
Iterative Methods for Nonnegative and Box

Constrained Least Squares Problems and

Their Applications

Ning Zheng

Doctor of Philosophy

Department of Informatics

School of Multidisciplinary Sciences

SOKENDAI (The Graduate University for

Advanced Studies)

Iterative Methods for Nonnegative and
Box Constrained Least Squares

Problems and Their Applications
by

Ning Zheng

Dissertation

submitted to the Department of Informatics

School of Multidisciplinary Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

SOKENDAI (The Graduate University for Advanced Studies)

March 2017

ii

Supervisor
Professor Ken HAYAMI

National Institute of Informatics
The Graduate University for Advanced Studies

Subadvisors
Professor Takeaki UNO

National Institute of Informatics
The Graduate University for Advanced Studies

Doctor Nobutaka ONO

National Institute of Informatics
The Graduate University for Advanced Studies

Other Examiners
Professor Takashi TSUCHIYA

National Graduate Institute for Policy Studies
Doctor Hironobu GOTODA

National Institute of Informatics
The Graduate University for Advanced Studies

“And ye shall know the truth, and the truth shall make you free."

— John 8:32

“Because strait is the gate, and narrow is the way, which leadeth unto life, and

few there be that find it."
— Matthew 7:14

v

ACKNOWLEDGMENTS

First, I would like to thank my supervisor, Professor Ken Hayami, for the patient
guidance and extraordinary inspiration he has provided throughout many years. I have
been extremely lucky to have a supervisor who cared so much about my research, and
who provided insightful and invaluable advice to my questions and queries so promptly.

I am thankful to my subadvisors Professor Takeaki Uno and Dr. Nobutaka Ono, as
well as other thesis examiners Professor Takashi Tsuchiya and Dr. Hironobu Gotoda.
During the second intermediate presentation, Dr. Ono suggested to apply my proposed
methods to solve nonnegative matrix factorization, which widen my research from
various perspectives and eventually became a new chapter in this thesis. Professors
Tsuchiya and Uno advised me to design the algorithms from the optimization viewpoint.
In addition, Dr. Gotoda gave me a lots of insightful comments and encouragement
during the intermediate presentations and final examinations.

I also would like to thank Professor Jun-Feng Yin, Drs. Keiichi Morikuni and Kota
Sugihara for their valuable remarks and discussions. Dr. Morikuni’s advices had greatly
improved the first version of the paper on nonnegative constrained least squares problem.

Many thanks to National Institute of Informatics, for the financial support, and the
great efforts from International Affairs and Education Support Team. Doing research
here is one of my best memories in my life.

Last but not the least, I must express my gratitude to my family, for their continued
support and encouragement.

vii

ABSTRACT

In this thesis, we mainly focus on the iterative methods for the large sparse nonnegative
constrained least squares (NNLS) and box constrained least squares (BLS) problems.
The new iterative methods, especially based on the modulus variable transformation
and active set strategy, are discussed and constructed. The theoretical analysis for the
convergence of the proposed methods are established. Also, numerical experiments
show that the proposed methods outperform previous methods in terms of computational
time and storage requirement under suitable conditions with reasonable parameters.

First, we briefly review numerical methods for the solution of NNLS and BLS
problems. Moreover, the advantages and the disadvantages of different methods are
discussed, which motivate one to design new iterative algorithms for large sparse
problems.

Secondly, we consider the solution of the general NNLS problem. A new iterative
method is proposed which uses the CGLS method for the inner iteration and the
modulus iterative method for the outer iteration to solve the linear complementarity
problem resulting from the Karush-Kuhn-Tucker condition of the NNLS problem.
Theoretical convergence analysis including the optimal choice of the parameter matrix is
presented for the proposed method. In addition, the method can be further enhanced by
incorporating the active set strategy, which contains two stages: the first stage consists of
modulus iterations to identify the active set, while the second stage solves the reduced
unconstrained least squares problems only on the inactive variables, and projects the

viii

solution into the nonnegative region. Numerical experiments show the efficiency of the
proposed methods compared to projection gradient-type methods with less iteration
steps and CPU time.

Thirdly, we consider the solution of large sparse BLS problems using a new class of
iterative methods based on modulus transformation, which converts the solution of the
BLS into a sequence of unconstrained least squares problems. The inner unconstrained
least squares problems are solved by CGLS method for each outer iteration. We also
discuss the solution of saddle point inner systems, and the choice of the parameter matrix.
Numerical experiments show the efficiency of the proposed methods in comparison of
the gradient projection methods.

Fourthly, we consider the solution of the nonnegative constrained ill-posed problem,
especially the image restoration problem. The problem can be formulated as the NNLS
problem, which can be solved by the methods proposed previously. Meanwhile, we
consider the discrepancy principle and Tikhonov regularization. Computed examples
illustrate the performances of these methods.

Fifthly, we consider the solution of nonnegative matrix factorization (NMF), which
is a low rank matrix approximation problem with nonnegative constraints, using a
new alternating least squares method by utilizing the modulus method to solve the
nonnegative constrained least squares problem in each iteration. We review some
existing methods for the solution of NMF, then construct the modulus method for
NMF and compare the proposed method with the existing methods numerically on the
synthetic data and ORL face image data.

Finally, the Anderson extrapolation is used to accelerate the algorithms for NMF. We
proposed a new Anderson acceleration technique that can flexibly accelerate the fixed
point iteration sequences, instead of accelerating the iteration sequence for every step.
The numerical experiments show that the Anderson acceleration not only accelerates the
classical stationary iterations for linear equations, but also outperform the previous
methods on nonlinear problems like linear complementarity problem, NNLS and NMF
with less iterations and CPU time.

ix

CONTENTS

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Backgrounds . 1

1.2 Motivations . 2

1.3 Contributions . 3

1.4 Outline . 5

2 Previous Work 7
2.1 Equivalent Conditions . 8

2.2 Projection Gradient Method . 13

2.3 Active Set Methods . 15

2.3.1 Lawson and Hanson’s Method 15

2.3.2 Polyak and O’Leary’s Method 18

2.3.3 Projected Quasi-Newton Method 23

2.3.4 Gradient Projection Conjugate Gradient Method 27

2.4 Interior Point Method . 29

2.4.1 Primal Dual Predictor Corrector Interior Point Method 29

2.4.2 Penalty-Type Interior Point Method 31

x CONTENTS

2.5 Other Iterative Methods . 32

2.5.1 Reflective Newton Method . 32

2.5.2 Flexible Krylov Subspaces Method 32

2.6 Concluding Remarks . 33

3 Nonnegative Constrained Least Squares Problem 37
3.1 Modulus Iterative Methods . 38

3.2 Review of Modulus Methods . 42

3.3 Convergence Analysis . 47

3.3.1 Scalar matrix case . 48

3.3.2 General positive diagonal matrix case 48

3.3.3 Convergence of inexact inner iteration 50

3.4 Two-Stage Hybrid Iterative Methods with Active Set Strategy 52

3.5 Numerical Experiments . 56

3.5.1 Dense full rank case . 58

3.5.2 Sparse full rank case . 64

3.5.3 Sparse rank deficient case . 65

3.6 Concluding Remarks . 67

4 Box Constrained Least Squares Problem 73
4.1 Modulus Methods . 73

4.2 Convergence Analysis . 77

4.3 Inner Iterations for Saddle Point Problems 77

4.3.1 MINRES . 79

4.3.2 Preconditioned CG . 79

4.3.3 Stationary Iteration . 80

4.3.4 Matrix Splitting of A . 80

4.4 Numerical Experiments . 82

4.4.1 Dense full rank case . 82

4.4.2 Box constrained ill-posed problem 83

4.4.3 Sparse full column rank . 84

4.5 Concluding Remarks . 85

CONTENTS xi

5 Nonnegative Constrained Ill-Posed Problem 87
5.1 Introduction . 88
5.2 Modulus Inner Outer Iteration Method with Active Set Strategy 91
5.3 Numerical Experiments: Discrepancy Principle 94
5.4 Numerical Experiments: Tikhonov Regularization 97
5.5 Concluding Remarks . 101

6 Nonnegative Matrix Factorization 103
6.1 Introduction . 104
6.2 Existing Methods . 104
6.3 Modulus-Type Inner Outer Iteration Method 108
6.4 Active Set Method for NNLS with Multiple Right Hand Sides 112
6.5 Sparse and Regularized NMF . 116
6.6 Numerical Experiments . 117
6.7 Concluding Remarks . 120

7 Anderson Acceleration 125
7.1 Introduction . 126
7.2 Linear Equations . 128
7.3 Nonnegative Constrained Least Squares Problem 135
7.4 Nonnegative Matrix Factorization . 136
7.5 Concluding Remarks . 137

8 Concluding Remarks 139

Bibliography 141

xiii

LIST OF FIGURES

1.1 The contour of the least squares objective function and the solution of
the least squares problem. 3

1.2 The contour of the least squares objective function and the solution of
the box constrained least squares problem. 4

2.1 Equivalent relationship between the assertions in Theorem 2.1.1. 9

2.2 The zigzag phenomenon for the gradient descent methods. 34

3.1 Relative residual vs. iterations for (a) ρ = 1, (b) ρ = 0.9, (c) ρ = 0.8
and (d) ρ = 0.7 with σn = 0.01 (κ(A) = 100). 58

3.2 Relative residual vs. iterations for (a) ρ = 1, (b) ρ = 0.9, (c) ρ = 0.8
and (d) ρ = 0.7 with σn = 0.0001 (κ(A) = 104). 59

3.3 The singular values are tightly clustered towards the smallest singular
value when ρ decreases. 60

3.4 Relative residual vs. matrix vector multiplications for Randn_4 (incon-
sistent). 64

3.5 Number of outer iterations, average inner iterations and matrix vector
multiplication vs. ω for Mod method in Maragal_3 (consistent). 67

3.6 Relative residual vs. matrix vector multiplications for Maragal_5 (con-
sistent). 68

xiv List of Figures

4.1 Left: relative residual vs. matrix vector multiplications. Right: objective
function value vs. matrix vector multiplications. 83

5.1 Exact image for (a) satellite and (b) variant motion. 95

5.2 Medium blurred and noisy image (left), restored image by PCGLS
(middle), and restored image by MCGLS2 (right) of satellite image. . . 95

5.3 Large blurred and noisy image (left), restored image by PCGLS (middle),
and restored image by MCGLS2 (right) of satellite image. 95

5.4 Medium blurred and noisy image (left), restored image by PCGLS
(middle), and restored image by MCGLS2 (right) of variant motion image. 96

5.5 Large blurred and noisy image (left), restored image by PCGLS (middle),
and restored image by MCGLS2 (right) of variant motion image. 96

5.6 The exact image (left), PSF function (middle) and large blurred and
noisy image (right) of test problem “AtmosphericBlur". 98

5.7 The exact image (left), PSF function (middle) and large blurred and
noisy image (right) of test problem “Text". 98

5.8 Relative error vs. outer iterations for test problems “AtmosphericBlur"
(left) and “Text" (right). 98

5.9 Relative residual vs. outer iterations for test problems “AtmosphericBlur"
(left) and “Text" (right). 99

5.10 Restored images by (a) PG, (b) Mod, (c) GPCG and (d) ModASCG
methods for test problem “AtmosphericBlur". 99

5.11 Restored images by (a) PG, (b) Mod, (c) GPCG and (d) ModASCG
methods for test problem “Text". 100

6.1 Nonnegative matrix factorization. 104

6.2 ([59]) An example in of the grouping of right hand sides when n = 10
and p = 6. Dark cells indicate variables with indices in F , which need
to be computed by (6.15). By grouping the columns that have a common
F set, i.e., columns {1,3,5}, {2,6}, and {4}, we can avoid redundant
computation for Cholesky factorization in solving the normal equation
of (6.15). 114

6.3 Objective function value versus iterations (left) and CPU time in seconds
(right), respectively, for random problem. 118

List of Figures xv

6.4 Condition numbers of W (red line) and H (black dot line) versus iterations.119
6.5 Objective function value versus iterations (left) and CPU time in seconds

(right), respectively, for random problem. 120
6.6 Condition numbers of W (red line) and H (black dot line) versus iterations.121
6.7 Images of the original facedata (first column), MU (second column), PG

(third column), PGA (fourth column) and Mod (fifth column). 123

7.1 Relative residual versus iterations for symmetric problem (Run Anderson
acceleration for every 3 steps). 131

7.2 Relative residual versus iterations for nonsymmetric problem (Run
Anderson acceleration for every 3 steps). 132

7.3 Relative residual versus iterations for symmetric problem (Run Anderson
acceleration for every steps). 133

7.4 Relative residual versus iterations for nonsymmetric problem (Run
Anderson acceleration for every steps). 134

7.5 Objective function value versus iterations (left) and CPU time in seconds
(right), respectively, for random problem. 138

xvii

LIST OF TABLES

3.1 Abbreviations for the compared methods. 57

3.2 Comparison of the iterative methods (full rank and inconsistent problem
with κ(A) = 100). 61

3.3 Comparison of the iterative methods (full rank and inconsistent problem
with κ(A) = 104). 62

3.4 Comparison of the iterative methods (full rank and inconsistent problem). 69

3.5 Information on the practical test matrices. 70

3.6 Comparison of the iterative methods (rank-deficient and consistent
problem). 71

3.7 Comparison of the iterative methods (rank-deficient and inconsistent
problem). 72

4.1 The choice of parameter matrix Q . 81

4.2 Comparison of the iterative methods (full rank and inconsistent problem
with κ(A) = 104). 82

4.3 Comparison of the iterative methods (full rank and inconsistent problem
with κ(A) = 104). 83

4.4 Comparison of the numerical methods on box constrained ill-posed
problems . 84

4.5 Comparison of the numerical methods on sparse full column rank problems 85

xviii List of Tables

5.1 Definitions in image restoration. 97

6.1 Comparison of the iterative methods for random problem. 118
6.2 Comparison of the iterative methods for ORL facedata problem. 120

1

CHAPTER 1

INTRODUCTION

1.1 Backgrounds

Linear least squares is an approach fitting a mathematical, statistical or engineering
model to data in cases where the idealized value of the model at any data point is
expressed linearly with respect to the unknown parameters of the model. It is known by
different names in different academic areas. For examples [67], mathematicians regard
the least squares problem as finding the closest point in a given subspace to a given
point in a function space; Statisticians use linear regression which arises as a particular
form of regression analysis to describe the model; Engineers may reach the problem as
parameter estimation, filtering, or process identification. Linear least squares problem
can be used to summarize the data, to predict unobserved values from the same system,
to understand the mechanisms that may underlie the system, and to approximate the
nonlinear least squares problems with linearization.

The problem of nonnegative constrained least squares (NNLS) is a constrained
version of the least squares problem where the variables are not allowed to be negative
[8]

min
x∈Rn
‖Ax−b‖2 subject to x≥ 0. (1.1)

Another generalization of NNLS is box constrained least squares (BLS), with simultane-

2 Chapter 1. Introduction

ous upper and lower bounds on the variable [8]

min
x∈Rn
‖Ax−b‖2 subject to l ≤ x≤ u. (1.2)

Here, we assume that A ∈ Rm×n, b ∈ Rm, m ≥ n and the inequalities are to be in-
terpreted componentwise. The rank-deficient case is allowed, when the equality in
rankA≤min(m,n) does not hold. Not only do the NNLS and BLS problems arise in
many scientific computing and engineering applications [8], e.g., image restoration
[78], reconstruction problems in geodesy [19] and tomography, contact problems for
mechanical systems [57], and the modeling of ocean circulation, but it is even argued
that any minimization problem becomes realistic only when its variables are constrained
within meaningful intervals [19].

The linear least squares problem, NNLS problem and BLS problem are convex and
the global minimums can be computed. They are strictly convex, where the global
minimum is unique, if and only if A is full column rank. There are two main challenges
for the solution of NNLS and BLS. One challenge is that there is a growing tendency
that the problems arising from the real applications are larger scale and sparser, which
makes the previous sophisticated algorithms not efficient. It goes without saying that the
new algorithms are desperately needed for the fast and accurate solution of the large
problems. Another challenge is that even if there exist the efficient solvers for NNLS
and BLS, they may not be efficient and suitable to apply to the nonconvex problems, e.g.,
nonnegative matrix factorization (NMF) problem, which treats the NNLS problem as
subproblems. Therefore, a new framework for the algorithm is required.

1.2 Motivations

Algorithms for the solution of the unconstrained linear least squares problem

min
x∈Rn
‖Ax−b‖2 (1.3)

fall into two classes: direct methods, which are usually based on some matrix factoriza-
tions and may not be so practical when the matrix A is large, sparse and does not have
a special structure, and iterative methods, among which the (preconditioned) CGLS

1.3 Contributions 3

Figure 1.1: The contour of the least squares objective function and the solution of the
least squares problem.

method [8], which is mathematically equivalent to the conjugate gradient (CG) method
applied to the normal equation

ATAx = ATb, (1.4)

and the BA-GMRES (left preconditioned GMRES) method [53, 72] play important
roles. However, the approximate solutions determined by the above methods are not
guaranteed to satisfy the nonnegative constraints in (1.1). Therefore, special techniques
must be added to the algorithms that handle the status of variables with respect to their
nonnegativity.

1.3 Contributions

The main contribution of this thesis is a new class of inner outer iterative methods for
nonnegative constrained least squares (NNLS) problem (1.1) was proposed based on the
modulus transformation for the nonnegative variables. Thus, the solution of the NNLS
problem (1.1) can be transformed into the solution of a sequence of unconstrained least
squares problems. Similar techniques are also used for constructing the algorithms for
box constrained least squares problem, nonnegative ill-posed problem and nonnegative

4 Chapter 1. Introduction

Figure 1.2: The contour of the least squares objective function and the solution of the
box constrained least squares problem.

matrix factorization. Theoretical convergence analysis was presented when the inner
system is solved either exactly or iteratively, and the choice of the parameter matrix was
discussed for the proposed methods. Moreover, we proposed a two-stage hybrid modulus
algorithm by incorporating the active set strategy, which contains two stages where the
first stage consists of modulus iterations to identify the active set, while the second stage
solves the reduced unconstrained least squares problems only on the inactive variables,
and projects the solution into the nonnegative region. Numerical experiments show the
efficiency of the proposed modulus methods compared to projection gradient-type
methods with less iteration steps and CPU time for full column rank and rank deficient
overdetermined NNLS problems. The modulus method is not only more efficient for
identifying a suitable active set, but also outperforms projection gradient-type methods
with less iteration steps and CPU time when the coefficient matrix has ill-determined
rank with large condition number and the singular values cluster near zero.

The idea and techniques developed above can be further used for the solution of
the box constrained least squares problem, the nonnegative matrix factorization, and
the nonnegative ill-posed problem. For the solution of the different problems, we
design the algorithm making use of the characteristic of each problem and exploit
its optimal performance by choosing the parameters. We also applied a flexible

1.4 Outline 5

Anderson acceleration to the proposed algorithms, to further accelerate the convergence
performance.

1.4 Outline

The rest of the thesis is organized as follows.
In Chapter 2, we first briefly review previous numerical methods for the solution of

NNLS and BLS problems. Moreover, the advantage and the disadvantage of different
methods are discussed and compared, which motivates one to design new iterative
algorithms for large sparse problems.

In Chapter 3, we consider the solution of general NNLS problems. A new iterative
method is proposed which uses the CGLS method for the inner iteration and the
modulus iterative method for the outer iteration to solve the linear complementarity
problem resulting from the Karush-Kuhn-Tucker condition of the NNLS problem.
Theoretical convergence analysis including the optimal choice of the parameter matrix is
presented for the proposed method. In addition, the method can be further enhanced by
incorporating the active set strategy, which contains two stages: the first stage consists of
modulus iterations to identify the active set, while the second stage solves the reduced
unconstrained least squares problems only on the inactive variables, and projects the
solution into the nonnegative region. Numerical experiments show the efficiency of the
proposed methods compared to projection gradient-type methods with less iteration
steps and CPU time.

In Chapter 4, we consider the solution of large sparse BLS problems using a new
class of iterative methods based on modulus transformation, which converts the solution
of the BLS into a sequence of the unconstrained least squares problems. The inner
unconstrained least squares problems are solved by CGLS method for each outer
iteration. We also discuss the solution of saddle point inner systems, and the choice
of the parameter matrix. Numerical experiments show the efficiency of the proposed
methods in comparison of the gradient projection methods.

In Chapter 5, we consider the solution of the nonnegative constrained ill-posed
problem, especially the image restoration problem. The problem can be formulated as the
NNLS problem, which can be solved by the methods proposed previously. Meanwhile,
we consider the discrepancy principle and Tikhonov regularization. Computed examples

6 Chapter 1. Introduction

illustrate the performances of these methods.
In Chapter 6, we consider the solution of nonnegative matrix factorization (NMF),

which is a low rank matrix approximation problem with nonnegative constraints, using a
new alternating least squares method by utilizing the modulus method to solve the
nonnegative constrained least squares problem in each iteration. We review some
existing methods for the solution of NMF, then construct the modulus method for
NMF and compare the proposed method with the existing methods numerically on the
synthetic data and ORL face image data.

In Chapter 7, the Anderson extrapolation is used to accelerate the algorithms for
NMF. We proposed a new Anderson acceleration technique that can flexibly accelerate
the fixed point iteration sequences, instead of accelerating the iteration sequence for
every step. The numerical experiments show that the Anderson acceleration not only
accelerate the classical stationary iterations for linear equations, but also outperform the
previous methods on nonlinear problems like linear complementarity problem, NNLS
and NMF with less iterations and CPU time.

Finally in Chapter 8, the concluding remarks are given and several ongoing works
are discussed.

7

CHAPTER 2

PREVIOUS WORK

In this chapter, we briefly review almost all the previous work on the iterative solution
of NNLS and BLS that arise from practical problems including contact and friction
problems in rigid body mechanics, journal bearing lubrication, flow through a porous
medium, and elastic-plastic torsion problems [77]. Some of the methods were originally
proposed for the solution of quadratic programming with nonnegative or box constraints,
which can be easily applied to solve NNLS and BLS. By comparing these methods in
terms of the advantages and disadvantages, we show the reason why a new strategy is
needed.

In Section 2.1, we propose an important theorem describing several equivalent
conditions of NNLS and BLS. These equivalent conditions are the key to deriving the
fixed-point iteration, e.g., the projection gradient method which will be introduced
in Section 2.2. In Sections 2.3 and 2.4, the active set methods and the interior point
methods are reviewed, respectively. In Sections 2.5, the reflective Newton method and
the recent developed flexible Krylov subspace method are introduced. Finally in Section
2.6, we compare the previous methods and mention the necessity of a new strategy.

8 Chapter 2. Previous Work

2.1 Equivalent Conditions

In this section, we list several equivalent conditions of BLS, which can be naturally
extended for NNLS.

Let the quadratic objective function be

q(x)≡ 1
2
‖Ax−b‖2

2 =
1
2

xT(ATA)x− (ATb)Tx+
1
2

bTb. (2.1)

The gradient function of q(x) is

∇q(x) = ATAx−ATb.

The equivalent formulations of the BLS problem (1.2) can be established through the
Karush-Kuhn-Tucker (KKT) optimality conditions, which is shown in the following
theorem.

Theorem 2.1.1. For the BLS problem (1.2), the following assertions are all equivalent.

(i) x∗ is a solution of the BLS problem (1.2);

(ii) x∗ is a solution of the linear complementarity problem (LCP)

ATAx−ATb−

[
I

−I

]T[
λ 1

λ 2

]
= 0,

[
λ 1

λ 2

]
≥ 0,[

I

−I

]
x−

[
l

−u

]
≥ 0 and

[
λ 1

λ 2

]T([
I

−I

]
x−

[
l

−u

])
= 0 (2.2)

(iii) x∗ satisfies
[∇q(x)]i ≥ 0, if xi = li,

[∇q(x)]i ≤ 0, if xi = ui,

[∇q(x)]i = 0, if li < xi < ui.

(2.3)

for i = 1,2, . . . ,n.

(iv) The variational inequality

(x− x∗)T
∇q(x∗)≥ 0 (2.4)

holds for any l ≤ x≤ u, where x∗ is a solution of the BLS (1.2).

2.1 Equivalent Conditions 9

Figure 2.1: Equivalent relationship between the assertions in Theorem 2.1.1.

(v) x∗ is a solution of the fixed-point equation

x = P(x−α∇q(x)), (2.5)

where α > 0 is a scalar parameter, and the projection operator P(·) is defined as

[P(x)]i =

li, if xi < li
ui, if xi > ui

xi, if li ≤ xi ≤ ui

(2.6)

for i = 1,2, . . . ,n.

(vi) x∗ is a solution of ∇Ωq(x) = 0, where the projected gradient on l ≤ x≤ u is defined

as

[∇Ωq(x)]i =

min([∇q(x)]i ,0) , if xi = li
max([∇q(x)]i ,0) , if xi = ui

[∇q(x)]i , if li ≤ xi ≤ ui

(2.7)

for i = 1,2, . . . ,n.

Proof. The following proof is based on the equivalence relationship in Figure 2.1.

10 Chapter 2. Previous Work

((i)⇐⇒(ii)) If x∗ is a solution of LCP (2.2), it holds that

ATAx∗−ATb−λ
∗
1 +λ

∗
2 = 0,

λ
∗
1 ≥ 0, λ

∗
2 ≥ 0, l ≤ x∗ ≤ u, (2.8)

(λ ∗1)
T(x∗− l) = 0, (λ ∗2)

T(u− x∗) = 0

For any l ≤ x≤ u,

‖Ax−b‖2
2−‖Ax∗−b‖2

2

= (x− x∗)TATA(x− x∗)+2(x− x∗)T(ATAx∗−ATb)

= (x− x∗)TATA(x− x∗)+2(x− l− x∗+ l)T
λ
∗
1−2(u− x∗−u+ x)T

λ
∗
2

= (x− x∗)TATA(x− x∗)+2(x− l)T
λ
∗
1 +2(u− x)T

λ
∗
2 ≥ 0.

Hence, x∗ is a minimization solution of BLS (1.2).

If x∗ is a solution of BLS (1.2), then x∗ satisfies the necessary KKT conditions as
follows.

Stationarity

∇x

(
1
2

xT(ATA)x− (ATb)Tx−λ
T
1(x− l)−λ

T
2(u− x)

)∣∣∣∣
x=x∗

= ATAx∗−ATb−λ 1 +λ 2 = 0.

Primal and Dual feasibility

l ≤ x∗ ≤ u, λ 1 ≥ 0, λ 2 ≥ 0

Complementarity slackness [
λ 1

λ 2

]T[
x∗− l

u− x∗

]
= 0.

By collecting the KKT conditions above, it is derived that x∗ satisfies LCP (2.2).

2.1 Equivalent Conditions 11

((ii)=⇒(iii)) If x∗ is a solution of LCP (2.2), then x∗ satisfies (2.8), and thus

x∗i = li =⇒ ui− x∗i > 0 =⇒ (λ ∗2)i = 0 =⇒ (λ ∗1)i = [∇q(x∗)]i ≥ 0;

x∗i = ui =⇒ x∗i − li > 0 =⇒ (λ ∗1)i = 0 =⇒ (λ ∗2)i =− [∇q(x∗)]i ≥ 0;

li < x∗i < ui =⇒ (λ ∗1)i = (λ ∗2)i = 0 =⇒ [∇q(x∗)]i = 0,

for i = 1,2, . . . ,n. Collecting the analysis above, we can easily derive that (2.3) is valid
for x∗.

((iii)=⇒(iv)) By the fact that x∗ satisfies (2.3), for any l ≤ x≤ u,

x∗i = li =⇒ xi− x∗i ≥ 0, [∇q(x∗)]i ≥ 0 =⇒ (xi− x∗i) [∇q(x∗)]i ≥ 0;

x∗i = ui =⇒ xi− x∗i ≤ 0, [∇q(x∗)]i ≤ 0 =⇒ (xi− x∗i) [∇q(x∗)]i ≥ 0;

li < x∗i < ui =⇒ [∇q(x∗)]i = 0 =⇒ (xi− x∗i) [∇q(x∗)]i = 0,

for i = 1,2, . . . ,n, which imply that the variational inequality (2.4) is valid for x∗.

((iv)=⇒(i)) For any l ≤ x≤ u, if there exists l ≤ x∗ ≤ u such that (2.4) holds, then

‖Ax−b‖2
2−‖Ax∗−b‖2

2

= (x− x∗)TATA(x− x∗)+2xTATAx∗−2(ATb)Tx−2(x∗)TATAx∗+2(ATb)Tx∗

= (x− x∗)TATA(x− x∗)+2(x− x∗)T(ATAx∗−ATb)≥ 0,

which implies that x∗ is a solution of BLS problem.

((iii)⇐⇒(v)) If x∗ satisfies (2.3), then according to the definition of the projection
operator P(·), when x∗i = li,

[∇q(x∗)]i ≥ 0 ⇐⇒ x∗i −α [∇q(x∗)]i ≤ li ⇐⇒ P(x∗i −α [∇q(x∗)]i) = li;

when x∗i = ui,

[∇q(x∗)]i ≤ 0 ⇐⇒ x∗i −α [∇q(x∗)]i ≥ ui ⇐⇒ P(x∗i −α [∇q(x∗)]i) = ui;

when li < x∗i < ui,

[∇q(x∗)]i = 0 ⇐⇒ x∗i −α [∇q(x∗)]i = x∗i ⇐⇒ P(x∗i −α [∇q(x∗)]i) = x∗i ,

12 Chapter 2. Previous Work

for α > 0 and i = 1,2, . . . ,n, which is equivalent to the fact that x∗ is a solution of the
fixed-point equation (2.5).

((iii)⇐⇒(vi)) If x∗ satisfies (2.3), then

when x∗i = li, [∇q(x∗)]i ≥ 0 ⇐⇒ min([∇q(x∗)]i ,0) = 0;

when x∗i = ui, [∇q(x∗)]i ≤ 0 ⇐⇒ max([∇q(x∗)]i ,0) = 0;

when li < x∗i < ui, [∇q(x∗)]i = 0,

for i = 1,2, . . . ,n, which is equivalent to the fact that x∗ is a solution of (2.7). �

We can easily obtain the corresponding equivalent assertions for nonnegative
constrained case as follows.

Corollary 2.1.2. For the NNLS problem (1.1), the following assertions are all equivalent.

(i) x∗ is a solution of the NNLS problem (1.1);

(ii) there exists a solution x∗ satisfying the LCP

x≥ 0, λ = ATAx−ATb≥ 0, and xT
λ = 0, (2.9)

(iii) x∗ satisfies {
[∇q(x)]i ≥ 0, if xi = 0,
[∇q(x)]i = 0, if xi > 0.

(2.10)

for i = 1,2, . . . ,n.

(iv) For any x ∈Ω≡ {x ∈ Rn : x≥ 0}, the variational inequality (2.4) holds, where x∗

is a solution of NNLS (1.1).

(v) x∗ is a solution of the fixed-point equation x = P(x−α∇q(x)), where α > 0 is a

scalar parameter, and the projection operator P(·) is defined as

[P(x)]i =

{
0, if xi < 0
xi, if xi ≥ 0

(2.11)

for i = 1,2, . . . ,n.

2.2 Projection Gradient Method 13

(vi) x∗ is a solution of ∇Ωq(x) = 0, where the projected gradient on x≥ 0 is defined as

[∇Ωq(x)]i =

{
min([∇q(x)]i ,0) , if xi = 0
[∇q(x)]i , if xi ≥ 0

(2.12)

for i = 1,2, . . . ,n.

Remark that due to the equivalence, the methods for LCP (2.9) and (2.2), and
variational inequality (2.4) can be applied for NNLS and BLS, and vice versa. The
(ii) and (v) are the basis for the modulus methods and the projected gradient methods,
respectively, by utilizing fixed-point equations to generate an approximate solution
sequence. In addition, the condition (vi) can be used as the stopping criteria of algorithms
for solving NNLS and BLS.

2.2 Projection Gradient Method

In order to handle the constraints, one of the most popular techniques is the projection
operations (2.11) and (2.6). For example, the projection gradient method proposed by
Bertsekas [5] iteratively solves the fixed-point equation (2.5) by generating a sequence
{xk} via

xk+1 = P(xk−αk∇q(xk)).

The parameter αk > 0 is chosen so that q(xk+1)< q(xk). The method was applied to
quadratic programming with box constraints in [27, 76, 77].

Algorithm 2.2.1. Projected Gradient Method
1. Choose an initial approximate solution x0 and compute r0 = b−Ax0.

2. For k = 0,1,2, . . . until convergence

3. Compute sk = ATrk.

4. Compute αk = ‖sk‖2
2/‖Ask‖2

2.

5. Set xk+1 = P(xk +β mαksk), and find the smallest integer m≥ 0
that satisfies

q(xk+1)≤ q(xk)+µ∇q(xk)T(xk+1− xk), (2.13)

14 Chapter 2. Previous Work

where 0 < β < 1 and 0≤ µ < 1.

6. Compute rk+1 = b−Axk+1.

7. Endfor

Here, (2.13) is called the sufficient decrease condition, or Armijo condition. One of
the advantages of this procedure is that it produces an acceptable αk with a finite number
of evaluations of q(x). Another advantage is that with this choice of αk, any limit point
x∗ of {xk} is a stationary point of q(x) [76].

Note that the theoretical convergence analysis of the projection gradient method was
discussed by Bertsekas [5], Calamai and Moré [27], Burke and Moré [16], and Dunn
[32].

Another projection method is the projected successive overrelaxation (SOR) method
proposed by Cryer [22] for the solution of nonnegative constrained quadratic pro-
gramming. The method solves the equivalent LCP (2.9) by the fixed-point iteration.
More sophisticated projection iterative methods were discussed and analyzed when the
coefficient matrix is either symmetric or nonsymmetric by Ahn [1], Mangasarian [70],
Pang et. al. [28, 84], and Murty [71].

We can easily extend Cryer’s method [22] to obtain the projected NR-SOR method,
where the NR-SOR method is the SOR iteration for the normal equation (1.4). Below,
we give their corresponding versions for the NNLS problem. For the projected NR-SOR
method, we only list one forward sweep.

Algorithm 2.2.2. Projected NR-SOR with One Forward Sweep
1. Given xk and rk(= b−Axk), k ≥ 0.

2. For i = 1,2, . . . ,n Do

3. Compute δi = ω(rk,Aei)/‖Aei‖2
2, where ei is the ith column vector

of the n×n identity matrix and 0 < ω < 2.

4. Compute xk+1
i = P(xk

i +δi).

5. Compute rk = rk− (xk+1
i − xk

i)(Aei).

6. Endfor

7. Set rk+1 = rk.

Unlike the Newton-type method where the Hessian matrix is required, the projection
gradient method only use the gradient information and thus is easy to understand and

2.3 Active Set Methods 15

implement. However, similar to the steepest descent method, it may suffer from slow
convergence due to the zigzag phenomenon when approaching the minimizer if the
condition number is large [102]. Therefore, instead of using it to solve the NNLS and
BLS directly, the projection gradient method is applied to identify the optimal active
constraints quickly. Once the optimal active constraints are identified, the minimization
problem can be treated as an unconstrained problem. This is the idea of the active set
strategy, which will be introduced in the following section.

2.3 Active Set Methods

A class of inner outer iterative methods is widely discussed for the solution of NNLS and
BLS problems, where a series of unconstrained least squares problems are solved in the
inner iteration, and the obtained solution is updated to satisfy the nonnegative constraints,
and then the inner iteration is resumed for each outer iteration until convergence. Remark
that the inner outer iteration methods contain two tasks including how to update the
solution of the unconstrained least squares problem when some of its components violate
the bounds, and when to terminate the inner iteration and start the next outer iteration.

In the following, we will discuss three classical active set inner outer iteration
methods.

2.3.1 Lawson and Hanson’s Method

The NNLS algorithm of Lawson and Hanson [67] is an active set method, and was the
de facto method for solving (1.1) for many years [61]. This algorithm is implemented
in MATLAB as the function “lsqnonneg". Bro and Jong [14] analyzed the NNLS
algorithm and proposed a Fast-NNLS (FNNLS) method to accelerate it for the solution
of nonnegative constrained least squares with multiple right-hand sides. A recent variant
of FNNLS appropriately rearranges calculations to achieve further speedups in the
presence of multiple right hand sides [15]. We consider the single right hand side case
here, so only the NNLS algorithm proposed by Lawson and Hanson is reviewed.

For the NNLS problem (1.1), suppose xk is the kth iterative solution. Then the active

16 Chapter 2. Previous Work

set and the corresponding set of free variables are defined as

A (xk) = { j : xk
j = 0} and F (xk) = {1,2, . . . ,n}\A (xk). (2.14)

The idea of active set method for NNLS (1.1) and BLS (1.2) is that if the constraints
active at the final solution are known in advance, then the original problem can be solved
by simply optimizing the objective function in an unconstrained manner over only the
variables that correspond to the inactive constraints [61]. The NNLS algorithm [67] is
described as follows.

Algorithm 2.3.1. NNLS Algorithm [67]
1. Choose x0 = 0 and compute r0 = b and s0 = ATr0.

2. Set A (x0) = {1,2, . . . ,n} and F (x0) = /0.

3. For k = 0,1,2, . . . until either A (xk) = /0 or s0 ≤ 0 is satisfied

4. Find index t ∈A (xk) such that sk
t = max{sk

j, j ∈A (xk)}.
5. Move t from A (xk) to F (xk).

6. Solve the reduced unconstrained least squares problem

min
y∈Rň
‖AF y−b‖2, (2.15)

where ň is the number of elements in F (xk).

7. If y > 0, set xk+1
F = y.

8. Otherwise, find q ∈F (xk) such that

α =
xk

q

xk
q− yq

= min
y j≤0

{
xk

j

xk
j− y j

, j ∈F (xk)

}
.

9. Set xk+1
F = xk

F +α(y− xk
F).

10. Compute rk+1 = b−Axk+1 and sk+1 = ATrk+1.

11. Update A (xk+1) and F (xk+1).

12. Endfor

Here, note that the update of A (xk+1) and F (xk+1) in Step 11 is implemented by
moving all indices that xk+1

j = 0, j ∈F (xk) from F (xk) to A (xk). Meanwhile, in order

2.3 Active Set Methods 17

to handle the nonnegative constraints, Algorithm 2.3.1 choose the reduced step size α

instead of utilizing the projection operator P(·).
We can easily extend the Algorithm 2.3.1 for the solution of BLS problem. The

active set is defined as

A (xk) = { j : xk
j = li or xk

j = ui} and F (xk) = {1,2, . . . ,n}\A (xk). (2.16)

The corresponding BLS algorithm is described as follows.

Algorithm 2.3.2. Lawson-Hanson Algorithm for BLS
1. Choose x0 and compute r0 = b−Ax0 and s0 = ATr0.

2. Compute A (x0) and F (x0) based on (2.16).
3. For k = 0,1,2, . . . until either A (xk) = /0 or s0 ≤ 0 is satisfied

4. Find index t ∈A (xk) such that sk
t = max{sk

j, j ∈A (xk)}.
5. Move t from A (xk) to F (xk).

6. Solve the reduced unconstrained least squares problem

min
y∈Rň
‖AF y− (b−AA xk)‖2, (2.17)

where ň is the number of elements in F (xk).

7. If lF ≤ y≤ uF , set xk+1
F = y.

8. Otherwise, find q ∈F such that

α = min

{
min
y j≤l j

{
xk

j− l j

xk
j− y j

}
, min

y j≥u j

{
xk

j−u j

xk
j− y j

}
, j ∈F

}
.

9. Set xk+1
F = xk

F +α(y− xk
F).

10. Compute rk+1 = b−Axk+1 and sk+1 = ATrk+1.

11. Update A (xk+1) and F (xk+1).

12. Endfor

The disadvantage of Lawson and Hanson’s method is that typically only one variable
between the active set and the passive set is exchanged in each iteration, which make it
very slow for the sequence to converge.

18 Chapter 2. Previous Work

2.3.2 Polyak and O’Leary’s Method

Instead of projection-type methods, which orthogonally project the iterated solution into
the feasible region by (2.6), Polyak [85] and O’Leary [81] proposed a generalized CG
method for solving general box constrained quadratic programming problems with a
symmetric positive definite matrix, by restricting the step size in each CG iteration to
satisfy constraints, which can be naturally applied to solving NNLS problems. A similar
algorithm called the restricted LSQR method was presented by Lötstedt [66], where
LSQR is a stabilized version of CGLS, and Bierlaire, Toint and Tuyttens [19] introduced
a variant of the algorithm.

Set B = ATA and c = ATb. Polyak’s algorithm [85] is as follows.

Algorithm 2.3.3. Polyak’s Algorithm for BLS
1. Initialization
2. Choose an x0 such that l ≤ x≤ u and set k = 0.

3. Set I = {1,2, . . . ,n}. This definition ensures that the first halting test in the

outer iteration will work properly.

4. Outer Iteration
5. Let k = k+1, xk = xk+1, yk = Bxk− c, and Ik−1 = I.

6. Define Ik = {i : xk
i = li and yk

i > 0}∪{i : xk
i = ui and yk

i < 0}.
7. If Ik = Ik−1, halt. The optimal solution has been found.

Otherwise, set I = Ik and begin the inner iteration.

8. Inner Iteration
9. Partition and rearrange the matrix system as

xk→

[
xk

I

xk
J

]
, bk→

[
ck

I

ck
J

]
, B→

[
BII BT

JI

BJI BJJ

]

with BJJ s× s, symmetric positive definite. We initialize the conjugate gradient

iteration to solve the equation

BJJxJ = cJ−BJIxI. (2.18)

The sequence {zq} will be our approximations to the solution vector xJ . The

vectors pq will be search directions, and vectors rq will be residuals for (2.18).

2.3 Active Set Methods 19

Set q = 0 and

z0 = xk
J, p0 = r0 = cJ−BJIxk

I −BJJz0.

10. Calculate the new iterate and residual. We compute two step parameters: acg

is the conjugate gradient step in the direction pq, and amax is the largest step in

that direction which does not violate any bounds on the variables

acg =
(rq, pq)

(pq,BJJ pq)
=

(rq,rq)

(pq,BJJ pq)

amax = min

(
min
pq

j<0

l j− zq
j

pq
j

, min
pq

j>0

u j− zq
j

pq
j

, j = 1,2, . . . ,s

)
.

The step taken is the smaller of these two positive numbers

aq = min(acg, amax),

zq+1 = zq +aq pq, rq+1 = rq−aqBJJ pq.

The vector y could also be updated at this stage to correspond to the current

values xk
I and zq+1.

11. Test for termination of the inner iteration:

12. If rq+1 = 0, set xk
J = zq+1 and restart the outer iteration.

13. If { j : zq+1
j = l j or zq+1

j = u j}= /0, proceed with Step 15.

14. Otherwise, set xk
J = zq+1 and I = {i : xk

i = li or xk
i = ui}. If

I = {1,2, . . . ,n}, then restart the outer iteration. Otherwise restart the inner

iteration.

15. Calculate the new search direction pq+1, BJJ-conjugate to the old ones:

bq =−
(BJJ pq,rq+1)

(pq,BJJ pq)
=

(rq+1,rq+1)

(rq,rq)
.

pq+1 = rq+1 +bq pq.

Replace q by q+1 and go to Step 10.

16. The initialization of z0, p0, r0, and q in Step 9 of the inner iteration, plus Step

10 and 15 with aq = acg and Step 11 replaced by

20 Chapter 2. Previous Work

17. If rq+1 = 0, then halt with xJ = zq+1, constitute the standard conjugate gradient

algorithm for solving the linear system (2.18).

It can be proved that Polyak’s algorithm terminates in a finite number of iterations
[81]. In addition, the performance of the Polyak’s algorithm can be enhanced by
improving the convergence rate of the inner iteration. This can be accomplished by using
the preconditioned conjugate gradient algorithm with matrix splitting [81]. O’Leary’s
algorithm [81] is as follows.

Algorithm 2.3.4. O’Leary’s Algorithm for BLS
1. Initialization
2. Choose an x0 such that l ≤ x≤ u and set k = 0.

3. Set I = {1,2, . . . ,n}. This definition ensures that the first halting test in the

outer iteration will work properly.

4. Outer Iteration
5. Let k = k+1, xk = xk+1, yk = Bxk− c, and Ik−1 = I.

6. Define Ik = {i : xk
i = li and yk

i > 0}∪{i : xk
i = ui and yk

i < 0}.
7. If Ik = Ik−1, halt. The optimal solution has been found. Otherwise, set I = Ik

and begin the inner iteration.

8. Inner Iteration
9. Partition and rearrange the matrix system as

xk→

[
xk

I

xk
J

]
, bk→

[
ck

I

ck
J

]
, B→

[
BII BT

JI

BJI BJJ

]

with BJJ s× s, symmetric positive definite. We initialize the conjugate gradient

iteration to solve the equation

BJJxJ = cJ−BJIxI. (2.19)

The sequence {zq} will be our approximations to the solution vector xJ . The

vectors pq will be search directions, and vectors rq will be residuals for (2.19).
Set q = 0 and

z0 = xk
J, p0 = r0 = cJ−BJIxk

I −BJJz0.

2.3 Active Set Methods 21

10. Calculate the new iterate and residual. We compute two step parameters: acg

is the conjugate gradient, or, equivalently for this step, the steepest descent

parameter, and amax is the largest step in that direction which does not violate

any bounds on the variables

acg =
(r0,r0)

(r0,BJJr0)

amax = min

(
min
p0

j<0

l j− z0
j

p0
j

, min
p0

j>0

u j− z0
j

p0
j

, j = 1,2, . . . ,s

)
.

The step taken is the smaller of these two positive numbers

a0 = min(acg, amax),

z1 = z0 +a0r0, r1 = r0−a0BJJ p0.

11. If r1 = 0, set xk
J = z1 and restart the outer iteration.

12. If { j : z1
j = l j or z1

j = u j}= /0, proceed with Step 15.

13. Otherwise, set xk
J = z1 and I = {i : xk

i = li or xk
i = ui}. If I = {1,2, . . . ,n}, then

restart the outer iteration. Otherwise repartition x, b, and B as in Step 9, set

z1 = xk
J, r1 = bJ−BJIxk

I − z1,

and continue with Step 14.

14. Initialize the scaled (preconditioned) conjugate gradient algorithm. Choose M

to scale the matrix BJJ , set q = 1 and let

p1 = M−1r1.

22 Chapter 2. Previous Work

15. Calculate the new iterate and residual:

acg =
(rq, pq)

(pq,BJJ pq)
=

(rq,M−1rq)

(pq,BJJ pq)

amax = min

(
min
pq

j<0

l j− zq
j

pq
j

, min
pq

j>0

u j− zq
j

pq
j

, j = 1,2, . . . ,s

)
.

aq = min(acg, amax),

zq+1 = zq +aq pq, rq+1 = rq−aqBJJ pq.

16. Test for termination of the inner iteration:

17. If rq+1 = 0, set xk
J = zq+1 and restart the outer iteration.

18. If { j : zq+1
j = l j or zq+1

j = u j}= /0, proceed with Step 15.

19. Otherwise, set xk
J = zq+1 and I = {i : xk

i = li or xk
i = ui}. If

I = {1,2, . . . ,n}, then restart the outer iteration. Otherwise restart the inner

iteration.

20. Calculate the new search direction pq+1, BJJ-conjugate to the old ones:

bq =−
(BJJ pq,M−1rq+1)

(pq,BJJ pq)
=

(rq+1,M−1rq+1)

(rq,M−1rq)
.

pq+1 = rq+1 +bq pq.

Replace q by q+1 and go to Step 10.

21. The initialization of z0, p0, r0, and q in Step 9 of the inner iteration, plus Step

10 and 15 with aq = acg and Step 11 replaced by

22. If rq+1 = 0, then halt with xJ = zq+1, constitute the scaled (preconditioned)

conjugate gradient algorithm for solving the linear system (2.18).

The advantage of O’Leary’s algorithm is that it can terminate in a finite number of
iterations and converges faster than Polyak’s algorithm. However, the disadvantage
is that the inner iteration is terminated as soon as a component of a computed iterate
violates a constraint, which forces frequent resuming of the inner iteration and thus
slows down the convergence. Another undesirable feature is that the active set type
algorithm allows only one variable to leave a bound at a given outer iteration, which only
allows to add or delete one index from the active set at a time. This is an inefficient
feature when the number of variables is large.

2.3 Active Set Methods 23

2.3.3 Projected Quasi-Newton Method

Bertsekas proposed a projected Newton-type method [6] which is based on

xk+1 = P(xk−β
kSk

∇q(xk)), (2.20)

where β k is determined by an Armijo-like rule [5], called the Armijo along projection
arc (APA) rule. In [6], the gradient scaling Sk is reset to the inverse of the Hessian
(∇2q(xk))−1 at every iteration, followed by the modification

Sk(i, j) = Sk(j, i) = 0, ∀i ∈ I+, j = 1,2, . . . ,n, j 6= i.

The projected quasi-Newton method combines the gradient projection method (2.5)
and the active set strategy. Consider the NNLS problem (1.1) first. Suppose xk is the kth
iterative solution. Then the binding set is defined as

B(xk) = { j : xk
j = 0, λ

k
j ≥ 0}, (2.21)

where λ
k =−ATrk =−AT(b−Axk) is the Lagrange multiplier, which is also the gradient

vector of the least-squares objective function in (1.3), or the negative residual of the
normal equation ATAx = ATb. More specifically, B(xk) contains variables that satisfy
the KKT conditions (2.10) at the current iteration, which makes them more likely to be
active at the final solution. In contrast, for a component xk

j = 0, for which
[
∇q(xk)

]
j < 0,

it may be possible to optimize the objective further by making xk
j > 0 and

[
∇q(xk)

]
j = 0

at the next iteration, thereby violating the notion of a fixed variable [61].

Denote AF as the submatrix of A consisting of the columns of A whose indices
belong to F̃ ≡ {1,2, . . . ,n}\B. Then, the reduced NNLS problem

min
y∈Rñ

qk(y)≡ ‖AF̃ y−b‖2 subject to x≥ 0, (2.22)

where ñ is the number of elements in F̃ . Let ỹ denote the solution of (2.22), then we
obtain the update xk+1

F̃
= ỹ.

Next, we show how to compute the solution ỹ of the reduced NNLS problem
(2.22). We make use of the projected gradient method (2.5) and a non-diagonal gradient

24 Chapter 2. Previous Work

scaling matrix Sk, which approximates the inverse of the Hessian ∇2q = ATA at each
iteration. The use of such non-diagonal gradient scaling matrices accelerates the rate of
convergence, and it is central to the success of the popular Quasi-Newton method [61].
We remark that the “non-diagonality" helps by pointing out that the ordinary projection
gradient method may be viewed as using Sk = I at each iteration.

We compute the vector ỹ by using the following update

ỹ = yk +α(γk(β ;yk)− yk), (2.23)

where α,β ≥ 0 are certain parameters, and the function γ(β ;y) is defined as the
projection

γ
k(β ;yk) = P(yk−β S̄k

∇q(yk)), (2.24)

where S̄k is an approximate principal submatrix of Sk, and P(·) denotes the orthogonal
projection onto Rn

+.

The overall method that encapsulates all the details mentioned above is presented as
Algorithm 2.3.5.

Algorithm 2.3.5. Projected Quasi-Newton NNLS Algorithm [61]
1. Choose x0 and S0 = I.

2. Compute r0 = b−Ax0 and s0 = ATr0.

3. For k = 0,1,2, . . . until convergence

4. Compute B(xk) and F̃ (xk).

5. Solve the reduced NNLS problem (2.22):
6. Find appropriate αk and β k.

7. Compute ỹ by (2.23) and (2.24).
8. Update gradient scaling matrix Sk to obtain Sk+1.

9. Set xk+1
F̃

= ỹ and compute rk+1 = b−Axk+1 and sk+1 = ATrk+1.

10. Endfor

In the following we discuss the line search in Step 6 and gradient scaling update in
Step 8.

2.3 Active Set Methods 25

Line Search

Naturally, the parameters β and α are crucial to the update (2.23), and subsequently to
the convergence speed of overall algorithm. One of the most popular methods is the
limited minimization rule, which computes an appropriate α for a pre-specified fixed
value of β by performing the following single-variable minimization

α
k = argminα∈[0,1]qk(yk +α(γk(β ;yk)− yk)). (2.25)

We exploit the fact that the objective function in (2.25) is a continuous and quadratic
univariate function of α . Letting d = γk(β ;yk)−yk and setting the derivative dqk/dα = 0,
we have

dqk
dα

= dT
∇qk(yk +αd) = dTĀTĀyk +α‖Ād‖2−dTĀTb = 0

=⇒ α =
dT

(ĀTb−ĀTĀyk)

‖Ād‖2 .

With the above α , we can choose the current step size to be αk = mid(0,α,1).

Although the limited minimization rule above yields an analytic solution for a fixed
value β , sometimes the convergence speed of the overall algorithm can be sensitive
to this pre-specified inner step length β . Finding a good value of β could itself be
time-consuming. One choice can be the Armijo step-size rule, which is simple and
usually works well both for unconstrained and constrained problems. Bertsekas [5]
proposed a variation of Armijo-like rule, called the Armijo along projection arc (APA)
rule. Interestingly, unlike the above methods, APA fixes α in (2.23) and computes an
appropriate β at each iteration. In our implementation of APA, we fix α = 1, which
leads the following changes to the update

ỹ = γ
k(β k;yk) = P(yk−β

kSk
∇q(yk)).

Here, the computation of β k takes the following form. Let m be the smallest nonnegative
integer such that

qk(yk)−qk(γ
k(sm

σ ;yk))≥ τ∇qk(yk)T(yk− γ
k(sm

σ ;yk)), (2.26)

26 Chapter 2. Previous Work

where σ > 0, 0 < σ < 1 and 0 < τ < 0.5 are fixed scalars. The resulting step size
β = smσ .

BFGS Update

We consider how the gradient scaling update step can be implemented. In a traditional
Newton method the inverse of the Hessian of the objective function serves as the gradient
scaling matrix. However, a fundamental drawback of using the inverse Hessian for large
scale problems is cost of computing it. For the NNLS objective function, this amounts to
O(n3) in general, which can make the overall procedure unacceptably expensive. A
further drawback, especially for large scale problems is that the Hessian or its inverse
can be ill-conditioned. This not only causes numerical difficulties, but can also lead to a
poor rate of convergence.

To circumvent some of the problems associated with the use of the full Hessian, re-
searchers have used the idea of approximating it in various ways. Such an approximation
leads to what is known as the Quasi-Newton or Variable Metric method – a popular
and well-established method for nonlinear programming. Some common techniques
for iteratively approximating the Hessian are the Powell-Symmetric-Broyden (PSB),
Davidon-Fletcher-Powell (DFP), and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
updates, where the latter is believed to be the most effective in general.

Suppose Hk is the current approximation to the Hessian. The BFGS update adds a
rank-two correction to Hk to obtain

Hk+1 = Hk− HkuuTHk

uTHku
+

wwT

uTw
, (2.27)

where w and u are defined as

w = ∇q(xk+1)−∇q(xk) and u = xk+1− xk.

Let Sk denote the inverse of Hk. Then, by applying the Sherman-Morrison-Woodbury
formula, update (2.27) amounts to the following

Sk+1 = Sk +

(
1+

wTSkw
uTw

)
uuT

uTw
− SkwuT +uwTSk

uTw
. (2.28)

2.3 Active Set Methods 27

Now we use the fact that

w = ∇q(xk+1)−∇q(xk) = ATA(xk+1− xk) = ATAu,

to rewrite (2.28) as

Sk+1 = Sk +

(
1+

uTATASkATAu
uTATAu

)
uuT

uTATAu
− SkATAuuT +uuTATASk

uTATAu
. (2.29)

The convergence analysis and numerical comparison of the above methods were
shown in [61].

2.3.4 Gradient Projection Conjugate Gradient Method

In order to avoid the disadvantages of the active set methods mentioned previously,
Dembo and Tulowitzki [36] proposed algorithms that allow to add or delete many
indices at each iteration. Similar algorithms were presented by Yang and Tolle [101], in
which they showed theoretically that the iterations converge to the solution in a finite
number of steps. For the solution of ill-posed nonnegative least squares problems,
Calvetti et al. [26] proposed a projected iteration method by allowing more consecutive
iterations in the inner iteration. In addition, Morigi et al. [74] proposed an active set
projected CG method for general box constrained ill-posed problems, which can be
applied to nonnegative constrained problems, where the components of the solution that
equal their bounds are referred to as the active set and identified in the outer iteration,
and the reduced unconstrained least squares problem is solved in the inner iteration
by keeping the identified components fixed. These methods are shown to require low
storage and are easy to implement, and numerical examples arising from constrained
linear ill-posed problems and image restoration indicate their fairly rapid convergence.
However, there is few theoretical analysis to guarantee the convergence, and the norm of
consecutively generated residual vectors may not be monotonically decreasing [73, 74].

Wright [98] proposed a hybrid two-stage algorithm by using the projected gradient
method until a suitable active set is identified in the first stage, and then by applying
the CG method to obtain a numerical solution for the current inactive variable set in
the second stage. The idea was further developed by Moré and Toraldo [76, 77] for

28 Chapter 2. Previous Work

the solution of box constrained quadratic programming, in which the convergence
can be guaranteed when the problem is nondegenerate. The active set strategy can be
regarded as a subspace acceleration technique, and numerical results show the significant
acceleration of convergence.

The algorithm uses conjugate gradient method to explore the face of the feasible
region defined by the current iterate, and the gradient projection method to move to a
different face. The algorithm [77] is proposed as follows.

Algorithm 2.3.6. Gradient Projection Conjugate Gradient Method
1. For k = 0,1,2, . . . until convergence

2. Generate gradient projection iterates y0,y1, . . . with y0 = xk by

y j+1 = P(y j−α j∇q(y j)).

3. Set xk = y jk , where jk is the first index j that satisfies

A (y j) = A (y j−1),

or

q(y j−1)−q(y j)≤ η2 max{q(yl−1)−q(yl) : 1≤ l < j}.

4. Generate conjugate gradient iterates w0,w1, . . . with w0 = 0. Set

dk = Zkw jk , where jk is the first index j that satisfies

qk(w j−1)−qk(w j)≤ η1 max{qk(wl−1)−qk(wl) : 1≤ l < j},

and

qk = ‖A(xk +Zkw)−b‖2,

the matrix Zk ∈ Rn×ň be the matrix whose jth column is the i jth column

of the n×n identity matrix, j = 1,2, . . . , iň.

5. Use a projected search to define xk+1 = P(xk +αkdk).

6. If B(xk+1) = A (xk+1), continue the conjugate gradient method.

7. Endfor

Moreover, Bardsley and Vogel [20] extended the algorithm of Moré and Toraldo [77]

2.4 Interior Point Method 29

to the solution of non-quadratic, but convex problems with nonnegative constraints in
image reconstruction, by taking Newton steps in the inactive variables. The disadvantage
of this hybrid method is that when the initial vector is far from the solution, the
convergence can be slow as a large number of iterations are needed for the projected
gradient method to identify a suitable active set.

2.4 Interior Point Method

Interior point method, or barrier method, is widely used for the solution of the constrained
optimization problems. The method solve problems iteratively such that all iterates
satisfy the inequality constraints strictly. They approach the solution from either the
interior or exterior of the feasible region but never lie on the boundary of this region.

In this section, we will briefly introduce two classes of interior point methods. One
is based on the primal-dual path-following methods, which is considered the most
successful interior point methods. The other one is based on the penalty method.

2.4.1 Primal Dual Predictor Corrector Interior Point Method

Mehrotra’s predictor corrector interior point method [94] is discussed as follows. The
first order optimality conditions (2.9) and (2.2) for the NNLS and BLS problems,
respectively, can be written as

F(x,λ)≡

[
ATAx−ATb−λ

XΛe

]
≡

[
rd

rxλ

]
= 0 (2.30)

and

F(x,λ ,s)≡

ATAx−ATb−

[
I −I

]
λ

s−

[
x− l

u− x

]
SXe

≡
 rd

rp

rxλ

= 0. (2.31)

Set z = (x,λ) or z = (x,λ ,s), we can apply Newton method to solve F(z) = 0.

30 Chapter 2. Previous Work

However, the solution of F(z) = 0 can not guarantee to have the constrained solutions.

F(x,λ) =

[
0
τe

]
and F(x,λ ,s) =

 0
0
τe

 . (2.32)

Applying Newton method to F(z)− τ ê = 0, we have the primal-dual interior point
method.

Next, we apply damped Newton method to solve the nonlinear equations (2.30) and
(2.31). Consider the solution of F(x) = 0, the damped Newton method is based on the
following iterations

F ′(xk)∆x =−F(xk), xk+1 = xk +αk∆x, k = 0,1,2, . . . (2.33)

The damped simplified Newton method is based on the following iterations

F ′(x0)∆x =−F(xk), xk+1 = xk +αk∆x, k = 0,1,2, . . . (2.34)

The level-m composite Newton method is based on the following iterations

F ′(xk)∆x0 =−F(xk)

F ′(xk)∆x1 =−F(xk +∆x0)

F ′(xk)∆x2 =−F(xk +∆x0 +∆x1)

· · · · · ·

F ′(xk)∆xm =−F(xk +∆x0 + · · ·+∆xm−1)

xk+1 = xk +αk(∆x0 +∆x1 + · · ·+∆xm), k = 0,1,2, . . . (2.35)

Specifically, the level-1 composite Newton method is widely used as follows.

F ′(xk)∆xN =−F(xk)

F ′(xk)∆xs =−F(xk +∆xN)

xk+1 = xk +αk(∆xN +∆xs), k = 0,1,2, . . . (2.36)

2.4 Interior Point Method 31

Applying the level-1 composite Newton method to F(z)− τ ê = 0, we have the predictor
corrector primal-dual interior point method.

Remark that the Jacobian matrix are

J(x,λ) =

[
ATA −I

Λ X

]
and J(x,λ ,s) =

ATA −I I 0 0
−I 0 0 I 0
I 0 0 0 I

0 S11 S12 Λ11 Λ12

0 S21 S22 Λ21 Λ22

 (2.37)

for NNLS and BLS problems, respectively.

2.4.2 Penalty-Type Interior Point Method

The following interior point trust-region-based method was proposed by Rojas and
Steihaug [89], and was applied for the solution of constrained ill-posed problems in [75].

For x = [ξ1,ξ2, . . . ,ξn]> 0, define

fγ(x) =
1
2
‖Ax−b‖2

2− γ

n

∑
i=1

logξi, (2.38)

where γ ≥ 0. Consider the solution of the unconstrained minimization problem min fγ(x),
we apply the Newton method ∇2 fγ(xk)∆x =−∇ fγ(xk), where

∇ fγ(x) = ATAx−ATb− γX−1e

∇
2 fγ(x) = ATA+ γX−2,

and X = diag(x) and e = [1,1, . . . ,1]T. Hence, for each iteration k, we compute

(ATA+ γX−2
k)∆x =−(ATAxk−ATb− γX−1

k e)

and set xk+1 = xk +αk∆x. This can be further written in the form of the first kind normal
equations [

A
√

γX−1
k

]T[
A

√
γX−1

k

]
∆x =

[
A

√
γX−1

k

]T[
b−Axk

√
γe

]

32 Chapter 2. Previous Work

or the equivalent least squares problem

min

∥∥∥∥∥
[

A
√

γX−1
k

]
∆x−

[
b−Axk

√
γe

]∥∥∥∥∥
2

.

The LSQR method, which is an implementation of the conjugate gradient method
applied to the normal equation based on the Lanczos bidiagonalization, is used for
solving the above least squares problem in [75]. In addition, a few auxiliary quantities
are computed to facilitate the constraints and the evaluation of the stopping criteria.

2.5 Other Iterative Methods

In this section, we briefly introduce the reflective Newton method and the recent
developed flexible Krylov subspaces method for the solution of NNLS and BLS.

2.5.1 Reflective Newton Method

Instead of using projection, the shrinkage of the step size or barrier penalty function to
ensure feasibility, the reflective Newton method generates descent directions and follows
a piecewise linear path, reflecting off constraints as they are encountered. The method
was proposed by Coleman and Li for solving the general nonlinear box constrained
problem [24] and the quadratic programming [25].

The advantage of the reflective Newton method is that it exhibits strong convergence
properties, global and quadratic convergence, and appears to have significant practical
potential to solve the large scale problem.

2.5.2 Flexible Krylov Subspaces Method

In order to ensure the nonnegative feasibility, Nagy and Strakos [78] proposed the
modified residual norm steepest descent (MRNSD) algorithm for image restoration
problems. The MRNSD algorithm utilize the nonlinear transformation

x = ez

2.6 Concluding Remarks 33

to preserve the nonnegativity, which is based on the EMLS algorithm developed by
Kaufman [56]. The gradient descent method is used for the resulted unconstrained least
squares problems, and the step size is chosen in order to impose nonnegativity of the
approximate solution at each iteration. Hence, the convergence rate of the MRNSD
method is similar to the other gradient descent method or steepest descent method,
which is considerably slow.

Recently, Gazzola and Wiaux [43] proposed the flexible Krylov subspaces method
for solving NNLS problem arising from the image restoration, by merging the ability of
delivering high-quality approximations typical of the MRNSD methods, with a fast
convergence typical of Krylov methods for unconstrained problems. By exploiting the
potentialities of flexible Krylov subspaces, the new strategy embraces and improves the
class of the MRNSD methods.

2.6 Concluding Remarks

We conclude this chapter by summarizing and comparing the above mentioned previous
work on NNLS and BLS.

• As the first order methods, the gradient descent-type methods, including the
projection gradient method and restricted gradient method, are easy to implement
than the Newton-type methods since only the gradient is computed. However,
similar to the steepest descent method, it may suffer from the slow convergence
due to the zigzag phenomenon when approaching the minimizer if the condition
number is large [102]. See Figure 2.2 for details. Therefore, instead of using
them to solve the NNLS and BLS directly, the gradient descent-type methods are
applied to identify the optimal active constraints quickly in the first stage of the
active set methods.

• For the active set methods by Lawson and Hanson [67], Polyak [85] and O’Leary
[81], even though the unconstrained least squares problem can be solved by the
fast conjugate gradient method once the active set is determined, typically only
one variable between active set and passive set is exchanged in each iteration,
which is very slow for the sequence to converge. Specifically, the inner iteration is
terminated as soon as a component of a computed iterate violates a constraint,

34 Chapter 2. Previous Work

Figure 2.2: The zigzag phenomenon for the gradient descent methods.

which forces frequent resuming of the inner iteration and thus slows down
convergence. Also the active set type algorithm allows only one variable to leave a
bound at a given outer iteration, which allows to add or delete one index from the
active set at a time. This is an inefficient feature when the number of variables is
large. The advantage of Polyak and O’Leary’s algorithm is that it can terminates
in a finite number of iterations theoretically.

• For the the primal dual predictor corrector interior point method, the penalty
interior point method, the reflective Newton method, and the flexible Krylov
subspaces method, it is not easy to implement. The algorithm not only utilize the
barrier function or nonlinear variable transformation to transform the constrained
minimization problem to unconstrained minimization problem, but also choose the
reasonable step size during each iteration to guarantee the interior property. The
advantage of these methods is that they exhibits strong convergence properties,
even global and quadratic convergence rate.

• The active set method proposed by Moré and Toraldo was efficient for the large
sparse NNLS and BLS problems, since it allows more consecutive iterations for
the inner iteration and many elements to exchange between the active set and
inactive set for the outer iteration. The disadvantage is that the projection gradient
method is used in the first stage to identify the active set, which may be slow. We
will utilize the two stages hybrid idea of it and construct the new algorithm by

2.6 Concluding Remarks 35

replacing the projection gradient method with other efficient methods.

In next chapter, instead of using shrinking step size or the projection techniques,
we apply a modulus transformation to constrain the nonnegativity of the variable,
and the solution of NNLS problem can be replaced by the solution of a sequence of
unconstrained least squares problems, for which numerous efficient solvers can be
exploited. The modulus transformation is similar to the piecewise linear transformation
introduced in the reflective Newton method [24, 25]. Therefore, a new class of inner
outer iterative methods is proposed by using CGLS method for inner iterations and
the modulus iterative method in the outer iterations for the solution of LCP (linear
complementarity problem) resulting from the KKT (Karush-Kuhn-Tucker) conditions.
Theoretical convergence analysis is presented, and the choice of the parameter matrix is
discussed for the proposed method.

We also propose a corresponding hybrid algorithm by incorporating the active set
strategy, which contains two stages where the first stage consists of modulus iterations
to identify the active set, while the second stage solves the reduced unconstrained
least squares problems only on the inactive variables, and projects the solution into the
nonnegative region. Such active set method resembles the algorithm proposed by Moré
and Toraldo [76, 77]and Bardsley and Vogel [20].

37

CHAPTER 3

NONNEGATIVE CONSTRAINED
LEAST SQUARES PROBLEM

In this charter, we consider the solution of large sparse nonnegative constrained linear
least squares (NNLS) problems. A new iterative method is proposed which uses the
CGLS method for the inner iterations and the modulus iterative method for the outer
iterations to solve the linear complementarity problem resulting from the Karush-Kuhn-
Tucker condition of the NNLS problem. Theoretical convergence analysis including
the optimal choice of the parameter matrix is presented for the proposed method. In
addition, the method can be further enhanced by incorporating the active set strategy,
which contains two stages: the first stage consists of modulus iterations to identify
the active set, while the second stage solves the reduced unconstrained least squares
problems only on the inactive variables, and projects the solution into the nonnegative
region. Numerical experiments show the efficiency of the proposed methods compared
to projection gradient-type methods with less iteration steps and CPU time.

The rest of the chapter is organized as follows. In Section 3.1, the modulus inner
outer iteration method is proposed for the solution of the NNLS problem. In Section
3.3, convergence analysis of the proposed method is presented, and the choice of the
parameter matrix is discussed. In Section 3.4, a hybrid method is proposed by alternately
performing the modulus iterations and the active set CGLS iterations. In Section 3.5,

38 Chapter 3. Nonnegative Constrained Least Squares Problem

numerical results are presented, and Section 3.6 gives concluding remarks.

This chapter is mainly based on the contents in [103].

3.1 Modulus Iterative Methods

In this section, we show that the solution of the NNLS problem can be transformed to a
series of unconstrained least squares problems by applying a modulus transformation on
the variables. First, the equivalence between the nonnegative constrained quadratic
programming and the linear complementarity problem (LCP) is shown in the following
theorem, when the coefficient matrix is symmetric positive semidefinite.

Theorem 3.1.1. The nonnegative constrained quadratic programming problem NNQP(B,c)

min
x∈Rn

(
1
2

xTBx+ cTx
)

subject to x≥ 0 (3.1)

is equivalent to the linear complementarity problem LCP(B,c)

x≥ 0, Bx+ c≥ 0, and xT(Bx+ c) = 0, (3.2)

provided that B is a symmetric positive semidefinite matrix.

Proof. If x∗ is a solution of LCP(B,c), then it holds that

x∗ ≥ 0, Bx∗+ c≥ 0, and (x∗)T(Bx∗+ c) = 0.

It is observed that for any x≥ 0,

1
2

xTBx+ cTx−
(

1
2
(x∗)TBx∗+ cTx∗

)
=

1
2
(x− x∗)TB(x− x∗)+ xT(Bx∗+ c)− (x∗)T(Bx∗+ c)

=
1
2
(x− x∗)TB(x− x∗)+ xT(Bx∗+ c)≥ 0.

The last inequality holds by the fact that B is symmetric positive semidefinite. Hence, we

3.1 Modulus Iterative Methods 39

have
1
2

xTBx+ cTx≥ 1
2
(x∗)TBx∗+ cTx∗,

which indicates that x∗ is a minimization solution of NNQP(B,c).
If x∗ is a solution of NNQP(B,c), then x∗ satisfies the necessary KKT conditions as

follows. There exists f ∈ Rn, called KKT multipliers, such that

Stationarity

∇

(
1
2

xTBx+ cTx− f Tx
)∣∣∣∣

x=x∗
= Bx∗+ c− f = 0,

Primal and Dual feasibility
x∗ ≥ 0, f ≥ 0,

Complementarity slackness
(x∗)T f = 0.

By collecting the KKT conditions above, it is derived that x∗ satisfies LCP(B,c). �

Corollary 3.1.2. If matrix B is symmetric positive definite, then both NNQP(B,c) and

LCP(B,c) have the same unique solution.

Corollary 3.1.3. ([8]) The NNLS problem (1.1) is equivalent to LCP(ATA,−ATb)

x≥ 0, λ ≡ ATAx−ATb≥ 0, and xT
λ = 0. (3.3)

Proof. Set B = ATA and c =−ATb in Theorem 3.1.1. �
Furthermore, the following theorem, which is a special case of Theorem 2.1 in [4],

implies that LCP(ATA,−ATb) is equivalent to the implicit fixed-point equation

(Ω+ATA)z = (Ω−ATA)|z|+ATb (3.4)

with modulus transformation x = z+ |z|, where Ω is a positive diagonal parameter matrix.
Hence, it is equivalent to solve the implicit fixed-point equation (3.4) for the solution of
(1.1) by Corollary 3.1.3.

Theorem 3.1.4. Let Ω be an n×n positive diagonal matrix. For the LCP(ATA,−ATb),

the following statements hold:

40 Chapter 3. Nonnegative Constrained Least Squares Problem

(i) if x is a solution of the LCP(ATA,−ATb), then z = (x−Ω−1λ)/2 satisfies the implicit

fixed-point equation (3.4), where λ = ATAx−ATb;

(ii) if z satisfies the implicit fixed-point equation (3.4), then x = |z|+ z is a solution of

the LCP(ATA,−ATb). Moreover, λ = Ω(|z|− z) holds.

Based on the equivalence in Theorem 4.3.1, the modulus-type iterative scheme

(Ω+ATA)zk+1 = (Ω−ATA)|zk|+ATb (3.5)

is naturally derived for the solution of the fixed-point equation (3.4). If z∗ is a fixed point
of (3.5), then by Corollary 3.1.3 and Theorem 4.3.1, the solution of the NNLS problem
(1.1) can be obtained straightforwardly by x∗ = z∗+ |z∗|. Therefore, the solution of the
NNLS problem (1.1) is transformed to the solution of a series of fixed-point equations
(3.5), which can be solved directly by matrix decompositions, or by iterative methods,
such as the preconditioned CG method as the coefficient matrix Ω+ATA is symmetric
positive definite.

The modulus iteration method for NNLS problem (1.1) is described as follows.

Algorithm 3.1.5. Modulus Iteration Method
1. Choose an initial approximate solution z0 and a parameter matrix Ω.

2. Compute x0 = z0 + |z0|.
3. For k = 0,1,2, . . . until convergence

4. Compute zk+1 by solving equation (3.5).
5. Compute xk+1 = zk+1 + |zk+1|.

6. Endfor

We remark that this modulus method derived from (3.4) is a special case of modulus-
based matrix splitting methods with M = ATA and N = 0 in [4]. For more numerical
methods for LCP, see [104] and the references therein.

Another remark is that a similar idea that transforms the constrained minimization
problem into an unconstrained problem using the parameterization x = ez instead
of x = z+ |z| is proposed by Hanke, Nagy and Vogel [51], and is applied for image
reconstruction problems in [78]. The main difference is the iterative methods constructed
in [78] are based on the solution of fixed-point equation with respect to x, and thus line

3.1 Modulus Iterative Methods 41

search is needed at each iteration to maintain nonnegativity, while it is not necessary for
the modulus iteration, since the iteration is based on the unconstrained vector z.

Finally, it is noted that the iterative scheme (3.5) can be reorganized as the normal
equations

ÃTÃzk+1 = ÃTb̃k
, (3.6)

of the unconstrained least squares problem

min
zk+1∈Rn

‖Ãzk+1− b̃k‖2 (3.7)

for any fixed k = 0,1,2, ..., where

Ã =

[
A

Ω
1
2

]
and b̃k

=

[
−A|zk|+b

Ω
1
2 |zk|

]
,

Therefore, the solution of the NNLS problem (1.1) is transformed to the solution of a
series of unconstrained least squares problems (3.7). This is the main idea of modulus
method.

The modulus-type inner outer iteration method for NNLS problem (1.1) is described
as follows.

Algorithm 3.1.6. Modulus-Type Inner Outer Iteration Method
1. Choose an initial approximate solution z0 and a parameter matrix Ω.

2. Compute x0 = z0 + |z0| and r0 = b−Ax0.

3. Set

Ã =

[
A

Ω
1
2

]
and r̃0 ≡ b̃0− Ãz0 =

[
r0

Ω
1
2 (|z0|− z0)

]
4. For k = 0,1,2, . . . until convergence

5. Compute an approximate solution wk+1 by solving

min
w∈Rn

‖Ãw− r̃k‖2. (3.8)

6. Compute zk+1 = zk +wk+1.

7. Compute xk+1 = zk+1 + |zk+1| and rk+1 = b−Axk+1.

42 Chapter 3. Nonnegative Constrained Least Squares Problem

8. Set

r̃k+1 =

[
rk+1

Ω
1
2 (|zk+1|− zk+1)

]
9. Endfor

Here, the iterative solution of the unconstrained least squares problems (3.8) for each
k = 0,1,2, ... is referred to as the inner iteration of the algorithm, while the for loop is
referred to as the outer iteration. Note that Algorithms 3.1.5 and 3.1.6 are mathematically
equivalent, since the solution of the inner unconstrained least squares problems (3.8) is
equivalent to the solution of the normal equations (3.5), which can be solved by efficient
solvers like (preconditioned) CGLS method [8], or BA-GMRES method [53] with inner
iteration preconditioning [72].

For the iterative solution of the NNLS problem (1.1), we define the residual as

Res(xk)≡min(λ k,xk) = min(ATAxk−ATb,xk), (3.9)

and set the stopping criterion as

‖Res(xk)‖2

‖Res(x0)‖2
< tol (3.10)

with initial vector x0 and given tolerance tol. The definition (3.9) shows that Res(x∗) = 0
if and only if x∗ is a solution of the NNLS problem (1.1) by Corollary 3.1.3. Meanwhile,
for the iterative solution of the unconstrained least squares problems (3.8), the stopping
criterion is set as

‖sk‖2

‖s0‖2
=
‖AT(b−Axk)‖2

‖AT(b−Ax0)‖2
< tol, (3.11)

where sk =−λ
k is the residual of the normal equation (1.4). Note that (3.10) and (3.11)

are used as stopping criteria of outer and inner iterations in Algorithm 3.1.6, respectively.

3.2 Review of Modulus Methods

Before establishing the convergence theory of Algorithm 3.1.5, in this section we briefly
review and compare the different modulus methods, and show the advantages of methods
proposed in the previous section.

3.2 Review of Modulus Methods 43

By equivalently reformulating the LCP(B,c) (3.2) as an implicit fixed-point equation

(I +B)z = (I−B)|z|− c

with modulus transformation x = z+ |z|, where I is a identity matrix, van Bokhoven [95]
presented a modulus method which has polynomial complexity when A is symmetric
positive definite. Kappel and Watson [60] extended the modulus method to a class of
nonsymmetric matrix. see also Section 9.2 in Murty [71]. Moreover, Bai [4] presented a
class of modulus-based matrix splitting methods which not only provided a general
framework for the modified modulus method [33]

(αI +B)z = (αI−B)|z|− c

with modulus transformation x = z+ |z|, and nonstationary extrapolated modulus
algorithms [52]

(I +αB)z = (I−αB)|z|− c

with modulus transformation x = α(z+ |z|), but also yielded a series of modulus-based
relaxation methods which outperform the projected relaxation methods as well as the
modified modulus method in computing efficiency.

Specifically, Bai [4] established the following implicit fixed-point equation

(MΓ+Ω1)z = (NΓ−Ω2)z+(Ω−BΓ)|z|− c (3.12)

to construct modulus-based matrix splitting iteration method for solving the LCP(B,c),
where B = M−N is a splitting of the matrix A ∈ Rn×n, Ω = Ω1 +Ω2 and Γ are n×n

positive diagonal matrices. Let B = D−L−U , where D, L and U are the diagonal, the
strictly lower-triangular and the strictly upper-triangular matrices of the matrix A. By
setting Ω1 = Ω, Ω2 = 0 and Γ = (1/γ)I, equation (3.12) yields a series of modulus-based
matrix splitting iteration methods. For instance, when M = D and N = L+U , it gives
the modulus-based Jacobi (MJ) iteration method

(D+Ω)z(k+1) = (L+U)z(k)+(Ω−B)|z(k)|− γc;

when M = D−L and N =U , it gives the modulus-based Gauss-Seidel (MGS) iteration

44 Chapter 3. Nonnegative Constrained Least Squares Problem

method
(D+Ω−L)z(k+1) =Uz(k)+(Ω−B)|z(k)|− γc;

when M = (1/α)D−L and N = (1/α−1)D+U , it gives the modulus-based successive
overrelaxation (MSOR) iteration method

(D+αΩ−αL)z(k+1) = [(1−α)D+αU]z(k)+α(Ω−B)|z(k)|−αγc.

For MSOR iteration method, suppose z(k+1)
j , j = 1,2, . . . , i−1 were known already,

then z(k+1)
i is calculated by

(aii +αωii)z
(k+1)
i = (1−α)aiiz

(k)
i +α(−

i−1

∑
j=1

ai jz
(k+1)
j −

n

∑
j=i+1

ai jz
(k)
j − γci)

+ α

n

∑
j=1

(ωi j−ai j)|z(k)j |.

It would intuitively seem very attractive to use the latest estimates |z(k+1)
j |, j = 1,2, . . . , i−

1, in the right hand side of the subsequent computations

(aii +αωii)z
(k+1)
i = (1−α)aiiz

(k)
i +α(−

i−1

∑
j=1

ai jz
(k+1)
j −

n

∑
j=i+1

ai jz
(k)
j − γci)

+ α

i−1

∑
j=1

(ωi j−ai j)|z(k+1)
j |+α

n

∑
j=i

(ωi j−ai j)|z(k)j |,

which may accelerate the convergence performance of the MSOR method. In addition,
new iterative method reduces the storage requirements by saving z(k+1) instead of saving
both z(k) and z(k+1) in MSOR method.

Based on the fixed-point equation (3.12) and the idea mentioned above, a new
general implicit fixed-point equation

(M1Γ+Ω1)z = (N1Γ−Ω2)z+(Ω−M2Γ)|z|+N2Γ|z|− c (3.13)

can be established by Zheng and Yin [104], where utilizing the matrix splitting, which is
essential for establishing the accelerated modulus-based matrix splitting methods for
solving the LCP(B,c). The equivalence of fixed-point equation (3.13) and LCP(B,c) is

3.2 Review of Modulus Methods 45

described in the following theorem, and its proof can be easily obtained by Theorem 2.1
in [4].

Theorem 3.2.1. Let B = M1−N1 = M2−N2 be two splittings of the matrix B ∈ Rn×n,

Ω1 and Ω2 be n× n nonnegative diagonal matrices, and Ω and Γ be n× n positive

diagonal matrices such that Ω = Ω1 +Ω2. For the LCP(B,c), the following statements

hold true:

(i) if (λ ,x) is a solution of the LCP(B,c), then z = (Γ−1x−Ω−1λ)/2 satisfies the

implicit fixed-point equation (3.13);

(ii) if z satisfies the implicit fixed-point equation (3.13), then

x = Γ(|z|+ z) and λ = Ω(|z|− z) (3.14)

is a solution of the LCP(B,c).

Theorem 3.2.1 can be used to introduce a general matrix splitting iteration method for
solving the LCP(B,c). However, as implicit fixed-point equation (3.13) involves many
arbitrary parameters that are quite complicated to be determined in actual computation,
it would be more convenient to obtain the simplified implicit fixed-point equation

(M1 + Ω̃)z = N1z+(Ω̃−M2)|z|+N2|z|− γc

by specifically setting

Ω1 = Ω, Ω2 = 0 and Γ =
1
γ

I,

where γ > 0 and Ω̃ = γΩ. Note that Ω̃ is also a positive diagonal matrix, it can be
replaced by Ω for simplicity without causing any confusion. Based on this fixed-point
equation, the following accelerated modulus-based matrix splitting iteration method for
solving the LCP(B,c) is established.

Algorithm 3.2.2. (Accelerated modulus-based matrix splitting iteration method for
LCP(B,c)) Let B=M1−N1 =M2−N2 be two splittings of the matrix B∈Rn×n. Given

46 Chapter 3. Nonnegative Constrained Least Squares Problem

an initial vector z(0) ∈ Rn, for k = 0,1,2, . . . until the iteration sequence {x(k)}+∞

k=0 is

convergent, compute z(k+1) ∈ Rn by solving the linear system

(M1 +Ω)z(k+1) = N1z(k)+(Ω−M2)|z(k)|+N2|z(k+1)|− γc (3.15)

and set

x(k+1) =
1
γ
(|z(k+1)|+ z(k+1)).

Here, Ω is an n×n positive diagonal matrix and γ is a positive constant.

Algorithm 3.2.2 provides a general framework of accelerated modulus-based matrix
splitting iteration methods for solving the LCP(B,c). Besides including the modulus-
based matrix splitting iteration methods when M2 = B and N2 = 0 studied in [4] as
the special cases, it also yields a series of accelerated modulus-based matrix splitting
methods. For example, when

M1 =
1
α
(D−βL), N1 =

1
α
[(1−α)D+(α−β)L+αU], M2 = D−U and N2 = L,

it gives the accelerated modulus-based accelerated overrelaxation (AMAOR) iteration
method

(D+αΩ−βL)z(k+1) = [(1−α)D+(α−β)L+αU]z(k)

+ α(Ω−D+U)|z(k)|+αL|z(k+1)|−αγc.

It also gives the accelerated modulus-based successive overrelaxation (AMSOR) iteration
method, the accelerated modulus-based Gauss-Seidel (AMGS) iteration method and the
accelerated modulus-based Jacobi (AMJ) iteration method when α = β , α = β = 1 and
α = 1, β = 0, respectively. Moveover, it gives the accelerated modulus-based symmetric
successive overrelaxation (AMSSOR) iteration method

(D+αΩ−αL)z(k+
1
2) = [(1−α)D+αU]z(k)

+ α(Ω−D+U)|z(k)|+αL|z(k+ 1
2)|−αγc

(D+αΩ−αU)z(k+1) = [(1−α)D+αL]z(k+
1
2)

+ α(Ω−D+L)|z(k+ 1
2)|+αU |z(k+1)|−αγc.

3.3 Convergence Analysis 47

The convergence of Algorithm 3.2.2 when the system matrix B is either a positive
definite matrix or an H+-matrix is presented in [104, 105].

It is noted that for NNLS problem (1.1), since B = ATA and c =−ATb, we do not
use the explicit matrix splitting of B so that the symmetric structure can be preserved.
Moreover, the general accelerated modulus-based matrix splitting iteration schemes can
not be rewritten as the unconstrained least squares problems, and thus those efficient
least squares solvers will not be applied.

3.3 Convergence Analysis

In this section, we establish the convergence theory of Algorithm 3.1.5 in which the inner
unconstrained least squares problems (3.8) are solved based on the normal equations
(3.5). Specifically, we will discuss the cases when the inner systems are solved exactly
or inexactly, respectively, as well as the theoretically optimal choice of the iteration
parameter matrix Ω.

Assume that z∗ ∈ Rn is a solution of the implicit fixed-point equation (3.4), i.e.,

(Ω+ATA)z∗ = (Ω−ATA)|z∗|+ATb, (3.16)

and zk+1 is computed exactly from zk by solving (3.5). After subtracting (3.16) from
(3.5), we obtain

zk+1− z∗ = (Ω+ATA)−1(Ω−ATA)(|zk|− |z∗|), (3.17)

provided that Ω+ATA is nonsingular. The relationship (3.17) is the basis for us to
establish convergence theorems about Algorithm 3.1.5. The following analysis is based
on the condition that A is of full column rank and thus ATA is symmetric positive definite.
Similar techniques were used to analyse other iterative methods in [12, 91].

48 Chapter 3. Nonnegative Constrained Least Squares Problem

3.3.1 Scalar matrix case

Consider the case when Ω = ωI with ω > 0. It follows from taking vector norm ‖ · ‖2 of
both sides of (3.17) that

‖zk+1− z∗‖2 ≤ ‖(ωI +ATA)−1(ωI−ATA)‖2‖|zk|− |z∗|‖2

≤ ‖(ωI +ATA)−1(ωI−ATA)‖2‖zk− z∗‖2

It can be easily shown that (ωI +ATA)−1(ωI−ATA) is symmetric. Therefore,

‖(ωI +ATA)−1(ωI−ATA)‖2 = max
λi∈σ(ATA)

∣∣∣∣ω−λi

ω +λi

∣∣∣∣ ,
where σ(ATA) denotes the set of all eigenvalues of ATA. As A is of full column rank, it
follows that λi > 0 and ∣∣∣∣ω−λi

ω +λi

∣∣∣∣< 1,

for any i, and thus
‖(ωI +ATA)−1(ωI−ATA)‖2 < 1.

Consequently, the iteration sequence {zk}+∞

k=0 generated by (3.5) converges to the unique
solution z∗ for any initial vector.

Let λmin and λmax be the minimum and maximum eigenvalues of ATA, respectively.
It can be easily shown that the optimal ω∗ is

ω
∗ ≡ argmin

ω

{
max

λmin≤λ≤λmax

∣∣∣∣ω−λ

ω +λ

∣∣∣∣}=
√

λminλmax

and

‖(ω∗I +ATA)−1(ω∗I−ATA)‖2 =

√
λmax−

√
λmin√

λmax +
√

λmin
=

√
κ(ATA)−1√
κ(ATA)+1

,

where κ(ATA) denotes the spectral condition number of matrix ATA.

3.3.2 General positive diagonal matrix case

Consider the general case when Ω is a positive diagonal matrix. We define two vector
norms and a matrix norm that are useful in the following discussions. For all x ∈ Rn,

3.3 Convergence Analysis 49

‖x‖Q ≡
√

xTQx and ‖x‖P,q ≡ ‖Px‖q define vector norms on Rn, where Q ∈ Rn×n is an
arbitrary symmetric positive definite matrix, P ∈ Rn×n is an arbitrary nonsingular matrix
and q is a positive integer. Moveover, if X ∈Rn×n, then ‖X‖P,q ≡ ‖PXP−1‖q; see [4, 82].
It follows from taking vector norm ‖ · ‖

Ω1/2,2 of both sides of (3.17) that

‖zk+1− z∗‖
Ω1/2,2 ≤ ‖(Ω+ATA)−1(Ω−ATA)‖

Ω1/2,2‖|z
k|− |z∗|‖

Ω1/2,2. (3.18)

Note that
‖zk+1− z∗‖

Ω1/2,2 = ‖Ω
1/2(zk+1− z∗)‖2 = ‖zk+1− z∗‖Ω

and

‖(Ω+ATA)−1(Ω−ATA)‖
Ω1/2,2

= ‖Ω−1/2(I +(AΩ
−1/2)T(AΩ

−1/2))−1
Ω
−1/2

Ω
1/2(I− (AΩ

−1/2)T(AΩ
−1/2))Ω1/2‖

Ω1/2,2

= ‖(I +(AΩ
−1/2)T(AΩ

−1/2))−1(I− (AΩ
−1/2)T(AΩ

−1/2))‖2

≡ ‖(I + ÂTÂ)−1(I− ÂTÂ)‖2,

where Â≡ AΩ−1/2. Therefore, (3.18) gives

‖zk+1− z∗‖Ω ≤ ‖(I + ÂTÂ)−1(I− ÂTÂ)‖2‖|zk|− |z∗|‖Ω

≤ ‖(I + ÂTÂ)−1(I− ÂTÂ)‖2‖zk− z∗‖Ω.

Notice that Â≡ AΩ−1/2 is of full column rank as A is of full column rank and Ω is a
positive diagonal matrix. Hence, ÂTÂ is symmetric positive definite and

‖(I + ÂTÂ)−1(I− ÂTÂ)‖2 = max
λ̂i∈σ(ÂTÂ)

∣∣∣∣∣1− λ̂i

1+ λ̂i

∣∣∣∣∣< 1.

Consequently, the iteration sequence {zk}+∞

k=0 generated by (3.5) converges to the unique
solution z∗ for any initial vector.

Next, the choice of the parameter matrix Ω is discussed. Set Ω = ω̄D, where
D≡ diag(ATA) denotes the diagonal part of ATA and ω̄ is a positive scalar parameter.

50 Chapter 3. Nonnegative Constrained Least Squares Problem

Then Â = ω̄−1/2AD−1/2 ≡ ω̄−1/2Ā and

‖(I + ÂTÂ)−1(I− ÂTÂ)‖2

= ‖(I + ω̄
−1ĀTĀ)−1(I− ω̄

−1ĀTĀ)‖2

= ‖(ω̄I + ĀTĀ)−1(ω̄I− ĀTĀ)‖2.

Similar to the previous analysis, the optimal parameter can be obtained by

ω̄
∗ =

√
λ̄minλ̄max,

where λ̄min and λ̄max are the minimum and maximum eigenvalues of ĀTĀ, respectively.
In addition,

‖(ω̄∗I + ĀTĀ)−1(ω̄∗I− ĀTĀ)‖2 =

√
λ̄max−

√
λ̄min√

λ̄max +
√

λ̄min
=

√
κ(ĀTĀ)−1√
κ(ĀTĀ)+1

,

where κ(ĀTĀ) denotes the spectral condition number of matrix ĀTĀ.

Remark that ĀTĀ = D−1/2ATAD−1/2 can be regarded as a symmetric diagonal scaling
preconditioning of ATA. Hence, it may be more efficient to choose Ω = ωD than to
choose Ω = ωI in the modulus iteration Algorithm 3.1.5.

3.3.3 Convergence of inexact inner iteration

Finally, the convergence analysis based on the inexact solution of the implicit fixed-point
equation (3.5) is considered. Suppose zk has already been computed. Then, zk+1 is
computed by applying iterative methods, such as the PCG method, to (3.5). Thus, we
have

(Ω+ATA)zk+1 = (Ω−ATA)|zk|+ATb+ ek, (3.19)

where ek denotes the error of inner iteration. Note that ek = 0 for some fixed k indicates
that the inner iteration is solved exactly. In addition, we define the error of outer iteration

ε
k = (Ω+ATA)zk− (Ω−ATA)|zk|−ATb.

3.3 Convergence Analysis 51

Note that if εk = 0 for some fixed k, then x∗ = xk is an exact solution of the fixed-point
equation (3.4).

Assume that ‖ek‖Ω ≤ γk‖εk‖Ω with γk < 1, which indicates that the error of inner
iteration is controlled by the error of outer iteration. Then, it follows by subtracting
(3.16) from (3.19) that

‖zk+1− z∗‖Ω

= ‖(Ω+ATA)−1(Ω−ATA)(|zk|− |z∗|)+(Ω+ATA)−1ek‖Ω

≤ ‖(Ω+ATA)−1(Ω−ATA)‖
Ω1/2,2‖|z

k|− |z∗|‖Ω +‖(Ω+ATA)−1‖
Ω1/2,2‖e

k‖Ω

≤ ‖(Ω+ATA)−1(Ω−ATA)‖
Ω1/2,2‖z

k− z∗‖Ω + γk‖(Ω+ATA)−1‖
Ω1/2,2‖ε

k‖Ω

= ‖(Ω+ATA)−1(Ω−ATA)‖
Ω1/2,2‖z

k− z∗‖Ω

+ γk‖(Ω+ATA)−1‖
Ω1/2,2‖(Ω+ATA)zk− (Ω−ATA)|zk|−ATb‖Ω

= ‖(Ω+ATA)−1(Ω−ATA)‖
Ω1/2,2‖z

k− z∗‖Ω

+ γk‖(Ω+ATA)−1‖
Ω1/2,2‖(Ω+ATA)(zk− z∗)− (Ω−ATA)(|zk|− |z∗|)‖Ω

≤ ‖(Ω+ATA)−1(Ω−ATA)‖
Ω1/2,2‖z

k− z∗‖Ω

+ γk‖(Ω+ATA)−1‖
Ω1/2,2(‖Ω+ATA‖

Ω1/2,2 +‖Ω−ATA‖
Ω1/2,2)‖z

k− z∗‖Ω

=: Lk‖zk− z∗‖Ω.

Hence, we only need to verify that Lk ≤ θ < 1, where θ is a scalar constant independent
of k.

Set

τ ≡ ‖(Ω+ATA)−1‖
Ω1/2,2‖Ω+ATA‖

Ω1/2,2,

δ ≡ ‖(Ω+ATA)−1(Ω−ATA)‖
Ω1/2,2,

µ ≡ ‖(Ω+ATA)−1‖
Ω1/2,2‖Ω−ATA‖

Ω1/2,2.

By the fact that δ < 1, we have

θ ≡ α +(1−α)δ < 1,

52 Chapter 3. Nonnegative Constrained Least Squares Problem

where 0≤ α < 1. If there exists an integer k0 such that for all k ≥ k0,

Lk = δ + γk(τ +µ)≤ θ ⇒ γk ≤
α(1−δ)

τ +µ
,

then it follows that for k ≥ k0, Lk ≤ θ < 1, which guarantees the convergence of the
iteration sequence {zk}+∞

k=0 generated by inexact modulus iteration for any initial vector.
Combining the analysis above, we have the following theorem.

Theorem 3.3.1. If A is of full column rank, then the iteration sequence {xk}∞
k=0 generated

by modulus-type inner outer iteration Algorithm 3.1.6 converges to the unique solution

x∗ for any initial vector when

• the inner system is solved exactly;

• or the inner system is solved iteratively with

‖ek‖Ω ≤ γk‖εk‖Ω with γk ≤
α(1−δ)

τ +µ
,

for k ≥ k0, where k0 is an integer and 0≤ α < 1.

3.4 Two-Stage Hybrid Iterative Methods with Active Set
Strategy

In this section, we propose a two-stage hybrid algorithm that resembles the algorithm of
Moré and Toraldo [77] and Bardsley and Vogel [20] by using modulus iterations to
identify the active set in the first stage, and the CGLS method to solve unconstrained
least squares subproblem only on the current inactive variables in the second stage, and
alternately performing these two stages until convergence.

Suppose xk is the kth iterative solution. Then the active set is defined as

A (xk) = { j : xk
j = 0}, (3.20)

and the binding set is defined as

B(xk) = { j : xk
j = 0, λ

k
j ≥ 0}, (3.21)

3.4 Two-Stage Hybrid Iterative Methods with Active Set Strategy 53

where λ
k =−ATrk =−AT(b−Axk) is the Lagrange multiplier, which is also the gradient

vector of the least-squares objective function in (1.3), or the negative residual of the
normal equation (1.4). The corresponding set of free variables is defined as

F (xk) = {1,2, ...,n}\A (xk). (3.22)

It can be easily obtained from Corollary 3.1.3 that x∗ is the solution of the NNLS
problem (1.1) if and only if A (x∗) = B(x∗) and ∀ j 6∈B(x∗), x∗j > 0 and λ ∗j = 0.

In the first stage, the modulus inner outer iteration method in Algorithm 3.1.6 is
applied to perform a fast update of the active set. By choosing y0 = xk+1, a sequence of
iterates {y j}∞

j=0 is generated until either the modulus iterations fails to update a new
active set when

A (y j) = A (y j−1) (3.23)

is satisfied, or it fails to make sufficient progress in decreasing the objective function
value when

|l(y j−1)− l(y j)| ≤ η1 max{|l(yi−1)− l(yi)| : 1≤ i < j} (3.24)

is satisfied, where 0 < η1 < 1 is a given tolerance and l(y) is defined in (2.1).

Next, we discuss the details of the active set method in the second stage. Let
i1, i2, ..., iň be the elements in F (xk), and the matrix Zk ∈ Rn×ň be the matrix whose jth
column is the i jth column of the n×n identity matrix, j = 1,2, ..., iň. Then, the CGLS
method is used to compute the minimization subproblem

min
w∈Rň

‖A(xk +Zkw)−b‖2. (3.25)

Denote AF := AZk as the submatrix of A consisting of the columns of A whose indices
belong to F . Then, the subproblem (3.25) is equivalent to the reduced unconstrained
least squares problem

min
w∈Rň

lk(w)≡ ‖AF w− rk‖2. (3.26)

Note that if A (xk) = A (x∗), where x∗ is a solution of the NNLS (1.1) and w∗ is the
solution of (3.26), then x∗ = xk +Zkw∗. In a word, if the constraints active at the exact

54 Chapter 3. Nonnegative Constrained Least Squares Problem

solution x∗ are known in advance, then the NNLS problem can be solved by simply
optimizing the least-square function in an unconstrained manner over only the variables
that correspond to the inactive constraints.

Given an initial vector wk+1,0, let the CGLS method generate a sequence of iterates
until

lk(wk+1, j−1)− lk(wk+1, j)≤ η2 max{lk(wk+1,i−1)− lk(wk+1,i) : 1≤ i < j} (3.27)

is satisfied, where 0 < η2 < 1 is a given tolerance. The stopping criterion (3.27) indicates
that the CGLS method fails to make sufficient progress at the jth step. After setting
wk+1 ≡ wk+1, j, in general we do not set xk+1 = xk +Zkwk+1 since this may produce
negative elements in xk+1. Similar to the strategy used in Algorithm 2.2.1, we set

xk+1 = P(xk +β
mZkwk+1), (3.28)

and find the smallest integer m≥ 0 that satisfies the sufficient decrease condition

‖b−Axk+1‖2
2 ≤ ‖b−Axk‖2

2−2µ(sk)T(xk+1− xk), (3.29)

where 0 < β < 1 and 0≤ µ < 1. It can be easily calculated that (3.29) is equivalent to

(xk+1− xk)T((2µ−1)sk− sk+1)≤ 0, (3.30)

which is used in the practical algorithm to avoid evaluating the objective function.

Due to the projection operation in (3.28), more elements in xk+1 are constrained
to zero and thus A (xk) ⊆ A (xk+1). It can be observed that if A (xk+1) = A (x∗),
then B(xk+1) = A (xk+1). Otherwise there exists at least one index i ∈A (xk+1) and
i 6∈B(xk+1), such that xk+1

i = 0 and λ
k+1
i < 0. Note that it is possible to optimize the

objective further by making xk+1
i > 0 and λ

k+1
i = 0 at the next iteration, and thereby

x∗i 6= 0. Therefore, B(xk+1) = A (xk+1) is a necessary condition for xk+1 = x∗. In the
second stage of the hybrid algorithm, if B(xk+1) = A (xk+1) holds, we update the active
set and then resume the CGLS iterations until either the exact solution x∗ of NNLS (1.1)
is obtained, or the condition B(xk+1) = A (xk+1) is violated. If the latter case occurs,
we go to the first stage.

3.4 Two-Stage Hybrid Iterative Methods with Active Set Strategy 55

The two-stage hybrid modulus active set CGLS method is described as follows.

Algorithm 3.4.1. Hybrid Modulus Active Set CGLS Method
1. Choose an initial approximate solution x0 and compute r0 = b−Ax0.

2. For k = 0,1,2, . . . until convergence

3. First Stage Choose y0 = xk and generate {y j}∞
j=0 by modulus inner

outer iterations until either (3.23) or (3.24) is satisfied.

4. Set xk = y j and compute rk = b−Axk.

5. Second Stage Update A (xk) and F (xk) and then solve the reduced

subproblem (3.26) by CGLS method until (3.27) is satisfied.

6. Compute xk+1 using (3.28) with sufficient decrease condition (3.29).
7. If B(xk+1) = A (xk+1), set xk = xk+1 and resume the Second Stage;

otherwise go to the First Stage.

8. Endfor

Here, the modulus iterations in the first stage and the CGLS iterations for the
unconstrained least squares problems (3.26) in the second stage for each k = 0,1,2, ...
are referred to as the inner iteration of the algorithm, while the for loop is referred to as
the outer iteration. Since the modulus Algorithm 3.1.6 is an inner outer iteration method,
the whole Algorithm 3.4.1 contains three-level iterations. The stopping criterion for the
outer iteration is set as (3.10), while for inner iteration, (3.23), (3.24) and (3.27) are used
for two stages, respectively.

Remark that if the modulus inner outer iteration method in the first stage is replaced
by the projected gradient method, then the above algorithm is the gradient projection
conjugate gradient (GPCG) method proposed by Moré and Toraldo [77].

The convergence of Algorithm 3.4.1 is proved in the following. The idea of the
proof comes from the proof of convergence of the general multilevel algorithm for
optimization problems. See [62] and the references therein.

Theorem 3.4.2. If A is of full column rank, and the modulus Algorithm 3.1.6 generates

a nonincreasing objective function sequence, then the iteration sequence {xk}∞
k=0

generated by the hybrid modulus active set CGLS iteration Algorithm 3.4.1 converges to

the unique solution x∗ for any initial vector.

Proof. Since A is of full column rank, l(x) defined in (2.1) is a strictly convex quadratic
function. If {xk}∞

k=0 is the iteration sequence generated by hybrid modulus active set

56 Chapter 3. Nonnegative Constrained Least Squares Problem

CGLS iteration Algorithm 3.4.1, then {l(xk)}∞
k=0 is a nonincreasing sequence by the fact

that the modulus algorithm generates a nonincreasing objective function sequence and
the sufficient decrease condition in (3.29). Therefore, {xk}∞

k=0 is bounded. In addition,
Theorem 3.3.1 guarantees that every limit point of {xk} ⊆Kmod , where Kmod is the set
of iterates generated by the modulus iteration, is a stationary point of the NNLS (1.1).
Hence, there exists a subsequence xk j → x∗, and thus l(xk)→ l(x∗).

Next we prove that xk→ x∗. Note that the NNLS solution x∗ satisfies the variational
inequality

(x− x∗)T
∇l(x∗) = (x− x∗)T(ATAx∗−ATb)≥ 0,

for any x≥ 0. Hence,

l(xk)− l(x∗) =
1
2
(xk− x∗)TATA(xk− x∗)+(xk− x∗)T(ATAx∗−ATb)

≥ λmin

2
‖xk− x∗‖2

2,

where λmin > 0 is the minimum eigenvalues of ATA. We can easily obtain xk→ x∗ for
k→ ∞. �

Remark that the assumption of generating a nonincreasing sequence in the modulus
inner outer iteration method can be easily satisfied, if we modify step 6 in Algorithm
3.1.6 as zk+1 = zk +β mwk+1 and choose the smallest integer m≥ 0 that satisfies the
sufficient decrease condition (3.29).

3.5 Numerical Experiments

Finally, numerical experiment results are presented to show the performance of the
modulus-type inner outer iteration Algorithm 3.1.6 and the two-stage hybrid modulus
active set CG iteration Algorithm 3.4.1. We compare them to the projected gradient
Algorithm 2.2.1, the projected NR-SOR Algorithm 2.2.2 and the GPCG method in
[77] which replaces the modulus method in the first stage of Algorithm 3.4.1 with the
projected gradient method, for overdetermined NNLS problems.

All the computations were run on a personal computer with 2.20 GHz CPU and
2 GB memory. The programming language is Matlab 7.8 with machine precision
ε = 1.1×10−16. The initial vectors for the outer and inner iterations were chosen to be

3.5 Numerical Experiments 57

Table 3.1: Abbreviations for the compared methods.

Method Description
PG Projected gradient method (Algorithm 2.2.1)
PSOR Projected NR-SOR method (Algorithm 2.2.2)
Mod Modulus method (Algorithm 3.1.6 with Ω = ωI)
GMod Modulus method (Algorithm 3.1.6 with Ω = ωdiag(ATA))
GPCG Hybrid projected gradient active set CG method [77]
ModASCG Hybrid modulus active set CG method (Algorithm 3.4.1 with Ω = ωI)
GModASCG Hybrid modulus active set CG method (Algorithm 3.4.1 with Ω = ωdiag(ATA))

zero vector. For the modulus-type iteration methods, the parameter matrix was chosen to
be Ω = ωI or Ω = ωdiag(ATA), where ω is a positive parameter. The abbreviations for
all the compared methods are listed in Table 3.1. Remark that all the inner least squares
problems are solved by the CGLS method, which is easy to implement and needs small
storage requirement.

As mentioned in (3.10), the stopping criterion for the outer iteration of all methods is
chosen as ‖Res(xk)‖2/‖Res(x0)‖2 < tol. For one stage methods including PG, PSOR,
Mod and GMod, the stopping criterion for the inner unconstrained least squares problems
is chosen as (3.11)

‖sk‖2

‖s0‖2
=
‖AT(b−Axk)‖2

‖AT(b−Ax0)‖2
< tolin ≡ 10−2/k,

which means the accuracy required for the solution of the inner systems is refined
with the increase of the outer iterations k. Different tolerances tol are chosen for
different numerical problems. For two-stage methods including GPCG, ModASCG
and GModASCG, the stopping criteria for the inner iterations are chosen as (3.27),
(3.23) and (3.24). In order to perform a fair comparison among different methods, the
parameters in (3.27), (3.24) and the sufficient decrease condition (3.29) are chosen as

η1 = η2 = 0.1, µ = 0.1 and β = 0.9 (3.31)

for all methods. In addition, the maximum number of iteration steps is restricted to be
10,000.

58 Chapter 3. Nonnegative Constrained Least Squares Problem

0 50 100 150 200 250 300 350
10−10

10−8

10−6

10−4

10−2

100

Iterations

R
el

at
iv

e
R

es
id

ua
l

PG
PSOR
Mod
GMod

(a)

0 2000 4000 6000 8000 10000
10−10

10−8

10−6

10−4

10−2

100

Iterations

R
el

at
iv

e
R

es
id

ua
l

PG
PSOR
Mod
GMod

(b)

0 2000 4000 6000 8000 10000
10−10

10−8

10−6

10−4

10−2

100

Iterations

R
el

at
iv

e
R

es
id

ua
l

PG
PSOR
Mod
GMod

(c)

0 2000 4000 6000 8000 10000
10−10

10−8

10−6

10−4

10−2

100

Iterations

R
el

at
iv

e
R

es
id

ua
l

PG
PSOR
Mod
GMod

(d)

Figure 3.1: Relative residual vs. iterations for (a) ρ = 1, (b) ρ = 0.9, (c) ρ = 0.8 and (d)
ρ = 0.7 with σn = 0.01 (κ(A) = 100).

In the following, we compare the numerical methods on four examples, which are
dense full rank case, sparse full rank case, sparse rank deficient case and nonnegative
image restoration problems.

3.5.1 Dense full rank case

First, we show how the condition number and the distribution of singular values of
A influence the convergence of the modulus-type and projection-type methods with
a class of dense matrices of the form A =UΣV T, where U ∈ Rm×m and V ∈ Rn×n are
orthogonal matrices obtained from the QR decomposition of random matrices, and
Σ ∈ Rm×n is a rectangular diagonal matrix with diagonal entries σ1 > σ2 > ... > σn,

3.5 Numerical Experiments 59

0 50 100 150 200 250 300
10−10

10−8

10−6

10−4

10−2

100

Iterations

R
el

at
iv

e
R

es
id

ua
l

PG
PSOR
Mod
GMod

(a)

0 2000 4000 6000 8000 10000
10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

R
el

at
iv

e
R

es
id

ua
l

PG
PSOR
Mod
GMod

(b)

0 2000 4000 6000 8000 10000
10−5

10−4

10−3

10−2

10−1

100

Iterations

R
el

at
iv

e
R

es
id

ua
l

PG
PSOR
Mod
GMod

(c)

0 2000 4000 6000 8000 10000
10−3

10−2

10−1

100

Iterations

R
el

at
iv

e
R

es
id

ua
l

PG
PSOR
Mod
GMod

(d)

Figure 3.2: Relative residual vs. iterations for (a) ρ = 1, (b) ρ = 0.9, (c) ρ = 0.8 and (d)
ρ = 0.7 with σn = 0.0001 (κ(A) = 104).

60 Chapter 3. Nonnegative Constrained Least Squares Problem

Figure 3.3: The singular values are tightly clustered towards the smallest singular value
when ρ decreases.

where the ith smallest singular value is

σn−i+1 = σn +
i−1
n−1

(σ1−σn)ρ
n−i, i = 1, ...,n,

with the parameter ρ ∈ (0,1]. Note that when ρ decreases, the singular values are tightly
clustered towards the smallest singular value σn and are far apart towards the largest
singular value σ1. See Figure 3.3 for the illustration. The idea of generating this kind of
matrices is from [46, 53].

In our numerical experiments, we set m = 200, n = 100, σ1 = 1, σn = 0.01 or
0.0001, ρ = 1, 0.9, 0.8, 0.7, and form inconsistent NNLS problems where the elements
of the vector b are generated randomly following the normal distribution with mean zero
and variance 1, using the Matlab function randn(m,1). The same b is used for all the
cases.

We compared the four testing methods, PG, PSOR, Mod and GMod, where the inner
unconstrained least squares problems (3.8) were solved by backslash “\" in Matlab,
The relaxation parameter in the PSOR method were chosen as ωPSOR = 1.2, and the
parameters in the Mod and GMod methods were chosen as ω = 0.1.

In Figures 3.1 and 4.1, we depict the curves of the relative residual ‖Res(xk)‖2/‖Res(x0)‖2

of the testing methods versus the number of iteration steps with σn = 0.01 and
σn = 0.0001, respectively. In each figure, there are four diagrams denoted by (a),

3.5 Numerical Experiments 61

Table 3.2: Comparison of the iterative methods (full rank and inconsistent problem with
κ(A) = 100).

PG Mod GMod GPCG ModASCG GModASCG
(a) 302 33 32 2 2 2

1.00 8.09 8.63 (4.00,5.00) (3.50,4.50) (3.50,4.50)
908 602 618 150 177 181
0.03 0.01 0.01 ∗0.002 0.004 0.01

(b) − 4,294 256 20 16 26
9.26 34.77 (33.45,1.90) (12.56,1.88) (4.65,1.69)

88,144 18,316 5,985 2,446 3,332
1.31 0.28 0.11 ∗0.06 0.07

(c) − 4,971 322 20 13 12
6.51 28.09 (32.20,2.25) (6.00,2.54) (4.00,2.67)

74,632 18,736 7,441 1,671 1,336
1.08 0.28 0.13 0.05 ∗0.04

(d) − 6,084 367 18 8 10
5.03 25.59 (10.89,2.06) (7.75,3.88) (4.20,2.70)

73,332 19,518 1,961 1,175 1,035
1.06 0.29 0.05 0.03 ∗0.03

First row: number of outer iterations.
Second row: average inner iterations (of the first stage, second stage).

Third row: number of matrix vector multiplications.
Fourth row: computational time in seconds.

(tol = 10−8, tolin = 10−2/k)

(b), (c) and (d) corresponding to ρ = 1, 0.9, 0.8 and 0.7, respectively. The tolerances
were chosen as tol = 10−8 and tol = 10−5 for σn = 0.01 and σn = 0.0001, respectively.

From Figure 3.1, it is observed that the relative residual of the GMod method
decreases much more rapidly than any other iterative method as the iteration steps
increase for the case when the singular values cluster towards the smallest singular value
in (b), (c) and (d). For the case when the singular values are uniformly distributed with
ρ = 1, Mod and GMod methods show similar convergence performance. This shows
that the modulus method with Ω = ωdiag(ATA) outperforms projection-type iterative
methods, and the choice of Ω = ωdiag(ATA) in GMod is more efficient than the choice
of Ω = ωI in Mod, which confirms our convergence analysis.

62 Chapter 3. Nonnegative Constrained Least Squares Problem

Table 3.3: Comparison of the iterative methods (full rank and inconsistent problem with
κ(A) = 104).

PG Mod GMod GPCG ModASCG GModASCG
tol = 10−8

(a) 256 31 31 3 2 2
1.00 8.23 8.77 (2.33,3.67) (3.50,4.50) (3.50,4.00)
770 574 608 168 181 168
0.02 0.01 0.02 ∗0.01 0.01 ∗0.01

tol = 10−3 tol = 10−8

(b) 7,423 846 72 62 149 443
3.41 9.80 28.58 (432.66,2.35) (12.17,1.75) (3.61,1.84)

58,105 18,282 4,262 286,543 54,595 42,666
0.84 0.27 0.06 5.64 0.95 ∗0.88

(c) − 7,315 261 4,400 3,516 842
7.74 33.95 (97.65,1.32) (5.50,1.96) (7.53,2.03)

127,820 18,246 2,462,239 414,452 246,024
1.84 0.27 63.36 8.18 ∗4.45

(d) − − − − 3,932 2,824
(5.84,1.42) (11.85,1.20)

429,613 741,330
∗8.20 13.68

First row: number of outer iterations.
Second row: average inner iterations (of the first stage, second stage).

Third row: number of matrix vector multiplications.
Fourth row: computational time in seconds.

Figure 4.1 shows similar convergence phenomena as in Figure 3.1. As the iteration
steps increase, the relative residual of the GMod method decreases much more rapidly
than any other iterative method. Note that the convergence behavior of all four methods
deteriorate as the condition number of the matrix A increases and the singular values
cluster towards σn, as can be seen by comparing Figures 3.1 and 4.1. PSOR, Mod and
GMod show relatively smooth residual curves, whereas those of PG are oscillatory and
the convergence behaviors are erratic.

When the inner least squares problems (3.8) are solved by the CGLS method, in
Tables 3.2 and 4.2 we compare the six testing methods, PG, Mod, GMod, GPCG,

3.5 Numerical Experiments 63

ModASCG and GModASCG, from the aspects of outer iteration steps, average inner
iteration steps, the number of matrix vector multiplications, and CPU time in seconds.
Note that for two-stage methods, the average inner iterations of the first and second
stages are shown separately. The tolerance for outer iteration is chosen as tol = 10−8

except for the cases (b), (c) and (d) in Table 4.2, where the tolerance for PG, Mod and
GMod is tol = 10−3. The parameters in two-stage methods are chosen as (6.24). In
addition, the parameters in Mod, GMod, ModASCG and GModASCG methods are
chosen as ω = 0.1.

In Tables 3.2 and 4.2, the symbol “−" indicates that the iterative method failed
to converge within the maximum iteration steps (10,000), and “∗" denotes the most
efficient method with the least number of matrix vector multiplications and least CPU
time among all the testing methods.

From Table 3.2, it is observed that GPCG is more efficient than other iterative
methods with less matrix vector multiplications and CPU time when ρ = 1. For ρ < 1,
the two-stage modulus methods including ModASCG and GModASCG outperform
other iterative methods with less computational costs, and the PG method fails to
converge within the maximum iteration steps. Similar phenomena can be observed in
Table 4.2, namely, the modulus type methods require less matrix vector multiplications
and CPU time than the projection type methods.

For the one stage methods, GMod converges much faster than PG and Mod with
far less outer iterations, more inner iterations, but less computational costs except for
the case ρ = 1 in Tables 3.2 and 4.2, where Mod requires slightly less matrix vector
multiplications. For the two-stage methods, the modulus type methods outperform
projection type methods in most cases. However, there is no optimal method between
ModASCG and GModASCG. The reason is that the tolerance η1 = 0.1 used in the first
stage of the two-stage methods are quite large, and thus it is hard to show the advantage
of the modulus method with Ω = ωdiag(ATA).

Moreover, it can be observed from Tables 3.2 and 4.2 that the two-stage methods
require much less computational costs than the corresponding one-stage methods. This
shows that the active set strategy in the second stage of the hybrid algorithm enhances
the performance of PG, Mod and GMod. In Table 4.2, when the singular values cluster
towards 0, the PG, Mod and GMod methods fail to converge within the maximum
iteration steps for tol = 10−8. This is the reason why we set tol = 10−3 in (b), (c) and

64 Chapter 3. Nonnegative Constrained Least Squares Problem

0 0.5 1 1.5 2 2.5 3 3.5

x 105

10−12

10−10

10−8

10−6

10−4

10−2

100

Matrix Vector Multiplications

R
el

at
iv

e
R

es
id

ua
l

PG
Mod
GMod
GPCG
ModASCG
GModASCG

Figure 3.4: Relative residual vs. matrix vector multiplications for Randn_4 (inconsistent).

(d) for all the one-stage numerical methods. In addition, it is further confirmed in Tables
3.2 and 4.2 that the convergence behavior of all methods deteriorate as the condition
number of the matrix A increases, as was shown in Figures 3.1 and 4.1. Note that
generally the CPU time show positive correlation with matrix vector multiplications,
since matrix vector multiplication is the main computational cost in the algorithms.
Therefore, the iterative methods with least CPU time have least number of matrix vector
multiplications.

3.5.2 Sparse full rank case

Next, we generate a class of large, sparse full column rank matrices, abbreviated as
“Randn_i", i = 1,2,3,4,5,6,7,8, using the Matlab function “sprandn" with m = 30,000,
n = 3,000, and the ratio of nonzero elements density= 0.1%. The condition numbers of
these matrices are specified as

κ(Randn_i) = 10i, i = 1,2,3,4,5,6,7,8.

The nonzero element values were generated by a random number generator following
the normal distribution, and the pattern of the nonzero elements is also determined by a
random number generator. In these experiments, we form inconsistent NNLS problems
where the elements of the right-hand side vector b are generated randomly using the

3.5 Numerical Experiments 65

Matlab function randn(m,1). The same b is used for all the cases.

The numerical results are shown in Table 3.4. The tolerance for outer iterations
for PG, Mod and GMod is chosen as tol = 10−5, while for GPCG, ModASCG and
GModASCG the tolerance is chosen as tol = 10−8. The iteration parameters used in
modulus type methods are set to be ω = 0.1.

Table 3.4 shows that the GPCG method outperforms the other iterative methods for
“Randn_1" and “Randn_2" when the condition number is small, while the two-stage
modulus methods achieve better performance than the other methods with less matrix
vector multiplications and CPU time for the case when the condition number is larger.
This shows that the modulus inner outer iterative method is more effective and efficient
than projected gradient methods in identifying a suitable active set in the first stage
of the hybrid algorithm. Moreover, the PG and Mod methods could not converge
within the maximum outer iteration numbers except for “Randn_1" and “Randn_2".
The GMod method converged for all the cases with tol = 10−5, although it requires
large computational costs compared to the two-stage methods. Similar to the previous
numerical experiments, it can be concluded that the active set strategy accelerates the
convergence behavior with far less iteration steps and CPU time, and the convergence
behavior of all methods deteriorate as the condition number of the matrix A increases.

In Figure 3.4, we plot the relative residual ‖Res(xk)‖2/‖Res(x0)‖2 of the testing
methods versus the number of matrix vector multiplications for Randn_4 inconsistent
problem. The residual curves of the two-stage modulus active set iterative methods
decline much more rapidly than GPCG and other one-stage iterative methods.

3.5.3 Sparse rank deficient case

In the following, we test a class of rectangular matrices from the University of Florida
Sparse Matrix Collection [30]. We construct the rank-deficient overdetermined systems
by deleting all the zero rows and zero columns. The resulting number of rows m,
columns n, nonzero elements nnz, as well as the rank, are given in Table 3.5.

For the consistent case, we form NNLS problems where the right-hand side vector
b = Ax∗ and x∗ = [1,1, ...,1]T ∈ Rn. The numerical results are shown in Table 3.6, where
the tolerance for the outer iteration is chosen to be tol = 10−6 for all methods. The
optimal µ and ω were chosen for projected gradient type methods and modulus type

66 Chapter 3. Nonnegative Constrained Least Squares Problem

methods, respectively, so that the number of matrix vector multiplications is minimized.
We chose the optimal µ practically by changing it from 0.1 to 0.9, and chose the optimal
ω by changing it from 0 to 4 with an interval of 0.1.

Table 3.6 shows that PG fails to converge for all the cases, and the two-stage modulus
methods ModASCG or GModASCG require the least matrix vector multiplications and
CPU time. Different from the dense full rank case and the sparse full rank case, Mod
outperforms GMod with less average inner iterations and CPU time. For Maragal_8,
Mod is faster than GPCG when ω = 1.3 is chosen. Apart from Maragal_4, ModASCG
is faster than GModASCG. Remark that although it is not guaranteed theoretically, the
modulus type methods including Mod, GMod, ModASCG and GModASCG converge
for the rank deficient problems. This can be explained as the conditions proposed in the
previous convergence analysis are sufficient conditions but not necessary ones.

Figure 3.5 shows the number of outer iterations, inner iterations and matrix vector
multiplications vs. ω for the Mod method for Maragal_3. The number of outer iterations
decreases at first, and then increases, while the number of inner iterations always
decreases as ω increases. The optimal parameter with the least number of matrix vector
multiplications was ω∗ = 0.7. Note that the dependence on ω is mild for 0.5≤ ω ≤ 2.
Hence, in practice one may set ω = 1.0.

In Figure 3.6, we plot the relative residual ‖Res(xk)‖2/‖Res(x0)‖2 of the testing
methods versus the number of matrix vector multiplications for Maragal_5 consistent
problem. The residual curves of the two-stage modulus active set iterative methods
decline much more rapidly than GPCG and other one-stage iterative methods as shown
in Figure 3.4.

For the inconsistent case, we form inconsistent NNLS problems where the elements
of the right-hand side vector b are generated randomly using the Matlab function
randn(m,1). The numerical results are shown in Table 3.7, where the tolerance for the
outer iterations is chosen to be tol = 10−6.

Similar to the phenomena observed in Table 3.6, Table 3.7 shows that PG fails to
converge within the maximum iteration steps for all the cases, and Mod outperforms
GMod with less average inner iterations and CPU time. It can be concluded that modulus
type methods including Mod, ModASCG and GModASCG outperform the projection
type methods with less computational costs. When the practically optimal parameters
are chosen, even Mod converges faster than GPCG for problems Maragal_4, Maragal_6

3.6 Concluding Remarks 67

0 0.5 1 1.5 2
0

5000

10000

ω

O
ut

er

ω∗=0.7 (Outer=1507, Inner=22.33, Mat.−Vec.=70348)

0 0.5 1 1.5 2
15

20

25

30

ω

In
ne

r

0 0.5 1 1.5 2
0

2

4

6
x 105

ω

M
at

.−
V

ec
.

Figure 3.5: Number of outer iterations, average inner iterations and matrix vector
multiplication vs. ω for Mod method in Maragal_3 (consistent).

and Maragal_8. Compared with the consistent problems in Table 3.6, the solution of
inconsistent problems require more matrix vector multiplications and CPU time. In
addition, the convergence behavior of all methods deteriorate as the problem size and the
condition number of the matrix A increases.

3.6 Concluding Remarks

In this chapter, a new class of inner outer iterative methods for nonnegative constrained
least squares (NNLS) problem (1.1) was proposed based on the modulus transformation
for the nonnegative variables. Thus, the solution of the NNLS problem (1.1) can be
transformed into the solution of a sequence of unconstrained least squares problems.
Theoretical convergence analysis was presented when the inner system is solved either
exactly or iteratively, and the choice of the parameter matrix was discussed for the
proposed methods. Moreover, we proposed a two-stage hybrid modulus algorithm by
incorporating the active set strategy, which contains two stages where the first stage

68 Chapter 3. Nonnegative Constrained Least Squares Problem

0 0.5 1 1.5 2 2.5 3

x 104

10−8

10−6

10−4

10−2

100

Matrix Vector Multiplications

R
el

at
iv

e
R

es
id

ua
l

PG
Mod
GMod
GPCG
ModASCG
GModASCG

Figure 3.6: Relative residual vs. matrix vector multiplications for Maragal_5 (consistent).

consists of modulus iterations to identify the active set, while the second stage solves the
reduced unconstrained least squares problems only on the inactive variables, and projects
the solution into the nonnegative region. Numerical experiments show the efficiency of
the proposed modulus methods compared to projection gradient-type methods with less
iteration steps and CPU time for full column rank and rank deficient overdetermined
NNLS problems. The modulus method is not only more efficient for identifying a
suitable active set, but also outperforms projection gradient-type methods with less
iteration steps and CPU time when the coefficient matrix has ill-determined rank with
large condition number and the singular values cluster near zero. We also applied our
modulus methods to nonnegative constrained ill-posed image restoration problems, and
the numerical results showed that the proposed method gives more accurate results
compared to the projected gradient type methods.

In Chapters 5 and 6, we will apply the modulus-type iteration methods for the
solution of nonnegative constrained ill-posed problem and the nonnegative matrix
factorization problem, respectively. Also, in Chapter 7, we will use an acceleration
technique to further accelerate the convergence of modulus-type methods.

3.6 Concluding Remarks 69

Table 3.4: Comparison of the iterative methods (full rank and inconsistent problem).

Problem PG Mod GMod GPCG ModASCG GModASCG
tol = 10−5 tol = 10−8

Randn_1 353 49 16 2 2 2
6.39 5.08 13.63 (3.50,4.00) (7.50,4.50) (2.50,4.00)

4,869 598 470 179 229 202
1.61 0.19 0.14 ∗0.07 0.10 0.09

Randn_2 − 2,618 93 7 4 8
5.02 60.85 (5.00,4.86) (19.25,7.75) (4.25,4.13)

31,546 11,506 1,419 1,597 1,485
9.02 3.49 ∗0.43 0.46 0.45

Randn_3 − − 540 30 7 4
143.92 (5.50,6.53) (33.57,10.14) (11.75,10.75)

156,518 11,103 8,458 7,588
43.21 3.05 2.08 ∗1.94

Randn_4 − − 1,523 12 2 3
146.04 (7.33,27.17) (263.00,40.50) (11.67,22.33)

447,896 60,244 27,919 30,387
123.02 13.17 ∗6.66 7.52

Randn_5 − − 524 137 20 3
832.20 (2.12,8.99) (24.30,22.10) (16.00,38.00)

873,194 77,495 41,358 19,466
239.72 19.54 10.03 ∗5.03

Randn_6 − − 450 44 22 10
485.65 (2.55,64.95) (47.91,37.05) (6.70,34.90)

437,988 134,208 99,409 39,087
120.39 33.87 23.15 ∗9.40

Randn_7 − − 1,933 120 88 173
308.59 (2.15,31.29) (8.13,21.51) (4.87,12.93)

1,196,884 109,427 70,037 85,397
424.00 31.55 ∗19.55 24.58

Randn_8 − − 2,137 26 6 4
205.73 (3.81,12.03) (44.50,24.33) (13.50,27.75)

883,554 24,088 20,242 17,633
302.65 5.88 4.74 ∗4.42

First row: number of outer iterations.
Second row: average inner iterations (of the first stage, second stage).

Third row: number of matrix vector multiplication.
Fourth row: computational time in seconds.

70 Chapter 3. Nonnegative Constrained Least Squares Problem

Table 3.5: Information on the practical test matrices.
Problem m n nnz dens. [%] rank κ(A)

Maragal_3 1,682 858 18,391 1.27 613 1.10×103

Maragal_4 1,964 1,027 26,719 1.32 801 9.33×106

Maragal_5 4,654 3,296 93,091 0.61 2,147 1.19×105

Maragal_6 21,251 10,144 537,694 0.25 8,331 2.91×106

Maragal_7 46,845 26,525 1,200,537 0.10 20,843 8.98×106

Maragal_8 60,845 33,093 1,308,415 0.06 15,343 1.76×109

3.6 Concluding Remarks 71

Table 3.6: Comparison of the iterative methods (rank-deficient and consistent problem).

Problem PG Mod GMod GPCG ModASCG GModASCG
Maragal_3 − 1,507 505 48 39 36

22.33 664.97 (7.21,1.00) (4.62,1.00) (4.56,1.00)
70,348 672,628 6,346 5,406 6,076
3.72 35.07 0.42 ∗0.35 0.40
0.7 0.1 0.3 1.4 0.7

Maragal_4 − 801 446 26 30 12
20.14 470.94 (7.31,1.00) (4.37,1.00) (4.00,1.00)

33,870 420,970 2,832 2,746 2,368
2.37 28.89 0.24 0.24 ∗0.21
0.7 0.1 0.1 0.5 0.8

Maragal_5 − 1,106 546 41 28 21
23.43 2,664.70 (50.20,1.00) (5.00,1.00) (6.48,1.00)

54,040 2,910,980 8,634 3,766 3,738
12.47 724.04 2.20 ∗0.95 1.01
1.4 0.2 0.5 2 0.5

Maragal_6 − 1,972 − 73 93 49
32.71 (13.93,1.00) (5.94,1.00) (6.84,1.00)

132,966 18,379 13,334 13,958
174.47 24.58 ∗18.07 19.22

0.6 0.3 1.1 0.5
Maragal_7 − 1,927 − 138 79 81

38.48 (23.77,1.00) (6.96,1.00) (10.01,1.00)
152,142 19,584 11,094 13,612
510.06 64.24 ∗35.16 47.35

0.6 0.7 1.3 0.2
Maragal_8 − 745 − 39 41 36

20.02 (322.97,1.00) (8.83,1.00) (8.89,1.00)
31,326 44,110 5,908 5,360
111.63 164.78 ∗21.91 26.63

1.3 0.2 0.8 0.4

First row: number of outer iterations.
Second row: average inner iterations (of the first stage, second stage).

Third row: number of matrix vector multiplication.
Fourth row: computational time in seconds.

Fifth row: optimal parameters µ∗ for GPCG and ω∗ for modulus-type methods.
(tol = 10−6, tolin = 10−2/k)

72 Chapter 3. Nonnegative Constrained Least Squares Problem

Table 3.7: Comparison of the iterative methods (rank-deficient and inconsistent problem).

Problem PG Mod GMod GPCG ModASCG GModASCG
Maragal_3 − 875 590 24 13 17

34.63 578.56 (86.33,1.00) (16.15,1.08) (22.94,1.00)
62,346 683,884 28,446 10,146 13,158
3.26 35.24 1.57 ∗0.57 0.77
0.6 0.1 0.1 0.6 0.1

Maragal_4 − 822 436 66 33 26
35.06 889.40 (152.56,1.00) (4.82,1.00) (5.62,1.00)

59,278 776,430 129,807 5,602 7,424
4.08 53.17 9.61 ∗0.43 0.56
0.5 0.1 0.5 3 0.9

Maragal_5 − 649 569 24 14 15
37.38 2,092.10 (94.58,1.00) (13.71,1.00) (26.07,1.00)

49,818 2,381,966 30,736 12,622 20,090
11.45 547.63 6.91 ∗2.79 4.64
0.8 0.2 0.1 0.2 0.1

Maragal_6 − 1,105 − 110 40 63
43.43 (70.54,1.00) (4.46,1.00) (4.92,1.00)

98,182 123,023 7,548 10,764
127.39 161.32 ∗9.71 14.64

0.6 0.8 3.5 0.7
Maragal_7 − 1,210 − 136 51 62

42.33 (42.97,1.00) (9.65,1.00) (4.52,1.00)
104,864 67,490 19,062 11,674
359.51 238.37 57.22 ∗39.92

0.8 0.6 3 0.5
Maragal_8 − 735 − 122 3,716 2,121

39.34 (182.32,1.00) (2.59,1.00) (4.55,1.00)
59,296 381,421 116,542 106,202
∗223.67 2,508.94 519.81 476.51

0.8 0.3 1.3 1.9

First row: number of outer iterations.
Second row: average inner iterations (of the first stage, second stage).

Third row: number of matrix vector multiplication.
Fourth row: computational time in seconds.

Fifth row: optimal parameters µ∗ for GPCG and ω∗ for modulus-type methods.
(tol = 10−6, tolin = 10−2/k)

73

CHAPTER 4

BOX CONSTRAINED LEAST
SQUARES PROBLEM

In this chapter, we consider the solution of large sparse box constrained least squares
problems (BLS). A new class of iterative methods is proposed by utilizing modulus
transformation, which converts the solution of the BLS into a sequence of the uncon-
strained least squares problems. The efficient Krylov subspace methods with suitable
preconditioners are applied to solve the inner unconstrained least squares problems for
each outer iteration. Similar to the NNLS case in Chapter 3, the method can be further
enhanced by incorporating the active set strategy, which contains two stages where the
first stage consists of modulus iterations to identify the active set, while the second stage
solves the reduced unconstrained least squares problems only on the inactive variables,
and projects the solution into the feasible region. Numerical experiments show the
efficiency of the proposed methods in comparison of the gradient projection methods.

4.1 Modulus Methods

In Section 2.1 of Chapter 2, we have shown the equivalence of BLS

min
x∈Rn

1
2
‖Ax−b‖2 subject to l ≤ x≤ u

74 Chapter 4. Box Constrained Least Squares Problem

with the linear complementarity problem (LCP(A ,b)) (2.2)

ATAx−ATb−λ 1 +λ 2 = 0[
λ 1

λ 2

]
≥ 0,

[
I

−I

]
x−

[
l

−u

]
≥ 0 and

[
λ 1

λ 2

]T([
I

−I

]
x−

[
l

−u

])
.

Similar to modulus transformation strategy used on NNLS, set[
I

−I

]
x−

[
l

−u

]
=

[
z1 + |z1|
z2 + |z2|

]
and

[
λ 1

λ 2

]
=

[
Ω1(|z1|− z1)

Ω2(|z2|− z2)

]
,

where Ω1 and Ω2 are positive diagonal matrices. Then we have

x = z1 + |z1|+ l = u− z2−|z2|

ATA(z1 + |z1|+ l)−ATb−|z1|+ z1 + |z2|− z2 = 0

ATA(u− z2−|z2|)−ATb−|z1|+ z1 + |z2|− z2 = 0

The last two equations can be written as a fixed point equation in matrix form[
Ω1 +ATA −Ω2

−Ω1 Ω2 +ATA

][
z1

z2

]
=

[
Ω1−ATA −Ω2

−Ω1 Ω2−ATA

][
|z1|
|z2|

]
+

[
ATb−ATAl

−ATb+ATAu

]
.

If we apply Jacobi iteration method to solve the fixed point equation, we have

(Ω1 +ATA)zk+1
1 = (Ω1−ATA)|zk

1|+ATb−ATAl−Ω2(|zk
2|− zk

2)

(Ω2 +ATA)zk+1
2 = (Ω2−ATA)|zk

2|−ATb+ATAu−Ω1(|zk
1|− zk

1)

where k = 0,1,2, Note that they can be regarded as the normal equations of the first
kind [

A

Ω
1/2
1

]T[
A

Ω
1/2
1

]
zk+1

1 =

[
A

Ω
1/2
1

]T[
−A|zk

1|+b−Al

Ω
1/2
1 |zk

1|−Ω
−1/2
1 Ω2(|zk

2|− zk
2)

]
[

A

Ω
1/2
2

]T[
A

Ω
1/2
2

]
zk+1

2 =

[
A

Ω
1/2
2

]T[
−A|zk

2|−b+Au

Ω
1/2
2 |zk

2|−Ω
−1/2
2 Ω1(|zk

1|− zk
1)

]

4.1 Modulus Methods 75

which is equivalent to the least squares problems

min

∥∥∥∥∥
[

A

Ω
1/2
1

]
zk+1

1 −

[
−A|zk

1|+b−Al

Ω
1/2
1 |zk

1|−Ω
−1/2
1 Ω2(|zk

2|− zk
2)

]∥∥∥∥∥
2

min

∥∥∥∥∥
[

A

Ω
1/2
2

]
zk+1

2 −

[
−A|zk

2|−b+Au

Ω
1/2
2 |zk

2|−Ω
−1/2
2 Ω1(|zk

1|− zk
1)

]∥∥∥∥∥
2

where k = 0,1,2, The right hand side of the second equation can use zk+1
1 instead of

zk
1.

(Ω1 +ATA)zk+1
1 = (Ω1−ATA)|zk

1|+ATb−ATAl−Ω2(|zk
2|− zk

2)

(Ω2 +ATA)zk+1
2 = (Ω2−ATA)|zk

2|−ATb+ATAu−Ω1(|zk+1
1 |− zk+1

1)

where k = 0,1,2,

Method 2:

(Ω1 +ATA)zk+1
1 = (Ω1−ATA)|zk

1|+ATb−ATAl−Ω2(|zk
2|− zk

2)

zk+1
2 = u− (zk+1

1 + |zk+1
1 |+ l)−|zk

2|.

where k = 0,1,2,

Method 3:

(Ω1 +ATA)zk+1
1 = (Ω1−ATA)|zk

1|+ATb−ATAl−Ω2(|zk
2|− zk

2)

zk+1
1 = (u− zk+1

2 −|zk+1
2 |)−|zk

1|− l.

where k = 0,1,2,

The modulus inner outer iteration method 1 is described as follows.

Algorithm 4.1.1. Modulus Inner Outer Iteration Method 1
1. Choose an initial solution l ≤ x0 ≤ u, r0 = b−Ax0 and s0 = ATr0

2. Set x0
1 = x0

2 = x0, s0
1 = s0

2 = s0, z0
1 = (x0− l)/2 and z0

2 = (u− x0)/2.

3. For k = 0,1,2, . . . until convergence

76 Chapter 4. Box Constrained Least Squares Problem

4. Solve

(Ω+ATA)wk+1
1 = Ω(|zk

1|− zk
1)−Ω(|zk

2|− zk
2)+ sk

1

5. Set zk+1
1 = zk

1 +wk+1
1 and xk+1

1 = zk+1
1 + |zk+1

1 |+ l.

6. Compute rk+1
1 = b−Axk+1

1 and sk+1
1 = ATrk+1

1

7. Solve

(Ω+ATA)wk+1
2 = Ω(|zk

2|− zk
2)−Ω(|zk+1

1 |− zk+1
1)− sk

2

8. Set zk+1
2 = zk

2 +wk+1
2 and xk+1

2 = u− zk+1
2 −|zk+1

2 |.
9. Compute rk+1

2 = b−Axk+1
2 and sk+1

2 = ATrk+1
2

10. Endfor

The modulus inner outer iteration method 2 is described as follows.

Algorithm 4.1.2. Modulus Inner Outer Iteration Method 2
1. Choose an initial solution l ≤ x0 ≤ u, r0 = b−Ax0 and s0 = ATr0

2. Set x0
1 = x0

2 = x0, s0
1 = s0

2 = s0, z0
1 = (x0− l)/2 and z0

2 = (u− x0)/2.

3. For k = 0,1,2, . . . until convergence

4. Solve

(Ω+ATA)wk+1
1 = Ω(|zk

1|− zk
1)−Ω(|zk

2|− zk
2)+ sk

1

5. Set zk+1
1 = zk

1 +wk+1
1 and xk+1

1 = zk+1
1 + |zk+1

1 |+ l.

6. Compute rk+1
1 = b−Axk+1

1 and sk+1
1 = ATrk+1

1

7. Set

zk+1
2 = u− xk+1

1 −|zk
2|

8. Set xk+1
2 = u− zk+1

2 −|zk+1
2 |.

9. Compute rk+1
2 = b−Axk+1

2 and sk+1
2 = ATrk+1

2

10. Endfor

4.2 Inner Iterations for Saddle Point Problems 77

4.2 Inner Iterations for Saddle Point Problems

We utilize matrix splitting to construct iterative methods for the solution of LCP (2.2),
which is equivalent to the solution of BLS problem (1.2). Let A =M1−N1 =M2−N2

be two splittings of the matrix A . With modulus transformation

x = z+ |z|, (4.1)

the following theorem implies that LCP(A ,b) is equivalent to the implicit fixed-point
equation

(Ω+A)z = (Ω−A)|z|+b, (4.2)

or a more general implicit fixed-point equation

(Ω+M1)z = N1z+(Ω−M2)|z|+N2|z|+b, (4.3)

where Ω is a positive diagonal parameter matrix. It can be observed that (4.2) is a special
case of (4.3) when M2 = A and N2 = 0. In addition, it is more efficient to choose the
iterative scheme based on (4.3) when the matrix M1 is an (block) upper or a (block)
lower triangular matrix [104].

Theorem 4.2.1. ([104]) Let Ω be an n×n positive diagonal matrix. For the LCP(A ,b),
the following statements hold:

(i) if (x, f) is a solution of the LCP(A ,b), then z = (x−Ω−1f)/2 satisfies the implicit

fixed-point equation (4.3);

(ii) if z satisfies the implicit fixed-point equation (4.3), then

x = |z|+ z and f = Ω(|z|− z)

is a solution of the LCP(A ,b).

Based on Theorem 4.3.1, the accelerated modulus-based matrix splitting iterative
schemes

(Ω+A)zk+1 = (Ω−A)|zk|+b, (4.4)

78 Chapter 4. Box Constrained Least Squares Problem

and
(Ω+M1)zk+1 = N1zk +(Ω−M2)|zk|+N2|zk+1|+b, (4.5)

for the solution of the implicit fixed-point equations (4.2) and (4.3), are naturally derived
for the solution of BLS problem (1.2), respectively. That is to say, if z∗ is a fixed-point
of (4.4) or (4.5), then the solution of BLS problem (1.2) can be obtained straightforward
by x∗ = z∗+ |z∗|. Therefore, the solution of BLS problem (1.2) is transformed into the
solution of a series of fixed-point equations (4.4) or (4.5), which can be solved directly
by matrix decompositions, or by efficient iterative methods.

The modulus-type restarted iterative methods for BLS problem (1.2) is described as
follows.

Algorithm 4.2.2. Modulus Type Restarted Iteration Method
1. Choose an initial solution z0 and a parameter matrix Ω;

2. For k = 0,1,2, . . . until convergence

3. Compute a solution zk+1 by solving the fixed-point equations (4.4) or (4.5);
4. Compute xk+1 = zk+1 + |zk+1|;

5. Endfor

Here, the for loop is referred as the outer iteration, while the solution of (4.4) or (4.5)
is referred as the inner iteration. Remark that the coefficient matrix of (4.4) or (4.5) is a
two-by-two saddle point matrix Ω+M1. The convergence of the fixed point iteration is
presented in the following.

Theorem 4.2.3. Let B = M1−N1, C = M2−N2 be two matrix splittings. Assume that

Ω ∈ Rn×n be a positive diagonal matrix. Define

ξ (Ω) = ‖M−1
1 N1‖, η(Ω) = ‖M−1

1 N2‖ and µ(Ω) = ‖M−1
1 M2‖

where ‖ · ‖ is an arbitrary matrix norm and

δ (Ω) = µ(Ω)+2ξ (Ω)+2η(Ω).

If the parameter matrix Ω satisfies δ (Ω)< 1, then the modulus inner outer iteration

sequence {z(k)}+∞

k=0 converges to the unique solution z∗ for any initial vector z(0).

4.2 Inner Iterations for Saddle Point Problems 79

We would briefly review some stationary methods for the solution of saddle point
system (4.5) in the following.

4.2.1 MINRES

First, we consider the Krylov subspace method for the solution of (4.4), which can be
rewritten as[

Ω1 +ATA I

I −Ω2

][
zk+1

1

zk+1
2

]
=

[
Ω1−ATA −I

−I −Ω2

][
|zk+1

1 |
|zk+1

2 |

]
+

[
AT(b−Al)

−l +u

]
(4.6)

by multiplying −1 in the second equations. Remark that[
Ω1 +ATA I

I −Ω2

]

=

[
I 0

(Ω1 +ATA)−1 I

][
Ω1 +ATA 0

0 −Ω2− (Ω1 +ATA)−1

][
I (Ω1 +ATA)−1

0 I

]
,

so the coefficient matrix in (4.6) is symmetric indefinite and thus symmetric solvers,
such as MINRES and SymmLQ can be applied.

4.2.2 Preconditioned CG

Next, we introduce (preconditioned) conjugate gradient method for the solution of (4.4),
which can be rewritten as[

Ω1 +ATA I

−I Ω2

][
zk+1

1

zk+1
2

]
=

[
Ω1−ATA −I

I Ω2

][
|zk+1

1 |
|zk+1

2 |

]
+

[
AT(b−Al)

l−u

]
. (4.7)

Set [
zk+1

1

zk+1
2

]
=

[
zk

1

zk
2

]
+

[
wk+1

1

wk+1
2

]
,

80 Chapter 4. Box Constrained Least Squares Problem

then (4.7) can be transformed to[
Ω1 +ATA I

−I Ω2

][
wk+1

1

wk+1
2

]
=

[
Ω1(|zk

1|− zk
1)−ATA(zk

1 + |zk
1|+ l)− (zk

2 + |zk
2|+ATb)

Ω2(|zk
2|− zk

2)+(zk
1 + |zk

1|+ l)−u

]

=

[
Ω1(|zk

1|− zk
1)+AT(b−Axk)− yk

Ω2(|zk
2|− zk

2)+ xk−u

]
≡

[
r̄k

1

r̄k
2

]
.

Note that from the first equation

wk+1
1 = (Ω1 +ATA)−1r̄k

1− (Ω1 +ATA)−1wk+1
2 .

It can be utilized to eliminate the variable wk+1
1 in the second equation, then we have{

((Ω1 +ATA)−1 +Ω2)wk+1
2 = (Ω1 +ATA)−1r̄k

1 + r̄k
2

(Ω1 +ATA)wk+1
1 = r̄k

1−wk+1
2

(4.8)

which can be solved by (preconditioned) CG method since the coefficient matrices
(Ω1+ATA)−1+Ω2 and Ω1+ATA are symmetric positive definite with suitable parameter
matrices Ω1 and Ω2.

4.2.3 Stationary Iteration

Note that the stationary iteration is based on the way of matrix splitting of the coefficient
matrix. In the following, we introduce two classes of matrix splitting.

4.2.4 Matrix Splitting of A

Let A = D−L −U , where

D =

[
Ω1 +ATA 0

0 Q

]
, L =

[
0 0
I 0

]
and U =

[
0 −I

0 Q

]
. (4.9)

4.2 Inner Iterations for Saddle Point Problems 81

Table 4.1: The choice of parameter matrix Q
Parameters Algorithm

Q = 1
α

I, ω = 1 Uzawa algorithm
Q = I SOR algorithm 1 (Golub, etc. ’01)

Q = (ATA)−1 SOR algorithm 2 (Golub, etc. ’01)
Q = αI SOR algorithm 3 (Golub, etc. ’01)

The generalized successive overrelaxation (GSOR) matrix splitting [104, 105] is

M =
1
ω
(D−ωL) =

1
ω

[
ATA 0
−ωI Q

]

N =
1
ω
(D−ωL) =

1
ω

[
(1−ω)ATA −ωI

0 Q

]
.

Substituting it to the scheme (4.5), we have[
Ω1 +

1
ω

ATA 0
−I Ω2 +

1
ω

Q

][
zk+1

1

zk+1
2

]
=

[
Ω1 +

1
ω

ATA 0
−I Ω2 +

1
ω

Q

][
zk

1

zk
2

]
+

[
AT(b−Al)

l−u

]

+

[
0 0
I 0

][
|zk+1

1 |
|zk+1

2 |

]
+

[
Ω1−ATA −I

0 Ω2

][
|zk

1|
|zk

2|

]
.(4.10)

Set [
zk+1

1

zk+1
2

]
=

[
zk

1

zk
2

]
+

[
wk+1

1

wk+1
2

]
,

we have
(ωΩ1 +ATA)wk+1

1 = ω(Ω1(|zk
1|− zk

1)+AT(b−Axk)− yk),

zk+1
1 = zk

1 +wk+1
1 , xk+1 = zk+1

1 + |zk+1
1 |+ l,

(ωΩ2 +Q)wk+1
2 = ω(Ω2(|zk

2|− zk
2)+ xk+1−u),

zk+1
2 = zk

2 +wk+1
2 , yk+1 = zk+1

2 + |zk+1
2 |,

(4.11)

For the Choice of Q, we refer to the Table 4.1 [44].

82 Chapter 4. Box Constrained Least Squares Problem

Table 4.2: Comparison of the iterative methods (full rank and inconsistent problem with
κ(A) = 104).

ρ PG Mod1 Mod2 GPCG ModCG
0.7 14,741 2,451 1,224 1 5

1.00 2.74 2.73 (1.00,9.00) (3.40,3.00)
4.42×104 1.83×104 9.13×103 1.59×102 6.06×102

First row: number of outer iterations.
Second row: average inner iterations (of the first stage, second stage).

Third row: number of matrix vector multiplications.
(tol = 10−5, tolin = 0.1)

4.3 Numerical Experiments

4.3.1 Dense full rank case

First, we show how the condition number and the distribution of singular values of
A influence the convergence of the modulus-type and projection-type methods with
a class of dense matrices of the form A =UΣV T, where U ∈ Rm×m and V ∈ Rn×n are
orthogonal matrices obtained from the QR decomposition of random matrices, and
Σ ∈ Rm×n is a rectangular diagonal matrix with diagonal entries σ1 > σ2 > ... > σn,
where the ith smallest singular value is

σn−i+1 = σn +
i−1
n−1

(σ1−σn)ρ
n−i, i = 1, ...,n,

with the parameter ρ ∈ (0,1]. Note that when ρ decreases, the singular values are tightly
clustered towards the smallest singular value σn and are far apart towards the largest
singular value σ1. The idea of generating this kind of matrices is from [46, 53].

In our numerical experiments, we set m = 200, n = 100, σ1 = 1, σn = 0.01 or
0.0001, ρ = 1, 0.9, 0.8, 0.7, and form inconsistent BLS problems where the elements
of the vector b are generated randomly following the normal distribution with mean zero
and variance 1, using the MATLAB function randn(m,1).

4.3 Numerical Experiments 83

Table 4.3: Comparison of the iterative methods (full rank and inconsistent problem with
κ(A) = 104).

ρ PG Mod1 Mod2 GPCG ModCG
0.7 19,556 3,012 1,508 1 3

1.00 2.76 2.76 (1.00,8.00) (1.67,6.67)
5.87×104 2.26×4 1.13×104 1.33×102 6.46×102

First row: number of outer iterations.
Second row: average inner iterations (of the first stage, second stage).

Third row: number of matrix vector multiplications.
(tol = 10−5, tolin = 0.1)

0 0.5 1 1.5 2 2.5 3 3.5
Matrix Vector Multiplications ×104

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
R

es
id

ua
l

Mod
PG

0 50 100 150 200 250 300 350 400 450 500
Matrix Vector Multiplications

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

||A
x-

b|
| 2

Figure 4.1: Relative residual vs. matrix vector multiplications (left); objective function
value vs. matrix vector multiplications (right).

4.3.2 Box constrained ill-posed problem

Consider the Fredholm integral equation of the first kind

∫ 6

−6
κ(τ,σ)x(σ)dσ = b(τ), −6≤ τ ≤ 6,

84 Chapter 4. Box Constrained Least Squares Problem

Table 4.4: Comparison of the numerical methods on box constrained ill-posed problems
ProjCG ProjGrad Mod-GSOR2 Mod-GSOR3

10−1 IT(Inner) 8(13.33) 8(10.50) 8(2.63) 6(2.83)
Mat.-Vec 112 84 21 17

CPU 0.12 0.11 0.03 0.06
10−2 IT(Inner) > 1000 13(45.77) 15(8.13) 17(7.18)

Mat.-Vec 595 122 122
CPU 0.37 0.12 0.16

10−3 IT(Inner) > 1000 49(145.73) 35(13.34) 43(12.19)
Mat.-Vec 7141 467 524

CPU 3.46 0.31 0.44
10−4 IT(Inner) > 1000 134(434.01) 106(21.80) 149(18.42)

Mat.-Vec 58157 2311 2745
CPU 26.33 1.29 1.95

10−5 IT(Inner) > 1000 > 1000 275(38.30) 379(31.51)
Mat.-Vec 10532 11944

CPU 5.34 6.97

discussed by Phillips. Its solution, kernel, and right-hand side are given by

x(σ) =

{
1+ cos(π

3 σ), if−3 < σ < 3,
0, otherwise,

κ(τ,σ) = x(τ−σ)

b(τ) = (6−|τ|)(1+ 1
2

cos(
π

3
τ))+

9
2π

sin(
π

3
|τ|)

We use the MATLAB code phillips from Hansen to discretize the integral equation
by a Galerkin method with orthonormal box functions as test and trial functions.
A ∈ R300×300 is a symmetric indefinite matrix and right-hand side b ∈ R300. The
condition number of A is κ(A) = ‖A‖‖A−1‖= 2.142×108.

4.3.3 Sparse full column rank

We generate a class of sparse full column rank matrices, abbreviated as “Randn_i",
i = 1,2,3,4,5, using the MATLAB function “sprandn" with m = 30,000, n = 3,000,
Ratio of nonzero elements density= 0.1%. The condition numbers of these matrices are

4.4 Concluding Remarks 85

Table 4.5: Comparison of the numerical methods on sparse full column rank problems
Problem ProjCG ProjGrad Mod-GSOR2 Mod-GSOR3
Randn_1 IT(Inner) > 1000 6(23.33) 32(13.81) 32(12.00)

Mat.-Vec 180 891 733
CPU 0.08 0.43 0.36

Randn_2 IT(Inner) > 1000 376(72.10) 123(69.90) 204(34.91)
Mat.-Vec 32,711 19,711 17,429

CPU 10.51 4.10 2.34
Randn_3 IT(Inner) > 1000 701(212.76) 676(211.92) 660(122.67)

Mat.-Vec 342,136 242,136 163,941
CPU 102.70 60.70 25.85

Randn_4 IT(Inner) > 1000 936(152.89) 784(102.46) 785(67.55)
Mat.-Vec 1,124,731 394,647 200,784

CPU 834.01 431.94 210.13
Randn_5 IT(Inner) > 1000 > 1000 788(185.13) 792(111.88)

Mat.-Vec 419,483 234,239
CPU 494.38 241.42

specified as
κ(Randn_i) = 10i, i = 1,2,3,4,5.

The nonzero element values were generated by a random number generator following
the normal distribution, and the pattern of the nonzero elements is also determined by a
random number generator. We form inconsistent BLS problems where the elements
of the right-hand side vector b are generated randomly using the Matlab function
randn(m,1). Same b is used for all the cases.

4.4 Concluding Remarks

In this chapter, we consider the solution of large sparse BLS problems using a new class
of iterative methods based on modulus transformation, which converts the solution of
the BLS into a sequence of the unconstrained least squares problems. The efficient
Krylov subspace methods with suitable preconditioners are applied to solve the inner
unconstrained least squares problems for each outer iteration. We also discuss the
solution of saddle point inner systems, and the choice of the parameter matrix. Numerical

86 Chapter 4. Box Constrained Least Squares Problem

experiments show the efficiency of the proposed methods in comparison of the gradient
projection methods.

87

CHAPTER 5

NONNEGATIVE CONSTRAINED
ILL-POSED PROBLEM

Many questions in science and engineering give rise to linear discrete ill-posed problems.
Often it is desirable that the computed approximate solution satisfies certain constraints,
e.g., that some or all elements of the computed solution be nonnegative [74]. In this
chapter, we employ the modulus type inner outer iterative method with regularization,
including the discrepancy principle and Tikhonov regularization, which is one of the
most popular methods for the solution of linear discrete ill-posed problems, for the
solution of large scale problems of this kind. Since the desired solution is known to
lie in the nonnegative cone. It is then natural to require that the approximate solution
determined by regularization also lies in this cone.

The rest of the chapter is organized as follows. In Section 5.1, we briefly introduce
the constrained ill-posed problem. In Section 5.2, the modulus-type inner outer iteration
method is proposed combined with the active set strategy directly. In sections 5.3 and
5.4, the modulus-type inner outer iteration method is applied directly to solve the image
restoration ill-posed problem with discrepancy principle and Tikhonov regularization,
respectively. Finally in Section 5.5, the concluding remarks are given.

88 Chapter 5. Nonnegative Constrained Ill-Posed Problem

5.1 Introduction

The discretization of linear ill-posed problems gives rise to linear systems of equations
with constraints

Ax = b, x≥ 0, (5.1)

where A ∈ Rm×n is a large matrix whose singular values “cluster” at the origin and
the vector b ∈ Rm is contaminated by error. In particular, the matrix is severely ill-
conditioned and may be rank-deficient. In many linear discrete ill-posed problems that
arise in science and engineering, such as the restoration of an image, the right hand side
vector is contaminated by blur and noise [26]. Hence, (5.1) is generally inconsistent and
thus one has to solve a NNLS problem of the form

min
x∈Rn
‖Ax−b‖2. (5.2)

Matrices of this kind arise from the discretization of linear ill-posed problems such as
Fredholm integral equations of the first kind and, therefore, the minimization problem
(5.2) is referred to as a linear discrete ill-posed problem. Applications include remote
sensing and image restoration. In the latter application the kernel of the integral equation
is known as the point-spread function (PSF) and describes the blur-contamination of
an unavailable image that one would like to restore. The vector b represents known
error-contaminated data and can be expressed as

b = btrue +η , (5.3)

where btrue is an unknown error-free vector associated with b and η represents the error
in b. We will refer to η as noise. In image restoration applications, btrue represents an
unavailable blur-contaminated, but noise-free, image, while b represents an available
image that has been contaminated by both blur and noise. The noise may stem from
measurement and/or discretization errors. We will assume that a fairly sharp bound,

‖η‖2 ≤ δ , (5.4)

for the error is available.

Let A† denote the Moore–Penrose pseudoinverse of A. We would like to determine

5.1 Introduction 89

xtrue = A†btrue. The minimum norm solution of (5.2) can be expressed as A†b. Due to
the severe ill-conditioning of A and the presence of the error η in b, the vector

A†b = A†btrue +A†
η = xtrue +A†

η

typically is dominated by the propagated error A†η and then is not a useful approximation
of xtrue. Generally, a much better approximation of xtrue can be determined by first
replacing the least-squares problem (5.2) by a nearby minimization problem that is less
sensitive to the error η in b. One of the most popular replacement methods is Tikhonov

regularization, which in its simplest form yields the minimization problem

min
x∈Rn

{
‖Ax−b‖2

2 +µ ‖x‖2
2

}
, (5.5)

where the scalar µ > 0 is referred to as the regularization parameter. The normal
equations associated with this minimization problem are given by

(ATA+µIn)x = ATb, (5.6)

which shows that (5.5) has the unique solution

xµ = (ATA+µIn)
−1 ATb. (5.7)

for any fixed µ > 0; see, e.g., [38, 45] for properties of Tikhonov regularization. In is the
identity matrix of order n.

The Tikhonov minimization problem (5.5) has two terms: the first one is a fidelity

term that ensures that the solution xµ approximately fits the observed data, and the
second one is a regularization term that penalizes the Euclidean norm of xµ . The balance
between data fitting and penalization is determined by the regularization parameter µ .
An imprudent choice of µ makes xµ a poor approximation of xtrue: if µ is too small, then
the error η will be propagated and amplified in xµ , while if µ is too large, then xµ will
be over-smoothed without displaying details that xtrue may possess.

The discrepancy principle provides an approach to determine a suitable value of µ .

90 Chapter 5. Nonnegative Constrained Ill-Posed Problem

It prescribes that µ > 0 be chosen so that

∥∥Axµ −b
∥∥= τδ , (5.8)

where τ > 1 is a user-chosen parameter independent of δ . This is a nonlinear equation for
µ , which can be solved, e.g., by Newton’s method. The discrepancy principle requires
a bound (5.4) for the error η to be available, as well as the error-free minimization
problem associated with (5.2) to be consistent; see [38] for discussions. We will use the
discrepancy principle in the computed examples reported in Section 5.3. However, the
solution methods discussed in this paper also can be applied in conjunction with other
techniques for determining a suitable value of µ > 0, including the L-curve criterion and
generalized cross validation; see [39] for discussions and comparisons of many methods
for determining a suitable value of the regularization parameter.

Due to the fact that many singular values of the matrix A cluster at the origin, the
least-squares problem (5.2) may be numerically rank-deficient. Therefore, it is generally
beneficial to impose constraints on the computed solution that the desired solution xtrue

is known to satisfy. For instance, in image restoration problems the entries of the vector
(5.7) represent pixel values of the image. Pixel values are nonnegative and, therefore, it
is generally meaningful to solve the constraint minimization problem

x+µ = argmin
x≥0

{
‖Ax−b‖2

2 +µ ‖x‖2
2

}
(5.9)

instead of (5.5). Here x≥ 0 is intended component-wise. A closed form of the solution
x+µ generally is not available.

An approximation of x+µ is obtained by

x+ = P(xµ) = P
(
(ATA+µI)−1 ATb

)
. (5.10)

When xtrue ≥ 0, the vector x+ generally is a better approximation of xtrue than xµ .
However, typically x+µ is a much more accurate approximation of xtrue than x+. This
depends, at least in part, on the fact that the condition number of the matrix A restricted
to Ω typically is smaller than the condition number of A; the latter is defined as the ratio
between the largest and smallest singular values of A; see, e.g., [41].

In the following, we will apply the modulus type inner outer iteration method for

5.2 Modulus Inner Outer Iteration Method with Active Set Strategy 91

solving nonnegative constrained ill-posed problem with discrepancy principle and
Tikhonov regularization, respectively. Before that, the active set modulus inner outer
iteration method is derived in the next section.

5.2 Modulus Inner Outer Iteration Method with Active
Set Strategy

As mentioned in Chapter 2, the disadvantage of some active set method is that the
iteration in the inner iteration is terminated as soon as a component of a computed iterate
violates a constraint, which forces frequent restart of the outer iteration and thus slows
down convergence. Another undesirable feature is that the active set type algorithm
allows only one variable to leave a bound at a given outer iteration, which allows to add
or delete one index from the active set at a time. This is a very inefficient feature when
the number of variables is large.

In order to avoid these disadvantages, Calvetti et al. [26] proposed a projected
restarted iteration method for nonnegative constrained ill-posed problems by allowing
more consecutive iterations in the inner iteration. The algorithm is given as follows.

Algorithm 5.2.1. Projected Restarted Iteration Method
1. Choose an initial approximate solution x0 and compute r0 = b−Ax0.

2. For k = 0,1,2, . . . until convergence

3. Compute an approximate solution wk by an iterative method

min
w∈Rn

‖Aw− rk‖2.

4. Compute x̂k+1 = xk +wk and project it on the nonnegative region

xk+1
j =

{
0, x̂k+1

j < 0;

x̂k+1
j , x̂k+1

j ≥ 0.
j = 1,2, ...,n.

5. Compute rk+1 = b−Axk+1.

6. Endfor

Here, the unconstrained least squares problem for each loop is solved with CGLS,

92 Chapter 5. Nonnegative Constrained Ill-Posed Problem

GMRES and RRGMRES iterative methods until the stopping criterion is satisfied.
In addition, Morigi et al. [74] proposed an active set restarted projected CG method
for general box constrained ill-posed problems, which can be applied to nonnegative
constrained problems, where the components of the solution that equal their bounds
are referred to as the active set and identified in the outer iteration, and the reduced
unconstrained least squares problem is solved in the inner iteration by keeping the
identified components fixed. The nonnegative constrained version of the algorithm is
given as follows.

Algorithm 5.2.2. Active Set Projected Restarted Iteration Method
1. Choose an initial approximate solution x0 and compute r0 = b−Ax0.

2. For k = 0,1,2, . . . until convergence

3. Define Lagrange multipliers λ
k =−ATrk.

4. Define active set B and free variable set F

B = { j : xk
j = 0, λ

k
j ≥ 0}, F = {1,2, ...,n}\B.

5. Compute an approximate solution wk by an iterative method

min
w∈Rň

‖AF w− rk‖2.

6. Compute

x̂k+1
F = xk

F +wk, x̂k+1
B = xk

B,

and project it on the nonnegative region

xk+1
j =

{
0, x̂k+1

j < 0;

x̂k+1
j , x̂k+1

j ≥ 0.
j = 1,2, ...,n.

7. Compute rk+1 = b−Axk+1.

8. Endfor

Here, ň denotes the number of elements in set F , and AF denotes the submatrix of
A consisting of the columns of A whose indices belong to F . These methods are shown
to require low storage requirement and are easy to implement, and numerical examples

5.2 Modulus Inner Outer Iteration Method with Active Set Strategy 93

arising from constrained linear ill-posed problems as well as image restoration indicate
their fairly rapid convergence. However, there is no theoretical analysis to guarantee the
convergence, and the norm of consecutively generated residual vectors might not be
monotonically decreasing.

Similar to Algorithm 5.2.2 [74], the corresponding active set version of modulus
iterative algorithm is given as follows.

Algorithm 5.2.3. Active Set Modulus-Type Inner Outer Iteration Method
1. Choose an initial approximate solution z0 and a parameter matrix Ω.

2. Compute x0 = z0 + |z0| and r0 = b−Ax0.

3. Set

Ã =

[
A

Ω1/2

]
and b̃0

=

[
−A|z0|+b

Ω1/2|z0|

]
.

4. Compute

r̃0 =

[
r0

Ω1/2(|z0|− z0)

]
(= b̃0− Ãz0).

5. For k = 0,1,2, . . . until convergence

6. Define Lagrange multipliers λ
k =−ATrk.

7. Define active set B and free variable set F

B = { j : xk
j = 0, λ

k
j ≥ 0}, F = {1,2, ...,n}\B.

Let ň be the number of elements in set F .

8. Compute an approximate solution wk by an iterative method

min
w∈Rň

‖ÃF w− r̃k‖2,

where ÃF denotes the submatrix of Ã consisting of the columns of Ã

whose indices belong to F .

9. Compute zk+1
F = zk

F +wk, zk+1
B = zk

B.

10. Compute xk+1 = zk+1 + |zk+1| and rk+1 = b−Axk+1.

11. Set

b̃k+1
=

[
−A|zk+1|+b

Ω1/2|zk+1|

]
.

94 Chapter 5. Nonnegative Constrained Ill-Posed Problem

12. Compute

r̃k+1 =

[
rk+1

Ω1/2(|zk+1|− zk+1)

]
(= b̃k+1− Ãzk+1).

13. Endfor

Similar to the non-active-set algorithms, the unconstrained least squares problem is
required to solve for each outer iteration. For the active set method, only the reduced
system with fewer column needed to be solve. Consequently, the computational cost will
be saved.

5.3 Numerical Experiments: Discrepancy Principle

We test the numerical methods PCGLS and MCGLS2 on image restoration, where
the data consists of the noise- and blur-free images shown in Figure 5.1, which come
from Nagy’s Matlab toolbox “RestoreTools" [17]. Some basic definitions in image
restoration are shown in Table 5.1. Note that the matrix A is determined by the point
spread function. Vector e is generated with normally distributed entries with zero mean
by Matlab. The iteration is terminated when the numerical solution xk satisfies the
discrepancy principle as

‖b−Axk‖2 ≤ ηδ , δ = ‖e‖2 = ‖b− b̂‖2, (5.11)

where η ≥ 1 is a specified constant, or k reaches the maximal number of iteration steps,
e.g., 10. The noise level δ is set to be 5% and the discrepancy factor η = 1 for all cases.

In Figures 5.2 and 5.3, the medium and large blurred and noisy image, the restored
images of satellite by PCGLS and MCGLS2 are shown, respectively. The relative error
of the image is defined as

Error =
‖xk− x̂‖2

‖x̂‖2
.

The figures show that the MCGLS2 method could obtain more accurate numerical
solutions and thus clearer images compared to the PCGLS method with the same
computational costs.

5.3 Numerical Experiments: Discrepancy Principle 95

(a) (b)

Figure 5.1: Exact image for (a) satellite and (b) variant motion.

Medium Blur Error=0.2230 Error=0.1829

Figure 5.2: Medium blurred and noisy image (left), restored image by PCGLS (middle),
and restored image by MCGLS2 (right) of satellite image.

Large Blur Error=0.2564 Error=0.2019

Figure 5.3: Large blurred and noisy image (left), restored image by PCGLS (middle),
and restored image by MCGLS2 (right) of satellite image.

96 Chapter 5. Nonnegative Constrained Ill-Posed Problem

Medium Blur Error=0.2453 Error=0.2375

Figure 5.4: Medium blurred and noisy image (left), restored image by PCGLS (middle),
and restored image by MCGLS2 (right) of variant motion image.

Large Blur Error=0.2754 Error=0.2296

Figure 5.5: Large blurred and noisy image (left), restored image by PCGLS (middle),
and restored image by MCGLS2 (right) of variant motion image.

In Figures 5.4 and 5.5, the medium and large blurred and noisy image, the restored
images of variant motion by PCGLS and MCGLS2 are shown, respectively.

From the figures, the same conclusion can be reached that the MCGLS2 method
could obtain more accurate numerical solutions than the PCGLS method with the same
computational costs.

5.4 Numerical Experiments: Tikhonov Regularization 97

Table 5.1: Definitions in image restoration.
A blurring operator
x̂ noise- and blur-free image
b̂ = Ax̂ blurred noise-free image
e noise
b = b̂+ e blurred and noisy image
γ = ‖e‖2/‖b̂‖2 noise level

5.4 Numerical Experiments: Tikhonov Regularization

We first rewrite the minimization problem (5.9) in the form of the previous section. Thus,

min
x≥0

{
‖Ax−b‖2 +µ ‖x‖2

}
= min

x≥0

∥∥∥∥∥
[

A
√

µIn

]
x−

[
b

0

]∥∥∥∥∥
2

= min
x≥0

∥∥Ãx− b̃
∥∥2

, (5.12)

where we assume that µ > 0. Then the matrix Ã ∈ R(m+n)×n is of full column rank and
the minimization problem (5.12) satisfies the convergence conditions. Therefore, the
iterates determined by Algorithm 3.1.6 and 3.4.1 will converge.

We test the numerical methods PG, Mod, GPCG and ModASCG on image restora-
tion problems, which come from Nagy’s Matlab toolbox “RestoreTools" [17]. The
modulus type methods with Ω = ωdiag(ATA) are not applied here since it requires large
computational costs to obtain the diagonal elements of ATA. Some basic definitions in
image restoration are shown in Table 5.1. Note that the matrix A is determined by the
point spread function. Vector e is generated with normally distributed entries with zero
mean by Matlab. The noise level γ is set to be 5% and the regularization parameter is set
to be µ = 10−4. The parameters in Mod and ModASCG are set to be ω = 0.1. The
relative error of the restored image is defined as

Error =
‖xk− x̂‖2

‖x̂‖2
.

98 Chapter 5. Nonnegative Constrained Ill-Posed Problem

Figure 5.6: The exact image (left), PSF function (middle) and large blurred and noisy
image (right) of test problem “AtmosphericBlur".

Figure 5.7: The exact image (left), PSF function (middle) and large blurred and noisy
image (right) of test problem “Text".

0 5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Outer Iterations

R
el

at
iv

e
E

rr
or

PG
Mod
GPCG
ModASCG

0 5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Outer Iterations

R
el

at
iv

e
E

rr
or

PG
Mod
GPCG
ModASCG

Figure 5.8: Relative error vs. outer iterations for test problems “AtmosphericBlur" (left)
and “Text" (right).

5.4 Numerical Experiments: Tikhonov Regularization 99

0 5 10 15 20 25 30

10−4

10−3

10−2

10−1

100

Outer Iterations

R
el

at
iv

e
R

es
id

ua
l

PG
Mod
GPCG
ModASCG

0 5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

Outer Iterations

R
el

at
iv

e
R

es
id

ua
l

PG
Mod
GPCG
ModASCG

Figure 5.9: Relative residual vs. outer iterations for test problems “AtmosphericBlur"
(left) and “Text" (right).

(a) Error=0.3814 (b) Error=0.2783

(c) Error=0.2775 (d) Error=0.2747

Figure 5.10: Restored images by (a) PG, (b) Mod, (c) GPCG and (d) ModASCG
methods for test problem “AtmosphericBlur".

100 Chapter 5. Nonnegative Constrained Ill-Posed Problem

(a) Error=0.3198 (b) Error=0.2945

(c) Error=0.2762 (d) Error=0.2763

Figure 5.11: Restored images by (a) PG, (b) Mod, (c) GPCG and (d) ModASCG
methods for test problem “Text".

5.5 Concluding Remarks 101

In Figures 5.6 and 5.7, the exact image and the blurred and noisy image of test
problems “AtmosphericBlur" and “Text" are shown, respectively. Moreover, in Figures
5.8 and 5.9, we depict the relative error and relative residual curves of four testing
methods versus the number of outer iterations for the two image restoration problems,
respectively. In Figures 5.10 and 5.11, the restored images are shown.

From Figure 5.8, it is observed that the ModASCG method obtains the smallest
error, and thus the most accurate restored images at the fewest outer iterations. For test
problem “AtmosphericBlur", the relative error curves of PG and Mod can not reach the
minimum point within 30 steps. The relative error of the two-stage methods decreases in
the first few iterations, then increases with more iterations. The optimal number of outer
iterations for GPCG and ModASCG are 5 and 4, respectively. Similar phenomena can
be observed in test problem “Text". The modulus type methods outperform projection
type methods by obtaining more accurate solutions with same computational costs.

5.5 Concluding Remarks

This chapter applies modulus-based iterative methods to nonnegative discrepancy
principle and Tikhonov regularization. The discrepancy principle is used to determine
the regularization parameter. Efficient solution methods are described. Several numerical
examples illustrate the efficiency of the proposed methods.

In the future work, we will consider the l1-norm regularization, which is more
commonly used for the ill-posed image restoration problem. We will also consider more
general case lp− lq minimization, which requires to construct the new modulus-type
algorithms and to analysis the convergence.

103

CHAPTER 6

NONNEGATIVE MATRIX
FACTORIZATION

In this chapter, we consider the solution of nonnegative matrix factorization, which is a
low rank matrix approximation problem with nonnegative constraints, using a new
alternating least squares method by utilizing modulus-type inner outer iteration method
to solve the nonnegative constrained least squares problem with multiple right hand
sides at each iteration. Theoretical convergence that the limit of the sequence generated
by the proposed method is a stationary point of NMF can be guaranteed. Moreover, by
considering that the methods for NMF can be regarded as the fixed-point iteration,
which the rate of convergence is at best linear, we also propose a new matrix-based
active set method and employ Anderson acceleration to further speed up the algorithms.
Finally, we show that the proposed methods can be extended to solve the sparse NMF
and regularized NMF. Numerical experiments on the synthetic data and ORL face image
data show that the proposed methods converges faster than the gradient descent methods.

In Section 6.1, a brief introduction of nonnegative matrix factorization is given. In
Section 6.2 we review some existing methods for the solution of NMF, then construct
modulus method for NMF in Section 6.3. In Section 6.6 we compare the proposed
method with the existing methods numerically on the synthetic data and ORL face image
data. and finally in Section 6.7 the concluding remarks are given.

104 Chapter 6. Nonnegative Matrix Factorization

Figure 6.1: Nonnegative matrix factorization.
1

6.1 Introduction

Given a nonnegative matrix V ∈Rm×n and a positive integer r�min(m,n), nonnegative
matrix factorization (NMF) finds two nonnegative matrices W ∈ Rm×r and H ∈ Rr×n

such that
V ≈WH. (6.1)

One of the most common ways to formulate the approximation in (6.1) is

min f (W,H) :=
1
2
‖V −WH‖2

F , (6.2)

where ‖ · ‖F represents the Frobenius norm, or Euclidean norm, of the corresponding
matrix. There are other measurements for the approximation (6.1) such as Kullback-
Leibler divergence, Itakura-Saito divergence, etc., where different cost functions are
used depending on the various applications and purposes. Also, the appropriate choice
of r is critical and often problem dependent. The low rank approximation and the
nonnegativity properties make NMF applicable for many scientific computing and
engineering applications, e.g., image processing, text mining, spectral data analysis,
audio signal separation, document clustering, recommender systems, and so on. The
NMF was first proposed by Paatero and Tapper [88] as positive matrix factorization, and
had obtained wide attention after Lee and Seung’s work [68].

6.2 Existing Methods

The main framework for the solution of NMF is alternating nonnegative least squares
(ANLS) method, block coordinate descent method, or block Gauss-Seidel method as
listed in Algorithm 6.2.1, which iteratively fixes W (or H), and solves the nonnegative

6.2 Existing Methods 105

constrained least squares (NNLS) subproblems with multiple right hand sides with
respect to H (or W) alternatively. Note that the NMF problem (6.2) is nonconvex and thus
only the stationary points are expected to be found, while the NNLS subproblems are
convex and the global minimizers can be computed. For the convergence of Algorithm
6.2.1, Grippo and Sciandrone [42] proved that every limit point of the sequences
{(Hk+1,W k+1)}+∞

k=0 is a stationary point of NMF (6.2), where for each k, Hk+1 and
W k+1 are the global minimizers of the subproblems. Note that the uniqueness of the
global minimizer for each subproblem, which is not a must for the convergence of
Algorithm 6.2.1, may not be guaranteed, since W k and (Hk+1)T are not necessary to be
full column rank. See [7] for more convergence conditions of general block coordinate
descent method. Consequently, the solution of NMF problem (6.2) is transformed to the
solution of a series of NNLS problems with multiple right hand sides, which can be
solved by the efficient iterative methods, e.g., gradient descent methods, active set
methods, quasi-Newton methods, etc. We will briefly review some classical and fast
existing NMF methods as follows. See [10, 23, 29] for more detailed review and survey.

Algorithm 6.2.1. Alternating Nonnegative Least Squares (ANLS)
1. Choose initial matrices H0 and W 0.

2. For k = 0,1,2, . . . until convergence

3. Compute Hk+1 by solving

min‖V −W kH‖2
F subject to H ≥ 0. (6.3)

4. Compute W k+1 by solving

min‖V −WHk+1‖2
F subject to W ≥ 0. (6.4)

5. Endfor

The gradient descent methods are widely used for the NMF problem due to the
fact that the monotonically nonincreasing of the objective function f (W,H) can be
guaranteed along the negative gradient direction with sufficient small step size, and it is
easy to implement than the Newton-type method as only the gradient is computed.
The first well known NMF method is multiplicative update (MU) method proposed by
Lee and Seung [69], which can be regarded as diagonally rescaled gradient descent

106 Chapter 6. Nonnegative Matrix Factorization

method. Unfortunately, Gonzales and Zhang [47] showed that the MU method may
fail to converge to a stationary point and presented an accelerated MU method. Lin
further presented a modified MU method [64] to overcome the disadvantages of MU
method and analyzed its convergence. Although they are slow to converge in terms of
the iteration numbers, the MU method and its variants require small computational costs
per iteration. Therefore, they had become benchmarks against which the newer methods
are compared. The original MU method [69] is listed in Algorithm 6.2.2, where ‘◦’ and
‘�’ represent for the Hadamard (componentwise) product and division, respectively.

Algorithm 6.2.2. Multiplicative Update (MU)
1. Choose initial matrices H0 and W 0.

2. For k = 0,1,2, . . . until convergence

3. Hk+1 = Hk ◦ ((W k)TV)� ((W k)TW kHk).

4. W k+1 =W k ◦ (V (Hk+1)T)� (W kHk+1(Hk+1)T).

5. Endfor

Instead of choosing the step size to maintain the nonnegativity in MU methods, the
projected gradient method, which is another common gradient descent method, sets the
negative components in the updated matrices to be zero. For example, Lin presented
projected gradient method in [63] for NMF problem, which was originally proposed by
Bertsekas [5] for general constrained convex optimization. The convergence can be
proved under certain assumptions and the nonincreasing property can be obtained by
sufficient decrease condition, or Armijo condition. For the gradient descent methods, it
is known that the convergence can be slow and very sensitive to the choice of step
size. Also similar to the steepest descent method, they may suffer from the zigzag
phenomenon if the condition number is large.

The active set methods are also widely discussed and proposed for the solution of
NMF problem. The idea of active set method is if the constraints active at the exact
solution are known in advance, then the constrained problem can be solved by simply
optimizing the objective function in an unconstrained manner over only the variables that
correspond to the inactive constraints. Lawson and Hanson proposed a classical active
set algorithm [67] for the solution of NNLS problem, which was further developed by
Bro and De Jong [11] and van Brethem and Keenan [97] for NNLS with multiple right
hand sides. Kim and Park [58] applied their active set method directly for the solution of

6.2 Existing Methods 107

subproblems in the ANLS framework. Although the strategies including precomputing
the terms in the normal equations and grouping the columns with the same active set are
proposed to save the computational costs, such active set method had an inefficient
feature that typically only one variable index was exchanged between the active set and
inactive set at each iteration. In order to avoid the disadvantage, various sophisticated
active set methods for NNLS with single right hand side have been proposed by allowing
more variable indices to exchange. For example, Júdice and Pires proposed a block
principal pivoting (BPP) method [55] for solving the linear complementarity problem
resulted from the equivalent Karush-Kuhn-Tucker (KKT) conditions of the NNLS
problem. Moré and Toraldo [76, 77] proposed a gradient projection conjugate gradient
(GPCG) method for the solution of box constrained quadratic programming. Moreover,
Hager and Zhang proposed a new active set method [54] for general box constrained
optimization. For the extensions of these active set methods to NMF problem in the
ANLS framework, Kim and Park combined the BPP with the grouping idea, Zhang et al.
[102] proposed a matrix-based variant of Hager and Zhang’s method [54], and Cichocki
et al. [29] applied the GPCG method directly to each column of the matrices. However,
these extensions may be inefficient when the size of the problem as well as r are large.

In this paper, based on the ANLS framework, we first introduce the variant of
modulus-type inner outer iteration method [103] for the solution of NNLS subproblems.
Theoretical convergence that the limit of the sequence generated by the proposed
method is a stationary point of NMF can be guaranteed. Moreover, by considering that
the methods for NMF can be regarded as the fixed-point iteration, which the rate of
convergence is at best linear, we also propose a new matrix-based active set method
and employ Anderson acceleration, respectively, to further speed up the algorithms.
Finally, we show that the proposed methods can be extended to solve the sparse NMF
and regularized NMF. Numerical experiments on the synthetic data and ORL face image
data show that the proposed methods converges faster than the gradient descent methods.

Remark that an open question that deserves further attention for NMF is the
initialization. Most methods start the iterations with random nonnegative matrices.
In order to speed up the convergence and to avoid the randomness, Wild et al. [99]
employed a spherical k-means clustering approach and Boutsidis and Gallopoulos [13]
proposed a partial SVD-based initialization method, respectively. Even though the
suitable initial approximate matrices are of importance for the convergence in solving

108 Chapter 6. Nonnegative Matrix Factorization

NMF problem due to its nonconvex property, the details of the initialization will not be
discussed here.

6.3 Modulus-Type Inner Outer Iteration Method

In this section, we apply an inner outer iterative method with modulus variable
transformation, which originally proposed for the solution of NNLS [103], to solve
NMF in the ANLS framework.

According to the KKT conditions, (W,H) is a stationary point of NMF (6.2) if and
only if

H ≥ 0, ∇H f (W,H)≥ 0, 〈H,∇H f (W,H)〉= 0, (6.5)

W ≥ 0, ∇W f (W,H)≥ 0, 〈W,∇W f (W,H)〉= 0, (6.6)

where the gradient of objective function f (W,H) with respect to W and H are

∇W f (W,H) = (WH−V)HT and ∇H f (W,H) =W T(WH−V),

respectively. Here, 〈A,B〉 := ∑i ∑ j Ai jBi j refers to the inner product of two matrices.
Note that (6.5) and (6.6) are also the KKT conditions of the subproblems (6.3) and
(6.4), respectively. In order to handle the nonnegative constraints, the modulus variable
transformation set

H = Z + |Z| and ∇H f (W,H) = Ω1(|Z|−Z), (6.7)

where Z ∈Rr×n and Ω1 ∈Rr×r is a positive diagonal matrix. Hence, the KKT conditions
(6.5) are equivalent to an implicit fixed-point equation

(Ω1 +W TW)Z = (Ω1−W TW)|Z|+W TV,

which can be solved by the fixed-point iteration FPI(W,V,Ω1)

(Ω1 +W TW)Zi+1 = (Ω1−W TW)|Zi|+W TV, (6.8)

6.3 Modulus-Type Inner Outer Iteration Method 109

where i = 1,2, It is noted that the iterative scheme (6.8) can be reorganized as the
normal equations

W̃ TW̃Zi+1 = W̃ TṼ i,

of the unconstrained least squares problem LS(W̃ ,Ṽ i)

min
Zi+1∈Rr×n

∥∥∥W̃Zi+1−Ṽ i
∥∥∥

2
(6.9)

for i = 0,1,2, . . ., where

W̃ =

[
W

Ω
1
2
1

]
and Ṽ i =

[
−W |Zi|+V

Ω
1
2
1 |Zi|

]
.

Therefore, the solution of the NNLS subproblem (6.3) can be transformed to the solution
of a series of unconstrained least squares problems LS(W̃ ,Ṽ i), for which the efficient
iterative methods can be applied.

Similarly by setting

W = (Y + |Y |)T and ∇W f (W,H) = [Ω2(|Y |−Y)]T, (6.10)

where Y ∈ Rr×m and Ω2 ∈ Rr×r is a positive diagonal matrix, the KKT conditions (6.6)
is equivalent to an implicit fixed-point equation

(Ω2 +HHT)Y = (Ω2−HHT)|Y |+HV T,

which can be solved by the fixed-point iteration FPI(HT,V T,Ω2)

(Ω2 +HHT)Y i+1 = (Ω2−HHT)|Y i|+HV T, (6.11)

where i = 1,2, It is noted that the iterative scheme (6.11) can be reorganized as the
normal equations

ĤĤTY i+1 = Ĥ(V̂ i)T,

110 Chapter 6. Nonnegative Matrix Factorization

of the unconstrained least squares problem LS(ĤT,(V̂ i)T)

min
Y i+1∈Rr×m

∥∥∥ĤTY i+1− (V̂ i)T
∥∥∥

2
(6.12)

for i = 0,1,2, . . ., where

Ĥ =
[
H Ω

1
2
2

]
and V̂ i =

[
−|(Y i)T|H +V |(Y i)T|Ω

1
2
2

]
.

Similarly, the solution of the NNLS subproblem (6.4) can be transformed to the solution
of a series of unconstrained least squares problems LS(ĤT,(V̂ i)T).

The modulus-type inner outer iteration method in the ANLS framework for NMF
problem is described as follows.

Algorithm 6.3.1. ANLS - Modulus-Type Inner Outer Iteration
1. Choose initial matrices H0 and W 0, and parameter matrices Ω1 and Ω2.

2. For k = 0,1,2, . . . until convergence

3. For i = 0,1,2, . . . until obtaining Z∗

4. Compute Zi+1 by solving LS(W̃ k,Ṽ i).

5. Endfor

6. Compute Hk+1 = Z∗+ |Z∗|.
7. For i = 0,1,2, . . . until obtaining Y ∗

8. Compute Y i+1 by solving LS((Ĥk+1)T,(V̂ i)T).

9. Endfor

10. Compute W k+1 = Y ∗+ |Y ∗|.

11. Endfor

Here, lines 3-6 and 7-10 correspond to the solution of the NNLS subproblems
(6.3) and (6.4), respectively. The iterative solution of the LS(W̃ k,Ṽ i) in Step 4 or
LS((Ĥk+1)T,(V̂ i)T) in Step 8 for each i is referred to as the inner iteration. For the single
right hand side case, the overdetermined least square problem can be solved by the
(preconditioned) CGLS, LSQR, LSMR, BA-GMRES [53] methods, etc. In the following,
we derive a simple extension of CGLS method for the overdetermined least squares

6.3 Modulus-Type Inner Outer Iteration Method 111

problem with multiple right hand sides LS(A,B)

min‖AX−B‖F , (6.13)

where A ∈ Rm×n and B ∈ Rm×p are given, and X ∈ Rn×p is unknown. The extension for
other solvers can be derived similarly.

It is noted that (6.13) is equivalent to

min‖(I⊗A)vec(X)−vec(B)‖2, (6.14)

where I ∈ Rp×p is an identity matrix, ⊗ denotes the Kronecker product between two
matrices, and vec(·) denotes the vectorization of a matrix by stacking its column vectors
on top of one another. Since I⊗A is a mp× np matrix, and vec(X) and vec(B) are
np×1 and mp×1 vectors, respectively, we can apply the CGLS method to solve (6.14)
directly. Then, by reorganizing the algorithm in the matrix form with the inverse of the
vectorization, the CGLS method for LS(A,B) can be obtained and listed as follows.

Algorithm 6.3.2. CGLS Method for LS(A,B)
1. Choose initial X0.

2. Compute R0 = B−AX0, S0 = ATR0 and P0 = S0.

3. For k = 0,1,2, . . . until convergence

4. αk = 〈Sk,Sk〉/〈APk,APk〉
5. Xk+1 = Xk +αkPk

6. Rk+1 = Rk−αkAPk

7. Sk+1 = ATRk+1

8. βk+1 = 〈Sk+1,Sk+1〉/〈Sk,Sk〉
9. Pk+1 = Sk+1 +βk+1Pk

10. Endfor

Remark that a more standard derivation of conjugate gradient method for the
symmetric positive definite linear equations with multiple right hand sides can be found
in [21]. The difference is the computation of step size αk and βk+1 in lines 3 and 8.

As mentioned previously, for Algorithm 6.3.1, the merit is by modulus variable
transformations (6.7) and (6.10), the solution of NMF problem can be transformed to the

112 Chapter 6. Nonnegative Matrix Factorization

solution of a series of unconstrained least squares problems (6.9) and (6.12), or fixed
point equations (6.8) and (6.11), at each inner iteration, which can be solved efficiently.
However, the demerit is that the outer iteration, which can be regarded as the fixed-point
iteration, is at best linear convergence rate. Hence, we consider the active set strategy
and the Anderson extrapolation to accelerate the NMF algorithms in the following.

6.4 Active Set Method for NNLS with Multiple Right
Hand Sides

In this section, we consider the active set method for NNLS problem with multiple right
hand sides.

First, we review active set method for NNLS problem with single right hand side

min‖Ax−b‖2 subject to x≥ 0,

where A ∈ Rm×n and b ∈ Rm×1 are given, and x ∈ Rn×1 is the unknown. Active set and
free variables (inactive) set for the kth step iterative solution are defined as

B(xk) = { j : xk
j = 0, λ

k
j ≥ 0} and F (xk) = {1,2, . . . ,n}\B(xk),

where λ
k = −ATrk = −AT(b−Axk) is the gradient of the quadratic function in (1.1).

The idea of the active set method is that if the active set of x∗ is known, where x∗ is
the global minimizer of (1.1), then the NNLS can be solved by simply optimizing the
quadratic function in an unconstrained manner over only the free variables set

min‖AF xk+1
F −b‖2, (6.15)

where AF is the submatrix of A consisting of the columns of A whose indices belong to
F , and xF is the reduced vector of x consisting of the elements of x whose indices
belong to F . One significant task for the active set method is when to terminate the
solution of the unconstrained least squares problem (6.15) and update the active set B

and free variable set F if some of its components violate the nonnegative constraints.
For example, the active set methods proposed by O’Leary [81] and Lawson and Hanson

6.4 Active Set Method for NNLS with Multiple Right Hand Sides 113

[?] terminate the inner iteration as soon as a component violates a constraint, which
forces frequent resuming of the iteration and typically only one index from active set and
free variable set is exchanged at a time. In order to avoid these disadvantages, the active
set methods proposed by Moré and Toraldo [76, 77] and Morigi et al. [74] allow more
consecutive iterations to solve (6.15) and more elements to update in the active set.

In terms of the NNLS problem with multiple right hand sides

min‖AX−B‖2 subject to X ≥ 0, (6.16)

where B =
[
b1 b2 · · · bp

]
∈ Rm×p are given and X =

[
x1 x2 · · · xp

]
∈ Rn×p is

the unknown, the straightforward way is to decompose (6.16) as p NNLS problems with
single right hand side

min‖Axi−bi‖2 subject to xi ≥ 0,

where i = 1,2, . . . , p, and then apply the active set method to each NNLS separately.
Since the active sets correspond to each right hand side bi are updated differently, it is
inefficient to handle (6.16) as p NNLS problems independently with active set method
comparing to the nonactive set method. In order to save the computational costs, Bro
and De Jong [11] and van Brethem and Keenan [97] proposed a grouping technique in
Lawson and Hanson’s active set method [67], and Kim and Park [59] utilize the same
idea in the block principal pivoting method for NMF. For each iteration, those columns
that correspond to the same active sets are grouped and the resulting unconstrained least
squares problems are solved together by apply Cholesky factorization for the normal
equations. The grouping idea is illustrated in Figure 6.2, which comes from [59].

The grouping technique may be inefficient when the number of the groups is large.
In other words, the grouping fails to work if the active sets for each right hand sides are
different with each other. Also, the frequent change of the groups at each iteration may
become time consuming. In the following, we propose a new active set strategy to avoid
these inefficient features.

For (1.1), by introducing Dk = diag(dk
1,d

k
2, . . . ,d

k
n) with entries

dk
i =

{
1, if i ∈F (xk);
0, if i ∈B(xk),

114 Chapter 6. Nonnegative Matrix Factorization

Figure 6.2: ([59]) An example in of the grouping of right hand sides when n = 10 and
p = 6. Dark cells indicate variables with indices in F , which need to be computed by
(6.15). By grouping the columns that have a common F set, i.e., columns {1,3,5},
{2,6}, and {4}, we can avoid redundant computation for Cholesky factorization in
solving the normal equation of (6.15).

it can be obtained that AF xk+1
F = ADkxk+1 and thus (6.15) is equivalent to

min‖ADkxk+1−b‖2. (6.17)

Such formulation was proposed by Morigi et al. [74] by assuming that the matrix can
only be accessed through the evaluation of matrix vector products with A and AT, which
is a common situation in image restoration problems. Furthermore, by using Hadamard
product, the (6.17) is also equivalent to

min‖A(dk ◦ xk+1)−b‖2, (6.18)

where dk =
[
d1 d2 · · · dn

]T

. Note that dk ◦ xk+1 vanishes components whose indices

belong to the active set B(xk).

Finally, we are ready to generalize this idea for (6.16) by introducing the matrix
Γ ∈ Rn×p with the entries

Γ
k
i j =

{
0, if (i, j) ∈B(Xk);
1, otherwise,

(6.19)

where B(Xk) = {(i, j) : Xk
i j = 0, Λk

i j ≥ 0} and Λk = −ATRk = −AT(B−AXk) is the
gradient of the quadratic function in (6.16). Then, similar to (6.18) in the single right

6.4 Active Set Method for NNLS with Multiple Right Hand Sides 115

hand side case, the unconstrained least squares problem

min‖A(Γk ◦Xk+1)−B‖2, (6.20)

can be solved over the free variable set since Γk ◦Xk+1 vanishes the components whose
indices belong to the active set B(Xk).

The active set method for NNLS with multiple right hand sides (6.16) is described as
follows.

Algorithm 6.4.1. Active Set Method for (6.16)
1. Choose initial X0.

2. Compute R0 = B−AX0 and Λ0 =−ATR0.

3. For k = 0,1,2, . . . until convergence

4. Update Γk according to (6.19).
5. Compute Nk+1 by solving

min‖A(Γk ◦Nk+1)−Rk‖2, (6.21)

6. Set Xk+1 = P(Xk +β m(Γk ◦Nk+1)), and find the smallest integer

m≥ 0 that satisfies the sufficient decrease condition

‖B−AXk+1‖2
F ≤ ‖B−AXk‖2

F −2µ〈−Λ
k,Xk+1−Xk〉, (6.22)

where 0 < β < 1 and 0≤ µ < 1.

7. Compute Rk+1 = B−AXk+1

8. Compute Λk+1 =−ATRk+1

9. Endfor

Algorithm 6.4.2. CGLS Method for (6.21)
1. Choose initial X0.

2. Compute R0 = B−A(Γ◦X0), S0 = Γ◦ (ATR0) and P0 = S0.

3. For k = 0,1,2, . . . until convergence

4. αk = 〈Sk,Sk〉/〈A(Γ◦Pk),A(Γ◦Pk)〉
5. Xk+1 = Xk +αkPk

6. Rk+1 = Rk−αkA(Γ◦Pk)

116 Chapter 6. Nonnegative Matrix Factorization

7. Sk+1 = Γ◦ (ATRk+1)

8. βk = 〈Sk+1,Sk+1〉/〈Sk,Sk〉
9. Pk+1 = Sk+1 +βkPk

10. Endfor

6.5 Sparse and Regularized NMF

Penalty constraint with Frobenius norm:

min‖V −WH‖2
F +α‖W‖2

F +β‖H‖2
F ,

Alternating nonnegative least squares method

min‖V −W kH‖2
F +β‖H‖2

F = min

∥∥∥∥∥
[

V

0

]
−

[
W k√

β I

]
H

∥∥∥∥∥
2

F

:= min‖V̄ −W̄ kH‖2
F

min‖V −WHk+1‖2
F +α‖W‖2

F = min
∥∥∥[V 0

]
−W

[
Hk+1 √αI

]∥∥∥2

F

:= min‖Ṽ −WH̃k+1‖2
F ,

where I is an identity matrix.

Sparsity constraint with l1-norm:

min‖V −WH‖2
F +α

m

∑
i=1
‖wi‖2

1 +β

n

∑
j=1
‖h j‖2

1,

where wT
i and h j are ith row vector of W and jth column vector of W , respectively.

6.6 Numerical Experiments 117

Alternating nonnegative least squares method

min‖V −W kH‖2
F +β

n

∑
j=1
‖h j‖2

1 = min

∥∥∥∥∥
[

V

0

]
−

[
W k√
βeT

]
H

∥∥∥∥∥
2

F

:= min‖V̄ −W̄ kH‖2
F

min‖V −WHk+1‖2
F +α

m

∑
i=1
‖wi‖2

1 = min
∥∥∥[V 0

]
−W

[
Hk+1 √αe

]∥∥∥2

F

:= min‖Ṽ −WH̃k+1‖2
F ,

where e is a column vector with all components equal to one.

6.6 Numerical Experiments

Finally, we compare the proposed modulus (Mod) method with the existing methods
including multiplicative update (MU) method, projected gradient (PG) method, projected
gradient method with Armijo condition (PGA). The testing problems contain

Synthetic data: Consider matrix V is randomly generated by the normal distribution
with mean 0 and standard deviation 1

Vi j = |N(0,1)|.

The initial matrices are also constructed randomly. The size of the problem is
(m,r,n) = (100,20,500). Such generation of matrix can also be seen in [?].

Image data: ORL face image database [3].

The programming language is MATLAB 7.8 with machine precision ε = 1.1×10−16.
The initial matrices were chosen to be random matrices. For the modulus-type iteration
methods, the parameter matrix was chosen to be Ω = ωI, where ω is a positive parameter.
the stopping criterion for the outer iteration of all methods is chosen as

| f (W k+1,Hk+1)− f (W k,Hk)|
f (W 0,H0)

< tol. (6.23)

118 Chapter 6. Nonnegative Matrix Factorization

Table 6.1: Comparison of the iterative methods for random problem.
Methods Iterations f (W,H) CPU

MU 3468 111.90 10.09
PG 54 115.47 0.64

PGA 47 112.93 5.52
Mod 52 111.88 5.14

0 5 10 15 20 25 30 35 40 45 50
Iterations

100

110

120

130

140

150

160

170

180

190

200

||V
-W

H
||

F2

MU
PG
PGA
Mod

10-2 10-1 100 101 102

CPU

100

110

120

130

140

150

160

170

180

||V
-W

H
||

F2

MU
PG
PGA
Mod

Figure 6.3: Objective function value versus iterations (left) and CPU time in seconds
(right), respectively, for random problem.

In order to perform a fair comparison among different methods, the parameters are
chosen as

µ = 0.1, β = 0.9 and ω = 1 (6.24)

for all testing problems. In addition, the maximum number of iteration steps is restricted
to be 5,000.

In Table 6.1, we show the numerical results of four methods for synthetic data
from the aspect of the number of iterations (“Iterations"), the objective function value
(“ f (W,H)") and the CPU time in seconds (“CPU"). Meanwhile, in Figure 6.3, we
show the objective function value with respect to the iterations and the CPU time. In
Figure 6.4, the condition numbers of W and H with respect to the iterations are depicted,
respectively.

From Table 6.1, it is observed that the Mod obtains the least objective function value
among the four methods, and requires less CPU time than MU and PGA. Although the
PG method is the fastest method, the objective function value is relative higher than the

6.6 Numerical Experiments 119

0 1000 2000 3000 4000
0

5

10

15
MU

0 20 40 60
0

10

20

30
PG

0 20 40 60
0

10

20

30
PGA

0 20 40 60
4

6

8

10
Mod

Figure 6.4: Condition numbers of W (red line) and H (black dot line) versus iterations.

other methods.

In Table 6.2, we show the numerical results of four methods for synthetic data
from the aspect of the number of iterations (“Iterations"), the objective function value
(“ f (W,H)") and the CPU time in seconds (“CPU"). Meanwhile, in Figure 6.5, we
show the objective function value with respect to the iterations and the CPU time. In
Figure 6.6, the condition numbers of W and H with respect to the iterations are depicted,
respectively. In Figure 6.7, the face images of four methods and the original images are
shown.

We can reach the conclusion that the proposed alternating modulus method is quite
competitive among all the testing methods. It outperforms the other methods with less
iterations and CPU time. In addition, the parameter in modulus method is not sensitive
since the condition numbers of W and H is small during the iterations.

120 Chapter 6. Nonnegative Matrix Factorization

Table 6.2: Comparison of the iterative methods for ORL facedata problem.
Methods Iterations f (W,H) CPU

MU 88 50346.85 14.28
PG 114 45296.18 63.02

PGA 17 45372.30 92.58
Mod 19 45900.87 21.83

0 20 40 60 80 100 120
Iterations

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

||V
-W

H
||

F2

×105

MU
PG
PGA
Mod

10-1 100 101 102

CPU

4

5

6

7

8

9

10

11
×104

||V
-W

H
||

F2

MU
PG
PGA
Mod

Figure 6.5: Objective function value versus iterations (left) and CPU time in seconds
(right), respectively, for random problem.

6.7 Concluding Remarks

In this chapter, we consider a new alternating nonnegative least squares method using
modulus-type inner outer iteration method for the nonnegative constrained least squares
subproblem. Numerical experiments on the synthetic data and ORL face image data
show that the proposed methods converges faster than the gradient descent methods.

In the future work, we will consider the NMF with sparsity constraints on W or H.
One way is to add penalty terms to the NMF objective function (Hoyer, 02’)

min
1
2
‖V −WH‖2

F +α‖W‖2
F +β‖H‖2

F ,

where α and β are positive parameters.
The alternating nonnegative least squares method can be applied similarly as follows.

6.7 Concluding Remarks 121

0 50 100
6

8

10

12

14
MU

0 50 100 150
0

20

40

60

80
PG

0 5 10 15 20
0

50

100
PGA

0 5 10 15 20
0

100

200

300
Mod

Figure 6.6: Condition numbers of W (red line) and H (black dot line) versus iterations.

min‖V −W kH‖2
F +β‖H‖2

F = min

∥∥∥∥∥
[

V

0

]
−

[
W k√

β I

]
H

∥∥∥∥∥
2

F

:= min‖V̄ −W̄ kH‖2
F

min‖V −WHk+1‖2
F +α‖W‖2

F = min
∥∥∥[V 0

]
−W

[
Hk+1 √αI

]∥∥∥2

F

:= min‖Ṽ −WH̃k+1‖2
F ,

where I is an identity matrix.

Another way is to introduce L1-norm based sparsity constraints

min‖V −WH‖2
F +α

m

∑
i=1
‖wi‖2

1 +β

n

∑
j=1
‖h j‖2

1,

122 Chapter 6. Nonnegative Matrix Factorization

where wT
i and h j are ith row vector of W and jth column vector of W , respectively.

Similarly, alternating nonnegative least squares method can be applied as follows.

min‖V −W kH‖2
F +β

n

∑
j=1
‖h j‖2

1 = min

∥∥∥∥∥
[

V

0

]
−

[
W k√
βeT

]
H

∥∥∥∥∥
2

F

:= min‖V̄ −W̄ kH‖2
F

min‖V −WHk+1‖2
F +α

m

∑
i=1
‖wi‖2

1 = min
∥∥∥[V 0

]
−W

[
Hk+1 √αe

]∥∥∥2

F

:= min‖Ṽ −WH̃k+1‖2
F ,

where e is a column vector with all components equal to one. We will apply the proposed
methods to solve the above sparse NMF problem, and show the numerical results.

6.7 Concluding Remarks 123

Figure 6.7: Images of the original facedata (first column), MU (second column), PG
(third column), PGA (fourth column) and Mod (fifth column).

125

CHAPTER 7

ANDERSON ACCELERATION

In this chapter, we attempt to accelerate the numerical methods that proposed in the
previous chapters, by employing Anderson acceleration [2]. The Anderson acceleration,
also known as Anderson mixing, which is designed for fixed-point problems. While
fixed-point iteration uses only the current iterate to define the next one, Anderson
acceleration uses the additional information from the mk previous iterations and computes
the new iterate as a specific linear combination of these mk +1 quantities. The selected
history length mk is usually small. A discussion that puts Anderson acceleration in
context with other acceleration methods can be found in [100].

The rest of the chapter is organized as follows. In Section 7.1, we briefly review
the Anderson acceleration scheme. In Sections 7.2 and 7.3, we apply the Anderson
acceleration to the stationary method for solving linear equations and the modulus-based
methods for solving linear complementarity problems, respectively. The solution of the
latter problem implies that the Anderson acceleration can also be applied for the solution
of NNLS and BLS problems. In Sections 7.4, the Anderson acceleration is used to
accelerate the alternating nonnegative least squares methods for NMF. Finally in Section
7.5, the concluding remarks are given.

126 Chapter 7. Anderson Acceleration

7.1 Introduction

The fixed-point equation x = g(x) is fixed-point iteration

xk+1 = g(xk), (7.1)

where g : Rn→ Rn and x0 is given. It also called as the Richardson iteration or Picard
iteration. In general the convergence is at a linear rate. A method to accelerate conver-
gence is Anderson acceleration, which redefines xk+1 to make use of the information
from the previous mk steps. We first briefly outline the original method derived by
Anderson [2].

Algorithm 7.1.1. Original Anderson acceleration
1. Given x0 and an integer m≥ 1.

2. Set x1 = g(x0)

3. For k = 1,2, . . . until convergence

4. mk = min(m,k).

5. Determine θ k = [θ k
1 , ...,θ

k
mk
]T that minimizes ‖uk− vk‖2

2, where

uk = xk +
mk

∑
j=1

θ j(xk− j− xk) and vk = g(xk)+
mk

∑
j=1

θ j(g(xk− j)−g(xk)).

6. Set xk+1 = uk +βk(vk−uk) using the parameters from θ k.

5. Endfor

Here, the usual choice in the literature is βk = 1.

Next, we introduce an equivalent form of the method that stores in two matrices the
differences of the successive iterates and their function values. These matrices are
related by simple update formulae that can be exploited for an efficient implementation.
This variant is given in [40, 100, 50]. Here, Anderson acceleration is applied to the
equivalent problem f (x) = 0, where f (x) = g(x)− x.

Algorithm 7.1.2. Anderson acceleration
1. Given x0 and an integer m≥ 1.

2. Set x1 = x0 + f (x0)

7.1 Introduction 127

3. For k = 1,2, . . . until convergence

4. mk = min(m,k).

5. Compute γk = [γk
k−mk

, ...,γk
k−1]

T that solves minγ∈Rmk ‖ fk−Fkγ‖.
6. Set x̄k = xk−∑

k−1
i=k−mk

γk
i ∆xi = xk−Xkγk.

7. Set f̄k = fk−∑
k−1
i=k−mk

γk
i ∆ fi = fk−Fkγk.

8. Set xk+1 = x̄k + f̄k.

9. Endfor

Here, the following notation is used

∆xi = xi+1− xi, Xk = [∆xk−mk , ...,∆xk−1]

fi = f (xi), ∆ fi = fi+1− fi, Fk = [∆ fk−mk , ...,∆ fk−1].

Also, the main computations is to solving an unconstrained least squares problem
in Line 5 of Algorithm 7.1.2. The usual way is to apply a QR factorization updating
method [100].

In quantum chemistry Anderson accelration is known as Pulay mixing or direct
inversion in the iterative subspace (DIIS) [86] and it has been widely used in electronic
structure computations; see [90] and the references therein. Anderson acceleration
is related to multisecant methods (extensions of quasi-Newton methods involving
multiple secant conditions). Eyert [37] proves that it is equivalent to the so-called
“bad" Broyden’s method [9], and a similar analysis is done by Fang and Saad [40]
and Rohwedder and Schneider [90]. For linear systems, if mk = k for each k then
Anderson acceleration is essentially equivalent to the generalized minimal residual
(GMRES) method [92], as shown by Rohwedder and Schneider [90], and Walker and Ni
[100]. For nonlinear problems, it is shown in [90] that Anderson acceleration is locally
linearly convergent under certain conditions. Adding to the above convergence analysis
is the recent work by Toth and Kelley [93] concerning Anderson acceleration with
mk = min(m,k), for a fixed m, applied to contractive mappings.

Even though there are no general guarantees of its convergence, Anderson accelera-
tion has a successful record of use in electronic structure computations. Furthermore, it
significantly improved the performance of several domain decomposition methods
presented in [100] and has proved to be very efficient on various examples in the

128 Chapter 7. Anderson Acceleration

above references. Hence Anderson acceleration has great potential for enhancing the
convergence of algorithms proposed in the previous chapters.

7.2 Linear Equations

In this section, we apply the Anderson acceleration to the stationary iterative methods
for linear equations. Specifically, we apply the Anderson acceleration to Jacobi iteration
and successive overrelaxation (SOR) iteration.

Recall that the stationary iteration methods for solving the systems of linear equations

Ax = b (7.2)

are based on the matrix splitting A = M−N, where A ∈ Rn×n and M ∈ Rn×n are
nonsingular. Hence, the fixed-point equation

Mx = Nx+b or x = M−1Nx+M−1b (7.3)

can be solved iteratively by setting

Mxk+1 = Nxk +b or xk+1 = M−1Nxk +M−1b.

Let A = D−L−U , where D, L and U are the diagonal, the strictly lower-triangular and
the strictly upper-triangular matrices of the matrix A. For the Jacobi and SOR iteration,
the matrix splitting are

M = D and N = L+U,

M =
1
ω
(D−ωL) and N =

1
ω
[(1−ω)D+ωU],

respectively. The relaxation parameter 0 < ω < 2 and when ω = 1 the SOR is reduced
to Gauss-Seidel iteration.

The Jacobi and SOR iteration methods are proposed as follows.

Algorithm 7.2.1. Jacobi Iteration Method
1. Choose the initial approximation x0.

7.2 Linear Equations 129

2. For k = 0,1,2, . . . until convergence

3. Set xk+1 = D−1(L+U)xk +D−1b

4. Set rk+1 = b−Axk+1

5. Endfor

Algorithm 7.2.2. SOR Iteration Method
1. Choose the initial approximation x0 and parameter ω .

2. For k = 0,1,2, . . . until convergence

3. Solve (D−ωL)xk+1 = [(1−ω)D+ωU]xk +ωb

4. Set rk+1 = b−Axk+1

5. Endfor

We can rewrite the Algorithms 7.2.1 and 7.2.2 as the fixed-point iteration schemes as
(7.1)

xk+1 = gjacobi(xk) and xk+1 = gsor(xk).

Then, combined with the Anderson acceleration Algorithm 7.1.2, we have the Jacobi
iteration with Anderson acceleration method and the SOR iteration with Anderson
acceleration method.

Algorithm 7.2.3. Jacobi Iteration with Anderson Acceleration Method
1. Choose the initial approximation x0.

2. For k = 0,1,2, . . . until convergence

3. Generate sequence through xk+1 = gjacobi(xk)

4. Apply Anderson acceleration Algorithm 7.1.2 for the sequence.

5. Endfor

Algorithm 7.2.4. SOR Iteration with Anderson Acceleration Method
1. Choose the initial approximation x0.

2. For k = 0,1,2, . . . until convergence

3. Generate sequence through xk+1 = gsor(xk)

4. Apply Anderson acceleration Algorithm 7.1.2 for the sequence.

5. Endfor

Next, we construct numerical experiments for the system of linear equations, to
test the performance of Algorithms 7.2.3 and 7.2.4. The linear systems Ax = b are

130 Chapter 7. Anderson Acceleration

constructed where

A = tridiag(−lI,S,−rI) =

S −rI 0 · · · 0 0
−lI S −rI · · · 0 0
0 −lI S · · · 0 0
...

...
...

...
0 0 0 · · · S −rI

0 0 0 · · · −lI S

∈ Rn×n

is a block-tridiagonal matrix,

S = tridiag(−l,4,−r) =

4 −r 0 · · · 0 0
−l 4 −r · · · 0 0
0 −l 4 · · · 0 0
...

...
...

...
0 0 0 · · · 4 −r

0 0 0 · · · −l 4

∈ Rm×m

is a tridiagonal matrix. Right hand side b is all one vector and the initial approximation
vector is zero vector for all the algorithms. When l = r = 1, the coefficient matrix A

is symmetric, which is the finite difference discretization matrix from the Poisson
equation. While when l 6= r, the coefficient matrix A is nonsymmetric, which is the finite
difference discretization matrix from the convection diffusion equation.

For the symmetric case, we compare the Jacobi, SOR, CG, Jacobi with Anderson
acceleration, and SOR with Anderson acceleration methods from the aspect of number of
iteration steps (denoted by ‘IT’) and elapsed CPU time in seconds (denoted by ‘CPU’).

For the nonsymmetric case, we compare the Jacobi, SOR, GMRES, Jacobi with
Anderson acceleration, and SOR with Anderson acceleration methods from the aspect of
number of iteration steps (denoted by ‘IT’) and elapsed CPU time in seconds (denoted
by ‘CPU’).

7.2 Linear Equations 131

n = 100 n = 400

n = 900 n = 1,600

n = 2,500 n = 3,600

Figure 7.1: Relative residual versus iterations for symmetric problem (Run Anderson
acceleration for every 3 steps).

132 Chapter 7. Anderson Acceleration

n = 100 n = 400

n = 900 n = 1,600

n = 2,500 n = 3,600

Figure 7.2: Relative residual versus iterations for nonsymmetric problem (Run Anderson
acceleration for every 3 steps).

7.2 Linear Equations 133

n = 100 n = 400

n = 900 n = 1,600

n = 2,500 n = 3,600

Figure 7.3: Relative residual versus iterations for symmetric problem (Run Anderson
acceleration for every steps).

134 Chapter 7. Anderson Acceleration

n = 100 n = 400

n = 900 n = 1,600

n = 2,500 n = 3,600

Figure 7.4: Relative residual versus iterations for nonsymmetric problem (Run Anderson
acceleration for every steps).

7.3 Nonnegative Constrained Least Squares Problem 135

7.3 Nonnegative Constrained Least Squares Problem

In this section, we apply the Anderson acceleration to the modulus-based matrix splitting
iteration methods for linear complementarity problem (2.9)

x≥ 0, λ = ATAx−ATb≥ 0, and xT
λ = 0,

which is equivalent to NNLS problem (1.1). Without loss of generality, we assume the
standard LCP as LCP(A,q)

w := Az+q≥ 0, z≥ 0 and zTw = 0. (7.4)

Bai [4] established the following implicit fixed-point equation

(MΓ+Ω1)x = (NΓ−Ω2)x+(Ω−AΓ)|x|−q (7.5)

to construct modulus-based matrix splitting iteration method for solving the LCP(A,q),
where A = M−N is a splitting of the matrix A ∈ Rn×n, Ω = Ω1 +Ω2 and Γ are n×n

positive diagonal matrices. By setting Ω1 = Ω, Ω2 = 0 and Γ = (1/γ)I, equation (7.5)
yields a series of modulus-based matrix splitting iteration methods. For instance, when
M = D and N = L+U , it gives the modulus-based Jacobi (MJ) iteration method

(D+Ω)x(k+1) = (L+U)x(k)+(Ω−A)|x(k)|− γq;

when M = (1/ω)D−L and N = (1/ω−1)D+U , it gives the modulus-based successive
overrelaxation (MSOR) iteration method

(D+ωΩ−ωL)x(k+1) = [(1−ω)D+ωU]x(k)+ω(Ω−A)|x(k)|−ωγq;

and when α = 1, it gives the modulus-based Gauss-Seidel (MGS) iteration method.
Therefore, the modulus-based Jacobi iteration with Anderson acceleration method and
the modulus-based successive overrelaxation (MSOR) with Anderson acceleration
method can be derived as follows.

Algorithm 7.3.1. Modulus-Based Jacobi Iteration with Anderson Acceleration
1. Choose the initial approximation z0.

136 Chapter 7. Anderson Acceleration

2. For k = 0,1,2, . . . until convergence

3. Generate sequence through zk+1 = gmj(zk)

4. Apply Anderson acceleration Algorithm 7.1.2 for the sequence.

5. Endfor

Algorithm 7.3.2. Modulus-Based SOR Iteration with Anderson Acceleration
1. Choose the initial approximation z0.

2. For k = 0,1,2, . . . until convergence

3. Generate sequence through zk+1 = gmsor(zk)

4. Apply Anderson acceleration Algorithm 7.1.2 for the sequence.

5. Endfor

Next, we construct numerical experiments for the system of linear equations, to
test the performance of Algorithms 7.3.1 and 7.3.2. The linear systems LCP(A,q) are
constructed similar to the Section 7.2.

7.4 Nonnegative Matrix Factorization

In this section, we apply the Anderson acceleration to the alternating least squares
methods for NMF.

First, we rewrite the multiplicative update Algorithm 6.2.2 as the fixed-point iteration
scheme.

Algorithm 7.4.1. Multiplicative Update Fixed-Point Iteration
1. Choose initial matrices H0 and W 0.

2. For k = 0,1,2, . . . until convergence

3. [Hk+1,W k+1] = gmu([Hk,W k])

4. Endfor

Note that the input and output of multiplicative update are matrices. In order to
utilize Anderson acceleration for the multiplicative update, we need to vectorize the
matrix by stacking the columns of a matrix one on top of the other. We denote by vec the
operation of vectorization and unvec the inverse operation to vec.

7.5 Concluding Remarks 137

Methods Iterations f (W,H) CPU
MU 88 50346.85 14.28

MU-AA 65 48576.58 14.03
PG 17 45372.30 92.58

Mod 19 45900.87 21.83

Algorithm 7.4.2. Multiplicative Update Fixed-Point Iteration
1. Choose initial matrices H0, W 0 and Z0 = [H0,W 0].

2. For k = 0,1,2, . . . until convergence

3. Set zk = vec(Zk)

4. zk+1 = gmu(zk)

5. [Hk+1,W k+1] = Zk+1 = unvec(zk+1)

6. Endfor

Then, the Anderson acceleration can be applied for Algorithm 7.4.3.

Algorithm 7.4.3. Multiplicative Update Fixed-Point Iteration
1. Choose initial matrices H0, W 0 and Z0 = [H0,W 0].

2. For k = 0,1,2, . . . until convergence

3. Set zk = vec(Zk)

4. zk+1 = gmu(zk)

5. Apply Anderson acceleration Algorithm 7.1.2 for the sequence.

6. [Hk+1,W k+1] = Zk+1 = unvec(zk+1)

7. Endfor

7.5 Concluding Remarks

We can reach the conclusion that the Anderson extrapolation not only can accelerate
the linear fixed-point iteration, but also accelerate the modulus-type and matrix-based
nonlinear fixed-point iteration. How to further exploit the optimal acceleration technique
by controlling the times and the number of interval vectors will be the ongoing research
work.

138 Chapter 7. Anderson Acceleration

0 10 20 30 40 50 60 70 80 90
Iterations

4

5

6

7

8

9

10

11

12

13

14

||V
-W

H
||

F2

×104

MU
MU-AA
PG
Mod

10-1 100 101 102

CPU

4

5

6

7

8

9

10

11
×104

||V
-W

H
||

F2

MU
MU-AA
PG
Mod

Figure 7.5: Objective function value versus iterations (left) and CPU time in seconds
(right), respectively, for random problem.

139

CHAPTER 8

CONCLUDING REMARKS

We give the concluding remarks for the overall thesis as follows.

1. A new class of inner outer iterative methods for nonnegative constrained least
squares (NNLS) problem (1.1) was proposed based on the modulus transformation
for the nonnegative variables. Thus, the solution of the NNLS problem (1.1) can
be transformed into the solution of a sequence of unconstrained least squares
problems. Theoretical convergence analysis was presented when the inner system
is solved either exactly or iteratively, and the choice of the parameter matrix was
discussed for the proposed methods. Moreover, we proposed a two-stage hybrid
modulus algorithm by incorporating the active set strategy, which contains two
stages where the first stage consists of modulus iterations to identify the active set,
while the second stage solves the reduced unconstrained least squares problems
only on the inactive variables, and projects the solution into the nonnegative region.
Numerical experiments show the efficiency of the proposed modulus methods
compared to projection gradient-type methods with less iteration steps and CPU
time for full column rank and rank deficient overdetermined NNLS problems. The
modulus method is not only more efficient for identifying a suitable active set, but
also outperforms projection gradient-type methods with less iteration steps and
CPU time when the coefficient matrix has ill-determined rank with large condition
number and the singular values cluster near zero. We also applied our modulus

140 Chapter 8. Concluding Remarks

methods to nonnegative constrained ill-posed image restoration problems, and the
numerical results showed that the proposed method gives more accurate results
compared to the projected gradient type methods.

2. We consider the solution of large sparse BLS problems using a new class of
iterative methods based on modulus transformation, which converts the solution
of the BLS into a sequence of the unconstrained least squares problems. The
efficient Krylov subspace methods with suitable preconditioners are applied to
solve the inner unconstrained least squares problems for each outer iteration. We
also discuss the solution of saddle point inner systems, and the choice of the
parameter matrix. Numerical experiments show the efficiency of the proposed
methods in comparison of the gradient projection methods.

3. We applies modulus-based iterative methods to nonnegative Tikhonov regulariza-
tion. The discrepancy principle is used to determine the regularization parameter.
Efficient solution methods are described. The given linear discrete ill-posed
problem is reduced to a small problem by a Krylov subspace method, and then
the reduced Tikhonov regularization problems so obtained is solved. Several
numerical examples in one and two space-dimensions illustrate the efficacy of the
proposed methods.

4. We consider a new alternating nonnegative least squares method using modulus-
type inner outer iteration method for the nonnegative constrained least squares
subproblem. Numerical experiments on the synthetic data and ORL face image
data show that the proposed methods converges faster than the gradient descent
methods.

5. Finally we attempt to accelerate the numerical methods that proposed in the
previous chapters using Anderson acceleration. The accelerated version of the
previous algorithms are proposed and analyzed. Numerical experiments show the
efficiency of the Anderson acceleration for linear equations, nonlinear NNLS and
NMF problems.

141

BIBLIOGRAPHY

[1] B. H. AHN, Solutions of nonsymmetric linear complementarity problems by

iterative methods, Journal of Optimization Theory and Applications, 33 (1981),
pp. 175–185.

[2] D. G. ANDERSON, Iterative procedures for nonlinear integral equations, J.
Assoc. Comput. Mach., 12 (1965), pp. 547–560.

[3] AT&T Laboratories Cambridge ORL Database of Faces, Available at
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

[4] Z.-Z. BAI, Modulus-based matrix splitting iteration methods for linear comple-

mentarity problems, Numer. Linear Algebra Appl., 6 (2010), pp. 917–933.

[5] D. P. BERTSEKAS, On the Goldstein-Levitin-Polyak gradient projection method,
IEEE Trans. Automat. Control, 21 (1976), pp. 174–184.

[6] D. P. BERTSEKAS, Projected Newton methods for optimization problems with

simple constraints, SIAM Journal on Control and Optimization, 20 (1982), pp.
221–246.

[7] D. P. BERTSEKAS, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont,
MA, 1999.

142 Bibliography

[8] Å. BJÖRCK, Numerical Methods for Least Squares Problems, SIAM, Philadel-
phia, 1996.

[9] C. G. BROYDEN, A class of methods for solving nonlinear simultaneous equations,
Math. Comp., 19 (1965), pp. 577–593.

[10] M. W. BERRY, M. BROWNE, A. N. LANGVILLE, V. P. PAUCA, AND R. J.
PLEMMONS, Algorithms and applications for approximate nonnegative matrix

factorization, Computational statistics & data analysis, 52 (2007), pp. 155–173.

[11] R. BRO AND S. DE JONG, A fast non-negativity-constrained least squares

algorithm, J. Chemometrics, 11 (1997), pp. 393–401.

[12] Z.-Z. BAI, G. H. GOLUB, AND M. K. NG, Hermitian and skew-Hermitian

splitting methods for non-Hermitian positive definite linear systems, SIAM J.
Matrix Anal. Appl., 24 (2003), pp. 603–626.

[13] C. BOUTSIDIS AND E. GALLOPOULOS, SVD based initialization: A head

start for nonnegative matrix factorization, Pattern Recognition, 41 (2008), pp.
1350-ĺC1362.

[14] R. BRO AND S. D. JONG, A fast non-negativity-constrained least squares

algorithm, Journal of Chemometrics, 11 (1997), pp. 393–401.

[15] M. H. VAN BENTHEM AND M. R. KEENAN, Fast algorithm for the solution

of large-scale non-negativity-constrained least squares problems, Journal of
Chemometrics, 18 (2004), pp. 441–450.

[16] ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS, SIAM J. Numer. Anal., 25
(1988), pp. 1197–1211.

[17] S. BERISHA AND J. G. NAGY, Iterative Methods for Image Restoration, (2012),
http://www.mathcs.emory.edu/~nagy/RestoreTools.

[18] J. BAGLAMA AND L. REICHEL, Augmented implicitly restarted Lanczos bidiago-

nalization methods, SIAM J. Sci. Comput., 27 (2005), pp. 19–42.

http://www.mathcs.emory.edu/~nagy/RestoreTools

Bibliography 143

[19] M. BIERLAIRE, PH. L. TOINT, AND D. TUYTTENS, On iterative algorithms for

linear least squares problems with bound constraints, Linear Algebra Appl. 143
(1991), pp. 111–143.

[20] J. M. BARDSLEY AND C. R. VOGEL, A nonnegative constrained convex

programming method for image reconstruction, SIAM J Sci. Comput., 25 (2004),
pp. 1326–1343.

[21] R. COCKETT, The block conjugate gradient for multiple right hand sides in a

direct current resistivity inversion. Available online at http://www.row1.ca/s/pdfs/
courses/BlockCG.pdf.

[22] C. W. CRYER, The solution of a quadratic programming using systematic

overrelaxation, SIAM J. Control 9 (1971), pp. 385–392 .

[23] M. T. CHU, F. DIELE, R. J. PLEMMONS, AND S. RAGNI, Optimality, computa-

tion and interpretation of nonnegative matrix factorizations, (2005). Available
online at http://www4.ncsu.edu/~mtchu/Research/Papers/nnmf.pdf.

[24] T. F. COLEMAN AND Y. LI, On the convergence of interior-reflective Newton

methods for nonlinear minimization subject to bounds, Mathematical program-
ming, 67 (1994), pp. 189–224.

[25] T. F. COLEMAN AND Y. LI, A reflective Newton method for minimizing a

quadratic function subject to bounds on some of the variables, SIAM Journal on
Optimization, 6 (1996), pp. 1040–1058.

[26] D. CALVETTI, G. LANDI, L. REICHEL, AND F. SGALLARI, Nonnegativity

and iterative methods for ill-posed problems, Inverse Problems, 20 (2004), pp.
1747–1758.

[27] P. H. CALAMAI AND J. J. MOREÉ, Projected gradient methods for linearly

constrained problems, Math. Programming, 39 (1987), pp. 93–116.

[28] R. W. COTTLE, J.-S. PANG AND R. E. STONE, The linear complementarity

problem, Academic, SanDiego, 1992.

http://www.row1.ca/s/pdfs/courses/BlockCG.pdf
http://www.row1.ca/s/pdfs/courses/BlockCG.pdf
http://www4.ncsu.edu/~mtchu/Research/Papers/nnmf.pdf

144 Bibliography

[29] A. CICHOCKI, R. ZDUNEK, A. H. PHAN, AND S. I. AMARI, Nonnegative

matrix and tensor factorizations: applications to exploratory multi-way data

analysis and blind source separation, John Wiley & Sons, 2009.

[30] T. DAVIS, The University of Florida Sparse Matrix Collection, available online at
http://www.cise.ufl.edu/research/sparse/matrices.

[31] Z. DOSTÁL, Box constrained quadratic programming with proportioning and

projections, SIAM J. Optim., 7 (1997), pp. 871–887.

[32] J. C. DUNN, Global and asymptotic convergence rate estimates for a class of

projected gradient processes, SIAM J. Control Optim., 19 (1981), pp. 368–400.

[33] J.-L. DONG AND M.-Q. JIANG, A modified modulus method for symmetric

positive-definite linear complementarity problems, Numer. Linear Algebra Appl.,
16 (2009), pp. 129–143.

[34] M. Donatelli, C. Estatico, A. Martinelli, and S. Serra–Capizzano, Improved
image deblurring with anti-reflective boundary conditions and re-blurring. Inverse
Problems, 22 (2006), pp. 2035–2053.

[35] Z. DOSTÁL AND J. SCHÖBERL, Minimizing quadratic functions subject to bound

constraints with the rate of convergence and finite termination, Computational
Optimization and Applications, 30 (2005), pp. 23–43.

[36] R. S. DEMBO AND U. TULOWITZKI, On the minimization of quadratic functions

subject to box constraints, Working paper 71, School of Organization and
Management, Yale University, New Haven, CT, 1983.

[37] V. EYERT, A comparative study on methods for convergence acceleration of

iterative vector sequences, J. Comput. Phys., 124 (1996), pp. 271–285.

[38] H. W. ENGL, M. HANKE AND A. NEUBAUER, Regularization of Inverse

Problems, Kluwer, Dordrecht, 1996.

[39] C. Fenu, L. Reichel, and G. Rodriguez, GCV for Tikhonov regularization via
global Golub–Kahan decomposition, Numer. Linear Algebra Appl., 23 (2016), pp.
467–484.

http://www.cise.ufl.edu/research/sparse/matrices

Bibliography 145

[40] H. R. FANG AND Y. SAAD, Two classes of multisecant methods for nonlinear

acceleration, Numer. Linear Algebra Appl., 16 (2009), pp. 197–221.

[41] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins
University Press, Baltimore, 2013.

[42] L. GRIPPO AND M. SCIANDRONE, On the convergence of the block nonlinear

Gauss-Seidel method under convex constraints, Oper. Res. Lett., 26 (2000), pp.
127–136.

[43] S. GAZZOLA AND Y. WIAUX, Fast nonnegative least squares through flexible

Krylov subspaces, arXiv preprint arXiv:1511.06269, (2015).

[44] G. H. GOLUB, X. WU AND J.-Y. YUAN, SOR-like Methods for Augmented

Systems, BIT Numerical Mathematics, 41 (2001), pp. 71–85.

[45] C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations
of the First Kind, Pitman, Boston, 1984.

[46] A. GREENBAUM, Iterative Methods for Solving Linear Systems, Frontiers Appl.
Math. 17, SIAM, Philadelphia, 1997.

[47] E. F. GONZALEZ AND Y. ZHANG, Accelerating the Lee-Seung algorithm for

non-negative matrix factorization, Dept. Comput. Appl. Math., Rice Univ.,
Houston, TX, Tech. Rep. TR-05-02, 2005.

[48] P. C. HANSEN, Regularization tools: A Matlab package for analysis and solution

of discrete ill-posed problems, Numer. Algorithms 6 (1994), pp. 1–35.

[49] P. C. HANSEN, J. G. NAGY AND D. P. O’LEARY, Deblurring Images: Matrices,

Spectra, and Filtering, SIAM, Philadelphia, 2006.

[50] N. J. HIGHAM AND N. STRABIĆ, Anderson acceleration of the alternating

projections method for computing the nearest correlation matrix, Numerical
Algorithms, 72 (2016), pp. 1021–1042.

[51] M. HANKE, J. G. NAGY AND C. VOGEL, Quasi-Newton approach to nonnegative

image restorations, Linear Algebra Appl., 316 (2000), pp. 223–236.

146 Bibliography

[52] A. HADJIDIMOS AND M. TZOUMAS, Nonstationary extrapolated modulus

algorithms for the solution of the linear complementarity problem, Linear Algebra
Appl., 431 (2009), pp. 197–210.

[53] K. HAYAMI, J.-F. YIN, AND T. ITO, GMRES methods for least squares problems,
SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2400–2430.

[54] W. W. HAGER AND H. ZHANG, A new active set algorithm for box constrained

optimization, SIAM J. Optim., 17 (2006), pp. 526–557.

[55] J. J. JÚDICE AND F. M. PIRES, A block principal pivoting algorithm for large-

scale strictly monotone linear complementarity problems, Comput. Oper. Res., 21
(1994), pp. 587–596.

[56] L. KAUFMAN, Maximum likelihood, least squares, and penalized least squares

for PET, IEEE Transactions on Medical Imaging, 12 (1993), pp. 200–214.

[57] A. KLARBRING, Quadratic programs in frictionless contact problems, Internat. J.
Engrg. Sci., 24 (1986), pp. 1207–1217.

[58] H. KIM AND H. PARK, Nonnegative matrix factorization based on alternating

nonnegativity constrained least squares and active set method, SIAM J. Matrix
Anal. Appl., 30 (2008), pp. 713–730.

[59] J. KIM AND H. PARK, Fast nonnegative matrix factorization: an active-set-like

method and comparisons, SIAM J. Sci. Comput., 33 (2011), pp. 3261–3281.

[60] N. W. KAPPEL AND L. T. WATSON, Iterative algorithms for the linear comple-

mentarity problems, Int. J. Comput. Math., 19 (1986), pp. 273–297.

[61] D. KIM, S. SRA AND I. S. DHILLON, A new projected quasi-newton approach

for solving nonnegative least squares problem, Technical Report CS-TR-06-54,
The University of Texas at Austin, 2007.

[62] M. KOČVARA AND J. ZOWE, An iterative two-step algorithm for linear comple-

mentarity problems, Numer. Math., 68 (1994), pp. 95–106.

Bibliography 147

[63] C.-J. LIN, Projected gradient methods for non-negative matrix factorization,
Neural Computation, 19 (2007), pp. 2756–2779.

[64] C.-J. LIN, On the convergence of multiplicative update algorithms for nonnegative

matrix factorization, IEEE Transactions on Neural Networks, 18 (2007), pp.
1589–1596.

[65] L. LIN, Alternative gradient algorithms with applications to nonnegative matrix

factorizations, Applied Mathematics and Computation, 216 (2010), pp. 1763–
1770.

[66] P. LÖTSTEDT, Soving the minimal least squares problem subject to bounds on the

variables, BIT Numerical Mathematics, 24 (1984), pp. 206–224.

[67] C. L. LAWSON AND R. J. HANSON, Solving Least Squares Problems, Prentice-
Hall, 1974.

[68] D. D. LEE AND H. S. SEUNG, Learning the parts of objects by non-negative

matrix factorization, Nature, 401 (1999), pp. 788–791.

[69] D. D. LEE AND H. S. SEUNG, Algorithms for non-negative matrix factorization,
Advances in Neural Information Processing Systems, 13 (2001), pp. 556–562.

[70] O. MANGASARIAN, Solutions of symmetric linear complementarity problems by

iterative methods, Journal of Optimization Theory and Applications, 22 (1977),
pp. 465–485.

[71] K. MURTY, Linear Complementarity, Linear and Nonlinear Programming,
Heldermann, Berlin, 1988.

[72] K. MORIKUNI AND K. HAYAMI, Inner-iteration Krylov subspace methods for

least squares problems, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1–22.

[73] S. MORIGI, R. PLEMMONS, L. REICHEL, AND F. SGALLARI, A hybrid

multilevel-active set method for large box-constrained linear discrete ill-posed

problems, Calcolo, 48 (2011), pp. 89–105.

148 Bibliography

[74] S. MORIGI, L. REICHEL, F. SGALLARI, AND F. ZAMA, An iterative method for

linear discrete ill-posed problems with box constraints, J. Comput. Appl. Math.,
198 (2007), pp. 505–520.

[75] S. MORIGI, L. REICHEL AND F. SGALLARI, An interior-point method for large

constrained discrete ill-posed problems, J. Comput. Appl. Math., 233 (2010), pp.
1288–1297.

[76] J. J. MORÉ AND G. TORALDO, Algorithms for bound constrained quadratic

programming problems, Numer. Math., 55 (1989), pp. 377–400.

[77] J. J. MORÉ AND G. TORALDO, On the solution of large quadratic programming

problems with bound constraints, SIAM J. Optimization, 1 (1991), pp. 93–113.

[78] J. NAGY AND Z. STRAKOŠ, Enforcing nonnegativity in image reconstruction

algorithms, in Mathematical Modeling, Estimation and Imaging, ed. D. C. Wilson
et al., of the Society of Photo-Optical Instrumentation Engineers (SPIE), Vol.
4121, The International Society for Optical Engineering, Bellingham, WA, 2000,
pp. 182–190.

[79] J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, 2nd ed., Springer,
New York, 2006.

[80] M. K. Ng, R. H. Chan, W. C. Tang, A fast algorithm for deblurring models with
Neumann boundary conditions, SIAM J. Sci. Comp., 21 (1999), pp. 851–866.

[81] D. P. O’LEARY, A generalized conjugate gradient algorithm for solving a class

of quadratic programming problems, Linear Algebra and its Applications, 34
(1980), pp. 371–399.

[82] J. ORTEGA AND W. RHEINBOLDT, Iterative Solution of Nonlinear Equations in

Several Variables, Academic Press: New York, 1970.

[83] E. ONUNWOR AND L. REICHEL, On the computation of a truncated SVD of a

large linear discrete ill-posed problem, submitted for publication.

Bibliography 149

[84] J.-S. PANG, Necessary and sufficient conditions for the convergence of iterative

methods for the linear complementarity problem, Journal of Optimization Theory
and Applications, 42 (1984), pp. 1–17

[85] B. T. POLYAK, The conjugate gradient method in extremal problems, U.S.S.R.
Computational Mathematics and Mathematical Physics, 9 (1969), pp. 94–112.

[86] P. PULAY, Convergence acceleration of iterative sequences. The case of SCF

iteration, Chem. Phys. Lett., 73 (1980), pp. 393–398.

[87] P. P. PRATAPA, P. SURYANARAYANA AND J. E. PASK, Anderson accelration of

the Jacobi iterative method: an efficient alternative to Krylov methods for large,

sparse linear systems, J. Comput. Phys., 306 (2016), pp. 43–54.

[88] P. PAATERO AND U. TAPPER, Positive matrix factorization: A non-negative factor

model with optimal utilization of error estimates of data values, Environmetrics, 5
(1994), pp. 111–126

[89] M. ROJAS AND T. STEIHAUG, An interior-point trust-region-based method

for large-scale non-negative regularization, Inverse Problems, 18 (2002), pp.
1291–1307.

[90] T. ROHWEDDER AND R. SCHNEIDER, An analysis for the DIIS acceleration

method used in quantum chemistry calculations, J. Math. Chem., 49 (2011), pp.
1889–1914.

[91] Y. SAAD, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadel-
phia, 2003.

[92] Y. SAAD AND M. H. SCHULTZ, GMRES: a generalized minimal residual

algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput.,
7 (1986), pp. 856–869.

[93] A. TOTH AND C. T. KELLEY, Convergence analysis for Anderson acceleration,
SIAM J. Numer. Anal., 53 (2015), pp. 805–819.

150 Bibliography

[94] R. A. TAPIA, Y. ZHANG, M. J. SALTZMAN AND A. WEISER, The Mehrotra

predictor-corrector interior-point method as a perturbed composite Newton

method, SIAM Journal on Optimization, 6 (1996), pp. 47–56.

[95] W. M. G. VAN BOKHOVEN, A Class of Linear Complementarity Problems is

Solvable in Polynomial Time, unpublished paper, Dept. of Electrical Engineering,
University of Technology, The Netherlands (1980).

[96] W. M. G. VAN BOKHOVEN, Piecewise-linear modelling and analysis, Proeschrift,
Eindhoven (1981).

[97] M. H. VAN BENTHEM AND M. R. KEENAN, Fast algorithm for the solution of

large-scale non-negativity-constrained least squares problems, J. Chemometrics,
18 (2004), pp. 441–450.

[98] S. J. WRIGHT, Implementing proximal point methods for linear programming,
Report MCS-P45-0189, Algonne National Laboratory, Algonne, IL, 1989.

[99] S. WILD, J. CURRY, AND A. DOUGHERTY, Improving non-negative matrix

factorizations through structured intitialization, Pattern Recognition, 37 (2004),
pp. 2217–2232.

[100] H. F. WALKER AND P. NI, Anderson acceleration for fixed-point iterations,
SIAM J. Numer. Anal., 49 (2011), pp. 1715–1735.

[101] E. K. YANG AND J. W. TOLLE, A class of methods for solving large convex

quadratic programs subject to box constraints, preprint, Department of Operations
Research, University of North Carolina, Chapel Hill, NC, 1988.

[102] C. ZHANG, L. JING AND N. XIU, A new active set method for nonnegative

matrix factorization, SIAM J. Sci. Comput., 36 (2014), pp. A2633–A2653.

[103] N. ZHENG, K. HAYAMI AND J.-F. YIN, Modulus-type inner outer iteration

methods for nonnegative constrained least squares problems, SIAM J. Matrix
Anal. Appl., 37 (2016), pp. 1250–1278.

Bibliography 151

[104] N. ZHENG AND J.-F. YIN, Accelerated modulus-based matrix splitting iteration

methods for linear complementarity problems, Numer. Algorithms 64 (2013), pp.
245–262.

[105] N. ZHENG AND J.-F. YIN, Convergence of accelerated modulus-based matrix

splitting iteration methods for linear complementarity problem with an H+-matrix,
J. Comput. Appl. Math. 260 (2014), pp. 281–293.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Backgrounds
	1.2 Motivations
	1.3 Contributions
	1.4 Outline

	2 Previous Work
	2.1 Equivalent Conditions
	2.2 Projection Gradient Method
	2.3 Active Set Methods
	2.3.1 Lawson and Hanson's Method
	2.3.2 Polyak and O'Leary's Method
	2.3.3 Projected Quasi-Newton Method
	2.3.4 Gradient Projection Conjugate Gradient Method

	2.4 Interior Point Method
	2.4.1 Primal Dual Predictor Corrector Interior Point Method
	2.4.2 Penalty-Type Interior Point Method

	2.5 Other Iterative Methods
	2.5.1 Reflective Newton Method
	2.5.2 Flexible Krylov Subspaces Method

	2.6 Concluding Remarks

	3 Nonnegative Constrained Least Squares Problem
	3.1 Modulus Iterative Methods
	3.2 Review of Modulus Methods
	3.3 Convergence Analysis
	3.3.1 Scalar matrix case
	3.3.2 General positive diagonal matrix case
	3.3.3 Convergence of inexact inner iteration

	3.4 Two-Stage Hybrid Iterative Methods with Active Set Strategy
	3.5 Numerical Experiments
	3.5.1 Dense full rank case
	3.5.2 Sparse full rank case
	3.5.3 Sparse rank deficient case

	3.6 Concluding Remarks

	4 Box Constrained Least Squares Problem
	4.1 Modulus Methods
	4.2 Convergence Analysis
	4.3 Inner Iterations for Saddle Point Problems
	4.3.1 MINRES
	4.3.2 Preconditioned CG
	4.3.3 Stationary Iteration
	4.3.4 Matrix Splitting of A

	4.4 Numerical Experiments
	4.4.1 Dense full rank case
	4.4.2 Box constrained ill-posed problem
	4.4.3 Sparse full column rank

	4.5 Concluding Remarks

	5 Nonnegative Constrained Ill-Posed Problem
	5.1 Introduction
	5.2 Modulus Inner Outer Iteration Method with Active Set Strategy
	5.3 Numerical Experiments: Discrepancy Principle
	5.4 Numerical Experiments: Tikhonov Regularization
	5.5 Concluding Remarks

	6 Nonnegative Matrix Factorization
	6.1 Introduction
	6.2 Existing Methods
	6.3 Modulus-Type Inner Outer Iteration Method
	6.4 Active Set Method for NNLS with Multiple Right Hand Sides
	6.5 Sparse and Regularized NMF
	6.6 Numerical Experiments
	6.7 Concluding Remarks

	7 Anderson Acceleration
	7.1 Introduction
	7.2 Linear Equations
	7.3 Nonnegative Constrained Least Squares Problem
	7.4 Nonnegative Matrix Factorization
	7.5 Concluding Remarks

	8 Concluding Remarks
	Bibliography

