high-dimensional large data. Their failure on small data sets highlights the limits of
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the LID model. Indeed, when the available data sample is small, the number of near-
est neighbor distances used in the estimation of LID can no longer be small enough
(as compared with the size of the full data sample) to remain within the EVT as-
sumptions. This limitation applies to other local ID estimators but the LID model
has the advantage of providing theoretical explanations. In addition to the univariate
and the multivariate feature selection algorithms that we propose, the contributions
include a theoretical analysis based on the notion of submodularity for the multi-
variate algorithm and an experimental framework for feature selection setting ran-
dom as a baseline. Experiments show the advantage of using our methods in high-
dimensional settings, and the limitations of our methods on small datasets.

Part IV is the conclusion where we summarize the main research findings, and
where we propose some directions for future research in this area. We finally discuss
the implications of this research for machine learning and data mining.
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Chapter 2
Related Work

Intrinsic Dimensionality (ID) is not a new topic in machine learning. However, it
gained a lot of attention over the past few years due to its theoretical and practical
implications on several machine learning and data mining algorithms.

Dimensionality does not have a unique definition. Different mathematical disci-
plines use different definitions of the notion of dimensionality. Various definitions
have been proposed such as the Hausdorff Dimension [Hau18] and the Information
Dimension [Rén59,Ish93]. We can intuitively define ID as the space-filling capacity
of data, or as the minimum number of attributes required to represent given data.
From a topological point of view, ID has to be an integer. However, from an infor-
mation theory point of view ID can be any real number.

It is possible to classify ID estimation approaches according to many criteria. In
this work, we adopt the locality criterion. Hence, an estimator is said to be ‘global’
when dimensionality is assumed to be constant across all data. By contrast, a model
is described as ‘local’ when it assumes that dimensionality can vary from one loca-
tion to another within the same data set.

In this chapter, we first define the attributes desired from an ‘ideal’ ID estima-
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tor. Then, we survey the state of the art for both local and global approached for
measuring intrinsic dimensionality.

2.1 Properties desired in an Intrinsic Dimensionality esti-
mator

Intrinsic Dimensionality estimation has a wide range of applications in machine learn-
ing and data mining. Camastra’s [CS16] extends builds on Pestov’s [Pes08] work
in an attempt to enumerate the attributes of an ‘ideal’ ID estimator. However with
each end application having its own limitations and requirements, it is difficult to de-
fine such universally ‘perfect’ ID estimator that can be used across all tasks. Among
the qualities that are usually desired from an ID estimator independently of the end
application, we cite the following properties:

1. consistency, i.e. convergence to the true ID being estimated as the data sam-
ple size increases,

2. accuracy independently of the true ID being estimated,

3. having a ‘reasonable’ computational complexity,

4. independence of the dimensionality of the representational space.

The first property is an essential attribute of any ID estimator. As the size of
the sample used in the estimation increases, the ID measurement provided by the
estimator must approach the true ID value of the data generation model. Having an
estimator where adding samples does not guarantee a better measurement is in an
absolute sense not a desirable effect. The second property means that the true ID
of data should not influence the estimation process. In practice, the true ID does
have an impact on the convergence and on the bias of the estimation. Many if not
most estimators tend to underestimate high values of ID. Moreover, the convergence
tends to be slower for these values. The third attribute often depends on the end ap-
plication. Ideally, the computation of ID should not slow down the algorithm where
ID estimates are being used. In practice, there are cases where a higher computa-
tional cost is traded for better learning results. Some estimators do not satisfy the
fourth and final property since the dimensionality of the space is sometimes directly
or inherently an input of the estimator.

12



2.1. Properties desired in an Intrinsic Dimensionality estimator

It is hard to conceive an ID estimator that satisfies all of these requirements si-
multaneously. In fact, these properties often conflict one another. As the true ID
increases, many estimators tend to underestimate dimensionality thereby violating
the consistency property. Moreover, the huge sample size required for convergence
especially for high ID values may sometimes render the estimator computationally
impractical. Additionally, the dependence on the dimensionality of the representa-
tional space sometimes introduces a bias that cannot be resolved by increasing the
sample size. In some contexts obtaining a solution which is at the same time optimal
and computationally scalable is unrealistic. A concrete example is that of ID mod-
els where the estimation requires the solution of an NP-hard problem [FQZ09]. On
the one hand, attempting to find an optimal solution to the problem leads to a com-
binatorial explosion. On the other hand, using heuristics to approximate a solution
for the NP-hard step only comes at the cost of optimality. Finally, a higher rep-
resentational dimension leads to a higher complexity as accessing information from
the sample would require more computation.

Besides the conflicts between the mentioned attributes, different applications of
ID estimation may have different requirements. In fact, an estimator that is well-
suited for a particular task may well be unsuited for a another task. For example,
while many feature engineering algorithms require a single ID measurement that de-
scribes the entire data set, subspace clustering algorithms require different local es-
timates of ID for various data subsets.

The task dependency of the qualities desired from an ID estimator can be high-
lighted by the estimators’ sensitivity to data scale and to noise. In fact, the sensitivity
of ID estimators to data scale is required in subspace clustering, while independence
of data scale is often a desired attribute when ID estimates are used in feature en-
gineering. The sensitivity to noise is also related to data scale. Indeed it can be
claimed that noise has its own underlying ID, and thereby it can be argued that the
presence of noise modifies the dimensional properties of data, in particular at a high
scale. Thereupon, it is nearly impossible to engineer an ID estimator that can be
used across all learning tasks.

The relative importance of the mentioned attributes depends on the task where
ID estimation is needed. In many point-wise algorithms for classification and for
outlier detection methods [vBHZ15], the ID contrast between different data sub-
set or point locations is far more important than the actual ID values. In this con-
text, accuracy is not as necessary as scalability in these algorithms. Hence, priority
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is given to reducing the computational complexity and reducing the variance in ID
estimation at the cost of accuracy.

An ‘ideal’ ID estimator is unrealistic. In fact, as of the time of writing this work
no known estimator satisfies all mentioned requirements. Various approaches have
been proposed and satisfy some of the aforementioned requirements to various de-
grees.

2.2 Global models of Intrinsic Dimensionality

Global ID estimation algorithms are those that assume data to have a uniform di-
mensionality across all data points. Consequently, global estimators provide a single
dimensionality measurement on a given data set.

Historically, global estimators appeared before local estimators since data sets
were relatively small and the need to describe data fragments locally was limited.
When data originates from multiple hidden models with heterogeneous dimension-
alities most global estimators tend to detect the highest ID amongst the dimension-
alities of the data fragments.

Based on the assumptions they require global estimators of intrinsic dimension-
ality can be separated into five groups: topological methods, multidimensional scal-
ing, fractal models, geodesic models, and statistical models.

2.2.1 Topological Models

Topological methods, also known as projection methods, assume data to be dis-
tributed on a single manifold. They measure intrinsic dimensionality as the dimen-
sion of the hyperplane where data can be projected while preserving variance. Due
to noise, the projection is usually done at the cost of a given error threshold θ.

2.2.1.1 Principal Component Analysis

Principal Component Analysis (PCA) [Pea01, Jol86] is an orthogonal linear trans-
formation where data is projected into a new vector base. In the new coordinate
system, the vectors of the base are ordered in decreasing order of the data variance
on each vector’s orientation. The vectors in this new base are called principal com-
ponents.

PCA algorithm can be summarized as follows:
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Algorithm 1 PCA given a dataset X and a threshold θ

1. Compute the covariance matrix of X .

2. Permutate the eigenvectors of the covariance matrix such that the corre-
sponding eigenvalues (λi)i∈[1,D] are in decreasing order, i.e. λi > λj ∀i <
j.

3. Return the eigenvectors i such that λi/λ1 < θ ∀i < J .

Given a projection error threshold θ, the first J components such that the corre-
sponding normalized variance λi/λ1 < θ ∀i < J are called ‘principal components’.
While PCA is not an ID estimator per se, the number of principal components is
viewed as an ID estimate since this number indicates the dimension of the hyper-
plane required to host the data at the cost of a projection error θ.

PCA has several drawbacks:

• PCA is extremely sensitive to noise. In fact, a single outlier to the point set
can change the orientation of the principal components leading to a reassess-
ment of the eigenvalues. The presence of noise and outliers often makes PCA
overestimate the ID.

• By assuming data to be laying on a hyperplane PCA overestimates the dimen-
sionality of non-linear manifolds. Consider a cloud of points forming a circle
in a 2-dimensional space. ID as estimated by PCA will always take a value of
2, even though it can be claimed that a circle is a one-dimensional geometric
setting.

• The choice of the threshold θ has an immediate impact on the ID estimate.
Since the choice of the threshold is heuristic, PCA as an estimator of ID is
not trustworthy.

• A large data sample is required for obtaining the principal components [Ale76,
BK81,GV88,CL92]. More specifically, the sample size required by PCA is ex-
ponential on the dimensionality [BY95,HATW98,OC09,MS10].

• PCA is subject to overfitting, particularly when the sample size across the prin-
cipal components is very small [BY95, HATW98, OC09], or very heteroge-
neous [MWZH99].
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2.2.1.2 Nonlinear Principal Component Analysis

PCA assumes the underlying manifold that contains data to be a linear hyperplane.
As a result, PCA has tends to overestimate the ID of non-linear manifolds. A 5-layer
Auto-associative Neural Networks (ANN) can be used to avoid PCA’s assumption
on the linearity of manifolds [KJ94]. The ANN model has a bottleneck structure
with 5 layers that are called: input, mapping, bottleneck, demapping, and output.
The first and fifth layers have the same number of neurons, so do the second and
fourth. The ID estimate in this method is the number of neurons in the bottleneck
layer.

Even though the ANN-based approach is better than the original PCA on non-
linear manifolds, ANN projections are sometimes sub-optimal [Mal98] and there-
fore they can lead to inaccurate ID estimates.

2.2.1.3 Bayesian Principal Component Analysis

PCA and its nonlinear variants are deterministic models approaches. They do not
associate data with a probabilistic model. Moreover, they lack a method for selecting
the number of PCs to be retained. The Probabilistic Principal Component Analy-
sis [TB99] views observed data as the realization of a latent multidimensional vari-
able. Assuming a d-dimensional latent variable U , the prior is distributed as a zero-
mean normal distribution with the d-dimensional identity matrix Id as a covariance
matrix. Observed data is a D-dimensional matrix X that relates to the latent model
through the equation

T = W · U + µ+ ϵ,

where W is a projection matrix, µ is a D-dimensional vector. Noise in the D-
dimensional representational space is modeled by ϵ which is a zero-mean normal
distribution with variance σ2ID , with σ being a constant.

Bayesian Principal Component Analysis (BPCA) [TB99] is a Maximum Likeli-
hood Estimation of d. Despite its theoretical foundations, BPCA has strong assump-
tions on the nature of noise leading it to fail in situations with uniformly distributed
noise.
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2.2.2 Multidimensional Scaling

While topological models attempt to find a variance-preserving projection, Multidi-
mensional Scaling (MDS) [CC00] models attempt to find a distance-preserving pro-
jection. The distortion of the distance measures after the projection is called ‘stress’
of the projection. The projection with the lowest stress is evaluated for each choice
of the dimensionality of the target space. There obviously is no stress when the in-
put space and the output space have the same dimensionality. Then as the dimen-
sion of the target space decreases, the stress increases. ID is estimated as the lowest
dimensionality for which the gain in terms of stress reduction becomes negligible.
In practice, the minimum stress is plotted as a function of the dimensionality, and
the estimated ID is the point where the curve starts to flatten.

2.2.2.1 Sammon’s Mapping

Sammon’s Mapping [Sam69] is a multidimensional scaling method where the stress
ϵ is defined as:

ϵSammon =

[ ∑
xi,xj∈X

δ(xi, xj)

]−1 ∑
xi,xj∈X

[δ(xi, xj)− δ(h(xi), h(xj))]
2

δ(xi, xj)
,

where h is the projection and δ(xi, xj) is the distance between xi and xj . In order
to minimize the stress, Sammon’s Mapping uses the gradient-descent algorithm.

2.2.2.2 MDSCAL

MDSCAL [Kru64,RSN72a,RSN72b] was the first method to introduce multidimen-
sional scaling. The stress in this method proposed by Kruskal is similar to Sammon’s
Mapping, except for using ranks of distances instead of the distances themselves.
The stress ϵ can be expressed as:

ϵKruskal =

[∑
xi,xj∈X [rank(δ(xi, xj))− rank(δ(h(xi), h(xj)))]2∑

xi,xj∈X rank(δ(xi, xj))2

] 1
2

,

where h is the projection, δ(xi, xj) is the distance between xi and xj , and the rank
of the distance amongst all distances between pairs of original points is indicated by
rank(δ(xi, xj)).
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Sammon’s Mapping being both simpler and more accurate than MDSCAL, the
latter is no longer of interest for ID estimation.

2.2.2.3 Bennett’s algorithm

In 1969, Bennett [Ben69] proposed the first algorithm designed specifically for mea-
suring ID. The algorithm assumes data to be uniformly distributed in a d-dimensional
space Under such assumptions, the variance of distances within such sphere is in-
versely proportional to the dimension d.

The algorithm operates iteratively. Every iteration the algorithm iteration two
steps. In the first step, points are relocated in the representational space so as to
maximize the variance of pairwise distances. In the second step, the position of the
points is adjusted in a way that allows the ranking of every pairwise distant to re-
main unchanged within its locality. These two steps are repeated until the variance
of pairwise distances converges. Then as in PCA, the covariance matrix is computed
and the number of ‘important’ eigenvalues is the dimensionality estimation. Ben-
nett’s algorithm combines the defects of both PCA and multiscaling method, such
as the need for a threshold to decide the number of prominent eigenvalues. There-
fore, it only has historical value [CS16].

2.2.2.4 Chen & Andrews’ algorithm

Chen & Andrews [CA74] proposed an improvement to the second step of the orig-
inal algorithm’s iteration. Indeed, they propose a new function for evaluating the
quality of local rankings of distances between pairs of points The improvement is
minor and does not overcome the limitations encountered in the original algorithm.

2.2.2.5 Curvilinear Component Analysis

Curvilinear Component Analysis (CCA) [DH97] uses a self-organizing neural net-
works. Self-organizing maps (SOM) [Koh95] are first used for vector quantization.
Then vectors are projected non-linearly into a space of a lower dimension. The di-
mension of the new space is CCA’s estimation of the ID.

2.2.3 Fractal Models

Unlike topological models where dimensionality is restricted to being an integer,
fractal models estimate ID as a real number. While a non-integer dimensionality
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Figure 2.1: Koch Snowflake

may seem incorrect from a topological point of view, the notion of fractal dimen-
sionality is well-founded in fractal geometry since it was first introduced by Man-
delbrot [Man67]. Examples of point sets with a fractal dimension include Cantor
set [SSS78] with a dimensionality of log3(2) [Mar87], Koch curve also known as
Koch Snowflake (c.f. Figure 2.1) with a dimensionality of log3(4) [Mar87], and
Ikeda map [Ike79] (c.f. Figure 2.2) with a dimensionality of 1.7.

Fractal dimensionality measures the space-filling capacity of a point set. Mea-
suring this capacity requires huge point samples. In fact, is the set has an intrinsic
dimensionality of d no less than 10d/2 samples are required to obtain an accurate
estimation [ER92, Smi88]. This is the major drawback of fractal models.

The Koch curve for example cannot be projected on a one-dimensional line with-
out loss of information. Nonetheless, Koch curve cannot populate uniformly a two-
dimensional space. Hence, the ID of Koch snowflake is between 1 and 2. It was
theoretically proved that the Koch Snowflake has an ID equal to log3(4), which is
often correctly estimated by fractal dimensionality estimators. However, for sets with
a higher dimensionality the estimation has an important negative bias.

2.2.3.1 Hausdorff Dimension

Fractal models are heuristics used to estimate the Hausdorff Dimension [Hau18],
or more precisely its upper bound the Box-Counting Dimension [Ott02]. In order
to define the Hausdorff Dimension we need to introduce the quantity

Γd(r) = inf
si

∑
i

rmi , (2.1)

where the set of balls si of diameter ri < r cover the data set.
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Figure 2.2: Ikeda map attractor

Definition 1 Hausdorff Dimension The d-dimensional Hausdorff measure is de-
fined as:

Γd = lim
r→0

Γd(r). (2.2)

The Hausdorff Dimension is the critical value d∗ such that Γd = +∞ if d > d∗,
and Γd = 0 if d < d∗.

Since the Hausdorff Dimension is hard to estimate, fractal models attempt to
estimate an upper bound called the Box-Counting Dimension, also known as the
Kolmogorov Capacity.

Definition 2 Box-Counting Dimension Let ν(r) be the number of hypercubes of
size r required to cover the point set X . The Box-Counting Dimension is

IDBC = − lim
r→0

ln ν(r)
ln r

whenever the limit exists.

This definition is motivated by the observation that ν(r) is proportional to (1/r)IDHD ,
where IDHD is the Hausdorff Dimension of the set X .
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2.2.3.2 Kégl’s algorithm

Kégl’s Algorithm [Kég02] is an approximation of the Box-Counting Dimension. The
algorithm is based on the equivalence between the box cardinality ν(r) and the car-
dinality of the maximum independent vertex set of the graph Gr, where Gr is the
graph with vertex set X and where the edges are pairs of points such that the pair-
wise distance is smaller than r.

A greedy heuristic can be used to estimate the maximum independent vertex set
of Gr (and therefore the value of ν(r)). Starting from an empty set S, we iterate
over X adding to S points that are at distance at least r from all points already in S.
The cardinality of S at the end of the iteration is an approximation of the cardinality
of the maximum independent vertex set of Gr, and therefore an approximation of
ν(r).

Hence, for a choice of a pair of distances r1 and r2 Kégl’s estimator of ID is:

ÎDKégl = − ln ν̂(r2)− ln ν̂(r1)
ln(r2)− ln(r1)

,

where ν̂ denotes the aforementioned approximation of ν(r) by the maximum inde-
pendent vertex set of Gr .

The heuristic choice of the distance pair (r1, r2) is a drawback of Kégl’s method
since this choice has a huge impact on the final estimation. Furthermore, Kégl’s
algorithm is not robust.

2.2.3.3 Quantization-based estimation of intrinsic dimension

Raginsky & Lazebnik’s method [RL05] is an improvement to Kégl’s estimator where
vector quantizers are used instead of box counting in order to assess ID.

It is claimed that Kégl’s approach leads to a negative bias due to overfitting,
a problem that vector quantizers supposedly address. Nonetheless, the method is
computationally expensive and hence is not applicable on large datasets.

2.2.3.4 Grassberger & Procaccia’s algorithm

Grassberger & Procaccia’s algorithm [GP04] estimates the Correlation Dimension
which is a lower bound of the Box-Counting Dimension, and which can be defined
as follows.
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Definition 3 Correlation Dimension

CD = lim
r→0

lnC(r)
ln r

,

where the correlation integral C(r) is defined as

C(r) = lim
n→∞

n∑
i=1

n∑
j=1

1δ(xi,xj)<r.

δ(xi, xj) denotes the Euclidean distance between xi and xj . 1 denotes the indi-
cator function such that 1d(xi,xj)<r = 1 if d(xi, xj) < r and 0 otherwise.

In Grassberger & Procaccia’s algorithm, C(r) is plotted as a function of ln(r)
for different choices of distance r, then the Correlation Dimension is estimated as
the slope of the curve for lower values of r for which the curve is usually linear.

2.2.3.5 Fan & al’s algorithm

While the estimator originally proposed by Grassberger and Procaccia provides real-
valued estimates of the Correlation Dimension, Fan & al [FQZ09] propose to fit the
curve point cloud formed by the pairs (ln(r), C(r)) using a polynomial function.
The degree of the polynomial that best fits the point cloud (ln(r), C(r)) provides
an integer-valued estimation of the dimension.

2.2.3.6 Hein & Audibert’s algorithm

The algorithm proposed by Hein and Audibert [HA05] generalizes the Correlation
Dimension to any kernel. In other words, the algorithm is a generalization of In
Grassberger & Procaccia’s approach.

2.2.3.7 Takens’ algorithm

Takens’ method [Tak85] is the Maximum Likelihood Estimation of the Correlation
Dimension and can be obtained as:

ĈDTakens = − 1

|Q(r)|
∑
i∈Q(r)

i,
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where Q(r) = {δ(x, y)|x ∈ X, y ∈ X, δ(x, y) < r} is the set of pairwise dis-
tances in the set X which are lesser than a given value r, and |Q(r)| denotes the
cardinality of the set Q(r).

In Takens’ approach, the choice of r is set by heuristics [The90] which have
limited theoretical foundations. Moreover, the optimality of the method is not guar-
anteed unless the correlation integral is of the form C(r) = arCD(1 + br2 + o(r2))

with a, b ∈ R [The88].

2.2.3.8 Camastra & Vinciarelli’s algorithm

Fractal-based methods require an unrealistically huge number of samples to obtain
an accurate ID estimation [ER92, Smi88]. In real situations where such number of
points is unavailable, fractal-based methods tend to underestimate ID with a nega-
tive bias. Camastra & Vinciarelli’s Algorithm [CV02] is an attempt to correct the
negative bias in Grassberger & Procaccia’s algorithm. The method is —according
to its own authors— not theoretically well-founded, and thus can lead to wrong ID
estimates.

2.2.4 Other Global Models

2.2.4.1 Costa & Hero’s k-NNG

The method is based on properties of the k Nearest Neighbor Graph [CHI04].
Assuming data to be distributed on a d-dimensional manifold, the method starts
by first constructing the k Nearest Neighbor Graph, then computing the Minimum
Spanning Tree [Kru56, Pri57]. ID is then estimated from the Geodetic Minimum
Spanning Tree Length.

2.2.4.2 Riemannian Manifold Learning

The method [LZ08], as suggested by its name, assumes data to lie on a Rieman-
nian manifold. Then the manifold is reconstructed using simplices. The ID is then
estimated as that of the simplex with highest dimensionality. Simplicial reconstruc-
tion from data samples is an open problem, and although methods have been pro-
posed [Fre02] their reliability in ID estimation is questionable [CV02].
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2.2.4.3 IDEA

The Intrinsic Dimension Estimation Algorithm (IDEA) [RLR+11,RLC+12] is based
on the following consideration. Uniformly sampling a d-dimensional point x from
a uniformly dense d-dimensional hypersphere is equivalent to generating a point y
from the multidimensional Gaussian N (0, Id) then scaling its norm accordingly:

x =
u

1
d

∥y∥
· y,

where u is uniformly sampled from [0, 1[.
Noting that E[1− ∥x∥] = 1/(1 + d), the method estimates the expectation of

distances from each point j in the set X:

ρj =
k∑
i=1

xi
xk
,

with xi being the distance from the point j to its i-th nearest neighbor. IDEA es-
timates dimensionality from the different expectation of distances in the data set X
of size n and representational dimension D as:

ÎDIDEA =
1
nD

∑
j∈X ρj

1− 1
nD

∑
j∈X ρj

.

It must be noted that IDEA estimate of ID does depend on the representational
dimension D. This dependency is a major drawback of the method. Moreover, the
number of samples required for the convergence of IDEA is not known.

2.2.4.4 DANCo

DANCo is an algorithm that infers dimensionality from not only norm concentra-
tion but also angle concentration effects [CBR+14].

2.2.4.5 Wang & Marron’s algorithm

Wang & Marron’s algorithm [WM+08] is an algorithm that produces an ID func-
tion based on an input scaling parameter. The method being valid only on data of
small intrinsic dimensionality, the change in the scale input parameter does not dras-
tically affect the outcome. In practice, the method has little importance since other
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estimators are more robust and provide a single estimate when the true ID of the
data in hands is low.

2.3 Local models of Intrinsic Dimensionality

More often than not, data does not come from a single underlying model but from
multiple models. Consequently, a unique ID measurement does not fully describe
the complexity and the disparity across data. It is more adequate to have ID esti-
mates that are different from one locality to another within the same data space.

Under such view, an ID measurement provided by a global estimator does not
fully describe the dimensional properties of the data. Thereupon, it is necessary to
have an ID estimate for each group or cluster of points that are similar and are very
likely to be on the same local manifold. This motivates the use of ‘local ID estima-
tors’ that account for the disparity between local manifolds in terms of their respec-
tive intrinsic dimensionalities.

Local ID estimators use information contained in small groups of points in order
to provide an ID measurement for each group. Many local ID estimators use a clus-
tering method in order to separate the groups of points where ID is to measured.
Some local ID estimators operate in the neighborhood of a given reference point.
They are referred to as ‘pointwise’ estimators since they provide an estimation that
is specific to the reference point.

2.3.1 Topological models

Topological models for local ID estimation are similar to the topological approach
in global ID estimation. Indeed, they assume data to be locally embedded in a man-
ifold. Then, ID is estimated as the dimension of the manifold.

2.3.1.1 Fukunaga-Olsen’s algorithm

Fukunaga-Olsen’s algorithm [FO71] can be viewed as a local approach for the orig-
inal PCA algorithm [Jol86]. Assuming data to be locally embedded in a linear sub-
space, the ID would be equal to the number of nonzero eigenvalues of the covari-
ance matrix. In real-world data, it is nearly impossible to obtain eigenvalues equal to
zero in the covariance matrix. In practice, eigenvalues are normalized by the highest
eigenvalue and the normalized eigenvalues that are lesser than a threshold θ are as-
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sumed to be zero. Accordingly, ID is estimated as the number of normalized eigen-
values that are higher than the threshold θ given as a parameter of the algorithm.

Fukunaga-Olsen’s algorithm can be summarized as follows:

Algorithm 2 Fukunaga-Olsen’s algorithm given a dataset X and a threshold θ:

1. split the dataset X into different clusters using the K-means algorithm.

2. obtain a Voronoi tesselation [AK00, DFG99] of the space based on the
clustering.

3. for each Voronoi set, compute the eigenvalues of the covariance matrix.

4. for each covariance matrix, normalize the eigenvalues by the highest eigen-
value.

5. for each Voronoi set, ID is estimated as the number of normalized eigen-
values that are higher than a predefined threshold θ.

This approach has some limitations. First, not only is the choice of the threshold
θ heuristic and not universal to all data, but this choice should not be uniformly
used across the different localities of the same data. Second, relying on clustering
algorithms decreases the quality of the estimates [VD95]. Knowing that clustering
is an unsupervised task and that many clustering algorithms are not deterministic, it
is hard to obtain reliable ID estimates.

Various methods have been proposed based on Fukunaga-Olsen’s approach. In
these methods, data is fragmented into various subsets using alternatives to the K-
means clustering.

2.3.1.2 Bruske & Sommer’s algorithm

Bruske & Sommer’s algorithm [BS98] is a variation of Fukunaga-Olsen’s algorithm
where instead of clustering a Topology Representing Network (TRN) [MS94] is
used to obtain a Voronoi tesselation of the representational space.

2.3.1.3 Fan & al’s algorithm

The approach of Fan & al [FQZ09] is also similar Fukunaga-Olsen’s algorithm ex-
cept for the methods used to fragment the data set. Instead of the K-means clus-
tering used in Fukunaga-Olsen’s algorithm or the Topology Representing Network
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used in Bruske-Sommer’s algorithm, Fan & al opt for minimal cover sets approxima-
tion. Because of the NP-hardness of computing set covers, this algorithm has an im-
practical computational complexity especially when applied to voluminous data sets.

2.3.1.4 Multiscale SVD

Multiscale Singular Value Decomposition [LJM09,LMR16] estimates ID as the num-
ber of significant singular values. Even though the method accounts for data gran-
ularity (i.e. scale), it is strictly similar to PCA-based approaches, since the singular
values are the squares of the eigenvalues of the covariance matrix.

2.3.1.5 ID estimation from Expected Simplex Skewness

Johnson & al’s algorithm [JSF15] estimates ID from the skewness of simplices. The
vertices of each simplex consist of a subset of data points in addition to the data cen-
troid. The ‘skewness’ of each simplex is then estimated as the volume if the vertices
incident to the centroid were orthogonal. ID is derived from each simplex skewness
based on the phenomenon of concentration of measure [Pes00].

2.3.2 Local Multidimensional Scaling

Multidimensional Scaling (MDS) approaches attempt to find a subspace with the
lowest dimensionality such that distance between pairs of points in the data set are
preserved. Similarly local MDS methods operate on subsets of points that are lo-
cated

2.3.2.1 Isometric Feature Mapping

Isometric Feature Mapping (ISOMAP) [TDSL00] consists of finding a continuous
bijection (i.e. a homeomorphism) between a given location in the data representa-
tional space and a d-dimensional hyperplane. ISOMAP assumes that an isometric
homeomorphism h exists. We recall that an isometric transformation is a transfor-
mation that preserves geodesic distances between all pairs of points.

Since the local underlying manifold is not known, the ISOMAP algorithm com-
putes the neighborhood graph, and the shortest paths in the neighborhood graph.
Then ISOMAP uses an MDS algorithm [CC00], to approximate the best-fitting d-
dimensional manifold that conserves the neighborhood distances.
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2.3.2.2 Locally Linear Embedding

Locally Linear Embedding (LLE) [RS00] is a multidimensional scaling method that
avoids the preservation of pairwise distances between pairs of points that are very
distant from each other. LLE uses locally linear manifolds in order to reconstruct
the global nonlinear structure.

LLE has several applications, for example in text mining and image processing.
However since the global ID is an input of the LLE algorithm [CS16], it relies on
other estimation methods. Hence, this algorithm has limited interest in the context
of ID estimation

2.3.2.3 Laplacian Eigenmaps

Laplacian Eigenmaps [BN03] is similar to LLE in that it requires the global ID as an
input of the algorithm [CS16]. In the context of ID estimation, the method cannot
provide an ID estimate without an input provided by the practitioner or obtained
through a different estimator.

2.3.3 Expansion Dimension

The dimensionality m in an Euclidean vector space can be determined using the
ratios of two volume and two distance measurements. Consider the balls B(x1, r1)

and B(x2, r2) centered respectively at x1 and x2 of radii 0 < r1 < r2. Let λ be
a (Lebesgue) volume measure. The ratio of volumes leads to a simple closed-form
expression for the dimensionality m of Euclidean spaces:

λ(B(x2, r2))

λ(B(x1, r1))
=

(
r2
r1

)m

=⇒ m =
lnλ(B(x2, r2))− lnλ(B(x1, r1))

ln r2 − ln r1
.

An oracle that accepts two concentric balls as a query, and returns the dimen-
sion of the space, is not immediately useful. However, if volume is estimated by the
number of points at distance r from a reference point x, then the returned value
can serve as a measure of intrinsic dimensionality, the local Expansion Dimension
(ED).
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2.3.3.1 Karger & Ruhl’s Expansion Dimension

In Karger & Ruhl’s method [KR02] the two concentric balls have a doubling radius,
and the volume is measured in terms of number of points contained in each ball.
Explicitly, Karger & Ruhl’s Expansion Dimension is:

ÊD =
ln |B(x, 2r)| − ln |B(x, r)|

ln 2
.

In this method, different choices of the radius r may lead to different estimates.
This is known as the scaling problem. Moreover, a value of r for a given locality
may well be inappropriate for a different locality. Furthermore, using two balls with
a doubling radius has no theoretical foundations.

2.3.3.2 Generalized Expansion Dimension

Generalized Expansion Dimension (GED) [HKN12] is a heuristic allowing an adap-
tive choice for the radius and for the relative size of the two concentric balls. GED
attempts to find the most robust choice of radii by trying all possible pairs of balls
with radii corresponding to the nearest neighbor distances up to a predefined rank
k.

Explicitly, the GED is calculated as follows:
Algorithm 3 GED estimate at query location q ∈ X

1. Let K = [k−, k+] be the range of considered neighborhood sizes, where
0 < k− < k+. For any choice of k ∈ K , let Ak = {(k, i) : i ∈ Kandi =

k}.

2. Let Q = (δq,k−, ..., δq,k+) be the ordered list of distances to the query
point q, for those neighbors of q with ranks in K .

3. For any k ∈ K let d̂k be the median of the individual ED estimates tests
involving the sphere containing k neighbors.

4. Report the median.

2.3.3.3 He & al algorithm

He & al’s algorithm [HDJ+14] assumes that for a dense sample the density can
be estimated by the ratio of the number of points by the volume. The algorithm
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uses the graph distance as an approximation of the geodesic distance then uses an
ED approach to estimate the ID locally.

2.3.4 Distance-based Estimation

Data points can be viewed as a sample drawn from an underlying continuous distri-
bution often modeled in terms of manifolds. Under such modeling considerations,
distances from a fixed query location to the data points can be seen as realizations
of a continuous positive random distance variable. This observation leads to many
distance-based ID estimators

2.3.4.1 Levina & Bickel’s algorithm

Levina & Bickel’s algorithm is a maximum likelihood estimation of ID [LB04] pro-
vided that neighbors of a given point are viewed as realizations of a Poisson process.
More precisely, the ‘observed’ data is assumed to be a mapping of a d-dimensional
sample to a D-dimensional representation. The sample is viewed as realizations of a
d-dimensional random variable with a smooth probability density. The smoothness
of the probability density guarantees that neighbors in the latent space are mapped
into neighbors in the representational space.

Assuming the probability density f to be constant within a ball B(q, w) with
radius w and centered at q, points in the neighborhood of a fixed point q are the
realizations of a Poisson process P (r) with r < w. P (r) indicates the number of
points within distance r of q. The rate of this process is

λ(r) = f · S(q, r) = f · π
d/2drd−1

Γ(1 + d/2)

where S(q, t) is the surface area of the sphere of radius t centered at q. The corre-
sponding log-likelihood function is

L(d, log f) =
∫ w

0

logλ(r)dP (r)−
∫ w

0

logλ(r)dr.

Maximizing the log-likelihood estimation leads to the following local estimator. For
a point q ∈ X:

d̂k(q) = −

[
1

k

k∑
i=1

ln
(
δi(q)

δk(q)

)]−1
,
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where δi indicates the distance from the point q to its i-th nearest neighbor.
In order to have a global estimation from the individual local estimates, Levina

and Bickel take the average of the point-wise estimates over the entire data set:

d̂k =
1

n

∑
q∈X

d̂k(q).

This approach was later criticized by Mackay and Ghamarani who explain in an un-
published note [MG05] that taking the average is not theoretically well founded.
Assuming the different points of the data set to be independent, maximizing the
likelihood function of the dimensionality for all points simultaneously yields that
the global ID estimate should be the harmonic mean of the point-wise estimates.
In addition to the theoretical foundations, using the harmonic mean instead of the
average leads to a smaller bias for smaller values of the neighborhood size k.

In order to adjust for scaling, Levina and Bickel measure the global ID for vari-
ous choices of neighborhood size k then report the average:

ÎDL.&B. =
1

k2 − k1 + 1

k2∑
k=k1

d̂k.

2.3.4.2 MiND

Minimum Neighbor Distance (MiND) is a framework for ID estimation [RLC+12].
The framework is based on the observation that a point x sampled from a uniformly
dense d-dimensional hypersphere can be obtained with the same probability distri-
bution by generating a point y from the multidimensional Gaussian N (0, Id) then
scaling its norm accordingly:

x =
u

1
d

∥y∥
· y,

where u is uniformly sampled from [0, 1[.
The volume of the d-dimensional hypersphere is:

Vr =
πd/2

Γ(1 + d/2)
· rd,

with Γ denoting the Gamma function. Assuming this volume to be proportional to
the probability of having a neighbor at distance r, the log-likelihood as a function
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of the dimensionality d over a sample X of n points is:

L(d) = n log(k)+n log(d)+(d−1)
∑
xi∈X

log(ρ(xi))+(k−1)
∑
xi∈X

log(1−ρd(xi)),

where ρ(xi) indicates the ratio of the distance to the nearest neighbor of xi to the
distance to the k-th nearest neighbor of xi.

Then maximizing the likelihood yields different estimators. The authors propose
an integer-valued estimation, where ID is the integer in [1, D] that maximizes the
likelihood function. They also propose to simplify the problem by taking a value of
k = 2 which leads to the same form (c.f. Equation 2.3.4.1) seen in Levina & Bickel
estimator [LB04]. For a general choice of k it is possible to use numerical opti-
mization [CL96]. Alternatively, Kullback-Leibler divergence estimation [WKV06]
can lead to an estimate of ID.

Even though the original algorithm was proposed as a global estimator, the global
estimate can be viewed as an aggregation of point-wise ID estimates. Hence, this ap-
proach falls in the local estimators’ category.

2.3.4.3 Manifold-Adaptive Dimension

The Manifold-Adaptive Dimension [FSA07] is a distance-based estimator based on
the following assumptions. Given a query point q, the probability of encountering a
neighbor xi at distance δi from q lesser than r is expressed as:

Pr[δi ≤ r] = η(q, r)rd,

or equivalently
ln Pr[δi ≤ r] = ln η(q, r) + d ln r,

where d indicates the ID and η(q, r) indicates the density inside the ball B(q, r).
Noticing that the last equation is linear in d, and assuming that η(q, r) as a func-

tion of the distance r is constant for small values of r, the ID can be estimated as:

d̂q =
ln 2

ln δk − ln δ⌈k/2⌉
.

This assumes that δk is small enough to not reach the curvature of the manifold.
A global estimate is obtained by taking the average of all local estimates across
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the entire dataset:
ÎDMAD =

1

n

∑
q∈X

max(d̂q, D)

with X being the dataset, n its cardinality, and D the representational dimension.

2.3.5 Other methods

2.3.5.1 Mordohai & Medioni’s algorithm

Mordohai & Medioni’s algorithm [MM10] estimates dimensionality based on ten-
sor voting. The local ID for each point is provided by the largest gap between the
eigenvalues of the tensor. A global estimate can be obtained by averaging the local
estimates. The computational complexity of the tensor voting is prohibitive in con-
texts where the representational dimension of the data is high. Among other com-
putational limitations, the memory complexity is exponential in the representational
dimension D.

2.3.5.2 Brand’s Charting

Brand’s charting algorithm [Bra02] maps the original representation space of dimen-
sion D to a Euclidean vector space of dimension d such that curves that are locally
parallel in the original space do not intersect in the new space. The estimates ID as
the smallest value of d for which such mapping is possible. Brand’s method is not
robust to noise, is not applicable to nonlinear manifolds.
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Chapter 3
Extreme Value Theory

Extreme Value theory (EVT) is a discipline in statistics concerned with the model-
ing of what can be regarded as the extreme behavior of stochastic processes. This
discipline emerged in the late 19th century with the work of Vilfredo Pareto (1848-
1923). Then it was developed over the course of the 20th century and was applied
to various fields.

EVT has seen applications in areas such as civil engineering [Har01], operations
research [DM01] [TC00, MSR+00, DM01], risk assessment [LC00], material sci-
ences [Gri93], bioinformatics [Rob00], geophysics [LC00], and multimedia [FJ13].

In this work, distances to neighbors are considered to be the sample drawn from
a random distance variable. Hence distances to the nearest neighbors can be viewed
as ‘extreme events’. Under these modeling considerations EVT results can be ap-
plied to the lower tail of the distance distribution.

In this Chapter, we summarize the main results of EVT, then we survey the main
state-of-the-art estimators for the Extreme Value Index (EVI).

35



Chapter 3. Extreme Value Theory

3.1 Main results in Extreme Value Theory
Extreme Value Theory is concerned with the study of occurrences of a random vari-
able that can be described as ‘extremely’ distant from the variable’s mean. These
‘extreme events’ are associated with the upper or lower tails of probability density
functions, as opposed to ‘usual events’ which are associated with the modes.

Various approaches have been used to model these extreme events, and to study
the asymptotic behavior of the tail of probability distributions. Three equivalent ap-
proaches have been developed which are: the Block Maxima Method, the Peak Over
Threshold method, and the Regularly-Varying functions representation.

3.1.1 Distribution of maxima

The first approach to modeling extreme values is the Block Maxima Method histor-
ically known as ‘Annual Maxima Series’ (AMS). Given a data sample from an set
of random variables assumed to be independent and identically distributed, the ap-
proach relies on segmenting the sample into blocks and viewing the maximum (or
minimum) of each block as an extreme event. The best known theorem obtained
under these modeling constraints, attributed in parts to Fisher and Tippett [FT28],
and Gnedenko [Gne43], states that the maximum of n independent and identically-
distributed random variables (after proper renormalization) converges in distribution
to a Generalized Extreme Value (GEV) distribution as n goes to infinity.

Definition 4 Let µ, ξ ∈ R and σ > 0. The family of generalized extreme value
distributions FGEV covers distributions whose cumulative distribution function can
be expressed in the form

FGEV =

{
exp

(
−
[
1 + ξ

(
x− µ

σ

)]− 1
ξ

)}
.

A distribution G ∈ FGEV has support supp(G) = [µ − σ
ξ
,∞) whenever ξ > 0

and supp(G) = (−∞, µ − σ
ξ
] when ξ < 0. If ξ = 0, the support covers the

complete real line. The parameters µ, σ and γ = −1/ξ are respectively called
the location, the spread, and the index (or shape).
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Theorem 1 (Fisher-Tippet-Gnedenko) Let (Xi)i∈N be a sequence of independent
identically-distributed random variables and let Mn = max1≤i≤n Xi. If there ex-
ist a sequence of positive constants (ai)i∈N, and a sequence of constants (bi)i∈N,
such that

lim
n→∞

Pr
[
Mn − bn
an

≤ x

]
= F (x),

for any x ∈ [0, 1], where F is a non-degenerate distribution function, then F ∈
FGEV.

3.1.2 Conditional excess distribution

Extreme value theory mainly draws its power from two major results due to Fisher,
Tippett and Gnedenko, as well as Balkema, de Haan and Pickands [FT28,Gne43,
BDH74, PI75]. The second approach is known as the Conditional Excess Method,
or ‘Peak Over Threshold’ (POT) method. Balkema-de Haan-Pickands theorem is
useful when observing the occurrences of a continuous random variable that exceed
a given high threshold (or fall below a low threshold). The theorem states that ex-
cesses over a fixed threshold converge in distribution to the Generalized Pareto Dis-
tribution (GPD).

Consider the following two definitions.

Definition 5 Let ξ ∈ R and σ > 0. The family of generalized Pareto distribu-
tions FGPD is defined by its cumulative distribution function

FGPD =

{
1−

(
1 +

ξx

σ

)− 1
ξ

}
.

Every distribution G ∈ FGPD has support supp(G) = (max{0,−σ
ξ
},∞). The

parameters µ, σ and γ = −1/ξ are respectively called the location, the spread,
and the index (or shape).

Definition 6 Let X be a random variable whose distribution FX has the upper
endpoint x+ ∈ R ∪ {∞}. Given w < x+, the conditional excess distribution
FX,w of X is the distribution of X − w conditioned on the event X > w:

FX,w(x) =
FX(w + x)− FX(w)

1− FX(w)
.
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We are now in a position to introduce a powerful theorem due to Pickands,
Balkema and de Haan [BDH74, PI75], which can be regarded as the counterpart
to the central limit theorem for extremal statistics.

Theorem 2 (Pickands-Balkema-de Haan) Let (Xi)i∈N be a sequence of indepen-
dent random variables with identical distribution function FX satisfying the con-
ditions of the Fisher-Tippett-Gnedenko Theorem. As w → x+, the conditional
excess distribution FX,w(x) converges to a distribution in FGPD.

3.1.3 Regularly-Varying functions representation

The Fisher-Tippett-Gnedenko Theorem and the Pickands-Balkema-de Haan Theo-
rem have been shown to be equivalent to a third characterization of the tail behav-
ior in terms of regularly-varying (RV) functions, known as Karamata Representation.
The asymptotic cumulative distribution of X in the tail [0, w) can be expressed as
FX(x) = xγℓX(1/x), where ℓX is differentiable and slowly varying; that is, for all
c > 0, ℓX satisfies

lim
t→∞

ℓX(ct)

ℓX(t)
= 1.

FX restricted to [0, w) is itself said to be regularly varying with index γ. In partic-
ular, a cumulative distribution F ∈ FGEV has ξ < 0 if and only if F is RV and
has a finite endpoint. Note that the slowly-varying component ℓX(1/x) of FX is not
necessarily constant as x tends to zero. For a detailed account of RV functions, we
refer the reader to [BGT89].

3.2 Extreme Value Index estimators

We are only interested in estimating the index of Extreme Value Distributions. Para-
metric, semi-parametric, and non-parametric approaches were proposed to estimate
the Extreme Value Index. In this section, we will survey the main semi-parametric
approaches. In the rest of this section, we assume the sample x1, x2, ..., xn to be
drawn from independent and identically distributed random variables, and ordered
in increasing order.
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3.2.1 Hill Estimator

There does not exist a Maximum Likelihood Estimator that estimates the index γ ∈
R without any restriction on the range of γ [DHF07]. Hill’s estimator [H+75,
Wei78] is the Maximum Likelihood Estimator for the Extreme Value Index when-
ever γ is restricted to γ > 0. The properties of Hill’s estimator such as its almost
sure convergence [DHM88] and asymptotic normality [HT85, dHR98] have been
thoroughly studied [Hal82,Mas82,DR84,CM85,GS87,dHP98] which reflects its im-
portance in the EVT literature.

Hill’s estimator can be expressed as follows:

γ̂H =
1

k

k∑
i=1

ln xn−i − ln xn−k.

3.2.2 Generalized Hill Estimator

Studies made by Beirlant & al [BVT+96a,BDG+05] used the Hill estimator in order
to propose an estimator that is valid for γ ∈ R (unlike the original Hill estimator
which is valid only for γ > 0). However, the proposed estimator was not obtained
using the standard MLE approach. The generalized Hill estimator can be expressed
as follows:

γ̂GH = γ̂H,k +
n∑
i=k

[ln γ̂H,i − ln γ̂H,k],

where γ̂H,i is the Hill estimator using the first i observations.

3.2.3 Pickands’ Estimator

Pickand’s estimator [PI75] applies the percentile method to the top observations
in the sample. The method consists of approximating the quantiles of probability
density by the quantiles observed in the sample, then solving for the EVI in the
equations obtained from the approximation. Pickand’s estimator has the form:

γ̂P =
1

ln 2
ln
xn−⌊k/4⌋+1 − xn−⌊k/2⌋+1

xn−⌊k/2⌋+1 − xn−k+1

.
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3.2.4 The Moments’ Estimator

The Method of Moments leads to the following estimator [DEdH89]:

γ̂M = m̂1 +
1

2

[
1− m̂2

1 − 1

m̂2

]
,

where the j-th moment of the log-excess is estimated as:

m̂j =
1

k

k∑
i=1

[
ln xn−i+1 − ln xn−k

]j
.

Note that the Hill estimators corresponds to the first moment of the log-excess
(γ̂H = m̂1).

3.2.5 The Peak Over Threshold Maximum Likelihood Estimator

The following estimator based on equations similar to the Maximum Likelihood equa-
tions [Dav84] is widely regarded as the MLE for the index [Smi87]:

γ̂ML =
1

k

k∑
i=1

ln[1 + σ̂(xn−i+1 − xn−k)],

where σ̂ is the Maximum Likelihood Estimation of the scale parameter.

3.2.6 Kernel Estimators

For a positive Extreme Value Index, a family of estimators known as ‘kernel estima-
tors’ is given by [CDM85,GLDW+03]:

γ̂K =

∑k
i=1K(i/k)[ln xn−i+1 − ln xn−k]∑k

i=1K(i/k)
,

where K is a non-negative non-increasing kernel defined on R+ and summing to 1.

Note that Hill’s estimator is the special case where the kernel K is identically
equal to 1. This family of estimators covers a large set of known estimators of EVI
known as QQ-estimators [BVT96b,KR96,CV98,OGFA06].
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3.3 Second order Extreme Value Index
In statistics in general and in EVT in particular, statisticians have an interest in as-
sessing the speed of convergence of estimators. In the case of the first order Ex-
treme Value Index (EVI) which is the growth rate of the probability density func-
tion, the convergence of estimators is ruled by a second order growth rate, which is
the growth rate of the EVI itself. This second order growth rate is a statistic com-
monly known in EVT as the ‘second order EVI’ and often denoted ρ. Higher values
of |ρ| indicate a higher convergence rate of EVI estimators, and lower values of |ρ|
indicate that estimators of the EVI require larger sample sizes.

If F is the cumulative distribution function of a heavy-tailed Extreme Value Dis-
tribution (γ > 0), and if U denotes the quantile function (U(t) = F←(1 − 1

t
),

where F←(s) ≜ inf{y : F (y) ≥ s}), then, and the parameter ρ satisfies

lim
t→∞

lnU(tx)− lnU(t)− γ ln(x)
A(t)

=
xρ − 1

ρ
,

where A(t) = γθtρ is regularly varying with index ρ < 0, with θ being a con-
stant [HW+85,GMN07]. This condition which ensures the convergence of the first
order EVI is referred to as the ‘second order condition’. The convergence of the
estimators of the EVI γ for heavy-tailed distributions (γ > 0) is ruled by the index
ρ referred to as the ‘second order EVI’.

The EVT community has developed estimators for the second order EVI over
the past few decades. Many estimators have been proposed [HW+85,DK98,Pen98,
GDHP02]. The best estimators so far rely on the Method of Moments [AGdH03],
and assume the second order EVI to be negative.
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Chapter 4
Local Intrinsic Dimensionality

Expansion Models of Intrinsic Dimensionality can be described as heuristics, since
they are based on observations and are not supported by an underlying theory. Lo-
cal Intrinsic Dimensionality (LID) is a theoretical framework that models the Ex-
pansion Dimension in terms of random distance variables.

This model of dimensionality is shown to be equivalent to a measure of indis-
criminability makes it very interesting from a Machine Learning point of view. The
model being general and its assumptions being limited to the continuity of the dis-
tance variable, LID is suited for applications in similarity search and unsupervised
learning among other applications in Machine Learning and Data Mining.

In this Chapter, we summarize the theory and modeling of LID, we show how
LID is equal to a measure of indiscriminability, then we show the connection be-
tween LID and EVT.
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4.1 Local Intrinsic Dimension as an expansion model

Local Intrinsic Dimensionality (LID) is an extension of a well-studied model of in-
trinsic dimensionality to continuous distributions of distances proposed in [Hou13].
LID aims to quantify the local ID of a feature space exclusively in terms of the distri-
bution of inter-point distances. Formally, let (Rm, d) be a domain equipped with a
non-negative distance function d. Let us consider the distribution of distances within
the domain with respect to some fixed point of reference. We model this distribu-
tion in terms of a random variable X with support [0,∞). X is said to have prob-
ability density fX, where fX is a non-negative Lebesgue-integrable function, if and
only if

Pr[a ≤ X ≤ b] =

∫ b

a

fX(x) dx,

for any a, b ∈ [0,∞) such that a ≤ b. The corresponding cumulative density func-
tion FX is canonically defined as

FX(x) = Pr[X ≤ x] =

∫ x

0

fX(u) du.

Accordingly, whenever X is absolutely continuous at x, FX is differentiable at x and
its first-order derivative is fX(x). For such settings, the local intrinsic dimension is
defined as follows.

Definition 7 ( [Hou13]) Given an absolutely continuous random distance vari-
able X, for any distance threshold x such that FX(x) > 0, the local continuous
intrinsic dimension of X at distance x is given by

IDX(x) ≜ limϵ→0+
lnFX ((1 + ϵ)x)− lnFX(x)

ln(1 + ϵ)
,

wherever the limit exists.

With respect to the generalized expansion dimension [HKN12], a precursor of
LID, the above definition of IDX(x) is the outcome of a dimensional test of neigh-
borhoods of radii x and (1 + ϵ)x in which the neighborhood cardinalities are re-
placed by the expected number of neighbors. LID also turns out to be equivalent to
a formulation of the (lack of) discriminative power of a distance measure, as both
formulations have the same closed form:
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Theorem 3 ( [Hou13]) Let X be an absolutely continuous random distance vari-
able. If FX is both positive and differentiable at x, then

IDX(x) =
xfX(x)

FX(x)
.

Local ID has potential for wide application thanks to its very general treatment
of distances as continuous random variable. Direct estimation of IDX, however, re-
quires the knowledge of the distribution of X. Extreme value theory, which we sur-
vey in the following section, allows the estimation of the limit of IDX(x) as x tends
to 0 without any explicit assumptions of the data distribution other than continuity.

4.2 Indiscriminability

A distance measure is ‘discriminative’ when an expansion in distance results in a
relatively small increase in the number of observations. Discriminability of points
improves the efficiency of data mining and machine learning tasks, minimizes error
and ensures robustness. Capturing a huge number of points by a small increase in
distance measure greatly increases the computational cost of applications, and has a
negative impact on effectiveness. Moreover, the relative ranking of points with refer-
ence to an indiscriminative distance measure can easily be affected by noise. When
selecting features, it is strongly desirable that they be chosen so as to ensure better
discriminability.

Formally, let x be a reference point and let R be an absolutely continuous ran-
dom distance variable with respect to that reference point, as defined in Section 4.1.
For any distance r from x such that FR(r) > 0, the indiscriminability of R at r is
given by the following limit wherever it exists [Hou13]:

InDiscrFR
(r) ≜ lim

ϵ→0+

(
FR((1 + ϵ)r)− FR(r)

ϵ · FR(r)

)

=
r · ϕR(r)
FR(r)

= IDFR
(r).

Note that this definition of indiscriminability is unitless, does not require knowledge
of the statistical parameters of the underlying distance distribution, and coincides
precisely with local ID.
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4.3 Connection between LID and EVT

In the following we demonstrate a direct relation between LID and extreme value
theory, which arises as an implication of Theorem 2. Note that any choice of dis-
tance threshold w corresponds to a neighborhood of radius w based at the reference
point, or equivalently, to the tail of the distribution of distances on [0, w). As dis-
cussed in [CBTD01], Theorem 2 also applies to lower tails: one can reason about
minima using the transformation Y = −X. The distribution of the excess Y− (−w)
(conditioned on Y > −w) then tends to a distribution in FGPD, as w tends to the
lower endpoint of FX located at zero [Net14]. Accordingly, as w tends to zero, the
distribution in the tail [0, w) can be restated as follows [CBTD01].

Lemma 1 Let X be an absolutely continuous random distance variable with sup-
port [0,∞) and cumulative distribution function FX such that FX(x) > 0 if
x > 0. Let c ∈ (0, 1) be an arbitrary constant. Let w > 0 be a distance
threshold, and consider x restricted to the range [cw,w). As w tends to zero,
the distribution of X restricted to the tail [cw,w) satisfies, for some fixed ξ < 0,

(x/w)−
1
ξ

FX,w(x)
→ 1.

Note that the distribution of excess distance w − X is bounded from above by
w which, according to [CBTD01], enforces that ξ < 0.

Proof Consider the distribution of threshold excess w − X with X being restricted
to [cw,w). According to Theorem 2, w − X asymptotically follows a generalized
Pareto distribution:

Pr[w − X ≤ y] → 1−
(
1 +

ξy

σ

)− 1
ξ

,

with σ > 0 and ξ < 0, so that

Pr[X ≤ w − y] →
(
1 +

ξy

σ

)− 1
ξ

.
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Since a distance x corresponds to a threshold excess of w − y,

FX,w(x) = Pr[X ≤ x] →
(
1 +

ξ(w − x)

σ

)− 1
ξ

.

We see that FX,w(0) = 0 holds if and only if

(
1 +

ξ(w − x)

σ

)− 1
ξ

= 0,

implying that σ = −ξw. With this additional constraint, the distribution of dis-
tances in the tail [cw,w) simplifies to

(x/w)−
1
ξ

FX,w(x)
→ 1.

■

To summarize, whenever Theorem 2 applies to a distance variable X, the cu-
mulative distribution of distances within a radius-w neighborhood is asymptotically
determined by a single parameter ξ < 0. We can prove the following statement
concerning LID.

Theorem 4 Let X be an absolutely continuous random distance variable with sup-
port [0,∞), satisfying the conditions of Theorem 2, and w > 0 be a distance
threshold. Then, as w tends to zero,

IDX(w) → −1

ξ
=: IDX.

Proof (Sketch only. For a more detailed and rigorous treatment, see [Hou15].)
Lemma 1 states that under the conditions of Theorem 4, the cumulative excess dis-
tribution FX,w follows

(x/w)−
1
ξ

FX,w(x)
→ 1

as the threshold w approaches zero. The probability density fX,w in the tail of the
distribution is obtained by taking the derivative with respect to x:

fX,w(x) ≈
∂

∂x

( x
w

)− 1
ξ
= − 1

ξw

( x
w

) 1
ξ
−1
.
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Applying Theorem 3 gives

IDX(x) ≈
x · fX,w(x)

FX,w(x)
→ −1

ξ
.

■

Note that together Lemma 1 and Theorem 4 allow us to restate the asymptotic
cumulative distribution of distances in the tail [cw,w) as

(x/w)IDX

FX,w(x)
→ 1.

4.4 Second order LID

In this section, we are interested in understanding the relation between the change
in LID in a small neighbor of a given reference point and the properties of the dis-
tance distribution. A complete description can be found in this work [Hou15].

We generalize the IDF notation for any continuous function F defined and dif-
ferentiable on [0,+∞). If f denotes the derivative of F , we define:

IDF (x) =
x · f(x)
F (x)

.

In the case where F is the cumulative distribution function of a continuous distance
variable, we refer to IDF as the LID function. The limit limx→0 IDF (x) is the LID.

When expanding the local neighborhood from a reference point outwards (i.e.
the distance x increases), an increase in discriminability (i.e. IDF (x) < IDF (0)

with 0 < x < w) indicates that the the discriminability of neighbors at distance
x is higher than the discriminability at distance 0. In other words, this increase in-
dicates that the growth rate in probability measure is lower than the growth rate
that would be encountered in a hypothetical locally-uniform distribution of points
within a manifold of dimension IDF (0). The interpretation of this increase in dis-
criminability is that the reference point from which distances are being measured is
an inlier with reference to its nearest neighbors.

The limit effect as the distance x approaches 0 of the condition IDF (x) <

IDF (0) is equivalent to the condition ID′F (x) < 0. After normalization by the LID
so as to make the comparison possible across manifolds of different dimensions, the
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4.4. Second order LID

condition can be equivalently expressed as IDIDFX
(x) =

x·ID′
F (x)

IDF (x)
< 0. Hence the

function IDIDFX
, referred to as the second order LID function, indicates the strength

of inlierness of the reference point when negative and the strength of outlierness of
the reference point when negative [Hou15]. Since limx→0 IDIDFX

(x) = 0, the in-
lierness (or outlierness) at the reference point (i.e. when the distance x approaches
0) is indicated by the limit limx→0 ID|IDIDFX

|(x). We refer to the last quantity by
the second order LID.

A measurement of the second order LID can indicate inlierness, which can be
of interest to many Data Mining and Machine Learning applications. An estimate
of inlierness can have applications in clustering, classification and outlier detection.
Note that estimating second order LID is outside the scope of this thesis.
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Chapter 5
Estimating Local Intrinsic Dimensionality

This chapter is concerned with the estimation of a local measure of intrinsic dimen-
sionality (ID) recently proposed by Houle. The local model can be regarded as an
extension of Karger and Ruhl’s expansion dimension to a statistical setting in which
the distribution of distances to a query point is modeled in terms of a continuous
random variable. This form of intrinsic dimensionality can be particularly useful
in search, classification, outlier detection, and other contexts in machine learning,
databases, and data mining, as it has been shown to be equivalent to a measure of
the discriminative power of similarity functions. Several estimators of local ID are
proposed and analyzed based on extreme value theory, using maximum likelihood
estimation, the method of moments, probability weighted moments, and regularly
varying functions. An experimental evaluation is also provided, using both real and
artificial data.

The original contributions of this work can be summarized as:

• A framework for the estimation of local continuous intrinsic dimension (LID)
using well-established techniques: the maximum likelihood estimation (MLE),
the method of moments (MoM), and the method of probability-weighted mo-
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ments (PWM). In particular, we verify that applying MLE to LID leads to the
well-known Hill estimator [H+75].

• A new family of estimators based on the extreme-value-theoretic notion of
regularly varying functions. Several existing dimensionality models (ED, GED,
and MiND) are shown to be special cases of this family,

• confidence intervals for the variance and convergence of the estimators we
propose.

• An experimental study using artificial data and synthetic distance distributions,
in which we compare our estimators with state-of-the-art global and local es-
timators. We also show that the empirical variance and convergence rates of
the MLE (Hill) and MoM estimators are superior to those of the other local
estimators studied.

• Experiments showing that local estimators are more robust than global ones
in the presence of noise in nonlinear manifolds. Our experiments show that
our approaches are very competitive in this regard with other methods, both
local and global.

• An experimental study showing the effectiveness of LID estimation when us-
ing approximate nearest neighbors.

• Profiles of several real-world datasets in terms of LID, illustrating the degree
of variability of complexity from region to region within a dataset. The pro-
files demonstrate that a single ‘global’ ID value is in general not sufficient to
fully characterize the complexity of real-world data.

The remainder of the Chapter is structured as follows. In Section 5.1 we pro-
pose and analyze several estimators of continuous ID, using maximum likelihood es-
timation (MLE, which yields the Hill estimator), the method of moments (MoM),
probability weighted moments (PWM), and regularly varying functions (RV). In Sec-
tion 5.2 we present our experimental study, and discuss the practical performance of
our proposed estimators. We conclude the Chapter in Section 5.4 with a discussion
of potential future applications.
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5.1 Estimation
This section is concerned with practical methods for the estimation of the local in-
trinsic dimension of a random distance variable X. In particular, we adapt known
methods for GPD parameter estimation such as the Maximum Likelihood Estima-
tion (in Section 5.1.1) and Moment-based estimation (in Sections 5.1.2 and 5.1.3),
and propose a new family of estimators based on Regularly Varying functions (in
Section 5.1.4).

For the remainder of this discussion we assume that we are given a distance
threshold w > 0 and a sequence x1, . . . , xn of observations of a random distance
variable X with support [0, w). Without loss of generality, we assume that the ob-
servations are given in ascending order — that is, x1 ≤ x2 ≤ · · · ≤ xn.

5.1.1 Maximum Likelihood Estimation

Maximization of the likelihood function is one of the most widely used parameter
estimation techniques in statistics. The Maximum Likelihood Estimator (MLE) has
no optimality guarantees for finite samples, but has the advantage of being asymptot-
ically consistent, optimal, and efficient (in that it achieves the Cramer-Rao bound).

Definition 8 Given a random variable X with parameter θ, the likelihood of θ as
a function of observations x1, x2, …, xn is defined as

L(θ|x1, . . . , xn) =
n∏
i=1

f(xi| θ) .

Note that θ can be multivariate. In the case of our study, we are interested in a
single parameter of the distribution, namely the shape parameter ξ.

Maximizing the likelihood function is mathematically equivalent to maximizing
its logarithm. It is often more convenient to work with the ‘log-likelihood’ function
defined as follows:

Definition 9 Given a random variable X with parameter θ, the log-likelihood of
θ as a function of observations x1, x2, …, xn is defined as

L(θ|x1, . . . , xn) = lnL(θ| x1, . . . , xn) .
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Definition 10 Given a random variable X with parameter θ, and a set of obser-
vations x1, x2, …, xn, the Maximum Likelihood Estimator (MLE) of θ is the
value for which L(θ| x1, . . . , xn) is maximized:

θ̂ = argmax
θ

L(θ| x1, . . . , xn) = argmax
θ

L(θ|x1, . . . , xn).

For convenience, when the sample x1, x2, …, xn is understood, we will denote
the likelihood and log-likelihood of θ by L(θ) and L(θ), respectively.

Using the asymptotic expression of the distance distribution given in Lemma 1,
for a given sample of neighborhood distances x1, x2, …, xn, we see that the log-
likelihood of IDX is given by

L(IDX) = ln

[
n∏
i=1

fX,w(xi)

]

= ln

[
n∏
i=1

FX,w(w) IDX

w

(xi
w

)IDX−1
]

= n ln
FX,w(w)

w
+ n ln IDX + (IDX − 1)

n∑
i=1

ln
xi
w
.

The first- and second-order derivatives of the log-likelihood function are respec-
tively

L′(IDX) = − n

IDX
−
∑n

i=1
ln
xi
w

and L′′(IDX) =
n

ID2
X
.

Accordingly, the maximum-likelihood estimate ÎDX is

ÎDX = −
(
1

n

∑n

i=1
ln
xi
w

)−1
,

which follows the form of the well-known Hill estimator for the scaling exponent of
a power-law tail distribution [H+75].

The variance is asymptotically given by the inverse of the Fisher information,
defined as

I = E
[
−∂

2L(IDX)

∂ ID2
X

]
=

n

ID2
X
,

where E[·] denotes the expectation. Therefore, if the number of samples n is suffi-
ciently large, we have ÎDX ∼ N (IDX, ID2

X /n). Accordingly, with probability 1−β,
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a sample of n distances in [0, w) provides an estimate ÎDX lying within

IDX ±
IDX√
n
Φ−1

(
1− β

2

)
.

In other words, the 1− β confidence interval is[
ÎDX

1 + n−1/2Φ−1(1− β/2)
,

ÎDX

1− n−1/2Φ−1(1− β/2)

]
.

Using different assumptions, Levina and Bickel obtained the same ID estima-
tor [LB04]. However, their estimator was obtained following several restrictive as-
sumptions. In fact, they assume that a mapping exists between the data and a lower-
dimensional embedding. The also assume the manifold to be locally smooth and the
density to be locally constant. The Levina & Bickel estimator is viewed by many as
a global estimator because their original approach used the local estimates as a step
to obtain a single global estimate.

5.1.2 Method of Moments

For any choice of k ∈ N, the k-th order non-central moment µk of the random
distance X is

µk = E
[
Xk
]
=

∫ w

x=0

xkfX(x) dx = wk
IDX

IDX + k
.

Solving for the intrinsic dimension gives

IDX = −k µk
µk − wk

= g
(µk
wk

)
,

with g(x) = k x
1−x . When estimating the order-k moment by its empirical coun-

terpart µ̂k = 1
n

∑n
i=1 x

k
i , we see that E[µ̂k] = µk and E[µ̂2

r] = (nµ2k + n(n −
1)µ2

k)n
−2, so that

Var[µ̂2
k] =

µ2k − µ2
k

n
=

w2kIDXk
2

n(IDX + 2k)(IDX + k)2
.

Assuming the convergence of the empirical moments, the distribution of µ̂k
wk is there-

fore asymptotically normal, with
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µ̂k
wk

∼ N
(

IDX

IDX + k
;

IDXk
2

n(IDX + 2k)(IDX + k)2

)
.

According to [Rao09, Th. 6a2.9], if x ∼ N (µ; σ2n−1) asymptotically, then g(x) ∼
N (g(µ);σ2n−1g′(µ)2), where g′ is the first-order derivative of g. Therefore, asymp-
totically

ÎDX ∼ N
(

IDX;
ID2

X

n

(
1 +

(k/IDX)
2

ID2
X(1 + 2k/IDX)

))
.

This variance is monotonically increasing in k/IDX, which indicates that we should
use moments of small order k. When k/IDX tends to zero, the variance converges
to ID2

X/n, the variance of the maximum-likelihood estimator (see Section 5.1.1).
Note that an upper bound on IDX implies that the variance is bounded. In this
case we can derive confidence intervals similar to Section 5.1.1.

5.1.3 Probability-Weighted Moments

General probability-weighted moments are defined as

mk,l,m = E
[
FX(X)k(1− FX(X))lXm

]
.

We restrict here our attention to a subfamily: for any choice of k ∈ N, νk is defined
as

νk ≜ E
[
FX(X)kX

]
=

∫ w

x=0

FX(x)
kxfX(x) dx =

IDXw

IDX k + IDX + 1
;

solving for the intrinsic dimension yields

IDX =
νk

w − νk(k + 1)
= h

(νk
w

)
, where h(x) =

x

1− (k + 1)x
.

According to [HW87] and [LMW79], a commonly-used estimator of the k-th
probability-weighted moment of this form is

ν̂k =
1

n

n∑
i=1

(
i− 0.35

n

)k
xi.
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Analogously to the previous section, we can show that this estimator has variance

Var[ν̂k] =
IDXw

2

(IDX k + IDX + 1)(2 IDX k + IDX + 2)
.

Similarly, we find that asymptotically

ÎDX ∼ N
(

IDX;
ID2

X

n

(
1 +

(IDXk + 1)2

IDX(2IDXk + IDX + 2)

))
.

For k = 0, the variance is equivalent to that of the moment-based estimator with
k = 1 (see Section 5.1.2). Since the variance increases monotonically with k for
any fixed IDX, the use of lower-order probability-weighted moments is advisable.

5.1.4 Estimation Using Regularly Varying Functions

In this section we introduce an ad hoc estimator for the intrinsic dimensionality
based on the characterization of distribution tails as regularly varying functions. Con-
sider the empirical distribution function F̂X, defined as

F̂X(x) =
1

n

∑n

j=1
Jxj < xK ,

where JφK refers to the Iverson bracket, which evaluates to 1 if φ is true, and 0

otherwise. We propose the following estimator for the index κ of FX.

Definition 11 Let X be an absolutely continuous random distance variable re-
stricted to [0, w). The local intrinsic dimension IDX can be estimated as

ÎDX = κ̂ =

∑J
j=1 αj ln

[
F̂X((1 + τjδn)xn)/F̂X(xn)

]
∑J

j=1 αj ln(1 + τjδn)
,

under the assumption that δn → 0 as n → ∞, where (αj)1≤j≤J and (τj)1≤j≤J

are sequences.

We will refer to this family of estimators as RV, for ‘regularly varying’. Note that
since RV estimators involve only the products τjδn for 1 ≤ j ≤ J , we may assume
without loss of generality that τ1 + · · · + τJ = 1. The estimators are based on the
observation that, for all 1 ≤ j ≤ J ,
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ln [FX((1 + τjδn)xn)/FX(xn)]

= κ ln(1 + τjδn) + ln [ℓX((1 + τjδn)xn)/ℓX(xn)]

≃ κ ln(1 + τjδn).

The RV family covers several of the known local estimators of intrinsic dimen-
sionality. For the parameter choices J = 1 and ϵ = τδn, the RV estimator reduces
to the GED formulation proposed in [HKN12]:

ÎDX =
ln
[
F̂X((1 + ϵ)xn)/F̂X(xn)

]
ln(1 + ϵ)

.

By setting ϵ = 1, Karger & Ruhl’s expansion dimension is obtained, while by set-
ting xn as the distance to the k-nearest neighbor and ϵ such as (1 + ϵ)xn as the
distance to the nearest neighbor, we find a special case of the MiND family (pre-
cisely MiNDml1) [RLC+12].

Alternatively, by setting J = n, αi = 1 for all i ∈ [1..n], and choosing the
vector τ such that 1 + τiδn = xi

xn
, the RV estimator becomes

ÎDX =

∑n
j=1 ln [j/n]∑n
j=1 ln [xj/xn]

≈ ln
√
2πn− n∑n

j=1 ln [xj/xn]
.

As n→ ∞, this converges to the MLE (Hill) estimator presented in Section 5.1.1,
with w = xn.

We now turn our attention to an analysis of the variation of RV estimators. First,
we introduce an auxiliary function which drives the speed of convergence of the es-
timator proposed in Definition 11. For x ∈ R let εX(x) be defined as

εX(x) ≜
xℓ′X(x)

ℓX(x)
.

In [AGd03, AdL03], the auxiliary function is assumed to be regularly varying, and
the estimation of the corresponding regular variation index is addressed. Within this
article, so as to prove the following results, we limit ourselves to the assumption that
εX is ultimately non-increasing.

Theorem 5 Let X be a random distance variable over [0, w) with distribution
function FX(x) = xκℓX(1/x), and let τmax ≜ max1≤j≤J τj . Furthermore, let
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δn, xn → 0 so that nFX(xn)δn → ∞ and
√
nFX(xn)δnεX(1/[(1+τmaxδn)xn]) →

0 as n approaches infinity. If the auxiliary function εX is ultimately non-increasing,
then

√
nFX(xn)δn ·[IDX − ÎDX] converges to a centered Gaussian with variance

IDXVα,τ = IDX
α⊤Sα

(α⊤τ)2
,

where Sa,b = (|τa| ∧ |τb|)Jτaτb > 0K for (a, b) ∈ {1, . . . , J}2. (A ∧ B denotes
the minimum of A and B.)

Note that the requirement nFX(xn)δn → ∞ can be interpreted as a necessary
and sufficient condition for the almost sure presence of at least one distance sample
in the interval [xn, (1 + τjδn)xn)]. In addition, the condition√

nFX(xn)δnεX(1/[rn(1 + τmaxδn)]) → 0

enforces that the approximation bias εX(1/[(1 + δn)xn]) is negligible compared to
the standard deviation of the estimate, 1/

√
nFX(xn)δn. We continue the analysis

by proposing choices of α that minimize the variance in Theorem 5.

Lemma 2 The weight vector α = (α1, . . . , αJ)
⊤ minimizing Vα,τ is proportional

to α0 = S−1τ = (1, 0, . . . , 0)⊤, and the associated optimal variance is given by
V0(τ) =

(
τ⊤S−1τ

)−1.
Proof The maximum of the Rayleigh functional α⊤ττ⊤α

(
α⊤Sα

)−1 is known to
be attained when α is proportional to the eigenvector associated with the largest
eigenvalue of S−1ττ⊤. Since S−1ττ⊤ is a rank-one matrix, the eigenvector corre-
sponding to the unique non-zero eigenvalue is S−1τ . Without any loss of generality,
we permute the entries of the vector τ such that τa < τb for all a < b. Asymptot-
ically, we have 0 < τ1 < · · · < τJ . Noting that the first column of the matrix S
is (τ1, τ2, ..., τJ)

⊤, we can infer that the vector (1, 0, . . . , 0)⊤ is a solution of the
equation S.α0 = τ . Since S is invertible, the solution α0 must be unique. We
therefore conclude that α0 = (1, 0, . . . , 0)⊤. ■

For the case J = 1, we see that τ = (1)⊤ and V0(1) = 1. This indicates that
the GED minimizes the variance of estimation. However, different choices can be
made regarding the weight vector τ and regarding the criterion to use in order to
optimize the choice of α. Minimizing variance is one choice explored in this paper,
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but other criteria can be used. In general, however, the following confidence interval
holds for RV estimators:

Lemma 3 Let β ∈ (0, 1), and assume that the assumptions of Theorem 5 hold
with α = S−1τ . Let uβ = Φ−1((1 + β)/2), where Φ is the cumulative distribu-
tion function of the standard Gaussian distribution. Then

IDX ± uβ

(
nδnV0(τ)ÎDXF̂X(xn)

)−1/2
are the boundaries of the asymptotic confidence interval of level β for ÎDX.

Proof Lemma 3 is a direct consequence of the asymptotic distribution established
in Theorem 5 and the convergence of F̂X(xn) to FX(xn) as n→ ∞. ■

5.2 Experimental Framework

As part of our evaluation of our estimators of local intrinsic dimension, we inves-
tigate their performance (as well as those of competing estimators) on a series of
data distributions, both real and artificially generated. While trials involving real ap-
plication data are primarily of practical interest, the study of artificial data allows to
systematically assess the ability of the individual methods to identify data dimension-
ality.

5.2.1 Methods

The methods used in this study include MLE, MoM, PWM, and RV. For all esti-
mators, the neighborhood size is set to k = 100. The RV estimators are evaluated
for the choices J = 1 and J = 2, as follows:

ÎDRV =

{ lnn−ln(n/2)
lnxn−lnx⌊n/2⌋

, if J = 1
ln(n/j)−(p−1) ln(i/j)

lnxn/xj+(p−1) lnxi/xj
, if J = 2,

where p = (xi − 2xj + xn)/(xn − xj), i = ⌊n/2⌋, and j = ⌊3n/4⌋. Note
that the estimator RV for J = 1 is a form of generalized expansion dimension
(GED) [HKN12]. For every dataset, we report the average of ID estimates across
all the points in the dataset. All estimators in our study can be computed in time
linear in the number of sample points.
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Method Parameters
PCA threshold = 0.025
kNNG1 k = 100, γ = 1, M = 1, N = 10
kNNG2 k = 100, γ = 1, M = 10, N = 1
MiNDml1 None
MiNDmli k = 100

Table 5.1: Parameter choices used in the experiments.

Our experimental framework includes several state-of-the-art estimators of intrin-
sic dimensionality, both local and global. The global estimators consist of a projec-
tion method (PCA), fractal methods (CD [CV02], Hein [HA05], Takens [Tak85]),
and graph-based methods (kNNG1, kNNG2 [CHI04]). The local distance-based es-
timators are MiNDml1 and MiNDmli [RLC+12]. Table 5.1 summarizes the param-
eter choices for every method, except for the fractal methods, which do not involve
any parameter.

The MiND variants makes more restrictive assumptions than our methods: they
assume the data to be uniformly distributed on a hypersphere, with a locally isomet-
ric smooth map between the hypersphere and the representational space. MiND
uses only the two extreme samples (smallest and largest), and requires knowledge
of the dimension of the space (D). In contrast, our approach assumes only that the
nearest neighbor distances are in the lower tail of the distance distribution, where
EVT estimation can be performed.

5.2.2 Artificial Distance Distributions

In the following we propose a set of experiments concerning artificial data, and de-
scribe the method employed for the generation of test data.

First, consider a reference point P drawn uniformly at random from within the
m-dimensional unit sphere, for some choice of m ∈ N. According to the method
of normal variates, we define P = Z1/mY∥Y∥−1, where Z is uniformly distributed
on [0, 1], and Y is a random vector in Rm whose coefficients follow the standard
normal distribution. The distance of P, with respect to our choice of reference point
at location 0 ∈ Rm, is distributed as follows:

X =
∥Z1/mY∥
∥Y∥

= Z1/m.
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Note that, by measuring LID purely based on distance values with respect to a ref-
erence point, the model does not require that the data have an underlying spatial
representation. As such, non-integer values of m ∈ R can be selected for the gen-
eration of distances, if desired.

For choices of m ∈ {1, 2, 4, 8, 16, 32, 64, 128}, we draw 100 independent se-
quences of sample distance values from the distribution described above, and record
the estimates produced by each of our methods for sample sizes n between 10 and
104.

5.2.3 Artificial Data

The datasets used in our experiments have been proposed in [RLC+12]. They con-
sist of 15 manifolds of various stuctures and intrinsic dimensionalities (d) repre-
sented in spaces of different dimensions (D). They are summarized in Table 5.2.

Manifold d D Description
1 10 11 Uniformly sampled sphere.
2 3 5 Affine space.
3 4 6 Concentrated figure

confusable with a 3d one.
4 4 8 Non-linear manifold.
5 2 3 2-d Helix
6 6 36 Non-linear manifold.
7 2 3 Swiss-Roll.
8 12 72 Non-linear manifold.
9 20 20 Affine space.

10a 10 11 Uniformly sampled hypercube.
10b 17 18 Uniformly sampled hypercube.
10c 24 25 Uniformly sampled hypercube.
11 2 3 Möbius band 10-times twisted.
12 20 20 Isotropic multivariate Gaussian.
13 1 13 Curve.

Table 5.2: Artificial datasets used in the experiments.

These datasets were generated in different sizes (103, 104, and 105 points) in
order to evaluate the effect of the number of points on the quality of the different
estimators. For each dataset and for each of the three sizes, we average the estimates
over 20 instances.
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In order to evaluate the robustness of the estimators, we also prepared versions
of these datasets with noise added. For each attribute f , we added normally dis-
tributed noise with mean equal to zero and standard deviation σn = p ·σf where σf
is the standard deviation of the attribute itself, and p ∈ {0.01, 0.04, 0.16, 0.64}. For
attributes with σf = 0, the noise was generated with standard deviation σn = p ·σ∗f
where σ∗f is the minimum of the nonzero standard deviations over all attributes.

5.2.4 Real Data

Not only can a reliable estimation of ID greatly benefit the practical performance
of many applications [KR02,BKL06,HMNO12], it also serves as a characterization
of high-dimensional datasets and the potential problems associated with their use
in practice. To this end, we investigate the distribution of LID estimates on the
following datasets, each taken from a real-world application scenario.

• The ALOI (Amsterdam Library of Object Images) data set contains a total
of 110250 color photos of 1000 different objects taken from varying view-
points under various illumination conditions. Each image is described by a
641-dimensional vector of color and texture features [BFF+01].

• The ANN_SIFT1B dataset consists of one billion 128-dimensional SIFT de-
scriptors randomly selected from the dataset ANN_SIFT, consisting of 2.8 ·
1010 SIFT descriptors extracted from 3 · 107 images. These sets have been
created for the evaluation of nearest-neighbor search strategies at very large
scales [JTDA11].

• BCI5 [Mil04] is a brain-computer interface dataset in which the classes cor-
respond to brainwave readings taken while the subject contemplated one of
three different actions (movement of the right hand, movement of the left
hand, and the subvocalization of words beginning with the same letter).

• Gisette [GGBHD04] is a subset of the MNIST [LBBH98] handwritten digit
image dataset, consisting of 50-by-50-pixel images of the highly confusable
digits ’4’ and ’9’. 2500 random features were artificially generated and added
to the original 2500 features, so as to embed the data into a higher dimen-
sional feature space. As the dataset was created for the NIPS 2003 feature
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selection challenge, the precise generation mechanism of the random features
was not made public.

• Isolet [CF90] is a set of 7797 human voice recordings in which 150 subjects
recite each of the 26 letters of the alphabet twice. Each entry consists of 617
features representing selected utterances of the recording.

• The MNIST database [LBBH98] contains of 70000 recordings of handwrit-
ten digits. The images have been normalized and discretized to a 28 × 28-
pixel grid. The gray-scale values of the resulting 784 pixels are used to form
the feature vectors.

5.2.5 Approximate Nearest Neighbors

For many datasets, various approximate nearest neighbor (ANN) methods can gen-
erate neighborhood sets much faster than would be possible using an exact indexing
method. As a rule, with ANN indexing methods it is possible to influence the trade-
off between accuracy and time complexity by means of parameter choices at query
time, design choices at construction time, or both. However, the use of approximate
neighborhood information can lead to a degradation in the quality of data statistics
that rely on it. In particular, the question arises as to how the quality of LID esti-
mators are affected when applied to distance samples generated from approximate
neighborhoods of diminishing accuracy. In this part of the experimental study, we
investigate the relationship between the accuracy of neighborhood sets and the ac-
curacy of LID estimates. Here, accuracy is measured as the proportion of distance
samples in the exact neighborhood that also appear in the approximate neighbor-
hood under consideration. Under the assumption that the exact and approximate
neighborhoods all have the same size k, this notion of accuracy coincides with those
of both recall and precision.

For any given dataset, we can generate approximate k-NN sets with carefully
controlled levels of accuracy, through the sparsification of exact neighbor sets of size
greater than k. The sparsification is done in two steps. In the first step, we randomly
select a proportion of the exact k nearest neighbors at the desired level of accuracy.
In the second step, we complete the new approximate list with nearest neighbors
drawn from outside the exact k-NN list, in a way that the selection rate matches
the accuracy. More precisely, let r be the target level of accuracy, expressed as a
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proportion between 0 and 1. Initially, the approximate neighborhood distance sam-
ple is constructed by randomly selecting ⌊rk⌋ elements of the approximate neigh-
borhood (without replacement) from among the first k elements in the exact k-NN
set. Next, an additional k−⌊rk⌋ elements are randomly selected from among those
ranked between k + 1 and K = ⌈k/r⌉ in the exact K-NN set, and add their dis-
tances to the sample. With this choice of K , the accuracy of the approximate k-NN
query result is almost identical to that of the K-NN query result:

• for neighbors ranked between 1 and ⌊rk⌋, the accuracy is ⌊rk⌋/k, where

r ·
(
1− 1

k

)
<

⌊rk⌋
k

≤ r ,

• for neighbors ranked between 1 and ⌈k/r⌉, the accuracy is k/⌈k/r⌉, where

r ·
(
1− 1

k + 1

)
<

k

⌈k/r⌉
≤ r .

As k increases, these upper and lower bounds converge to r.
In our experiments, to observe the effect of using ANN on LID values, we use

MLE estimation with k = 100. The accuracy r is chosen from the range 0.5 to
1.0, since for these values, the maximum size of the exact neighborhoods required
for the experimentation is a manageable 2k = 200.

5.2.6 Nearest Neighbor Descent

The computational and storage costs associated with the construction of an exact
k-nearest neighbor graph (similarity graph) is a limitation in many machine learn-
ing algorithms. Particularly in high-dimensional settings, the cost of generating all
exact k-nearest neighbor lists can be quadratic in the number of data objects, which
for large datasets can be prohibitively high. Many approximation methods exist for
the construction of nearest neighbor (ANN) with computation costs much less than
those of exact methods, though at the expense of accuracy.

Algorithm 4 NN-descent [DML11] given a dataset D, a distance function d, and
a neighborhood size k:

1. For each data point q ∈ D:
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• Initialize G by randomly generating a tentative k-NN list for q with
an assigned distance of +∞;

• Compute the RNN (reverse nearest neighbor) lists for q.

2. Repeat

• For each data point q ∈ D:

– Check different pairs of q’s neighbors (u, v) in q’s k-NN and
RNN lists, and compute d(u, v);

– Use ⟨u, d(u, v)⟩ to update v’s k-NN list, and use ⟨v, d(u, v)⟩ to
update u’s k-NN list;

3. until the k-NN graph G converges.

4. Return the k-NN graph G.

We conducted an experiment to show that the process of obtaining the neigh-
borhoods necessary for LID estimation can be considerably accelerated using a state-
of-the-art ANN method, with little or no effect on LID estimates. From among
the many ANN algorithms available, we chose the state-of-the-art Nearest Neigh-
bor Descent (NN-Descent) [DML11] algorithm for our experimentation. The NN-
Descent algorithm is based on the assumption of transitivity of the similarity mea-
sure — in other words, that two neighbors of a given data object are also likely
to be neighbors of one another. As shown in the pseudo-code description of Al-
gorithm 4, all points are initially associated with randomly built ‘k-NN lists’ which
are then iteratively updated. At every iteration, a pivot element q is selected, and
each possible pair (u, v) of q’s neighbors is considered for mutual updates. If the
distance d(u, v) is smaller than the distance to the last element in u’s k-NN list,
then the list is updated by inserting v in the appropriate location. The same test is
applied to the k-NN list of v. In addition, similar tests are applied to the reverse
(inverted) k-NN list of q. The algorithm converges when a pivot selection round
completes without updates are made to the k-NN lists. As recommended in the
original paper [DML11], we modified the convergence condition so as to terminate
after a maximum of 7 rounds of the loop in lines 2-3.
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Dataset d D IDMLE IDMoM IDPWM IDGED IDRVE MiNDml1 MiNDmli CD Hein Takens kNNG1 kNNG2 PCA
m1 10 11 8.07 8.08 8.14 7.91 7.79 9.50 8.95 9.24 5.35 9.44 7.96 7.02 11.00
m2 3 5 2.67 2.67 2.68 2.65 2.60 2.94 3.00 2.87 2.75 2.91 2.53 2.52 3.00
m3 4 6 3.56 3.56 3.59 3.55 3.49 3.88 4.00 3.63 3.70 3.66 4.00 2.88 5.30
m4 4 8 4.76 4.93 5.18 5.16 5.06 3.90 4.00 3.93 5.00 3.78 6.04 3.38 8.00
m5 2 3 1.98 2.03 2.07 2.03 2.00 1.97 2.00 1.95 2.30 1.98 2.27 1.99 3.00
m6 6 36 7.08 7.18 7.39 7.24 7.13 6.00 7.00 5.73 2.85 5.73 9.43 8.30 12.00
m7 2 3 2.49 2.80 3.04 3.22 3.12 2.00 2.00 1.95 1.90 1.95 3.10 2.86 3.00
m8 12 72 12.29 12.33 12.51 11.97 11.79 13.49 13.00 11.00 3.60 11.85 14.28 12.56 24.00
m9 20 20 12.39 12.40 12.50 11.96 11.79 15.03 13.50 12.84 4.30 14.68 19.68 10.84 20.00

m10a 10 11 7.39 7.40 7.47 7.28 7.16 8.50 8.00 8.42 8.15 8.45 10.69 6.65 10.00
m10b 17 18 11.06 11.07 11.15 10.73 10.56 13.40 12.00 9.35 7.05 13.16 12.42 14.45 17.00
m10c 24 25 14.05 14.07 14.22 13.52 13.32 17.69 15.35 16.82 6.05 16.90 17.31 29.77 24.00
m11 2 3 2.49 2.74 2.94 3.05 2.97 2.01 2.00 1.99 2.70 2.00 2.83 2.59 3.00
m12 20 20 12.48 12.46 12.43 11.85 11.67 16.79 14.00 13.69 3.70 13.64 11.71 5.13 20.00
m13 1 13 1.35 1.75 2.11 2.22 2.08 1.01 1.00 1.01 1.15 1.01 1.46 1.36 7.90

Table 5.3: Average ID estimates for 1000-point-manifolds using 100 nearest neighbors.

5.3 Experimental Results

5.3.1 Artificial Distance Distributions

We begin our experimental study with an assessment — in terms of bias, variance,
and convergence — of the ability of each estimator to identify the ID of a sample
of distance values generated according to different choices of target ID. Note that
for these trials, the distributional model asserted in Lemma 1 holds everywhere on
the range [0, w) by construction (with w = 1).

Figures 5.1 and 5.2 show the behavior of MLE, MoM, and RV (for choices of
J = 1 and J = 2). The convergence to the target ID value observed in every case
empirically confirms the consistency of these estimators. Likewise, PWM is consis-
tent however, one should beware of PWM’s susceptibility to the effects of numerical
instability.

We also note that the RV estimator with J = 1 (GED) — which asymptotically
minimizes variance according to Lemma 2 — is not the choice that minimizes vari-
ance when the number of samples is limited. Faster initial convergence favors the
choice of MLE and MoM for applications where the number of available query-to-
neighbor distances is limited, or where time complexity is an issue.

5.3.2 Artificial Data

In Tables 5.3 and 5.4, for each of the estimators considered in this study, we present
ID estimates for the artifical datasets, averaged over 20 runs each. It should be noted
that as PCA and MiNDmli estimates are restricted to integer values, their bias is
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Dataset d D IDMLE IDMoM IDPWM IDGED IDRVE MiNDml1 MiNDmli CD Hein Takens kNNG1 kNNG2 PCA
m1 10 11 9.04 9.10 9.32 9.06 8.92 9.61 9.00 9.56 8.95 9.59 9.20 9.87 11.00
m2 3 5 2.88 2.90 2.94 2.90 2.85 2.96 3.00 3.08 3.55 2.98 2.77 2.44 3.00
m3 4 6 3.86 3.90 3.97 3.92 3.85 3.92 4.00 3.75 3.90 3.76 3.94 3.94 5.05
m4 4 8 4.06 4.14 4.27 4.23 4.15 3.91 4.00 3.83 4.65 3.84 3.84 3.84 8.00
m5 2 3 1.98 2.01 2.04 2.01 1.98 1.90 1.95 2.05 2.20 2.00 2.02 2.02 3.00
m6 6 36 6.64 6.78 7.11 7.01 6.89 5.85 6.00 5.05 4.30 5.66 3.34 3.34 12.00
m7 2 3 1.96 1.99 2.02 1.99 1.95 1.99 2.00 1.97 1.95 1.98 1.83 1.83 3.00
m8 12 72 13.72 13.86 14.50 13.91 13.69 12.91 14.00 11.95 8.10 11.92 14.08 14.08 24.00
m9 20 20 14.47 14.56 15.08 14.41 14.18 15.95 15.00 15.69 2.65 15.74 10.11 10.11 20.00

m10a 10 11 8.20 8.25 8.43 8.21 8.08 8.86 8.00 8.87 9.10 8.92 6.55 6.55 10.00
m10b 17 18 12.72 12.80 13.21 12.69 12.49 13.95 13.00 13.82 6.70 13.85 19.52 19.52 17.00
m10c 24 25 16.66 16.77 17.45 16.54 16.28 18.50 17.00 18.08 10.90 18.13 15.00 15.00 24.00
m11 2 3 1.99 2.03 2.06 2.04 2.00 1.99 2.00 1.99 2.00 2.00 1.84 1.84 3.00
m12 20 20 15.46 15.54 16.03 15.23 15.00 17.74 16.00 15.04 3.70 15.00 37.63 37.63 20.00
m13 1 13 1.01 1.04 1.06 1.03 1.01 0.00 1.00 1.00 1.00 1.00 0.85 0.85 8.00

Table 5.4: Average ID estimates for 10000-point-manifolds using 100 nearest neighbors.

Dataset d D IDMLE IDMoM IDPWM IDGED IDRVE MiNDml1 MiNDmli CD Hein Takens kNNG1 kNNG2 PCA
m1 10 11 -10.07 -10.55 -11.80 -11.81 -11.88 -1.56 -2.78 -11.82 -38.55 -12.10 -62.17 -64.74 -22.73
m2 3 5 2.43 -1.03 -3.06 -3.10 -3.51 36.49 0.00 12.01 -18.31 23.15 16.97 32.79 -33.33
m3 4 6 -30.83 -32.05 -33.25 -33.16 -33.25 -23.47 -25.00 -22.13 -41.03 -22.34 -35.79 -35.79 -60.40
m4 4 8 65.02 62.32 59.25 57.21 57.59 88.75 70.00 78.85 -6.45 78.12 21.61 21.61 -18.75
m5 2 3 -48.48 -48.26 -48.04 -48.26 -48.48 -37.37 -48.72 -71.71 -54.55 -49.50 -25.74 -25.74 -66.67
m6 6 36 166.11 161.65 157.10 144.94 145.43 282.22 220.83 261.58 -30.23 221.02 219.76 219.76 131.25
m7 2 3 -8.67 -14.57 -16.34 -15.58 -15.90 34.17 0.00 14.21 10.26 9.60 -44.81 -44.81 -66.67
m8 12 72 44.17 43.00 39.79 35.44 35.65 115.49 60.71 86.53 25.93 85.99 93.68 93.68 95.21
m9 20 20 -21.77 -22.25 -24.34 -24.01 -23.98 -9.97 -17.00 -22.12 167.92 -22.62 157.17 157.17 -31.75

m10a 10 11 21.46 21.45 21.59 20.83 20.92 22.12 25.00 9.02 -64.29 8.07 338.17 338.17 10.00
m10b 17 18 12.89 12.73 12.49 11.66 11.69 17.35 15.38 1.37 -29.85 0.65 -36.37 -36.37 5.88
m10c 24 25 7.98 7.87 7.45 6.83 6.88 14.76 11.76 -2.99 -74.31 -3.75 -177.73 -177.73 4.17
m11 2 3 32.16 29.56 28.64 28.43 28.50 47.74 0.00 41.21 10.00 40.50 195.65 195.65 -35.00
m12 20 20 -22.83 -23.10 -24.52 -23.90 -23.93 -16.52 -19.69 -16.22 13.51 -16.27 -84.45 -84.45 -26.00
m13 1 13 376.24 353.85 337.74 339.81 341.58 inf 500.00 524.00 305.00 527.00 363.53 363.53 -75.00

Table 5.5: Deviation of ID estimates for 10000-point-manifolds with added noise (p=0.01) using 100
nearest neighbors.

Dataset d D IDMLE IDMoM IDPWM IDGED IDRVE MiNDml1 MiNDmli CD Hein Takens kNNG1 kNNG2 PCA
m1 10 11 -10.18 -10.66 -11.91 -11.92 -12.00 -1.87 -2.78 -17.05 -63.69 -12.20 -341.09 -324.72 -23.18
m2 3 5 2.43 -1.03 -3.06 -3.45 -3.51 37.16 0.00 18.83 -9.86 22.82 -7.94 4.51 -33.33
m3 4 6 -30.57 -32.05 -33.25 -33.16 -33.25 -23.47 -25.00 -26.40 -42.31 -22.07 -31.47 -31.47 -60.40
m4 4 8 65.02 62.32 59.25 56.97 57.35 89.00 71.25 55.61 -17.20 77.34 131.25 131.25 -20.00
m5 2 3 -48.48 -48.26 -48.04 -48.26 -48.48 -37.37 -48.72 -69.76 -54.55 -49.50 -50.99 -50.99 -66.67
m6 6 36 165.96 161.50 156.82 144.79 145.28 281.20 220.83 260.79 -2.33 220.49 714.07 714.07 130.83
m7 2 3 -8.67 -14.57 -16.83 -15.58 -15.90 34.17 0.00 15.74 7.69 11.62 -38.25 -38.25 -66.67
m8 12 72 44.24 43.07 39.86 35.59 35.72 116.42 60.71 86.69 46.30 86.16 9.52 9.52 95.21
m9 20 20 -21.77 -22.25 -24.27 -24.01 -23.91 -10.22 -17.33 -22.31 132.08 -22.74 15.73 15.73 -31.75

m10a 10 11 21.46 21.45 21.59 20.83 20.79 21.78 25.00 3.04 -48.35 7.96 25.65 25.65 10.00
m10b 17 18 12.89 12.73 12.49 11.66 11.69 17.20 15.38 -3.84 -36.57 0.72 -38.17 -38.17 5.88
m10c 24 25 8.04 7.87 7.51 6.83 6.94 14.49 11.76 -7.85 -59.17 -3.53 -18.80 -18.80 4.17
m11 2 3 32.16 29.56 28.64 28.43 28.50 46.73 0.00 40.20 37.50 39.00 255.43 255.43 -35.00
m12 20 20 -22.83 -23.10 -24.52 -23.90 -23.93 -16.18 -19.37 -16.16 33.78 -16.33 -174.25 -174.25 -26.00
m13 1 13 376.24 353.85 337.74 339.81 341.58 inf 500.00 525.00 220.00 528.00 327.06 327.06 -75.00

Table 5.6: Deviation of ID estimates for 10000-point-manifolds with added noise (p=0.04) using 100
nearest neighbors.
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Figure 5.1: Comparison of the mean and standard deviation of LID estimates provided by MLE, MoM
and RV (for J = 1 and J = 2) on increasingly large samples drawn from artificially-generated distance
distributions. The results cover target dimensionality values between 1 and 8. The values are marked in
the corresponding plots.
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Figure 5.2: Comparison of the mean and standard deviation of LID estimates provided by MLE, MoM
and RV (for J = 1 and J = 2) on increasingly large samples drawn from artificially-generated distance
distributions. The results cover target dimensionality values between 16 and 128. The values are marked
in the corresponding plots.
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(a) Illustration of the distribution of k-nearest neighbor distances for k ∈ [1, 1000] with respect to 7
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points of interest.

Figure 5.3: Distribution of IDMLE estimates and distance values across neighborhoods around the points
of interest.
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Dataset d D IDMLE IDMoM IDPWM IDGED IDRVE MiNDml1 MiNDmli CD Hein Takens kNNG1 kNNG2 PCA
m1 10 11 -10.18 -10.66 -11.80 -11.81 -11.88 -1.77 -2.78 -16.95 -35.75 -12.10 -37.61 -41.84 -22.73
m2 3 5 2.43 -1.03 -3.06 -3.10 -3.51 37.16 0.00 19.48 -18.31 23.49 -24.19 -13.93 -33.33
m3 4 6 -30.83 -32.05 -33.25 -33.42 -33.25 -22.96 -25.00 -31.20 -35.90 -22.34 -35.03 -35.03 -60.40
m4 4 8 65.02 62.08 59.02 56.97 57.35 88.75 70.00 67.10 8.60 77.86 86.98 86.98 -20.00
m5 2 3 -48.48 -48.26 -48.04 -48.26 -48.48 -37.37 -48.72 -73.66 -54.55 -49.50 -48.02 -48.02 -66.67
m6 6 36 166.11 161.65 157.10 144.94 145.57 281.71 220.83 261.19 32.56 220.67 424.55 424.55 130.83
m7 2 3 -8.67 -14.57 -16.34 -15.58 -15.90 34.17 0.00 19.29 18.46 15.15 4.37 4.37 -66.67
m8 12 72 44.17 43.00 39.79 35.44 35.57 115.72 59.64 85.94 -11.11 85.65 -11.93 -11.93 95.21
m9 20 20 -21.77 -22.25 -24.27 -24.01 -23.98 -9.66 -17.00 -22.12 100.00 -22.68 -907.22 -907.22 -31.75

m10a 10 11 21.46 21.45 21.59 20.83 20.79 21.22 25.00 9.02 -39.56 8.18 34.35 34.35 10.00
m10b 17 18 12.89 12.73 12.49 11.66 11.69 17.28 15.38 1.16 -58.21 0.51 -38.78 -38.78 5.88
m10c 24 25 8.04 7.93 7.51 6.89 6.88 14.43 11.76 -2.71 -30.73 -3.42 -610.20 -610.20 4.17
m11 2 3 31.66 29.06 28.64 28.43 28.50 46.73 0.00 27.64 10.00 39.00 3811.41 3811.41 -35.00
m12 20 20 -22.83 -23.17 -24.52 -23.90 -23.93 -16.52 -19.69 -16.16 6.76 -16.27 -835.80 -835.80 -26.00
m13 1 13 376.24 352.88 336.79 339.81 340.59 inf 500.00 491.00 270.00 528.00 387.06 387.06 -75.00

Table 5.7: Deviation of ID estimates for 10000-point-manifolds with added noise (p=0.16) using 100
nearest neighbors.

lower for examples having integer ground-truth intrinsic dimension, especially when
this dimensionality is small. Also, unlike the other estimators tested, MiND estima-
tors also require that an upper bound on the ID be supplied (set to D in these ex-
periments). PCA requires a threshold parameter to be supplied, the value of which
can greatly influence the estimation.

The experimental results indicate that local estimators tend to over-estimate di-
mensionality in the case of non-linear manifolds (sets m3, m4, m5, m6, m7, m8,
m11 and m13) and to under-estimate it in the case of linear manifolds (sets m1, m2,
m9, m10a, m10b, m10c and m12). The experimental results with higher sampling
rates confirm the reduction in bias that would be expected with smaller k-nearest-
neighbor distances, as the local manifold structure more closely approximates the
tangent space.

For highly non-linear manifolds, such as the Swiss Roll (m7) or the Möbius
band (m11), global estimators have difficulty in identifying the intrinsic dimension.
As one might expect, the local estimators ID and MiND are more accurate for such
cases. Although high local curvature is reflected in the distance distribution, and
consequently the local dimensional estimates as well, the effect is much smaller than
for global estimators. With a higher sampling rate, k-nearest neighbor distances are
diminished, and the curvature becomes locally less significant. The local manifold
structure tends to that of its tangent space, reducing the bias of local estimation. We
also note that the bias is proportional to the intrinsic dimensionality of the manifold.
As dimensionality increases, a higher sampling rate is required in order to reduce the
bias.
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To show the effects of noise on the estimators, we display in Tables 5.5, 5.6
and 5.7 for each method the deviation of every estimate in the presence of noise
as a proportion of the estimate obtained in the absence of noise. In other words
we divide the difference between the estimate on the noisy manifold and the esti-
mate on the original manifold by the latter of the two. On the one hand, we note
that global methods, k-NNG in particular, are significantly affected by noise: their
estimates diverge very quickly as noise is being introduced. It is not necessarily a
disadvantage since the structure of the manifold has been drastically changed. On
the other hand, the local estimators display more resistance to noise in the case of
non-linear manifolds; among the local estimators, our EVT estimators tend to out-
perform the MiND variants.

We note that the additive noise considered in this experiment does not dras-
tically impact the intrinsic dimensionality in the case of hypercubes. (sets m10a,
m10b and m10c). That explains why PCA appears resistant to noise for the sets
m10a, m10b and m10c. However, noise in these manifolds may drive points far
from their original positions, which may explain the relatively high estimates ob-
tained by local intrinsic dimensionality estimators on these sets.

The robustness of local estimation is of great importance for many applications
such as search and outlier detection. The resistance to noise seems to be generally
higher in the case of manifolds of higher intrinsic dimensionality. It is important that
our estimates can be trusted on these complex manifolds where the concentration
effect is more important. In datasets of smaller intrinsic dimensionality, our noise
model raises the dimensionality agressively which does not happen very often in real
world situations.

5.3.3 Real Data

Based on our experiments on synthetic data, we expect the performance of our pro-
posed estimators to be largely in agreement with one another. Accordingly, for clar-
ity of presentation, for the experimentation on real data, we show results only for
the MLE estimator.

For each of the datasets considered in this study, Figures 5.4 and 5.5 illustrates
the distribution of LID estimates based at reference points drawn from the data.
Due to its large size, for the ANN_SIFT1B dataset, the reference set was gener-
ated by selecting 104 items uniformly at random. For the other datasets, the entire
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Figure 5.4: Plots of the distribution of LID values across each dataset. The LID valueswere obtained using
the MLE estimator on the size-100 neighborhoods of the individual reference points.
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Figure 5.5: Plots of the distribution of LID values across each dataset. TheLID valueswere obtained using
the MLE estimator on the size-100 neighborhoods of the individual reference points.
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Figure 5.6: Histograms of LID values across each dataset, obtained using the MLE estimator on the size-
100 neighborhoods of the individual reference points.
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Figure 5.7: Histograms of LID values across each dataset, obtained using the MLE estimator on the size-
100 neighborhoods of the individual reference points.
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dataset was used as the reference set. We observe clear differences in the distribu-
tion of LID values among the datasets; for example, the center and spread of the
LID estimates for ALOI are considerably lower than those obtained for the other
datasets, whereas the LID estimates for Gisette are clearly higher. More precisely,
we observe mean values of µALOI = 4.4, µANN_SIFT1B = 12.3, and µGisette = 49.4.
with the corresponding standard deviations of σALOI = 3.5, σANN_SIFT1B = 3.0, and
σGisette = 12.4. It should be noted that the measured ID within the neighborhoods
that were tested is far smaller than the dimension of the full feature spaces. By plot-
ting the same data as histograms in Figure 6.7, we can furthermore see that the in-
dividual distributions of LID values differ in kurtosis and skewness as well.

Figure 6.7 shows that the LID estimates for the Gisette dataset are very high
compared to those of the other 5 sets. In particular, they are much higher than the
LID values for MNIST, the original data set from which Gisette was constructed.
It is clear from the LID histograms that the addition of artificial noise features in
Gisette drastically inflates the LID values in the dataset, revealing that the generation
mechanism underlying these noise features is very different from that of real-world
datasets. Although this generation mechanism was not revealed by the creators of
Gisette, local intrinsic dimension — as a measure of the subspace-filling capacity of
the data — is capable of differentiating between artificial noise and natural noise.

For the ANN_SIFT1B dataset, from among the points of interest highlighted in
the scatter plot in Figure 5.4 and 5.5, A, B and C correspond to the objects for
which the three lowest LID values have been estimated (IDA ≈ 2.8, IDB ≈ 3.1,
and IDC ≈ 2.4). Likewise, the objects corresponding to D, E and F achieved
the three greatest ID values at IDD ≈ 31.5, IDE ≈ 30.1, and IDF ≈ 25.7. The
object G has been chosen as its associated dimensionality estimate (IDG ≈ 12.3)
is closest to the mean. We subsequently investigated the distribution of distances in
the neighborhoods of these points so as to gain a better understanding of why the
corresponding dimensionality estimates take such low, high, or average values.

The most striking difference between the individual points of interest are the
distances to their respective k-nearest neighbors. Figure 5.3a displays for each point
of interest the specific distribution of neighbor-distances for all values of k between
1 and 1000. Interestingly, the ID measured at the points of interest appears to be
associated with other properties of the respective objects. For example, distribution
of neighbor-distances for objects with high corresponding dimensionality (D, E and
F ) indicate that these points are in some sense outliers. On the other hand, despite
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Dataset d D r=.5 r=.6 r=.7 r=.8 r=.9
m1 10 11 7.33 7.49 7.59 7.67 7.75
m2 3 5 2.56 2.59 2.62 2.64 2.66
m3 4 6 3.35 3.42 3.47 3.50 3.53
m4 4 8 4.87 4.86 4.85 4.83 4.79
m5 2 3 2.10 2.04 2.01 2.00 1.99
m6 6 36 6.84 6.93 7.00 7.02 7.06
m7 2 3 2.61 2.58 2.56 2.55 2.52
m8 12 72 11.28 11.60 11.85 12.01 12.16
m9 20 20 11.29 11.61 11.87 12.08 12.22

m10a 10 11 6.98 7.10 7.20 7.28 7.34
m10b 17 18 10.15 10.43 10.64 10.80 10.95
m10c 24 25 12.73 13.12 13.44 13.65 13.88
m11 2 3 2.14 2.33 2.44 2.49 2.50
m12 20 20 11.10 11.52 11.84 12.08 12.31
m13 1 13 1.92 1.74 1.62 1.51 1.42

Table 5.8: Average ID (MLE) estimates for 1000-point manifolds using 100 approximate nearest neigh-
bors with controlled recall.

their distance distributions being quite dissimilar, the LID values measured at A, B,
and C are nearly identical.

5.3.4 Approximate Nearest Neighbors

This set of experiments shows that using approximate neighbors reduces the over-
all computation time of LID at the cost of an increase in bias. In an approximate
k-NN query result, only a certain proportion of the observed distance values (equal
to the accuracy of the result) correspond to distances values associated with mem-
bers of an exact k-NN result. The distances associated with the approximate result
can be regarded as having been generated by first sampling the dataset, and taking
the distance values associated with the exact k-NN set with respect to the sample.
The bias of the LID estimates for the approximate neighborhood can therefore be
regarded as the result of a sparsification of the available distance information.

The results presented in tables 5.8 and 5.9 show that using distances drawn from
approximate neighborhoods does not lead to significant changes in estimated LID
values, provided that the accuracy of the neighborhoods is reasonably high. In fact,
for the datasets studied, the change in estimated LID values did not exceed 18% of
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Dataset d D r=.5 r=.6 r=.7 r=.8 r=.9
m1 10 11 8.81 8.90 8.97 8.97 9.02
m2 3 5 2.82 2.85 2.87 2.86 2.87
m3 4 6 3.79 3.83 3.85 3.84 3.86
m4 4 8 4.19 4.16 4.14 4.09 4.08
m5 2 3 1.97 1.98 1.98 1.98 1.98
m6 6 36 6.85 6.82 6.78 6.71 6.68
m7 2 3 1.95 1.96 1.96 1.96 1.96
m8 12 72 13.47 13.60 13.68 13.66 13.71
m9 20 20 13.97 14.16 14.30 14.32 14.41

m10a 10 11 8.00 8.08 8.15 8.14 8.18
m10b 17 18 12.32 12.47 12.59 12.60 12.67
m10c 24 25 16.02 16.26 16.43 16.47 16.59
m11 2 3 2.02 2.01 2.01 2.00 2.00
m12 20 20 14.72 14.98 15.18 15.24 15.37
m13 1 13 1.03 1.02 1.02 1.01 1.01

Table 5.9: Average ID (MLE) estimates for 10000-point manifolds using 100 approximate nearest neigh-
bors with controlled recall.

the ground truth intrinsic dimension in the worst case, even with a neighborhood
accuracy of 50%.

We observe that for each of the datasets, the observed bias is inversely pro-
portional to the neighborhood accuracy: a higher accuracy always corresponds to
a lower bias, although the relationship is not linear. We also observe that the sign
of the bias depends on the curvature of the underlying manifolds within which the
datasets are distributed. This trend is clear even when only 1000 points were gen-
erated within the manifolds (see Table 5.8). The bias is positive for the non-convex
sets (m4, m5 , m7, and m13). For these sets of high curvature, distance sparsifi-
cation has a proportionally greater effect on the smaller distances, as compared to
when the manifolds are linear. When the loss of instances of smaller distance values
is higher than for larger distance values, the estimates of LID would be expected to
rise.

It is important to note that estimation over neighborhoods of size 100 within a
dataset of size 1000 is not in line with the asymptotic assumptions of EVT, since the
neighborhood here can hardly be viewed as being derived from an extreme lower tail
of the underlying distribution. However, estimation over neighborhoods of size 100
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Dataset Exact NN NN-Descent
Time (s) Time (s) Time prop. Accuracy

ALOI 85168 2558 0.030 0.999968
ANN_SIFT1B 2020520 13305 0.007 0.945113
BCI5 1466 209 0.143 0.999995
Isolet 2523 590 0.234 1.000000
Gisette 230 111 0.486 0.999999
MNIST 50211 2943 0.059 0.999960

Table 5.10: Effect of using NN-Descent

within a dataset of size 10,000 would be expected to lead to more stable results, due
to the much smaller ratio of the neighborhood set size to the full dataset size. This
is borne out by the experimental results shown in Table 5.8, where it can be seen
that the approximation of neighborhood distance values has very little effect on the
quality of ID estimation.

For the artificial datasets, as a representative ANN method, NN-Descent achieves
extremely high accuracies while achieving useful speedups over sequential search (es-
pecially for the larger datasets). As seen in Figure 5.8 and 5.9, average accuracies
range between 99.9982% and 100%, while average execution costs range between
3 and 8 times faster than exact k-NN computation time for sets of 10000 points,
and between 15 and 41 times faster than exact k-NN computation time for sets of
100000 points. Under these conditions, the LID estimates for all artificial datasets
included in this experiment remain unchanged. For the datasets of size 1000 or
less, the execution cost of NN-Descent is dominated by the overheads associated
with the underlying data structures. However, as shown in Figure 5.9 for datasets
of 100000 points, the benefit of estimating LID with approximate neighborhoods
quickly becomes apparent as the dataset size rises.

For the real-world datasets, NN-Descent achieves very high accuracies as well,
while achieving important speedups over exact nearest neighbor computation. Av-
erage accuracies in all cases were at least 94.5%, as can be seen from Table 5.10.
On the small datasets, NN-Descent accelerates the computation of nearest neigh-
bors by no more than a factor of 2. For these small datasets, the time gain is lim-
ited by the overheads in maintaining the data structures required for NN-Descent.
On the large datasets of this study, approximate nearest neighbors are obtained in
up to 151 times faster than exact nearest neighbors. Due to the high accuracy of
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Figure 5.8: Execution time and accuracy of NN-Descent compared with exact nearest neighbors’ compu-
tation for 20 runs on the 10000-point datasets.
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Figure 5.9: Execution time and accuracy of NN-Descent compared with exact nearest neighbors’ compu-
tation for 20 runs on the 100000-point datasets.
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neighborhoods, LID estimates remain essentially unchanged for all datasets except
for ANN_SIFT1B, where they deviate by only −1.82% from their original values.
For most machine learning applications, such small changes in LID values would
likely have little or no impact on the usefulness of the estimates.

Through these experiments, we can conclude that the use of approximate nearest
neighbor computation allows LID estimation to be effectively applied at large scales.
LID estimation can therefore be a viable option even for those machine learning and
data mining applications where scalability is an important issue.

5.4 Discussion

Our experimental results on synthetic data show that for all of the estimators of LID
that we propose, the estimation stabilizes for sample sizes on the order of 100. How-
ever, for Theorem 2 to be applicable, one must set a sufficiently small threshold on
the lower tail of the distribution, which may severely limit the number of samples
falling within the tail. Although there is a conflict between the accuracy of the esti-
mator and the validity of the model, this conflict is resolved as the size of the dataset
scales upward; it is in precisely such situations where the applications of ID have the
most impact.

For situations where exact neighborhood information is impractical to compute,
our experimental results show that LID estimation is effective even when only ap-
proximate neighborhood information is available. Consequently, learning machines
that exploit LID values need not suffer from the high computational cost associated
with the computation of exact neighborhoods.

Estimates of local ID constitute a measure of the complexity of data. Along with
other indicators such as contrast [SR06], LID could give researchers and practition-
ers more insight into the nature of their data, and therefore help them improve the
efficiency and efficacy of their applications. As a tool for guiding learning processes,
the proposed estimators could serve in many ways. Data collected during the re-
trieval processes could be automatically filtered out as noise, whenever they are as-
sociated with an unusually high ID value. In this way, the quality of query results
may be enhanced as well.

The performance of content-based retrieval systems is usually assessed in terms
of the precision and recall of queries on a ground truth dataset. However, in high-
dimensional settings it is often the case that some points are much less likely to ap-
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pear in a query result than others. Unlike LID, conventional measures of complexity
or performance do not account for this difficulty. LID has therefore the potential to
aid in the design of fair benchmarks that truly reflect the power of retrieval systems,
according to a sound, mathematically-grounded procedure.
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Chapter 6
Estimating LID Using Auxiliary Distances

A global estimator can be adapted for local estimation of ID simply by applying it
to the subset of the data lying within some region surrounding a point of interest.
Global methods typically make use of many (if not most or all) of the pairwise re-
lationships within the data; however, ‘clipping’ of the data set to a region, by dis-
counting some of these relationships while preserving others, may lead to estimation
bias whenever the boundary shape is not properly accounted for in the ID model or
estimation strategy. On the other hand, implicit in their design, local estimators of
ID avoid the negative affect of clipping, by considering only the direct relationships
between a reference point and its nearest neighbors. The sample boundary is usu-
ally set to the distance from the reference point to the farthest object in the neigh-
borhood. With this distinction in mind, application of global estimators within the
neighborhood of a given reference point should not be regarded as truly ‘local’.

Local estimators of ID can potentially have significant impact when used in sub-
space outlier detection, subspace clustering, or other applications in which the intrin-
sic dimensionality is assumed to vary from location to location. However, in prac-
tical settings, the natural groups within the data are often too small to provide the
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number of samples necessary for accurate estimation of ID — in the LID frame-
work, for example, approximately one hundred distance values are usually required
for convergence [ACF+15]. Simply choosing a number of samples sufficient for the
convergence of the estimator can lead to a violation of the locality constraint, as
the sample could consist of points from several different natural groups, each with
their own intrinsic dimensionalities. When the cluster memberships and size are not
known in advance, in order to ensure that the majority of the points are drawn from
the same group, it is necessary to use estimators that can cope with the smallest
possible sample sizes [ACF+15, RLC+12]. Thus, the development of local ID esti-
mators with faster convergence properties is essential for the effectiveness and the
efficiency of subspace-based applications.

One possible strategy for improving the convergence properties of estimation
without violating locality is to draw more measurements from smaller data samples
— however, for the case of distance-based local estimation from neighborhood sam-
ples, this would require the use of distances between pairs of neighbors, and not
merely the distances from the reference point to its neighbors. Indeed, the global
distance-based correlation dimension (CD) [Tak85], if restricted to a neighborhood,
would use all pairwise distances within the neighborhood to achieve its estimate. Al-
though for a given neighborhood size this local use of CD would be expected to
converge much faster than true local ID estimators, the result would be biased due
to the clipping.

In this Chapter, we show that the convergence properties of LID estimation can
be improved by augmenting it with distance measurements from members of the
neighbor set to their own nearest neighbors. The sizes of these ‘auxiliary’ neighbor-
hoods is restricted so that they are completely contained within the original, ‘pri-
mary’ neighborhood, thus preserving the locality of the estimation. Within a given
primary neighborhood of k elements, the number of distance measurements thus
could range between a minimum of k and a maximum of k(k + 1)/2. We show
that under certain assumptions, the number of measurements available depends on
the local ID itself, with the greatest number of auxiliary distance measurements be-
ing available when the ID is small. The main contributions of this Chapter include:

• the augmented local ID estimator, ALID;

• for the case of uniform data distributions in Euclidean space, a theoretical
analysis of the expected number of auxiliary distances available in terms of
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ID;

• an experimental comparison of the bias, variation, and convergence proper-
ties of ALID with LID and other local and global estimators of ID, on both
synthetic and real data sets.

The remainder of the Chapter is structured as follows. In Section 6.1 we intro-
duce our proposed estimator, and present a theoretical analysis relating the expected
number of auxiliary distances with the intrinsic dimensionality. In Section 7.3 our
experimental framework is described in detail, and in Section 7.4 we present our ex-
perimental comparison of ALID with existing local and global ID estimators. In this
latter section we also validate our theoretical analysis empirically, by showing the
number of auxiliary measurements available and comparing them to the numbers
predicted by the theory. We conclude the with a short discussion.

6.1 Augmented Local ID Estimation

6.1.1 MLE estimation for ALID.

Global estimators based on correlation dimension use the smallest pairwise distances
within the data in order to measure the global ID. In particular, the Takens estima-
tor [Tak85] uses all pairwise distances within balls of a fixed radius and evaluates ID
using the same Hill estimator. With this approach, intracluster distances are likely
to dominate intercluster distances that may occur whenever the radius is too high.

Restricting the computation of correlation dimension to a neighborhood is not a
satisfactory estimation strategy for local ID. Consider a query point q and its neigh-
borhood B(q, w) of radius w, and a neighbor i at distance xi ≤ w from q. If
the distance xi,j from i to a neighbor j is such that xi + xi,j > w, then the ball
B(i, xi,j) centered at i with radius xi,j (shown in red in Figure 6.1a) would not be
completely contained within B(q, w). Restricting (or ‘clipping’) the estimation to
points located both in B(i, xi,j) and B(q, w) would result in an estimation error:
points located inside B(i, xi,j) but outside the original neighborhood would not be
accounted for by the dimensionality estimator, and would thereby induce a bias. Al-
ternatively, estimating over all points of B(i, xi,j) would require points from outside
the neighborhood, which would violate the locality assumption.
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(a) Neither auxiliary nor direct distances (in purple) to neighbors that are outside
the locality can be used. Moreover, auxiliary distances where the corresponding ball
(in red) crosses over the original locality can not be used for the estimation.
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(b) Pairwise distances that remain within internally tangent balls can be used in the
ID estimation without introducing distortions. In this figure we consider only one
nearest neighbor (i) and the corresponding usable auxiliary distances (in blue).

Figure 6.1: State-of-the-art local ID estimators use only direct distances (in black). The proposed estima-
tor ÎDALID uses additional distances between pairs of neighbors. Some of these distances (in blue) can be
used, while others (in purple and red) cannot.
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To avoid the negative effects of clipping, ALID makes use of an auxiliary dis-
tance measurement xi,j from i only if the ball of radius xi,j centered at i is entirely
contained within the original neighborhood (as shown in Figure 6.1b). This condi-
tion can be stated as xi,j ≤ w − xi.

The proposed auxiliary-distance estimator (ÎDALID) can be regarded as an ag-
gregation of Hill estimates (ÎDMLE) calculated at q as well as its neighbors located
within distance w. We implicitly assume that the ÎDMLE estimates at these neighbors
converge to the ID of q, as w tends to zero.

Let Xi be the random distance variable from the neighbor i in the range [0, w−
xi), and let fXi,w−xi and FXi,w−xi be respectively the pdf and cdf associated with
Xi. To simplify the notation, we assign the rank i = 0 to the test point. The log-
likelihood function is:

L(IDX) = ln
[ ∏
xi,j+xi<w
i,j∈[0,k]

fXi,w−xi(xi,j)

]

= ln

[ ∏
xi,j+xi<w
i,j∈[0,k]

IDX
FXi,w−xi(w − xi)

w − xi

·
(

xi,j
w − xi

)IDX−1
]

= (k + ρ(w)) · IDX

+ (IDX − 1)
∑

xi,j+xi<w
i,j∈[0,k]

ln
[

xi,j
w − xi

]

+
∑

xi,j+xi<w
i,j∈[0,k]

ln
[
FXi,w−xi(w − xi)

w − xi

]
,

where ρ(w) =
∑

i,j∈[1,k] 1[xi,j + xi < w] denotes the number of auxiliary distances
used in the estimation. Accordingly, our auxiliary-distance MLE estimator is

ÎDALID = −

(
1

k + ρ(w)

∑
xi,j<w−xi
i,j∈[0,k]

ln
[

xi,j
w − xi

])−1
.
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A confidence interval can be obtained for ÎDALID using a derivation similar to
that of ÎDMLE in [ACF+15], with the number of distance samples being ρ(w):[

ÎDALID

1 + ρ(w)−1/2Φ−1(1− β
2
)
,

ÎDALID

1− ρ(w)−1/2Φ−1(1− β
2
)

]
.

Here, Φ denotes the quantile function of the normal distribution.

The number of available auxiliary distance measurements ρ(w) varies from data
set to data set, and even from one locality within the set to another. However, under
certain simplifying assumptions, it is possible to show that this quantity depends on
the local intrinsic dimensionality. If the data distribution is locally uniform in the
vicinity of the test point, the expected number of points within a volume would be
proportional to the volume itself. Accordingly, the following theorem determines
the cumulative volume of all maximal ball placements centered at locations within
a neighborhood ball — or in other words, the cumulative volume of all internally
tangent balls.

Theorem 6 In a Euclidean manifold of dimensionality α, let us consider a ball of
radius w, and volume Vα(w). The total volume of all internally tangent balls is:

ρα(w) =
Vα(w)

2

2
· Γ(α)Γ(α + 1)

Γ(2α)
.

Proof (Sketch only) In order to measure the total volume of all internally tangent
balls, it is possible to integrate the volumes of all balls of volume Vα(w − r) with
centers located on the surface of a sphere of radius r, over values of r ∈ [0, w]. The
total volume is given by

ρα(w) =

∫ w

0

Aα(r) · Vα(w − r) dr (6.1)

=

∫ w

0

2πα/2

Γ(α
2
)
rα−1 · πα/2

Γ(α
2
+ 1)

(w − r)α dr, (6.2)

where Aα(r) is the surface area of a sphere of radius r in a manifold of intrinsic
dimensionality α.
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Using the variable changes r = u+ w
2

and u = w
2
sin θ, we show that:∫ w

0

rα−1 · (w − r)α dr =
w2α

2

Γ(α)2

Γ(2α)
.

Substituting into Equation 6.2, it follows that:

ρα(w) =
Vα(w)

2

2
· Γ(α)Γ(α + 1)

Γ(2α)
.

6.1.2 Complexity of the ALID estimator.

Under the assumption that the expected number of points in a volume is propor-
tional to the volume itself, Theorem 6 implies that the expected number of distances
ρ(w) in a neighborhood of radius w = xk is k2

2
Γ(ID)Γ(ID+1)

Γ(2ID) .
Unlike most local estimators of ID, the complexity of the auxiliary-distance es-

timator depends on the ID itself. When the assumptions of Theorem 6 apply, we
can infer that CÎDALID

= O(k · (1 + k Γ(ID)Γ(ID+1)
Γ(2ID) )). Thus, the complexity is linear

when the estimated ID is high, matching the complexity of ÎDMLE and ÎDMoM. When
the estimated ID is low, CÎDALID

becomes quadratic in the number of neighbors, like
ÎDGED or the Levina & Bickel estimator.

6.2 Experimental framework

Method Parameters
ÎDALID k = 100

ÎDMLE [ACF+15] k = 100

ÎDMoM [ACF+15] k = 100
kNNG [CHI04] k = 100, γ = 1,

M = 1, N = 10
l-PCA [Jol86] k = 100, θ = 0.025
MiNDml1 [RLC+12] None
MiNDmli [RLC+12] k = 100
PCA [Jol86] θ = 0.025

Table 6.1: Parameter choices for the methods used in the experiments.
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Manifold d D Description
h-d d d Uniformly sampled hypercube.
m1 10 11 Uniformly sampled sphere.
m2 3 5 Affine space.
m3 4 6 Concentrated figure

confusable with a 3d one.
m4 4 8 Non-linear manifold.
m5 2 3 2-d Helix
m6 6 36 Non-linear manifold.
m7 2 3 Swiss-Roll.
m8 12 72 Non-linear manifold.
m9 20 20 Affine space.

m10a 10 11 Uniformly sampled hypercube.
m10b 17 18 Uniformly sampled hypercube.
m10c 24 25 Uniformly sampled hypercube.
m11 2 3 Möbius band 10-times twisted.
m12 20 20 Isotropic multivariate Gaussian.
m13 1 13 Curve.

Table 6.2: Artificial datasets used in the experiments.

6.2.1 Competing estimation methods.

In this framework, to show the advantages and limitations of ALID, we compared
our proposed estimator ÎDALID with other popular estimators, both local and global.
The fractal methods used in our experiments (Grassberger-Procaccia’s Correlation
Dimension (CD) [GP04], Hein [HA05], and Takens [Tak85]) do not require any
parameters to be set, while the parameter choices for the remaining methods are
summarized in Table 6.1. We denote by l-PCA the estimator obtained by applying
PCA on the respective neighborhoods of size k = 100.

It must be noted that PCA variants and methods from the MiND family must be
provided with knowledge of the representational dimension, which may give them
an advantage in head-to-head comparison with other methods. Moreover, when ap-
plied to synthetic data sets, PCA variants and MiNDmli can often return the exact
dimension, since they can return only integer-valued estimates. While it may be
claimed that the intrinsic dimension should ideally be an integer, for real data this is
not always the case. For example, LID has been shown to be equivalent to a mea-
sure of the indiscriminability of the distance measure, which is in general not an
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Dataset Instances Dim. Classes
ALOI [BFF+01] 110250 641 1000
ANN_SIFT1B [JTDA11] 109 128 3 · 107
BCI5 [Mil04] 31216 96 3
CoverType [BD99] 581012 54 7
Gisette [GGBHD04] 7000 5000 2
Isolet [CF90] 7797 617 26
MNIST [LBBH98] 70000 784 10
MSD [BMEWL11] 515345 90 90

Table 6.3: Real datasets used in the experiments.

integer [ACF+15]. Furthermore, non-integer values of ID can indicate non-linear
properties of an underlying manifold, such as convexity.

6.2.2 Synthetic data.

Our study includes two families of synthetic datasets. For each manifold we gener-
ated 20 sets of 103 and 104 points, and in each experiment we report the average
ID measures over the 20 sets. The first family (h) is a set of hypercubes meant to
evaluate the convergence of local ID estimators. The second (m) is a benchmark of
various types of manifolds [RLC+12,ACF+15].

6.2.3 Real data.

The use of real-world datasets lacks the ground truth available for synthetic data.
Therefore, to evaluate our proposed estimator on such sets, we must compare the
convergence, bias, and variance characteristics directly against competing methods.
In particular, we test the consistency of ÎDALID for the same suite of experiments
provided for ÎDMLE in [ACF+15], using the 8 real datasets listed in Table 6.3.

• The ALOI (Amsterdam Library of Object Images) data consists of 110250
color photos of 1000 different objects. Photos are taken from varying an-
gles under various illumination conditions. Each image is described by a 641-
dimensional vector of color and texture features [BFF+01].

• The ANN_SIFT1B dataset consists of 109 128-dimensional SIFT descriptors
randomly selected from the dataset ANN_SIFT which contains 2.8·1010 SIFT
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descriptors extracted from 3·107 images. These sets have been created for the
evaluation of nearest-neighbor search strategies at very large scales [JTDA11].

• BCI5 [Mil04] is a brain-computer interface dataset in which the classes cor-
respond to brain signal recordings taken while the subject contemplated one
of three different actions (movement of the right hand, movement of the left
hand, and the utterance of words beginning with the same letter).

• CoverType [BD99] consists of 581012 geographical locations (a surface of 30
by 30 meters) described by 54 attributes. each location is majorly covered by
one of seven tree species.

• Gisette [GGBHD04] is a subset of the MNIST [LBBH98] handwritten digit
image dataset, consisting of 50-by-50-pixel images of the highly confusable
digits ’4’ and ’9’. 2500 random features were artificially generated and added
to the original 2500 features, so as to embed the data into a higher-dimensional
feature space.

• Isolet [CF90] is a set of 7797 human voice recordings in which 150 subjects
read each of the 26 letters of the alphabet twice. Each entry consists of 617
features representing utterances of the recording.

• The MNIST database [LBBH98] contains of 70000 recordings of handwrit-
ten digits. The images have been normalized and discretized to a 28 × 28-
pixel grid. The gray-scale values of the resulting 784 pixels are used to form
the feature vectors.

• MSD [BMEWL11] is a subset of the ‘Million Song Database’ which is a set
of radio recordings (from the years 1922 to 2011) described by 12 timbre
averages and 78 timbre covariances.

6.3 Results

6.3.1 Experiments with synthetic data.

We first examined the effect of clipping (discussed in Section 6.1.1) by introduc-
ing a variant of ÎDALID that makes use of all distance pairs within the neighborhood
of the query q. Over all sythetic datasets tested, estimates for the all-pairs variant
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(a) h1 (b) h2

(c) h4 (d) h8

(e) h16

Figure 6.2: Convergence of local ID estimators in 1000-point-sets uniformly sampled fromd-dimensional
hypercubes.

ÎDall−pairs were averaged over 1000 queries using k = 100; overall, the ground truth
dimension was underestimated by over 58%. As an example, on dataset m1 (where
d = 10), the average ÎDall−pairs value was 3.25, while the average for ÎDALID was
8.42. Therefore, for reliable LID estimation, the clipping effect must be accounted
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(a) h1 (b) h2

(c) h4 (d) h8

(e) h16

Figure 6.3: Convergence of local ID estimators in 10000-point-sets uniformly sampled from d-
dimensional hypercubes.

for. Hereafter, we report results only for the proposed ALID estimation.
In Figures 6.2 and 6.3, we show the convergence properties of the local ID es-

timators on two artificial data sets. As the neighborhood size k increases, ÎDALID is
the first estimator to stabilize. For the lower-dimensional manifolds, ÎDMLE requires
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in the order of 100 neighbors to converge [ACF+15], whereas the many auxiliary
distance measurements allow ÎDALID to converge much faster — it requires fewer
than 10 neighbors to draw within 10% of the true dimensionality. Meanwhile, as
predicted by Theorem 6, as the dimensionality increases, the performance of ÎDALID

tends to that of ÎDMLE.
For the experiment shown in Figure 6.3, we evaluated the cumulative absolute

error e =
∫ k=1000

k=2
(ÎD/d) d log k (the normalized difference between the estimate

and the true ID value). For data set h1, ÎDALID has the smallest error (8.78), with
ÎDMLE coming in second (9.28). As the dimensionality increases, ÎDALID converges
to ÎDMLE, since the proportion of auxiliary distances used tends to zero. This is re-
flected in the respective errors achieved for h4 (7.50 and 7.54) and h16 (7.46 and
7.54).

Overall, the results lead us to two conclusions: (i) our estimator converges faster
than its competitors, and (ii) is among the least affected when the neighborhood
size k is large.

In the second experiment, we estimated the ID on various types of manifolds,
with different dimensionalities as summarized in Table 6.3. Local estimators consis-
tently underestimate the dimensionality on linear manifolds (m1, m2, m9, m10, and
m12), due to clipping bias. However, local estimators tend to overestimate the di-
mensionality of nonconvex manifolds (m7, m11, and m13). In both cases, this bias
is reduced as the sample sizes increase (Figure 6.5a). As shown in Figure 6.6, on
nonlinear and nonconvex manifolds, ÎDALID has the smallest bias and variance, with
the exception of MiNDmli on linear manifolds, due to its advantage in having been
provided the representational dimension.

In convex and linear manifolds, l-PCA appears to provide consistently accurate
estimates with the least bias and variance. However, in real data where the manifolds
are not convex, probabilistic local ID methods provide the best trade-off (c.f. Fig-
ure 6.6). When PCA is used locally, the variance along a given component coincides
with the global variance when the manifold is linear and homogeneous. Whenever
the manifold is nonlinear or nonconvex, the local components are very likely to be
different from the global components.

Global estimators can be split into two groups based on the experimental results
shown in figure 6.5b. Topological estimators (PCA) return the exact dimensional-
ity only when the manifold is linear. However they tend to overestimate the ID
on nonlinear manifolds, and perform poorly when the manifold is nonconvex. The
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(a) Local ID estimators

(b) Global ID estimators

Figure 6.4: Comparison of ÎDALID with state-of-the-art ID estimators on 1000-point manifolds of various
dimensionalities.

remaining global estimators tend to behave similarly to local estimators in their de-
pendency on linearity and convexity, and on sample size.

102



6.3. Results

(a) Local ID estimators

(b) Global ID estimators

Figure 6.5: Comparison of ÎDALID with state-of-the-art ID estimators on 10000-pointmanifolds of various
dimensionalities.
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(a) m6 (b) m7

(c) m8 (d) m11

Figure 6.6: Bias and standard deviation of local ID estimators on nonconvex and nonlinear manifolds.

6.3.2 Experiments with real-world data.

As a first step, we evaluated ID on 8 publicly available datasets using ÎDMLE and
ÎDALID (see Figure 6.7). In all of the real-world datasets, the results are consis-
tent with the theory, in that the estimates of ÎDALID are much sharper than those
of ÎDMLE when the ID is small, but tend to those of ÎDMLE as ID increases.

In a second experiment, we show the stability and robustness of ÎDALID across
various values of k, as compared to ÎDMLE. Figure 6.8 shows the ID estimates on
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(a) ALOI (b) ANN_SIFT

(c) BCI5 (d) CoverType

(e) Gisette (f) Isolet

(g) MNIST (h) MSD

Figure 6.7: Histograms of LID values across each dataset, obtained using the ÎDMLE and ÎDALID estimators
on the size-100 neighborhoods of the individual reference points.
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(a) k = 50 (b) k = 100

(c) k = 200 (d) k = 400

Figure 6.8: Histograms of LID values across ALOI dataset, obtained using the ÎDMLE and ÎDALID estima-
tors on the size-100 neighborhoods of the individual reference points.

the ALOI data set, which consists of 1000 image classes of size approximately 110.
The proportion of ÎDALID estimates smaller than 4 consistently increases with k from
83% when k = 50 to 94% when k = 400. Meanwhile, ÎDMLE estimates in the range
[0, 4] decrease from 61% when k = 50 down to to 27% when k = 400. While 50
neighbors are probably not sufficient for the convergence of ÎDMLE, using more than
110 neighbors results in using points from outside the cluster. For example with 400
neighbors, distances to neighbors from at least 4 different clusters are used in the
estimation process. ÎDMLE estimates use only direct distances that reflect the inter-
cluster dimensional properties of the data, whereas ÎDALID uses auxiliary distances as
well which predominate at low ID to enhance the detection of the local dimensional
properties of the data.

6.4 Discussion
In models such as the Correlation Dimension, pairwise distance measurements have
been successfully used in order to estimate global intrinsic dimensionality. How-
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ever, to the best of our knowledge, none of the existing models of local intrinsic
dimensionality take advantage of distances other than those from a test point to the
members of its neighborhood. Our proposed estimation strategy, ALID, makes use
of a subset of the available intra-neighborhood distances to achieve faster conver-
gence with fewer samples, and can thus be used on applications in which the data
consists of many natural groups of small size. Moreover, it has a smaller bias and
variance than state-of-the-art estimators, especially on nonlinear subspaces. Conse-
quently, this estimator can achieve more accurate ID estimates within a smaller lo-
cality than the traditional estimators. This has the potential to improve the quality
of algorithms where locality is an important factor, such as subspace clustering and
subspace outlier detection.

Possible directions for future work include the development of a Method of Mo-
ments’ estimator using auxiliary distances. Also, for cases where the neighborhood
is very small, estimation can potentially be improved by using a limited number of
points from outside the locality, at the cost of a slight increase in bias.
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Chapter 7
Feature Selection Using Local ID

As the dimensionality of data increases, the efficiency and effectiveness of various
learning algorithms tends to degrade. In this chapter, we propose new filter ap-
proaches for unsupervised feature selection whose selection criteria assess the ability
of features to discriminate within the neighborhoods of data points, according to a
recent model of the local intrinsic dimensionality of continuous distance distribu-
tions. By ranking and selecting those features which are most discriminative under
the model, our method seeks to improve the overall local discriminability of the dis-
tance measure.

Advances in computer technology are opening the way for the handling of in-
creasingly complex data. The scale of data can be measured with respect to vol-
ume (the number of data instances) and dimensionality (the number of features
that describe these instances). When dealing with colossal data volume on high-
capacity computing platforms, volume reduction techniques such as sampling [FL12,
ZHMY13,KGKB03] and parallelization [PLC13, ZCC+08,CKO+06] can allow the
exploration and analysis of data with millions or even billions of data entries.

Feature reduction, the dimensional analogue of volume reduction, has several
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motivations [GE03]: reducing the costs of data collection, storage and processing;
improving the model generalizability and interpretability; and improving the discrim-
inative power of feature-based distance measures [BGRS99]. In general, high dimen-
sionality is associated with a degradation in the efficiency and effectiveness of fun-
damental data mining and machine learning tasks such as clustering and anomaly
detection [IM98] — an effect often referred to as the ‘curse of dimensionality’. As
the dimensionality rises, distance values between points tend to concentrate around
their mean values [Pes00] due to the effects of noise and other sources of error,
which drastically alters the discriminative power of the distance measure [Hug68,
BGRS99].

Feature reduction methods fall into two main categories: extraction and selec-
tion. Feature selection, as the name suggests, retains a subset of the original feature
values, chosen with the aim of improving the performance and efficiency of data
mining and machine learning tasks. In feature extraction, the attributes are trans-
formed to a smaller set within an artificial feature space, with each new feature value
depending on the values of many (or even all) of the original features. Many feature
extraction algorithms are based on Principal Component Analysis (PCA) [Cam03,
XXZC08] or Linear Discriminant Analysis [NO09].

Within the context of feature extraction, feature selection can be regarded as a
special case in which transformation is restricted to axis-aligned projections. For ap-
plications in which extraction methods are appropriate, extracted features are very
likely to outperform any equal number of selected features, due to the greater flex-
ibility in determining a data transformation that maximizes the quality criteria used
to guide the feature generation process. However, in some contexts where feature
semantics are of major importance and where artificial features are meaningless, fea-
ture extraction cannot be used. Such applications are very common in bioinformat-
ics [SIL07] (gene annotation, microarray analysis) and chemistry [SIL07, HGV11]
(mass spectra analysis, interpretability of molecular signatures), among others. In
such contexts, however, feature selection can still be applied to reduce the dimen-
sion of the data.

Even when feature extraction methods are applicable, they are generally not suit-
able for very large datasets, as the transformation of the full dataset (as well as every
element to be added subsequently) to a new full-dimensional basis can incur a pro-
hibitively high computational cost. This computational complexity, together with a
lack of robustness in the presence of noise [FXY12,TP07, FJC06] make feature ex-
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traction less useful when the instances outnumber the features. Furthermore, feature
extraction has limited use when the goal is to remove irrelevant features, since all of
the original features must be retained in order to compute values within the trans-
formed feature space.

In this chapter, we consider the case of unsupervised feature selection, where
class label information is unavailable. Unsupervised feature selection is a more diffi-
cult problem than supervised feature selection, due to the difficulty in evaluating the
quality of features. In the absence of ground truth information, there are two main
types of quality criteria that are commonly used to guide the selection process: re-
dundancy elimination, where an attribute is discarded whenever it can be entirely or
partially inferred from other attributes, and similarity conservation, in which a fea-
ture is selected according to the degree to which it helps to conserve the similarity
between data points. Of the two, similarity conservation has received relatively less
attention in the research literature.

Depending on their evaluation strategy, feature selection frameworks can be cat-
egorized as either filters or wrappers (or embedded). Wrapper methods execute a
predictive learning task over the data for many choices of feature subsets, and retain
candidate features for which the predictive model achieves high performances [GE03,
WKN13]. In practical contexts involving data of even moderate volume or dimen-
sion, the cost of wrapper methods quickly becomes prohibitively high. A more af-
fordable alternative is that of filter methods, which evaluate feature quality without
resorting to an external learning machine. Although filters generally cannot match
the quality of wrappers on small-scale data sets, on data sets of larger scale filters
generally require far less computation time, and are less susceptible to overfitting.

Many unsupervised feature selection algorithms (such as LapAOFS and LapD-
OFS [HJZB11]), require that a target number of features be supplied as an input
parameter, while others (such as GLFS [WG14]) automatically determine the num-
ber of selected features. With algorithms of the former type, the user is free to in-
crease the number of features if needed, although the entire feature selection task
usually must be reiterated. On the other hand, with most algorithms of the latter
type, the user has no control over the number of features selected. When dealing
with large datasets, a third and more convenient alternative is to produce a ranked
list of all features, so as to allow any downstream processes to select the number of
features that are most appropriate to the task at hand, given the amount of com-
putational resources available. The most widely known unsupervised feature rank-
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ing framework is that of spectral feature selection [ZL07], which includes Laplacian
Score for Feature Selection (LS) [HCN05]. LS attempts to produce a reduced fea-
ture set that preserves the original neighborhood information to the greatest possible
extent. More recent work on filters for unsupervised feature ranking includes Multi-
Cluster Feature Selection (MCFS) [CZH10], which attempts to preserve the cluster
structure of the data.

Almost all existing filter methods for feature selection are suitable only for data
of relatively small volume and dimensionality, such as those found in the context of
bioinformatics. In this work, we target the problem of unsupervised feature ranking
at higher scales, where the data volume and data dimension together preclude the
use of wrapper methods and computationally expensive filters. Such feature selec-
tion could be of particular benefit for such database and data mining operations as
similarity search, neighborhood-based classification, and clustering.

As a criterion for guiding the selection process, we propose that features be as-
sessed according to their ability to discriminate between the distances encountered
in the neighborhoods of data points, in an attempt to alleviate the effects of the
curse of dimensionality. Accordingly, we develop feature ranking methods that as-
sess the discriminative power of individual features according to a recently-proposed
model of the local intrinsic dimensionality (LID) of continuous distance distribu-
tions [ACF+15,Hou13]. While most feature selection methods employ indirect strate-
gies in order to (implicitly) improve the discriminability of distance measures, the
use of LID as guiding criterion allows for a more explicit approach, due to a formal
equivalence established in [Hou13] between the discriminability of distance mea-
sures and low intrinsic dimensionality. Taking into account the performance issues
due to larger data scales (in terms of both volume and dimensionality), we develop
forward filter algorithms generally applicable to continuously-valued numerical data.

The specific contributions of this Chapter include:

• two greedy forward filter feature ranking algorithms, one univariate (in that
it scores features independently) and the other multivariate (in that it scores
feature subsets of size greater than 1);

• for the greedy multivariate method, a theoretical analysis based on submodu-
larity;

• an experimental framework setting random feature selection as a baseline for
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feature selection, and showing the advantage of using our methods with dense
high-dimensional data.

The chapter is organized as follows. In the next section we present a survey
of existing methods for feature selection. In Section 7.2, we present the details of
two feature ranking methods, the first using direct ranking based on LID, and the
second using a greedy feature ranking framework. The experimental framework is
presented in Section 7.3, in which our methods are compared against state-of-the-art
unsupervised filter-based feature selection algorithms. The experimental results are
discussed in Section 7.4. Finally, in the last section we conclude by summarizing the
advantages and the limitations of our feature selection strategy, and propose some
possible extensions of our algorithm as future work.

7.1 Feature selection

Feature selection consists of choosing a subset of the original features so as to best
satisfy a quality criterion. The ultimate goal is to improve model generalizability and
interpretability, as well as to lower the computational costs of learning algorithms
that use the data.

Formally, let us assume that we are given a set of n points in a space of dimen-
sion m represented by the matrix X ∈Mn,m(R)

X = (x1, x2, ..., xn) = (f1, f2, ..., fm)
⊤,

where xi ∈ Rm are points and fi ∈ Rn are features. Feature selection consists
of finding Ω∗ = {f ∗1 , ..., f ∗d}, a subset of Ω = {f1, ..., fm} that best satisfies an
optimality condition.

Feature selection algorithms can be differentiated in several ways. They can be

• wrappers or filters, according to whether or not they employ a learning task
as part of its feature evaluation strategy (with embedded methods combining
the characteristics of both);

• forward or backward depending on their search direction — whether they
build a feature set incrementally starting from an empty set, or cull features
incrementally starting from the full set.
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• univariate or multivariate, according to whether they assess features individu-
ally or in groups.

Wrapper methods apply a predictive learning machine to the data using the can-
didate feature subsets; the objective function is defined by the performance of this
predictive model on a task for which the feature selection is targeted [WKN13].
Wrappers can achieve high performances with the learning machine used in the se-
lection process. However, they are model-specific [GE03], as the quality of the fea-
tures selected using a given learning model are often inadequate for others. Wrapper
methods are also computationally expensive [GE03]: in a wrapper selection pro-
cess, assessing the quality of each candidate subset requires one run of the learning
machine, and one measurement of the quality of its output. Moreover, wrappers
present a risk of overfitting not only to the predictive model, but also to the data.

In contrast, filter methods use properties of the data to compare the candidate
subsets: they evaluate candidate feature subsets in terms of some quality criterion,
often information-theoretic (Minimum-Redundancy Maximum-Relevance [PLD05],
Information Gain [CT91], Gini Index [Gin12]), correlation-based (Correlation-based
Feature Selection [HS99]), statistical (t-test and chi-squared [LS95]), or based on
interclass distances (Fisher Score [DHS01], supervised Spectral Feature Selection
framework [ZL07,HCN05]). Although they cannot match the performance of wrap-
pers on the learning tasks used to guide the feature selection process, filters have the
advantage of not being specific to any particular learning model. Furthermore, filters
generally require far less computation time, and are less susceptible to overfitting. In
the context of complex data, the advantages of filters are crucial.

Feature selection algorithms can also be categorized according to the order in
which candidate feature subsets are considered. With backward elimination, the first
feature subset candidate assessed is the full dataset F ; new candidates subsets are
constructed by incrementally removing features that underperform with respect to
some criterion. The opposite approach, forward selection, consists of starting with
an empty set, and building up candidate feature subsets through the incremental in-
troduction of individual features. When the number of features is very high, exam-
ining candidate subsets of smaller cardinality is more affordable. In the context of
high dimensional data, this argument is largely in favor of forward selection.

Feature selection methods also differ in the way they group features for assess-
ment: univariate methods assess features invidually and independently, while multi-
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variate methods consider sets of features during the selection process. Since combi-
nations of features are not considered, the univariate approach cannot account for
redundancy of features. However, univariate methods have the general advantage
of being faster — since they consider attributes separately, their complexity is usu-
ally linear in the number of features. Although the multivariate approach is usually
more computationally expensive, in the context of high-dimensional data, multivari-
ate methods that strictly limit the numbers of candidates assessed can sometimes be
more affordable than their univariate competitors.

In some cases, a vector L = (l1, l2, ..., ln) of class labels associated with X may
also be available. Feature selection methods that make use of such label informa-
tion as a ground truth are said to be ‘supervised’; if label information is not used,
the method is said to be ‘unsupervised’. In general, wrapper methods tend to be
supervised (due to the need to assess the result on a specific learning task).

In the context of big data, where ground truth label information is rarely avail-
able, the complexity argument favors unsupervised feature selection filters which op-
erate in a forward direction. Among all existing candidates that fit these criteria,
scalability concerns prevent the use of computationally expensive algorithms such as
LapDOFS and LapAOFS [HJZB11], all of which require time more than quadratic
in the number of points and number of features. Among all algorithms with reason-
able scalability characteristics, the unsupervised general-purpose forward-filter Lapla-
cian Score (LS) feature selection method [HCN05] is perhaps the most popular. It
belongs to the general framework of spectral feature selection [ZL07], and has a
computational complexity of CLS = mn2. The spectral framework offers three dif-
ferent approaches to scoring features, with the objective always being to preserve the
graph structure of the dataset described by a spectral matrix S. Of the three scoring
functions available, the second is used by LS:

ScoreLS(ft) =
∑

xi,xj∈X

(xi,t − xj,t)
2

var(ft)
si,j,

where si,j = δi,je
−

d2i,j
θ ;

var(ft) is the variance of the feature ft; di,j denotes the Euclidean distance between
xi and xj ; δi,j is 1 when xi or xj is among the k-nearest neighbors of the other,
and 0 otherwise; and θ represents the variance within a set of distance values, but
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is not explicitly defined in the original work. Features are ranked in ascending order
of ScoreLS.

Feature selection can also be guided according to how well the new features
preserve the cluster structure of the data. Given a similarity graph represented as
a matrix W with (W )i,j = δi,j , and a target number of clusters c, Multi-Cluster
Feature Selection (MCFS) [CZH10] computes the top c solutions (y1, ..., yc) for
the generalized eigenproblem Ly = λDy, where D is the diagonal matrix (D)i,i =∑

xi∈X wi,j , and L = W −D. Least Angle Regression (LAR) is then used to solve
the r regression problems

min
ai

||yi −XTa2i ||2, where |ai| < γ.

Finally, features are scored by

ScoreMCFS(ft) = max
i

|ai,t|.

Features are ranked in descending order of ScoreMCFS.
MCFS has limited use in practice due to its high computational complexity:

CMCFS = mn2 + cm3 + cnm2.

7.2 Method description

7.2.1 LID-based quality scores

For a given reference point, the LID measure indicates the difficulty in discriminat-
ing among neighbors. In principle, the easier it is to discriminate among the points
in a local neighborhood, the better the performance of distance-based learning tasks.

The selection strategy employed by our methods assesses the (in)discriminability
of individual features, in terms of the 1-dimensional distance values encountered in
the neighborhoods of the objects of the dataset. The overall quality of the feature is
evaluated by aggregating the associated LID estimates for each neighborhood. For
computational reasons, it may not be necessary to compute LID estimates at all the
data points. Instead, as a heuristic, we may choose to estimate LID for a sample of
points X∗ ⊆ X . One rationale for this is that objects from the same cluster are
likely to have similar LID values; if the sample X∗ is sufficiently dense, most of the
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clusters will have an influence on the the estimation process. It should be noted
that although only subsets of the neighborhoods are considered, all of the k-nearest
neighbors are used in the estimation (not just those appearing in X∗).

The discriminative power of a feature depends on the location in the dataset
from which distances are measured: while the feature may be discriminative among
the points of a certain neighborhood (or cluster), it may be indiscrimative for other
neighborhoods. It is therefore appropriate to allow points to ‘vote’ for the most dis-
criminative features in their localities, and then to aggregate these votes.

7.2.2 Proposed algorithms

We propose two different methods of scoring features, one univariate (denoted IDFS)
and the other multivariate (referred to as IDFS-m). In IDFS, the score of a feature
f is the indiscriminability threshold s(f) for which a proportion q of the points of
X∗ (0 < q ≤ 1) achieve LID values less than or equal to s(f):

s(f) = {IDf (x), x ∈ X∗}(q).

For a given value of q, a low value of s(f) indicates that f performs well over this
proportion of the data. Parameter q must be set high, so that features may be as-
sessed over most of the data regions sampled by X∗. However, setting q too close to
1 would allow the threshold to be determined by ‘noise’ or ‘outlier’ elements whose
associated LID estimates are very high. For this reason, if α is the anticipated pro-
portion of outliers in the dataset X , then we should ensure that q < 1 − α. The
proportion of outliers being difficult to predict, it is important to note that it is more
harmful to involve an outlier in the feature selection process than to exclude an in-
lier.

Algorithm 5 ID-based selection of d feature given a dataset X = (x1, x2, ..., xn) =

(f1, f2, ..., fm)
⊤, a neighborhood range k, and a quantile q ∈ [0, 1]

1. Calculate dimensionality estimates IDf (x) for each point x ∈ X∗ and for
each feature: IDf (x), x ∈ X, f ∈ {f1, f2, ..., fm}.

2. Score each feature by the q-quantile of the dimensionality estimates over
the subset X∗: s(f) = {IDf (x), x ∈ X}(q).
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3. Rank the features individually based on the scores they obtain:
Ω∗ = (f ∗1 , f

∗
2 , ..., f

∗
m), where s(f ∗i ) ≤ s(f ∗j ), ∀i < j.

4. Return the d top ranked features in Ω∗: Ω∗d = {f ∗1 , ..., f ∗d}.

Intuitively speaking, with IDFS-m, the impact of adding a new feature to an ex-
isting subset diminishes as the size of the subset increases. This property, called
submodularity [KG12], is consistent with the fact that the first few highest-ranked
features should have more impact on discriminability than the same number of later-
ranked features.

Definition 12 (Discrete derivative) For a set function Ψ : 2V → R, S ⊆ V , and
u ∈ V ,
∆Ψ(e|S) = Ψ(S∪{u})−Ψ(S) is the discrete derivative of Ψ at S with respect
to u.

Definition 13 (Submodular function) A set function Ψ : 2V → R is submodular
if
∀A ⊆ B ⊆ V, ∀u ∈ V \B,∆Ψ(u|A) ≥ ∆Ψ(u|B) .

For IDFS-m, we evaluate a feature subset A ∈ Ω according to the following
score:

Ψ(A) =
∑
x∈X

ψ(A, x),

where ψ(A, x) =
∑
a∈A

α(ρ(a,A, x)) · β(IDa(x)).

Here, for an object x, ρ(a,A, x) is the rank of the feature a in the set A with re-
spect to an increasing ordering of IDa(x), and α : N → R and β : R → R are
weighting functions that apply respectively to the feature ranks of a and to the ID
associated with the feature.

ID can be viewed as a measure of indiscriminability [ACF+15]. In practice, β
can be chosen as the reciprocal function, so that β(IDa(x)) would measure the dis-
criminability of the feature a. For the purposes of the analysis, β can be any mono-
tonically decaying function. The function α determines the relative weight associ-
ated with β(IDa(x)). In order to favor the selection of top ranked features, the
weighting function α must be monotonically decaying.
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Theorem 7 If α is monotonically decreasing and convex, then Ψ is submodular.

Proof Let A and B be two sets of features such that A ⊂ B ⊂ Ω. First, we show
—by induction on |B \ A|— that for any x ∈ X , ψ is submodular. The base case
(|A \ A| = 0) is trivial (since ∆ψ(u|A) ≥ ∆ψ(u|A)).

Let A′ be a set such that A ⊂ A′ ⊂ B and B \A′ = {t}. Supposing that ∀x ∈
X, ∀u ∈ Ω \ A′,∆ψ(u|A) ≥ ∆ψ(u|A′), by aligning terms in the summation and
taking differences, we can show that ∀x ∈ X, ∀u ∈ Ω \B,∆ψ(u|A) ≥ ∆ψ(u|B).

Let ai be the i-th element of A′ based on an increasing order of IDa(x) (i.e.
i = ρ(ai, A

′, x)). For any u ∈ Ω \B,

∆(u|A′) ≜ ψ(A′ ∪ {u}, x)− ψ(A′, x)

= α(ϵ) · β(IDe(x))

+

|A′|∑
i=ϵ

[α(i+ 1)− α(i)] · β(IDai(x)),

where ϵ = ρ(u,A′ ∪ {u}, x).

If IDu(x) > IDt(x), then

∆(u|A′)−∆(u|B)

= [α(ϵ)− α(ϵ+ 1)] · β(IDu(x))

+

|A′|∑
i=ϵ

[(α(i+ 1)− α(i))− (α(i+ 2)− α(i+ 1))]

·β(IDai(x)).

A similar argument applies when IDu(x) ≤ IDt(x).
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∆(u|B) = ψ(B ∪ {u}, x)− ψ(B, x)

= α(ϵ) · β(IDu(x))

+
τ−1∑
i=ϵ

[α(i+ 1)− α(i)] · β(IDai(x))

+[α(τ + 1)− α(τ)] · β(IDt(x))

+

|A′|∑
i=τ

[α(i+ 2)− α(i+ 1)] · β(IDai(x)),

and thus

∆(u|A)−∆(u|B)

= [α(τ)− α(τ + 1)] · β(IDt(x))

+

|A′|∑
i=τ

[(α(i+ 1)− α(i))− (α(i+ 2)− α(i+ 1))]

·β(IDai(x)).

If α is monotonically decreasing and convex, then ∆(u|A′) ≥ ∆(u|B). From
the assumption that ∆(u|A) ≥ ∆(u|A′), we have that ∆(u|A) ≥ ∆(u|B), which
implies that ψ is submodular. Since Ψ is a finite sum of submodular functions, we
conclude that Ψ is submodular as well.

Heuristically maximizing the submodular function Ψ by means of greedy selec-
tion leads to an optimality guarantee of (1 − 1/e) [KG12]. Greedy selection also
ensures that the features are ranked in decreasing order of quality.

Algorithm 6 Selection of d features given a dataset X = (x1, x2, ..., xn) =

(f1, f2, ..., fm)
⊤ using a greedy feature ranking framework.

1. for each point x ∈ X∗ and each feature f ∈ Ω estimate IDf (x).

2. A := {}

3. for each point x ∈ X∗:

122



7.2. Method description

(a) rank features f ∈ Ω \ A by increasing IDf (x).

(b) for each feature f ∈ Ω \ A, evaluate ψ(A ∪ {f}).

4. for each feature f ∈ Ω \ A, evaluate Ψ(A ∪ {f}):

5. f ∗ := argmaxf∈Ω\AΨ(A ∪ {f}) ; A := A ∪ {f ∗}.

6. repeat 3-5 until |A| = d.

7. return A.

7.2.3 Complexity of the proposed algorithms

The asymptotic complexity is assessed in terms of the number of instances (n =

|X|), the number of features (m = |Ω|), the target number of features (d < m),
the size of the subset of points where LID is estimated (n∗ = |X∗| < n), the
size of the neighborhoods (k < n), and the complexity (denoted γn(m,n∗, k)) of
computing an index for a given subset of points.

Theorem 8 Algorithm 5 is of complexity

CID1(n,m, d, n∗, k) = O(γn(m,n∗, k) +mn∗k +m logm).

If the nearest neighbors are computed using brute force, then γn(m,n∗, k) =

O(mnn∗), in which case

CID1(n,m, d, n∗, k) = O(mnn∗).

Proof The first step of the algorithm consists of computing the nearest neighbors
for a subset of n∗ points. LID estimates are then evaluated for each feature in Ω,
and for each point in X∗. Once the required nearest neighbor distances have been
computed, all LID estimates can be generated in O(mn∗k) additional time. The
determination of the q-quantile for a given feature can be performed in O(m) time,
and thus the calculation of scores in Step 2 requires O(mn∗) time. Finally, sorting
the features requires O(m logm) operations. In total,

CID1(n,m, d, n∗, k, q) = O(γn(m,n∗, k) +mn∗k +m logm).
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IDFS is therefore linear in the number of features, and subquadratic in the num-
ber of instances. In practice, it is reasonable to assume that logm ≪ n∗k. If so,
then

CID1(n,m, d, n∗, k, q) = O(γn(m,n∗, k) +mn∗k).

We note that under these assumptions, the state-of-the-art Laplacian Score method
is of complexity CLS(n,m, d) = O(mn2), which indicates that Algorithm 5 is more
asymptotically scalable.

Theorem 9 Algorithm 6 is of complexity

CID2(n,m, d, n∗, k) = O(γn(m,n∗, k) +mn∗d log d).

If the nearest neighbors are computed using brute force, then γn(m,n∗, k) =

O(mnn∗), in which case

CID2(n,m, d, n∗, k) = O(mn∗(n+ d log d)).

Proof As was the case with Algorithm 5, the first step of Algorithm 6 consists of
computing the nearest neighbors for a subset of n∗ points. LID estimates are then
evaluated for each feature in Ω, and for each point in X∗. Once the required near-
est neighbor distances have been computed, all LID estimates can be generated in
O(mn∗k) additional time. Next, over all points in |X∗|, ranking the features in
terms of their LID scores requires a total of O(n∗m logm) time. The main loop
of the algorithm is iterated d times. At the i-th iteration, the size of set A is simply
|A| = i. For each selected point in X∗, and for each f ∈ Ω \ A of the (m − i)
candidate features, O(log i) operations are needed to rank the new candidate fea-
ture in A ∪ f . This implies that the complexity of the i-th iteration is of the order
of O(n∗(m − i)(log i)). All iterations together require O(n∗md log d) operations.
Finally, the full algorithm has a time complexity of

CID2(n,m, d, n∗, k)

= O(γn(m,n∗, k) +mn∗d log d).

Consequently, IDFS-m remains as scalable as IDFS in terms of volume, but is
less scalable in terms of the number of features. Assuming that logm≪ d log d and
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that k ≪ d log d, the complexity bound simplifies to

CID2(n,m, d, n∗, k) = O(γn(m,n∗, k) +mn∗d log d).

In practice, Algorithm 6 can be terminated early if the submodular function Ψ

converges to a constant value. This can be judged by setting a small threshold on
the minimum required change in Ψ; if the amount of change falls below the thresh-
old, the algorithm is terminated. However, in our experiments, no early termination
was performed.

7.3 Experimental framework

In the proposed framework, we compare our methods with the state-of-the-art fea-
ture selection algorithms LS and MCFS. As a baseline for comparison, we also re-
port results for a random feature selection strategy. We include PCA in our study in
order to emphasize the gap in performance between feature extraction and feature
selection methods in those settings where extraction is feasible.

Each method was used to produce a ranking of the features, from which a cer-
tain top-ranked proportion were used for a follow-on task — indexing, K-means
clustering, or k-NN classification. The proportions of features considered ranged
from 2% to 100%.

7.3.1 Methods

For our solutions, we set the neighborhood range of interest at k = 100, a value for
which the ID estimators studied in [ACF+15] typically converge. The sample size
is chosen to be an order of magnitude smaller than the dataset size (|X∗| = n

10
).

In addition, for the univariate algorithm IDFS, we set q = 0.95, and for IDFS-m,
we set α : x→ 1

x
and β : x→ 1

x
. For LS, we set the parameter θ to 0.01, 0.1 and

1 so as to cover the range of squared distance values for the datasets studied. The
range of neighbors to preserve is set to k = 100 (as recommended in [HCN05]),
so as to favor features that preserve the 100-nearest-neighbor graph. With MCFS,
we set the number of eigenproblems to be the number of classes in the dataset, and
the range of neighbors to k = 5 (as suggested by the authors of [CZH10]). Note
that supplying MCFS with the number of classes gives it an advantage over the other
methods in the study.
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As the simplest feature selection strategy, uniform random selection should be
a baseline for any experimental comparison. However, unlike for many other ma-
chine learning tasks that implicitly normalize against the expected result of random-
ness, random baselines are not commonly encountered in the feature selection liter-
ature. To the best of our knowledge, only one such paper exists: a bioinformatics
paper that used paired ANOVA tests to conclude that of the 32 methods studied,
“no method was significantly better than the random selection strategy” [HGV11].
As a baseline for comparison (which we refer to as ‘Random’), we generate 10 ran-
dom feature rankings, and report the average performance of our learning tasks over
these feature sets.

For all methods, the execution time was limited to 10 days (on an a 48-core
Intel® Xeon® CPU E5-2670).

7.3.2 Tasks

Although the features selected by our algorithms can be used in unsupervised learn-
ing, it is difficult to assess the quality of features based solely on unsupervised learn-
ing tasks. For this reason, in our experimentation, we choose to evaluate feature
selection methods according to their performance on unsupervised indexing and K-
means clustering tasks, and supervised k-nearest neighbor (k-NN) classification tasks.
Among these tasks, indexing is the most fundamental, as features that produce in-
accurate neighbor sets are very likely to lead to an incorrect classification. Similarly,
classification is a less demanding task than clustering: a feature space where the clas-
sification performance is poor is unlikely to permit the identification of the compo-
nent clusters from which the class membership is constituted.

7.3.2.1 Indexing

The membership of the full k-NN query result set can be used as a form of unsu-
pervised ‘ground truth’. For a given feature set, we measure its accuracy for indexing
as follows:

Accuracy =
1

n

∑
x∈X

1

k
|δk,x ∩ δ′k,x|,

where δk,x and δ′k,x are the k-NN sets of the point x before and after feature selec-
tion, respectively.
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In our framework, we report the average accuracy over all k-NN lists for the
entire dataset, with k = 100.

7.3.2.2 k-NN classification

A k-NN classification was performed on various datasets using the features selected
by each algorithm. Given labeled (training) and unlabeled (test) points, the k-NN
classification task is straightforward: the class of each unlabeled point is set to that
of the most frequent class label from among the k nearest labeled points. For k =

10 and k = 100, and using Euclidean distances, we performed a 10-fold cross val-
idation: the dataset was randomly partitioned into 10 slices of equal size, and the
task was executed 10 times, each time with a different slice as the test data, and the
remainder as training data.

The most commonly-used measure of classification quality is the accuracy with
which classification result C ′ relates to the original class labels C . If Cx and C ′x
denote the labels of the point x in C and C ′ respectively, and δ is the function that
evaluates to 1 if its two members coincide (and 0 otherwise), then the accuracy is
given by:

Accuracy(C,C ′) =
1

n

∑
x∈X

δ(Cx, C
′
x).

Normalized Mutual Information (NMI) is a commonly-used measure of depen-
dence between two data groupings. Here, we use it to measure the dependence of
the predicted labeling C ′ on the original class labels in C . It has values ranging from
0 when the clusterings are completely uncorrelated, to 1 if C = C ′. For a formal
definition of the NMI measure, see [SHH99].

7.3.2.3 K-means clustering

Clustering is an unsupervised task where data is split into K groups of instances
with similar characteristics. K-means is a clustering algorithm where K centroids
points are initially chosen at random. Then, in each iteration every point of the
dataset is labeled with its closest centroid, and the centroid is updated to the center
of mass of the points assigned to it. This process is repeated until convergence. It
is common practice to stop the computation and return the current cluster assign-
ment if no convergence is reached within a fixed number of iterations (100 in our
implementation).
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Dataset Instances Attributes Classes
ALOI [GBS05,BFF+01] 110250 641 1000
BCI5 [Mil04] 31216 96 3
Gisette [GGBHD04] 7000 5000 2
Isolet [CF90] 7797 617 26

Table 7.1: Characteristics of the datasets used in the experimental framework.

In addition to NMI, we assess the quality of clustering results using a standard
measure, the Adjusted Rand Index [Ran71] (ARI). ARI is an adjustment for chance
of the Rand Index (RI), which focuses on the numbers of pairs of points whose
cluster set membership relationships are preserved across two data groupings. When
the degree of preservation is greater than what would be expected by chance, the
ARI is positive. When the set membership is perfectly preserved, the ARI score is
1. For a formal definition of the ARI measure, see [Ran71].

7.3.3 Datasets used for the experiments

For our experimental study, we used 4 publicly available datasets covering a range of
cardinalities, dimensionalities, domains and types of instances (cf. Table 7.1). Only
two of the datasets, ALOI and BCI5, are of size sufficiently large so as to be con-
sidered consistent with our extreme-value-theoretic ID modeling assumptions.

7.4 Results

The performance of our proposed methods, together with those of LS, MCFS, Ran-
dom, and PCA, are shown in Figures 7.1, 7.2, 7.3, and 7.4. The performances plot-
ted for small numbers of selected features show the capacity of the various algo-
rithms to identify good features early in the ranking, while the performances plotted
for large numbers of selected features show the capacity of the algorithms to discard
undesirable attributes. The left-hand portions of the performance curves are much
more significant than the right-hand portions, where the curves all converge to the
performance of the full feature set.

As expected, it is clear from the results of the different tasks that features ex-
tracted by PCA are consistently of better quality than those produced by any of the
selection methods considered in this study. PCA is included in this study not as a

128



7.4. Results

(a) ALOI (b) BCI5

(c) Gisette (d) Isolet

Figure 7.1: Average accuracy of indexing 100-NN using features as ranked by the selection algorithms.

baseline for selection, but only to illustrate the performance gap between selection
and extraction for datasets that support both.

For the BCI5 dataset, as shown in Figure 7.4a, the results for K-means clus-
terings are of very poor quality (NMI below 5% and ARI less than 2.5% even when
using the entire feature set) despite the features being of good quality for the classifi-
cation task, as shown in Figure 7.2b. Like many clustering algorithms, K-means re-
quires a random initialization resulting in a different result each time. Such variabil-
ity makes it even more difficult to assess the difference in quality between features.
In the case where clustering performances are of acceptable quality (Figure 7.4b),
they do not contradict the quality of indexing and classification results (as shown
in Figures 7.1d, 7.2d, and 7.3d). Thus, our experimentation confirms that cluster-
ing tasks may not always be appropriate for the guidance and assessment of feature
selection methods.

For the Aloi and Gisette datasets, MCFS failed to converge within the 10-day
limit set on execution time — particularly surprising given the comparatively small
size of Gisette. Unlike LS and our methods, MCFS matrix operations cannot be ex-
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(a) ALOI (b) BCI5

(c) Gisette (d) Isolet

Figure 7.2: Quality of k-NN (k = 10) classification using features as ranked by the selection algorithms.

ecuted in parallel, which limits its usability on large datasets. Moreover, MCFS suf-
fers from numerical instability, as it failed to converge to non-singular eigenvalues
when attempting to select features from ALOI. The only case where this algorithm
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(a) ALOI (b) BCI5

(c) Gisette (d) Isolet

Figure 7.3: Quality ofk-NN (k = 100) classification using features as ranked by the selection algorithms.

outperforms our methods is when selecting 20 and 30% of the features for 10-NN
classification on BCI5, as seen in Figure 7.2b. We can conclude that MCFS is not
well-suited for large high-dimensional data, mainly due to its prohibitively-high com-
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(a) BCI5 (b) Isolet

Figure 7.4: Quality ofK-means clustering using features as ranked by the selection algorithms.

putational complexity.
In all experiments on ALOI and Gisette, at least one of our methods clearly out-

performs both Random and the state-of-the-art competitors LS and MCFS. For the
indexing task on BCI5, IDFS-m outperforms the other selection methods. In the re-
maining experiments on BCI5 and Isolet, none of the methods clearly outperform
the others. Our experimental results thus show that our methods have the potential
for good performance on large, high-dimensional datasets.

Gisette and Isolet may seem to be similar as regards the number of samples and
original features (cf. Table 7.1). However, in terms of class size, they are markedly
different. While Isolet has classes of roughly 300 samples, Gisette has 3500 points
per class, and is considerably denser than Isolet. The conditions for extreme-value-
theoretic estimation are therefore more favorable with Gisette than with Isolet. Con-
sequently, IDFS-m clearly outperforms LS on Gisette (cf. Figures 7.2c and 7.3c).
The failure of IDFS on these sets could be explained by correlations among the fea-
tures — note that the greedy algorithm IDFS-m has a multivariate approach capable
of accounting for correlation between features. The failure of LS is due to the abun-
dance of noise, as half of the Gisette features are known to be artificial.

ALOI and BCI5 have the size and continuity of feature values that satisfy our
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extreme-value-theoretic modeling assumptions. In BCI5, there is little opportunity
for improvement through feature selection, as a feature selection (spatial filtering)
process had already been applied as part of the preprocessing of the set [Mil04].
Consequently, the seven algorithms performed almost equally well. However, when
considering the first few features selected by the methods, IDFS-m outperforms its
competitors, particularly in the indexing and 100-NN classification tasks (cf. Fig-
ure 7.3b). On ALOI, the performance of IDFS is unmatched by any other selection
algorithm in the framework (cf. Figures 7.1a, 7.2a, and 7.3a), while the IDFS-m vari-
ant seems to lose some of its effectiveness due to its greedy approach.

In terms of execution time, LS required 23.71 hours to produce a ranking of
ALOI’s 641 features, while IDFS required 23.70 hours. Due to their low asymptotic
complexity relative to that of their competitors (quadratic in the number of data
instances and linear in the number of features), LS and IDFS are better suited for
large data.

7.5 Discussion

7.5.1 Summary

The methods proposed in this paper differ from most other methods in the liter-
ature, in that they use neither information theoretic nor spectral measures to se-
lect features. Instead, they directly assess the discriminability of the features through
the estimation of local intrinsic dimensionality. One major advantage held by LID
is that other than continuity, it requires no knowledge or assumptions concerning
the distribution of the data. Moreover, the methods are robust against noise. The
main drawback of our LID-based methods is the fact that they require a relatively
smooth distribution of distance values, which is more likely to occur when the data
is dense, or high-dimensional, or both. Nevertheless, such high-dimensional situa-
tions are generally those where classical feature selection methods often fail.

As revealed by our experimental results, the use of clustering for the evaluation
of feature selection can lead to questionable conclusions. As a rule, the performance
of unsupervised learning algorithms is highly variable in terms of their final quality
metrics. In clustering, for example, results often depend on initial settings that are
selected randomly (such as in the popular K-means algorithm) or parameter choices
made by the user (such as the number of clusters). Although running the task sev-
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eral times may reduce the variance, other approaches may be both faster and more
accurate.

Using a supervised task to assess feature quality does not contraindicate their
later use in unsupervised learning tasks. Unlike clustering, classification tasks rely
on labeled training data, and thus have more reliable information available to them
than do clustering tasks. Although the ground truth information is not required in
order to produce the actual ranking of features, it can be used to experimentally
validate the selected attributes. There are many candidate classification algorithms;
the choice of k-NN classification is motivated by its connection to similarity search,
which is the basis of many machine learning tasks.

Comparing against a random baseline is inherent in several popular quality met-
rics, such as the NMI or ARI. Surprisingly however, despite being the most triv-
ial and easily-implemented approach, uniform random feature selection is itself not
always used as a baseline method for comparison. Our experimental results show
that the classification results based on randomly ranked features are generally com-
petitive with those using features selected by state-of-the-art algorithms. This phe-
nomenon is a consequence of the high degree of feature redundancy and interdepen-
dence found in typical high-dimensional datasets. We believe that any future work
on feature selection should systematically compare against random selection.

7.5.2 Future work

As the data volume increases, the cost of building an exact index often becomes pro-
hibitively expensive. Instead of using exact nearest neighbors, it is possible to use
approximation algorithms such as ϵ-NNS [IM98] or NN-Descent [DML11]. Us-
ing approximate nearest neighbor distances may adversely affect the ID estimation,
and consequently change the feature ranking. However, trading off feature qual-
ity for computation time may be advantageous when the dataset is large or high-
dimensional.

One possible extension of our feature selection approach is to consider other
models of intrinsic dimensionality as an alternative to LID in the assessment of fea-
ture quality. Although other models may lack the theoretical guarantees regarding
the discriminability of distance measures, or may have a higher computational com-
plexity or sensitivity to noise [ACF+15] such models may still deserve considera-
tion, particularly if they are more reliable for non-smooth distance distributions, or
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for smaller data samples.
There are several other possible directions for future work on ID-based feature

selection. First, it would be interesting to consider the problem of unsupervised tun-
ing of the parameters of ID-based feature selection. Also, our approaches for unsu-
pervised feature ranking could be extended to supervised applications, by restricting
the ID estimation to training examples with common labels. Finally, ID-based fea-
ture evaluation could conceivably be applied to dimensional reduction through fea-
ture extraction, where the original features are linearly combined in order to obtain
a new feature space in which distances are more discriminable than in the original.
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Chapter 8
Conclusion

In this Chapter we provide a short summary of the main contributions made in this
thesis, and point out prospective directions for future research. We subsequently
conclude the thesis by discussing its implications for data mining and machine learn-
ing applications, and by exploring the future research directions in which this work
can be expanded.

8.1 Discussion

This work’s main contribution was to provide new estimators for the LID. The fam-
ily of estimators that was developed has empirically lower variance and smaller bias
compared with the state of the art. In particular, with the use of auxiliary distances
in ALID, our estimators can use more distance samples without increasing the neigh-
borhood size. To the best of our knowledge, none of the existing models of lo-
cal intrinsic dimensionality take advantage of distances other than those from a test
point to its neighbors. The use of auxiliary distances gives our estimator a clear edge
in terms of convergence. In addition, the ability of ALID to use a larger distance
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sample without increasing the neighborhood size makes our estimator suitable when
data consists of small groups of heterogeneous intrinsic dimensionality. This has the
potential to improve the quality of algorithms where locality is an important factor,
such as subspace clustering and local outlier detection. The simple assumptions that
lead to our estimators make it easier to understand their limitations.

Our LID estimators have already seen interest from various research areas in-
cluding: Sliced Inverse Regression [CGC14], nearest neighbor search [LZS+,Boy16,
Cur16], similarity search [IAF16], text mining [Cla], outlier detection [vBHZ15],
and dependency measures [RCN+16].

The extensive experimental framework on ID estimation that supports our re-
sults and discussions sets a standard for ID estimation in general and for local ID
estimation in particular. Moreover, this framework shows the robustness of our es-
timators when approximate nearest neighbor distances are used instead of exact dis-
tances. This is an advantage over many state-of-the-art methods.

The feature selection algorithms proposed in this thesis differ from most other
methods in the literature, in that they directly assess the discriminability of the fea-
tures through the estimation of local intrinsic dimensionality instead of relying on
information theoretic or spectral measures. The limited assumptions, namely the
continuity of distance distributions which requires continuously distributed features
make the methods applicable to various datasets. The main drawback of our LID-
based methods is the fact that they require a relatively smooth distribution of dis-
tance values, which is more likely to occur when the data is high-dimensional, or
dense, or both. Nevertheless, such high-dimensional situations are generally those
where classical feature selection methods often fail.

In the experimental framework proposed to assess the quality of our feature se-
lection algorithms, we compared against features selected uniformly at random. In
fact, comparing against a random baseline is necessary in many data mining and ma-
chine learning contexts, and is inherent in several popular quality metrics, such as
the NMI or ARI. Surprisingly however, uniform random feature selection is not al-
ways used as a baseline method for comparison. Our experimental results show that
the classification results based on randomly ranked features are generally competi-
tive with those using features selected by state-of-the-art algorithms. The competi-
tive results obtained by randomly selected features against elaborately selected ones
suggest that practitioners should systematically compare against random selection.
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8.2 Future work

Possible directions for future work in LID estimation include the development of
an auxiliary-distance estimator using the Method of Moments, instead of MLE. By
applying in the estimation of the first two moments the same approach used to ob-
tain an auxiliary-distances maximum likelihood estimator, a auxiliary-distance MoM
estimation of LID can be obtained.

In cases where the neighborhood is very small, estimation of the LID can po-
tentially be improved by using a limited number of points from outside the local-
ity, at the cost of a slight increase in bias. In fact, points from outside the locality
can shift the estimation towards the LID of their own localities. Moreover, violating
the locality condition by using auxiliary distances to neighbors that belong outside
the original locality can lead to additional computational costs associated with k-NN
searches.

Second order LID [Hou15] introduced in [Hou15] can be viewed as a measure
of inlierness that has potential applications in clustering, classification and outlier
detection. Preliminary theoretical work on the estimation of second order LID is
being done as a first step towards finding practical estimators based on Maximum
Likelihood Estimation and the Method of Moments.

Using our notation, it is shown that the second order EVI can be expressed as
ρ = ID|IDIDfX

|(0) [Hou15]. The numerical methods used to estimate the second or-
der EVI have the potential to lead to estimators of the second order LID, since the
two quantities are based on the same transformation, the former being applied to
the probability density function while the latter to the cumulative distribution func-
tion. The EVT community has been working on estimating second order EVI for
the past three decades, and the absence of closed-form second order EVI estimators
could indicate the difficulty of finding second order LID ones. The sample size re-
quired for convergence of the second order EVI is larger than samples required for
the convergence of first order EVI, suggesting that the same should hold in the case
of second order LID. Estimators of the second order LID could also use auxiliary
distances. Using these auxiliary distances would increase the number of distances
available to the estimator without increasing the neighborhood size, and would po-
tentially solve the numerical convergence issues.

One possible extension of our feature selection approach is to consider estima-
tors or other models of intrinsic dimensionality as an alternative to LID in the as-
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sessment of feature quality. ALID can potentially improve the quality of our meth-
ods. Other models could also be tested. Although these models may lack the the-
oretical guarantees regarding the discriminability of distance measures, or may have
a higher computational complexity or sensitivity to noise [ACF+15] such models
may still deserve consideration, particularly if they are more reliable for non-smooth
distance distributions, or for smaller data samples.

There are several other possible directions for future work on ID-based feature
selection. First, it would be interesting to consider the problem of unsupervised tun-
ing of the parameters of ID-based feature selection. Also, our approaches for unsu-
pervised feature ranking could be extended to supervised applications, by restricting
the ID estimation to training examples with common labels. Finally, ID-based fea-
ture evaluation could conceivably be applied to dimensional reduction through fea-
ture extraction, where the original features are linearly combined in order to obtain
a new feature space in which distances are more discriminable than in the original.
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