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Summary (Abstract) of doctoral thesis contents

This thesis concerns an adaptive treatment of an observation error model used in
nonlinear Kalman filtering methods to increase accuracy of state estimation and
usability.

Filtering for estimating an unobserved system state from the observations using a
state-space model (SSM) is one of the most important data analytical techniques in
engineering. An SSM consists of a system model that defines time-evolution of the
system state and an observation model that defines how the state is observed. With
the two models, the technique predicts a next observation and correct the estimate of
the state based on the prediction error of an obtained observation, which is referred
to as innovation, alternately. There are a number of applications of filtering: for
examples, position tracking for mobile navigation, state estimation for feedback
control, system identification for simulation or optimization, and so on.

The Kalman filter (KF) is one of the fundamental algorithms for a linear Gaussian
SSM. The original KF have been proposed as the minimum variance estimator for the
system state using the orthogonal projection. It is also known to a sequential
Bayesian estimator of the posterior distribution, which is referred to as the filtered
distribution in this context. The algorithm of the KF can be expressed with basic
linear algebra concept and is easy to implement. This is the reason why the KF is
widely applied in actual applications.

Recently, derivative-free Kalman filters that can deal with nonlinear SSMs have
received considerable attentions of practitioners. The unscented Kalman filter (UKF)
[1] uses the sigma points, which are temporarily and deterministically drawn samples
from a distribution to be transformed. The UKF performs nonlinear calculus for each
of the sigma points and approximates the nonlinearly transformed distribution with
the points. The ensemble Kalman filter (EnKF) [2,3] is a filtering method originated
in geophysics, which handles a very large problem with, sometimes, more than a
million variables in the state. The EnKF use an ensemble-based distribution, which
consists of a finite number of samples, for the state vector to deal with nonlinearity.

In such Kalman filtering methods, one has to specify a SSM typically consisting of
a transition function, a model error, an observation function, and an observation
error. Of course, although appropriate design of each building block of the SSM is
crucial for filtering, we focus on the observation error.

Design of the observation error, that is, what kind of a probabilistic model 1is
assumed for the observation error is directly connected to the performance of filtering.
For an observation error model with small variance, that 1is, assuming low
uncertainty for observation, state estimation will be performed to mimic observations

as possible. In this case, if observations are actually uncertain, state estimation will
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be biased as a result of over-fitting to observations. While, for an observation error
model with large variance, that is, assuming high uncertainty for observation, the
observations might be neglected in the state estimation. If observations are actually
certain, under-fitting to observations will happen.

However, since there are essential unknowns in characteristics of the observation
error, the design i1s not trivial task. To discuss in depth, we decompose the
observation error on the basis of the concept of representativeness error [4]. The
observation error can be regarded as consisting of two kinds of errors: one is referred
to as a measurement error, and another is referred to as a representativeness error.

The measurement error comes from an uncertainty of measurement instruments.
The sources are, for example, precision of calibration curve, noises in transmission,
quantization error of AD converter, and so on. To know the statistics, a specification
including the precision provided by manufacturers of measurement instruments is
helpful. However, there are cases where self-build or experimental instruments,
whose specifications are inaccurate, are installed.

While, the representativeness error originates from deviation between an assumed
SSM and an ideal SSM, and thus the characteristics is inherently unknown. It is
because a system model and an observation function are usually developed from
partial but best-effort understanding of the target system.

So far, although we have discussed the difficulties in designing a model for the
observation error from the stationary characteristics, there are mainly two other
difficulties related to the non-stationary characteristics of the observation error: one
1s the long-term temporal change, and another is the impulsive change.

For the long-term temporal change of characteristics, in the case of the
measurement error, the sources could be deterioration or maintenance of
measurement instruments. For example, the deterioration of a measurement
instruments increases the error scale in general. In the case of the
representativeness error, the source could be increase of the discrepancy of the
assumed SSM on a particular time or spatial region. For example, if an empirical
model identified with experimental data is incorporated in a system model, the
precision might be deteriorated in extrapolation.

For the impulsive change of characteristics, the problem of outliers is known.
Outliers are unexpectedly gross observation error, which are unpredictably present.
Appearance of outliers is very common in actual systems. There are variety of the
sources: e.g., a large disturbance to the target system, temporal malfunction of
measurement instruments, human error in data manipulation, and so on. Especially,
for a Gaussian observation error model, which is often assumed in actual applications,
it is well known that the outliers severely decrease the accuracy of the state
estimation [5].

It is natural that the observation error model is hard to develop due to unknowns
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in both stationary and non-stationary characteristics. If there is discrepancy between
an assumed model and the actual behavior of the observation error, the accuracy of
state estimation in filtering is severely decreased. Therefore, we have studied
adaptive filtering methods for the observation errors.

We have addressed the theme from two points of views: one is the case for the
long-term temporal change of characteristics of the observation error, and another is
the case for the impulsive change of the characteristics. In this thesis, we presents
two methods for these cases. The key idea of the methods is to use an adaptive
observation error model, which includes time-indexed parameters, and estimate the
parameters in filtering at each time step. The enabler is the variational Bayes
method which approximates the joint filtered distribution of the state vector and the
time-index parameters with another tractable distribution. We have examined the
methods in several numerical experiments and found that the methods can improve
the accuracy of state estimation as a result of appropriately handling the observation
errors. The presented methods are expected to contribute to increase the value of the

applications of filtering.
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