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1. Summary 

Practice improves the performance of skilled movements, both in speed and 

accuracy. Emphasis on speed improves performance by defining an optimal learning 

target, but learning can occur even without speed incentives. Little is known how these 

characteristics of the practice, the speed or accuracy, are integrated to form the neural 

substrates of the sequence learning, that is, engram.  

 An engram has four characteristics: persistence, ecphory, content, and 

dormancy. An engram is a persistent change in the brain by a specific experience or 

encoding. An engram is activated through interaction with retrieval cues, which 

activation is termed ecphory. The content of an engram reflects what transpired at 

encoding thus predicts what can be recovered during subsequent retrieval. An engram 

exists in a dormant state between the two active processes of encoding and retrieval. 

During dormant state, the strength of the synaptic connection is stabilized. At retrieval, 

the connections are destabilized so that the synaptic connections are modified. Thus, the 

series of the active states of encoding and retrieval intervened by dormant state 

comprises the learning process, resulting in the serial change in the spatiotemporal 
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pattern of the neural ensemble. The neural substrate of motor engrams in the human 

brain is hard to identify because their dormant state is hard to discriminate. The 

previous neuroimaging approaches to find out the motor engram have mainly focused 

on the ecphory.  

 Here I utilized eigenvector centrality (EC) as the measure of the information 

transfer at the network level accumulation, expecting that the trace of brain changes 

brought about by motor training--the motor engram--may be determined using 

functional MRI. EC is a class of graph theory-based measures assessing the centrality or 

importance. While the eigenvector centrality favors nodes that have high correlations 

with many other nodes, it specifically favors nodes that are connected to nodes that are 

themselves central within the network. Thus, the EC takes into account the entire 

pattern of the network, allowing us to estimate the importance of each voxel within the 

whole brain network with seed- and task-free fashion.  

 To discriminate the engrams formed by an emphasis on speed or accuracy 

targets, I conducted functional MRI with 58 normal volunteers, who performed a 

sequential finger tapping task with the non-dominant left hand inside the scanner. 
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Participants practiced a tapping sequence alternately as quickly as possible (maximum 

mode) or at a constant speed of 2 Hz, paced by a visual cue which specified the 

sequence (constant mode). My hypothesis was that different learning modes enhance 

distinct engrams. To quantify brain changes at the network level that characterize the 

engram, even when dormant, I applied the EC to the residual time-series after modeling 

out the task-related activity, because the residual BOLD (Blood-Oxygen-Level-

Dependent) signals were thought to include task-non-specific neural fluctuations, 

corresponding to spontaneous brain activity. 

 The performance was transferred from the constant mode to maximum mode, 

but not vice versa. During the maximum mode, areas of greatest network centrality 

indicating the engram location were found in in the left anterior intraparietal sulcus 

(aIPS), connecting with the ventral inferior parietal lobule (IPL). During the constant 

mode, a distinct engram was found in bilateral dorsal premotor cortex and right primary 

motor cortex (M1). A learning-related increment in task-related activity in the right M1 

was observed in both modes.  
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Learning-related enhancement of EC in the left aIPS during rest condition of 

the maximum mode probably represented the accumulation of information provided by 

the comparison between the action plan of the rapid transition of the one finger to the 

next in the sequence and the actual feedback. Thus, the left aIPS-IPL represented the 

sensorimotor integration of precisely tuned rapid finger movements the one finger to the 

next in the sequence. The PMd is a probable substrate for the coordinate transformation 

from the visually presented spatial goals to joint movements in the response domain 

through associative learning, coding the accuracy with the M1. Therefore, within an 

M1-centered parietal-premotor network motor engram, the left aIPS-IPL appears to 

represent the sensorimotor integration of precisely timed rapid finger movements, and 

the PMd and M1 the accuracy of their assignment. Present findings constitute the first 

demonstration of motor engrams formed by only 30 min of training. 
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2. INTRODUCTION 

 Practice is responsible for obtaining a motor skill which is characterized by 

speed and accuracy (Shmuelof et al. 2012). The practice effect may differ depending on 

whether stressing on the speed or accuracy. Speed pressure is known to enhance the 

learning process. Motor learning is to establish an internal model which represents the 

exact matching between perceived sensory and motor information (Wolpert et al., 

1995). Information is transmitted during learning by comparing the expected sensation 

by the internal model with the actual feedback sensation arising from the movement 

(Guadagnoli and Lee, 2004). So as to generate the information for the learning to occur, 

task difficulty should be kept challenging. Speed can adjust a specific difficulty level of 

the sequential finger tapping task (Walker et al., 2002, 2003; Fischer et al., 2002, 2005; 

Debas et al., 2010). They usually requested the participants to practice the given 

sequence "as fast and as accurately as possible." However, even without speed pressure, 

sequence learning occurs by serial reaction time tasks (Doyon et al. 1996; Grafton et al. 

1994; Hazeltine et al. 1997; Krebs et al. 1998; Rauch et al. 1997; Honda et al. 1998) 

which stress on accuracy. Little is known how these characteristics of the practice, the 
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speed and accuracy, are integrated to form the neural substrates of the sequence 

learning, that is, engram.  

An engram has four characteristics: persistence, ecphory, content, and dormancy 

(Josselyn et al. 2015). An engram is a persistent change in the brain by a specific 

experience or encoding. An engram is activated through interaction with retrieval cues, 

which activation is termed ecphory. The content of an engram reflects what transpired 

at encoding thus predicts what can be recovered during subsequent retrieval. An engram 

exists in a dormant state between the two active processes of encoding and retrieval. 

During dormant state, the strength of the synaptic connection is stabilized. At retrieval, 

the connections are destabilized so that the synaptic connections are modified. Thus the 

series of the active states of encoding and retrieval intervened by dormant state 

comprises the learning process, resulting in the serial change in the spatiotemporal 

pattern of the neural ensemble (Josselyn et al. 2015). 

Previous neuroimaging approaches to find out the motor engram have mainly 

focused on the ecphory because they utilized task-related activation to evaluate the 

effect of learning (Doyon et al. 2003; Penhune and Doyon, 2002; Lehéricy et al. 2005). 
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Regarding the dormant engram, recent resting-state fMRI studies before and after the 

visuomotor learning task (Albert et al. 2009) have found learning-related change in 

frontoparietal and cerebellar networks. However, it is unknown how these two states of 

engram are dynamically represented in the neural network level. 

To address this issue, I conducted functional MRI with sequential finger tapping 

execution epoch alternated with rest epoch. I hypothesized that the two learning modes, 

stressing on speed or accuracy, generate distinct engrams which in turn are integrated at 

the execution. I focused on the early phase of training of 30 min.  Participants 

exercised a sequence as fast and as accurate as possible (maximum mode) or with 

constant speed by visual cues explicitly indicating the sequence (2 Hz, constant mode). 

Participants alternated constant mode with the maximum mode. I applied eigenvector 

centrality mapping (ECM; Lohmann et al., 2010) to the innovation. Eigenvector 

Centrality (EC) is a class of graph theory-based measures assessing the centrality or 

importance (Zuo et al. 2012). Innovation is the residual time-courses of the neural 

activities obtained by modeling out the task-related effects and other confounding 

effects. The innovation of BOLD signals is thought to include task-non-specific neural 



11 

 

fluctuations, corresponding to spontaneous brain activity (Fox et al. 2007; Riera et al. 

2004; Fair et al. 2007). Regarding the innovation, I made a distinction between the task 

epoch in which encoding/retrieval occurred and the rest epoch which was in a dormant 

state. I expected that the M1 centered cortical network would represent the motor 

engram. 
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3. Materials and methods 

3.1 Participants 

A total of 60 healthy right-handed normal adult volunteers participated in the 

study. Handedness was assessed by the Edinburgh Handedness Inventory (Oldfield, 

1971). None of the participants had a history of neurological or psychiatric diseases. All 

participants gave written informed consent for participating the experiment, and the 

study was conducted according to the Declaration of Helsinki and approved by the 

Ethical Committee of the National Institute for Physiological Sciences, Japan. Data 

obtained from two volunteers were of insufficient quality (button pressing in wrong 

timing for 1 participant, and the measurement failure in another). Therefore, data from 

58 individuals (34 males and 24 females; mean age = 21.69 ± 3.88 years) were 

analyzed. 

 

3.2 Task 

 The subjects performed sequential finger tapping task (Walker et al., 2002, 

2003) inside the scanner with two modes: a visually-cued (2Hz) constant mode and 
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maximum mode. Presentation 12.2 software (Neurobehavioral Systems, Albany, USA) 

was implemented on a personal computer (dc7900; Hewlett-Packard, Ltd., Palo Alto, 

USA) for the stimulus presentation and response time measurements. A liquid-crystal 

display (LCD) projector (CP-SX12000J, Hitachi Ltd., Tokyo, Japan), located outside 

and behind the scanner, projected stimuli through another waveguide to a translucent 

screen that the participants viewed via a mirror attached to the head coil of the MRI 

scanner. The distance between the screen and each participant's eyes was approximately 

175 cm, and the visual angle was 13.8° (horizontal) × 10.4° (vertical). 

There were three fMRI runs. First run (Run 1) consisted of a block of 

constant-speed mode (C block) followed by a block of maximum mode (M block). C 

block (Figure 1), 2.5 min in duration, started with Rest epoch of 15 sec duration 

followed by Constant mode epoch of 15 sec, alternatively repeated five times. Rest 

epoch started with the instruction of “Rest” on the screen for 500 ms, followed by 500 

ms presentation of four blue filled circles aligned within an equally spaced horizontal 

array, corresponding to the left-hand fingers (from left to right, small, ring, middle, and 

index fingers) (Figure 1). The instruction was to follow the randomly moving blue 
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circles of 2 Hz with eyes without pressing the button. Rest epoch lasted for 15 sec when 

the target “CONSTANT” appeared to instruct the participant to respond by pressing the 

button indicated by white filled circle. The visual cues were identical to those of Rest 

epoch except for the color and sequence of lighting (Figure 1). One of the circles was 

filled in every 500 ms, indicating the tapping fingers and buttons on an MR-compatible 

button box (Current Design, Inc., Philadelphia, USA). A sequence was composed of the 

five element sequences, either “index – little – middle – ring - index” (presented to 31 

participants) or “ring – middle – little – ring - index” (presented to other 27 

participants). The frequency of the color and location change was kept 2 Hz. Constant 

epoch lasted 15 sec when alternated with Rest epoch. Rest and Constant epochs were 

conducted alternatively five times, constituting the C block 1. M block 1 (Figure 1), 3 

min in duration, started with Rest epoch which was identical to that of C block except 

for its duration of 30 sec instead of 15 sec. Instruction of “TEST” was shown for 500 

ms to ask the participant to tap the memorized sequence as fast and as accurate as 

possible, and four closed white circles were presented for 500 ms when they changed to 

open circles. Visual feedback of correct tapping was provided by the filling of the white 
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circle corresponding to the tapped finger. If the participant made an incorrect response, 

the stimulus remained at the previous visual cue until the correct button was pressed. 

Maximum epoch lasted 30 sec. Rest and Maximum epochs were conducted alternatively 

three times.  

The second Run (Run 2) consisted of 3 C blocks interleaved by 2 M blocks, 

and the third Run (Run 3) started with M block followed by C block. Overall, the 

sequential finger task in this study was built with 5 C blocks (a total of 12.5 min) and 4 

M blocks (12 min) alternate (Figure 1). By interleaving two modes alternately, the 

learning effect by the constant-speed mode was able to be evaluated by measuring speed 

and accuracy during maximum speed mode (See the following section in detail). 

 

3.3 Behavior analysis 

The performance was measured by speed, accuracy, and “performance index” 

by combining transition time (TT) and error rate (ER) (Equation 1; modified from Dan 

et al., 2015), taking into account of speed-accuracy trade-off (Fitts, 1954). Transition 

time (in seconds) was defined by the mean time between two correct button responses 
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per block. The error rate was the number of error responses about all responses per 

block.  

Equation 1: 𝑃𝐼 = 𝑒𝑥𝑝−𝑇𝑇 × 𝑒𝑥𝑝−𝐸𝑅 × 100 

Because the behavioral task consisted of several blocks including three or five 

epochs (Figure 1), I dissociated the between-block effect and within-block effect for the 

performance changes in both constant-speed and maximum-speed modes. For each 

performance measures (i.e., transition time, error rate, and performance index) and each 

mode (constant and maximum), a repeated measure analysis of variance (rmANOVA) 

was conducted with task epoch and task block as the independent variable. Bonferroni 

correction was adopted for posthoc multiple comparisons. All statistical analyses were 

performed by SYSTAT (version 13.00.05, SYSTAT Software, USA) and the level of 

significance was p < .05. 

 

3.4 fMRI scanning parameters 

A 3.0T scanner (Verio; Siemens Ltd., Erlangen, Germany) was used for the 

fMRI study. Each participant’s head was immobilized within a 32-element phased array 
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head coil. fMRI was performed using a multiband GE-EPI sequence (Moeller et al., 

2009; echo time [TE] = 30 ms, repetition time [TR] = 1,000 ms; field of view [FOV] = 

192×192 mm2; flip angle = 80°; matrix size = 96×96; 60 slices; slice thickness = 2 mm; 

multiband factor = 8). A whole-brain high-resolution T1-weighted anatomical 

magnetization-prepared rapid-acquisition gradient echo (MP-RAGE) MRI was also 

acquired for each participant (TE = 2.97 ms; TR = 1,800 ms; FOV = 256×256 mm2; flip 

angle = 9°; matrix size = 256×256; slice thickness = 1mm). 

 

3.5 fMRI data processing  

Image processing and statistical analyses were performed using the Statistical 

Parametric Mapping (SPM12) package (http://www.fil.ion.ucl.ac.uk/spm/). The first 

five volumes of each fMRI run were discarded to allow the MR signal to reach a state of 

equilibrium. The remaining volumes were used for the subsequent analyses. To correct 

for subject’s head motion, functional images from each run were realigned to the first 

image and again realigned to the mean image after the first realignment. The T1-

weighted anatomical image was coregistered to the mean of all realigned images. Each 
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coregistered T1-weighted anatomical image was normalized to the MNI space with the 

DARTEL procedure (Ashburner, 2007). More specifically, each anatomical image was 

segmented into the tissue class images using a unified segmentation approach 

(Ashburner and Friston, 2005). The gray and white matter images were transformed to a 

common coordinate space using the DARTEL registration algorithm. I used the 

institute-specific template, which was created from study-independent 530 individuals 

(150 females; Tanabe et al., 2014), to estimate the parameters in the DARTEL 

registration. The parameters from the DARTEL registration and normalization to MNI 

space were then applied to each functional image. The normalized functional images 

were filtered using a Gaussian kernel of 5 mm FWHM in the x, y, and Z-axes.  

 

3.6 fMRI data analysis 

A general linear model was fitted to the fMRI data for each participant 

(Friston et al., 1994; Worsley and Friston, 1995, Figure 2). The time series of the BOLD 

signal was modeled with boxcar functions corresponding to each and all task epoch 

convolved with the canonical hemodynamic response function. The first and third runs 
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included eight task-related regressors, five for tapping epochs in constant-speed and 

three for those in maximum mode. The second run included 21 task-related regressors, 

fifteen for tapping epochs in constant-speed mode and six for those in maximum mode. 

The time series for each voxel was high-pass filtered at 1/128 Hz. With a first-order 

autoregressive model, the serial autocorrelation was estimated from the pooled active 

voxels with the restricted maximum likelihood procedure and was used to whiten the 

data (Friston et al., 2002). Motion-related artifacts were minimized by incorporating the 

six parameters from the rigid-body realignment stage into each model. One additional 

regressor, describing intensities in CSF compartments, was added to the model. The 

estimates for each task-related regressor were evaluated using linear contrasts. 

The parameter estimates for each regressor in each (“contrast” images) were 

submitted to second level analysis (Holmes and Friston, 1998) with a flexible-factorial 

model incorporated within-participant factors of ‘Repetition’ and ‘Mode’ (constant-

speed/maximum-speed). Pre-defined linear increasing and decreasing contrasts for each 

mode were applied to depict the changes of task-related activity related to the learning 

of a sequential finger-tapping skill. Increasing or decreasing contrast vector was defined 
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as numbers in increment or decrement of one per epoch with keeping mean to zero. The 

resulting set of voxel values for each contrast constituted the SPM{t}, which was 

transformed into normal distribution units (SPM{z}). The statistical threshold for the 

spatial extent test on the clusters, which was defined by the height threshold of z = 3.09, 

was set at p < 0.05 corrected for family-wise error (Friston et al., 1996)  

3.7 Functional connectivity analysis 

To explore the neuronal representation of the dormant motor engram during 

constant mode and maximum mode, the model-free eigenvector centrality mapping was 

adopted. Postulating dormant motor engram exists while motor execution was not 

performed, I calculated eigenvector centrality within the residual time series of rest 

epochs in each block. Considering that the functional connectivity pattern depends on 

participants’ state (Biswal et al., 1995), the residual time-series were divided into task 

and rest epochs during the constant-speed mode and then concatenated each five epochs 

data into one time-series data. Because the training task included 25 task epochs of 

constant-speed mode and 25 rest epochs, the resulted concatenated residual time-series 
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were five task-state and five rest-state data. The same procedure was applied to the 

maximum mode, generating four task-state and four rest-state data (Figure 2). 

I applied eigenvector centrality mapping (ECM; Lohmann et al., 2010) to the 

concatenated residual time-series. Utilizing the same gray matter mask defined by 

averaging the segmented and DARTEL-normalized gray matter images from all 

participants, ECM was conducted using LIPSIA package (Lohmann et al., 2010) 

installed in PC with Debian Linux OS. I confirmed that the gray matter mask included 

the cerebellum and the striatum. Let A be an n x n similarity matrix where entries , i, 

j~1, …n contain a pairwise correlation coefficient between time series in voxels i and j, 

n is the number of voxels within the gray matter mask. The matrix A is symmetric so 

that each voxel can be viewed as a node in an undirected weighted graph in which 

correlation coefficients correspond to weights along the edges of the graph. In graph- 

based applications, these weights represent distances between nodes. In this study, I 

utilized correlation matrix of the gray matter voxels in the whole brain, replacing the 

negative correlation with zero. The eigenvector centrality  of node i is defined as the 

ith entry in the normalized eigenvector x belonging to the largest eigenvalue of A (λ), 

ija

ix
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While the eigenvector centrality favors nodes that have high correlations with many 

other nodes, it specifically favors nodes that are connected to nodes that are themselves 

central within the network. Thus the eigenvector centrality takes into account the entire 

pattern of the network (Lohman et al. 2010), allowing us to estimate the importance of 

each voxel within the whole brain network with seed- and task-free fashion (Zuo et al. 

2012).  

To confirm that the centrality values obey a Gaussian normal distribution as 

required for subsequent statistical tests, the estimated centrality maps were transformed 

according to a previous study (van Albada et al., 2007). Subsequent statistical tests for 

ECM was conducted in SPM12. The resulting gaussianized centrality maps for five 

task-states and five rest-states in each participant were submitted to second level 

analysis with a flexible-factorial model incorporated within-participant factors of 

‘Repetition’ and ‘State.' Similar to task-related activity, pre-defined linear increasing 

contrasts for rest state was applied to depict the learning related network changes which 
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are state-dependent. Furthermore, to depict the retrieval related change in the network, 

task state EC was compared with rest state EC. The statistical threshold for the spatial 

extent test on the clusters, which was defined by the height threshold of z = 3.09, was 

set at p < 0.05 corrected for family-wise error (Friston et al., 1996). An identical 

analysis was applied to the maximum mode data.  

3.8 Anatomical labeling and Visualization 

Brain regions were anatomically defined and labeled according to the co-planer 

stereotaxic atlas of the human brain (Mai et al. 2016). The MRIcron  

(http://www.mccauslandcenter.sc.edu/mricro/mricron/)  

was used to display activation patterns on T1- weighted MRI image. 

  

http://www.mccauslandcenter.sc.edu/mricro/mricron/
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4. Results 

4.1 Behavioral results 

To evaluate the between-block and within-block changes of behavioral 

performance with the acquisition of sequential finger tapping skill, I compared the PI 

between blocks and epochs in both constant and maximum modes, respectively. In the 

maximum mode, the block effect (Two-way multivariate repeated measures ANOVA, 

F(3,55) = 11.21, p < 0.001) and block x epoch interaction F(6,52) = 5.129 p < 0.001) 

were significant, while within-block effect was not significant (F(3, 55) = 0.118, p 

= .889) (Figure 3). To evaluate the transfer of the learning through the constant mode, I 

compared the PI of the last epoch of the preceding block with that of the first epoch of 

the following block. One way multivariate repeated measures ANOVA showed the 

significant main effect (F(2, 56) = 3.4, p = 0.04). The increment of the PI of the second 

from the first block was 1.75 +/- 3.12 (mean +/- SD, One-sample t-test, t(57) = 4.28, p 

<0.001, Bonferroni corrected), third and second was 0.55 +/- 2.00 (t(57) = 2.07, p = 

0.043, uncorrected, Bonferroni corrected P = 0.128), and the fourth and third was 1.44 

+/- 2.53 (t(57) = 4.33, p < 0.001, Bonferroni corrected) (Figure 4). 
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In the constant mode, learning related change of response time and its 

standard deviation were evaluated with 57 participants out of 58, because of the 

measurement failure.  No effect of the PI was shown in the constant-speed mode 

(between effect: F(4,228) = 1.09, p = .35; within effect: F(4,228) = 1.29, p = .28; 

interaction effect: F(16,912) = .97, p = .47) (not shown in Figure). For response time, 

the block effect (Two-way repeated measures ANOVA, F(4, 53) = 12.77,  p < 0.001), 

epoch effect (F(4, 53)=9.19, p < 0.001), and their interaction (F(16, 41) =7.36, p < 

0.001) were significant (Figure 3). The transfer effect from the preceding maximum 

mode was not significant (repeated measures ANOVA, F(3, 54) = 0.701, p = 0.556) 

(Figure 4). For the variability of the response time in terms of the standard deviation, 

the block effect (Two-way repeated measures ANOVA, F(4, 53)=1.595, p = 0.189), 

epoch effect (F(4, 53)=2.338, p = 0.067), or their interaction (F(16, 41) =1.525, p = 

0.137) were not significant (Figure 3). The variability did not show transfer effect from 

the preceding maximum mode (repeated measures ANOVA, F(3, 54) = 1.085, p = 

0.363) (Figure 4). These findings indicated that both maximum and constant modes 

enhanced the performance. Transfer of the learning was observed from constant mode 
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to maximum mode, but not in the reverse direction.  

To further dissect the performance transfer from the constant mode to the 

maximum mode, the transition time and error rate during the maximum mode was 

evaluated (Figure 5). Transition time showed significant effect of block (rmANOVA, 

F(3, 55) =48.261, P < 0.001), epoch (F(2, 56) =37.998, P < 0.001), and their interaction 

(F(6, 52) =7.011, P < 0.001). Error rate showed significant effect of block (rmANOVA, 

F(3, 55) =2.831, P = 0.047) and epoch (F(2, 56) =26.223, P < 0.001), but no significant 

effect was found in their interaction (F(6, 52) =1.613, P = 0.162). The transfer effect 

from the preceding maximum mode was not significant in the transition time 

(rmANOVA, F(2, 56)= 2.273, p = 0.112), nor error rate (rmANOVA, F(2, 56)= 0.971, p 

= 0.385) (Figure 5 bottom).  

 

4.2 Eigenvector centrality mapping 

 During the maximum mode, EC during rest significantly increased in the left 

anterior interior parietal sulcus (aIPS) as learning proceeded, which EC was enhanced 

by task execution (Figure 6). The seed-based analysis across the whole brain revealed 
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that the functional connectivity with aIPS was enhanced only in the left IPL as learning 

proceeded (Figure 7).  As sequential motor learning proceeded, the centrality during 

rest-state of the constant mode significantly increased in bilateral dorsal premotor cortex 

and the right primary motor cortex (M1) which EC was enhanced by task execution 

(Figure 8).  

 

4.3 Task-related activity 

 During constant mode, the linear increments of task-related activity were 

observed in the right M1. The right M1 also showed the same learning related increment 

during the maximum mode. (Figure 9).  
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5. Discussion 

5.1 Behavior 

Behavioral results showed that both maximum and constant modes induced learning. 

Maximum mode stressed the speed whereas constant mode requires the correct button 

press prompted by the slow and constant frequency visual signals. Thus constancy and 

accuracy were stressed. To compensate the speed-accuracy tradeoff, PI was calculated. 

With this measure, the learning during maximum mode was enhanced by the preceding 

constant mode, thus the constant mode training effect was transferred to the following 

maximum mode performance. During constant mode, the reaction time decreased as 

learning proceeded to reach the range of 150 ms, indicating the progress of the sequence 

learning. The RT was not influenced by the preceding maximum mode, indicating no 

transfer effect from maximum mode. 

 

5.2 EC as the measure of a neuronal ensemble of the engram 

I characterized the motor engram as the dynamic change during learning. First, I 

repeated the practice intervened by the rest epochs to introduce the active state followed 
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by the dormant state latter of which was characterized by the enhanced EC as learning 

proceeded. This characterization is based on the prevailing view that the formation of 

engram involves the strengthening of synaptic connections leading to the formation of a 

neuronal ensemble at multiple levels up to regional connections (Josselyn et al. 2015). 

As engram is to be enhanced by the retrieval (ecphory), EC of the dormant engram 

should be enhanced during the task. Enhanced EC of the region indicated the enhanced 

functional connectivity of the particular location with other regions, confirming that the 

region is the part of the activated ensemble, that is, the ecphory. Based on these 

inferences, I conducted the conjunction analysis with the linear increase in the EC 

during the rest epoch and its task related increase. By applying this method to different 

learning modes, I successfully depicted the learning-mode specific engram formation. 

 

5.3 Learning related enhancement of EC 

Maximum mode 

During the maximum mode, EC during rest significantly increased in the left aIPS as 

learning proceeded, which EC was enhanced by task execution. In humans, aIPS 



30 

 

mediates the processing of sensorimotor integration of precisely tuned finger 

movements (Binkofski et al. 1998). Seed-based functional connectivity analysis on the 

resting epoch of the maximum blocks showed that the connectivity between left aIPS 

and IPL was enhanced as learning proceeded. The ventral part of the IPL might be a 

human homolog of the area PF/PFG complex (Hattori et al., 2008). Area PF extending 

to the lower bank of the IPS and ventral area 6 are anatomically connected (Petrides and 

Pandya, 1984; Matelli et al., 1986; Rizzolatti et al., 1998) to from several frontoparietal 

circuits (Geyer et al., 2000). The IPL is also related to the integration of somatosensory 

and visual information (Caminiti et al., 1996; Rizzolatti et al., 1997; for a review see 

Wise et al., 1997). The parietal lesion, particularly on the left side, is implicated in 

apraxia, disability to execute previously learned movements (Halsband and Lange 2006; 

Wheaton and Hallett, 2007; Halsband et al. 2001). Halsband et al. (2001) found that the 

apraxic patients with left parietal lesion showed most pronounced impairment in 

learning actions which are referred to their body. They argued that the left parietal 

cortex is related to the storage of information related to the body reference frame 

(Halsband and Lange 2006). This notion was supported by the recent functional MRI 
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study by Verstynen et al. (2014) In the present study, learning-related enhancement of 

EC in the left aIPS during rest condition of the maximum mode probably represented 

the accumulation of information provided by the comparison between the action plan of 

the rapid transition of the one finger to the next in the sequence and the actual feedback.  

 

Constant mode 

During constant mode, engram was generated in the bilateral PMd and right 

M1. As the task of the constant mode was the slow, visually guided finger tapping of the 

predefined sequence, there was no need to retrieve the sequence per se, without speed 

pressure. However, translation of the extrinsically defined goals into muscle coordinates 

was required (Wiestler et al. 2014). There was no performance transfer from the 

preceding maximum mode. Still, the performance measured by RT improved. Thus the 

participants have learned at least the sequence of stimulus-response relationship. The 

performance was transferred to the subsequent maximum mode. Thus the engram 

during the constant mode should represent the learning results accessible to the 

maximum mode, that is, the sequence in the response domain (Keele et al. 1995).  
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PMd 

The PMd is the dorsolateral subdivision of BA 6, defined as the agranular 

frontal cortex situated between the primary motor cortex (M1) and the prefrontal cortex. 

Recently, Genon et al. (2017) divided the right PMd into five subregions using the 

connectivity-based parcellations with resting state fMRI and probabilistic diffusion 

tractography. The present cluster on the right is corresponding to the central to the 

caudal subregions extending to the right M1. According to Genon et al. (2017), the 

central PMd is more tightly connected to the IPS and the SPL than other subregions 

which were functionally coupled to the central PMd. The central PMd is related to both 

motor and cognitive functions such as action execution and working memory, whereas 

the caudal PMd is related to motor preparation and programming, corresponding to 

nonhuman primate's caudal right PMd (area F2) (Geyer et al. 2000; Abe and Hanakawa 

2009).  

Clinically lesions of the premotor cortex were characterized by the 

disintegration of the dynamics of the motor act and skilled movements such as smooth 

typewriting or piano playing (Kleist, 1907, 1911; Luria, 1966). Previous non-human 
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primate study (Hoshi and Tanji 2006) showed that PMd neurons were able to retain and 

combine the information of spatial target and effector to generate information 

specifying a forthcoming action. Utilizing multivariate pattern analysis on the fMRI 

data of the sequential finger tapping learning of both hands, Wiestler et al. (2014) 

showed that the PMd represented the extrinsic (world-centered) sequence 

representation. On the other hand, the primary sensory and motor cortices showed 

representation in intrinsic (body-centered) space, with considerable overlap of the two 

reference frames in the caudal PMd, showing a gradual transition between coding in 

extrinsic and intrinsic coordinate frames. Therefore PMd is a probable substrate for the 

coordinate transformation from spatial goals to joint movements through associative 

learning (Kantak et al. 2016) between arbitrary, yet behaviorally relevant cues and 

appropriate motor commands (stimulus-response relationship) and its conversion to the 

response domain (Keele et al. 1995).  

 

M1 
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 I found the motor engram formation in the right M1 during the constant mode. 

The M1 is known to play a role in procedural motor learning (Pascual-Leone and 

Torres, 1993; Pascual-Leone et al. 1993, 1995; Karni et al. 1995; Honda et al. 1998; 

Muellbacher et al., 2002; Lu & Ashe, 2007). Recent neuroimaging study showed that 

contralateral M1 integrated the spatial and temporal information of learned finger 

sequences encoded separately in the premotor cortex (Kornysheva & Diedrichsen, 

2014), suggesting the integrating functions of the right M1 for the execution.  

 

5.4 Learning related change of task-related activation 

In the present study, I made the conjunction analysis regarding the learning 

related increment of the task-related activation with different modes. I found that both 

maximum and constant modes enhanced the task-related activation of the right M1 as 

the learning proceeded. During constant speed mode, given the performance effect was 

constant, the execution-related activation increment of the right M1 probably 

represented the ecphoric process, consistent with the previous study (Hazeltine et al. 

1997). The previous studies with maximum mode concluded the explicit motor learning-
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related increase in the M1 are likely representing the velocity effect (Halsband and 

Lange, 2006; Orban et al. 2010), because the task-related activation of M1 depends on 

the speed (Jancke et al. 1998; Sadato et al. 1996, 1997) and force (Dettmers et al. 1995). 

However, considering that the learning transfer was observed only from the constant 

mode to maximum mode, not vice versa, and, that the right M1 is the only common area 

showing the task-related learning effect where the engram of the constant mode learning 

was represented, the maximum mode may take advantage of the preceding engram 

formation in the right M1 by the constant mode. Considering the constant mode did 

stress the constant response to the visual cue but not the speed, the learned engram in the 

right M1 by the constant mode probably encode the accuracy which was transferred to 

the speed-stressed maximum mode performance. 

Distinct engram formation in the parietal and premotor regions and the 

integrative process at the M1 are consistent with the notion that the praxis preparation 

and execution are represented by the parietal and premotor areas (Johnson-Frey et al. 

2005; Fridman et al. 2006; Wheaton et al. 2005). Wheaton and Hallett (2007) postulated 
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that the parietal cortex stores the concept of the movements and the premotor cortex 

modifies the concept to a specific motor plan for motor cortex implementation. 

 

6. Conclusion 

In conclusion, the motor engram of the sequential finger tapping is formed in the M1-

centered parietal-premotor network, which is recruited by the M1 during the task 

performance. 
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9. Figures 

Figure 1. The block design of fMRI runs. 

The task was consisted of 3 runs with total of 25 epochs of constant-speed mode (C1 to 

C25) and 12 epochs of maximum mode (M1 to M12). On the screen, four blue circles 

were aligned within an equally spaced horizontal array, corresponding to the left-hand 

fingers through the spatial arrangement of the buttons. The duration of each epoch of C 

block was 15 sec, and that during M block was 30 sec.  
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Figure 2 Statistical analysis with general linear model at individual level (top left). The 

parameter estimates were incorporated into the group-level analysis with flexible 

factorial design (bottom left). Concatenation of the residual time-series data for ECM 

analysis (right).
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Figure 3. Performance in maximum mode (green shed) and constant mode. The 

performance of maximum mode was measured by performance index (PI, blue filled 

circle).  Reaction time (RT, ms, red filled circle) from the visual cue and the tap during 

constant mode and their variability regarding the standard deviation (black filled circle) 

are also plotted. Data points represent group means for each epoch, and error bars 

indicate the standard error of the mean.    

 



Hamano et al. 55 

 

10 20 30 40

-2

-1

0

1

2

-100

-50

0

50

100

PI at maximum mode

RT at constant mode

variability of RT

* *

Epoch


P

I




R
T

 (m
s
),

-
S

D

 

 Figure 4.  Performance transfer. The change of PI from the last epoch of the 

preceding maximum mode block to that of the first epoch of the following maximum 

mode block (blue filled circle) was plotted between the consecutive maximum mode 

blocks. * P< 0.001. The change in RT (red filled circle) and variability of RT (black 

filled circle) in the consecutive constant blocks were plotted in the same format. Data 

points represent group means for each epoch, and error bars indicate the standard error 

of the mean.    
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Figure 5.  The performance of the maximum mode (top). The change of speed 

(regarding transition time, TT, blue filled circle) and the error rate (red filled circle) are 

plotted as group means for each epoch with an error bar of the standard error of the 

mean. Learning transfer from the constant mode (bottom). The change of TT (blue filled 
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circle) and error rate (red filled circle) from the last epoch of the preceding maximum 

mode block to that of the first epoch of the following maximum mode block were 

plotted between the consecutive maximum mode blocks. Data points represent group 

means for each epoch, and error bars indicate the standard error of mean.  
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Figure 6. Motor engram generated by maximum mode training 

Conjunction analysis of the linear increase of EC during rest epoch and the task related 

increase of EC. P< 0.05 corrected at the cluster level, with height threshold Z > 3.09 

(Friston et al. 1996). CS, central sulcus. 
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Figure 7. Learning related enhancement of the functional connectivity with the left aIPS 

(seed, green) by maximum mode training (blue). P< 0.05 corrected at the cluster level, 

with height threshold Z > 3.09 (Friston et al. 1996). 
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Figure 8. Motor engram generated by constant mode training 

Conjunction analysis of the linear increase of EC during rest epoch and the task related 

increase of EC. P< 0.05 corrected at the cluster level, with height threshold Z > 3.09 

(Friston et al. 1996). CS, central sulcus. 
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Figure 9. Task-related activity linearly increased by both constant and maximum modes. 

The focus of activation on a pseudocolor fMRI superimposed on a high-resolution 

anatomical MRI in the coronal (upper left), sagittal (upper right) and transaxial (lower 

left) planes, sectioned at (38, -24, 64) corresponding to the primary motor cortex 

(Brodmann area 4). Conjunction analysis of the linear increase of the task-related 
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activation of contant and maximum modes (lower right). P< 0.05 corrected at the cluster 

level, with height threshold Z > 3.09 (Friston et al. 1996). CS, central sulcus. 
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10. Tables 

Table 1.  Brain areas showing both the learning-related increase in rest-state 

eigenvector centrality and the task-related increase in eigenvector centrality 

during maximum mode 

Cluster size 

(mm3) 
p value Anatomical location Hem Broadmann area 

MNI Coordinates 

Z value 

x y z 

528 1.42 × 10-7 Intraparietal sulcus L 40/7 -45 -42 57 5.00 

  Inferior parietal lobule L 40 -54 -33 51 3.65 

  Inferior parietal lobule L 40 -39 -36 51 4.15 

Note. Statistical threshold was FEW corrected p < .05 at the cluster level with the height 

threshold of Z > 3.09. x, y, and z are stereotaxic coordinates (mm). Hem, Hemisphere; 

R, Right; L, Left. 
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Table 2. Brain areas showing both the learning-related increase in rest-state 

eigenvector centrality and the task-related increase in eigenvector centrality 

during constant mode     

Cluster size 

(mm3) 
p value Anatomical location Hem Broadmann area 

MNI Coordinates 

Z value 

x y z 

368 1.13×10-5 Precentral gyrus L 4 -36 -15 63 3.52 

  Superior frontal sulcus L 6 -33 -6 63 4.60 

1064 1.39×10-12 Postcentral gyrus R 2 45 -27 60 4.29 

  Precentral gyrus R 4 42 -12 54 4.16 

  Superior frontal sulcus R 6 24 -9 51 4.34 

Note. Statistical threshold was FEW corrected p < .05 at the cluster level with the height 

threshold of Z > 3.09. x, y, and z are stereotaxic coordinates (mm). Hem, Hemisphere; 

R, Right; L, Left. 
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Table 3.  Brain areas showing the linearly increase in task-related activations with 

the learning progress in both maximum and constant modes 

Cluster size 

(mm3) 
p value Anatomical location Hem Broadmann area 

MNI Coordinates 

Z value 

x y z 

3072 3.88×10-6 Central sulcus R 4/3 38 -24 64 4.56 

  Precentral gyrus R 4 38 -18 48 4.21 

Note. Statistical threshold was FEW corrected p < .05 at the cluster level with the height 

threshold of Z > 3.09. x, y, and z are stereotaxic coordinates (mm). Hem, Hemisphere; 

R, Right; L, Left. 

 


