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Abstract

It is natural that the observation error model is hard to develop due to unknowns in
both stationary and non-stationary characteristics. If there is discrepancy between
an assumed model and the actual behavior of the observation error, the accuracy of
state estimation in filtering is severely decreased. Therefore, we have studied adap-
tive filtering methods for the observation errors. We have addressed the theme from
two points of views: one is the case for the long-term temporal change of character-
istics of the observation error, and another is the case for the impulsive change of
the characteristics. In this thesis, we presents two methods for these cases. The key
idea of the methods is to use an adaptive observation error model, which includes
time-indexed parameters, and estimate the parameters in filtering at each time step.
The enabler is the variational Bayes method which approximates the joint filtered
distribution of the state vector and the time-index parameters with another tractable
distribution. We have examined the methods in several numerical experiments and
found that the methods can improve the accuracy of state estimation as a result of
appropriately handling the observation errors. The presented methods are expected
to contribute to increase the value of the applications of filtering.
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Chapter 1

Introduction

1.1 Motivation

We concern a simulation technology of plants, which are production systems in pro-
cess industry such as petrochemical, paper, and steel industries.

Simulation of a plant with a physical model receives much attentions of man-
ufacturers. The simulation has a potential for valuable applications in production
such as what-if analysis for redesign of control system or operational condition, or
inner-inspection for diagnosis. Although a physical model is typically used in de-
sign phase of a plant, the applicable range is basically limited to a certain opera-
tional condition. The accuracy of simulation will be decreased in production phase
because the operational condition is changed as time passes [1]. To improve the
accuracy of simulation, attention to be noted is data collected in production. In a
plant, a number of measurement values from sensors or analyzers are consolidated
for automated control. Since the measurement system is carefully designed and im-
plemented to control the process, the data is expected to have much information for
refining simulation.

The integration of simulation and data has greatly advanced in the filed of earth
science, and it is referred to as the data assimilation. The key technology is a large-
scale and nonlinear filtering method, where the number of dimensionality of system
state can exceed millions. Many applications have been successfully reported in the
ocean, atmosphere, magnetosphere, and so on. In data assimilation, a deterministic
physical simulation model is extended to a state-space model (SSM) by introducing
probabilistic models typically represented by system noise and observation error
discussed in the following section. Probabilistic models compensate mismatch be-
tween simulation and observed data. Even though the original model is imperfect, it
is possible to increase the accuracy of time-evolution of the system state by incorpo-
rating information in the observed data. Furthermore, it is also possible to estimate
parameters of physical models, which determine behavior of concerned system, for
prediction in what-if analysis.

Although techniques of data assimilation is expected to be effective for plants,
there is an issue to import the technology. Contrary to the system of earth science,
that is, the nature itself, statistical property of a plant is artificially and frequently
changed [2]. For examples, there are change of feed material, malfunction or main-
tenance of equipments. Change of operational condition due to production adjust-
ment is also common. From a statistical perspective, the data to be modeled as an
SSM is non-stationary. Even if an SSM is appropriately designed and developed at a
certain time point, the accuracy of simulation will decrease after such changes.

Therefore, an SSM for a plant needs to be maintained continuously. Of course,
the necessity of continuous maintenance is usually unacceptable in terms of cost.
In addition, although practitioners who consider applications with simulation are
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assumed to be great chemical engineering and/or process control experts, they may
not be statisticians. It is required to provide a convenient way for developing SSMs.

To overcome the issue, we combine data assimilation and machine learning tech-
niques. The machine learning has prominently evolved since 1990s along with the
evolution of computational capability and data storage. Even If, in the case where an
analytical solution does not exist, the machine learning can appropriately estimate a
complicated probabilistic model, for example, mixture models, hierarchical models,
deep neural networks, and so on. By adopting the machine learning techniques, the
above issue is expected to be resolved without statistical expertise.

On the basis of this concept, in this thesis, we develop two nonlinear filtering
methods. The two methods adaptively model unknown and non-stationary behav-
ior without pre-design by using a machine learning technique. The outcome enables
an accurate simulation without spending effort regarding the design of additional
probabilisitic models. In other words, it can focus practitioners on developing the
applications to make the production efficient, and safe. This will lead innovations in
production, and it is the final aim of our research.

1.2 Background: Kalman filters

Filtering for estimating an unobserved system state from the observations using a
state-space model (SSM) is one of the most important data analytical techniques in
engineering. An SSM consists of a system model that defines time-evolution of the
system state and an observation model that defines how the state is observed. With
the two models, the technique predicts a next observation and correct the estimate
of the state based on the prediction error of an obtained observation, which is re-
ferred to as innovation, alternately. There are a number of applications of filtering:
for examples, position tracking for mobile navigation, state estimation for feedback
control, system identification for simulation or optimization, and so on.

The Kalman filter (KF) [3] is one of the fundamental algorithms for a linear Gaus-
sian SSM. The original KF have been proposed as the minimum variance estimator
for the system state using the orthogonal projection. It is also known to a sequential
Bayesian estimator of the posterior distribution, which is referred to as the filtered
distribution in this context. The algorithm of the KF can be expressed with basic
linear algebra concept and is easy to implement. This is the reason why the KF is
widely applied in actual applications.

To deal with nonlinearity often appearing in actual applications, a number of
variants of the KF for nonlinear SSMs have been proposed; and the extended Kalman
filter (EKF) was firstly considered. The EKF linearizes a nonlinear SSM and adopts
the KF algorithm at each time step. For the cases where the linearized form can be
obtained analytically, the EKF is the very promising solution. However, in reality,
since it is hard to use the analytical form, the algorithm of the EKF needs to depend
on the numerical differentiation. As a result of including the numerical differentia-
tion, the EKF tends to require high computational cost and can be unstable.

Recently, derivative-free Kalman filters that can deal with nonlinear SSMs have
received considerable attentions of practitioners. The unscented Kalman filter (UKF)
[4] uses the sigma points, which are temporarily and deterministically drawn sam-
ples from a distribution to be transformed as shown in Fig. 1.1 (b). The UKF per-
forms nonlinear calculus for each of the sigma points and approximates the nonlin-
early transformed distribution with the points. As detailed in Chapter 2, since the
UKF requires sigma points proportional to the dimensionality of the system state,
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FIGURE 1.1: Distributions for the state vector of KF, UKF, and EnKF

it is computationally expensive and seems to be suitable for up to moderate-scale
problems. The ensemble Kalman filter (EnKF) [5], [6] is a filtering method origi-
nated in geophysics, which handles a very large problem with, sometimes, more
than a million variables in the state. The EnKF avoids the linearization by using an
ensemble-based distribution, which consists of a finite number of samples as shown
in Fig. 1.1 (c). The algorithm of the EnKF is constructed so that the moments of the
filtered distribution up to the second order are equal to those of the KF in the limit
as the number of samples approaches to infinity. Although the EnKF only deals
with a linear Gaussian observation model, it is successfully applied to actual large-
scale problems. The particle filter (PF) is also an ensemble-based filter. Since the
estimation of the filtered distribution is based on the sequential Monte Carlo (SMC)
method, it can even deal with non-Gaussian SSMs. Although the PF seems to be an
universal filtering technique, it is well known that the PF has the problem of curse
of dimensionality [7]. For a small problem relative to the available computation re-
source, the PF could be a promising solution.

In this thesis, we address problems regarding such derivative-free nonlinear
Kalman filters, especially, the UKF and the EnKF. The formal definition of these fil-
tering methods are given in Chapter 2. In the following section, we present our
problem statement.

1.3 Problem statement: observation errors

Let us define a filtering problem with nonlinear SSMs. At this moment, we use a
nonlinear SSM as follows:

xt|xt−1 ∼ ft(xt−1) + vt (1.1)
yt|xt ∼ ht(xt) + wt (1.2)

where t is the discrete time index, xt ∈ Rd is the state vector that represents the
system state, yt ∈ Rm is the observation vector that is observation of the state,
ft : Rd → Rd and ht : Rd → Rm are referred to as the transition function and the
observation function, respectively, vt ∈ Rd is a random error that represents the un-
certainty in the transition, which is referred to as the model error, wt ∈ Rm is also
a random error that represents the uncertainty in the observation, which is referred
to as the observation error. Expressions (1.1) and (1.2) are referred to as the system
model and the observation model, respectively. From a Bayesian perspective, the
filtering problem is to recursively estimate the tth posterior, that is, filtered distribu-
tion for the system state p(xt|y1:t) from the (t−1)th filtered distribution p(xt−1|y1:t−1)
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and the tth observation yt using the given SSM (1.1) and (1.2), where the notation
y1:t denotes a set of observations {y1, · · · ,yt}.

Of course, although appropriate design of each building block of Eqs. (1.1) and
(1.2) is crucial for filtering, our research of interest is the observation error wt. De-
sign of wt, that is, what kind of a probabilistic model is assumed for wt is directly
connected to the performance of filtering. For a model with small variance, that
is, assuming low uncertainty for observation, state estimation will be performed to
mimic observations as possible. In this case, if observations are actually uncertain,
state estimation will be biased as a result of over-fitting to observations. While, for
a model with large variance, that is, assuming high uncertainty for observation, the
observations might be neglected in the state estimation. If observations are actually
certain, under-fitting to observations will happen.

However, since there are essential unknowns in characteristics of wt, the design
is not trivial task. To discuss in depth, we decompose wt on the basis of the concept
of representativeness error [8]. The observation error can be regarded as consisting
of two kinds of errors: one is referred to as a measurement error wt,meas., and another
is referred to as a representativeness error wt,rep.. That is,

wt = wt,meas. + wt,rep.. (1.3)

The error wt,meas. comes from an uncertainty of measurement instruments. The
sources are, for example, precision of calibration curve, noises in transmission, quan-
tization error of AD converter, and so on. To know the statistics, a specification in-
cluding the precision provided by manufacturers of measurement instruments is
helpful. However, there are cases where self-build or experimental instruments,
whose specifications are inaccurate, are installed.

While, wt,rep. originates from deviation between an assumed SSM and an ideal
SSM, and thus the characteristics is inherently unknown. It is because a system
model and an observation function are usually developed from partial but best-
effort understanding of the target system.

So far, although we have discussed the difficulties in designing a model for wt

from the stationary characteristics, there are mainly two other difficulties related to
the non-stationary characteristics of wt: one is the long-term temporal change, and
another is the impulsive change.

For the long-term temporal change of characteristics, in the case of wt,meas., the
sources could be deterioration or maintenance of measurement instruments. For ex-
ample, the deterioration of a measurement instruments increases the error scale in
general. In the case of wt,rep., the source could be increase of the discrepancy of
the assumed SSM on a particular time or spatial region. For example, if an empiri-
cal model identified with experimental data is incorporated in a system model, the
precision might be deteriorated in extrapolation.

For the impulsive change of characteristics, the problem of outliers is known.
Outliers are unexpectedly gross observation error, which are unpredictably present.
Appearance of outliers is very common in actual systems. There are variety of the
sources: e.g., a large disturbance to the target system, temporal malfunction of mea-
surement instruments, human error in data manipulation, and so on. Especially, for
a Gaussian observation error model, which is often assumed in actual applications, it
is well known that the outliers severely decrease the accuracy of the state estimation
[9].

It is natural that the observation error model is hard to develop due to unknowns
in both stationary and non-stationary characteristics. As already discussed, if there
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is discrepancy between the assumed model and the actual behavior of wt, the ac-
curacy of state estimation is decreased. Therefore, we have focused our research on
developing adaptive filtering methods for the observation errors. By estimating the
error characteristics appropriately, the accuracy of state estimation can be improved.
We have addressed the theme from two points of views: one is the case for the long-
term temporal change of the characteristics, and another is the case for the impulsive
change, that is, outliers. The research is expected to contribute to obtain better esti-
mates of the system state in filtering and improve the value of the applications.

1.4 Literature reviews and our specific research themes

In this section, we review the former studies related with our goal. On the basis of
the review, we clarify specific research themes which are to be addressed.

1.4.1 Kalman filters for time-variant observation error statistics

To deal with the long-term temporal change in the characteristics of wt, a basic idea
is to estimate a state vector and parameters that specify the statistics of observation
errors simultaneously. Let us assume that the observation error is modeled as

wt ∼ p(wt|θt), (1.4)

where θt is a vector that represents the parameters. With this expression, the filtering
problem to estimate p(xt|y1:t) is redefined as a problem to estimate p(xt, θt|y1:t).

A straightforward idea is to use an augmented SSM, which is also referred to as
a self-organizing SSM, as discussed in [6], [10], [11], by incorporating θt into xt as
x̃t = [x

T

t θ
T

t ]
T

. The approach is common in the UKF, e.g. [12], or the PF, e.g. [11].
However, this approach does not work for the EnKF as discussed in [13]. From a
Bayesian perspective, this is because a distribution for x̃t is no longer conjugate to a
Gaussian observation model assumed in the EnKF.

Moreover, there is another problem using an augmented SSM within the UKF or
the PF. For the correlated observation error, the covariance parameters of wt are re-
quired to be estimated. If incorporating such θt into x̃t, the dimensionality could be
very large because the size is increased proportional to the square of the dimension-
ality of wt. As already mentioned, the computational cost of the PF is proportional
to the exponential of the dimensionality of x̃t. That of the UKF is proportional to
the dimensionality of x̃t. In nonlinear SSMs, calculation of a transition functions is
often very time-consuming due to, for example, solving the numerical integration
for differential equations that defines the time-evolution of xt. As a result, the com-
putational cost of the UKF or the PF could be massive. Therefore, we can say that
the state augmentation is only available for relatively small problems.

Recently, methods for separately estimating the state vector xt and θt for the vari-
ances or covariances of Gaussian distributed wt, have been reported and seem to be
promising [13]–[16]. That is, wt is assumed to follow the Gaussian given by,

wt ∼ N (wt|0,R(θt)), (1.5)

where R denotes the observation error covariance matrix parameterized with θt. The
methods use a separated parametric distribution for θt in order to perform sequen-
tial Bayesian estimation. Since the dimensionality of xt does not increase, computa-
tionally efficient algorithms could be constructed. Moreover, most of the methods
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assume a dynamics for θt in addition to that of xt. Due to the dynamics for θt, it is
possible to estimate time-variant θt successfully.

However, there are shortcomings in those studies. First, there is no discussion for
designing the dynamics for θt; practitioners have to determine the optimal value by
trial and error. Second, the long-term stability of filtering is not discussed. The meth-
ods [14]–[16] adopt an approximation method for estimating xt and θt, separately.
The effect of approximation error in long-term filtering has not been discussed: for
examples, how much the approximation error is accumulated, or whether the filter-
ing is diverged by the error.

We have presented a study for addressing the shortcomings with a new method
by extending the EnKF. In the study, we have proposed a maximum likelihood
method for specifying the dynamics for θt. In addition, we experimentally demon-
strate the stability of our method in a long-run filtering when there are unmodeled
disturbances. The study is detailed in Chapter 3.

1.4.2 Kalman filters for outliers

The problem of outliers in filtering is over-fitting to the gross observation error as a
result of using an error model with a small variance. To overcome this problem, a
basic idea is to use a heavy-tailed error model. From this aspect, the former stud-
ies can be classified into two approaches: one is a static approach and another is a
dynamic approach.

The static approach uses an inherently heavy-tailed distribution as an observa-
tion error model, such as the t-distribution[17] or the Cauchy distribution [18], to
avoid over-fitting to outliers by reducing the sensitivity for gross errors. Kalman
filters based on robust estimation, as discussed in e.g., [19]–[21], that replaces a
quadratic loss function for innovations with ad-hoc loss functions to reduce the
sensitivity for gross errors, can be also regarded as one of the static approaches.
Although the approach can be applied with a reasonable computational cost, it is
required to tune parameters for each filtering problem. In addition, application of a
heavy-tailed model to all observations might cause under-fitting because the heavy
tail also reduces the sensitivity to observations with regular errors.

The dynamic approach uses an error model with time-indexed parameters and
estimates the parameters at each time step. By adopting the dynamic approach, only
when outliers occur, over-fitting to outliers is expected to be avoided, for example,
by enlarging the variance parameter temporarily. There are methods that estimate
an observation error covariance matrix of a Gaussian error model [14], [22] by con-
ducting the Bayesian estimation at each time step. Although effective in avoiding
over-fitting to outliers, the methods tend to be fluctuated even for outlier-free ob-
servations because the prior is non-informative and easily causes over-fitting. This
leads a deterioration in state estimation because of under- or over-fitting to observa-
tions.

Therefore, as one of the dynamic approaches, we have proposed a new method
for dealing with outliers in nonlinear filtering problem by extending the UKF, and
we present the method in 4. The key idea is to switch two Gaussian observation
models that have distinct observation error covariance matrices: one is for observa-
tions with regular error, and another, which has larger variance, is for outliers. In
addition to a state vector, the method estimates an indicator variable that switches
the two models and a scale parameter of the covariance matrix for outliers. As a
result of estimating the indicator variable and the scale parameter, estimate of the
observation error covariance matrix that can handle both regular observations and
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outliers is obtained at each time step. Furthermore, by estimating the scale param-
eter, the proposed method is applicable to any problem without tuning regarding
outlier characteristics. Through numerical experiments, we demonstrate that the
proposed method is able to estimate the state better than existing methods for both
datasets with and without outliers.
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Chapter 2

Preliminaries

2.1 Kalman filters

2.1.1 Formulation of filtering problem

From a Bayesian perspective, the purpose of a filtering problem is to recursively
estimate the tth filtered distribution p(xt|y1:t) from the (t− 1)th filtered distribution
p(xt−1|y1:t−1), The distribution p(xt|y1:t) can be obtained from p(xt−1|y1:t−1) in the
following two steps:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (2.1)

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1), (2.2)

where p(xt|xt−1) and p(yt|xt) are a system model and an observation model that con-
stitute the general SSM, and the distribution p(xt|y1:t−1) is referred to as the tth pre-
dictive distribution. The calculation of Eq. (2.1) and (2.2) are referred to as prediction
and update, respectively.

Filtering is a technique that recursively estimates the filtered distribution starting
from given distribution of the state vector by using a SSM.

2.1.2 Kalman filter (KF)

The Kalman filter (KF) is the special case of calculation for Eqs. (2.1) and (2.2) by
assuming following distributions. That is,

p(xt−1|y1:t−1) = N (xt−1|µt−1|t−1,Vt−1|t−1), (2.3)

p(xt|xt−1) = N (xt|Fxt,Q), (2.4)
p(yt|xt) = N (yt|Htxt,R), (2.5)

where N denotes a Gaussian distribution, µ ∈ Rd and V ∈ Rd×d � 0 are the mean
and the covariance matrix of the state vector, the subscript T1|T2 is used for denoting
a variable at time step T1 inferred from given observations at time steps from 1 to T2,
and F ∈ Rd×d, Q ∈ Rd×d � 0, Ht ∈ Rm×d, and R ∈ Rm×m � 0 are given parameters.
Especially, Q is referred to as the model error covariance matrix, and R is referred to
as the observation error covariance matrix.
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By substituting Eqs. (2.3) and (2.4) into Eq. (2.1), the tth predictive distribution
is obtained as

p(xt|y1:t−1)

=

∫
N (xt|Fxt−1,Q)N (xt−1|µt−1|t−1,Vt−1|t−1)dxt−1,

= N (xt|µt|t−1,Vt|t−1),
µt|t−1 = Fµt−1|t−1,

Vt|t−1 = FVt−1|t−1F
T

+ Q,

(2.6)

By substituting Eqs. (2.6) and (2.5) into Eq. (2.2), the tth filtered distribution is
obtained as

p(xt|y1:t) ∝ N (xt|Htxt,R)N (xt|µt|t−1,Vt|t−1),
= N (xt|µt|t,Vt|t),
µt|t = µt|t−1 + K(yt − Htµt|t−1),

Vt|t = (I− KH)Vt|t−1

K = Vt|t−1Ht(HtVt|t−1H
T

t + R)−1,

(2.7)

Since tth filtered distribution is obtained as a Gaussian, this calculation can be ap-
plied recursively. The successive calculation constitutes the algorithm of the KF.

As already discussed, in actual applications, since the system model or the ob-
servation model includes nonlinear functions, such an exact calculation of Eqs. (2.1)
and (2.2) is intractable in general. Therefore, the following algorithms as the variant
of the KF were developed.

2.1.3 Unscented Kalman filter (UKF)

The UKF is a filtering algorithm for nonlinear SSMs by using the unscented transfor-
mation [4]. The unscented transformation is a method for approximating the statis-
tics up to the second moment of a nonlinearly-transformed probability distribution
by using the sigma points and the corresponding weights detailed in Appendix A.

In this thesis, we assume a nonlinear SSM with additive Gaussian error for the
UKF. The SSM is defined as

p(xt|xt−1) = N (xt|f(xt−1),Q), (2.8)
p(yt|xt) = N (yt|h(xt),R), (2.9)

where f : Rd → Rd and h : Rd → Rm are multivariate nonlinear functions.
By assuming the (t − 1)th filtered distribution as Eq. (2.3) and applying the un-

scented transformation, the UKF approximates the tth predictive distribution Eq.
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(2.1) as a Gaussian with the system model, Eq. (2.8). That is,

p(xt|y1:t−1) =

∫
N (xt|f(xt−1),Q)N (xt−1|µt−1|t−1,Vt−1|t−1)dxt−1

≈ N (xt|µt|t−1,Vt|t−1),

µt|t−1 =
2d∑
i=0

W
(m)
i,t−1|t−1f(χ(i)

t−1|t−1),

Vt|t−1 =
2d∑
i=0

W
(c)
i,t−1|t−1(f(χ(i)

t−1|t−1)− µt|t−1)(f(χ(i)
t−1|t−1)− µt|t−1)

T
+ Q,

(2.10)

where χ(i)
t−1|t−1 are the sigma points of p(xt−1|y1:t−1), and W

(m)
i,t−1|t−1 and W

(c)
i,t−1|t−1

are the corresponding weights. Then, the tth filtered distribution Eq. (2.2) is also
approximated as a Gaussian. That is,

p(xt|y1:t) ∝ N (xt|h(xt),R)p(xt|µt|t−1,Vt|t−1)
≈ N (xt|µt|t,Vt|t),
µt|t = µt|t−1 + K(yt − ȳt),

Vt|t = Vt|t−1 − KVyK
T
,

K = VxyV−1y ,

ȳt =
2d∑
i=0

W
(m)
i,t|t−1h(χ

(i)
t|t−1),

Vy =

2d∑
i=0

W
(c)
i,t|t−1(h(χ

(i)
t|t−1)− ȳt)(h(χ

(i)
t|t−1)− ȳt)

T
+ R,

Vxy =

2d∑
i=0

W
(c)
i,t|t−1(χ

(i)
t|t−1 − µt|t−1)(h(χ

(i)
t|t−1)− ȳt)

T
,

(2.11)

where χ(i)
t|t−1 are the sigma points of N (µt|t−1,Vt|t−1), and W

(m)
i,t|t−1 and W

(c)
i,t|t−1 are

the corresponding weights.
Since the tth filtered distribution is obtained as a Gaussian distribution, these

equations can be applied recursively and constitute the algorithm of the UKF.

2.1.4 Ensemble Kalman filter (EnKF)

The original ensemble Kalman filter (EnKF) is a filtering algorithm for nonlinear
SSMs by using a ensemble-based distribution [5], [6], [23]. In EnKF the (t − 1)th
filtered distribution is given as

p(xt−1|y1:t−1) =
1

N

N∑
n=1

δ(xt−1 − x(n)t−1|t−1), (2.12)

where δ is Dirac’s delta function, N is the ensemble size, and x(n)t−1|t−1 is the n-th
ensemble member constituting the ensemble-based distribution.
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In EnKF, the following SSM is assumed. That is,

xt ∼ p(xt|xt−1), (2.13)
yt ∼ p(yt|xt) ≡ N (yt|Htxt,R). (2.14)

Note that, while the system model is an arbitrary distribution, the observation model
is limited to a Gaussian distribution with the mean Htxt, which is a linear transfor-
mation of xt.

For the given SSM, the tth predictive distribution is obtained by substituting Eqs.
(2.13) and (2.12) into Eq. (2.1) as

p(xt|y1:t−1) =

∫
p(xt|xt−1) ·

1

N

N∑
n=1

δ(xt−1 − x(n)t−1|t−1)

=
1

N

N∑
n=1

δ(xt − x(n)t|t−1),

x(n)t|t−1 ∼ p(xt|x(n)t−1|t−1),

(2.15)

where x(n)t|t−1 is the n-th member constituting the tth predictive distribution. By sub-
stituting Eqs. (2.14) and (2.15) into Eq. (2.2), the tth filtered distribution is approxi-
mated as

p(xt|y1:t) ∝ N (yt|Htxt,R) · 1

N

N∑
n=1

δ(xt − x(n)t|t−1)

≈ 1

N

N∑
n=1

δ(xt − x(n)t|t ),

x(n)t|t = x(n)t|t−1 + Kt(yt + w(n)
t − Htx

(n)
t|t−1),

Kt = V̂t|t−1H
T

t (HtV̂t|t−1H
T

t + R̂)−1,

w(n)
t ∼ N (wt|0,R),

(2.16)

where V̂t|t−1 is the ensemble covariance matrix of {x(n)t|t−1}, x(n)t|t is the n-th member

constituting the tth filtered distribution, w(n)
t is the n-th realization of the observa-

tion error, and R̂ is the ensemble covariance matrix of {w(n)
t }. Successive application

of Eqs. (2.15)-(2.16) constitutes the EnKF algorithm.

2.2 Variational Bayese (VB) Method

In this section, we briefly introduce the variational Bayes (VB) method which is used
throughout this thesis.

2.2.1 The VB method in genral

Formulation

The VB method is an approximation method for the posterior distribution. For a
given dataset D, the VB method approximates the posterior distribution of latent
random variables Z = {Z1, · · · , ZL}. The graphical model is shown in Fig. 2.1. In
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FIGURE 2.1: Graphical model representation for D and Z. Gray cir-
cles represent observable variables, and white circles represent latent

variables that are not observable.

the prior distribution p(Z), we assume {Zl}Ll=1 are independent of each other. That
is,

p(Z) =
L∏
l=1

p(Zl). (2.17)

Let us assume a marginal likelihood p(D) and, by introducing an arbitrary dis-
tribution q(Z), the likelihood can be decomposed as

ln p(D)

= ln p(D)

∫
q(Z)dZ

=

∫
q(Z) ln

p(D|Z)p(Z)

p(Z|D)
dZ

=

∫
q(Z){ln p(D|Z) + ln p(Z)− ln p(Z|D) + ln q(Z)− ln q(Z)}dZ

= F [q(Z)] +KL[q(Z) ‖ p(Z|D)],

(2.18)

where

KL[q(Z) ‖ p(Z|D)] ≡
∫
q(Z) ln

q(Z)

p(Z|D)
dZ, (2.19)

F [q(Z)] ≡
∫
q(Z) ln

p(D|Z)p(Z)

q(Z)
dZ. (2.20)

This decomposition is illustrated in Fig. 2.2.
Here, a functional KL is referred to as the Kullback-Leibler (KL) divergence,

which measures dissimilarity between two distributions. The KL divergence is al-
ways non-negative and becomes zero if and only if the two input distributions are
identical. The example is illustrated in Fig. 2.3.

According to the properties of the KL divergence, we can say that the minimiza-
tion of the divergence with respect to q(Z) yields the best estimate of p(Z|D). That
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FIGURE 2.2: Decomposition of the marginal likelihood

FIGURE 2.3: Example of the Kullback-Leibler divergence; KL[p1(x) ‖
p2(x)] > KL[p1(x) ‖ p3(x)]

is,

p(Z|D) ≈ arg min
q(Z)

KL[q(Z) ‖ p(Z|D)]. (2.21)

However, the KL divergence cannot be evaluated because it depends on the true pos-
terior distribution p(Z|D), which is unknown and currently trying to be estimated.
Here, since the left-hand side of Eq. (2.18) is constant, minimization of the KL diver-
gence is equivalent to maximization of the functional F with respect to q(Z). That
is,

p(Z|D) ≈ arg max
q(Z)

F [q(Z)]. (2.22)
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The meaning of maximizingF with respect to q(Z) can be understood as follows.
The functional F can be rearranged as

F [q(Z)] = 〈ln p(D|Z)p(Z)〉q(Z) +H[q(Z)], (2.23)

H[q(Z)] ≡
∫
q(Z) ln

1

q(Z)
dZ, (2.24)

where 〈·〉q denotes an expectation operator on a probability distribution q, and a
functional H is referred to as the entropy which measures the lack of information
of a probability distribution. For the uniform distribution, the entropy takes maxi-
mum. The first term of Eq. (2.23) measures the fitness of a generative model p(D|Z)
regularized by the prior distribution of latent variables in the model, p(Z). If we
only consider the maximization of the first term, we obtain the maximum a poste-
riori (MAP) estimate. By simultaneously maximizing F and H, we can obtain the
distribution q(Z) as an approximation of the true posterior p(Z|D).

Solution

Maximization of the functional F can be performed by using the variational method
under the following assumption. That is,

q(Z) = q(Z1)q(Z2) · · · q(ZL), (2.25)

where q(Z1), · · · , q(ZL) are referred to as variational posterior distributions. Note
that the assumption means that latent random variables are also independent of
each other in the posterior distribution.

Given the space constraints, we will only describe the resultant maximizer for
Eq. (2.22). The details for applying the variational method to the VB method can be
found in [24]. The maximizer should satisfy

ln q(Zl) = 〈ln p(D|Z)〉−q(Zl) + ln p(Zl) + const. l = 1, · · · , L, (2.26)

where 〈·〉−q(Zl) is an expectation operator on all variational distributions except q(Zl),
and const. is a normalization constant. Since the variational posterior distributions
depend on each other, the maximizer can be obtained by calculating them alternately
from an initial guess of variational distributions. The iterative calculation until con-
vergence of the variational distributions constitutes an algorithm of the VB method.
Although, as far as we know, the convergence is not theoretically guaranteed, it was
confirmed through a number of successful applications of the VB method [25].

Only when ln p(D|Z) is a distribution of the exponential family regarding Z and
p(Zl), l = 1, · · · , L are the conjugate prior, the iterative calculation to obtain the pos-
terior becomes simple by just updating their sufficient statistics.

2.2.2 The VB method for filtering

To adopt the VB method in filtering, we derive a recursive form for observations
y1, · · · ,yt. In the context of machine learning, it is known as the online VB method
[26], which process data samples one by one, and our derivation is based on the
discussion.

Here, as a dataset, we assume a single observation yt. Furthermore, we use time-
indexed notation Zt = {Zt,1, · · · , Zt,L} as the independent latent random variables.
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In Chapter 3 and 4, we intend to use Zt as Zt = [xt Rt]
T

and Zt = [xt st γt]
T

, re-
spectively. The relation between y1:t and Zt is illustrated in Fig. 2.4. Starting from a

FIGURE 2.4: Graphical model representation for yt and Zt. Gray cir-
cles represent observable variables, and white circles represent latent

variables that are not observable.

marginal likelihood of yt conditioned on y1:t−1 , which is represented by p(yt|y1:t−1),
the derivation approach in section 2.2.1 again leads to an approximation of posterior
distribution, that is, the filtered distribution p(Zt|y1:t) as

p(Zt|y1:t) ≈ arg max
q(Zt)

F [q(Zt)],

F [q(Zt)] ≡
∫
q(Zt) ln

p(yt|Zt)
∏L
l=1 p(Zt,l|y1:t−1)

q(Zt)
dZt,

(2.27)

where p(Zt,l|y1:t−1) is referred to as the predictive distribution of Zt,l at time step t.
Note that we assume yt is conditionally independent of y1:t−1 for given Zt. Similarly
to section 2.2.1, by assuming the independency of Zt,1, · · · , Zt,L in variational poste-
rior distributions and applying the variational method, the maximizer of Eq. (2.27)
can be immediately obtained as

ln q(Zt,l) = 〈ln p(yt|Zt)〉−q(Zt,l) + ln p(Zt,l|y1:t−1) + const. l = 1, · · · , L. (2.28)

By substituting Zt = xt into Eq. (2.28) and taking the exponential, the equation
is equivalent to Eq.(2.2). Thus, by using the VB method for filtering, we can perform
filtering for other random variables in addition to xt.

2.2.3 Consideration of the approximation in the VB method

In this section, we consider the effect of the independence assumption in the VB
method by using a probability density distribution that has a correlation between
the random variables.

Let us assume two dimensional Gaussian distribution as

p(x1, x2) = N ((
x1
x2

)|0,Λ−1 ≡
(

1 r
r 1

)
), (2.29)
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where x1 and x2 are random variables, Λ is a precision matrix of the Gaussian dis-
tribution, and r is the covariance between x1 and x2.

The variational approximation of this distribution with the two independent dis-
tributions q(x1) and q(x2) was discussed in [27] and given as

p(x1, x2) ≈ q(x1)q(x2),
q(x1) = N (x1|m1 = Λ−11,1Λ1,2m2,Λ

−1
1,1),

q(x2) = N (x2|m2 = Λ−12,2Λ2,1m1,Λ
−1
2,2),

(2.30)

where Λi,j is the (i, j)th element of Λ. Note that, since q(x1) and q(x2) depend on
each other via the means m1 and m2, the solution can be obtained by an iterative
procedure starting from randomly generated m1.

For r = 0, 0.12, 0.24, 0.37, 0.49, 0.61, 0.74, 0.86, 0.99, the true and approximated
distributions are plotted in Fig. 2.5. As can be seen in the figure, the means are
appropriately estimated, while the variances tend to be underestimated especially
for the correlated cases. Since the independence is assumed, the VB method cannot
estimate the correlation between x1 and x2 in all cases. In [27], the problem of un-
derestimation of the variances is discussed in the comparison with the expectation
propagation (EP) method, which is also an approximation method of the posterior.

In Fig. 2.6, the number of iterations until convergence is shown. For the low
value of r, that is, x1 and x2 are independent, the required number of iterations is
very small. When r approaches to 0.99, that is, x1 and x2 become correlated, the
required iterations increases prominently.

Although there is no theoretical guarantee, this experiment shows three implica-
tions for applying the VB method to dependent random variables.

• it can estimate the posterior mean appropriately

• it may underestimate the variance in the posterior

• it may take more iterations to get the converged distributions
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FIGURE 2.5: Contour plot for 2σ of the true and approximated distri-
butions. The dashed lines denote plots of the true distributions, and

the solid lines denote plots of the approximated distributions.
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Chapter 3

Nonlinear Kalman filters for
time-variant observation error
statistics

This chapter is based on the published article,

Akio Nakabayashi and Genta Ueno, "An Extension of the Ensemble Kalman Filter for Esti-
mating the Observation Error Covariance Matrix Based on the Variational Bayes’s Method",
Monthly Weather Review, 145.1 (2017):199-213. c©American Meteorological Society. Used
with permission.

3.1 Introduction

The EnKF requires that the observation error covariance matrix Rt is set prior to
execution. It is known that a poor choice of Rt can result in under- or overfitting
[28]. An appropriate estimation of Rt is, therefore, a crucial problem in applications
of the EnKF. Although Rt is typically estimated as a time-invariant parameter [e.g.
29], in some cases, it may be reasonable to estimate Rt as a time-variant parameter.
One such example is a system in which the measurement instruments deteriorate
over time. We thus note that there is a demand for a method for estimating a time-
variant Rt that works with the EnKF.

The most straightforward idea for estimating Rt is to use an augmented state-
space model that includes Rt in the state vector as x̃t = [xt Rt]

T
, as discussed in [10]

and [6]; this is also known as the self-organizing state-space model [11]. However,
this approach does not work in the framework of the EnKF. The reason is that the
filtered estimate of x̃t cannot be represented in a closed form, because the Kalman
gain, which is used to filter the augmented state vector that includes Rt, depends
on Rt itself. From a Bayesian perspective, the problem comes from the fact that
the Gaussian distribution approximating the ensemble for x̃t, which is assumed in
the EnKF, is no longer conjugate to the observation model, that is, the likelihood
function. [13] also discussed this issue from another perspective.

Therefore, estimation of Rt in the EnKF is an active area of research. [13] have
proposed a filtering method for xt and a scaling factor α for the covariance matrices
of the model error (referred to as background error or system noise), xt, and the ob-
servation error. In their method, however, the basis matrix of Rt to be scaled needs
to be determined in advance. In addition, the estimation of the time-variant Rt is
difficult because α approaches to a constant value as a result of its time-invariant as-
sumption. [30] and [31] have proposed hybrid methods that combine the EnKF for
xt and the particle filter (PF) for the parameter θt of R(θt). Although not discussed
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explicitly, their methods are applicable to a time-variant Rt. In addition, these ap-
proaches [30], [31] can, in principle, be applied to an arbitrary parameterized R(θt),
which may include the case in which all the elements of Rt are assigned as θt. How-
ever, in a practical sense, the cost of estimating all the elements is prohibitive due
to the limitations of the PF for high-dimensional problems [7], [32]. As a result, the
dimensionality of θt needs to be restricted to be quite low, and strong assumptions
about the structure of Rt are necessary.

In the field of signal processing, [15], [33], and [16] have proposed filtering meth-
ods for a time-evolving xt and a time-variant Rt. While the methods of [15] and [33]
were limited to linear system models, the method of [16] dealt with the nonlinear
case. The key idea of [16] was to combine the Gaussian filter for xt and the Bayesian
estimation of Rt with the inverse Wishart distribution [34], [35], which is the conju-
gate prior distribution for Rt. As detailed in [16], the combination is realized by us-
ing the variational Bayes (VB) method, which is a method for approximating a joint
posterior distribution for multiple random variables with their independent distri-
butions. With the VB method, the Gaussian filter for xt and the Bayesian estimation
for Rt can be applied separately [16]. However, the Gaussian filter is not available
for high-dimensional systems, since it explicitly estimates the mean and the covari-
ance matrix of xt. The cost of the estimation is proportional to the dimensionality of
xt. In addition, [16] did not provide a way to optimize the hyperparameters used in
their method.

In this chapter, we propose an extension of the ensemble Kalman filter (EnKF)
that can simultaneously estimate the state vector and the observation error covari-
ance matrix by using the variational Bayes (VB) method. In numerical experiments,
we examine this capability for a time-variant observation error covariance matrix,
and it is noteworthy that our method works well even when the true observation er-
ror covariance matrix is nondiagonal. We also present two complementary studies.
First, we demonstrate the stability of a long-run assimilation when there are unmod-
eled disturbances. Second, we derive and demonstrate a maximum-likelihood (ML)
method for optimizing the hyperparameters used in our method.

3.2 The proposed method

3.2.1 Formulation

We assume an observation error wt ∈ Rm is a random variable that has time-variant
characteristics. To estimate the characteristics, we assume that the error can be rep-
resented as a Gaussian defined as

wt ∼ p(wt) = N (wt|0,Rt), (3.1)

where Rt ∈ Rm×m � 0 is the time-indexed observation error covariance matrix. We
estimate Rt in addition to xt within the EnKF. To achieve the goal, we redefine a
filtering problem for both xt and Rt with an SSM for xt and Rt by modifying Eqs.
(2.1)-(2.2) as also discussed in [16]. Similarly to xt, we assume Rt is a realization of
the first-order Markov process. Thus, we obtain,

p(xt,Rt|y1:t−1) =∫
p(xt,Rt|xt−1,Rt−1)p(xt−1,Rt−1|y1:t−1)dxt−1dRt−1,

(3.2)

p(xt,Rt|y1:t) ∝ p(yt|xt,Rt)p(xt,Rt|y1:t−1), (3.3)
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FIGURE 3.1: Contour plot of 2σ ofN (0,Rt), where Rt is sampled from
Eq. (3.5) for Rt−1 = I and ξ = 20, 100. The red circle denote the mean,

that is, the contour plot of N (0, I).

where xt ∈ Rd is the state vector, yt ∈ Rm is the observation vector, p(xt−1,Rt−1|y1:t−1),
p(xt,Rt|y1:t−1), and p(xt,Rt|y1:t) are the (t − 1)th joint filtered distribution, tth joint
predictive distribution, and tth joint filtered distribution for xt and Rt. By specifying
models in Eqs. (3.2)-(3.3), we have derived an extended EnKF algorithm.

3.2.2 State-space model

In this subsection, we define a system model for xt and Rt. In the time-evolution, we
assume independency between xt and Rt as

p(xt,Rt|xt−1,Rt−1) = p(xt|xt−1)p(Rt|Rt−1). (3.4)

Due to the assumption, for xt, we can use the same system model as the EnKF, which
is defined by Eq. (2.13).

For Rt, we define a conditional distribution that represents the time-evolution of
Rt for given Rt−1 as,

p(Rt|Rt−1) = IW(Rt|ξ, (ξ − 2m− 2)Rt−1), (3.5)

where IW denotes an inverse Wishart distribution [34], and ξ > 2m+2 is the degree
of freedom parameter. This system model has two characteristics. First, for any ξ,
the system model preserves Rt−1 as the mean. Second, ξ controls the uncertainty
in the time evolution of Rt. At the limit as ξ → ∞, the system model gives a point
mass on Rt−1, which implies a null transition. On the other hand, at the limit as
ξ → 2m+ 2, the system model becomes uniform, which means that the transition is
totally uncertain. Examples of covariance matrices which are sampled from Eq. (3.5)
are illustrated in Fig. 3.1.

We define an observation model by assuming additive error given by Eq. (3.1).
That is,

p(yt|xt) = N (yt|Hxt,Rt), (3.6)

where yt ∈ Rm is the observation vector, and H ∈ Rm×d. Note that a linear model is
assumed for mapping xt onto yt to use the EnKF algorithm.
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FIGURE 3.2: Graphical model representation of the SSM of the pro-
posed method. Gray circles represent observable variables, and white

circles represent latent variables that are not observable.

Therefore, the assumed SSM is summarized as follows:

p(xt|xt−1)p(Rt|Rt−1) = p(xt|xt−1)IW(Rt|ξ, (ξ − 2m− 2)Rt−1),

p(yt|xt) = N (yt|Hxt,Rt).
(3.7)

The SSM is illustrated as a graphical model in Fig. 3.2. With the SSM and given
(t− 1)th filtered distribution, we derive tractable forms of Eqs. (3.2) and (3.3).

3.2.3 Prediction step

At first, we prescribe the (t − 1)th filtered distribution for xt and Rt. Since we will
extend the EnKF in this chapter, we use an ensemble-based distribution for xt. For
Rt, we use an inverse Wishart distribution, which is a conjugate prior to covariance
matrix of a Gaussian likelihood. That is, the (t− 1)th filtered distribution is defined
as

p(xt−1,Rt−1|y1:t−1)

= p(xt−1|y1:t−1)p(Rt−1|y1:t−1)

=
1

N

∑
n

δ(xt−1 − x(n)t−1) · IW(Rt−1|ηt−1|t−1,Bt−1|t−1), (3.8)

where δ is Dirac’s delta function, x(n) ∈ Rd is the nth member of an ensemble, and
η > 2m + 2 and B ∈ Rm×m � 0 are the degree of freedom parameter and the scale
matrix, respectively. The properties of the inverse Wishart distribution is detailed in
Appendix B.

Since we assume the independency between xt and Rt, the prediction can be
performed separately as

p(xt,Rt|y1:t−1) =

∫
p(xt,Rt|xt−1,Rt−1)p(xt−1,Rt−1|y1:t−1)dxt−1dRt−1,

=

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 ×

∫
p(Rt|Rt−1)p(Rt−1|y1:t−1)dRt−1,

≡ p(xt|y1:t−1)p(Rt|y1:t−1),

(3.9)

where p(xt|y1:t−1) and p(Rt|y1:t−1) are the tth predictive distribution of xt and Rt,
respectively.
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The calculation of p(xt|y1:t−1) is the same as the EnKF. Thus, again, the distribu-
tion is given by

p(xt|y1:t−1) =
1

N

N∑
n=1

δ(xt − x(n)t|t−1),

x(n)t|t−1 ∼ p(xt|x(n)t−1|t−1).

(3.10)

For Rt, by substituting the second term in Eq.(3.8) and Eq. (3.5), p(Rt|y1:t−1)
becomes

p(Rt|y1:t−1)

=

∫
IW(Rt|ξ, (ξ − 2m− 2)Rt−1) · IW(Rt−1|ηt−1|t−1,Bt−1|t−1)dRt

(3.11)

Since the exact integration is intractable, we approximate the predictive distribution
for Rt with another inverse Wishart distribution that has the same moments up to
the second order. The approximated predictive distribution for Rt is thus

p(Rt|y1:t−1) ≈ IW(Rt|ηt|t−1,Bt|t−1), (3.12)

where

ηt|t−1 =
2(

1 + 2
ξ−2m−4

)(
1 + 2

ηt−1|t−1−2m−4
)
− 1

+ 2m+ 4,

Bt|t−1 =
ηt|t−1 − 2m− 2

ηt−1|t−1 − 2m− 2
Bt−1|t−1.

(3.13)

The derivation of this approximation is detailed in Appendix C.
Here, we have the tth joint predictive distribution for xt and Rt as follows:

p(xt,Rt|y1:t−1) =
1

N

N∑
n=1

δ(xt − x(n)t|t−1) · IW(Rt|ηt|t−1,Bt|t−1). (3.14)

3.2.4 Update step

Since the exact calculation of Eq. (3.3) by substituting Eqs. (3.6) and (3.14) is in-
tractable, we derive the approximated form by adopting the VB method.

In conformity to section 2.2, by defining Zt = {xt,Rt} and assuming the inde-
pendency of xt and Rt in the tth joint filtered distribution, the approximated joint
filtered distribution is immediately given as follows:

ln q(xt) = 〈ln p(yt|xt,Rt)〉q(Rt) + ln p(xt|y1:t−1) + const ., (3.15)

ln q(Rt) = 〈ln p(yt|xt,Rt)〉q(xt) + ln p(Rt|y1:t−1) + const ., (3.16)

where 〈·〉q is the expectation operator on the distribution q. In the following, we
calculate the actual form of these two distributions, q(xt) and q(Rt).
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First, by calculating the expectation with respect to Rt, Eq. (3.15) becomes

ln q(xt) = −1

2
〈(yt − Hxt)

T
R−1t (yt − Hxt)〉q(Rt) + ln p(xt|y1:t−1) + const.

= −1

2
〈tr[(yt − Hxt)(yt − Hxt)

T
R−1t ]〉q(Rt) + ln p(xt|y1:t−1) + const.

= −1

2
tr[(yt − Hxt)(yt − Hxt)

T〈R−1t 〉q(Rt)] + ln p(xt|y1:t−1) + const.

= −1

2
(yt − Hxt)

T〈R−1t 〉q(Rt)(yt − Hxt) + ln p(xt|y1:t−1) + const.

= lnN (yt|Hxt, R̄t) + ln p(xt|y1:t−1) + const .,

(3.17)

where

R̄t ≡ 〈R−1t 〉
−1
q(Rt). (3.18)

Since the exponential of Eq. (3.17) is the same form as that of the EnKF by substi-
tuting Rt = R̄t, q(xt) can be calculated based on the EnKF update. Here, R̄t is the
estimate of the random variable Rt based on q(Rt), which is also an estimating tth
filtered distribution for Rt. The obtained distribution is the following ensemble:

q(xt) =
1

N

N∑
n=1

δ(xt − x(n)t|t ),

x(n)t|t = x(n)t|t−1 + Kt(yt + w(n)
t − Htx

(n)
t|t−1),

Kt = V̂t|t−1H
T

t (HtV̂t|t−1H
T

t + R̂t)
−1,

w(n)
t ∼ N (wt|0, R̄t).

(3.19)

Similarly, Eq. (3.19) can be replaced with another EnKF variant, such as the ensemble
square root filter (EnSRF) [36].

Next, by calculating the expectation with respect to xt, Eq. (3.16) becomes

ln q(Rt) = −1

2
ln |Rt| −

1

2
〈(yt − Hxt)

T
R−1t (yt − Hxt)〉q(xt) + ln p(Rt|y1:t−1) + const .

(3.20)

By substituting Eq. (3.19) into Eq. (3.20), we obtain q(Rt) as, again, an inverse Wishart
distribution. That is,

q(Rt) = IW(Rt|ηt|t,Bt|t), (3.21)

where

ηt|t = ηt|t−1 + 1,

Bt|t = Bt|t−1 + (y− Hµ̂t|t)(y− Hµ̂t|t)
T

+ HV̂t|tH
T
.

(3.22)

We use µ̂t|t and V̂t|t as the mean vector and the covariance matrix of {x(n)t|t }, respec-
tively. Now, since we have found the actual form of q(Rt), R̄t, defined by Eq. (3.18),
can be calculated as

R̄t =
1

ηt|t −m− 1
Bt|t. (3.23)
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Algorithm 1 Algorithm for the VBEnKF

Require: an initial distribution, p(x0,R0) = 1
N

∑N
n=1 δ(x0 − x(n)0|0 ) · IW(R0|η0,B0).

1: for t = 1 to T do
2: calculate p(xt|y1:t−1) with Eq. (3.10)
3: calculate p(Rt|y1:t−1) with Eq. (3.12)
4: let q(Rt) = p(Rt|y1:t−1)
5: while true do
6: calculate q(xt) with Eq. (3.19) (or with other EnKF variants)
7: calculate q(Rt) with Eq. (3.21)
8: if the update of q(xt) and q(Rt) have converged then
9: exit while loop

10: end if
11: end while
12: let p(xt|y1:t) = q(xt), p(Rt|y1:t) = q(Rt)
13: end for

Here, we have tth joint filtered distribution for xt and Rt as follows:

p(xt,Rt|y1:t) ≈ q(xt)q(Rt) =
1

N

N∑
n=1

δ(xt − x(n)t|t ) · IW(Rt|ηt|t,Bt|t). (3.24)

The two distributions, q(xt) and q(Rt), depend on each other via the expectations in
Eqs. (3.19) and (3.21). Therefore, we calculate them alternately, beginning with an
initial guess for q(Rt) and continuing until convergence. To obtain an initial guess for
q(Rt), one option is to use the predictive distribution, Eq. (3.14). As the convergence
metric, we will use the L2 norm of µ̂t|t.

3.2.5 Algorithm

Here, since tth joint filtered distritbution, Eq. (3.24), is the same form as the (t −
1)th joint filtered distribution, Eq. (3.8), we can construct an algorithm which is
recursively applied for estimating xt and Rt. This algorithm is shown in Algorithm 1,
which we will refer to as the variational Bayesian ensemble Kalman filter (VBEnKF).

3.3 Tips for usage

3.3.1 Selection of ξ for the system model of Rt

We present an idea for selecting ξ, which is a hyperparameter that must to be speci-
fied in advance of assimilation, based on the relation between ξ and ηt|t.

From Eqs. (3.12) and (3.22), the temporal variation of ηt|t can be simulated with
the initial value η0|0 and ξ. The results obtained by starting with η0|0 = {50, 75, 100}
are shown in Fig. 3.3, where it can be seen that the converged value of ηt|t depends
only on ξ.
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FIGURE 3.3: Temporal variation of η from different initial values for a
ten-dimensional observation problem. The horizontal axis represents
the assimilation step, the vertical axis represents ηt|t, the solid line is

the case of ξ = 1e3, and the dashed line is the case of ξ = 1e4.

By rearranging Eqs. (3.12) and (3.22) such that the temporal change of ηt|t be-
comes zero, we obtain a relation between ξ and the converged value of ηt|t as fol-
lows:

ξ = η2c − (7 + 4m)ηc + 4m2 + 16m+ 14, (3.25)

where ηc is the converged value of ηt|t.
This relation is illustrated in Fig. 3.4, from which we can see that the relation be-

tween ξ and ηc is monotonic and depends on the dimensionality of the observation.
Therefore, using this relation, ξ can be replaced by ηc.

The parameter ηc can be more easily interpreted than can ξ, because it repre-
sents the number of degrees of freedom of IW , that is, it is the effective number of
samples. For example, in the case of ξ = 1e3 shown in Fig. 3.3, we can say that in-
formation contained in the ηc = 54.8 samples is retained in the filtered distribution
of Rt in the limit as t→∞.

We recommend first selecting ηc and then using Eq. (3.25) to convert ηc into ξ.
For convenience, in the following discussion, we will regard ηc (instead of ξ) as the
hyperparameter of the VBEnKF.

3.3.2 Covariance tapering for Rt

Estimating Rt from limited observations might result in spurious correlations and
might harm the estimation of xt. When an uncertain system model or an uncertain
initial distribution is used, this problem can become significant in the early stages of
data assimilation.

If we have spatial information about the observation vector which indicates an
inverse correlation between the covariance and the distances to two observation
sites, it can be helpful to use the covariance tapering approach for Rt; this approach



3.3. Tips for usage 29

0 10000 20000 30000 40000 50000

0
1

0
0

2
0

0
3

0
0

4
0

0

xi

e
ta

_
c

(1e+03,54.8)

(1e+04,123.4)

FIGURE 3.4: Relation between ξ and ηc as given by Eq. (3.25). The
solid line is the case of m = 10, and the dashed line is the case of
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has been widely used for the ensemble covariance matrix of the state vector. For
example, with the correlation matrix C discussed in [37], Rt is tapered as

Rt ← Rt ◦ C, (3.26)

where ◦ is the operator for the Hadamard product. When we can assume the el-
ements of the observation error are mutually independent, a reasonable tapering
operation might be to let the nondiagonal elements be zero.

3.3.3 Hyperparameter estimation

Here, we introduce an ML method for optimizing a hyperparaemter, ηc, that need to
be specified in advance of the filtering. For implementing the ML method, we derive
the likelihood function for the time-series data y1:T = {y1, · · · ,yT }. The likelihood
function is composed of the predictive likelihood functions as follows:

p(y1:T ) =

T∏
t=1

p(yt|y1:t−1). (3.27)



30 Chapter 3. Nonlinear Kalman filters for time-variant observation error statistics

Note that the symbols of the hyperparameters are omitted in this derivation. The
predictive likelihood for a single observation yt can be represented as

p(yt|y1:t−1)

=

∫
p(yt, xt,Rt|y1:t−1)dxtdRt,

=

∫
p(yt|xt,Rt)p(xt,Rt|y1:t−1)dxtdRt,

=

∫
p(yt|xt,Rt)p(xt|y1:t−1)p(Rt|y1:t−1)dxtdRt. (3.28)

The matrix Rt can be integrated out as follows:∫
p(yt|xt,Rt)p(Rt|y1:t−1)dRt

=

∫
N (yt|Htxt,Rt)IW(Rt|ηt|t−1,Bt|t−1)dRt

= T (yt|Htxt,
Bt|t−1

ηt|t−1 − 2D
, ηt|t−1 − 2m). (3.29)

The notation T represents the multivariate t-distribution [38], defined as

T (x|µ,V, ν) ∝ [1 +
1

ν
(x− µ)

T
V−1(x− µ)]−

ν+d
2 , (3.30)

where µ is the location vector, V is the scale matrix, and ν is the number of degrees
of freedom. Then, the integral of Eq. (3.28) can be calculated as follows:

p(yt|y1:t−1)

=

∫
T (yt|Htxt,

Bt|t−1

ηt|t−1 − 2m
, ηt|t−1 − 2m)×

p(xt|y1:t−1)dxt

=
1

N

N∑
n=1

T (yt|Htx
(n)
t|t−1,

Bt|t−1

ηt|t−1 − 2m
, ηt|t−1 − 2m). (3.31)

In the second line, p(xt|y1:t−1) is replaced by the predictive ensemble given by Eq. (3.10).
By substituting Eq. (3.31) into Eq. (3.27), the ML estimation of the hyperparameters
becomes possible.

3.4 Numerical Experiments

In this section, we present two numerical experiments that show the properties of the
VBEnKF. First, we show the estimation of a time-variant Rt in a linear system. In the
experiment, we varied the hyperparameters in order to clarify their characteristics.
Second, for a nonlinear system, we demonstrate the capabilities of our method and
show that it is superior to an existing method.
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3.4.1 Experiment with a linear system

System and synthetic data

In the first experiment, we used the following 10-dimensional system:

xt ∼ N (xt|Fxt−1, 0.1I),
yt ∼ N (yt|xt,Rtrue,t),

x0,true = [10, · · · , 10]
T
,

(3.32)

where F ∈ R10×10 is a tridiagonal matrix with 0.3 on the main diagonal, 0.6 on the
superdiagonal, and 0.1 on the subdiagonal, as presented in [39]. The matrix Rtrue,t

is defined as

Rtrue,t =

{
S0 (t = 1, · · · , T2 )

2S0 (t = T
2 + 1, · · · , T ),

(3.33)

where T is a total number of assimilation steps, and S0 is a tridiagonal matrix with
2.0 on the main diagonal and 0.8 on the super- and subdiagonals. Note that the true
observation matrix is doubled from t = T

2 + 1.
In actual case, such a step change of the observation error covariance could hap-

pen when the measurement instruments encounter a malfunction. We have inten-
sion to demonstrate the performance deterioration in estimating the state vector if
the change is not followed.

With this system, we generated synthetic data for T = 2000 steps, x1:2000 and
y1:2000.

Experimental setting

We conducted twin experiments with the VBEnKF. To obtain a baseline for the es-
timation, we also conducted two additional experiments with the EnKF for a fixed
Rt. The first experiment used Rtrue,0 for all of the assimilation steps, and the second
experiment used Rtrue,t; they are referred to as Oracle1 and Oracle2, respectively.

The settings for the EnKF that were used in all experiments are as follows. The
EnKF was implemented using the EnSRF [36] in order to reduce the Monte Carlo
error in the estimation of xt. The ensemble size was set to N = 32. The initial
distribution for x0 was N (x0|xtrue,0, 10I).

For the VBEnKF, we applied the following settings. We used ηc = {100, 200, 400};
the corresponding ξ was obtained by substituting ηc into Eq. (3.25). The parameters
of the initial distribution p(R0) were (η0,B0) = (25, 15I), (50, 140I), and (100, 390I).
Since the domain of η is (2m + 2,∞], and m = 10, the combination (25, 15I) can
be regarded as a relatively uncertain initial distribution. The initial distributions
specified by the above three parameter combinations have different variances but
have the same mean, E(R0) = 5I.

We compare the results from three points of view: 1) the root mean square error
(RMSE) of the predicted mean of xt, 2) the predicted Rt at each assimilation step,
and 3) the required number of iterations for convergence in the VBEnKF. The RMSE
is given as

RMSE =

√√√√ 1

Td

T∑
t=1

(xtrue,t − µ̂t|t−1)
T(xtrue,t − µ̂t|t−1), (3.34)
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FIGURE 3.5: RMSE of the predicted mean of xt. The horizontal axis
represents η0, and the vertical axis represents the RMSE. Gray lines
at RMSE = 0.492 and RMSE = 0.483 are the results of Oracle1 and
Oracle2, respectively, both of which are independent of η0. The other
lines are the results of the VBEnKF: solid for ηc = 100, dashed for

ηc = 200, and dotted for ηc = 400.

where µ̂t|t−1 is the mean of the predictive ensemble.

Results

We conducted the experiments 128 times, each with a distinct random seed used to
initialize the ensemble. The results of each trial were averaged. The RMSEs of the
predicted mean of xt are shown in Fig. 3.5. Temporal variations of the predicted
mean of Rt for the combinations of {ηc, η0} are shown in Fig. 3.6. The average num-
bers of iterations required for convergence in the VBEnKF are shown in Fig. 3.7.

We can see in Fig. 3.5 that the best estimation was achieved by Oracle2, which
uses the true Rt. It should be noted that the VBEnKF outperformed Oracle1, which
uses the true Rt for the first half in the assimilation steps. With the VBEnKF, the ini-
tial distribution for R0 with η0 = 100 outperformed the other settings, η0 = {25, 50}.
In other words, the most certain distribution for R0, the one with the smallest vari-
ance, showed the best result. The setting ηc = 200 outperformed the other settings,
ηc = {100, 400}. We assume that this result comes from a trade-off between stabil-
ity and speed of convergence to the estimation of Rt, as discussed in the following
paragraphs.

Next, we consider Fig.3.6. Although there were differences in the speed of con-
vergence and the variance, all of the settings successfully estimated the time-variant
Rt. We also observe the following two properties. First, the effect of the initial distri-
bution is limited to the earliest stages of the assimilation. For example, from Fig. 3.6
(a), (b), (c), we note that the temporal variations became similar after 500 steps. Sec-
ond, ηc controlls the convergence speed and the variance, and there is a trade-off
between them. From the top three panels of Fig. 3.6, we see that when ηc was small,
it gave estimates that converged quickly to the true value of Rt but had large vari-
ance; the opposite was true when ηc was large (bottom three panels).
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FIGURE 3.6: Temporal variations of the predicted mean of Rt as a
function of {ηc, η0}.The horizontal axis represents the assimilation
step, and the vertical axis represents the predicted Rt. The gray lines
are the mean of the predictive distribution for Rt given by Eq. (3.12),

and the solid lines are Rtrue,t.
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FIGURE 3.7: Time-averaged number of iterations required for con-
vergence in the VBEnKF. The horizontal axis represents η0, and the
vertical axis represents the required number of iterations. The case of
ηc = 100 is shown by a solid line, the case of ηc = 200 is shown by a

dashed line, and the case of ηc = 400 is shown by a dotted line.

The best performance occurred when ηc = 200 had a moderate value, as shown
in Fig. 3.5; this is because this estimation of Rt is balanced in terms of convergence
speed and variance.

Finally, we consider Fig. 3.7. The required average number of iterations ranged
from 3.5 to 5.5. This result depends on η0 and ηc, which control the uncertainty
of Rt, that is, the variance of the initial distribution and the time evolution. The
combination of the largest parameters, η0 = 100 and ηc = 400, required the smallest
number of iterations, and vice versa.

3.4.2 Nonlinear system

System and synthetic data

In Experiment 2, we used the Lorenz96 system [40]. Lorenz96 is a nonlinear and
chaotic dynamical system that is used as a benchmark for data assimilation and is
given in differential equations on continuous time space τ as

dxτ,k
dτ

= (xτ,k+1 − xτ,k−2)xτ,k−1 − xτ,k + F,

k = 1, · · · , d,
xt,0 = xt,d, xt,−1 = xt,d−1, xt,d+1 = xt,1,

(3.35)

whereF is the forcing parameter, and k is the position index of xt. In this experiment,
we used F = 8 and d = 40.

From the equations, we used a discretized system f : xt−1 → xt on time space
{0.05t|t = 0, 1, · · · , T}. The time evolution was calculated by the fourth-order Runge-
Kutta method with time step ∆ = 0.005.
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We assumed that every other element of xt are observed with Gaussian noise as

yt ∼ N (yt|Hxt,Rtrue,t). (3.36)

The dimensionality of the observation vector was set tom = d/2 = 20. The elements
of the observation matrix H ∈ Rm×d are Hi,j = 1(j = 2i−1) and Hi,j = 0(otherwise)
for i = 1, · · · ,m and j = 1, · · · , d. The true observation error covariance matrix is
assumed to be

Rtrue,t =

{
Sz (t = 1, · · · , T2 )

2Sz (t = T
2 + 1, · · · , T )

,

z = {a, b, c},
(3.37)

where Sz, z = {a, b, c} are the three types of matrices: Sa = I, Sb = diag(1, 2, 1, 2, · · · , 1, 2),
and Sc = S0, which was used in Experiment 1. Using this system, we generated syn-
thetic data for T = 4000 steps, x1:4000 and y1:4000

Experimental setting

For comparison, we conducted experiments with a method proposed by Frei and
Künsch [31]. They also developed a filtering method that can estimate joint filtered
distribution of the state vector and the observation error covariance matrix by com-
bining the EnKF and the PF. The EnKF is used for estimating xt, which is a high-
dimensional vector, and the PF is used for θt, which is a parameter vector of R(θt).

Since their method does not specify the parametrization of Rt (it can be used
with any arbitrary parametrization of Rt), we designed two experiments with dif-
ferent parameterizations, referred to as FK1 and FK2, respectively. In FK1, Rt was
parametrized with the scale parameter αt > 0 as Rt(αt) = αtI, where I is the identity
matrix. In FK2, the parametrization Rt(αt,1, · · · , αt,20) = diag(αt,1, · · · , αt,20), αt,1 >
0, · · · , αt,20 > 0 was used to estimate the diagonal elements of Rt. To obtain a base-
line, we also repeated Oracle1 and Oracle2 in this setting.

The common settings for the EnKF were the same as in Experiment 1, but in
the present experiment, there were some additional settings, as follows. To avoid
the degeneration of the ensemble for xt, we added system noise as in Eq. (2.8). The
matrix Q was set to 0.01I. The ensemble covariance matrix of xt was tapered with
the correlation function C given by [37], where the correlation radius was set to 4.

For the VBEnKF, we selected (ηc, η0) = (200, 100) based on the results of the
first experiment. The scale matrix B0 of p(R0) was set such that E(R0) = 5I. The
estimated Rt was tapered with the correlation function C, as discussed in Section
3.d, and the radius was set to 4.

For FK1 and FK2, we used algorithm 2 from [31]. To avoid the degeneration of
the ensemble for the parameters of Rt, we used the kernel resampling technique.
From preliminary experiments, we selected h = 0.2 that controls the variance of re-
sampled ensemble of the parameters. This is because the suggested value in [31],h ≈
0.74 for FK2, had resulted in highly fluctuated estimates of Rt. The size of the en-
semble for parameters of Rt was boosted asMN , whereM is the boosting parameter
and was set to 8. The initial ensemble for the parameters of R0 was generated from
the same distribution p(R0) as used for the VBEnKF.
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TABLE 3.1: RMSE of the predicted xt for each filtering method and
the form of the true Rt

Sa Sb Sc
Oracle1 0.548 0.636 0.603
Oracle2 0.532 0.621 0.585

FK1 0.535 0.650 0.692
FK2 0.567 0.659 0.714

VBEnKF 0.538 0.629 0.599

Results

We repeated the experiments 128 times, each with a distinct random seed for initial-
izing the ensemble and generating the system noise. The results of each trial were
then averaged.

The predicted RMSE of xt for each method and Sz, z = {a, b, c} are summarized
in Table 3.1. The temporal variation of the predicted mean of Rt is shown in Fig. 3.8.

Oracle2 with Rtrue,t gave the best results for all Sz (see the second row of Table
3.1), as was expected. This implies that an appropriate setting of Rt is crucial for es-
timating xt. In the following paragraphs, we will compare the results to the baseline
of Oracle2.

First, we consider the results of Ra. Note that VBEnKF and FK1 showed similar
and better results than Oracle1, as can be seen in the first column of Table 3.1. These
results came from the appropriate estimation of the time-variant Rt as shown in
Fig. 3.8 (a) and (c). However, the RMSE of FK2 was worse than that of the others
because FK2 failed to estimate Rt in the first half of the assimilation, as shown in
Fig. 3.8 (b). In addition, the fluctuation of the estimated Rt was larger than those of
the VBEnKF and FK1.

Second, we consider the results of Rb and Rc. As shown in the second and third
columns of Table 3.1, the VBEnKF had the best results, other than those of Oracle2.
In particular, the difference between the VBEnKF and the others is prominent for
Rc, where the true observation error covariance matrix is correlated. Comparing the
results in Fig. 3.8 (g), (h), and (i), we see that the VBEnKF is the only method that
can estimate the nondiagonal Rt. Moreover, as shown in Fig. 3.8 (i), the VBEnKF
was able to estimate the time-variant Rt. As shown in Fig. 3.8 (g) and (h), although
FK1 and FK2 detected the step change of Rtrue,t at t = 2000, it failed to estimate the
nondiagonal Rt.

For the FK methods, the number of particles is a crucial design parameter espe-
cially in FK2, which estimates the twenty diagonal elements of Rt. Therefore, we
conducted additional experiments for FK2 by changing the boosting parameter M .
The RMSE of the FK2 was improved by increasing M as shown in Table 3.2. For
Ra and Rb, although the RMSE of FK2 approached to those of the VBEnKF (see Ta-
ble 3.1), it required a large number of particles. The results of estimating Rt for
M = 1024 are shown in Fig. 3.9. Compared to Fig. 3.8 (b) and (e), FK2 succeeded
in tracking Rtrue,t, but the fluctuations were much larger than those of the VBEnKF
(see Fig. 3.8 (c) and (f)).

Finally, we found that the average number of iterations required to reach conver-
gence in the VBEnKF was < 5.2 for all Sz .
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FIGURE 3.8: Temporal variation of the predicted mean of Rt. The
panels (a) to (l) show the various combinations of Sz, z = {a, b, c} and
the filtering methods. The horizontal axis represents the assimilation
step, and the vertical axis represents the elements of Rt. The gray

lines show the predicted means, and the solid lines show Rtrue,t.

TABLE 3.2: RMSE of the predicted xt in the case of FK2 for M =
8, 64, 128, 256, 512, and 1024.

Sa Sb Sc
FK2, M = 8 0.567 0.659 0.714
FK2, M = 64 0.549 0.639 0.705
FK2, M = 128 0.545 0.636 0.703
FK2, M = 256 0.543 0.634 0.703
FK2, M = 512 0.542 0.635 0.703
FK2, M = 1024 0.542 0.633 0.704
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FIGURE 3.9: Temporal variation of the predicted mean of Rt in FK2
for Sz, z = {a, b, c}, where M = 1024. The horizontal axis represents
the assimilation step, and the vertical axis represents the elements of
Rt. The gray lines show the predicted means, and the solid lines show

Rtrue,t.
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3.4.3 Stability when unmodeled disturbances are present

The question of stability of the estimation obtained with the VB method is not trivial.
One reason for this is that the VB method may accumulate estimation errors because
it approximates the joint posterior distribution. In this discussion, we will show
experimental evidence that the VBEnKF estimate is stable for long runs when there
are unmodeled disturbances.

With the Lorenz96 system, we examined two types of unmodeled disturbances:
1) model error, and 2) outliers in the observations. For the model error, we created
an incorrect system model by assuming a forcing parameter F = 8.2, 8.4, · · · , 9.0 in
Eq. (3.35). Note that the synthetic data were generated for F = 8.0, as in Experiment
2. For the outliers in the observations, we contaminated the synthetic data in two
ways. First, we used the following contaminated observations:

ycont.,t =

{
[10 10 · · · 10]

T
(r < 0.01)

yt (otherwise)
, (3.38)

where ycont.,t is the contaminated observation vector, and r is a realization from the
uniform distribution bounded in [0, 1]. Second, we randomly increased Rt when
generating the synthetic data as follows:

Rt,true =

{
100S0 (r < 0.01)

S0 (otherwise)
, (3.39)

where S0 is as defined in Experiment 2. To obtain a baseline, we conducted an Oracle
experiment that used the fixed S0 for each of the assimilation steps. The number of
assimilation steps was set to T = 105.

The resultant time-averaged RMSE and tr Rt are summarized in Table 3.3. For
the RMSE (see the fourth and fifth columns of Table 3.3), we note that the VBEnKF
was stable for long runs because in no case was the RMSE notably larger than that
obtained by Oracle. Indeed, in some cases (see cases (v)–(viii) in Table 3.3), the RMSE
of the VBEnKF was smaller than that of Oracle. In these cases, a large tr Rt was
estimated by the VBEnKF (see sixth and seventh columns of Table 3.3). We assume
that with the VBEnKF, over-fitting of the unmodeled disturbances was avoided due
to the large Rt.

Here, we can see that Rt is correctly estimated for F = 8.6, where there is an
medium magnitude of the model error, but that is underestimated in the case of the
true F (= 8). The reason is considered in Section 3.4.7.

3.4.4 Estimation of the hyperparameter ξ of the system model for Rt

We demonstrate the ML estimation of ηc with the Lorenz96 system. We examined
four cases by changingE(R0) and Rt,true, as summarized in Table 3.4. ForE(R0), we
examined 5I(far from R0,true) and the true value at the first assimilation step R1,true.
For Rt,true, we examined time-invariant and time-variant cases. The matrix was set
to Rt,true = S0(t = 1, · · · , T ) for the time-invariant case, and for the time-variant
case, Rt was doubled from t = T/2, as in the previous experiments.

The purpose of evaluating these cases is to show that an appropriate ηc can be
estimated for different problems. For example, a large ηc is expected when it is not
necessary to change the estimated Rt.
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TABLE 3.3: RMSE of the predicted xt and tr Rt. Case (i): without an
unmodeled disturbance; Cases (ii)–(vi): with model error; and Cases

(vii)–(viii): with outliers in the observations.

RMSE averaged tr Rt

case disturbance Oracle VBEnKF Oracle VBEnKF
None (i) - 0.486 0.494 40 38.3
Model error (ii) F=8.2 0.500 0.507 40 38.4

(iii) F=8.4 0.544 0.549 40 38.9
(iv) F=8.6 0.618 0.619 40 39.8
(v) F=8.8 0.722 0.717 40 41.2
(vi) F=9.0 0.862 0.843 40 43.5

Outliers (vii) large variance 0.880 0.580 40 78.7
(viii) constant value 0.589 0.542 40 51.6

TABLE 3.4: Experimental case number

Rt,true

time invariant time variant
E(R0) = 5I (i) (ii)

E(R0) = R1,true (iii) (iv)

The experimental setting was the same as in Section 4.b. We calculate the likeli-
hood and the RMSE for ηc = {50, 65, 80, 100, 200, · · · , 1000}.

The results are summarized in Table 3.5. In case (iii), the ML estimate was ηc =
1000. This is because there is no initial difference and no temporal change in Rt. As
a result, the largest value of ηc, which indicates the certainty of the system model of
Rt, resulted in the maximum value of the likelihood. In cases (i), (ii), and (iv), the
ML estimate was ηc = 200 in order to correct the initial difference or the temporal
changes in Rt during the assimilation.

Roughly speaking, we can say that there are correspondences between the pre-
dictive log-likelihood and the RMSE. Although the true xt is, of course, unknown in
actual applications, we can optimize ηc with the predictive likelihood.

3.4.5 Comparison with the exact filtered distribution

The proposed method depends on the variational Bayes (VB) method that approx-
imates the joint posterior distribution with independent distributions. A natural
concern is the effect of the assumption to the filtered estimate. In this subsection, we
compare the proposed method with the PF. The PF can numerically calculate the ex-
act joint posterior because it does not use any assumption in the filtering algorithm.

Experimental setting

For the experiment, we use a 1-dimensional system for generating synthetic data
defined as follows:

yt ∼ N (yt|5, 5), (3.40)

With this system, we generate a synthetic dataset with T = 100 steps.
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TABLE 3.5: Time-average of the predictive log-likelihood (lnL) and
root mean square error (RMSE) of the predicted xt. The best values in

each column are marked with bold font.

ηc case (i) case (ii) case (iii) case (iv)
lnL RMSE lnL RMSE lnL RMSE lnL RMSE

40 -46.406 2.922 -50.152 3.238 -46.670 2.970 -50.483 3.301
60 -35.822 0.529 -39.235 0.641 -35.808 0.529 -39.221 0.640
80 -35.240 0.510 -38.661 0.608 -35.197 0.508 -38.618 0.607

100 -35.116 0.506 -38.543 0.601 -35.046 0.503 -38.474 0.598
200 -35.081 0.504 -38.542 0.599 -34.921 0.497 -38.382 0.593
300 -35.123 0.505 -38.610 0.600 -34.907 0.496 -38.395 0.592
400 -35.159 0.506 -38.672 0.601 -34.903 0.495 -38.420 0.592
500 -35.190 0.507 -38.724 0.602 -34.902 0.495 -38.448 0.592
600 -35.215 0.507 -38.768 0.603 -34.901 0.495 -38.477 0.592
700 -35.237 0.508 -38.807 0.603 -34.901 0.495 -38.506 0.593
800 -35.255 0.508 -38.841 0.604 -34.901 0.495 -38.534 0.593
900 -35.271 0.509 -38.871 0.605 -34.900 0.495 -38.563 0.593
1000 -35.284 0.509 -38.898 0.605 -34.900 0.495 -38.590 0.593

The initial distribution and the SSM are as follows:

p(x0)p(R0) = N (0, 10)IW(6.1, 21),

p(xt|xt−1)p(Rt|Rt−1) = δ(xt − xt−1)δ(Rt −Rt−1),
p(yt|xt, Rt) = N (yt|xt, Rt).

(3.41)

Note that δ(Rt − Rt−1) is the limit of Eq. (3.5) as ξ → ∞. The intention is that we
only calculate the update step to clearly compare the methods with and without in-
dependence assumption in estimating the joint filtered (posterior) distribution. For
the PF, the number of particles was set to 2 × 105, and the ensemble size is set to 32
for the EnKF in the proposed method.

Results

Using the synthetic data and the SSM, we conduct a filtering experiment with the PF
and the proposed method.

The resultant filtered distributions p(xt, Rt|y1:t−1) for the first nine assimilation
cycles are shown in Figs. 3.10 and 3.11.

For the result of the PF, as can be seen in Fig. 3.10 (a) prominently, there is a
relation of inverse proportion between xt and Rt. That is, xt far from the true xt is
justified with large Rt. At the fourth step shown in Fig. 3.10 (d), the estimated mean
values are very close to the true values.

For the result of the proposed method, since there is the independence assump-
tion between xt and Rt in the filtering, the relation estimated by the PF cannot be
seen in Fig. 3.11. In addition, the estimated joint distribution is broader than that of
the PF. Although the mean of the filtered distribution approaches to the true values,
the speed is slower than that of the PF.

In Fig. 3.12, the marginalized filtered distributions for all assimilation cycles are
plotted for xt and Rt separately. For the estimation of xt, except the earliest steps,
the trajectories are almost the same for both methods as shown in Fig. 3.12 (a) and
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(c). The RMSEs between the mean of xt and the true xt by the PF and the proposed
method were 0.302 and 0.331, respectively. For Rt, the PF could estimate the true
value in the early few steps as shown in Fig. 3.12 (b). However, in the case of the
proposed method, the estimate slowly approaches to the true mean as shown in Fig.
3.12 (d). Although the proposed method takes longer time steps and overlooks the
relation between xt and Rt, the mean values converge to the true value.

FIGURE 3.10: Filtered distributions for xt and Rt by the PF. The hor-
izontal axis denotes xt, and the vertical axis denotes Rt. The green
cross represents the mean of the filtered distribution, and the red cross

represents the true values.

3.4.6 Estimation of various Rt

Experimental setting

So far, we have only dealt with Rt with simple structure. In this subsection, we
demonstrate capability of the proposed method for Rt with complex structure. For
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FIGURE 3.11: Filtered distributions for xt and Rt by the proposed
method. The horizontal axis denotes xt, and the vertical axis denotes
Rt. The green cross represents the mean of the filtered distribution,

and the red cross represents the true values.

the experiment, we use 100-dimensional synthetic datasets generated by the follow-
ing model.

yt ∼ N (yt|0,Rtrue)

Rtrue ∼ IW(Rtrue|203, I),
(3.42)

where Rtrue is the true observation error covariance matrix.
Note that the degree of freedom parameter of IW is set to the minimum integer

that satisfy> 2m+2 = 202, and the scale matrix is selected such that the expectation
become I. For the proposed method, we use the following initial distributions and
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FIGURE 3.12: Temporal variation of the marginalized predictive dis-
tribution for xt and Rt. Panels (a) and (b) are the mean and the 3-
sigma band for xt and Rt by the PF, respectively. Panels (c) and (d)
are those of the proposed method. Center red lines denote the true

values.

SSM as,

p(x0) = N (x0|[0.5, · · · , 0.5]
T
, I),

p(R0) = IW(R0|203, I),

p(xt|xt−1) = N (xt|, xt−1, 0.12I),
p(yt|xt) = N (yt|xt,Rt).

(3.43)

The hyperparameters are as follows: the ensemble size and ηc are set to 256 and 50
(ξ = 23764), respectively.

Results

For three synthetic datasets with 500 obseravtions generated from different random
seeds, we conduct filtering experiments with the proposed method. The results for
three cases are shown in Figure 3.13.

In each row in Figure 3.13, there are two panels: colored plots of estimates of
Rt=500, and colored plots of Rtrue. Although the three cases use observation error
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covariance with complex structures, the proposed method almost correctly estimate
the true matrix in the filtering.

3.4.7 The effect of misspecified model and system noise

In Section 3.4.3, we have observed that Rt was underestimated in the case of the true
forcing parameter F of Lorenz96, but that Rt was correctly estimated in the case of
larger F . To clarify the phenomenon, we show further consideraton with a simple
problem.

Analytical property

The proposed method is derived as a result of maximizing F , which is the lower
bound of the logarithm of conditional marginal likelihood ln p(yt|y1:t−1). Thus, we
consider a maximization problem of ln p(yt|y1:t−1).

For 1-dimensional system, Let us assume a 1-dimensional system with the fol-
lowing generative models as

xt,true = xt−1,true = 1,

yt ∼ N (yt|xt,true, Rtrue = 1),
(3.44)

where xt,true and Rtrue is the true system state and observation error variance. For
filtering, we assume the following (t− 1)th filtered distribution for xt−1 and SSM as

p(xt−1|y1:t−1) = N (xt−1|µt−1|t−, Vt−1|t−1), (3.45)

p(xt|xt−1) = N (xt|αxt−1, Q), (3.46)
p(yt|xt) = N (yt|xt, R), (3.47)

where α is a parameter that define time-evolution of the state vector, Q and R are the
model error and observation error covariance matrices, respectively.

With Eqs. 3.45-3.47, the log marginal likelihood of yt conditioned on y1:t−1 with
respect to xt is given as

ln p(yt|y1:t−1) =− 1

2
ln 2π − 1

2
ln(R+ Vt|t−1)

− 1

2
(yt − µt|t−1)2(R+ Vt|t−1)

−1,

(3.48)

Thus, a likelihood function L(Q,R, α, µt−1|t−1, Vt−1|t−1|xt,true, Rtrue) that is defined
as the expectation of Eq. 3.48 on Eq. 3.44 is given as

L(Q,R, α, µt−1|t−1, Vt−1|t−1|xt,true, Rtrue)
= 〈ln p(yt|y1:t−1)〉N (yt|1,1)

= −1

2
ln 2π − 1

2
ln(R+ α2Vt−1|t−1 +Q)

− 1

2
{(xtrue − αµt−1|t−1)2 +Rtrue}(R+ α2Vt−1|t−1 +Q)−1.

(3.49)

Simulation

With the likelihood function Eq. (3.49), we simulate the optimization of R for some
cases. Here, we assume that (t − 1)th filtered distribution is correctly estimated
without uncertainty, that is, µt−1|t−1 = xt−1,true and Vt−1|t−1 = 0.
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(A) dataset1 1

(B) dataset 2

(C) dataset 3

FIGURE 3.13: Examples of estimation for complex observation error
covariance matrices. In each row, RGB(0,0,1) and RGB(1,0,0) corre-
spond to the minimum and the maximum values of elements of co-

variance matrices.



3.5. Conclusions 47

0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Q

R
 t

h
a

t 
m

a
x
im

iz
e

s
 t

h
e

 m
a

rg
in

a
l 
lik

e
lih

o
o

d alpha=1

alpha=0.8

FIGURE 3.14: The maximizer R for Eq. (3.49)

For each (Q,α) ∈ {0.01, 0.02, , · · · , 2.00} × {1.0, 0.8}, we optimize Eq. (3.49) with
respect to R ∈ {0.01, 0.02, · · · , 2.00}. Note that α = 1 represents the case without
model error, and α = 0.8 represents the case with model error.

The maximizer R and the maximized likelihood are shown in Figs. 3.14 and
3.15. The implications in the maximization of the likelihood Figs. 3.14 and 3.15 are
as follows:

• The log-maximum marginal likelihood takes the same and maximum values
for small Q as shown in Fig. 3.15

• For the maximum values, there is a linear dependency Q + R = const. as
shown in Fig. 3.14. Especially, in the case α = 1, the dependency seems to be
Q+R = Rtrue(= 1).

• Misspecified model (represented by α = 0.8) increases the sum Q+R with the
decrease of the log-maximum marginal likelihood.

• For large Q, the maximizer R approaches to 0 (the lowest value 0.01 in this
case) and the log-maximum likelihood decreases along with the increase of Q.

Although this is a result of a simple 1-dimensional and linear example, the ten-
dency is expected to be presented in a nonlinear system as discussed in Section 3.4.3.
From the second implication that constraints Q and R, we can guess that Rt was un-
derestimated in the case without model error in Table 3.3 because Q is set to 10−2

to prevent the degeneration of the ensemble and make the filtering stable. Fur-
thermore, from the third implication, in the case where F = 8.6, Rt was correctly
estimated by incorporating the effect of model error.

3.5 Conclusions

We have proposed an extension of the EnKF for estimating the state vector xt and
the observation error covariance matrix Rt by using the VB method. In numerical
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FIGURE 3.15: The log-maximum marginal likelihood Eq. (3.49)

experiments, we have examined the capabilities of our method, especially for a time-
variant observation error covariance matrix. We note that the experiments show that
our method works well even when the true observation error covariance matrix is
nondiagonal.

We have also presented two complementary studies. First, we have demon-
strated the stability of our method for long-run assimilations when there are un-
modeled disturbances. In some such cases, our method outperformed the EnKF with
true Rt, because it avoided over-fitting by involving the unmodeled disturbance as
the observation error. Second, we have derived an ML method for optimizing the
hyperparameters, and, using this method, we have experimentally examined the
possibility of estimating one of the hyperparameters.
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Chapter 4

Nonlinear Kalman filters for
outliers

This chapter is based on an article,

Akio Nakabayashi, Genta Ueno, “Nonlinear Filtering Method Using a Switching Error
Model for Outlier-Contaminated Observations.”

The article is submitted to IEEE Transactions on Automatic Control Technical Note on
April 27, 2017. At the time of August 1, 2017, the article is kindly being reviewed.

4.1 Introduction

It is well known that the accuracy of estimates of the system state by such methods
is greatly reduced when outliers are present in the observations. For outliers, the
resulting estimates of the system state may be largely biased as a result of over-
fitting to the outliers. This is a common issue when assuming Gaussian errors, that
is, evaluating errors with a quadratic loss criterion [9].

The occurrence of outliers in observations is very common in real applications
due to, for example, sensor malfunctions, large disturbances to the target system,
and human errors when inputting data. Therefore, how to handle outliers in the
filtering is an active area of research. Former studies can be classified into two ap-
proaches: one that adopts a static heavy-tailed observation model and another that
adopts a dynamic observation model.

In the static approach, a stationary heavy-tailed distribution is assumed for ob-
servation errors, such as the t-distribution[17] or the Cauchy distribution [18]. By us-
ing such heavy-tailed distributions, over-fitting to outliers can be avoided because
the sensitivity to large deviations is reduced. Although a probability distribution
is not explicitly assumed, studies on the basis of robust estimation that redefines
the loss function for the innovation can also be regarded as static approaches and
have been widely reported. For example, Durovic and Kovacevic [19] used the Hu-
ber function [41], which combines the l1 and l2 criterions. Although the method
reported in [19] is for linear SSMs, there are studies that have applied robust esti-
mation methods for nonlinear SSMs using the UKF [20], [21]. Because they only
require a few design parameters for representing a heavy-tail, robust filtering algo-
rithms are straightforward to implement. However, the parameters must be tuned
for each filtering problem. In addition, the application of a heavy-tailed distribution
to all observations might cause under-fitting because the heavy tail also reduces the
sensitivity to observations with regular errors.
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In the dynamic approach, a time-variant observation model, with non-constant
variance, is assumed in order to reduce the influence of outliers. There are broadly
two kinds of methods: one uses a single observation model, and another uses mul-
tiple observation models with distinct error variances and switches the models.

Among the methods using a single observation model, there are studies that
assume a Gaussian observation error and estimate the covariance matrix simultane-
ously with the system state. Ting et al. have proposed a method for estimating the
scale parameter of the observation error covariance matrix using Bayesian estima-
tion from a gamma prior [14]. For correlated outliers, Agamennoni et al. estimated
the covariance elements using the Wishart prior [22]. As well as the methods for lin-
ear SSMs [14], [22], Särkkä and Hartikainen proposed a method for nonlinear SSMs
using the Gaussian filter [16]. However, since the method in [16] assumes that the
observation error statistics change slowly, it is not appropriate for handling outliers,
which are randomly occurring gross errors. Although effective for avoiding over-
fitting to outliers, the methods in [14], [22] use a non-informative prior at each time
step, which can result in fluctuations in the estimated error covariance matrix even
for outlier-free observations. This leads to a decrease in the accuracy in the state
estimation because of under- or over-fitting to observations.

Among the methods using several observation models, switching techniques
that select one model from a set of SSMs at each time step have been proposed
[42], [43]. The switching techniques can handle outliers by including an observation
model with a large variance in the set. In addition, since the variance of observa-
tion errors is determined from several candidates, large fluctuations in the variance
can be avoided in contrast to methods that freely estimate the variance parameter at
each time step. However, in general, we cannot know the properties of outliers be-
fore conducting the filtering, and thus it is necessary to determine the appropriate set
of SSMs by trial and error. Studies have formulated the estimation of parameters of
a set of SSMs as a batch optimization problem for a time series of observations [44],
[45]. However, in real applications, it is often infeasible to solve the batch optimiza-
tion problem because of limited computing and data storage resources, or demands
for real-time responses. Moreover, in the context of switching techniques, filtering
with nonlinear SSMs has not yet been considered.

Against this background, we propose a new dynamic method for handling out-
liers in the nonlinear filtering problem by extending the UKF. The key idea is to
switch between models with recursive estimation of a parameter in the model. We
use two Gaussian observation models that have distinct observation error covari-
ance matrices: one is for observations with regular errors, and another, which has
a larger variance specified by a scale parameter, is for outliers. In addition to the
system state, the method estimates an indicator variable that determines which of
the two models to use and the scale parameter for outliers. By estimating the indi-
cator variable and the scale parameter, estimates of the observation error covariance
matrix that can handle both regular observations and outliers are obtained at each
time step. Furthermore, due to the estimation of the scale parameter, the proposed
method can be applied to a problem without requiring tuning to account for outlier
characteristics. Through numerical experiments, we demonstrate that our proposed
method can estimate the system state better than existing methods for datasets with
and without outliers.
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4.2 The proposed method

4.2.1 Formulation

We assume an observation error wt ∈ Rm is a random variable that has two different
characteristics. That is,

wt ∼

{
pregular(wt) = N (wt|0,R) (regular observation)

poutlier(wt) (outlier)
, (4.1)

where N denotes a Gaussian distribution, and R ∈ Rm×m � 0 is an observation
error covariance matrix.

Our purpose is to detect outliers based on the difference in observation error
characteristics. For outliers, we additionally assume two following characteristics:
(1) the occurrence of outliers at each time step is decides by i.i.d. Bernoulli trials,
and (2) V ar[poutlier(wt)]� V ar[pregular(wt)]. By introducing two other random vari-
ables, the observation error model in this chapter is formally assumed as

p(wt) = N (wt|0,R)1−stN (wt|0, γtR)st , (4.2)

where st ∈ {0 : notoutlier, 1 : outlier} is the outlier indicator that switches the two
Gaussians and is defined at each time step, and γt > 0 is the scale parameter of R.
Note that this observation error model is reduced to a Gaussian error assumed in
Eq. (2.5) when st = 0. If st = 1 and γt � 1, this model becomes Gaussian that has
a larger covariance matrix than R. We expect that the first Gaussian is used for the
regular observations and the second Gaussian is used for outliers by appropriately
estimating st and γt.

Since the occurrence of outlier is not predictable and the characteristics is not
trivial, we have developed a filtering algorithm for xt, st, and γt by calculating the
posterior of these random variables. Similarity to xt, we assume that γt is a realiza-
tion of the first-order Markov process, while st at each time step are independent of
each other due to the i.i.d. assumption which is already mentioned. Thus, the exact
calculation is given in two steps as follows:

p(xt, st, γt|y1:t−1) =∫
p(xt, st, γt|xt−1, st−1, γt−1)p(xt−1, st−1, γt−1|y1:t−1)dxt−1dst−1dγt−1

, (4.3)

p(xt, st, γt|y1:t) ∝ p(yt|xt, st, γt)p(xt, st, γt|y1:t−1), (4.4)

where p(xt, st, γt|xt−1, st−1, γt−1) and p(yt|xt, st, γt) are the system model and the ob-
servation model, respectively, p(xt−1, st−1, γt−1|y1:t−1) is the (t − 1)th joint filtered
distribution, p(xt, st, γt|y1:t−1) is the tth joint predictive distribution, and p(xt, st, γt|y1:t)
is the tth joint filtered distribution. By specifying models in Eqs. (4.3)-(4.4), we have
derived a nonlinear filtering algorithm for dealing with outliers.

4.2.2 State-space model

In this subsection, we define a system model for xt, st, and γt. In the time evolution,
we assume the independency among the random variables, that is,

p(xt, st, γt|xt−1, st−1, γt−1) = p(xt|xt−1)p(st|st−1)p(γt|γt−1). (4.5)
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FIGURE 4.1: Graphical model representation of the SSM of the pro-
posed method. Gray circles represent observable variables, and white

circles represent latent variables that are not observable.

Due to the independence, we can construct system models for each random vari-
ables, separately. For xt, we use the same model as the UKF. Again, that is,

p(xt|xt−1) = N (xt|f(xt−1),Q), (4.6)

where f : Rd → Rd is the nonlinear function, and Q ∈ Rd×d � 0 is the covariance
matrix of the system noise.

For st, by assuming that outliers occur at random, st is independent of st−1. Thus,
we assume the system model of st as,

p(st|st−1) = Bern(st|λprior), (4.7)

where Bern is the Bernoulli distribution, and 0 < λprior < 1 is a prior probability of
outlier occurrence, which is a constant. Since we do not have any idea about outlier
occurrence, we will use a neutral value λprior = 0.5 throughout this chapter.

For γt, which is the outlier scale against the regular observation error, we assume
that the characteristics is time-invariant. That is, the system model of γt is given as

p(γt|γt−1) = δ(γt − γt−1), (4.8)

where δ is Dirac’s delta function.
Finally, we define an observation model by assuming the additive error defined

by Eq. (4.1) as

p(yt|xt, st, γt) = N (yt|h(xt),R)1−stN (yt|h(xt), γtR)st . (4.9)

Similar to the observation error, Eq. (4.1), this model reduces to a typical nonlinear
observation model given by Eq. (2.9) for st = 0. If st = 1, this model reduces to an
nonlinear observation model with large variance scaled by γt.

The assumed SSM is summarized by as follows:

p(xt, st, γt|xt−1, st−1, γt−1) = N (xt|f(xt−1),Q)Bern(st|λprior)δ(γt − γt−1),
p(yt|xt, st, γt) = N (yt|h(xt),R)1−stN (yt|h(xt), γtR)st .

(4.10)

The SSM is illustrated as a graphical model in Fig. 4.1. Note that, as seen in Fig.
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4.1, st does not depend on st−1, while xt and γt depends on the previous random
variables. With this SSM and given (t−1)th filtered distribution, we derive tractable
forms of Eqs. (4.3) and (4.4).

4.2.3 Prediction

At first, we define the (t − 1)th filtered distribtuion. Since we will extend the algo-
rithm of the UKF, we use a Gaussian distribution for xt. For st, which is an indicator
whether yt is outlier or not, we assume a Bernoulli distribution that is defined for
{0, 1}. For γt, which is the scale of covariance matrix R, we assume a gamma dis-
tribution defined for non-negative real numbers. Thus, the (t − 1)th joint filtered
distribution for xt, st, and γt is

p(xt−1, st−1, γt−1|y1:t−1) =

N (xt−1|µt−1|t−1,Vt−1|t−1)) ·Bern(st−1|λt−1) · IG(γt−1|at−1|t−1, bt−1|t−1),
(4.11)

where µ ∈ Rd is the mean vector of the state vector, V ∈ Rd×d � 0 is the covariance
matrix of the state vector, Bern denotes a Bernoulli distribution, 0 < λ < 1 is a
parameter of a Bernoulli distribution which is the probability of outlier occurrence
in this context, IG denotes an inverse gamma distribution, and a > 0 and b > 0 are
shape and scale parameters of an inverse gamma distribution, respectively.

Since we assume the independence among random variables as Eq. (4.5), the
prediction can be performed separately as

p(xt, st, γt|y1:t−1)

=

∫
p(xt, st, γt|xt−1, st−1, γt−1)p(xt−1, st−1, γt−1|y1:t−1)dxt−1dst−1dγt−1,

=

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 ·

∫
p(st|st−1)p(st−1|y1:t−1)dst−1·∫

p(γt|γt−1)p(γt−1|y1:t−1)dγt−1,

≡ p(xt|y1:t−1)p(st|y1:t−1)p(γt|y1:t−1),

(4.12)

where p(xt|y1:t−1), p(st|y1:t−1), and p(γt|y1:t−1) are the tth predictive distributions of
each random variable, respectively.

The predictive distribution p(xt|y1:t−1) is given by the prediction step of the UKF
as Eq. (2.10). For the distribution, p(st|y1:t−1), since st is independent of st−1, the
forth term can be obtained immediately as

p(st|y1:t−1) = p(st|λprior). (4.13)

For the distribution, p(γt|y1:t−1), due to Dirac’s delta function, it again produce a
inverse gamma distribution. By renaming the parameters, we obtain the actual form
of the predictive distribution for γt as,

p(γt|y1:t−1) = IG(γt|at|t−1, bt|t−1),
at|t−1 = at−1|t−1

bt|t−1 = bt−1|t−1

(4.14)
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Here, we have the tth joint predictive distribution for xt, st, and γt as follows:

p(xt, st, γt|y1:t−1) =

N (xt|µt|t−1,Vt|t−1) ·Bern(st|λprior) · IG(γt|at|t−1, bt|t−1).
(4.15)

4.2.4 Update

Since the exact calculation of Eq. (4.4) by substituting Eqs. (4.9) and (4.15) is in-
tractable, we derive the approximated form by adopting the VB method. In con-
formity to section 2.2, by defining Zt = {xt, st, γt} and assuming the independency
in the tth joint filtered distribution, the approximated joint filtered distribution is
immediately given as follows:

p(xt, st, γt|y1:t) ≈ q(xt)q(st)q(γt), (4.16)

where

ln q(xt) = 〈ln p(yt|xt, st, γt)〉q(st)q(γt) + ln p(xt|y1:t−1) + const., (4.17)

ln q(st) = 〈ln p(yt|xt, st, γt)〉q(xt)q(γt) + ln p(st) + const., (4.18)

ln q(γt) = 〈ln p(yt|xt, st, γt)〉q(xt)q(st) + ln p(γt|y1:t−1) + const. (4.19)

We will derive the actual forms of Eqs. (4.17)-(4.19).
First, by calculating the expectation, Eq. (4.17) becomes

ln q(xt) = lnN (yt|h(xt), R̄t) + ln p(xt|y1:t−1) + const., (4.20)

R̄t ≡ (1− 〈st〉q(st) + 〈st〉q(st)〈γ
−1
t 〉q(γt))

−1Rt. (4.21)

Since the exponential of Eq. (4.20) is the same form as a distribution which is ap-
proximated by the UKF in the update step by substituting Rt = R̄t. Thus, q(xt) is
reasonably approximated by the UKF as

q(xt) = N (xt|µt|t,Vt|t),
µt|t = µt|t−1 + K(yt − ȳt),

Vt|t = Vt|t−1 − KVyK
T
,

K = VxyV−1y ,

ȳt =
2d∑
i=0

W
(m)
i,t|t−1h(χ

(i)
t|t−1),

Vy =

2d∑
i=0

W
(c)
i,t|t−1(h(χ

(i)
t|t−1)− ȳt)(h(χ

(i)
t|t−1)− ȳt)

T
+ R̄t,

Vxy =
2d∑
i=0

W
(c)
i,t|t−1(χ

(i)
t|t−1 − µt|t−1)(h(χ

(i)
t|t−1)− ȳt)

T
.

(4.22)

Here, since the observation model, Eq. (4.9), is reduced to a single Gaussian as the
first term in Eq. (4.20), we can say that R̄t is the estimate of observation error co-
variance matrix at time step for an additive Gaussian observation model with time-
variant statistics as discussed in Chapter 3. When outlier is detected, that is, 〈st〉q(st)
approaches unity, the estimate is enlarged by the scale parameter γt.
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FIGURE 4.2: Example of β1 and β2 for two observations: an observa-
tion near its prediction(regular observation) and an observation far

from its prediction (outlier)

Second, the distribution Eq. (4.18) becomes

ln q(st) =

(1− st)〈lnN (yt|h(xt),Rt)〉q(xt) + st〈lnN (yt|h(xt), 〈γ−1t 〉
−1
q(γt)

Rt)〉q(xt)+

(1− st) ln(1− λprior) + st lnλprior + const.

= (1− st) lnβ1 + st lnβ2 + const.

lnβ1 ≡ −
1

2
〈(y− h(xt))

T
R−1t (y− h(xt))〉q(xt),

lnβ2 ≡ −
m

2
〈ln γt〉q(γt) −

〈γ−1t 〉q(γt)
2

〈(y− h(xt))
T

R−1t (y− h(xt))〉q(xt).

(4.23)

Note that λprior vanishes because we set the value to 0.5. We can see that the form
given by Eq. (4.23) is the logarithm of the Bernoulli distribution given as follows:

q(st) = Bern(st|λt),

λt =
β2

β1 + β2
,

(4.24)

Here, λt can be regarded as the posterior probability of outlier occurrence, while
λprior is the prior probability. For regular observations, the posterior probability
becomes small because β1, that is, likelihood for a regular observation takes larger
value than β2 as shown in the left panel of Fig. 4.2, and vice versa for outliers as
shown in the right panel of Fig. 4.2. Due to the two likelihood with the same mean
but different variances, both regular and outlier observations are handled. 4

Finally, the distribution Eq. (4.19) becomes

ln q(γt) = 〈st〉q(st)〈lnN (yt|h(xt), γtRt)〉q(xt) + ln IG(γt|at|t−1, bt|t−1),

= −m
2
〈st〉q(st) ln γt − γ−1t

〈st〉q(st)
2
〈(y− h(xt))

T
R−1t (y− h(xt))〉q(xt)

− at|t−1 ln γt − γ−1t bt|t−1 + const.

(4.25)
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Therefore, q(γt) is an inverse gamma distribution given by

q(γt) = IG(γt|at|t, bt|t),

at|t = at|t−1 +
m

2
〈st〉q(st),

bt|t = bt|t−1 +
〈st〉q(st)

2
〈(y− h(xt))

T
R−1t (y− h(xt))〉q(xt).

(4.26)

Since we know the actual forms of q(xt), q(st) and q(γt), we can calculate the
expectations as

〈st〉q(st) = λt, (4.27)

〈γ−1t 〉q(γt) =
at|t

bt|t
, (4.28)

〈ln γt〉q(γt) = ln bt|t − ψ(at|t), (4.29)

〈(yt − h(xt))
T

R−1t (yt − h(xt))〉q(xt) =
L∑
i=0

w
(i)
t|t (yt − h(x(i)t|t ))

T
R−1t (yt − h(x(i)t|t )),

(4.30)

where ψ is the digamma function, x(i)t|t is the i-th sigma point of q(xt), and w(i)
t|t is the

corresponding weight.
Here, we have tth joint filtered distribution for xt, st, and γt as follows:

p(xt, st, γt|y1:t)

≈ q(xt)q(st)q(γt),
= N (xt|µt|t,Vt|t) ·Bern(st|λt) · IG(γt|at|t, bt|t).

(4.31)

The distributions q(xt), q(st) and q(γt) depend on each other via the expectations in
Eqs. (4.22), (4.23), and (4.26). Therefore, we calculate the distributions alternately
starting from an initial guess and repeat the calculation until convergence. As the
convergence metric, we use the l2 norm of xt.

4.2.5 Algorithm

Here, since we have the approximated posterior distributions q(xt) and q(γt) with
the same form as the given (t − 1)-th distributions Eq.(4.11), we can construct a re-
cursive estimation algorithm as shown in Algorithm 2. Note that, as the initial guess
of q(st), and q(γt), we use the prior of st and the previous filtered distribution of
q(γt) (see line 5 of Algorithm 1). As the initial distribution p(γt|a0, b0), we recom-
mend to use non-informative distribution such that the expectation becomes � 1.
In the following experiments, we use a0 = 0.1 and b0 = 1; with this setting, 〈γ−1t 〉−1
becomes 10.

4.3 Tips for usage

4.3.1 Estimation of time-variant outlier characteristics

In the system model of γt, we have specified it as Dirac’s delta function, which is
the time-invariant assumption about γt. Thus, in the limit as t → ∞, the estimate
of γ could be biased and disrupt the estimation of xt and st if the outlier statistics is
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Algorithm 2 Algorithm for the proposed method

Require: the system model Eq. (4.5), the error model for regular observations as in
Eq. (4.1), and then, construct the observation model Eq. (4.9).

Require: initial distributions, p(x0) = N (x0|µ0,V0) and p(γ0) = IG(γ0|a0, b0), and a
hyperparameter ρ for p(γt|γt|t−1).

1: for t = 1 to T do
2: prediction step:
3: calculate p(xt|y1:t−1) = N (xt|µt|t−1,Vt|t−1) with Eq. (2.10).
4: calculate p(γt|y1:t−1) = IG(γt|at|t−1, bt|t−1) with Eq. (4.14).
5: update step:
6: let q(st) = Bern(st|λprior), and q(γt) = IG(γt|at|t−1, bt|t−1).
7: while true do
8: calculate q(xt) = N (xt|µt|t,Vt|t) with Eq. (4.22).
9: calculate q(st) = Bern(st|λt) with Eq. (4.24).

10: calculate q(γt) = IG(γt|at, bt) with Eq. (4.26).
11: exit while if the update of q(xt) has converged.
12: end while
13: let p(xt|y1:t) = q(xt) and p(γt|y1:t) = q(γt)
14: end for

changed in filtering. Therefore, we introduce another system model for γt to estimate
time-variant γt.

The system model for γt is

p(γt|γt−1) = IG(γt|ρ, (ρ− 1)γt−1), (4.32)

where IG denotes an inverse gamma distribution, and ρ is a control parameter for
time-evolution of γt. Since inverse Wishart distribution is reduced to inverse gamma
distribution when the dimensionality is unity, the meaning ofρ follows the discus-
sion of system model for Rt in section 3.2.2. In the limit as ρ→∞, this system model
approaches to Eq. (4.8).

Following the discussion of the inverse Wishart distribution as discussed in Ap-
pendix. C, it can be approximated, again, with an inverse gamma distribution,
which has the same moments up to second order. That is,

p(γt|y1:t−1) =

∫
p(γt|γt−1)p(γt−1|y1:t−1)dγt−1 ≈ IG(γt|at|t−1, bt|t−1),

at|t−1 = 2 +
1

(1 + 1
ρ−2)(1 + 1

at−1|t−1−2
)− 1

,

bt|t−1 =
at−1|t−1 − 1

at|t−1 − 1
bt−1|t−1.

(4.33)

In Algorithm 2, by specifying the value of ρ and replacing Eq. (4.14) with Eq.
(4.33), estimation of scale parameter γt for a time-variant outlier statistics is avail-
able.

4.4 Numerical Experiments

In this section, we examine the proposed method through two numerical experi-
ments. In Experiment 1, by using a univariate linear system, we detail the filtering
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of the proposed method. In Experiment 2, we compare the proposed method to
related existing methods for three multivariate systems.

4.4.1 Experiment 1

Synthetic data

We assume a univariate linear system for generating synthetic data as

p(xt|xt−1) = N (xt|0.9xt−1 + ut, 1),

x0 ∼ N (0, 0.12),

ut ∼ 0.2N (ut|0, 52) + 0.8δ(ut),

(4.34)

where ut is a known input to the system, and δ is Dirac’s delta function as the point-
mass probability density function.

To generate outlier-contaminated observations, we use the following mixture
model as

p(yt|xt) = 0.9pregular(yt|xt) + 0.1poutlier(yt|xt),
pregular(yt|xt) ≡ N (yt|xt, 1),

poutlier(yt|xt) ≡ N (yt|xt, 128),

(4.35)

where pregular is the generative model for not-contaminated observations, and poutlier
is the generative model for outliers.

Experimental Setting

With 200 steps synthetic data generated by the above models, we conducted a filter-
ing experiment for given p(xt|xt−1) and pregular(yt|xt). Note that we do not use any
information about outliers: poutliers(yt|xt) and when outliers occurred. We construct
an observation model as Eq.(4.9) on the basis of pregular(yt|xt). That is,

p(yt|xt, st, γt) = N (yt|xt, 1)1−stN (yt|xt, γt · 1)st . (4.36)

As explained in Section 3, we estimate st and γt in addition to xt.
The setting of the proposed method is as follows. The implementation of the

UKF is that of [12], and the design parameters for generating sigma points are se-
lected based on the guidance (see section 7.3 in [12]). Along with the notation to
define sigma points in Appendix A, the parameters κ and ν are set to 3 − d and 2,
respectively. Initial distribution for x0 and γ0 is N (x0|xtrue,0, I) and IG(γ0|1, 10), re-
spectively, where xtrue,0 is the true system state at time step 0. Note that the mean
of γ0 on the initial distribution is 10 � 1 to make the outlier scale larger than the
regular scale.

For comparison, we also run the ordinary UKF. The estimation accuracy for the
state variable by the UKF is expected to be deteriorated by outliers. Moreover, we
will clarify how the proposed method avoid the deterioration.

Results

The temporal variations of the true state and the outlier-contaminated observation
are shown in Fig. 4.3. We can see that outliers largely deviate from the true state,
which are marked with crosses at the bottom of the panel.
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FIGURE 4.3: The synthetic data of the state (solid line) and the outlier-
contaminated observation (dotted line). The crosses represents time-

steps when outliers occur.

The predicted state by the UKF and the proposed method are shown in Figs. 4.4
(a) and (b), respectively. For outlier-contaminated observations, applying the UKF
causes deterioration in the estimation of the state. For example, around the 113th
step in Fig. 4.4 (a), the estimation errors increased after filtering the outlier. This
is because the estimation of the UKF was biased as a result of over-fitting to the
outlier. While, the proposed method handled such outliers without deterioration in
the estimation as can be seen in Fig. 4.4 (b). The root mean square error (RMSE) of
the estimation of the state variable was improved from 0.47 (that of the UKF) to 0.22.

To detail the behavior of the proposed method, temporal variations of the pos-
terior mean of the outlier indicator, tr R̄t, and the posterior mean of γt are shown in
Fig. 4.5 (a)-(c), respectively.

In Fig. 4.5 (a), for the most of outliers, which are marked with vertical gray
lines, the posterior probabilities of outlier indicators were estimated to be unity. That
is, the proposed method successfully detected outliers. For some outliers which
were not estimated as outliers, we can see the amplitude of the observation errors
were small, for example, the one at the 87th step. This is because the outliers in this
experiment are also zero-mean Gaussian random variable and can be small error.
Due to the same reason, there were cases where regular samples are estimated as
outliers. It is because such samples largely deviated from its mean accidentally.

Once an observation is estimated as outlier, since the expectation of st approaches
unity, R̄t becomes large due to Eq. (4.21) as shown in Fig. 4.5 (b). By using the en-
larged R̄t, over-fitting to the outlier can be avoided. Since variances were enlarged
for most of outliers, we can say that the proposed method successfully neglected
outlier-contaminated observations.

4.4.2 Experiment 2: Comparison with existing methods

In the second experiment, we compare the proposed method with existing methods
through three systems: (1) a 5-dimensional linear system (5DLS), which is a direct
extension of the linear model examined in Experiment 1, (2) Mackey-Glass [46], which
is a nonlinear time-delay system, and (3) Lorenz 63 [47], which is a chaotic nonlinear
model.
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FIGURE 4.4: The prediction of the state by (a) the UKF, and (b) the
proposed filter plotted as solid lines. The dotted line denotes the true
state. The RMSE are 0.47 and 0.22, respectively. The vertical gray lines

represents the time steps when outliers occur.

Synthetic data

At first, we declare generative models for synthetic data. The nonlinear functions f
and h of each system are defined as

5DLS

f(xt−1) = 0.9xt−1 + ut,

ut ∼ 0.2N (ut|0, 52I) + 0.8δ(ut),
h(xt) = xt,

(4.37)

Mackey −Glass

f(xt−1) = [xt−1,1 + 0.2
xt−1,17

1 + x10t−1,17
− 0.1xt−1,1,

xt−1,1, · · · , xt−1,16]
T
,

h(xt) = 10xt,1,

(4.38)

Lorenz63

ft(xt−1) = φ10(xt−1),
φ(xt−1) =

xt−1 + 0.01

 −10(xt−1,1 − xt−1,2)
28xt−1,1 − xt−1,2 − xt−1,1xt−1,3

xt−1,1xt−1,2 − 8
3xt−1,3

 ,

h(xt) = xt,

(4.39)
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FIGURE 4.5: The posterior mean of st is plotted in panel (a), the trace
of the net Rt used in the VB iteration is plotted in panel (b), and the
posterior mean of γt is plotted in panel (c). The vertical gray lines

represents the time steps when outliers occur.

where the notation I denotes the identity matrix. Dimensionality of xt and yt, param-
eters of the initial distributionN (x0|µ0,V0), Qt,true, and Rt,regular are summarized in
Table 4.1.

To generate outlier-contaminated observations, we again use a mixture model as

p(yt|xt) = (1− ξ)pregular(yt|xt) + ξpoutlier(yt|xt),
pregular(yt|xt) = N (yt|h(xt),Rt,regular),

(4.40)

where ξ is the probability of outlier occurrence. We assume two outlier models: one
is an additive Gaussian error model with a large variance, 16Rt, and the other is a
constant model independent of xt:

poutlier(yt|xt) = N (ht(xt), 16Rt,regular), (4.41)

poutlier(yt|xt) = δ(yt − [10, · · · , 10]
T

). (4.42)

In practice, as the sources of Eq. (4.41), for example, the impulsive disturbance to
the system can be possible. In this case, the mean is almost the same, but the ob-
servation will be highly deviated from its mean. As the sources of Eq. (4.42), for
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TABLE 4.1: The parameters of initial distribution for the state vector,
and Q and R

5D-LS Mackey-Glass Lorenz63
(d,m) (5,5) (17,1) (3,3)
µ0 0 0 0
V0 I I I
Qt,true 10−2I 10−4I 10−2I
Rt,regular I I I

example, exceeding the preset range could happen. In that case, although it depends
on the system, upper or lower limit is output as the current value of measurement.
Another case is the connection error in transmission of measured signal, especially
using a wide area network. In that case, when the failure in connectivity happen,
the previous valid value might be output.

For each system, we examined three kinds of datasets generated by the following
settings: (1) no outliers by setting ξ = 0, (2) Gaussian outlier given by Eq.(4.41)
with ξ = 0.3, and (3) constant outlier given by Eq.(4.42) with ξ = 0.3. We refer to
the datasets as OD(Outlier contaminated Dataset)-None, OD-16R, and OD-Const10,
respectively.

Experimental Setting

We conducted filtering experiments with the proposed method and existing meth-
ods. As in Experiment 1, we assume that p(xt|xt−1) and pregular(yt|xt) are given. We
construct an observation model as Eq. (4.9) by substituting Rt = Rt,regular.

We compare the proposed method with three existing methods referred to as
TTS07 [14], ANN11 [22], and SH13 [16]. The three are the methods that estimate the
observation error covariance matrix simultaneously with the state vector.

TTS07 estimate the scale of the observation error covariance matrix from a fixed
prior at each time step. As the prior for the scale, a gamma distribution G, is as-
sumed.

ANN11 estimate the all elements of the observation error covariance matrix also
from a fixed prior at each time step. To estimate all elements, they have applied a
Wishart distribution W as the prior, which is the conjugate prior for the precision
matrix of Gaussian likelihood. Although there is no recommendation for setting of
the prior, to estimate impulsive change of the observation error, we guess that the
non-informative prior will be required.

SH13 also estimate the all elements of the observation error covariance matrix by
using the inverse Wishart distribution. The essential difference compared to ANN11
is the first order Markov assumption for the observation error covariance matrix,
that is, the current estimate is based on the previous estimate. The method use a
forgetting parameter to erase the past information. For large value of the forgetting
parameter, this method approaches to ANN11.

Since TTS07 and ANN11 are designed for linear systems using KF, we extended
them with the UKF as in Section 3. The setting of the UKF, which is used in all above
methods and the proposed method, is same as that of Experiment 1.

For TTS07 and ANN11, we use the non-informative priors for the observation
error covariance matrix such that the expectation becomes Rt,regular. For TTS07, we
use the recommended setting G(1, 1). For ANN11, we use a non-informative prior
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TABLE 4.2: Median of the resultant RMSE

UKF TTS07 ANN11 SH13 Proposed
5DLS OD-None 0.212 0.214 0.214 0.212 0.212
5DLS OD-16R 0.271 0.219 0.219 0.222 0.217
5DLS OD-Const10 1.010 0.220 0.220 0.219 0.218
Mackey-Glass OD-None 0.042 0.044 0.043 0.042 0.042
Mackey-Glass OD-16R 0.066 0.050 0.050 0.053 0.050
Mackey-Glass OD-Const10 0.451 0.063 0.064 0.087 0.063
Lorenz63 OD-None 0.513 0.550 0.555 0.539 0.514
Lorenz63 OD-16R 1.190 0.810 4.120 1.063 0.800
Lorenz63 OD-Const10 9.612 1.489 6.620 5.377 0.835

W(m + 2, (m + 2)I). For SH13, we use a non-informative initial distributions for Rt

as IW(m,mI). Note that the definition of IW used in SH13 [16] is different from the
one used in this thesis, and we follow the definition in [16] in this case. A forgetting
parameter, ρ in SH13 [16], is determined by preliminary experiments for each dataset
from [0.5, 1).

To make the discussion consistent, we use the notation R̄t in Eq. (4.21) to repre-
sent the estimate of Rt by TTS07, ANN11, and SH13.

Results

We conducted each experiment 1024 times with distinct random seed for generating
synthetic data, and we compared the RMSE and the computational cost.

The results are shown in Figs. 4.6-4.8 for 5DLS, Mackey-Glass, and Lorenz63,
respectively. In the cases of 5DLS and Mackey-Glass, RMSE for OD-None are almost
same for all methods except TTS07 and ANN11 as shown in Fig. 4.6 (a) and Fig. 4.7
(a). The results of the UKF was significantly deteriorated for OD-16R, and especially
for OD-Const10 as shown in Figs. 4.6 (b)-(c) and Figs. 4.7 (b)-(c). For these outlier
datasets, the results of TTS07, ANN11 and the proposed method are almost same
and minimum.

For Lorenz63, RMSE of TTS07 and SH13 are relatively fluctuated even for OD-
None as shown in Fig. 4.8 (a). For OD-16R, TTS07 and the proposed method dealt
with the outliers better than ANN11 and SH13 as shown Figs. 4.8 (b)-(c). ANN11
was highly fluctuated for OD-16R. For the results of OD-Const10, as can be seen in
Fig. 4.8 (c), although the fluctuation of TTS07 increased, the result of the proposed
method is still stable. The median of RMSE is summarized in Table 4.2. As shown in
Table 4.2, totally, the proposed method handled outliers well.

Furthermore, we will detail the differences among the proposed method and the
existing methods. Temporal variations of tr R̄t for 5DLS OD-16R are plotted in Fig.
4.9. As can be seen in Figs. 4.9 (a), (b) and (d), the estimates of Rt by TTS07, ANN11
and the proposed method are spiky at outlier-contaminated observations. Contrary
to the three methods, SH13 shows saw-toothed variations as shown in Fig. 4.9 (c).
This is because SH13 is designed for estimating time-variant observation error co-
variance matrix by assuming that the matrix is a realization of the first-order Markov
process. The assumption of the Markov process is effective for estimating gradually
changing observation error statistics. However, under the presence of outliers, al-
though over-fitting to an outlier can be avoided by enlarging the estimate of Rt,
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FIGURE 4.6: The box-plot of RMSE (5DLS) for 1024 trials
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FIGURE 4.9: Example temporal variations of the trace of estimated R
in 5DLS OD-16R. The vertical gray lines denote the positions where

samples are outlier-contaminated.

under-fitting to the following regular samples happens because the enlarged esti-
mate of Rt continues for a while as shown in Fig. 4.9 (c). In other words, estimation
of Rt at later steps by SH13 is still contaminated by the outlier. The contamination
can be confirmed significantly, for example, around the 19th step in Fig. 4.9 (c).

For TTS07, ANN11, and the proposed method, the difference can be seen clearly
in the histograms of tr R̄t as shown in Fig. 4.10. We can see that, from Fig. 4.10 (d),
the estimates of Rt by the proposed method became polarized around the two vari-
ances. As intended, this is a result of estimating outlier indicator st, which switches
the two observation models that have distinct variances. While, those by TTS07 and
ANN11 became fluctuated as shown in Figs. 4.10 (a) and (b). The difference comes
from that TTS07 and ANN11 are methods that estimate Rt from the innovation at
each time step. The estimates of Rt by ANN11 were more concentrated around true
tr Rt,regular than those by TTS07. This is because the assumed prior information for
Rt of ANN11 has to be larger than that of TTS07 as a result of using the Wishart
distribution, whose degree of freedom parameter is defined for > m− 1.

Although TTS07 can be regarded as a flexible method for estimating Rt from
Fig. 4.10 (a), the flexibility can cause performance deterioration in estimation of xt.
As shown in the results of OD-None in Experiment 2, the RMSE of TTS07 for OD-
None was worse than those of the proposed method in all systems. This can be
explained from the estimated Rt. The histograms of tr R̄t for 5DLS OD-None are
shown in Fig. 4.11. From this figure, we can see that the result by TTS07 was highly
fluctuated. That is, over- and under-fitting to observations occur in TTS07 because
the observation model with a static observation error covariance matrix is optimal
for OD-None. Contrary to this, as can be seen in Fig. 4.11 (d), the estimates of Rt by
the proposed method are concentrated on tr Rt,regular.
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FIGURE 4.10: Example histograms of the trace of estimated Rt for
5DLS OD-16R.
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FIGURE 4.11: Example histograms of the trace of estimated Rt for
5DLS OD-None.
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4.5 Conclusion

We have proposed a new filtering method for dealing with outlier-contaminated
observations. The method switches two Gaussian observation error models that
have distinct covariance matrix for both observations with and without outliers.

Through numerical experiments, we have examined the proposed method. First,
with a univariate system, we have shown the detail of filtering. Second, we have
compared the proposed method with existing methods by using three multivariate
systems. In the experiments, we have shown that the state estimation performance
by the proposed method is the same or better than those by the existing methods.
Especially, in the case of outlier-free observations, estimates of the observation error
covariance matrix by the existing methods were fluctuated, while that of the pro-
posed method was stable. As a result, the state estimation performance for outlier-
free observations was improved by the proposed method. In addition, in the case
of a highly nonlinear system with outlier-contaminated observations, the state esti-
mation performance by the proposed method prominently outperformed the others.
Thus, we can say that the proposed method is a better choice as a nonlinear filtering
method for both datasets with and without outliers.
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Chapter 5

Conclusion

Through out this thesis, we have considered filtering methods with adaptive error
models for observation errors. In Chapter 3, we have presented an extension of
the EnKF for simultaneously estimating the system state and the observation error
covariance matrix for dealing with long-term temporal change of the observation
error characteristics. The method has been examined in a nonlinear system under the
presence of unmodeled disturbance and succeeded in keeping the accuracy of state
estimation. In addition, for a design parameter of the presented method, we have
derived a ML method. Using the ML method, it is possible to adopt the presented
method to a problem without trial and error.

In Chapter 4, we have presented a filtering method for dealing with outliers as an
extension of the UKF. The method switches between two observation models adap-
tively: one is for regular observations, and another is for observations containing
outliers. Since a parameter in the models is simultaneously estimated with the sys-
tem state, it is possible to adopt the method to a problem without further tuning
that accounts for outlier characteristics. We have compared the accuracy of state es-
timation with existing methods in three multivariate systems and confirmed that the
accuracy is equal to or better than those of the existing methods.

With the methods presented in this thesis, applicability of filtering technique has
been enhanced. The key idea is to use an adaptive observation error model, which
includes time-indexed parameters to be estimated at each time step. The enabler is
the VB method which approximates the joint filtered distribution of the state vector
and the time-index parameters with another tractable distribution. The enhanced
adaptivity in filtering is valuable for improving the accuracy of state estimation.
Furthermore, an effort in starting to use filtering techniques can be decreased due to
the adaptivity for unknown error statistics in practical problems, and thus the front
for practitioners can be widened.
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Appendix A

Unscented Transformation

A.1 Basic idea

The unscented transformation is a technique for calculating the statistics of non-
linearly transformed Gaussian random variable. Julier and Uhlmann applied the
technique for nonlinear Kalman filtering [4], which needs to deal with nonlinear
time-evolution and observation function for a Gaussian-distributed state vector.

We show the schematic diagram in Fig. A.1. In Fig. A.1 (A), an example of exact
nonlinear transformation of a Gaussian is illustrated. Generally, nonlinear transfor-
mation does not reproduce a Gaussian distribution. In addition, it is even hard to
obtain the tractable distribution. This motivates the linearization used in the EKF as
shown in Fig. A.1 (B). However, as discussed in Chapter 1, the linearization is often
problematic because of computational stability and cost for calculating the Jacobian
matrix.

The unscented transformation is a derivative-free approach that directly approx-
imates the transformed probability distribution with a Gaussian by using sigma
points {χi} ∈ Rd. Sigma points {χi} are deterministically sampled realizations of
a Gaussian. A nonlinear function is applied for the sigma points as {f(χi)} to obtain
the realizations of transformed random variables. By calculating the mean and the
covariance matrix with {f(χi)}, a Gaussian is calculated as shown in Fig. A.1 (C). In
the next section, we detail the algorithm.

A.2 Algorithm

In this section, we detail the unscented transformation of a GaussianN (x|µ,V) for a
nonlinear function f(x), where x ∈ Rd, µ ∈ Rd, and V ∈ Rd×d.

Generating sigma points

Sigma points are weighted samples for efficiently approximate original Gaussian
random variable. According to [12], the sigma points and the weights of a d-dimensional
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(A) Exact transformation

(B) Linearized transformation

(C) Unscented transformation

FIGURE A.1: Nonlinear transformation of Gaussian distribution
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random variable that has the mean µ and the covariance V are calculated as

χ(0) = µ,

χ(i) = µ+ (
√

(d+ κ)V)i, i = 1, · · · , d,

χ(i) = µ− (
√

(d+ κ)V)i−d, i = d+ 1, · · · , 2d,

W
(m)
0 =

κ

d+ κ
,

W
(c)
0 =

κ

d+ κ
+ ν,

W
(m)
i = W

(c)
i =

1

2(d+ κ)
, i = 1, · · · , 2d,

(A.1)

where χ(i), i = 0, · · · , 2d is the sigma point, the notation (·)i represents the i-th col-
umn vector of the matrix, Wi is the weight of the sigma point χ(i), and κ and ν are
design parameters for sigma points.

Estimating the transformed probability distribution as a Gaussian

Although the analytical transformation of a Gaussian distribution for a nonlinear
function is intractable, the nonlinear mapping of a sample can be calculated. We
can say that the nonlinearly mapped samples are realization of transformed random
variable. Therefore, the unscented transformation estimates the transformed proba-
bility distribution pNL(x) from the sigma points as follows:

pNL(x) ≈ N (x|µNL,VNL),

µNL =
2d∑
i=0

W
(m)
i f(χ(i)),

VNL =
d∑
i=0

W
(c)
i (f(x)− µNL)(f(x)− µNL)

T
.

(A.2)
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Appendix B

The inverse Wishart distribution

B.1 Definition

The inverse Wishart distribution [34] is defined as

IW(R) = C(η,B)|R|−
1
2
η exp{−1

2
tr(BR−1)},

C(η,B) ≡ |B|
1
2
(η−m−1)2−

1
2
(η−m−1)mΓm(

η −m− 1

2
)−1,

(B.1)

where Γm is the m-dimensional multivariable gamma function, η > 2m + 2 is the
number of degrees of freedom, and B ∈ Rm×m � 0 is the scale matrix. The mean
and variance are given as follows:

Mean(R) =
B

η − 2m− 2
, (B.2)

V ar(Rii) =
2Bii

(η − 2m− 2)2(η − 2m− 4)
. (B.3)

B.2 Expectation of R−1

In Chapter 3, we need to calculate the expectation of R−1 on the inverse Wishart
distribution. As far as we know, since the direct reference does not exist, we show
how to calculate the expectation.

The concerned expectations is,

〈R−1〉 =

∫
R−1IW(R|η,B)dR. (B.4)

By transforming Λ = R−1, the above equation becomes

〈R−1〉 =

∫
Λ · C(η,B)|Λ|

1
2
η exp(−1

2
BΛ)|Λ|−(m+1)dΛ. (B.5)

Note that, since Λ = R−1 is the transformation of the probability density function,
the Jacobian of transformation, J(R−1 → Λ) = |Λ|−(m+1), needs to be considered. By
reparameterizing κ = η −m− 1 and C = B−1, Eq. (B.5) becomes

〈R−1〉 =

∫
Λ · W(Λ|κ,C)dΛ, (B.6)
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whereW denotes the Wishart distribution defined as

W(Λ|κ,C) ∝ |Λ|
1
2
(κ−m−1) exp{−1

2
trC−1Λ}. (B.7)

The concerned expectation 〈R−1〉 is the mean of the Wishart distribution. That is,

〈R−1〉 = κ−1C,

= (η −m− 1)B−1.
(B.8)
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Appendix C

Approximation of predictive
distribution for Rt

C.1 Formulation

In this appendix, we derive the approximation of Eq. (3.11) that denotes the tth
predictive distribution for Rt. Again, the approximating distribution is given by

p(Rt|y1:t−1) =

∫
IW(Rt|ξ, (ξ − 2m− 2)Rt−1) · IW(Rt−1|ηt−1|t−1,Bt−1|t−1)dRt,

(C.1)

Since the exact integration is intractable, we approximate p(Rt|y1:t−1) with another
inverse Wishart distribution as

p(Rt|y1:t−1) ≈ IW(Rt|ηt|t−1,Bt|t−1), (C.2)

In the following, we derive this approximation, Eq. (C.2).

C.2 Derivation

The basic idea of the approximation is to find another inverse Wishart distribution
that has the same mean and variance as the exact distribution. Although it is not
possible to obtain a exact form of Eq. (C.1), the moments can be calculated exactly.
The mean and the variance of Eq. (C.1) are

Mean(Rt)

=

∫
Rt ·

[ ∫
p(Rt|Rt−1)p(Rt−1|y1:t−1)dRt−1

]
dRt

=
Bt−1|t−1

ηt−1|t−1 − 2m− 2
, (C.3)

V ar(Rt,ii)

= 〈R2
t,ii〉 − 〈Rt,ii〉2

=
B2
t−1|t−1,ii

(ηt−1|t−1 − 2m− 2)2
×

[
(1 +

2

ξ − 2m− 4
)(1 +

2

ηt−1|t−1 − 2m− 4
)− 1

]
. (C.4)
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The mean and the variance of RHS of Eq. (C.2) are immediately obtained from Eqs.
(B.2) and (B.3) as

Mean(Rt) =
Bt|t−1

ηt|t−1 − 2m− 2
, (C.5)

V ar(Rt,ii) =
2Bt|t−1,ii

(ηt|t−1 − 2m− 2)2(ηt|t−1 − 2m− 4)
. (C.6)

Then, we solve Eqs. (C.3)–(C.6) with respect to ηt|t−1 and Bt|t−1. The resultant pa-
rameters are

ηt|t−1 =
2(

1 + 2
ξ−2m−4

)(
1 + 2

ηt−1|t−1−2m−4
)
− 1

+ 2m+ 4,

Bt|t−1 =
ηt|t−1 − 2m− 2

ηt−1|t−1 − 2m− 2
Bt−1|t−1,

(C.7)

which correspond to Eqs. (3.12) and (3.13).
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