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Abstract

For many decades, the field of optimization has progressed both in the way it represents real-life problem

and how it solves these problems. However, most of the focus have been towards problems with a single

objective to optimize whereas almost all real-life problems involve multiple objectives.

In this thesis, we study the solving of multi-objective problems that we propose to view as two successive

steps. The first step consists in finding the Pareto front of the given problem, i.e., the set of solutions

offering optimal trade-offs of the objectives. As the size of this Pareto front can increase exponentially

with the size of the problem, efficient algorithms are required to find the Pareto front or at least a good

approximation. This first step is thus mostly about algorithms and searching for solutions. The second

step then consists in using the previously found Pareto front to extract a single solution that can be

implemented. It can be assumed that this second step is performed by a decision maker. However,

selecting a solution from the Pareto front is rarely trivial for a human as the set of alternatives can be very

large. Additionally, many problems require quick decisions, in which case interacting with a decision

maker can be impossible. This second step is more about decision making and defining additional criteria

to extract solutions from the Pareto front.

In the first chapter of this thesis, we present the background of the main fields of research to which

our thesis contributes. These fields are Optimization, Constraint Programming and Distributed Problem

Solving.

In the second chapter, we introduce the preliminary notions required for the understanding of our con-

tribution. We present the framework used to represent multi-objective problems both for centralized

and distributed systems, as well as for dynamic environments where the problem changes over time. In

addition, we present some of the representative applications considered during this thesis.

In the third chapter, we study the first step of multi-objective problem solving and propose two new algo-

rithms for finding the Pareto front of multi-objective optimization problems in distributed systems. The

first algorithm is the Multi-Objective Distributed Pseudo-tree Optimization, an exact algorithm based

on dynamic programming techniques to find the complete Pareto front. The second algorithm is the

Distributed Pareto Local Search, an algorithm based on local search techniques that provides an approx-

imation of the Pareto front.

In the fourth chapter, we study the second step of multi-objective problem solving and propose three

multi-objective decision making methods to isolate subsets of Pareto fronts that can be deemed more in-

teresting. The first selection method uses a preference-based criterion while the second and third selection

methods use criteria specific to dynamic problems.

In the fifth chapter, we discuss the related works and compare them with our proposed algorithms and

decision methods.

In the final chapter, we conclude this thesis by summing up our contribution and discussing the potential

future works related to this thesis.
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Chapter 1

Introduction

Most decisions made in life rely on some form of optimization process where different decisions

are considered but only one is implemented in the end. Automated optimization is a crucial

part of a wide variety of systems, often greatly improving their efficiency and reducing their

costs. An example is how the optimization of schedules for nurses in hospitals or for teachers

in universities greatly improves the quality of the services provided. Another example is how

the optimization of the routes taken by delivery trucks reduces the time taken to perform all

deliveries.

Many such optimization problems require the consideration of multiple objectives that should

be considered separately but optimized simultaneously. Objectives should be considered sep-

aratly when there is no good way to express one objective in relation to the other objectives.

For example, when dealing with the security and speed of a network, we cannot express the

security as a factor of the speed. While the objectives are considered separatly, they should

be optimized simultaneously as we want to obtain a solution achieving the best value for each

objective without ignoring any of them. In practice, the different objectives are usually concur-

rent to eachother such that improving one of the objectives will decrease some other objectives.

Thus, multi-objective problems rarely accept a single solution that is the best for all objectives

simultaneously. Instead, there exists several solutions that offer different trade-offs of the ob-

jectives. This set of solutions is called the Pareto front and selecting any solution from this set

guarantees that there will not exist another solution that is better for all objectives.

Figure 1.1 shows the full optimization process both in the mono-objective case and the multi-

objective case. We can see that in the mono-objective case, a solution can directly be imple-

mented after the problem was solved whereas in the multi-objective case, an extra decision must

be made after finding the Pareto front. The mono-objective case can actually be seen as a special

case of optimization where the Pareto front will always contain a single solution, allowing us to

skip the extra decision step.

1
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Real Problem

Abstract

Mono-Objective Problem

(COP, DCOP, ...)

Abstract

Multi-Objective Problem

(MO-COP, MO-DCOP, ...)

Pareto Front

Solution
Solving

Solving

DecisionModeling

Our contribution

Implementation

FIGURE 1.1: Representation of the typical optimization process, from the abstraction of the
real problem to the implementation of the solution found.

There have been many works on multi-objective optimization and there now exists an extensive

range of techniques to find or approximate the Pareto front of large multi-objective problems.

The final decision step is usually assumed to be performed by interacting with a decision maker

and little research has been done about automating this selection step. In this thesis, we study

problems that are represented using constraints using techniques from constraint programming.

Constraint programming is a field of artificial intelligence (AI) where problems are defined us-

ing a set of variables and a set of constraints between these variables. Variables are usually

assumed to have a finite domain and a constraint defines a relation between the values of its

variables. Constraint programming divides the modeling and solving of problems by providing

declarative models and general solvers for these models. There exists a multitude of languages

and frameworks to both model and solve constraint problems. Representing optimization prob-

lems using constraints offer two interesting aspects. First, it can naturally represent relations

between different entities of a real world problem. For example, two meetings correspond to

two different variables naturally share a constraint if they should not be scheduled at the same

time. Secondly, using constraints offers a decomposition of the problem into independent parts,

which can be exploited to design efficient algorithms. These two points made constraint op-

timization frameworks very attractive to the multi-agent community as they can easily model

various multi-agent coordination problems.

The study of multi-agent systems (MAS) is a field of AI that is becomming increasingly impor-

tant with the rise of distributed and integrated systems. Whereas AI usually assumes a single

rational agent, a multi-agent system (MAS) considers a set of autonomous agents interacting

with eachother. When these agents work together to solve a problem, we talk about coordina-

tion, i.e., each agent will take decisions that benefit the whole group of agents.

Distributed optimization has been extensively studied in the last two decades and many algo-

rithms have been proposed, allowing to tackle a number of real problems in various situations.

However, distributed multi-objective optimization is still a relatively new field.



Chapter 1. Introduction 3

This thesis contributes to the solving of multi-objective optimization problems by developing

new algorithms that compute the Pareto front in a distributed fashion and by proposing new

methods to select the solution to implement from a Pareto front. These contributions corre-

sponding to the solving and decision making part of the optimization process, highlighted in

red in Figure 1.1. We assume that we are given an abstract multi-objective problem using the

framework called Multi-Objective Constraint Optimization Problem (MO-COP) or its variants

for multi-agent systems called Multi-Objective Distributed Constraint Optimization Problem

(MO-DCOP).

While distributed optimization is well studied in the mono-objective case, its multi-objective ex-

tension is still very new with very few techniques available to find the Pareto front of distributed

problems. We contribute to this field by proposing two new algorithms that uses different tech-

niques suited for different case. A first algorithm that guarantees to find the exact Pareto front

uses dynamic programming techniques often used in constraint programming. The second al-

gorithm finds an approximation of the Pareto front using local search techniques that are widely

used in optimization.

After the Pareto front is found, we need to select a solution to implement. We consider in

this thesis some situations where the selection step cannot be directly performed by a decision

maker, either because the Pareto front is too difficult to comprehend or because interacting with

a decision maker is inconvenient. For example, we will consider dynamic scenarios where rapid

decisions must be made, requiring to automate the decision as interacting with the decision

maker would take too much time.
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1.1 Background

In this section we present the background of fields our contribution belongs to, namely: Op-

timization in section 1.1.1, Constraint Programming in section 1.1.2, and Distributed Problem

Solving in section 1.1.3.

1.1.1 Optimization

Optimization [1] is a branch of mathematics looking to model, analyze and solve problems con-

sisting in minimizing or maximizing an objective function. Optimization is a key part of both

artificial intelligence and operational research where many fundamental problems (pathfinding,

resource allocation, binpacking, . . . ) can be represented as optimization problems. Optimiza-

tion problems can be classified using many different properties. When a problem includes the

consideration of some constraints, it is called a constrained optimization problem. Otherwise, it

is called an unconstrained optimization problem. When the objective functions to optimize (as

well as the constraints) are linear functions, the problem is called a linear programming prob-

lem. There also exists geometric programming problems and quadratic programming problems.

When variables take only discrete (or integer) values, the problem is called an integer program-

ming problem. When the values are real, the problem is called a real-valued programming

problem. Based on the number of objective functions to optimize, we can say that a problem

is a mono-objective problem (or single-objective problem) if it has only one objective function.

s’

f(
x
)

x

f(x)

FIGURE 1.2: Example of objective function f(x) and its optimal solution s′.



Chapter 1. Introduction 5

If it has more than one objective function, the problem is said to be a multi-objective problem.

In this thesis, the optimization problems considered are constrained, non-linear, discrete, and

multi-objective.

Generally speaking, an optimization problem considers:

• N is the solution space.

• f : N → R is an objective function defining a value for each element of the solution

space N .

Then, in a minimization problem, the goal is to find an element s′ ∈ N such that f(s′) ≤ f(s)

for all s ∈ N , also written:

s′ = argmin
s∈N

f(s)

Example 1.1 (Optimization). Figure 1.2 shows a simple example of a continuous objective

function f(x) and its optimal solution s′.

Next, we will briefly introduce the types of optimization considered in this thesis, namely com-

binatorial and multi-objective optimization.

1.1.1.1 Combinatorial Optimization

Combinatorial optimization [2] is a branch of optimization where the solution space, i.e., the set

of possible solutions, is discrete and finite.

Formally, we consider a combinatorial optimization problem where:

• N is a discrete set of solution.

• f : 2N → R is an objective function defining a value for each combination of elements in

N .

• F ⊆ 2N is a set of subsets of N listing all feasible solutions of the problem.

Then, a minimization combinatorial problem can be written

s′ = argmin
s∈N

f(s) s.t. s ∈ F

Example 1.2 (Knapsack Problem). A classical combinatorial optimization problem is the knap-

sack problem [3, 4] where we are given a set of items N = {n1, . . .} where each item ni

have a weight wi and a value vi, and we want to find a subset of items whose total weight
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is less or equal a given limit and whose total value should be maximized. The figure shows

an example of knapsack problem where the weight limit is 15kg and 5 items are available:

• nred , wred = 1, vred = 1.

• ngrey , wgrey = 1, vgrey = 2.

• nblue , wblue = 2, vblue = 2.

• nyellow, wyellow= 4, vyellow= 10.

• ngreen , wgreen= 12, vgreen = 4.
1

The solution space of this problem is the set of combinations of items.The feasible solutions are

the combinations of items whose total weight is less than or equal to 15, i.e.,
∑
si∈S

wi ≤ 15,

S ∈ 2N . For example, {Blue, Y ellow,Green} is not a feasible solution since its weight is

higher than 15 (2 + 10 + 4 = 16). {Red, Y ellow,Green} is a feasible solution since its weight

is not higher than 15 (1 + 10 + 4 = 15).

The objective function can be written as f(S) =
∑
si∈S

vi. The optimal solution of this problem is

{Red,Grey,Blue, Y ellow} with a weight of 8(1+1+2+4) and a value of 15(1+2+2+10).

1.1.1.2 Multi-Objective Optimization

When multiple objectives should be optimized simultaneously, it is called Multi-Objective Op-

timization (MOOP) [5]. MOOP is a branch of combinatorial optimization whose specificity

is to simultaneously attempt the optimization of multiple objective functions whereas classical

combinatorial optimization only considers the optimization of a single objective function.

The complexity of multi-objective problems lies in the many trade-offs of objectives that can

exist. Figure 1.3 shows an example of different trade-offs we could obtain for a pathfinding

problem. Let us say we want to travel from city A to city B and want to do so as fast as

possible and for as little money as possible. There exists multiple possible routes, the fastest

route requires to use expensive transportation while the cheapest route requires to transit in

other cities and use slower mean of transportation. Thus, there exists a trade-off between cost

and time, the two objectives we want to minimize, and there does not exist one route that is both

the cheapest and the fastest one.

Many optimization problems that are NP-complete in the mono-objective case become NP-

hard when considered with multiple objectives. Thus, even if most problems actually include
1CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=985491
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multiple objectives, they are often tackled using mono-objective techniques. Such approach is

called preference-based multi-objective optimization and requires a pre-processing step where

higher-level information are used to determine the importance of each objective. The weighted-

sum method is the most commonly used preference-based method. It considers a weight for

each objective, with a higher weight indicating a higher priority for the objective. Using this

set of weights, we can obtain a mono-objective problem where the objective function is the

weighted-sum of the multi-objective problem. Another approach called ε-constraint method

requires to select only one objective to actually optimize and then choose a limit for the values

of the remaining objectives. We note that both these methods can guarantee to find a solution

from the Pareto front. However, they require a difficult step to determine the correct weights or

limit to use, as small variations of these parameters can result in very different solutions. These

methods are used in practice as they allow the use of existing mono-objective algorithms, but

unless the preferences of the decision maker are clear and that the preference-based method is

accurate, the resulting solution might not be entirely satisfactory.

In order to be sure that the solution we get is satisfactory, it should be selected from a set of

alternatives, ideally the complete Pareto front. Such approach is called ideal multi-objective

Time

Cost

FIGURE 1.3: Example of trade-offs when optimizing the cost and time of a route between two
locations.
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Multi-Objective Problem

Single-Objective

Problem
Solution

Higher-level

information

Single-Objective

Algorithm

(a)

Multi-Objective Problem

Pareto Front Solution

Multi-Objective

Algorithm

Higher-level

information

(b)

FIGURE 1.4: Illustration of the ideal multi-objective optimization procedure (a) compared to
the preference-based multi-objective optimization procedure (b)

optimization [6]. This is the approach we want to study in this thesis. The motivation for this

method is that, in order to select the solution of a multi-objective problem, one must have an

idea of the different trade-offs of objectives available. Only then can we decide what trade-off

to select.

Algorithms for multi-objective problems can be divided into three categories. First, an algorithm

that consistently finds the full Pareto front of a given problem is called a complete algorithm.

An algorithm that finds solutions without being able to guarantee whether they are part of the
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Pareto front or not is called an approximation algorithm. Finally, an algorithm that can guarantee

a subset of the Pareto front is called an incomplete algorithm.

The work presented in this thesis contributes to the field of multi-objective optimization in two

ways. First, new algorithms are proposed to allow the solving of multi-objective problems in

multi-agent systems (discussed in more details in Section 1.1.3). This requires adapting known

multi-objective techniques such as local search and dynamic programming to distributed set-

tings, as well as the development of new techniques specific to multi-objective optimization.

Secondly, the ideal multi-objective optimization approach is studied and new methods are pro-

posed to help the process of selecting a unique solution to a multi-objective problems. This

includes considering intermediate approaches where subsets of the Pareto front are extracted in

order to simplify the task of the decision maker. The methods proposed in this thesis consider

different possible subsets of the Pareto front based on different criteria.
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1.1.2 Constraint Programming

Constraint Programming (CP) [7] is an approach to solve many fundamental problems from

artificial intelligence. In CP, the modeling part is separated from the solving part. Problems

are modeled using constraints, i.e., relations between one or several entities. General search

algorithms, usually called constraint solvers, are then designed to take advantage of techniques

such as constraint propagation or systematic search to find the solution of a given problem.

Originally, CP was limited to the satisfaction of constraints. Meaning that a constraint between

some variables is a relation that limit the values simultaneously taken by each variable. Con-

straint Satisfaction Problem [8] (CSP) is the most popular framework to represent satisfaction

problems such as the eight queens puzzle, the Sudoku puzzle, or graph-coloring. Many practical

problems such as resource allocation or planning can also be represented using CSPs and it has

become an important problem in both artificial intelligence and operational research.

Constraint satisfaction however have some limitation. The most important one concerns over-

constrained problems, i.e., problems where no solution exists that can satisfy all constraints.

Such a case is usually the most difficult one to handle by constraint solvers but cannot return

any usable solution. Thus, a more general framework called Weighted Constraint Satisfaction

Problem [9] (WCSP) has been proposed to handle overconstrained CSP. In a WCSP, a weight

is associated to each constraint such that if it cannot be satisfied, we have to pay the associated

weight. The goal of a WCSP is to find a solution that minimizes the sum of weights. This frame-

work offers a more flexible representation of satisfaction problem, allowing to find a solution for

an overconstrained problem but still being able to find a solution fully satisfying the constraints

if such a solution exists.

While WCSP provided an important addition to CSP, these two frameworks still use the same

type of constraints defining valid combinations of values. To allow the representation of prob-

lems as general as possible, a new framework designed for optimization was proposed under

the name of Constraint Optimization Problem [10] (COP). With this framework, constraints are

now functions that can yield different costs for each combinations of values of some variables.

This framework can still represent the same problems as CSP or WCSP but can also model more

complex optimization problems.

The works presented in this thesis make use of constraint frameworks designed specifically to

represent multi-objective problems in centralized or distributed settings, namely Multi-Objective

Constraint Optimization Problems (MO-COPs) [11], and Distributed Multi-Objective Constraint

Optimization Problems (MO-DCOPs) [12]. The algorithms and methods described in this thesis

are all designed around these frameworks and contribute with new algorithms to take advantage

of the problem decomposition offered by constraint programming.
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1.1.3 Distributed Problem Solving

In computer science, a multi-agent system (MAS) [13] is a system composed of a set of agents

that interact with each other inside an environment. An agent is characterized by being, at least

partially, autonomous. An agent can thus represent a process, a robot, a human, . . .

There are two main fields of research on multi-agent systems. First, MAS can be used to sim-

ulate complex interactions between autonomous agents in order to analyze the evolution of a

system [14]. This has been applied to various fields such as sociology [15], economy [16] or

robotics [17]. The second field of research, and the one this thesis belongs to, is distributed

problem solving [18]. In distributed problem solving, agents are assumed to collaborate towards

achieving a common goal. The problems tackled in distributed problem solving are problems

that can also be solved centrally. However, many problems are naturally distributed between

agents and using a centralized approach in that case can be inefficient. For example, centraliz-

ing information from agents that communicates through wireless communications can produce a

tremendous amount of communication overheads. The privacy of agents can also be of concern

as some agents might not be willing to share their private information with any other agents.

Another advantage of using a distributed approach is with regards to the system’s robustness.

Centralizing the problem solving incur a single point of failure whereas distributed problem

solving can offer methods robust to the loss of some entity of the system.

To study distributed problem solving and propose algorithms suited for MAS, specific frame-

works have been designed to model decision, satisfaction, and optimization problems among

agents. Constraint Satisfaction Problems, where variables share constraints limiting the value

they can simultaneously take, have been extended into Distributed Constraint Satisfaction Prob-

lems [19] where each variable is controlled by an agent. Partially Observable Markov Deci-

sion Processes (POMDPs) [20], used to model decision problems in uncertain environments,

have been extended with Decentralized Partially Observable Markov Decision Processes (DEC-

POMDPs) [21] to allow the representation of multi-agent coordination problems with uncertain

observations and actions. Finally, optimization frameworks like the Constraint Optimization

Problem (COP) [22] have been extended for MAS with the Distributed Constraint Optimization

Problem (DCOP) [23, 24].

This thesis contributes to the field of distributed problem solving by proposing new distributed

algorithms to allow agents to collaborate and achieve multiple objectives.



Chapter 2

Preliminaries

In this chapter, we introduce the preliminary notions required for understanding the contribution

of this thesis. Section 2.1 presents the basic model used to represent the problems tackled in

our work, namely the model for a Constraint Optimization problem (COP). Section 2.2 presents

the Multi-Objective Constraint Optimization Problem (MO-COP), the multi-objective exten-

sion of a COP. Section 2.3 discusses the extra considerations required in multi-agent systems

and presents the distributed version of an MO-COP, namely, the model for a Multi-Objective

Distributed Constraint Optimization Problem (MO-DCOP). Section 2.4 presents the model for a

dynamic MO-COP. Section 2.5 presents some examples of applications for the models presented

previously. Finally, Section 2.6 presents a summary of this thesis’ contribution.

12
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v1 v2 cost v2 v3 cost v1 v3 cost

a a 5 a a 0 a a 1
a b 7 a b 2 a b 1
b a 10 b a 0 b a 0
b b 12 b b 2 b b 3

FIGURE 2.1: Example of Constraint Optimization Problem.

2.1 Constraint Optimization Problems

Definition 2.1 (Constraint Optimization Problem). A Constraint Optimization Problem (COP) [25,

26] is the problem of finding an assignment of values to some variables so that the sum of the

resulting costs is minimized.

A COP is defined as a tuple (V,D, C, F ) such that:

• V = {v1, . . . , vn} is a set of variables;

• D = {D1, . . . , Dn} is a set of domains;

• C = {C1, . . . , Cc} is a set of constraint relations;

• F = {f1, . . . , fc} is a set of cost functions.

A variable vi ∈ V takes its value from a finite, discrete domain Di ∈ D. A constraint relation

Ci ∈ C, Ci ⊆ V is a set of variables, indicating that the variables in Ci share a constraint

relation.

For each constraint relation Ci ∈ C, there is a corresponding cost function fi defining a cost

for each combination of values of the variables in Ci, i.e., a cost function fi : ×∀vj∈Ci
Dj →

R≥0, fi ∈ F .

In a COP, an assignment A is a set of pairs of variable/value, written {(vi, di), (vj , dj), . . .},
indicating that variable vi ∈ V takes value di ∈ Di. If a variable vi is part of assignment A, we

can say that vi is in A, written vi ∈ A.

The cost of an assignment A can be computed as follows:

R(A) =
∑

Ci∈C s.t. Ci⊆A
fi(A)

If an assignment A contains all variables of the problem, i.e., ∀vi ∈ V, vi ∈ A, then A is said to

be a complete assignment.
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An optimal assignment A∗ is given as arg minA=V R(A), meaning there does not exist another

complete assignment with a better cost. The goal of a COP is to find an optimal assignment.

Remark 2.2. COP is NP-hard.

Remark 2.3 (Relation with CSPs). Constraint Satisfaction Problems (CSP) can be represented

as COPs where cost functions yield a cost of 0 for valid assignments and a cost of 1 for invalid

assignments.

Example 2.1 (COP). Figure 2.1 shows a COP (V,D, C, F ) as follows:

• V = {v1, v2, v3}.

• D = {D1, D2, D3} where D1 = D2 = D3 = {a, b};

• C = {C1, C2, C3} where C1 = {v1, v2}, C2 = {v1, v3}, C3 = {v2, v3};

• F = {f1, f2, f3} where each function is represented as a table in Figure 2.1.

All possible assignments and their resulting costs are shown in Table 2.1. The optimal solution

of this problem is {(v1, a), (v2, a), (v3, a)} with an optimal cost of 6.

This cost is computed by summing the cost of each cost function for the assignment:

• For C1 = {v1, v2}, f1({(v1, a), (v2, a)}) = 5.

• For C2 = {v1, v3}, f2({(v1, a), (v3, a)}) = 0.

• For C3 = {v2, v3}, f3({(v2, a), (v3, a)}) = 1.

• R({(v1, a), (v2, a), (v3, a)}) = 6.

v1 v2 v3 Cost
a a a 6
a a b 8
a b a 8
a b b 10
b a a 10
b a b 15
b b a 12
b b b 17

TABLE 2.1: Possible solutions of the COP of Figure 2.1.
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2.2 Multi-Objective Constraint Optimization Problems

Definition 2.4 (Multi-Objective Constraint Optimization Problem). A Multi-Objective Con-

straint Optimization Problem (MO-COP) [27–29] is the problem of finding an assignment of

values to some variables so that the sum of the resulting costs is minimized. It is the extension

of a (mono-objective) Constraint Optimization Problem (COP) where, instead of having a single

cost function per constraint relation, multiple functions corresponding to multiple objectives are

used.

An MO-COP is defined as a tuple (V,D, C,F) such that:

• V = {v1, . . . , vn} is a set of variables;

• D = {D1, . . . , Dn} is a set of domains;

• C = {C1, . . . , Cc} is a set of constraint relations;

• F = {F1, . . . , Fc} is a set of sets of cost functions.

A variable vi ∈ V takes its value from a finite, discrete domain Di ∈ D. A constraint relation

Ci ∈ C, Ci ⊆ V is a set of variables, indicating that the variables in Ci share a constraint

relation.

For each constraint relation Ci ∈ C, there is a corresponding set of cost functions Fi =

{f1, . . . , fm} providing a cost function for each objective of the problem. Then, each cost

function fl ∈ Fi defines a cost for each combination of values of the variables in Ci, i.e., a cost

function fl : ×∀vj∈Ci
Dj → R≥0, fl ∈ Fi.

Similarly to COPs, in a MO-COP, an assignment A is a set of pairs of variable/value, written

{(vi, di), (vj , dj), . . .}, indicating that variable vi ∈ V takes value di ∈ Di. If a variable vi is

part of assignment A, we can say that vi is in A, written vi ∈ A.

The cost for objective l of an assignment A can be computed as follows:

Rl(A) =
∑

Ci∈C s.t. Ci⊆A
fl(A), fl ∈ Fi

Then, the sum of the values of all cost functions for m objectives is defined by a cost vector,

denoted R(A) = (R1(A), R2(A), . . . , Rm(A)).

To find an assignment that minimizes all m objective functions simultaneously is ideal. How-

ever, in general, since trade-offs exist among objectives, there does not exist such an ideal as-

signment. Therefore, the optimal solution of an MO-COP is characterized by using the concept
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v1 v2 cost v2 v3 cost v1 v3 cost

a a (5,2) a a (0,1) a a (1,0)
a b (7,1) a b (2,1) a b (1,0)
b a (10,3) b a (0,2) b a (0,1)
b b (12,0) b b (2,0) b b (3,2)

FIGURE 2.2: Example of Multi-Objective Constraint Optimization Problem.

of Pareto optimality. An assignment is a Pareto optimal solution if there does not exist another

assignment that weakly improves all of the objectives.

Solving an MO-COP is to find the Pareto front which is a set of cost vectors obtained by all

Pareto optimal solutions.

Definition 2.5 (Pareto Dominance). For an MO-COP and two cost vectors R(A) and R(A′),

we say that R(A) dominates R(A′), denoted by R(A) ≺ R(A′), iff R(A) is partially less than

R(A′), i.e., it holds (i) Rh(A) ≤ Rh(A′) for all objectives h, and (ii) there exists at least one

objective h′, such that Rh
′
(A) < Rh

′
(A′).

Example 2.2 (Pareto Dominance). Let us consider 3 vectors with 2 objectives:

• R1 = (6, 3).

• R2 = (10, 1).

• R3 = (17, 2).

We can notice the following relationships:

• R2 ≺ R3, i.e., R2 = (10, 1) dominates R3 = (17, 2).

• R1 ⊀ R2 and R1 � R2.

Definition 2.6 (Pareto optimal solution). For an MO-COP, an assignment A is said to be a

Pareto optimal solution, if and only if there does not exist another assignment A′, such that

R(A′) ≺ R(A).

Definition 2.7 (Pareto Front). For an MO-COP, a set of cost vectors obtained by the Pareto

optimal solutions is called the Pareto front.

Example 2.3 (MO-COP). Table 2.4 shows a bi-objective COP, which is an extension of the

COP in Figure 2.1. Each variable takes its value from a discrete domain {a, b}. The Pareto

optimal solutions of this problem are {{(v1, a), (v2, a), (v3, a)}, {(v1, a), (v2, b), (v3, b)}}, and

the Pareto front is {(6, 3), (10, 1)}.
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Example 2.4 (MO-COP). Figure 2.2 shows an MO-COP (V,D, C,F) as follows:

• V = {v1, v2, v3}.

• D = {D1, D2, D3} where D1 = D2 = D3 = {a, b};

• C = {C1, C2, C3} where C1 = {v1, v2}, C2 = {v1, v3}, C3 = {v2, v3};

• F = {F1, F2, F3} where each set of functions is represented as a table in Figure 2.2.

All possible assignments and their resulting cost vectors are shown in Table 2.2. The Pareto

solutions of this MO-COP are:

• S1 = {(v1, a), (v2, a), (v3, a)} with cost R(S1) = (6, 3).

• S2 = {(v1, a), (v2, b), (v3, b)} with cost R(S2) = (10, 1).

v1 v2 v3 Cost
a a a (6,3)
a a b (8,3)
a b a (8,3)
a b b (10,1)
b a a (10,5)
b a b (15,6)
b b a (12,3)
b b b (17,2)

TABLE 2.2: Possible solutions of the MO-COP of Figure 2.2.
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2.3 Distributed Optimization

In this section, we present the distributed extensions of the Constraint Optimization Problem

presented in Section 2.1 and of the Multi-Objective Constraint Optimization Problem presented

in Section 2.2.

We will first present in Section 2.3.1 the assumptions and considerations we make for distributed

systems. We then present the frameworks for the Distributed Constraint Optimization Prob-

lem in Section 2.3 and for the Multi-Objective Distributed Constraint Optimization Problem in

Section 2.3.3. We also present the concept of pseudo-tree in Section 2.3.4 as it is a structure

commonly used by distributed algorithms.

2.3.1 Assumptions and Considerations

Classical optimization is assumed to be performed in a centralized fashion, where a single agent

knows the whole problem and performs all the computation. However, many problems are

naturally distributed with each agent being in relation with other agents to form global constraint

problems.

This introduces many new considerations about communication cost, privacy or the distribution

of the computation.

2.3.1.1 Ownership and Control

Compared to the Constraint Optimization Problem (assumed to be centralized), a DCOP con-

siders that each variable of the problem is managed by an agent. In practice, each agent can be

responsible of multiple variables but to simplify notations, we assume that an agent xi owns a

single meta variable vi that actually represents the values of multiple local variables by taking

values from the set of all their possible combinations.

2.3.1.2 Cooperation

In this thesis, we only consider cooperative agents that all work toward the same global goal.

This is what is represented with the framework we use called Distributed Constraint Optimiza-

tion Problem and that we present in Section 2.3.
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2.3.1.3 Privacy

In a distributed problem, each agent knows a different part of the subproblem and how these

information are exchanged is a critical part of distributed algorithms. Throughout this thesis, we

will assume that an agent xi is only aware of the following:

• Its variable vi and the corresponding domain Di.

• The set of constraints Ci including variable vi and their corresponding set of cost functions

F i.

• The set of variables sharing a constraint with vi and their corresponding domains.

2.3.2 Distributed Constraint Optimization Problems

In this subsection, we describe the formalism of Distributed Constraint Optimization Problems

(DCOPs).

Definition 2.8 (Distributed Constraint Optimization Problem). A Distributed Constraint Opti-

mization Problem (DCOP) [25, 26] is the problem of finding an assignment of values to some

variables so that the sum of the resulting costs is minimized.

A DCOP is defined as a tuple (X,V,D, C, F ) such that:

• X = {x1, . . . , xn} is a set of agents;

• V = {v1, . . . , vn} is a set of variables;

• D = {D1, . . . , Dn} is a set of domains;

• C = {C1, . . . , Cc} is a set of constraint relations;

• F = {f1, . . . , fc} is a set of cost functions.

An agent xi ∈ X is responsible of variable vi ∈ V and chooses its value from a finite, discrete

domain Di ∈ D.

A constraint relation Ci ∈ C, Ci ⊆ V is a set of variables, indicating that the variables in Ci
share a constraint relation.

For each constraint relation Ci ∈ C, there is a corresponding cost function fi defining a cost

for each combination of values of the variables in Ci, i.e., a cost function fi : ×∀vj∈Ci
Dj →

R≥0, fi ∈ F .
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In a DCOP, an assignment A is a set of pairs of variable/value, written {(vi, di), (vj , dj), . . .},
indicating that variable vi ∈ V takes value di ∈ Di. If a variable vi is part of assignment A, we

can say that vi is in A, written vi ∈ A.

The cost of an assignment A can be computed as follows:

R(A) =
∑

Ci∈C s.t. Ci⊆A
fi(A)

If an assignment A contains all variables of the problem, i.e., ∀vi ∈ V, vi ∈ A, then A is said to

be a complete assignment.

An optimal assignment A∗ is given as arg minA=V R(A), meaning there does not exist another

complete assignment with a better cost. The goal of a DCOP is to find one optimal assignment.

2.3.3 Multi-Objective Distributed Constraint Optimization Problems

Definition 2.9 (Multi-Objective Distributed Constraint Optimization Problem). A Multi-Objective

Distributed Constraint Optimization Problem (MO-DCOP) [12, 30, 31] is the problem of finding

an assignment of values to some variables so that the sum of the resulting costs is minimized.

It is the extension of a (mono-objective) Constraint Optimization Problem (COP) where, in-

stead of having a single cost function per constraint relation, multiple functions corresponding

to multiple objectives are used.

An MO-DCOP is defined as a tuple (X,V,D, C,F) such that:

• X = {x1, . . . , xn} is a set of agents;

• V = {v1, . . . , vn} is a set of variables;

• D = {D1, . . . , Dn} is a set of domains;

• C = {C1, . . . , Cc} is a set of constraint relations;

• F = {F1, . . . , Fc} is a set of sets of cost functions.

An agent xi ∈ X is responsible of variable vi ∈ V and chooses its value from a finite, discrete

domain Di ∈ D.

A constraint relation Ci ∈ C, Ci ⊆ V is a set of variables, indicating that the variables in Ci
share a constraint relation.

For each constraint relation Ci ∈ C, there is a corresponding set of cost functions Fi =

{f1, . . . , fm} providing a cost function for each objective of the problem. Then, each cost
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FIGURE 2.3: Example of constraint graph (left) and the corresponding pseudo-tree (right)

function fl ∈ Fi defines a cost for each combination of values of the variables in Ci, i.e., a cost

function fl : ×∀vj∈Ci
Dj → R≥0, fl ∈ Fi.

Similarly to DCOPs, in a MO-DCOP, an assignment A is a set of pairs of variable/value, written

{(vi, di), (vj , dj), . . .}, indicating that variable vi ∈ V takes value di ∈ Di. If a variable vi is

part of assignment A, we can say that vi is in A, written vi ∈ A.

The cost for objective l of an assignment A can be computed as follows:

Rl(A) =
∑

Ci∈C s.t. Ci⊆A
fl(A), fl ∈ Fi

Then, the sum of the values of all cost functions for m objectives is defined by a cost vector,

denoted R(A) = (R1(A), R2(A), . . . , Rm(A)).

Similarly to MO-COPs, we define the goal of an MO-DCOP as finding its Pareto front (Defini-

tion 2.7).

2.3.4 Pseudo-Tree

In many DCOP algorithms, agent are organized using a pseudo-tree [26] where there exists a

unique root node and each non-root node has a parent node. In addition, it is required that all

variables sharing a constraint must be part of a same path between the root and a leaf. Such

structure can be obtained using a depth-first traversal of the constraint graph.

After such structure is generated, each agent xi is aware of its parent Pi, its children CHi, and

its pseudo-parents PPi. An agent xj is a pseudo-parent of xi if and only if it is an ancestor of Pi
in the pseudo-tree and a neighbor of xi in the constraint graph.

An important concept of pseudo-trees for the algorithms discussed in this thesis is the separator

of an agent.
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Definition 2.10 (Separator). In a pseudo-tree, the separator Sepi of a node xi is the set of all

ancestors of xi which are pseudo-parents of xi or its descendants.

Sepi = Ancestorsi ∩ (PPi ∪ (
⋃

xj∈Descendantsi

PPj)

Example 2.5 (Pseudo-tree). Figure 2.3 shows a constraint graph and the corresponding pseudo-

tree. Lines represent parent/child relations and dotted lines represent pseudo-parent relations.

With x1 the root of the tree, the separators of this example are Sep1 = ∅, Sep2 = {x1}, and

Sep3 = {x1, x2}.
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Dynamic

Multi-Objective

Problem

Find PF

Select SolutionImplement Solution

Environment
Changes

FIGURE 2.4: Dynamic cycle of (i) having a problem, (ii) finding its Pareto front, and (iii)
selecting a solution to implement. This cycle must be repeated each time the problem changes.

2.4 Dynamic Multi-Objective Constraint Optimization Problems

We now present the framework for a Dynamic Multi-Objective Constraint Optimization Problem

(DMO-COP).

Definition 2.11 (Dynamic MO-COP). A DMO-COP is defined by a sequence of MO-COPs as

follows

where each index i (0 ≤ i ≤ k) represents a time step. Solving a DMO-COP is finding the

following sequence of Pareto front, denoted PF, where each PFi (0 ≤ i ≤ k) represents the

Pareto front of MO-COPi.

PF = 〈PF0,PF1, ...,PFk〉.

Such framework is used to model problems that change over time, requiring new solutions after

each change. Using this framework, after changes occur, a completely new problem is assumed.

Two cases are possible when considering dynamic problems. First, a reactive case where fu-

ture changes are unknown, meaning that a problem MO-COPi is unknown until the problem

MO-COPi−1 is solved (except for the first problem in the sequence corresponding to i = 0).

The other case is a proactive case where the future changes are known in advance, meaning that

the whole sequence is given.
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2.5 Applications

Many problems can be modeled as Constraint Optimization Problems. Classical problems in-

clude the vertex cover problem [32], the knapsack problem [3, 4], vehicle routing [33] or the

MaxSAT problem [34].

Distributed Constraint Optimization Problems have been applied to a wide variety of multi-

agent coordination problems. The most notable applications include sensor networks [35, 36],

distributed meeting scheduling [37–39], coalition structure generation [40], or the synchroniza-

tion of traffic lights [41].

While few works have tackled multi-objective problems in distributed environments, all mono-

objective applications can potentially be considered. The one existing application is toward the

optimization of a water resource management system [42].

2.5.1 Timetabling

In this section, we describe the model of Curriculum-Based Course Timetabling [43] (CB-CTT)

as it was defined for the ITC-2007 competition [44].

CB-CTT models the course timetabling problem that arises in many universities. In this model,

we have a set of curricula that predefines the sets of courses a student can follow. Then, each

course is made of several lectures that will take place every week. One of the simplification made

compared to other models of timetabling is the omission of student subsectioning, where each

student has to be assigned to individual subsections of a course. Even with this simplification,

CB-CTT is an NP-hard problem.

In this model, we are given sets of:

• time periods: the time horizon is divided into days and time slots per day. A time period

is a pair (day, time slot).

• courses: each course consists of a given number of lectures, is taught by a teacher and is

attended by a given number of students.

• curricula: a curriculum is a set of courses.

• rooms: each room has a maximum capacity.

CB-CTT then consists in finding an assignment of course lectures to rooms while satisfying a

set of hard-constraints:
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• H1. Lectures: all lectures of each course must be scheduled and they must be assigned

to distinct time slots.

• H2. Conflicts: lectures of courses in the same curriculum or taught by the same teacher

must be all scheduled in different time slots.

• H3. Room Occupancy: two lectures can not take place in the same room in the same

time slot.

• H4. Availability: if the teacher of the course is not available to teach that course at a

given time slot, then no lecture of the course can be scheduled at that time slot.

Definition 2.12 (Valid timetable). A timetable T is valid if it satisfies all hard-constraints.

To be able to compare different valid timetables, other constraints qualified as soft-constraints,

are used as quality measures:

• S1. Room Capacity: For each lecture, the number of students that attend the course

must be less than or equal the number of seats of all the rooms that host its lectures.

The penalties, reflecting the number of students above the capacity, are imposed on each

violation.

• S2. Minimum Working Days: The lectures of each course must be spread into a given

minimum number of days. The penalties, reflecting the number of days below the mini-

mum, are imposed on each violation.

• S3. Isolated Lectures: Lectures belonging to a curriculum should be adjacent to each

other in consecutive timeslots. For a given curriculum we account for a violation every

time there is one lecture not adjacent to any other lecture within the same day. Each

isolated lecture in a curriculum counts as one violation.

• S4. Windows: Lectures belonging to a curriculum should not have time windows (peri-

ods without teaching) between them. For a given curriculum we account for a violation

every time there is one window between two lectures within the same day. The penalties,

reflecting the length in periods of time window, are imposed on each violation.

• S5. Room Stability: All lectures of a course should be given in the same room. The

penalties, reflecting the number of distinct rooms but the first, are imposed on each viola-

tion.

• S6. Student MinMax Load: For each curriculum the number of daily lectures should be

within a given range. The penalties, reflecting the number of lectures below the minimum

or above the maximum, are imposed on each violation.
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TABLE 2.3: Formulations of CB-CTT

Constraint UD1 [45] UD2 [46] UD3 [47] UD4 [47] UD5 [47]
H1 : Lectures H H H H H
H2 : Conflicts H H H H H
H3 : Room Occupancy H H H H H
H4 : Availability H H H H H
S1 : Room Capacity 1 1 1 1 1
S2 : Minimum Working Days 5 5 0 1 5
S3 : Isolated Lectures 1 2 0 0 1
S4 : Windows 0 0 4 1 2
S5 : Room Stability 0 1 0 0 0
S6 : Student MinMax Load 0 0 2 1 2
S7 : Travel Distance 0 0 0 0 2
S8 : Room Suitability 0 0 3 H 0
S9 : Double Lectures 0 0 0 1 0

• S7. Travel Distance: Students should have the time to move from one building to another

one between two lectures. For a given curriculum we account for a penalty every time

there is an instantaneous move: two lectures in rooms located in different building in two

adjacent periods within the same day. Each instantaneous move in a curriculum counts as

one penalty.

• S8. Room Suitability: Some rooms may not be suitable for a given course because of the

absence of necessary equipment. Each lecture of a course in an unsuitable room counts

as one penalty.

• S9. Double Lectures: Some courses require that lectures in the same day are grouped

together (double lectures). For a course that requires grouped lectures, every time there is

more than one lecture in one day, a lecture non-grouped to another is not allowed. Two

lectures are grouped if they are adjacent and in the same room. Each non-grouped lecture

counts as one penalty.

Using those soft-constraints, we can represent the quality of a timetable T as a vector of penalties

V (T ) = (v1, v2, . . . , v9) where vi is the number of penalties for constraint Si (1 ≤ i ≤ 9).

Then, if we know the preferences of the decision makers, we can associate a weight to each

soft-constraint such that the lower the weight, the lower the importance of the constraint. A

weight of 0 corresponds to completely ignoring the constraint.

Various formulations of the problem uses different weights, as seen in Table 2.3. In the table,

lines represent constraints and columns represent the various formulations (UD1 to UD5). A

”H” in a cell indicates that the formulation uses the constraint as a hard-constraint. A number

in a cell indicates the weight associated with the soft-constraint. UD1 is the first set of weights

proposed for the CB-CTT problem [45] and only considers three soft-constraints. UD2 is the
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set of weights proposed for the ITC-2007 competition [46], where they extend UD1 with one

additional soft-constraint. UD3, UD4, and UD5 [47], were proposed in a latter work in order

to offer variations of the original problem by considering 4 new soft-constraints. Those five

formulations are the most commonly studied and are the ones we will use throughout this pa-

per. In real applications however, those formulations might not be directly used since different

universities might want to consider different constraints and weights.

Using a formulation UDx with the associated set of weights Wx, we can transform a vector a

penalties V (T ) into a weighted vector Vx(T ).

Definition 2.13 (Weighted-Vector). Given a timetable T and a set of weightsWx corresponding

to formulation UDx, we have the corresponding weighted-vector Vx(T ) = (v1 × w1, v2 ×
w2, . . . , v9 × w9) with vi ∈ V (T ).

The most common approach to the CB-CTT problem aims at finding a solution such that the

sum of values in its corresponding weighted-vector is minimized. We call such solution a sum-

optimal solution and it is the typical result to scalarization methods.

Definition 2.14 (sum-Optimal solution). Given a valid timetable T and a formulation UDx, we

say T is sum-optimal if it minimizes ∑
vi∈Vx(T )

vi

CB-CTT can be represented as a Multi-Objective Constraint Optimization Problems where:

• Each lecture of a course is a variable.

• The domain of a variable is the set of all combinations of room × period.

Constraints can then naturally expressed between variables and we refer to the paper by Banbara

et al. [48] for a detailed COP formalization.

2.5.2 Multi-Objective Graph Coloring

Graph-coloring [49] is a classical problem in optimization where, given a graph and a limited

number of colors, one must assign a color to each node of the graph such that no neighboring

nodes share a same color.

Existing works on MO-DCOPs experiments with a multi-objective version of the graph-coloring

problem [12, 30]. While this is an abstract problem, it is used in real applications such as

scheduling problems [50] and wireless sensor networks [36]. In this problem, each agent xi
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FIGURE 2.5: Illustration of the graph-coloring problem.

owns a variable vi taking its value from the domain Di = {1, 2, 3}. Three cost functions

corresponding to three objectives are defined:

f1(vi, vj) =

0 vi 6= vj

1 vi = vj

, f2(vi, vj) =

0 if |vi − vj | = 1

1 otherwise
,

f3(vi, vj) =

0 if i < j and vi < vj

1 otherwise

Chromatic Difference : this objective function represents the common graph coloring conflict

function.

Chromatic Ordering : this objective function imposes an ordering among the colors: Red =

1, Green = 2, and Blue = 3. Specifically, given two variables vi and vj where i < j, the

variable with the higher index should have a higher ranked color.

Chromatic Distance : this objective is similar to the chromatic ordering. However, it considers

the distance between the colors of different variables. In more detail, given two variables

vi and vj , the distance of the colors should equal one.
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2.6 Contribution

We now present the different contributions of this thesis.

Most problems include multiple conflicting objectives that should be optimized simultaneously.

Finding the Pareto front of multi-objective problem is a challenging problem but is a necessary

step in an ideal multi-objective optimization procedure.

The first part of our contribution proposes distributed algorithms to find the Pareto front of

multi-objective problems in a multi-agent system. At the time of writing this thesis, few algo-

rithms have been proposed to find the Pareto front of Multi-Objective Distributed Constraint

Optimization Problems (MO-DCOP). A large part of this thesis thus contributes to this area by

proposing three distributed algorithms.

• The Multi-Objective Distributed Pseudo-tree Optimization (MO-DPOP) is a complete al-

gorithm for MO-DCOP making use of dynamic programming techniques.

• The Bounded Multi-Objective Distributed Pseudo-tree Optimization (MO-DPOP(B)) is

an extension of MO-DPOP where a function is used to bound the messages communicated

during the algorithm, offering an approximation algorithm for MO-DCOP. For specific

bounding functions, MO-DPOP(B) can become an incomplete algorithm.

• The Distributed Pareto Local Search (DPLS) is an approximation algorithm for MO-

DCOP making use of local search techniques.

These algorithms can be used to find a set of trade-off solutions in an MO-DCOP. If we follow

the ideal multi-objective optimization procedure, a decision still has to be made to select a single

solution from the set of trade-offs found by the MO-DCOP algorithms. Thus, the second part

of our contribution relates to multi-objective selection methods used to select a single solution

in a multi-objective problem. To select or help select a solution from a Pareto front, we propose

three methods.

• A sum-based method which uses the weighted-sum, the most popular technique for preference-

based multi-objective optimization. Whereas this method is usually used to transform a

multi-objective problem into a single-objective problem, we here propose to find all solu-

tions that optimize the weighted-sum, providing a subset of the Pareto front.

• A resilience-based method which isolates solutions that satisfy some given resilience

properties.

• A transition-based method which considers the cost of implementing a solution and select

a solution such that its implementation cost respects a given limit.
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Most of the contribution presented in this thesis have been published in conference proceedings

or in journals.

• The work on DPLS titled “Distributed Pareto Local Search for Multi-Objective DCOPs”

has been accepted for publication in the Journal of the Institute of Electronics, Information

and Communication: Special issue on Frontiers in Agent-based Technology [51].

• The work on our sum-based solution selection method titled “
∑

x-Optimal Solutions in

Highly Symmetric Multi-Objective Timetabling Problems” appeared in the proceeding of

the 11th International Conference on the Practice and Theory of Automated Timetabling [52].

• The work on our resilience-based solution selection method titled “Finding Resilient So-

lutions for Dynamic Multi-Objective Constraint Optimization Problems” appeared in the

proceedings of the 7th International Conference on Agents and Artificial Intelligence [53].

• The work on our transition-based solution selection method titled “Limiting Perturbations

in Dynamic DCOP” was presented at the 30th Annual Conference of the Japanese Society

for Artificial Intelligence [54].



Chapter 3

Algorithms for Multi-Objective
Distributed Constraint Optimization
Problems

In this chapter, we present new algorithms for finding the Pareto front of a Multi-Objective

Distributed Constraint Optimization Problem (MO-DCOP). This corresponds to the first step of

the solving of multi-objective problems where we take an abstract multi-objective problem and

output its Pareto front.

We propose here two algorithms dedicated to distributed problems. The first algorithm pre-

sented in section 3.1 is the Multi-Objective Distributed Pseudo-tree Optimization (MO-DPOP),

a complete algorithm that guarantees to find the full Pareto front of an MO-DCOP. The second

algorithm presented in section 3.2 is the Distributed Pareto Local Search (DPLS), an algorithm

using local search to approximate the Pareto front of an MO-DCOP.

31
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3.1 Multi-Objective Distributed Pseudo-tree Optimization Proce-
dure

In this section, we develop a novel complete algorithm for MO-DCOPs called Multi-Objective

Distributed Pseudo-tree Optimization Procedure (MO-DPOP). This algorithm extends DPOP,

the representative inference algorithm for DCOPs. MO-DCOP algorithms can be divided into

two groups, i.e., search and inference algorithms. MO-ADOPT, the state-of-the-art complete

algorithm, is a search algorithm while our proposed algorithm is an inference-based algorithm.

In mono-objective DCOPs, it is well-known that the size of the messages of inference algo-

rithms such as DPOP can be exponential in the number of variables, which is a disadvantage

compared to search algorithms. However, in MO-DCOPs, this disadvantage can be ignored

since it also becomes exponential for search algorithms, i.e., there is no advantage to use a

search algorithm for MO-DCOPs, as we will show in our experiments. Furthermore, we pro-

vide an incomplete method to improve the performances of MO-DPOP by bounding the size

of the messages exchanged between the agents. Compared to the state of the art approxima-

tion algorithm for MO-DCOPs (B-MOMS [12]), our incomplete algorithm can find a subset of

the Pareto front, i.e., the obtained solutions can guarantee Pareto optimality, while B-MOMS

cannot. In the experiments, we use multi-objective graph-coloring instances [12] and show that

our proposed algorithm outperforms the state-of-the-art complete algorithm. We also compare

the performances of our incomplete algorithm with the previous approximation algorithm and

show that we can provide much better solutions but require more time, offering an interesting

trade-off between speed and quality.

The rest of the section is organized as follows. In subsection 3.1.1, DPOP and its operations are

introduced. In subsection 3.1.2, we present MO-DPOP, discuss the theoretical complexity of the

algorithm, and propose a technique to reduce the size of its messages while still guaranteeing to

find a subset of the Pareto front. In subsection 3.1.3, we evaluate the performances of MO-DPOP

against existing MO-DCOP algorithms. We finally conclude in subsection 3.1.4.
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Algorithm 1 Dynamic Programming Optimization Protocol for an agent xi
1: Phase 1: UTIL message propagation
2: JOINPi

i = ∅
3: JOINPi

i = JOINPi
i ⊕

(⊕
Ck⊆Pi∪PPi

Rk

)
4: for xj ∈ CHi do
5: receive UTILij from xj

6: JOINPi
i = JOINPi

i ⊕ UTILij
7: end for
8: UTILPi

i = JOINPi
i ⊥vi

9: if Pi 6= null then
10: send UTILPi

i to Pi
11: end if
12: Phase 2: VALUE message propagation TODO
13: if Pi = null then
14: vali ← argmin

vali∈Di

JOINPi
i []

15: else
16: wait for V ALUESPi from parent
17: vali ← argmin

vali∈Di

JOINPi
i [V ALUESPi ∪ vali]

18: end if
19: for each xj ∈ CHi do
20: send V ALUESPi ∪ vali to xj
21: end for

3.1.1 DPOP

The Dynamic Programming Optimization Protocol (DPOP) [55] is the representative dynamic

programming algorithm for Distributed Constraint Optimizaton Problems. We will present the

algorithm and the different messages and operations it uses to help understand our extension for

multiple objectives that we will present in Section 3.1.2. The algorithm is made of three phases.

The first phase organizes the agents into a pseudo-tree as discussed in Section 2.3.4. The second

phase, called UTIL phase, computes the best utility of each sub-tree in the pseudo-tree, which

ends up producing the best global utility for the root agent. The third and last phase, called

VALUE phase, communicates the resulting solutions to all agents.

Algorithm 1 presents the pseudo-code of DPOP and assumes that agents are already organized

into a pseudo-tree structure such that each agent xi is aware of the following:

• Pi: the agent that is parent of xi.

• PPi: the set of agents that are pseudo-parents of xi.

• CHi: the set of agents that are children of xi.

• Sepi: the separator of xi, i.e., the set of agents that are pseudo-parents of xi, Pi or of any

of its pseudo-parents PPi.
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v1 v2 cost v2 v3 cost v1 v3 cost

a a 5 a a 0 a a 1
a b 7 a b 2 a b 1
b a 10 b a 0 b a 0
b b 12 b b 2 b b 3

FIGURE 3.1: Example of bi-objective DCOP.

Most of the computation is performed during the UTIL phase of the algorithm, requiring to

define a several operations used to compute the best utilities of a sub-tree.

In the first phase of DPOP, UTIL messages carrying the best utilities of the agent’s sub-tree are

sent up the pseudo-tree, starting from the leaf agents.

Definition 3.1 (UTIL message). A message UTILji sent from agent xi to agent xj is a multi-

dimensional matrix with one dimension for each variable in Sepi and we write dim(UTILji ) the

set of variables considered by the message.

This message expresses the best utilities that can be obtained by the sub-tree rooted at xi based

on the values taken by the variables in the separator Sepi. We note that a cost function fk :

×∀vi∈Ck
Di → R≥0 can be represented as a matrix whose dimensions are the variables included

in the constraint, i.e., dim(fj) = Cj .

Example 3.1 (Multi-dimensional representation). The cost function of the constraint {v1, v2}

shown in Figure 3.1 can be represented as a matrix U1,2 as follows:

v1 \v2 a b

a 5 7

b 10 12

Definition 3.2 (Slice). Given a multi-dimensional matrix M and an assignment A ⊆ dim(M),

a slice of M along A, written M [A], is a matrix of dimension {dim(M) \A} such that:

M[A] =
⋃

∀A′,A′=dim(M)\A

M[A ∪A′]

Example 3.2 (Slice). Using the matrix M1,2 shown in example 3.1, we can consider the follow-

ing slices:

• M1,2[{v1 = a}] =
v2 a b

5 7
.

• M1,2[{v1 = b, v2 = b}] = 12.

The UTIL message UTILji sent by an agent xi to its parent Pi = xj is the combination of:

• All UTILik messages received by xi from one of its children xj ∈ CHj .
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• The matrix representations of cost functions between xi and its parents and pseudo-

parents.

We now define the operation used to combine these matrices.

Definition 3.3 (Join Operator). Joining two matrices M and M ′, written M ⊕M ′, produces a

new matrix M ′′ such that dim(M ′′) = dim(M) ∪ dim(M ′) and:

∀A = dim(M ′′),M ′′[A] = M [A] +M ′[A]

Example 3.3 (Join Operator). Joining two matrices of dimension {v1} and {v2} results in a

matrix of dimension {v1, v2} as follows:

v1 a b

1 2
⊕

v2 a b

3 4
=

v1 \v2 a b

a 4 5

b 5 6

Joining two matrices of dimension {v1, v2} and {v2} results in a matrix of dimension {v1, v2}
as follows:
v1 \v2 a b

a 4 5

b 5 6

⊕
v2 a b

1 2
=

v1 \v2 a b

a 5 7

b 6 8

Before sending an UTIL message, an agent xi simplifies the matrix obtained using the join

operator by projecting its own variable vi out of the matrix, removing the variable from the

matrix’ dimension.

Definition 3.4 (Projection Operator). Projecting variable vi out of matrixM , writtenM⊥vi and

requiring vi ∈ dim(M), is the projection through optimization of the matrix M along the vi
dimension:

∀A = {dim(M) \ vi},M⊥vi [A] = min
vi

M [A ∪ {vi}]

Example 3.4 (Projection Operator). Projecting variable v1 out of a matrix of dimension {v1, v2}

results in a new matrix of dimension {v2} as follows:

v1 \v2 a b

a 1 4

b 3 2

⊥v2 =
v2 a b

1 2

Since each agent projects its own variable out of the UTIL message before sending it, and

since the relations added to a message cannot include variables from other branches (due to

the pseudo-tree structure), the UTIL messages received by the root xr are all matrices with one

dimension {vr}. This allows the root agent to compute its local value that produces an optimal

solution.

In the second phase of DPOP, VALUE messages containing partial assignments are sent down

the pseudo-tree, propagating the optimal solution of the problem to all agents.
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3.1.2 MO-DPOP

In this subsection, we present the Multi-Objective Distributed Pseudo-tree Optimization Algo-

rithm (MO-DPOP). We first show how to extend the operations used in DPOP to the multi-

objective case before presenting the pseudo-code of the algorithm and discussing its properties.

3.1.2.1 Extensions of Operators

MO-DPOP extends DPOP in the sense that elements of the matrices carried by UTIL messages

are now vectors from Rm≥0 instead of single values from R≥0. This requires to define new

operators for the addition of vectors and set of vectors.

Definition 3.5 (Direct sum). Given two vectors U = (u1, .., un) and W = (w1, .., wn), U ⊕
W = (u1 + w1, .., un + wn) is the direct sum of U and W .

Definition 3.6 (Set addition). Given two sets of vectors U = {U1, . . . , Uk} andW = {W1, . . . ,Wl}
then U ]W = {U ⊕W,U ∈ U ,W ∈ W} is the set addition of U andW .

Next, we extend the join and projection operators that are used to construct UTIL messages.

Joining two matrices with vector elements is straightforward now that we have defined set addi-

tion.

Definition 3.7 (Join Operator in MO-DPOP). Joining two matricesM andM ′, writtenM⊕M ′,
produces a new matrix M ′′ such that dim(M ′′) = dim(M) ∪ dim(M ′) and:

∀A = dim(M ′′),M ′′[A] = M [A] ]M ′[A]

The projection of a variable out of a matrix with vector elements requires to filter dominated so-

lutions, where a simple minimization was sufficient in the mono-objective case. For simplicity,

we consider a function ND(U) = {U ∈ U|@U ′ ∈ U s.t. U ′ ≺ U}which takes a set of vectors U
and returns the corresponding set of non-dominated vectors.

Definition 3.8 (Projection Operator in MO-DPOP). Projecting variable vi out of matrix M ,

written U⊥vi and requiring vi ∈ dim(M), is the projection through optimization of the matrix

M along the vi dimension:

∀A = {dim(M) \ {vi}},M⊥vi [A] = ND(M [A])

Example 3.5 (Operators in MO-DPOP). We consider the matricesR23 andR13 representing the

cost functions of constraints {v2, v3} and {v1, v3} of Figure 3.1. Table 3.1 shows the result of

the join operator (⊕) applied on R23 and R13. Table 3.2 shows the result of projecting variable

v3 out of the matrix obtained from the previous join.
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v1 v2 v3 cost
a a a (1,1)
a a b (3,1)
a b a (1,2)
a b b (3,0)
b a a (0,2)
b a b (5,3)
b b a (0,3)
b b b (5,2)

TABLE 3.1: R23 ⊕R13.

v1 v2 costs
a a (1,1)
a b (1,2) (3,0)
b a (0,2)
b b (0,3) (5,2)

TABLE 3.2: (R23 ⊕R13)⊥v3 .

3.1.2.2 Algorithm

Algorithm 2 shows the pseudo-code of the MO-DPOP algorithm. We assume that the generation

of the pseudo-tree was done in a preprocessing step such that each agent xi is aware of its parent

Pi, its pseudo-parents PPi, and its children CHi. We do not detail the VALUE phase as it is

similar to the mono-objective case.

The construction of the UTIL message that xi sends to its parent Pi starts with the local cost

functions of the agent. First, the cost functions of constraints involving vi and its parent or

pseudo-parents are turned into matrices and joined together (line 2). For simplicity, we denote

Rk the matrix representing a set of cost functions {f1
k , . . . , f

m
k } corresponding to constraint Ck.

After adding local cost functions, each matrix received from a child is also added (line 5). Then,

the agent projects its own variable out of the matrix to obtain the message UTILPi
i (line 7) that

it sends to its parent (line 9). Leaf agents are responsible for starting the UTIL phase by sending

the first messages. The root is the last agent to receive UTIL messages and is then responsible

for selecting a solution from the Pareto front before starting the VALUE phase.

Algorithm 2 MO-DPOP - UTIL Phase of agent xi

1: JOINPi
i = ∅

2: JOINPi
i = JOINPi

i ⊕
(⊕

Ck⊆Pi∪PPi∪{vi}Rk

)
3: for xj ∈ CHi do
4: receive UTILij from xj

5: JOINPi
i = JOINPi

i ⊕ UTILij
6: end for
7: UTILPi

i = JOINPi
i ⊥vi

8: if Pi 6= null then
9: send UTILPi

i to Pi
10: end if
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3.1.2.3 Properties

Similarly to the mono-objective case, MO-DPOP uses a linear number of messages and UTIL

messages are exponential in size.

Property 1 (Number of Messages). Since every agent, root excepted, sends one UTIL message

and receives one VALUE message, the total number of messages required is 2(n− 1).

Property 2 (Maximum Message Size). UTIL messages have a space complexity of O(m ×
|Dmax|n) where |Dmax| is the maximum domain size in the problem.

Proof. In the worst case, each possible assignment produces a non-dominated vector of size

m, causing the projection operator to be unable to remove any vector during the optimization

process. In the case where the pseudo-tree is a chain, the last UTIL message sent to the root xr
contains

∏
D∈D\Dr

D vectors.

In the mono-objective case however, the size of an UTIL message sent by an agent xi is bounded

by the size of its separator Sepi. This is due to the strict ordering when comparing single values,

guaranteeing that the optimization phase of the projection yields a single value. Next we will

show how to obtain a similar complexity in the multi-objective case.

3.1.2.4 Limiting the Size of Messages

We now propose MO-DPOP(BΩ
b ), an incomplete version of our algorithm where UTIL messages

are bounded in size by the separators of the agents. This bounding is done using a function Bb
which takes a set of vectors U and returns a setW ⊆ U , s.t.|W| ≤ b. The idea is to apply this

function to each element of the multi-dimensional matrix to limit the size of UTIL messages.

Since a bounding function Bb always selects a subset of maximum size b, we can guarantee the

maximum size of an UTIL message.

Property 3 (Maximum Bounded Message Size). If the subset U yielded by B is bounded in

size (|U| ≤ b), the maximum message size becomes bounded by the maximum separator size

|Sepmax| with a space complexity in O(bm× |Dmax||Sepmax|).

Proof. An UTIL message sent by an agent xi contains
∏

xk∈Sepi

|Dk| elements. In the multi-

objective case, an element is a set of vectors U , each vector being of length m. If this set is

bounded by b (|U| ≤ b), the size of the message can never be more than bm×
∏

xk∈Sepi

Dk, giving

a space complexity of O(bm× |Dmax||Sepmax|) based on the maximum domain size Dmax and

maximum separator size Sepmax
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If we use a function B1 that always returns a single vector, the space complexity is equivalent to

that of the original DPOP algorithm. Such a bounding function can be defined using scalariza-

tion techniques such as the weighted-sum that are known to guarantee Pareto optimality [56].

Definition 3.9 (Weighted-Sum Selection). Given a set S of vectors of size m and a weight

ω = (ω1, . . . , ωm) such that 0 < ωi ≤ 1 and
∑
ωi∈ω

ωi = 1, a weighted-sum selection Bω
1 (S)

yields the vector S∗ = argmin
S∈S

m∑
i
ωiSi.

In this paper, we propose to use a bounding function BΩ
b that makes use of weighted-sum tech-

niques. By providing a set of weights Ω, |Ω| = b, the function returns a set U containing one

vector for each weight. This function is applied to filter each element of the UTIL matrix before

it is sent to the parent agent. In the root agent, the function can be applied to the final set of

solutions to extract a subset of guaranteed Pareto optimal solutions.

Property 4. In the root agent xr, the vectors returned by the function BΩ
b applied on UTILnullr

are all Pareto optimal solutions.

Proof. When using a bounding function BΩ
b during the UTIL phase of MO-DPOP, UTIL mes-

sages contain, for each combination of values of their variables, the vectors that optimize the

weighted-sum for a weight ω ∈ Ω. This guarantees that combining UTIL messages at the root

agent will yield vectors that also optimize a weighted-sum. Since a weighted-sum solution is

Pareto optimal, the solutions obtained at the root using the bounding function are all Pareto

optimal.

Example 3.6 (Weighted-Sum Selection). Given a set S = {(1, 7), (3, 4), (4, 2), (5, 0)}, and a

set of weights Ω = {(0.5, 0.5), (0.9, 0.1)}, the result of using functionBΩ
2 on S is {(1, 7), (5, 0)}.

(5, 0) minimizes the weighted-sum when using ω = (0.5, 0.5) and (1, 7) minimizes the weighted-

sum when using ω = (0.9, 0.1).

Using a weighted-sum selection to filter the UTIL messages of MO-DPOP guarantees to find at

least one Pareto optimal solution. However, the more weights are provided (corresponding to

higher values of b), the more Pareto optimal solutions we can expect to find. In addition, using a

weighted-sum selection still lets us find solutions that do not optimize any of the weighted-sum

provided, due to the root agent not having to filter its own UTIL matrix. By guaranteeing a subset

of the Pareto front, the weighted-sum selection provides an incomplete method for MO-DCOPs.

Several other bounding functions can be considered to limit the size of each UTIL message

while still guaranteeing Pareto optimality. For example, we could consider functions based on

different orderings of the objectives, known as lexicographic ordering [57], or functions based

on a number of predefined reference points [58].
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3.1.3 Experimental Evaluation

In our experiments, we evaluate our complete algorithm MO-DPOP, its incomplete version with

bounded messages MO-DPOP(BΩ
b ), and the state-of-the-art complete algorithm MO-ADOPT.

We start by presenting the settings used for our evaluation. Then, we will compare the perfor-

mances of MO-DPOP with MO-ADOPT. Finally, we will evaluate our incomplete method for

various values of the parameter b.

3.1.3.1 Experimental setup

For our experiments, we use an extended graph-coloring problem [12] which was used to evalu-
ate the performances of previous MO-DCOP algorithms. Graph-coloring is used in real applica-
tions such as scheduling problems [50] and wireless sensor networks [36]. In this problem, each
agent xi owns a variable vi taking its value from the domain Di = {1, 2, 3} and the following
three cost functions are considered:

f1(vi, vj) =

0 vi 6= vj

1 vi = vj
, f2(vi, vj) =

0 if |vi − vj | = 1

1 otherwise
,

f3(vi, vj) =

0 if i < j and vi < vj

1 otherwise

The first function represents the common graph coloring conflict function. The aim of the

second function is to have a distance of one between the values of neighboring variables. The

last function considers that variables with higher indexes should take higher values.

Our problem instances are created using random connected graphs generated using a specific

number of variables (n) and a specific density (δ).When δ = 0, the number of edges in the graph

is equal to n−1 and when δ = 1, the number of edges is equal to n
2 (n−1). All results shown are

averages over 40 instances. All algorithms were implemented in Java and all experiments were

carried on a 4.2 GHz 8 cores CPU with 8GB of RAM dedicated to the Java Virtual Machine and

using a timeout of 10 minutes.

3.1.3.2 Results - Complete Approach

We first compare the performance of our algorithm with MO-ADOPT [30], the previous com-

plete MO-DCOP algorithm. Figure 3.2(a) shows the runtime of both algorithms when varying

the number of variables on a sparse problem (δ), and Figure 3.2(b) shows the runtime when

varying the density of problem with 20 variables. We observe that both algorithms are time-

exponential in terms of both variable and density. While this is expected when solving an NP-

hard problem, we notice that the runtime of MO-ADOPT increases at a much higher rate than
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FIGURE 3.2: Runtime comparison between MO-DPOP and MO-ADOPT.

MO-DPOP. When varying the number of variables, we see that MO-ADOPT needs 28 seconds

when n = 25 but times out (10 minutes or more) for n ≥ 30. Meanwhile, MO-DPOP can

solve problems of up to 70 variables in less than 30 seconds and takes only 22 milliseconds for

n = 25. When varying the density, MO-ADOPT times out for instances where δ > 0.05 while

we could solve instances with δ = 0.25 in less than 20 seconds by using MO-DPOP.

Table 3.3 and Table 3.4 show the runtime, number of messages transmitted (#Msg), and num-

ber of vectors exchanged (#V ectors) of both algorithm. We also report the size of the Pareto

front (|PF |) for the problems solved. Regarding the number of messages used by each algo-

rithm, we notice an exponential increase for MO-ADOPT when varying the number of variables,

going from 233 messages with n = 10 to 472600 with n = 25. Similarly, when the density

increases, the number of messages used by MO-ADOPT goes from 3158 for δ = 0 to 4098030

for δ = 0.05. This high number of messages used is due to the search strategy of MO-ADOPT

which uses many backtracks, requiring each time to inform many agents about the new solution

space being explored. In comparison, MO-DPOP uses a linear number of messages (n− 1) that

is not affected by the increase in variables or density. When looking at the number of vectors

exchanged between the agents, we see that even though MO-DPOP uses a linear number of

messages, their size increases exponentially. It thus communicates a lot of information for more

difficult instances, exchanging 7219247 vectors for n = 70 and 1846101 for δ = 0.20. As the

problems grow larger, so does the separator sizes of the agents, which exponentially increases

the dimensions of the MO-DPOP messages. For MO-ADOPT, its exponential number of mes-

sages results in a very high number of vectors exchanged as well. Thus, despite MO-DPOP using

very large messages, it consistently communicates less vectors than MO-ADOPT, transmitting

only 191 vectors for n = 25 and δ = 0.01 compared to the 725794 used by MO-ADOPT.

These results show that MO-DPOP clearly outperforms MO-ADOPT, consistently requiring

less time, using less messages, and exchanging less information. This seems to indicate that dy-

namic programming-based algorithms are better suited than search-based algorithms for solving
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n algorithm t (s) #Msg #Vectors |PF |

10
MO-ADOPT 0.065 233 250

1.5
MO-DPOP 0.012 9 28

20
MO-ADOPT 3.980 88823 104814

2.0
MO-DPOP 0.020 19 140

25
MO-ADOPT 28.86 472600 725794

2.6
MO-DPOP 0.022 24 191

30
MO-ADOPT TO - -

3.0
MO-DPOP 0.035 29 558

40
MO-ADOPT TO - -

4.6
MO-DPOP 0.049 39 1710

50
MO-ADOPT TO - -

7.2
MO-DPOP 0.21 49 44156

60
MO-ADOPT TO - -

11.6
MO-DPOP 2.21 59 419148

70
MO-ADOPT TO - -

16.0
MO-DPOP 28.59 69 7219247

TABLE 3.3: Results varying variables (δ = 0.01)
δ algorithm t (s) #Msg #Vectors |PF |

0.00
MO-ADOPT 0.28 3158 3724

1.6
MO-DPOP 0.02 19 62

0.05
MO-ADOPT 342.32 4098030 5739400

4.1
MO-DPOP 0.04 19 2393

0.10
MO-ADOPT TO - -

8.19
MO-DPOP 0.23 19 48636

0.20
MO-ADOPT TO - -

15.7
MO-DPOP 5.92 19 1846101

TABLE 3.4: Results varying density (n = 20)

MO-DCOPs. In the mono-objective case, both search-based and dynamic programming-based

approaches are viable, with search being slower but requiring only a linear or polynomial space

complexity. In the multi-objective case however, this advantage is negated by the exponential

nature of the Pareto front as well as the difficulty to perform pruning with multiple objectives.

This makes dynamic programming-based algorithms such as MO-DPOP better suited for tack-

ling MO-DCOPs.

3.1.3.3 Results - Incomplete Approach

We now evaluate the impact of using a bounding function, as proposed in subsection 3.1.2.4,

to limit the size of the messages exchanged during our algorithm. For this experiment, we use

a weighted-sum selection BΩ
b and vary the adjustable parameter b between 1 and 5, letting us

adjust how much the messages of MO-DPOP are filtered.
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variables density algorithm t (s) #Vectors |Sols| %PF %PO

20 0.1

MO-DPOP 0.23 48636 8.2 100% 100%
MO-DPOP(BΩ

1 ) 0.14 11882 2.0 22% 77%
MO-DPOP(BΩ

2 ) 0.16 17994 3.2 35% 79%
MO-DPOP(BΩ

3 ) 0.20 28648 4.1 50% 88%
MO-DPOP(BΩ

4 ) 0.20 29769 4.5 53% 87%
MO-DPOP(BΩ

5 ) 0.21 32417 5.0 59% 88%

20 0.2

MO-DPOP 5.92 1846101 15.7 100% 100%
MO-DPOP(BΩ

1 ) 2.38 363742 2.1 12% 80%
MO-DPOP(BΩ

2 ) 2.98 589919 3.5 20% 78%
MO-DPOP(BΩ

3 ) 4.04 952687 4.7 29% 84%
MO-DPOP(BΩ

4 ) 4.25 1011791 5.4 33% 84%
MO-DPOP(BΩ

5 ) 4.66 1137181 6.3 38% 85%

20 0.3

MO-DPOP TO - - - -
MO-DPOP(BΩ

1 ) 18.99 2626643 2.3 - -
MO-DPOP(BΩ

2 ) 24.86 4314520 3.5 - -
MO-DPOP(BΩ

3 ) 40.08 7202826 4.6 - -
MO-DPOP(BΩ

4 ) 43.06 7873157 5.8 - -
MO-DPOP(BΩ

5 ) 47.14 8728822 6.8 - -

TABLE 3.5: Impact of different bounding functions using various settings.

Since we now consider incomplete methods, the set of solutions found by our algorithm (denoted

Soll) might differ from the actual Pareto front (PF ) of the problem. To evaluate the quality of

the solutions found, we use the following additional measures: |Sols|, the number of solutions

found by the algorithms (not all of these solutions are actually Pareto optimal); %PF , the ratio

of the actual Pareto front that was found by the algorithm, i.e., |PF∩Sols||PF | ; %PO, the ratio of

solutions found by the algorithm that are actually Pareto optimal, i.e., |PF∩Sols||Sol| .

Table 3.5 shows the results obtained using our incomplete algorithm on instances of 20 variables

and with various densities (δ ∈ {0.1, 0.2, 0.3}). For each setting, we first show the results of our

complete algorithm, which always finds the complete Pareto front (100% of the Pareto front is

found and 100% of the solutions found are Pareto optimal). For the harder setting (δ = 0.3), our

complete approach requires too much memory and we thus could not compute the exact Pareto

front.

We first notice that the number of solutions found (|Sols|) is always higher or equal to the

number of weights (b) given to our incomplete method. Some of these solutions are guaranteed

to be Pareto optimal as they optimize at least one of the weighted-sum provided. This leads

to most of the solutions being Pareto optimal (77% ≤ %PO ≤ 88%), indicating that the

weighted-sum selection method is suitable to target a subset of the Pareto front. Regarding the

impact of b on the number of vectors exchanged between the agents, we see a large reduction of

the communication cost when b is low. For δ = 0.2 and b = 1, the number of vectors is around

20% of what it is for our complete approach. However, by filtering the messages, we also miss



Chapter 3.Algorithms for Multi-Objective Distributed Constraint Optimization Problems 44

on some Pareto optimal solutions, finding only subsets of the Pareto front (for δ = 0.2, we find

12% of the Pareto front for b = 1, and 38% for b = 5).

These results show that the weighted-sum selection is a good approach to reduce the commu-

nication cost of MO-DPOP while still providing a subset of the Pareto front. Our incomplete

method consistently finds at least as many solutions as weights provided and we observed that

most of these solutions are actual Pareto optimal solutions. Bounding the size of messages thus

offers a trade-off between solution quality and performances, reducing the runtime and commu-

nication cost but also reducing the amount of Pareto optimal solutions found. The main impact

of the adjustable parameter b being on the number of vectors exchanged between agents, this can

help use our algorithm in real multi-agent systems where communications can be very costly.

Most importantly, our incomplete algorithm offers the advantage of guaranteeing some Pareto

optimal solutions, a guarantee that was missing from the previous approximation algorithm for

MO-DCOP.

3.1.4 Conclusion

The Multi-Objective Distributed Constraint Optimization Problem (MO-DCOP) can model many

problems from multi-agent systems and some applications might require to provide complete

and exact solutions. However, few algorithms exist for MO-DCOPs with only one complete

algorithm proposed so far. In this paper, we developed a new complete algorithm for MO-

DCOP as well as an incomplete extension that reduces the complexity of our algorithm but still

provides a subset of the Pareto front. Our experiment showed that our complete algorithm out-

performs the state-of-the-art complete MO-DCOP algorithm and that our incomplete approach

offers better solutions than the previous approximation algorithm but requires more time.

In future works, we will study additional ways to reduce the complexity of our algorithm by

considering techniques that have been previously proposed in the centralized case with the Mini-

Bucket Elimination [29] or in the mono-objective distributed case with the Memory-Bounded

DPOP [59] and the p-reduced graph technique [60]. We will also study the different subsets that

can be obtained using various message bounding functions as specific subsets of the Pareto front

can be considered more interesting than others [61, 62].
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3.2 Distributed Pareto Local Search

Since in a multi-objective problem all assignments can produce non-dominated solutions, find-

ing the complete set of Pareto optimal solutions becomes easily intractable for large-scale in-

stances. This is why it is important to study fast approaches that can approximate the Pareto

front. Moreover, using MO-COP techniques in a distributed setting would require that one agent

gathers all information about the problem and performs all computations. However, agents in a

distributed system generally care about their privacy and are limited in their communication and

computation capabilities, thus requiring approximation MO-DCOP algorithms.

In this section, we develop a novel approximation algorithm called Distributed Pareto Local

Search (DPLS) algorithm for solving an MO-DCOP. This algorithm is the extension of the

well-known Pareto Local Search (PLS) [63] designed for approximating the Pareto front of

multi-objective optimization problems. PLS is the generalization of the hill-climbing method

for optimization problems with multiple criteria. With the DPLS, we propose an extension of

this method for MO-DCOPs. In the experiments, we evaluate the performances of DPLS with

different problem settings and show that the local search technique is suitable for solving an MO-

DCOP. We also compare DPLS with the state-of-the-art approximation MO-DCOP algorithm

B-MOMS, and empirically show that our proposed algorithm DPLS outperforms the state-of-

the-art B-MOMS.

The rest of the section is organized as follows. In subsection 3.2.0.1, we introduce the Pareto

Local Search, a centralized MO-COP algorithm. In subsection 3.2.1, we present a new ap-

proximation algorithm for MO-DCOPs which extends the Pareto Local Search to a distributed

environment. In subsection 3.2.2, we evaluate the performance of our proposed algorithm on

instances of multi-objective graph-coloring problem and compare these results with the state-

of-the-art approximation algorithm for MO-DCOPs. We then conclude in subsection 3.2.3.
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Algorithm 3 Pareto Local Search
1: Input: A0 an initial set of assignments
2: A ← ND(A0)
3: archive← A
4: while archive 6= ∅ do
5: A← random assignment in archive
6: for each A′ ∈ N (A) do
7: A ← ND(A ∪ {A′})
8: end for
9: explored(A)← true

10: archive← {A ∈ A|¬explored(A)}
11: end while
12: Output: A, an approximation of the Pareto front

3.2.0.1 Pareto Local search

The idea of a local search is to iteratively improve a solution by exploring its neighborhood. The

best solution within this neighborhood is kept and its own neighborhood is in turn explored. This

is repeated until no improvement can be found in the neighborhood of the current best solution.

In the mono-objective case, a total ordering of the solutions exists, making the selection of the

improving solution straight-forward. However, in the multi-objective case, multiple solutions

can offer an improvement when using the dominance relation, requiring new dominance-based

algorithms.

For centralized Multi-Objective Optimization Problems, the Pareto Local Search (PLS) [63]

was proposed as an extension of the standard local search from the mono-objective case to the

multi-objective case. Algorithm 3 shows the PLS framework, which can be used to centrally

compute the Pareto front of an MO-DCOP. PLS takes as input an initial set of assignments A0

which forms the initial set of non-dominated assignments A (line 2) to be returned at the end

of the search. At each iteration, an assignment A is randomly taken from the archive (line 5),

the set of assignments in A not yet explored. Using an operator ND, which returns all the

non-dominated solutions in a given set, we add all non-dominated neighbors of A to A (line 7)

and consider A to now be explored. PLS terminates once the archive is empty, meaning that all

non-dominated assignments in A have been explored. Figure 3.3 shows an example of multiple

iterations of PLS.

Similarly to a mono-objective local search, PLS requires to define a neighborhood operator

N (A) (line 6) that generates the neighborhood of A by applying small changes to it. Common

neighborhood operators change the value of one variable at a time or swaps values between two

variables. Compared to a mono-objective local search where only one local optimal solution

need to be considered at a time, PLS requires to maintain a set of locally optimal solutions

(denoted by A in the algorithm).

In the next subsection, we propose to distribute the PLS in order to compute the Pareto front of

MO-DCOPs in a distributed fashion.
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(a) initial population (b) iteration 2

(c) iteration 3 (d) iteration 4

(e) iteration 5 (f) Approximation of Pareto front

FIGURE 3.3: Behavior of DPLS. Red crosses represent the initial solutions generated using
Algorithm 4 (a). Green squares show the non-dominated subset of the initial solutions used as
input of DPLS (b). New red crosses represent the neighbors of the green squares (c). DPLS
keeps exploring the neighbors of non-dominated solutions (d,e). After a finite number of itera-

tion, we obtain an approximation of Pareto front (f).
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FIGURE 3.4: Example of the first iteration of DPLS

3.2.1 Distributed Pareto Local Search Algorithm

In this subsection, we propose a novel approximation algorithm for MO-DCOPs called Dis-

tributed Pareto Local Search (DPLS). This algorithm extends the Pareto Local Search (PLS) [63]

presented in subsection 3.2.0.1, from a centralized to a distributed setting.

To adapt the PLS for distributed settings, we assume that: (i) an agent only knows the cost func-

tions involving its own variable, and (ii) two agents can only communicate if a constraint exists

between their variables. To comply with the first assumption, we suppose that an agent xi only

knows its local cost functions which include variable vi. To comply with the second assumption,

agents are ordered in a pseudo-tree, a popular graph structure for DCOP algorithms [26]. In a

pseudo-tree, all variables sharing a constraint are required to be part of a same path between

the root and a leaf. Such structure can be obtained using a depth-first traversal of the constraint

hypergraph. Each agent xi can only send or receive messages to or from its parent parenti, and

children childreni, in the pseudo-tree.

The DPLS has two phases. In the first phase, an initial set A0 of solutions is generated. In

the second phase, a local search is performed in a distributed fashion, maintaining a set of

non-dominated solutions A, initialized using A0. At each iteration, the neighborhoods of some

solutions in A are explored in an attempt to find new non-dominated solutions. Figure 3.4

shows an example of the first iteration of DPLS. From a random set of solutions (A0), only

the non-dominated solutions A are considered. Their neighborhood N (A) is explored, offering

new non-dominated solutions. To perform this search in a distributed way, each agent xi uses

a local operator Ni such that Ni(A) generates the set of assignments that differs from A only

by the value of variable vi. At each iteration, the root sends the assignments to explore down

the pseudo-tree. Each agent then computes its corresponding local neighborhood and sends

the new non-dominated solutions up the tree. To limit the number and size of messages, an
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Algorithm 4 Distributed Generation of a Solution for xi
1: pAi ← random value in Di
2: ri ← 0
3: for each xj ∈ childreni do
4: xi receives (pAj , rj) from xj
5: pAi ← pAi ∪ pAj
6: ri ← ri ⊕ rj
7: end for
8: ri ← ri ⊕Ri(pAi)
9: send (pAi, ri) to parenti

10: Output: a random solution pA (at root agent)

agent waits for the solutions from its children before sending its own neighborhood. In addition,

it compares its own neighborhood with the ones received from its children and discards all

solutions that are dominated. The iteration finishes once the root has received neighborhoods

from all its children and updated the set of optimal solutions accordingly. The assignments

explored at each iteration are randomly selected within the set of unexplored non-dominated

solutions and a parameter e is used to adjust the number of solutions selected. Increasing this

number can lead to faster convergence, decreasing the number of messages used by DPLS but

increasing their size. This can be an important adjustment in distributed systems depending on

the quality of the communication network. While the original PLS algorithm only considered a

single unexplored solution per iteration (equivalent to e = 1), other works have considered all

unexplored solutions [64] or a similar parameter to limit the exploration [65]. The search phase

also requires for each agent xi a neighborhood operator Ni to be defined.

3.2.1.1 Algorithm

Algorithm 4 shows the pseudo-code for generating a random solution. Starting from the leaf

agents in the pseudo-tree, the idea of this algorithm is to propagate a partial assignment pA up

the pseudo-tree, along with its cost. Each agent xi starts by selecting a random value from its

variable domain Di (line 1) that is added to the partial assignments received from its children

(line 5). A partial cost ri is computed by adding the costs rj received from the children (line 6)

with the local cost generated by the partial assignment Ri(pA) (line 8). Due to the requirement

that variables sharing a constraint are part of a same path between the root of the pseudo-tree

and a leaf agent, an agent xi can compute a local cost vector Ri(pAi) corresponding to the costs

generated by all the constraints involving xi and its descendants. This partial cost, along with

the partial assignment, is sent to the parent or, in the case of the root agent, the assignment is

complete and we know its corresponding cost vector.

Algorithm 5 shows the pseudo-code of the search phase. Similarly to the centralized PLS, we

maintain a set of non-dominated solutions A from which we consider archive, the set of so-

lutions in A not yet explored. A and archive are initialized with the set of non-dominated

solutions generated using Algorithm 4. At each iteration, the root selects a subset subarchive
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Algorithm 5 Distributed Pareto Local Search for xi
1: Input: A0 an initial set of assignments; e the maximum number of assignments to explore at each

iteration
2: A ← ND(A0)
3: if xi is root then
4: archive← A
5: subarchive← selectSubset(archive, e)
6: send (subarchive) to each xj ∈ childreni
7: neighborsi ← ND(N〉(subarchive))
8: end if
9: while ¬terminatedi do

10: xi receives message M
11: if M = (terminate) then
12: terminatedi ← true
13: send (terminate) to each xj ∈ childreni
14: end if
15: if M = (subarchive) then
16: send (subarchive) to each xj ∈ childreni
17: neighborsi ← ND(Ni(subarchive))
18: if xi is leaf then
19: send (neighborsi) to parenti
20: end if
21: end if
22: if M = (neighborsj) then
23: neighborsi ← neighborsi ∪ neighborsj
24: if xi received all neighborsj ,∀xj ∈ childrenj then
25: neighborsi ← ND(neighborsi)
26: send (neighborsi) to parenti
27: if xi is root then
28: explored(A)← true,∀A ∈ subarchive
29: A ← ND(A ∪ neighborsi)
30: archive← {A ∈ A|¬explored(A)}
31: if archive = ∅ then
32: terminatedi ← true
33: send (terminate) to each xj ∈ childreni
34: else
35: subarchive← selectSubset(archive, e)
36: send (subarchive) to each xj ∈ childreni
37: neighborsi ← ND(Ni(subarchive))
38: end if
39: end if
40: end if
41: end if
42: end while
43: Output: A, an approximation of the Pareto front

of size e from the archive (line 5). This subarchive is sent down the pseudo-tree and cor-

responding non-dominated neighbors are sent back up the tree. Upon reaching the root, the

new non-dominated solutions are added to A and the archive is updated accordingly. This is

repeated until all solutions in A have been explored.

To perform the search, three messages are used. To propagate the assignments to explore, we

use subarchive messages (line 15). The search is started when the root agent sends the first

subarchive to explore. Upon receiving this message, an agent first forwards it to all its children

before computing its local neighborhood (line 17). If the agent is a leaf in the pseudo-tree, it

can directly send this neighborhood to his parent. The neighbors message (line 22) is used to

bring the neighborhood of each agent back to the root. An agent receives this message from its
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children, combining the received neighborhood with its local one (line 23). Once the neighbor-

hood of each children have been received, the resulting set of non-dominated solutions are sent

to the parent node (line 26). In the case of the root agent, we now have the complete set of non-

dominated solutions of the current subarchive. We consider assignments in the subarchive

to now be explored (line 28), and the newly found solutions are added to A (line 29). A new

archive (line 30) and subarchive (line 35) are generated, and a new iteration is started by

sending the subarchive to the children. If at this point the subarchive is empty, the search

terminates and A contains the non-dominated solutions encountered during the search. To end

the algorithm, the root sends terminate messages (line 11) that are propagated by every agent

down the pseudo-tree (line 13).

3.2.1.2 Properties

Property 5 (Termination). DPLS terminates when all encountered non-dominated solutions (A)

have been explored, i.e., we searched their neighborhood for new solutions. This means that in

the worst case, DPLS terminates once the whole search space has been explored.

Proof. DPLS terminates once the archive, the set of assignments inA that are not yet explored,

becomes empty. Since a problem has a finite number of possible assignments and at each iter-

ation some assignments in A become explored, the archive eventually becomes empty and

DPLS terminates.

Property 6 (Anytime). DPLS is anytime, i.e., at the end of each iteration the root knows all the

non-dominated solutions encountered so far (maintained in A).

Proof. At each iteration, we explore the neighborhoods N (A), ∀A ∈ subarchive. After that,

non-dominated solutions within the neighborhoods are added to A and all assignments in the

subarchive are considered explored. Since a solution in A is discarded only if it is domi-

nated by another solution, we can guarantee the following at the end of each iteration: A =

ND(
⋃

A|explored(A)

N (A)).

Property 7 (Size of Neighborhood Messages). The maximum message size that an agent can

send to its parent depends on its number of descendants (d), the maximum number of assign-

ments that can be considered neighbor of some assignment A (|N (A)|), and the number of

assignment we explore at once (e). In the worst case, all solutions of a neighborhoodNi(A) are

non-dominated, ∀i∀A. The local non-dominated neighborhood of an agent will thus always be

of size |Ni(A)| × e, assuming no overlapping neighborhood. Since neighborhood are accumu-

lated when sent up the tree, an agent will receive d× |Ni(A)| × e solutions for its children and

will send (d+ 1)× |Ni(A)| × e solutions to its parent.
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FIGURE 3.5: Results for DPLS and B-MOMS on multi-objective graph-coloring instances
with |V | = 14.

To simplify the algorithm, we do not detail how each agent can determine whether the cost of

a local neighbor solution is non-dominated or not. In practice, each solution A in subarchive

is associated with its cost vector R(A), allowing each agent to compute the cost of any of its

neighbor by adding the impact of the local changes made to A to its original cost R(A). The

advantage of this approach is that each solution in neighborsmessages can be checked for dom-

inance with regards to the received subarchive. However, it adds to the size of the subarchive

message, but compared to the size of the neighbors messages, we consider it negligible. The

main problem it poses is that it limits the neighborhood operators we can use. Since every agent

must be able to compute the impact of its local changes, it must know the cost functions in-

volving all the variables it changes, limiting us to considering operators that change the local

variable of the agent and the variables it shares a constraint with.

3.2.2 Experimental Evaluation

In this subsection, we evaluate the performances of DPLS for various settings and compare it

with B-MOMS [12], the state-of-the-art approximation algorithm for MO-DCOP.

3.2.2.1 Experimental Setting

We perform experiments using randomly generated multi-objective graph-coloring instances

(see section 2.5.2). To produce our instances, random connected graphs were generated by

specifying |V | the number of variables and δ the density of the graph. When δ = 0, the number

of edges in the graph is equal to |V | − 1 and when δ = 1, the number of edges is equal to
|V |
2 (|V | − 1).
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FIGURE 3.6: Results with δ = 0.5 and varying |V |.

In order to evaluate the performances of DPLS and compare them with B-MOMS, we use three

different metrics, namely minimum Euclidean distance, fraction of Pareto optimal solutions

found and the hypervolume indicator. Let PO be a set of all Pareto optimal solutions of an MO-

DCOP and P̃O be an approximation of PO obtained by DPLS and B-MOMS. The minimum

Euclidean distance measure the minimum distance between solutions A ∈ P̃O and an optimal

solutionAo ∈ PO. The fraction of Pareto optimal solutions found is expressed as:
|P̃O ∩ PO|
|PO|

.

The hypervolume indicator [66] is a measure of the volume of the objective space covered by

a set of solutions. This last measure has the advantage of not requiring the exact set of Pareto

optimal solutions, requiring instead a reference point to define the range of the objective space.

For the multi-objective graph-coloring problem, the cost of each objective is bounded by the

number of constraints in the problem and we use these bounds as reference point.

To compute PO, we use a brute-force optimal algorithm whose complexity is exponential in the

number of variables (|V |). We thus could not compute PO for large instances and only report

the distance and fraction of Pareto optimal solutions for problem instances with |V | = 14. For

|V | > 14, we use the hypervolume indicator to measure the ratio of optimal solution space

covered by P̃O. We consider as optimal solution space the hypervolume ranging from the

reference point to the utopia point where all objectives are equal to 0.

For all experiments, DPLS was started with 100 randomly generated assignments and each

iteration explored the neighborhood of one assignment (e = 1).

3.2.2.2 Experimental Results

Figure 3.5 shows the results obtained with B-MOMS and DPLS over 40 multi-objective graph

coloring instances with |V | = 14 and varying the density. Figure 3.5(a) shows the minimum

Euclidean distance between P̃O and PO, and Figure 3.5(b) shows the ratio of Pareto optimal
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solutions found by B-MOMS and DPLS. At low densities, DPLS easily fall into a local optima

where changing the value of a single variable does not improve the solution cost. This causes the

quality of DPLS to vary a lot depending on the instances, sometimes finding the full Pareto front

and other times not finding a single Pareto optimal solution. This leads, for density δ < 0.2, to

finding an average of only around 40% of all Pareto optimal solutions. This causes DPLS to find

only around 40% of all Pareto optimal solutions for density δ < 0.2. B-MOMS, which is exact

for δ = 0, can still provide 80% of the Pareto solutions for δ = 0.1. When density increases and

each variable is involved in more constraints, the chances for improvements using local search

also increases and DPLS finds more than 60% of all optimal solutions when density is above

0.3. B-MOMS, which relies on removing edges from the constraint hypergraph, suffers a great

decline in solution quality when the density increases, finding less than 25% of PO for δ > 0.4.

We now consider results obtained when varying |V | between 10 and 80 with density δ = 0.5.

Figure 3.6 shows the average runtime and hypervolume indicator obtained over 40 instances.

We first notice that the runtime of both B-MOMS and DPLS increases exponentially with the

number of variables, following the increase in the size of the search space. Regarding the quality

of the solutions obtained, we see that for quite dense graphs, DPLS always finds better approxi-

mations, with the gap between the two algorithms increasing from a 5% difference for |V | = 10

to a 20% difference for |V | = 80.

In summary, we showed that DPLS is able to find significantly better solutions than B-MOMS

on problem of medium and high density, finding more optimal solutions for density δ > 0.25.

For reference, graph-coloring instances based on geographical constraints can have a density of

up to δ = 0.63. While DPLS is slightly slower than B-MOMS, both algorithms share a similar

time complexity that is exponential in the number of variables. DPLS however has the advantage

of being anytime.

3.2.3 Conclusion

In MO-DCOPs, since finding all Pareto optimal solutions is not realistic, it is important to con-

sider fast but approximation algorithms. In this section, we developed a novel approximation

algorithm called Distributed Pareto Local Search (DPLS) algorithm. DPLS uses a local search

approach to generate an approximation of the Pareto front of an MO-DCOP. In the experiments,

we evaluated the performance of DPLS on randomly generated multi-objective graph coloring

instances and compared the obtained results with B-MOMS, the state-of-the-art approximation

algorithm for MO-DCOPs. Our experiments showed that DPLS finds better approximations

than B-MOMS in problems with medium or high density.

As future works, we plan on further studying several aspects of the DPLS. First, we want to

experiment with the anytime property of DPLS and study ways to improve this property, by



Chapter 3.Algorithms for Multi-Objective Distributed Constraint Optimization Problems 55

using specific exploration strategies for example. This ability to stop the algorithm at any time

with the assurance to have the best solutions encountered so far is very important when the

available processing time is not known in advance. Another aspect we want to study is how to

adapt some neighborhood operators to a distributed environment. Some existing operators are

very successful on specific problems and could be interesting to use for the DPLS. However,

these operators can involve several variables and using them in distributed settings is not trivial

as they can produce overlapping local neighborhoods, requiring additional coordination between

agents. Similarly, exploration and restart strategies should be implemented in distributed settings

as they proved to be quite successful for the centralized PLS [67]. Another method that should

be studied for DPLS is the Queued PLS [68] that delays the removal of dominated solution

from the archive as it can improve the approximation found by the algorithm. Furthermore, we

intend to apply DPLS to challenging real world problems, e.g., sensor network and scheduling

problems.



Chapter 4

Solution Selection

In this chapter, we present methods for selecting a solution or a set of solutions from a Pareto

front. We showed in the previous chapter that the first step of solving multi-objective problems

consists in finding the Pareto front of the problem. Once a set of solution is found, a single

solution should be extracted in order to implement it in reality. The selection of this solution can

be performed in several ways, either by involving a decision maker or not. If a human is asked

to pick the solution, presenting him with the full Pareto front might be overwhelming, especially

if the Pareto front contains a large number of solutions with many objectives. In that case, even

if we let a human make the final decision, we can help this decision process by presenting him

with only an interesting subset of the Pareto front. If no decision maker is able to make the

selection or if there is not time to wait for its decision, then a fully automated selection method

should be used.

In section 4.1, we present a selection method based on the weighted-sum, a scalarization tech-

niques which, given some weights, aggregates the different objectives into a single value. In

section 4.2, we present a selection method for dynamic problems based on the concept of re-

silience. In section 4.3, we present a selection method based on limiting the implementation

cost of the selected solution.

The work of section 4.1 has been presented at the 11th International Conference on the Prac-

tice and Theory of Automated Timetabling (PATAT 2016) [52]. The work of section 4.2 has

been presented at the International Conference on Agents and Artificial Intelligence (ICAART

2015) [53].

56



Chapter 4.Solution Selection 57

4.1 Sum-Based Selections Applied to Multi-Objective Timetabling
Problems

The university course timetabling problem [69–71] is one of the representative application prob-

lems in operations research (OR) and artificial intelligence (AI) which can be generally defined

as the task of assigning a number of lectures to a limited set of time slots and rooms, subject to a

given set of hard and soft constraints. This problem is formalized as a combinatorial constraint

optimization problem where the aim is to find an assignment of values to variables so that all

hard-constraints are satisfied and the sum of all violated costs of soft-constraints is minimized.

Many real-world university course timetabling problems involve multiple criteria that can be

considered separately but should be optimized simultaneously. In a multi-objective course

timetabling, there usually exists an exponential number of acceptable solutions called Pareto-

optimal solutions. An assignment is considered Pareto-optimal if there does not exist another

assignment that is better for all objectives. Complete approaches computing the full set of

Pareto-optimal solutions do not scale well for complex problems such as timetabling. A com-

mon compromise is to use a scalarization method, which is the simplest and the most widely

used method to find Pareto-optimal solutions in a multi-objective timetabling problem. Such

scalarization methods effectively transform a problem with multiple objectives into a mono-

objective problem. The optimal solution obtained is then guaranteed to be Pareto-optimal and

to satisfy an utilitarian view where the sum of objectives is optimized. Various sophisticated ap-

proximation algorithms have also been developed for finding feasible solutions, e.g., simulated

annealing [72], multi-phase tabu search [71] and multi-objective evolutionary algorithm [73].

However, they cannot guarantee to find Pareto-optimal solutions.

The focus of our work is laid on finding a variety of Pareto-optimal solutions to the university

course timetabling problem by using scalarization methods. Timetabling is a highly symmetrical

problem, where the neighborhood of a valid timetable will often contain a number of other

valid timetables. Because of this symmetry, there often exists a huge number of solution to a

timetabling problem, several of which can optimize the weighted-sum. Assume that there exists

three criteria/objectives, e.g., room capacity, minimum working days and isolated lectures, and

the aim is to minimize the sum of all violated costs of these three objectives. Let 8 be the minimal

value obtained by using the scalarization method, e.g., 5 for the violated cost of room capacity

and 3 for that of isolated lectures. Now, what happens when there exists several solutions that

have the same minimal value, e.g., 2 for first criterion, 5 for the second and 1 for the last. The

existing scalarization method cannot capture all these solutions, since it terminates when one

optimal solution has been found. However, from multi-objective perspective, these solutions

can be very different from each other, offering various trade-offs of objectives and a partial
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representation of the Pareto front. As far as we are aware, there is no other work that focuses on

providing a set of optimal solutions for university course timetabling.

In this paper, we propose a new approach for multi-objective timetabling problems. By treating

the violations of each soft-constraint as an objective, we can associate a vector of penalties to

any timetable. Then, we propose to compute the set of all utilitarian vectors, offering different

trade-offs of objectives while minimizing their sum. We call this set the
∑

x-optimal front.

Solutions in this set are guaranteed to be Pareto-optimal as well as satisfy utilitarianism, i.e., the

sum of the violated costs is minimal. However, as we will show in this paper, the
∑

x-optimal

front can be quite large on some problem instances. Because of the complexity of university

timetables, directly providing too many solutions to the decision makers can be of little interest.

Therefore we also introduce additional criteria to extract specific solutions from the
∑

x-optimal

front in order to provide an interesting set of solutions.

In the experiments, we use Answer Set Programming (ASP) [74–77] to compute the complete∑
x-optimal front of some popular university course timetabling instances used in the ITC-2007

competition [46]. ASP is an approach to declarative problem solving, combining a rich yet

simple modeling language with high-performance solving capacities. It is well suited for imple-

menting our approach as it was already used to compute some optimal solutions for CB-CTT in

a previous work [48]. Using ASP, we are able to compute solutions of many of the benchmark

instances and we show that many trade-offs are indeed available, validating the strength of our

approach.

The rest of the paper is organized as follows. In 4.1.1, we define multi-objective concepts

for CB-CTT and introduce a novel solution criterion called
∑

x-optimality. In 4.1.2, we discuss

additional criteria we can use to isolate interesting solutions from the
∑

x-optimal front. In 4.1.3,

we experiment our novel approach with university course timetabling benchmarks from ITC-

2007. We then conclude in 4.1.4.
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4.1.1 Set of Solutions

In the previous subsection, we showed how to evaluate the quality of a timetable when prefer-

ences over the soft-constraints are known. Each timetable can be associated with a single value

and most works on timetabling will find one timetable minimizing this value.

There are two issues with this approach, (i) it only provides the decision makers with one possi-

bility and (ii) it overlooks the various trade-offs of penalties available. In timetabling and many

other decision problems, two solutions that might appear equivalent for a given criteria (same

weighted-sum) might actually be very different in the eyes of the decision makers. For example,

there might exists three vectors {9, 1}, {5, 5} and {1, 9} that share the same sum (10) but with

very different trade-offs of objectives.

In this subsection, we will consider how to provide more than one solution to the Curriculum-

Based Course Timetabling (CB-CTT) problem by improving upon the weighted-sum criterion.

4.1.1.1 Pareto Front

For a given CB-CTT, each timetable can be associated with a weighted-vector of penalties. By

considering each penalty as an objective to optimize, we can introduce the concept of Pareto-

optimality for timetables.

Definition 4.1 (Pareto Dominance). Given two vectors V and V ′, we say that V Pareto domi-

nates V ’, denoted by V � V ′, iff V is partially less than V ′, i.e., (i) it holds vi ∈ V ≤ v′i ∈ V ′

for all i, and (ii) there exists at least one i such that vi ∈ V < v′i ∈ V ′

Definition 4.2 (Pareto-Optimal Solution). A timetable T is Pareto-optimal for UDx if there

does not exist another timetable T ′ such that Vx(T ) ≺ Vx(T ′).

The penalty vectors corresponding to those Pareto-optimal timetables form what is called the

Pareto Front.

Definition 4.3 (Pareto Front). The Pareto Front is the set of vectors we can obtain from all

Pareto-optimal solutions.

By finding one solution for each possible vector of the Pareto front, we can provide every inter-

esting trade-off of penalties. However, finding the Pareto front of complex problems is often too

difficult. In the worst case, each assignment can be Pareto-optimal and with large problems such

as CB-CTT, we can have thousands of variables to assign to thousands of pair room/period. The

number of solutions being exponential, using complete methods becomes unrealistic on large

problem instances. Because of this complexity, it is important to consider techniques that can
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TABLE 4.1: Example of Solutions

Penalties
S1 S2 S3 S5

T1 5 0 3 2
T2 6 1 0 3
T3 7 1 1 5
T4 2 1 2 2
T5 5 0 3 5

quickly provide an approximation of the Pareto front. We thus propose to find a subset of the

Pareto front while still complying with the weighted-sum criterion.

4.1.1.2
∑

x-Optimal Front

Since the weighted-sum is the state of the art approach for CB-CTT, we can assume that a

timetable that is
∑

x-optimal is a good solution. However, there might exists more than one

such solution, potentially offering very different trade-offs between penalties. Finding the set of

all
∑

x-optimal solutions would allow to offer a set of good timetables to choose from. The user

can then select one of the possible choices by considering his preferred trade-off of objectives, or

even criteria that were not originally formulated in the problem. Since those solutions minimize

the weighted-sum of the penalties, they are all Pareto-optimal, meaning that there exists no other

timetable strictly better for all objectives.

Property 8 (Pareto-Optimality of
∑

x-Optimal Solutions). A vector V that is
∑

x-optimal is

also Pareto-optimal for UDx.

Due to the size and high symmetry of CB-CTT problems, there might exists a huge number of

timetables that share the same penalty vector. In our work, we are focusing on providing various

penalty trade-offs and do not care about providing more than one timetable for each possible

vector. Thus, we will focus on the subset of the Pareto front we can find using
∑

x-optimal

solutions.

Definition 4.4 (
∑

x-Optimal Front). The
∑

x-optimal front is the set of vectors that can be

obtained by
∑

x-optimal solutions.

4.1.1.3 Example

Let us now review all the concepts introduced in this subsection using a simple example.

Example 4.1 (CB-CTT). Let us consider an example of CB-CTT that accepts five valid timeta-

bles T1, T2, T3, T4 and T5 whose penalty vectors are shown in Table 4.1, where column Si
contains the penalty for soft-constraint Si and line Ti contains the vector V (Ti).
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First, let us consider formulation UD2. We consider the four objectives S1, S2, S3 and S5 with

weights 1, 5, 2 and 1 respectively. By applying the set of weight to each vector, we obtain the

following weighted vectors: V2(T1) = {5, 0, 6, 2}, V2(T2) = {6, 5, 0, 3}, V2(T3) = {7, 5, 2, 5},
V2(T4) = {2, 5, 4, 2} and V2(T5) = {5, 0, 6, 5}.

Based on the definition of Pareto-optimality, this problem has three Pareto-optimal timeta-

bles when using UD2: T1, T2 and T4. T3 is not Pareto-optimal since it is dominated by T2

({6, 5, 0, 3} � {7, 5, 2, 5}) and T5 is dominated by T1 ({5, 0, 6, 2} � {5, 0, 6, 5}).

The Pareto front for this problem is the set of vectors obtained from Pareto-optimal solutions:

{{5, 0, 6, 2}, {6, 5, 0, 3}, {2, 5, 4, 2}}.

Now if we consider the weighted sum of each vector, we can find two
∑

2-optimal solutions,

T1 and T4. Those timetables minimize the sum of weighted penalties with a sum equal to 13

(5 + 0 + 6 + 2 = 13 for T1 and 2 + 5 + 4 + 2 = 13 for T4). T2 is not
∑

2-optimal since its

corresponding sum is not minimal(6 + 5 + 0 + 3 = 14).

We can then say that the
∑

2-optimal front of this problem is {{5, 0, 6, 2}, {2, 5, 4, 2}}.

Let us now consider formulation UD1. This time we only consider three objectives S1, S2, S3

with weights 1, 5, 1 respectively. We obtain the following weighted vectors: V1(T1) = {5, 0, 3},
V1(T2) = {6, 5, 0}, V1(T3) = {7, 5, 1}, V1(T4) = {2, 5, 2} and V1(T5) = {5, 0, 3}.

We now have four Pareto-optimal timetables: T1, T2, T4 and T5.Only T3 is not Pareto-optimal

since it is still dominated by T2 ({6, 5, 0} � {7, 5, 1}).

The Pareto front for this problem is the set of vectors obtained from Pareto-optimal solutions:

{{5, 0, 3}, {6, 5, 0}, {2, 5, 2}}.

Now if we consider the weighted sum of each vector, we can find two
∑

1-optimal solutions, T1

and T5. Those two timetables minimize the sum of weighted penalties with a sum equal to 8

(5 + 0 + 3 = 8). T2 and T4 are not
∑

1-optimal since their corresponding sum are not minimal

(6 + 5 + 0 = 11 for T2 and 2 + 5 + 2 = 9 for T4).

When we consider the
∑

1-optimal front, we only care about the vectors and not the assignment

(timetable). Since here both T1 and T5 share the same vector, we have the
∑

1-optimal front

{{5, 0, 3}}.

Next, we will consider additional criteria that we can use to identify solutions from the
∑

x-

optimal front with interesting properties.
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4.1.2 Subset of the
∑

x-Optimal Front

With the
∑

x-optimal front, we can provide a set of solutions to a decision maker. While we

can expect this set to be much smaller than the Pareto front, its size might still prove too large

to handle for a human. A typical university timetable being made of thousands of lectures

assigned to thousands of rooms and periods, if a human wants a good understanding of the

different timetables, it is imperative to present him with a limited set of solutions. In the case

of multiple decision makers, proposing a large number of alternatives can also results in each

decision maker preferring a different timetable. Thus we believe it is important to consider

additional criteria when proposing a set of solutions.

The solutions provided by a
∑

x-optimal front already satisfy an utilitarian criterion [56], guar-

anteeing a minimal sum of penalties. We will now propose two additional criteria we can con-

sider to isolate specific solutions from the
∑

x-optimal front.

4.1.2.1 Utilitarianism

The weighted-sum is a well known utilitarian operator [56]. This means that solutions from

the
∑

x-optimal front are guaranteed to provide timetables with the least amount of (weighted)

penalties. Since in CB-CTT each penalty corresponds to a violated constraint in the timetable,

this is a very desirable property. The downside of utilitarianism is that it completely ignores

any kind of balance between the different objectives. For example, this means we can obtain

timetables where all the penalties come from overcrowded rooms without violating any other

soft-constraint. The opposite situation would be to have the same amount of (weighted) penalties

for each soft-constraint.

By providing the complete
∑

x-optimal front, we can provide all those variations if they exist.

4.1.2.2 Egalitarianism

With egalitarianism, instead of focusing exclusively on the weighted-sum, the goal is to obtain a

balanced solution where penalties are spread as much as possible between the objectives (soft-

constraints). We propose here to extract the most egalitarian solution from the
∑

x-optimal

front. Since we already know those solutions satisfies utilitarianism, we can obtain the most

well balanced solutions that also minimizes the weighted-sum. To find the most egalitarian

solutions from the
∑

x-optimal front, we use a lexicographic ordering [56]. Basically, we want

to find the largest minimum value. This requires to arrange a vector V in an increasing order,

denoted V <. We then define the following ordering:
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Definition 4.5 (Lexicographic ordering). Given two vectors V and V ′ of size m, we say that

V lexicography precedes V ’, denoted by V ≺lex V ′, iff there is a i ∈ {1, . . . ,m} such that

V <
i < V ′<i and, if i > 1, then ∀j ∈ {1, . . . , i− 1}, V <

j = V ′<j .

The most egalitarian vector from the
∑

x-optimal front is the one that is preceded by all others

in the lexicographic ordering, which tends to maximize the minimum value of its vector. With

CB-CTT, this solution will tend to have the most balanced penalties, which can be interesting if

many small constraint violations are considered better than a few constraints being violated nu-

merous times. For other models of the timetabling problems, egalitarianism can be used to find

fair solutions [78], for example to have penalties spread between different school departments,

different teachers, different classes, . . . .

Example 4.2 (Egalitarianism). Let us consider the same example as Example 1 with the problem

shown in Table 4.1. Without applying any weight, we can order the five vectors of penalty using

the lexicographic ordering. First, let us reorder each vector V (Ti) into V <(Ti). We obtain

V <(T1) = {0, 2, 3, 5}, V <(T2) = {0, 1, 3, 6}, V <(T3) = {1, 1, 5, 7}, V <(T4) = {1, 2, 2, 2}
and V <(T5) = {0, 3, 5, 5}. Here, V (T2) lexicography precedes all other vectors. Its first value

(corresponding to the minimum) in V <(T2) is 0, which is inferior to the first value in V <(T3)

and V <(T4) (0 < 1), thus V (T2) ≺lex V (T3) and V (T2) ≺lex V (T4). Its first value is equal

to the first value in V <(T1) and V <(T5), but then the next value (1) is inferior (2 for T1 and 3

for T5), thus we have V (T2) ≺lex V (T1) and V (T2) ≺lex V (T5). We can say that T2 is the less

balanced of the solutions.

The most balanced solution, said to be egalitarian, is T4 as it is lexicography preceded by all the

other vectors. Its minimum value of 1 is larger than the minimum value of T1, T2 and T5 and we

can write V (T1) ≺lex V (T4), V (T2) ≺lex V (T4) and V (T5) ≺lex V (T4). Its minimum value of

1 is the same as T3, but then the next value (2) is larger than in T3 (1), thus V (T3) ≺lex V (T4).

We can say that T4 is the most balanced vector and is the egalitarian solution here.

4.1.2.3 Constraint Satisfaction

Another aspect we can consider is the maximization of the number of completely satisfied soft-

constraints. No violation of some objectives can be a good selling point for a decision maker and

it is easy to explain the different with another timetable that does not satisfy the same constraints.

This focus on satisfying as many soft-constraints as possible could be simply expressed in the

original problem. However, if we focus on the satisfaction of the objectives, instead of their

optimization, we can end up with bad solutions that have a huge amount of violations on a few

objectives.
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Here, since we work from the
∑

x-optimal front, we always have a minimal sum of weighted

penalties. Such solutions can be interesting if dealing with a few big problems is more desirable.

In a model where each objective represents a different agent, such criteria should not be satisfied

but can be used to remove solutions that we know are not fair.

In the next subsection, we will present experimental results and show the interest of those crite-

ria.

4.1.3 Experiments

In this subsection, we first present our method to enumerate all vectors in the
∑

x-optimal front

before showing some results obtained on instances from the ITC-2007 competition [46].

4.1.3.1 Method

To conduct those experiments, we used an encoding of the CB-CTT with Answer set program-

ming (ASP) that was shown to be a promising approach for timetabling [48], offering an efficient

way to find one
∑

x-optimal solution of a problem.

ASP is a form of declarative programming mostly used to solve NP-hard problems. An ASP

problem is made up of rules that represents conditions to be satisfied and facts that are known

to be true. An ASP solver will encode such problem into a logic program before searching for

some stable models, corresponding to solutions of the original problem.

We represent the CB-CTT problem as a set of rules and a problem instance is a set a set of

fact such as the number of days, period per days, courses, teachers, . . . We can then search for

a timetable that satisfies all the rules from the hard-constraints and that minimizes the sum of

penalties from the soft-constraints.

While in theory it is possible to enumerate all valid timetables, in practice, due to the symmetry

of CB-CTT, it is too complex and the enumeration takes too much time. Thus we focus on the

vector of penalties and only find one corresponding timetable.

In the method we used, we find
∑

x-optimal solutions one by one. For each newly found vector

of penalty, we extend the original problem by adding a rule forbidding the same vector to be

a solution. This method ends when there exists no more solution to our extended problem,

meaning that we found the complete
∑

x-optimal front.

Because the time to find a new solution can be very long, we can note that it is possible to stop at

anytime during our method and then use the
∑

x-optimal solutions found so far. In the best case,

we stopped during the last step which is only used to prove that we indeed found the complete
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TABLE 4.2:
∑

4-optimal front for comp17 (with optimal weighted sum of 21)

# S1 S2 S4 S6 S9

1 0 13 0 8 0
2 0 11 3 7 0
3 0 12 2 7 0
4 0 11 1 9 0
5 0 12 1 8 0
6 0 11 2 8 0
7 0 10 3 8 0
8 0 10 2 9 0
9 0 9 3 9 0

10 0 13 2 6 0
11 0 13 1 7 0

# S1 S2 S4 S6 S9

12 0 12 0 9 0
13 0 11 0 10 0
14 0 12 3 6 0
15 0 9 4 8 0
16 0 10 4 7 0
17 0 11 4 6 0
18 0 14 1 6 0
19 0 14 0 7 0
20 0 15 0 6 0
21 0 10 1 10 0

∑
x-optimal front. Else, we only have an incomplete

∑
x-optimal front that can still be used

and might still provide a number of interesting trade-offs.

4.1.3.2 Results

We now present results obtained by using our method on some instances proposed for the In-

ternational Timetabling Competition of 2007 [46]. There is a total of 21 instances of various

complexity. The solving of some of those instances are still open with any
∑

x-optimal solu-

tions yet to be found.

Table 4.2 shows the
∑

4-optimal solutions of instance comp17. For the formulation UD4,

comp17 is a difficult instance that had no known
∑

4-optimal solutions until now. As we can

see, this instance has 21
∑

4-optimal solutions, minimizing the sum of penalties at 21. While

soft-constraints S1 and S9 are always fully satisfied, we can observe different trade-offs over

the 3 other objectives. S2 varies between 9 and 15, S4 varies between 0 and 4, and S6 varies

between 6 and 10. Those different trade-offs can be very interesting to a decision maker and we

can notice some clear differences between the available vectors. Most notably, some vectors can

completely satisfy the constraint S4. As we discussed in the previous subsection, it can some-

times be preferable to completely satisfy one more objective at the cost of increasing the penalty

of two others (vector #1 with penalties {0, 13, 0, 8} for example). We also point out the vector

#15 with penalties {0, 9, 4, 8, 0}, which is the most egalitarian vector, offering a good balance

between S2, S4 and S6.

Table 4.3 shows the
∑

4-optimal solutions of instance comp04. As we can see, this instance

has 13
∑

4-optimal solutions, minimizing the sum of penalties at 13. Like in comp17, soft-

constraints S1 and S9 are always fully satisfied. However, the variations of the three others

objectives are quite different, especially S4 which only varies between a penalty of 0 and 1. We

can thus notice that for each vector where S4 = 1, we can find a very close vector where S4 is
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TABLE 4.3:
∑

4-optimal front for comp04 (with optimal weighted sum of 13)

# S1 S2 S4 S6 S9

1 0 10 0 3 0
2 0 9 1 3 0
3 0 8 0 5 0
4 0 9 0 4 0
5 0 7 0 6 0
6 0 10 1 2 0
7 0 7 1 5 0

# S1 S2 S4 S6 S9

8 0 8 1 4 0
9 0 11 0 2 0
10 0 6 0 7 0
11 0 12 0 1 0
12 0 11 1 1 0
13 0 6 1 6 0

completely satisfied (vector #2 {0, 9, 1, 3, 0} and #1 {0, 10, 0, 3, 0} for example). If we value

the complete satisfaction of the objectives, we can consider ignoring vectors that violates S4 but

are very close to vectors where S4 = 0. However, if we care more about having a good balance

between the penalties, the best solution here would be the vector #13 {0, 6, 1, 6, 0}. This vector,

while providing the most balance, still greatly favors S2 and S6 compared to S4, showing that

we cannot always find a perfectly-balanced solution.

Previous approaches that focus on finding one solution usually produce only one of the vectors

we show here. In light of the many possible trade-offs and the clear differences between two∑
x-optimal solutions, we showed the importance to present those alternatives to a decision

maker.

Table 4.4 shows the runtime, the size of the
∑

x-optimal front as well as the optimal sum of

penalties for some instances and formulations. Due to the very long time it takes to compute

the
∑

x-optimal front, we have yet to produce results for all possible instances and formulations

and for this experiment, we limited the time to find a new solution (or prove unsatisfiability) to

6 hours. Each line in the table represent data for a given instance and formulation. The size

represent the size of the
∑

x-optimal fronts and sum represents the sum of penalties for the

vectors found. Total time represents the total CPU time it took to find the complete
∑

x-optimal

front. Unsat time is the duration of the last step of our method, which requires to prove that with

the added constraints, the problem is no longer satisfiable, meaning that we found the complete∑
x-optimal front.

While we were able to solve many instances using our method, we were only able to com-

pletely find
∑

x-optimal front for the formulation UD4. Because UD4 uses an additional hard-

constraint, the number of valid timetables is greatly reduced compared to other formulations,

making it possible to find a new
∑

4-optimal solution within the 6 hours limit.

For other formulations, we are only able to solve instances with a unique
∑

x-optimal solution.

Regarding the runtime, it will greatly vary based on the complexity of the instance and the for-

mulation used. Additionally, since we solve the same problem several times, adding a constraint

after each newly found vector, we can expect that the higher the size of the
∑

x-optimal front,
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TABLE 4.4: Results for finding the
∑
x-optimal front on various instances

instance formulation size total time (s) unsat time (s) sum
comp04 UD3 1 1.8 0.92 2
comp04 UD4 13 764.02 593.66 13
comp04 UD5 1 12705.82 12664.52 49
comp06 UD2 1 1290.64 1102.6 27
comp06 UD3 1 7.26 3.78 8
comp07 UD1 1 48.22 9.72 3
comp07 UD2 1 18206.52 11129.4 6
comp07 UD3 1 214.38 0.98 0
comp07 UD4 4 19966.38 241.94 3
comp08 UD3 1 16.18 7.12 2
comp08 UD4 14 2316.62 1343.14 15
comp08 UD5 1 2610.72 2524.4 55
comp10 UD1 1 2.8 1.42 2
comp10 UD2 1 1565.24 925.84 4
comp10 UD3 1 2.96 0.8 0
comp10 UD4 6 106.48 12.4 3
comp11 UD1 1 0.28 0.12 0
comp11 UD2 1 0.4 0.14 0
comp11 UD3 1 0.72 0.32 0
comp11 UD4 1 3.38 1.08 0
comp11 UD5 1 838.66 0.58 0
comp14 UD3 1 1.86 0.58 0
comp14 UD4 2 55.04 31.4 14
comp16 UD1 1 4207.06 4203.16 11
comp16 UD2 1 48.04 13.8 18
comp16 UD3 1 4.18 2.56 4
comp16 UD4 3 127.5 60.96 7
comp17 UD3 1 6.8 3.78 12
comp17 UD4 21 341,681.21 42,963.86 21
comp18 UD3 1 1.14 0.44 0
comp20 UD1 1 767.78 389.74 2
comp20 UD2 1 763.46 210.4 4
comp20 UD3 1 371.94 0.92 0

the longer the time it takes to completely find it. It results that some instance were solved in

less than one second (comp11 for UD1, UD2 and UD3) while others took up to 30 minutes

(comp10 for UD2) and even around 94 hours (comp17 for UD2 and UD4). We can see from

the unsat time column that for some instances, the majority of the time is taken to prove that

there does not exist anymore vector belonging to the
∑

x-optimal front (comp04 for UD5 for

example). While having the complete
∑

x-optimal front can be important, it can also be ignored

if a decision needs to be taken within a short amount of time. Using our method as an anytime

approach, we can provide a set of
∑

x-optimal solutions more quickly but at the cost of potential

incompleteness.
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TABLE 4.5: Results for finding the
∑
x-optimal front on various instances (using weights of 1)

instance formulation size total time (s) unsat time (s) sum
comp04 UD1 8 84,216.68 83,929.64 12
comp04 UD2 8 71,468.52 71,434.84 12
comp04 UD3 1 2.04 1.00 1
comp04 UD5 1 25.64 13.28 13
comp07 UD1 4 168.46 30.52 3
comp10 UD1 2 3.38 1.41 2
comp10 UD2 2 1,883.54 552.79 2
comp10 UD3 1 2.94 0.82 0
comp11 UD1 1 0.28 0.12 0
comp11 UD2 1 0.86 0.14 0
comp11 UD3 1 0.98 0.32 0
comp11 UD5 1 1,121.50 0.58 0
comp16 UD1 1 5.24 2.82 5
comp16 UD2 1 33.56 7.66 5
comp16 UD3 1 13.18 11.32 2
comp17 UD2 5 337,888.42 336,166.34 19
comp17 UD3 2 42.72 14.69 6

TABLE 4.6:
∑

2-optimal front for comp04 (with weights of 1, optimal sum of 12)

# S1 S2 S3 S5

1 0 10 2 0
2 0 9 3 0
3 0 11 1 0
4 0 8 4 0

# S1 S2 S3 S5

5 0 7 5 0
6 0 12 0 0
7 0 6 6 0
8 0 5 7 0

4.1.3.3 Results with neutral weights

Choosing weights for each soft-constraint can be a difficult task for a decision maker, and the

impact of those weights is hard to estimate in advance. Thus, it might sometimes be better to

start by considering the neutral case where no preferences are given and where the decision

maker simply needs to provide the constraints to take into account. We evaluated this case and

ran experiments where we put the weights of the considered soft-constraints to 1, showing the

results in Table 4.5. Because UD4 already used weights of 1, we focus on the other formulations

and are able to find interesting
∑

x-optimal fronts on a few instances.

For comp04, we were able to find
∑

x-optimal front of size 8 for both UD1 and UD2 (with

weights of 1) and we show the corresponding
∑

2-optimal front in Table 4.6 In this case, S1

and S5 are both completely satisfied and the 8 solutions offer different trade-offs between S2

and S3. Only one vector (#6 with penalties {0, 12, 0, 0}) can completely satisfy three of the soft

constraints and there exists one well balanced vector (#7 with penalties {0, 6, 6, 0}).
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Those results show that it is possible to compute the
∑

x-optimal front of complex CB-CTT

instances. We can also show that while some instances are highly symmetric, offering large∑
x-optimal front, other instances only have one or very few vectors minimizing the sum. The

different trade-offs offered seems interesting and could make university more confident when

choosing a timetable from several alternatives.

4.1.4 Conclusion

In this section, we proposed a new approach to the Curriculum-Based Course Timetabling. Ap-

proaching the problem as a multi-objective one, we wanted to provide several timetables to

choose from. Thus, we defined a subset of the Pareto Front we called
∑

x-optimal front. This

subset contains all vectors that minimize a weighted-sum of penalties, the weighted-sum being

the most used criteria for CB-CTT. In comparison, the majority of previous works using this

criteria only provide one solution. We showed in our experiments however that two vectors

minimizing a weighted-sum can be very different. Those differences are very important to a

decision maker and should not be ignored. While this paper focuses on CB-CTT, we believe our

approach can be applied to many other timetabling problems. Additionally, we proposed simple

ways to isolate solutions from the
∑

x-optimal front. One interesting criteria is egalitarianism,

where we search for a good balance between all objectives. Another consideration can be the

satisfaction of as many objectives as possible. Usually, focusing on those criteria is made at the

cost of the overall quality of the solution. Here, since we first focus on utilitarianism and then

consider additional criteria, we always keep the guarantee of minimizing the sum of objectives.

In future works, we want to develop more efficient methods to compute a set of solutions for

timetabling problems. We plan on using asprin [79], a tool that was recently proposed for

expressing preferences in Answer Set Programming. Using this tool, we could directly specify

the desired set of solutions (for example the
∑

x-optimal front) and compute it in one shot. In

addition to an increased in efficiency, a number of new criteria could easily be implemented and

will be the topic of future research.

We also plan on considering other subsets of the Pareto front that do not focus on the utilitarian

criterion (minimizing a weighted-sum). It can be important in some cases to consider solutions

where the sum of penalties is not minimal but where the trade-offs are more interesting. For

example if the objectives represent penalties with different teachers, it can be more important to

have the most egalitarian solution so that no teacher can feel jealous about other teachers. An-

other thing to consider is the automatic extraction of interesting solutions from the
∑

x-optimal

front. Let us say we only want to end up with five solutions to present to the decision maker. We

might decide we want one of those solutions to respect the egalitarian criteria. Then the other

four should be automatically selected in order to offer a diverse set of possibilities. Additional
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criteria Selecting a subset of the
∑

x-optimal front is a problem that goes beyond timetabling and

is of great interest to the multi-objective community. Reference point Techniques from multi-

objective optimization can be used, for example using a reference point [80] was successfully

applied to timetabling problems.

Another approach that could be interesting to study is the search for a subset of representative

solutions [62]. Since the Pareto front is often too hard to compute and too large to analyze by

a human, it would interesting to be able to provide a subset that best represents the complete

Pareto front. While the
∑

x-optimal front provide a subset of solutions with various trade-offs,

more extremes solutions that are not
∑

x-optimal could also be included in order to represents

all the alternatives available. Finally, we will also apply our approach to other timetabling or

scheduling problems as they often involve multiple criteria.
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4.2 Resilience-Based Solution Selection in Dynamic Multi-Objective
DCOPs

Many researchers of different fields have recognized the importance of a new research discipline

concerning the resilience of real world complex systems [81–84]. The concept of resilience has

appeared in various disciplines, e.g., environmental science, materials science and sociology.

The goal of resilience research is to provide a set of general principles for building resilient

systems in various domains, such that the systems are resistant from large-scale perturbations

caused by unexpected events and changes, and keep their functionality in the long run. Holling

(1973) first introduced the concept of resilience as an important characteristic of a well-behaved

ecological system, and defined it as the capacity of an ecosystem to respond to a perturbation

or disturbance by resisting damage. He adopted a verbal, qualitative definition of ecological

resilience, rather than a mathematical, quantitative one. “Resilience determines the persistence

of relationships within a system and is a measure of the ability of these systems to absorb

changes of state variables, driving variables, and parameters, and still persist.” (Holling, 1973,

page 17). Schwind et al.(2013) adopted a computational point of view of Systems Resilience,

and modeled a resilient system as a dynamic constraint-based model (called SR-model), i.e.,

dynamic constraint optimization problem. They captured the notion of resilience using several

factors, e.g., resistance, recoverability, functionality and stabilizability.

In order to capture and evaluate the resilience of realistic dynamic systems, it requires to (i)

consider the several objectives simultaneously, i.e., dynamic constraint optimization problem

with multiple criteria, and (ii) develop an algorithm for solving this problem.

In this section, Two solution criteria for solving DMO-COP are provided, namely resistance

and functionality, which are properties of interest underlying the resilience for DMO-COPs.

Our model is defined by a sequence of MO-COPs representing the changes within a system that

is subject to external fluctuations. The resistance is the ability to maintain some underlining

costs under a certain threshold, such that the system satisfies certain hard constraint and does

not suffer from irreversible damages. The functionality is the ability to maintain a guaranteed

global quality for the configuration trajectory in a sequence. These two properties are central in

the characterization of robust solution trajectories, which keep a certain quality level and absorb

external fluctuations without suffering degradation. Indeed, these notions are consistent with the

initial formulation of resilience from [81].

An algorithm called Algorithm for Systems Resilience (ASR) for finding the resilient trajectory

in a DMO-COP is presented. This algorithm is based on the branch and bound search, which is

widely used for COP and MO-COP algorithms, and it finds all resistant and functional solutions

for DMO-COPs. In the experiments, the performances of ASR are evaluated with different

types of dynamical changes.
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We believe that the computational design of resilient systems is a promising area of research,

relevant for many applications like sensor networks. A sensor network is a resource allocation

problem that can be formalized as a COP [85]. For example, consider a sensor network in a

territory, where each sensor can sense a certain area in this territory. When we consider this

problem with multiple criteria, e.g., data management, quality of observation data and electrical

consumption, it can be formalized as an MO-COP [86]. Additionally, when we consider some

accidents, e.g., sensing error, breakdown and electricity failure, it can be represented by the

dynamical change of constraint costs.

The rest of the section is organized as follows. In 4.2.0.1, we define resistant and functional

solutions in a DMO-COP. In 4.2.0.2, an algorithm called ASR is presented. In 4.2.1, some

empirical results are provided. We finally conclude in 4.2.2.
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TABLE 4.7: Cost table of MO-COP1.

x1 x2 cost x2 x3 cost x1 x3 cost

a a (5,2) a a (0,1) a a (1,0)
a b (7,1) a b (2,1) a b (5,5)
b a (10,3) b a (0,2) b a (0,1)
b b (12,0) b b (2,0) b b (1,1)

TABLE 4.8: Cost table of MO-COP2.

x1 x2 cost x2 x3 cost x1 x3 cost

a a (5,2) a a (3,3) a a (4,4)
a b (7,1) a b (2,1) a b (5,5)
b a (2,2) b a (0,2) b a (0,1)
b b (3,0) b b (2,0) b b (1,1)

4.2.0.1 Resilience in Dynamic MO-COP

In this subsection, two solution criteria for solving Dynamic MO-COP are introduced: resis-

tance and functionality. Our focus is laid on a reactive approach, i.e., each problem MO-COPi
in a DMO-COP can only be known at time step i (0 ≤ i ≤ k), and we have no information

about the problems for any time step j where j > i. For dynamic problems, there exist two ap-

proaches, namely proactive and reactive. In a proactive approach, all problems in a DMO-COP

are known in advance. Since we know all changes among problems, one possible goal of this

approach is to find one (optimal) solution for a DMO-COP. On the other hand, in a reactive

approach, since the new problem typically arises after solving the previous problem, it requires

to solve each problem in a DMO-COP one by one. Thus, we need to find a sequence of Pareto

front. In the following, the change of the constraint costs among problems in a DMO-COP is

studied. 1

Example 4.3. Consider a DMO-COP = 〈MO-COP0, MO-COP1, MO-COP2〉. We use the

same example represented in Example 2.3 and use it as the initial problem of this DMO-COP.

The Pareto optimal solutions of MO-COP0 are {(x1, a), (x2, a), (x3, a)} and {(x1, a), (x2, b),

(x3, b)}, and the Pareto front is {(6, 3), (10, 1)} (see. Example 2.3). Table 4.7 shows the cost

table of MO-COP1. In Table 4.7, two constraints written in boldface are dynamically changed

from the initial problem MO-COP0, i.e., the cost vector of {(x1, a), (x3, b)} and {(x1, b),

(x3, b)} are changed from (1, 0) to (5, 5) and from (3, 2) to (1, 1). The Pareto optimal solutions

of MO-COP1 are {(x1, a), (x2, a), (x3, a)} and {(x1, b), (x2, b), (x3, b)}, and the Pareto front

is {(6, 3), (15, 1)}. Table 4.8 represents the cost vector of MO-COP2. In Table 4.8, four con-

straints written in boldface are additionally changed from MO-COP1 i.e., (2, 2), (3, 0), (3, 3),

and (4, 4). The Pareto optimal solutions of MO-COP2 are {(x1, b), (x2, b), (x3, a)} and {(x1, b),

1Other changes, e.g., the number of variables, objectives and domain size, can be also considered. In this paper,
the focus is laid on the dynamical change of constraint costs among problems. Similar assumption is also introduced
in previous works [86, 87].
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(x2, b), (x3, b)}, and the Pareto front is {(3, 3), (6, 1)}. Thus, the solution of this DMO-COP is

PF = {{(6, 3), (10, 1)}, {(6, 3), (15, 1)}, {(3, 3), (6, 1)}}.

Now, two solution criteria for DMO-COPs are provided, namely, resistance and functionality.

A sequence of assignments A = 〈A0, A1, ..., Aj〉 is called an assignment trajectory, where Ai is

an assignment of MO-COPi (0 ≤ i ≤ j) and j is the current time step. Let m be the number of

objectives and Rh(Ai) be the cost for objective h obtained by assignment Ai (1 ≤ h ≤ m), and

l, q be constant vectors.

Definition 4.6 (Resistance). For an assignment trajectoryA and a constant vector l = (l1, l2, ..., lm),

A is said to be l-resistant, iff for all h (1 ≤ h ≤ m),

Rh(Ai) ≤ lh, (0 ≤ i ≤ |A| − 1).

Definition 4.7 (Functionality). For an assignment trajectoryA and a constant vector q = (q1, q2, ..., qm),

A is said to be q-functional, iff for all h (1 ≤ h ≤ m),

for each j ∈ {0, . . . , |A| − 1},
∑j

i=0R
h(Ai)

j + 1
≤ qh.

Resistance is the ability to maintain some underlining costs under a certain threshold, such

that the system satisfies certain hard constraint and does not suffer from irreversible damages,

i.e., the ability for a system to stay essentially unchanged despite the presence of disturbances.

Functionality is the ability to maintain a guaranteed global quality for the assignment trajectory.

While resistance requires to maintain a certain quality level at each problem in a DMO-COP,

functionality requires to maintain this level in average, when looking over a certain horizon of

time. Thus, functionality evaluates an assignment trajectory globally. The followings are two

examples for them. We use the same example as in Example 4.3.

Example 4.4 (Resistance). The Pareto optimal solutions of the DMO-COP is {(x1, a), (x2, a),

(x3, a)} and {(x1, a), (x2, b), (x3, b)} for MO-COP0, {(x1, a), (x2, a), (x3, a)} and {(x1, b),

(x2, b), (x3, b)} for MO-COP1, and {(x1, b), (x2, b), (x3, a)} and {(x1, b), (x2, b), (x3, b)} for

MO-COP2. The corresponding Pareto front isPF0 = {(6, 3), (10, 1)}, PF1 = {(6, 3), (15, 1)},
and PF2 = {(3, 3), (6, 1)}, respectively. Let l = (8, 4) be a constant vector. The assignment

trajectory A = 〈A0, A1, A2〉 with A0 = {(x1, a), (x2, a), (x3, a)}, A1 = {(x1, a), (x2, a),

(x3, a)}, and A2 = {(x1, b), (x2, b), (x3, a)} is l-resistant, since R1(A0) = 6 < l1 (= 8),

R2(A0) = 3 < l2 (= 4), R1(A1) = 6 < l1, R2(A1) = 3 < l2, and R1(A2) = 3 <

l1, R2(A2) = 3 < l2. Similarly, A′ = 〈A0, A1, A
′
2〉 is also l-resistant, where A0 and A1 are

same as in A and A′2 = {(x1, b), (x2, b), (x3, b)}.
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Algorithm 6 ASR
1: INPUT : DMO-COP = 〈MO-COP0, MO-COP1, ..., MO-COPk〉 and two constant vectors
l = (l1, l2, ..., lm), q = (q1, q2, ..., qm)

2: OUTPUT : RS // set of sequences (all l-resistant and q-functional solutions)
3: RS← ∅
4: l, q ← constant vectors
5: for each MO-COPi (i = 0, ..., k) do
6: RSli ← ASRres(MO-COPi, l) // find all l-resistant solutions
7: if RSli = ∅ then return RS← ∅
8: end if
9: RS← RS⊗ RSli // combine the current solution with previous solutions

10: RSq ← ASRfun(RS, q) // filter RS with q-functionality
11: if RSq = ∅ then return RS← ∅
12: end if
13: RS← RSq
14: end forreturn RS

Algorithm 7 ASRres
1: INPUT : MO-COPi and l
2: OUTPUT : RSli // a set of l-resistant solutions of MO-COPi
3: Root : // the root of MO-COPi
4: AS ← ∅ // an assignment of variables
5: Cost← null vector // cost vector obtained by AS
6: RSli ← ∅ // a set of pairs <cost vector, set of assignments>

// Launch solving from the root
7: RSli ← first.solve(AS,Cost,RSli, l) return RSli

Example 4.5 (Functionality). Let q = (5, 4) be a constant vector. The assignment trajectory

A = 〈A0, A1, A2〉 with A0 = {(x1, a), (x2, a), (x3, a)}, A1 = {(x1, a), (x2, a), (x3, a)},
and A2 = {(x1, b), (x2, b), (x3, a)} is q-functional, since (6 + 6 + 3)/3 = 5 ≤ q1 (= 5) and

(3 + 3 + 3)/3 = 3 < q2 (= 4). However, for A′ = 〈A0, A1, A
′
2〉 where A0 and A1 are same

as in A and A′2 = {(x1, b), (x2, b), (x3, b)}, A′ is not q-functional, since (6 + 6 + 6)/3 = 6 >

q1 (= 5).

4.2.0.2 Algorithm

An algorithm, Algorithm for Systems Resilience (ASR), for solving a DMO-COP is presented.

This algorithm is based on the branch and bound search, which is widely used for COP and MO-

COP algorithms, and it finds all resistant and functional solutions for DMO-COPs. Algorithm 6

shows the pseudo-code of ASR. The input is a DMO-COP that is a sequence of MO-COPs

and constant vectors l and q. ASR outputs a set of sequences (all l-resistant and q-functional

solutions). For each MO-COPi (0 ≤ i ≤ k) in the sequence, ASR computes a set of all

l-resistant solutions denoted RSli by ASRres (line 6). ASR uses the ⊗-operator and combines

the set of sequences RS and the cost vectors of RSli obtained byASRres (line 10). For example,
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Algorithm 8 solve(AS,Cost,RSli, l)

1: INPUT : < AS,Cost,RSli, l >
2: OUTPUT : RSli
3: for each value v1 of the variable domain do
4: AS ← v1

5: local cost← null vector
// step 3.1: Compute local cost of the choice

6: for each constraint with an ancestor a do
7: v2 ← value of a in AS
8: local cost← local cost+ cost(v1, v2)
9: end for

10: new cost← Cost+ local cost
// step 3.2: Bound checking

11: dominated← F
12: for each objective h (1 ≤ h ≤ m) do
13: if rh > lh, rh ∈ new cost then
14: AS ← (AS \ v1)
15: dominated← T
16: end if
17: end for
18: if new cost is dominated by RSli then
19: AS ← (AS \ v1)
20: dominated← T
21: end if
22: if dominated then
23: continue
24: end if

// step 3.3.1: New Pareto optimal solution
25: if AS is complete then
26: E ← all elements of RSli dominated by new cost
27: RSli ← RSli \ E
28: RSli ← RSli ∪ {(new cost, AS)}
29: continue
30: end if

// step 3.3.2: Continue solving
31: RSli ← next.solve(AS,Cost,RSli, l)
32: AS ← (AS \ v1)
33: end forreturn RSli

after the combination of RS = {(6, 3), (10, 1)} and RSl1 = {(6, 3), (15, 1)}, i.e., RS ⊗ RSl1,

there exist four sequences {{(6, 3)}, {(6, 3)}}, {{(6, 3)}, {(15, 1)}}, {{(10, 1)}, {(6, 3)}} and

{{(10, 1)}, {(15, 1)}}. For the initial problem, i.e., MO-COP0, RS is equal to RSl0 when

RSl0 6= ∅. Next, ASR checks the q-functionality of each sequence of RS (line 11). Finally, it

provides a set of all l-resistant and q-functional solutions if there exists. Otherwise, it outputs

the empty set (checked in line 7-9 and line 12-14). In case l and q are large enough (i.e., no

restriction), all Pareto optimal solutions become l-resistant and q-functional solutions in the

worst case, and the size of RS finally becomes |RS0| × |RS1| × ...× |RSk|.
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Algorithm 9 ASRfun
1: INPUT : RS, q
2: OUTPUT : RSq // set of the filtered sequences
3: RSq ← ∅
4: for each sequence Sj ∈ RS (0 ≤ j ≤ |RS| − 1) do
5: for each h (1 ≤ h ≤ m) do

6: if
∑|Sj |−1

i=0 shi,j
|Sj |

> qh // si,j ∈ Sj then return RSq = ∅

7: end if
8: end for
9: RSq ← Sj

10: end forreturn RSq

Let us describe ASRres. It finds all Pareto optimal solutions of each problem in a sequence,

which are bounded by the parameter l. Algorithm 7 and 8 represent the pseudo-codes of

ASRres. We assume that a variable ordering, i.e., pseudo-tree [26], is given. The input is

an MO-COPi (0 ≤ i ≤ k) and a constant vector l, and the output is the entire set of l-resistant

solutions (line 1 and 2 in Algorithm 7). ASRres starts with an empty set of l-resistant solutions

and a null cost vector, and solves the first variable according to the variable ordering (line 3-7).

It chooses a value for the variable and updates the cost vector according to the cost tables (step

3.1 in Algorithm 8). At this moment the obtained cost vector has to ensure the following two

properties: (i) rh (the cost for objective h) is bounded by the constant vector l and (ii) the cost

vector is not dominated by another cost vector (i.e., current l-resistant solutions) in RSli. If one

of the two properties is violated, ASRres branches on the next value of the variable. When its

domain is completely explored, the search branches to the previous variable and continues the

solving (step 3.2 in Algorithm 8). When all assignments are formed, i.e., no variable left to be

assigned, a new solution is added to RSli. All previous dominated solutions are removed from

RSli and the search continues with the next values of the variable (step 3.3.1 in Algorithm 8). In

case rh fulfills the two properties, it continues the solving with the next variable according to the

variable ordering (step 3.3.2). The search stops when the whole search space has been covered

by branch and bound search. ASRres finally outputs the set of l-resistant solutions (which are

not dominated by another solutions) 2.

Let us describe ASRfun. Algorithm 9 shows the pseudo-code of it. The input is a set of

sequences obtained by ASRres and a constant parameter q, and output is a set of l-resistant and

q-functional solutionsRSq (line 4-11). For each sequence Sj ofRS, it checks the q-functionality

by using the equation given in definition 4.7 (line 5-9). ASR is a complete algorithm, i.e., it

provides a set of all l-resistant and q-functional solutions if there exists. Otherwise, it outputs

empty set (line 7-9 and 12-14 in Algorithm 6).
2 ASRres checks the dominance among the solutions (in line 18, 22 and 26 in Algorithm 8) and provides the set

of Pareto optimal solutions bounded by the parameter l.
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FIGURE 4.1: Number of solutions.

4.2.1 Experimental Results

In this subsection, the performances of ASR are evaluated with different types of dynamical

changes. In the experiments, we generate DMO-COPs that contain three MO-COPs as in Ex-

ample 4.3. All the tests are made with 20 variables, the domain size of each variable is two,

the number of objectives is two, and the cost of each constraint is chosen uniformly at random

from the range [0:100]. In DMO-COPs, we change a fixed proportion of constraint costs (called

the change ratio) at each dynamic step. For the initial problem, we choose the constraint costs

from [0:100]. Then, we create the next problem by changing the proportion of constraints costs

defined by the change ratio. For example, in case the change ratio is 5%, we choose 5% of all

constraints in the current problem and change their constraint costs by selecting the new costs

from the range [100:200], but do not change the remaining constraint costs. Each data point in

a graph represents the average of 50 problem instances.

Figure 4.1 and 4.2 show the average number of solutions and its runtime obtained by ASR.

The l-ratio is provided by l/(costmax × #constraints), where costmax is the maximal cost

value (i.e., 200). We vary the the change ratio from 0.05 to 0.5 and from 0.3 to 1.0 for l-

ratio. In this experiment, we set the constant vector to q = (qmax, qmax), where qmax =

3 × (costmax ×#constraints) which is large enough, so that all l-resistant solutions become

q-functional. In figure 4.1, we can observe that only small change ratio (i.e., from 0.05 to

0.15) for the l-ratio from 0.5 to 1.0 allows us to find resistant (and also functional) solutions for

DMO-COPs. On the other hand, in case the l-ratio is small and the change ratio is large, ASR
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FIGURE 4.2: Runtime.

cannot find any solutions. In figure 4.2, we observed that the average runtime increases where

the number of resistant (and also functional) solutions becomes large.

Figure 4.3 shows the results for the average number of obtained resistant and functional solutions

of each problem in DMO-COP, i.e., MO-COP0, MO-COP1 and MO-COP2, for varying the q-

ratio. In this experiment, we set l-ratio to 0.8. The #sols0 represents the number of obtained

resistant and functional solutions in MO-COP0, #sols1 is for MO-COP1, and #sols2 shows

that for MO-COP2. The x axis shows the change ratio and the y axis is the number of solutions

obtained by ASR. For any q-ratio, we find solutions for the initial problem (i.e., MO-COP0) in

DMO-COPs. It is the problem where Pareto optimal solutions have the lowest cost vectors. Once

this problem changes (with regard to the change ratio), the average cost vector increases and the

functionality becomes harder to obtain. For small changes where the change ratio is 0.05, even a

low q-ratio (q = 0.2) allows to find resistant and functional solutions (Figure 4.3(a)). However,

for more drastic changes, e.g., the change ration is 0.15, we need a higher q-ratio in order to find

solutions after the third problem. We then reach a point where the change ratios are too severe

(i.e., 0.25-0.5) to find solutions for the third problem. We can increase the q-ratio but we cannot

find resistant and functional solutions (Figure 4.3(b)- 4.3(d)).

In summary, these experimental results reveal that the performance ofASR is highly influenced

by change ratio. ASR can obtain the resistant and functional solutions of a DMO-COP, when

the dynamical changes are small (i.e. the change ratio is from 0.05 to 0.15). Otherwise, ASR

outputs empty set quickly.
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FIGURE 4.3: The average number of resistant and functional solutions of each problem in
DMO-COPs.

4.2.2 Conclusion

In this section, two solution criteria for DMO-COPs have been defined, namely, resistance and

functionality, which are properties of interest underlying the resilience for DMO-COPs. An

algorithm called ASR for solving a DMO-COP has been presented and evaluated. ASR aims

at computing every resistant and functional solution for DMO-COPs.

As a perspective for further research, we intend to apply our approach to some real-world prob-

lems, especially dynamic sensor network and scheduling problems, and will develop algorithms

that are specialized to these application problems (by modifying ASR). Furthermore, we will

investigate some methods for choosing solutions like [88] introduced, and will apply them in

our framework.
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4.3 Limiting Transition in Dynamic Constraint Optimization Prob-
lems

In many applications of Distributed Constraint Optimization Problems, the problem changes

over time. Several works have considered Dynamic DCOP [87, 89–91] that can usually be

represented using a sequence of static DCOPs. Some of these works focus on reacting to changes

by finding a new solution as efficiently as possible, reusing previously gathered information to

speed-up the search for an optimal assignment. Another approach is to find the best possible

solution in a given amount of time, which is important for applications where a decision should

be made before some deadline. One aspect that is mostly overlooked however is the cost of

adopting a new solution. The few works on Dynamic DCOP that mention such a cost assume that

it can simply be included in the utility function of the problem. A more recent work proposed

a definition of a Proactive Dynamic DCOP [92] that includes random variables to help make

decision in advance of the changes over a finite horizon. This model includes a transition cost

corresponding to the cost of changing the assignment of a variable between time steps.

The transition cost represents the price to pay to switch from a previous solution to a new one.

In many applications, this might drain some limited resources (money, energy, . . . ) that should

be spent carefully. This can be seen as a new objective to optimize, creating trade-offs between

solution quality and transition cost.

In this section, we present a model called Transition-Sensitive Dynamic DCOP where the tran-

sition cost is considered as a new objective to optimize. We then present the Limited Transition

Problem which considers a limit on how much transition cost is allowed for the new solution

while still optimizing its utility. This can be used when we have a real resource limit, when we

want to avoid spending all our resources at once in case more changes happen in the future, or

even for convenience when we do not want to drastically change a solution. Such an approach

can be applied to logistic, when rerouting trucks to service additional clients [33] with limited

fuel, or to scheduling problems [38] where we do not want to make too many changes to a

schedule.

This section is structured as follows. In 4.3.1, we propose the definition of a Transition-Sensitive

Dynamic DCOP (TS DynDCOP) and introduce the Limited Transition Problem (LTP) as a way

to tackle a TS DynDCOP in a reactive fashion. In 4.3.2, we propose an incomplete and a

complete approach to solve the LTP.In 4.3.3, we evaluate our algorithms on instances of the

dynamic meeting scheduling problem. In 4.3.4, we summarize our contributions and present

some ideas for future works.
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FIGURE 4.4: Example of Distributed Constraint Optimization Problem.

V1 V2 reward V1 V3 reward V2 V3 reward

0 0 2 0 0 1 0 0 1
0 1 1 0 1 1 0 1 2
1 0 0 1 0 0 1 0 1
1 1 2 1 1 3 1 1 1

4.3.1 Transition Costs in Dynamic DCOP

In this subsection, we present the Transition Sensitive Dynamic DCOP which adds transition

costs to the Dynamic DCOP model, effectively turning it into an MO-DCOP. To use this new

model in a reactive way, we propose the Limited Transition Problem (LTP) which takes as

argument a limit on how much transition cost is allowed. We then show a quality guarantee for

solutions of the LTP when the transition cost considered is the number of changed variables.

We consider that the cost of adopting a new solution A′ depends on the previous solution A,

and we denote the corresponding transition cost function by δ(A,A′). Various transition cost

functions can be considered depending on the problem, the most basic being the Hamming dis-

tance H, commonly used in scheduling and timetabling problems, which measures the number

of changed variables.

4.3.1.1 Transition-Sensitive Dynamic DCOP

We now propose the definition of a Transition-Sensitive Dynamic DCOP (TS DynDCOP) where

adopting an assignment has a cost that needs to be taken into account.

Definition 4.8. A Transition-Sensitive Dynamic DCOP (TS DynDCOP) is a tuple (Seq,∆)

where Seq is a sequence 〈DCOP0, DCOP1, . . . , DCOPl〉, and ∆ is a set of transition cost

function {δ0, δ1, . . . , δl}.

EachDCOPi = (Xi, V i, Di, Ci, F i) is associated to a transition cost function δi : ×∀vjinV iDi
j →

R that measures the transition cost of adopting an assignment for the problemDCOPi. The goal

is then to find an assignmentAi for each problemDCOPi such that it (i) optimizes the solution’s

utility R(Ai) and (ii) minimizes the transition cost δi(Ai).

A TS DynDCOP can be seen as a more general definition of the common Dynamic DCOP (Def-

inition 2.11) where an additional objective function is considered to model the cost of adopting

a new assignment.
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4.3.1.2 Limited Transition Problem

We now propose the Limited Transition Problem (LTP) that can solve a TS DynDCOP in a

reactive way. In the LTP, we are given an initial assignment α and a maximum allowed transition

cost d, and want to find the best solution within this limit.

Definition 4.9. The Limited Transition Problem (LTP) is defined as a tuple Π = (Θ, α, δ, d),

where Θ is a Distributed Constraint Optimization Problem, α is an assignment for Θ that is

called initial assignment, δ is a function that defines a distance between two assignments, and d

is the maximum acceptable distance between two assignments.

A solution to an LTP is an assignment A for Θ such that (i) δ(α,A) ≤ d and (ii) there does not

exist another assignment A′ such that δ(α,A′) ≤ d and R(A′) � R(A).

Example 4.6. Let us consider the DCOP of Figure 4.4 where A = {(V1, 1), (V2, 1), (V3, 1)} is

the solution. Now let us imagine the dynamic case where the constraint between V1 and V3 was

removed, generating Θ, the new DCOP to solve.

We consider the resulting Limited Transition Problem with initial assignmentα = {(V1, 1), (V2, 1), (V3, 1)}
and δ = H, the Hamming distance.

We will now evaluate the solution of this LTP for different values of d. The case where d = 0 is

straightforward. Since we allow no change from the initial assignment, the solution of the LTP

is α whose reward is now R(α) = 3.

For d = 1, we need only to consider, in addition to α, assignments where one variable has a dif-

ferent value compared toα: {(V1, 1), (V2, 1), (V3, 0)} yields a reward of 3, {(V1, 1), (V2, 0), (V3, 1)}
yields a reward of 2 and {(V1, 0), (V2, 1), (V3, 1)} yields a reward of 2. Since R(α) = 3, the

LTP can have two solutions for d = 1, {(V1, 1), (V2, 1), (V3, 0)} or α.

Finally, let us consider d = 2, allowing two variables to change. The new assignments to

consider (in addition to α and the one we considered for d = 1) are: {(V1, 1), (V2, 0), (V3, 0)}
with a reward of 1, {(V1, 0), (V2, 1), (V3, 0)} with a reward of 2, and {(V1, 0), (V2, 0), (V3, 1)}
with a reward of 4. The solution of the LTP for d = 2 is thus {(V1, 0), (V2, 0), (V3, 1)}.

4.3.1.3 Quality Guarantee

When δ = H, we can provide a guarantee on the quality of the solution obtained for the Limited

Transition Problem. This guarantee is presented as a ratio of the optimal solution that we would

obtain if we did not limit the transition cost (equivalent to d =∞) and is a generalization of the

guarantee defined for k-size optimality [93].
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k-size optimality is a solution criteria for DCOP where an assignment is k-size optimal if its

reward cannot be improved by changing the values of k or less of its variables. The value of

k can vary between 0 (all solutions are 0-size optimal) and |V |, the number of variables in the

problem (only an optimal solution of the DCOP is |V |-size optimal). When considering the

transition cost as the Hamming distance between the two assignments (δ = H), there exists a

strong relationship between the solution of a Limited Transition Problem and a k-size optimal

solution.

Property 9. A k-size optimal solution A of the problem Θ is a solution of the LTP Π =

(Θ, A,H, k).

Proof. A is already within the required transition cost k since H(A,A) = 0 and k ≥ 0. For

A to not be solution of the LTP, there must be a solution A′ such that H(A,A′) ≤ k and

R(A′) � R(A). However, since A is k-size optimal, any solution within a distance k cannot

have a better utility, making A solution of the LTP.

We now provide a generalization of the guarantee of k-size optimality that we can use a priori

for the LTP.

Property 10. For a Limited Transition Problem Π = (Θ, α,H, d) where Θ is a maximization

DCOP with n variables and a maximum constraint arity of m, we can express the following

relation between the reward of the LTP solution A and the reward of the optimal solution Ao of

Θ:

R(A) ≥
(
n−m
d−m

)(
n
d

)
−
(
n−m
d

)R(Ao) (4.1)

Proof. Consider a LTP Π = (Θ, α,H, d) whose solution is the assignment A. By definition,

any assignment Ã such that H(α, Ã) ≤ d must have a reward R(Ã) ≤ R(A). We call this set

of assignment Ã. Now consider any non-null subset Â ⊂ Ã. For any assignment Â ∈ Â, the

constraints C in the DCOP θ can be divided into three discrete sets, given α and Â:

• C1(α, Â) ⊂ C that includes only the constraints between variables in Â which have

deviated from their values in α.

• C2(α, Â) ⊂ C that contains only the constraints between variables that did not deviate

from α.

• C3(α, Â) ⊂ C that contains the remaining constraints between at least one deviating

variable and one non-deviating variable.

The reward of an assignment Â can be written as:

R(Â) =
∑

c∈C1(α,Â)

Rc(Â) +
∑

c∈C2(α,Â)

Rc(Â) +
∑

c∈C3(α,Â)

Rc(Â) (4.2)
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It was shown in [93] that we can express the sum of rewards from all assignments Â ∈ Â as
follows: ∑

Â∈Â

R(Â) ≥
∑
Â∈Â

∑
c∈C1(α,Â)

Rc(Â) +
∑
Â∈Â

∑
c∈C2(α,Â)

Rc(Â) (4.3)

And since R(A) ≥ R(Â), ∀Â ∈ Â, we have:

R(A) ≥
∑
Â∈Â(

∑
c∈C1(α,Â)Rc(Â) +

∑
c∈C2(α,Â)Rc(Â))

|Â|
(4.4)

We now consider the subset Â such that every Â ∈ Â have d variables that changed from α

and these variables take their values from Ao. For the denominator, |Â| =
(H(α,Ao)

d

)
. Then,

for every constraint c ∈ C, there are exactly
(H(α,Ao)−|c|

d−|c|
)

different assignments Â ∈ Â for

which c ∈ C1(α, Â). Similarly, there are exactly
(H(α,Ao)−|c|

d

)
different assignments for which

c ∈ C2(α, Â). Finally, we consider the worst case whereH(α,Ao) = n and |c| = m and obtain

Equation 4.1.

Figure 4.5 shows the ratio of the optimal quality that is guaranteed for different numbers of

variables, binary constraints and varying the parameter d. There is no guarantee when d ≤ 2 but

for d > 2, we can see an almost linear growth of the guarantee, reaching optimality guarantee

when d is equal to the number of variables. While this guarantee can be interesting in some

application where a critical level of quality has to be met, the transition cost allowed d has to be

set to a high value before a good quality guarantee can be reached.

4.3.2 Algorithms for the LTP

In this subsection, we propose some approaches to solve the Limited Transition Problem. Lim-

iting the transition cost allowed is equivalent to putting a bound on one of the objective. We can

thus expect lower values of d to reduce the time required to find a solution. This can easily be

shown by expressing the number of assignments within a distance of dwhen using the Hamming

distanceH as our transition cost function.

Property 11. For a Limited Transition Problem Π = (Θ, α,H, d) where Θ is a DCOP with n

variables of domain size |D|, we can express the number of assignments for Θ that are exactly

at a distance d of α as: (
n

d

)
(|D| − 1)d (4.5)

Proof. Given an assignment A of n variables, there are
(
n
d

)
subsets Â ∈ A of size d. Now,

considering any assignment Â of d variables of domain D, there are exactly (|D| − 1)d possible

assignments where each variable has a different value than in Â, giving us Equation 4.5.
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FIGURE 4.5: Quality bounds for solutions of the LTP varying d and with binary constraints.

Corollary 4.10. For a Limited Transition Problem Π = (Θ, α,H, d) where Θ is a DCOP with

n variables of domain size |D|, we can express the number of assignments for Θ that are within

a distance d from α as:
d∑
i=0

(
n

i

)
(|D| − 1)i (4.6)

The number of assignments within distance d of α is, in the worst case, the total number of

assignment we have to check to find the solution of the LTP. This can give us an idea on the

impact of d on the search space. , and we show in Figure 4.6 the number of assignments based

on d for different number of variables with a domain size of 2.

For all the methods we propose in this subsection, we will make several assumptions. First,

we assume superadditive transition cost functions such that changing additional variables never

decreases the transition cost, i.e., if H(A,A′) > H(A,A′′), then δ(A,A′) ≥ δ(A,A′′). We

also assume that δ(A,A) = 0, i.e., not changing an assignment induces no transition cost.

Second, we consider that an agent xi is responsible of one variable vi. To communicate during

the various algorithms, we use a widely popular graph structure for DCOP algorithms called

pseudo-tree [26]. In a pseudo-tree, there exists a unique root node, and each non-root node has

a parent node. Depending on the requirement of the algorithms, additional constraints on the

pseudo-tree can exist. Most commonly, it might be required that all variables sharing a constraint
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FIGURE 4.6: Number of possible assignments within distance d of α

must be part of each others’ ancestors or descendants, and such structure can be obtained using

a depth-first traversal of the constraint graph.

4.3.2.1 Complete Multi-Objective Search

The first method we consider is a complete multi-objective search that can find all trade-offs

between the solution quality and the transition cost. Such method was proposed to solve a

Multi-Objective DCOP [94] and, when applied to solving the LTP, guarantees to find its optimal

solution.

The basic idea of such a complete multi-objective search is for each agent in the pseudo-tree

to compute a local Pareto front for itself and its descendants, given an assignment of values of

its ancestors. To find this local Pareto front, partial assignments are passed-down the tree, with

each variable adding its own current value to the partial assignment and sending it in turn to its

children. When a leaf receives a partial assignment, it computes the corresponding utility and

sends it to its parent. Thanks for the depth-first structure we previously mentioned, a leaf node

can compute the utility of all its constraints by knowing the current values of its ancestors. After

receiving the utility of all its children, a node will update the partial assignment with another

value from its domain and send it to its children. Once all values have been explored, a node

can compute the complete set of local trade-offs for itself and its descendants by combining its
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own local utility with the one receives from its children. Once every combination of values have

been explored, the root node will know the complete Pareto front of the problem.

For the LTP, we can add a way to prune parts of the search space. When a partial assignment

A is sent down the pseudo-tree, we check if we are already paying too much transition cost.

If δ(α,A) > d, we can abandon the partial assignment since it can never produce a solution

within the transition cost limit of d. This is true because we assume superadditive transition

cost function. For more general functions, we would not be able to perform this pruning.

4.3.2.2 Limited Local Search

We now describe a local search for solving the LTP. Since we are trying to find a solution within

a given distance from an initial assignment α, a local search that changes variables’ values

one at a time appears as a natural method for tackling the LTP. We thus propose the Limited

Local Search (LLS) and show the corresponding pseudo-code in Algorithm 10. Because of the

importance of respecting the parameter d, the neighborhood considered during the LLS depends

on the transition cost of the current assignment. If the current assignment has a transition cost

below d, then the LLS behaves like a traditional local search, exploring a neighborhood that

provides the best solution quality. If the transition cost is above d however, only changes that

reduce the transition cost are considered.

Each agent starts by searching for its best possible new value. vali is initialized to its value in

the current assignment (line 6). Then, it tries each value val ∈ Di and consider the assignment

A′ that would result in assigning val to variable vi. Three tests are then made to decide if this

value is the best tried so far. Firstly, in order to avoid falling into a local optima, the agent makes

sure A′ is not part of the previously explored assignments PA. Secondly, the agent tests if val

provides a better utility than the current vali (line 10). Finally, it tests if the current assignmentA

has a transition cost higher than d, and if so, it makes sure that the new value reduces this cost.

Once these tests are performed for all possible values of the domain, the agent knows which

new value is best for vi. It now needs to determinate the best change between his own new value

and the ones received from its children. To do so, we propose a measure of the improvements

which varies between maximization (line 19) or minimization (line 21) of the utilities. Since

each agent only knows the constraints associated with its own variable, the only way to compare

the changes from different variables is by using this improvement measure. Once an agent has

received a potential change from each of its children (line 24), it selects the one with the best

improvement and sends it to its parent (line 32). Once this step is reached by the root, it knows

the best change between all variables and can send it to all its descendants, allowing each agent to

update its knowledge of the current assignment. In addition, since we allow to lower the quality

of the current assignment (when lowering the transition cost), each agent should remember the
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Algorithm 10 Algorithm of LLS for an agent xi responsible of variable vi
1: Ci: set of constraints including vi.
2: A: the current values of all variables.
3: PA: the set of previous assignments explored.
4: A+: the best assignment found to far.
5: while termination condition not met do
6: vali ← Ai
7: for each val ∈ Di do
8: A′ ← A ∪ (vi, val)
9: if A′ /∈ PA then

10: if
∑
c∈Ci

Rc(A
′) �

∑
c∈Ci

Rc(A ∪ (vi, vali)) then

11: if δ(α,A) ≤ d ∨ δ(α,A) < δ(α,A′) then
12: vali ← val
13: end if
14: end if
15: end if
16: end for
17: A′ ← A ∪ (vi, vali)
18: if maximization then
19: improvementi ←

∑
c∈Ci

Rc(A
′)−Rc(A)

20: else
21: improvementi ←

∑
c∈Ci

Rc(A)−Rc(A′)

22: end if
23: for each child vj do
24: receive (improvementj , vj , valj) from vj
25: end for
26: best← argmax

j
improvementj

27: PA← PA ∪A
28: if vi is root then
29: A← A ∪ (vbest, valbest)
30: send A to all children
31: else
32: send (improvementbest, vbest, valbest) to parent
33: receive A from parent
34: end if
35: if R(A) � R(A+) ∧ δ(α,A) ≤ d then
36: A+ ← A
37: end if
38: end while

best assignment A+ encountered so far3 (line 36). This is repeated until an end condition have

been met, which usually involves a limit on the time or on the number of iterations.

4.3.2.3 Starting from Ao

The Local Search algorithm we previously proposed is originally made to start from α, whose

transition cost is 0. However, it is also possible to start from an assignment whose transition cost
3Line 35, we used R(A) for simplicity but in practice, we maintain a sum of all implemented improvements to

determine A+.



Chapter 4.Solution Selection 90

Time (s)
d=0 d=1 d=2 d=3 d=4 d=5 d=6

Complete 0.48 1.8 6.7 27 89 220 294
LLS-α

5
LLS-Ao

Cost
d=0 d=1 d=2 d=3 d=4 d=5 d=6

Complete 4.95 3.45 2.45 1.80 1.25 1.25 1.23
LLS-α 7.05 4.85 3.50 2.50 1.85 1.55 1.45

LLS-Ao 6.00 3.65 2.50 1.90 1.45 1.40 1.40

TABLE 4.9: Results for solving the LTP on instances of meeting scheduling (10 meetings)

is over the limit of d. In this case, the Limited Local Search works by first reducing d, selecting

at each step a new value that can reduce d for the minimum loss of quality. Once we reach an

assignment whose transition cost is below d, LLS no longer focuses solely on reducing d and,

like we describe earlier, tries to improve the current assignment.

We propose to start LLS from the optimal solution Ao of the DCOP Θ. We can expect that in

cases where d is high, a local search starting from Ao will yield a better quality than starting

from α. The main problem with such approach is that it requires to solve Θ, which can be done

using any existing DCOP algorithm and might take a lot of time. However, even when we have

to first solve Θ, it might still be a faster approach compared to the complete multi-objective

search.

4.3.3 Experimental Evaluation

In this subsection, we compare the different proposed methods on various dynamic scenarios.

When using α (resp. Ao) as the starting assignment for our local search algorithm, we will

refer to LLS-α (resp. LLS-Ao). For our experiments, we used Java 1.7 using the Jade agent

framework [95] on an Intel Xeon X5650 machine with 6 core at 2.67GHz and 12Go of RAM.

We experimented with random instances of the distributed meeting scheduling problem [38]

where a set of agents A want to attend several meetings M within a set of time periods T .

A mapping S : M → A indicates the subset of agents wanting to attend each meeting. We

consider the events as variables (EAV) formulation where each meeting mi ∈M is represented

as a variable vi with domainDi = T and constraints between variables indicate that they should

be assigned different times. For each pair of meetings mi,mj ∈ M ×Ms.t.mi < mj , let us

denote Ai,j the set of agents wanting to attend both mi and mj (Ai,j = S(mi) ∩ S(mj)). If

Ai,j is not empty, then there is a constraint between vi and vj with the cost function Ri,j =

|Ai,j | if vi = vj , Ri,j = 0 otherwise. Using these constraints, the total cost of a solution will

correspond to the total number of meetings that agents cannot attend.
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For our experiments, we generate an original DCOP Θ0 and find its optimal solution α. This

original problem is modified in order to obtain Θ1, and we are now interested in solving the LTP

(Θ1, α,H, d) for various values of d. For generating Θ0, two settings are considered, one with

10 meetings and 25 agents and one with 20 meetings and 50 agents. Both settings use 4 agents

per meeting and 4 time periods. Θ1 is obtained by changing two of the attending agents of each

meeting and by adding two new meetings to the problem. We ran the local search algorithms

for 5s, as well as the complete search, on 20 instances of each setting for various values of d.

4.9 shows the average runtime of the algorithms and the average cost of the solution obtained

with instances of 10 meetings. We can clearly see that for the complete method, the time required

increases exponentially with d as more and more assignments need to be explored. Regarding

the cost of the solutions found, for d = 0, both LLS struggle to find good solutions. Since

variables were added to the problem, there exists several assignments with a transition cost of

0. However, because of the limit d, LLS does not have much room for exploration and struggles

to find good solutions. As d increases however, LLS is less limited in its exploration and the

quality of its solutions gets closer to optimality.

4.7 shows the average cost of solutions obtained on instances of 20 meetings. Because of the

relative complexity of these instances, the complete search could not finish within 1 hour. We

see that LLS-Ao, which starts from an optimal assignment of the DCOP Θ1, is always able to

provide a better solution than LLS-α, which starts from the solution of the previous DCOP Θ0.

This is especially true for lower values of d where solutions of LLS-Ao have around 30% less

cost than solution of LLS-α. This shows that while we expect a previously optimal solution (α)

to be a good starting point for our search, it is actually better to start from a solution to the current

problem (Ao), even if its transition cost is very high. This can be explained by the complexity

of solving problems like meeting scheduling. While LLS-α has to find a good assignment while

respecting the transition cost limit, LLS-Ao already has a good assignment and has to focus

mostly on reducing the transition cost, which is a far easier problem. This means that, if enough

time is available, a good method can be to first find the optimal solutionAo of Θ1 and then, if its

corresponding transition cost is too high, to set a limit d and solve the corresponding LTP using

LLS-Ao.

4.3.4 Conclusion

Dynamic problems are a challenging topic concerning a wide array of applications that often

involve a cost when adopting a new solution. In this section, we presented the definition of a

Transition-Sensitive Dynamic DCOP (TS DynDCOP) which allows to take this cost into consid-

eration. Focusing on a reactive approach, we introduced the Limited Transition Problem (LTP)

where a limit d is given on the maximum transition cost allowed. We described a few methods
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to solve a LTP when the transition cost function is superadditive. For the special case where the

transition cost is the Hamming distance, we were able to provide an a priori guarantee on the

quality of LTP solutions.

In our experiments, we evaluated the methods presented in this section on dynamic meeting

scheduling instances. We showed that it is possible to solve the LTP on simple instances using

a complete approach. For more complex problems, we provided the Limited Local Search

algorithm which offers a good approximation method.

As future works, we plan on exploring an approach similar to the LTP, but where instead of

limiting the transition cost, we provide a minimum level of quality that should be met while

minimizing the transition cost. This would offer another way to reduce the TS DynDCOP to a

mono-objective problem, but we also plan to study multi-objective approaches where the whole

Pareto front of trade-offs between utility and transition cost must be found. Finally, we plan on

tackling real problem instances such as timetabling [96] and nurse rerostering problems [97].



Chapter 5

Related Works and Comparaison

In this chapter, we present and discuss about related works that share similar goals to this thesis.

In section 5.1, we first present the previous works that aim at finding the Pareto front of multi-

objective constrained problems. In section 5.2, we then present the previous works that studied

ways to select a single solution or a subset from the Pareto front.

93
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Single-Objective Multi-Objective
Bounded Max-Sum [98] B-MOMS [12]

ADOPT [23] MO-ADOPT [30]
DPOP [55] MO-DPOP

TABLE 5.1: Distributed complete algorithms for multi-objective constraint optimization

5.1 Algorithms for Multi-Objective Distributed Constraint Opti-
mization Problems

5.1.1 Complete Algorithms

Complete multi-objective algorithms are ideal in the sense that they provide the full Pareto front

of problems, guaranteeing to offer all trade-offs available. Due to the complexity of multi-

objective problems, few complete algorithms have actually been proposed so far.

MO-DCOP

For distributed systems, MO-ADOPT [30] is the only other existing complete algorithm beside

MO-DPOP (presented in section 3.1). MO-ADOPT extends ADOPT [23] , a popular search

algorithm for mono-objective DCOP. MO-ADOPT guarantees to find the Pareto front of the

problem by using an asynchronous search, using thresholds to prune parts of the search space

and backtracking strategies to increase efficiency.

In comparison, our proposed complete algorithm MO-DPOP is an inference algorithm using dy-

namic programming techniques. Table 5.1 shows how MO-ADOPT is the extension of ADOPT

while MO-DPOP can be seen as the extension of MO-DPOP. The main advantage of MO-

ADOPT is its asynchronicity, allowing agents to constantly operates toward finding the Pareto

front, maximizing their computational power. In MO-DPOP, agents have to wait to receive mes-

sages from their children to perform computations, and once an agent sent its own message, it

no longer takes part in actual solving of the problem and it just waits. However, even with this

difference, MO-DPOP proves to be significantly more efficient than MO-ADOPT. In the mono-

objective case, ADOPT is also slower than DPOP, but each agent’s memory complexity is linear

while the memory complexity of DPOP is exponential. In the multi-objective case, MO-ADOPT

do not possess a clear advantage with regards to the memory complexity. This is due to the set

of solutions searched by MO-DCOP algorithms, i.e., the Pareto front, being exponential in the

size of the problem, leading to all complete MO-DCOP algorithms to be memory exponential

in the worst case.
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Single-Objective Multi-Objective
Centralized Bucket-Elimination [99] Multi-Objective Bucket-Elimination [29]
Distributed DPOP [55] MO-DPOP

TABLE 5.2: Dynamic programming algorithms for multi-objective constraint optimization

MO-COP

In the centralized case, several methods have been proposed to solve Multi-Objective Constraint

Optimization Problems (MO-COP). Most notably, the Multi-Objective Bucket-Elimination [29]

is a complete dynamic programming approach similar to the one used by MO-DPOP. It is the ex-

tension of the Bucket-Elimination algorithm [99] that was itself extended to the distributed case

with the original DPOP algorithm [55]. Table 5.2 shows the different dynamic programming-

based algorithms for multi-objective problems. MO-DPOP can bee seen as the extension of the

Multi-Objective Bucket-Elimination for distributed systems where a set of agents must com-

municate to solve the problem, introducing the need to define messages between agents and

consider the costs of communication.

Another complete approach for MO-COP is the Multi-Objective AND/OR Branch-and-Bound

(MO-AOBB) [11]. This algorithm uses a branch-and-bound search making use of AND/OR

search trees which were previously used for mono-objective COP [100]. AND/OR search trees

use a pseudo-tree structure such that the root is an OR node and each level alternates between OR

nodes and AND nodes. In such a tree, AND nodes correspond to assigning values to variables.

The main advantage of the AND/OR tree compared to classical OR trees is in its exploitation

of independent variables belonging to different sub-problems, offering a much more efficient

search.

The Multi-objective Best-First AND/OR search algorithm (MO-AOBF) [28] is an extension of

the complete MO-AOBB algorithm that uses a best-first strategy to guide the exploration of the

AND/OR tree in order to speedup the search. A guiding heuristic is required by the algorithm

which greatly impact the performances.

5.1.2 Incomplete Algorithms

MO-DCOP

As far as we are aware, no incomplete algorithm have been proposed so far for distributed

problems and our algorithm Bounded MO-DPOP, when using bounding functions using the

weighted-sum, is the only such MO-DCOP algorithm. It is important to note however that it is

possible to obtain a subset of the Pareto front of an MO-DCOP by running a succession of mono-

objective DCOP algorithm. Basically, we can repeat multiple preference-based multi-objective
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process, each time using different preferences, to obtain different Pareto optimal solution of

our problem. For example, this has been previously done in distributed settings by running the

mono-objective DPOP multiple times [86].

MO-COP

For MO-COP, multiple algorithms have been proposed that use the concept of ε-dominance [101],

which relaxes the idea of Pareto dominance to allow one vector to ε-dominate vectors that are

uncomparable with Pareto dominance. The resulting set of solutions is called an ε-covering.

The complete Multi-Objective AND/OR Branch-and-Bound (MO-AOBB) presented earlier was

extended with depth-first heuristics [102] to provide an ε-covering of the Pareto front. The

heuristics used were based on the multi-objective mini-bucket elimination we previously de-

scribed.

5.1.3 Approximation Algorithms

Since many multi-objective optimization problems are too complex to solve with complete ap-

proaches, approximation algorithms that provide an approximation of the Pareto front are often

required.

MO-DCOP

For MO-DCOPs, the Bounded Multi-Objective Max-Sum (B-MOMS) algorithm [12] is the first

and only existing approximation algorithm. It is an extension of the Bounded Max-Sum algo-

rithm [98] previously designed for mono-objective DCOPs. B-MOMS works on a factor graph

where constraints and variables are nodes. Max-Sum is a dynamic programming algorithm that

can find the optimal solution of a DCOP if its factor graph is a tree (no cycle). In the Bounded

Max-Sum, a bounding phase is used to remove the least important edges of the graph and ob-

tain a factor graph without any cycle. Based on the edges removed, an approximation ratio is

provided to guarantee the quality of the solutions obtained. In B-MOMS, both the bounding

phase and the Max-Sum phase are adapted to solve MO-DCOPs, offering a complete algorithm

on cycle-less graphs, and providing a posteriori quality guarantee otherwise. B-MOMS was

recently used to solve the real problem of managing water resources systems [42]

Compared to B-MOMS, our proposed approximation algorithm (DPLS) does not provide guar-

antees on the quality of its solutions. However, B-MOMS is requires to wait the end of the

algorithm before any solution can be retrieved whereas DPLS maintains a set of solution that it
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constantly attempt to improve and can thus be stopped at anytime to retrieve a solution of the

problem.

MO-COP

For MO-COP, various approximation algorithms have been developed, most of them extending

complete MO-COP algorithm. The Multi-Objective Mini-Bucket Elimination (MO-MBE) [29],

is an extension of the inference-based Multi-Objective Bucket Elimination (MO-BE) which pro-

poses to consider sub-problems with a bounded number of variables to avoid space and time

complexity explosions. This leads to MO-MBE providing an approximation of the Pareto front

whose quality depends on the bound provided. Such technique was already applied in the mono-

objective case [103] and could also be used in MO-DPOP by bounding the size of the separators.

5.2 Multi-Objective Decision Making

With regards to the concept of resilience used in section 4.2, Schwind et al.(2013) first intro-

duced the topic of systems resilience and defined a resilient system as a dynamic constraint-

based model called SR-model [105]. They captured the notion of resilience for dynamic sys-

tems using several factors, i.e., resistance, recoverability, functionality and stabilizability. In our

work with resilience, we focus on two properties, namely resistance and functionality, which are

properties of interest underlying the resilience for DMO-COPs. Both properties are related to

an important concept underlying resilience. Indeed, these properties are faithful with the initial

definition of resilience proposed by Holling [81], as to ”determine the persistence of relation-

ships within a system” and is a measure of the ability of these systems to absorb changes of

state variables, driving variables, and parameters, and still persist. Bruneau’s [82] definition of

seismic resilience for disaster prevention elaborates the concept of the resilience by introducing

quantitative measures, which compute the triangular area of the degradation of the functional-

ity of the system over time. In contrast, Bruneau’s [82] definition of resilience corresponds to

the minimization of a triangular area representing the degradation of a system over time. This

definition has been formalized under the name ”recoverability” for Dynamic COP in [105].

With regards to the concept of transition costs used in section 4.3, several works have consid-

ered transition costs in the context of satisfaction problems. For Dynamic Constraint Satisfaction

Problems (CSP), the Minimal Perturbation Problem (MPP) [106–109] represents the problem

of finding a solution with minimal transition cost from an initial assignment. The Limited Tran-

sition Problem (LTP) proposed in Section 4.3 can be seen as an extension of the MPP, where we

consider a DCOP instead of a CSP and where we limit the transition cost instead of minimizing

it. In a work for Dynamic SAT [110], a different approach is proposed where the sequence of
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problems is assumed to be completely known in advance. This allows the use of a proactive

approach to compute a sequence of solutions that minimizes the sum of transition costs over

the whole sequence. Such approach could be applied to a TS DynDCOP where the sequence is

known in advance. However, with the LTP, we consider a reactive case where we do not know

the future problems in the sequence. For optimization problems, some of the existing works for

Dynamic DCOP consider transition costs by directly incorporating them into the utility function

of the problem [89, 90, 96, 111]. Compared to our approach, these works do not consider transi-

tion costs separately from the utility, using aggregation techniques to combine the two functions.

Such techniques allow to remain in the domain of single-objective optimization at the cost of

loosing control over the individual criteria. In comparison, considering transition costs in our

proposed model turns Dynamic DCOP into a multi-objective problem. And while the LTP only

has a single criterion to optimize, it still offers control over the transition cost.

With regards to our solution selection for multi-objective timetabling, while no other work con-

sidered a guaranteed subset of the Pareto front, some previous works have used criteria to di-

rectly select a single solution. The first work proposes a multi-objective evolutionary algorithm

for university class timetabling [112]. By optimizing two objective functions, the authors show

that better results can be obtained compared to mono-objective optimization. Such approach

produces trade-off solutions between different objective functions, but with no guarantee of

optimality. Compared to our work, all the solutions we provide are Pareto-optimal (and also

optimal for the usual weighted-sum). The second work apply multi-objective methods to uni-

versity timetabling [80] by comparing the weighted-sum to a reference point based approach,

using local search algorithms. Using a reference point allows to search for a timetable as close

as possible to an ideal solution. This work shows that the weighted-sum offers very unbal-

anced vectors and that giving a higher weight to one objective does not guarantee it will be

better optimized. Compared to the weighted-sum, the reference point allows much more bal-

anced vectors in practice but with no guarantee of obtaining the most egalitarian solution. The

third work considers fairness for CB-CTT [78]. While it does not treat each soft-constraint as

a single objective, it considers trade-offs between the quality of the timetable (weighted-sum)

and its fairness. The fairness is defined between different university department and the goal is

to spread the constraint violations equally between the different departments. They first com-

pute a timetable with the best quality possible, and then search for interesting trade-offs with

the fairness, with fairer solutions usually being of lesser quality. The final work uses Integer

Programming to perform a lexicographic optimization of the objectives [113]. They consider

each soft-constraint independently and optimize them one by one. The first solution obtained

minimizes the first objective. Then, a second solution minimizes the second objective without

increasing the first one. This is repeated for all objectives. This approach is quite effective to

find a good timetable, but there exist a bias toward the first objectives optimized as there does

not always exist another solution that improve the next objective without increasing the previous
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ones. These works use some multi-objective techniques but either do not offer a set of solutions

or cannot guarantee their optimality. Our approach has the advantage to comply with the most

used solution criteria for CB-CTT (minimization of the weighted-sum) while offering more than

one solution to choose from.



Chapter 6

Conclusions and Future Work

This thesis studied the process of solving multi-objective constraint optimization problems. The

first part of this process consists in finding the Pareto front of the given problem, i.e., the set of

solutions that provide an optimal trade-off of the objectives. The second part of solving multi-

objective problem consists in selecting a solution from the Pareto front. This selection process

is always required in practice as only one solution can actually be implemented. This thesis

contributed to both parts of the ideal multi-objective optimization process, first by providing

algorithms that compute the Pareto front of distributed multi-objective constraint optimization

problems, then by providing methods that can help select a solution from the Pareto front.

6.1 Summary of contribution

The first part of our contribution is with regards to algorithms that can compute the Pareto front

of Multi-Objective Distributed Constraint Optimization Problems (MO-DCOP). The first algo-

rithm we proposed is the Multi-Objective Distributed Pseudo-tree Optimization Procedure. This

is a complete algorithm that can compute the whole Pareto front of a given MO-DCOP. It relies

on dynamic programming techniques and proved to be much more efficient than the previous

complete MO-DCOP algorithm. We also provided an extension which uses an adjustable pa-

rameter to bound the size of messages used by the algorithm. This allows to greatly reduce the

size of messages and the memory used by the algorithm while still guaranteeing a subset of the

Pareto front. This extension offers the first incomplete MO-DCOP algorithm.

The second algorithm we proposed is the Distributed Pareto Local Search. This is an approxi-

mation algorithm that computes a set of solutions using a local search. It has the advantage of

being an anytime algorithm that can yield a set of solutions at any time. When letting it run until

the end, it can provide a good approximation of the Pareto front and was much better than the

previous approximation MO-DCOP algorithm on medium to high density problems.

100
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The second part of our contribution studied methods to select a single solution or a subset of

solutions from the Pareto front. The first method proposed used the concept of resilience in

proactive dynamic MO-DCOPs. Resilience offers a set of desirable properties that should al-

ways be satisfied by a solution. The method we proposed allows to isolate solutions from the

Pareto front that not only satisfy resilient properties for the current problem, but also for future

problems.

The second method we proposed uses the weighted-sum, the aggregation technique commonly

used to transform a multi-objective problem into a mono-objective problem. When solving a

mono-objective problem, a single solution is found, which is satisfactory in problems with a

single objective. For multi-objective problems however, many different trade-offs of the objec-

tives can provide the same optimal weighted-sum. Thus, our method proposes to find this whole

set of trade-off optimizing the weighted-sum, which is guaranteed to be a subset of the Pareto

front.

The third method proposed considered an objective function unique to dynamic problems, namely

the transition cost. This cost represents the price to pay to modify a solution after it was first

implemented. We proposed to select solutions from the Pareto front that limit this cost, guaran-

teeing a Pareto optimal solution and also providing an interesting guarantee on the quality of the

other objective.

In summary, this thesis contributed to the field of distributed solving with new and more efficient

algorithms suited for multi-agent systems, and to the field of multi-objective optimization by

applying existing techniques in distributed settings and by developing new techniques (message

bounding for MO-DPOP). We also contributed to the field of multi-objective optimization by

providing methods for the ideal multi-objectives optimization process where an intermediate

step is added in order to supply the decision maker with a subset of the Pareto front.

6.2 Perspectives

6.2.1 MO-DCOP Algorithms

At the time of writing this thesis, solving multi-objective problems in distributed systems is a

quite novel research area, with the first publication being in 2011 [12]. Different approaches

can be considered to solve MO-DCOPs. For example, by extending mono-objective DCOP

algorithms to the multi-objective case or by extending centralized MO-COP algorithms to the

distributed case. At the time of writing this thesis, all existing algorithms for MO-DCOPs were

extensions of previous DCOP algorithms, with our Distributed Pareto Local Search being the

only exception as it extends an MO-COP algorithms instead. MO-ADOPT extends the popular
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FIGURE 6.1: Taxonomy of the main DCOP algorithms.
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FIGURE 6.2: Taxonomy of MO-DCOP algorithms.

ADOPT algorithm, B-MOMS extends the Bounded Max Sum, and so on. However, there exists

a large number of DCOP algorithms that have yet to be studied in multi-objective settings. Fig-

ure 6.1 shows some of the most popular algorithms for classical DCOPs, divided into complete

algorithms that can guarantee to find an optimal solution and approximation algorithms that do

not have such guarantee. In each case, algorithms can also be divided based on the techniques

used, i.e., based on search, inference, or sampling techniques. Figure 6.2 shows the existing

MO-DCOP algorithms, including the ones proposed in this thesis. We can make the following

observation with regards to MO-DCOP algorithms:

• similarly to classical DCOP, both search and inference techniques have been studied for

complete MO-DCOP algorithms (with MO-ADOPT [30] and MO-DPOP respectively);

• unlike classical DCOP, sampling [114] has not been studied for approximation MO-DCOP

algorithms and should be the topic of future works;

• approximation DCOP algorithms based on search techniques (such as DSA [115], MGM [116],

or DALO [117]) have not yet been extended for multiple objectives and this can be the

topic of future works;

• search techniques have not yet been applied to incomplete MO-DCOP algorithms and we

believe some previous search DCOP algorithms could be extended for that purpose.
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The algorithms we proposed in this thesis can also be improved. The DPOP algorithm [55]

and the Multi-Objective Bucket-Elimination [29], which inspired our complete algorithm MO-

DPOP, have both been extended to reduce their complexity [29, 59], turning them into efficient

approximation algorithm that can still provide very good solutions. Similar extensions should

be considered for our own algorithm and constitute a very natural future work. Similarly, the

Pareto Local Search, which inspired our approximate algorithm DPLS, has been the subject of

many extensions [118]. These extensions could be applied to DPLS to improve its anytime capa-

bilities. Moreover, extensive studies of distributed neighborhood operators should be conducted

as they could provide significant problem-specific improvements.

6.2.2 Multi-Objective Applications and Benchmarks

The experimental results shown in this thesis were mostly performed on random instances,

which is not always ideal. Unfortunately, there does not exist real-life instances for multi-

objective constraint problems. An important next step for MO-COP and MO-DCOP would

be to apply the techniques proposed in the past decade to real problems that could be then

used as benchmarks to allow researchers to easily compare their works. Most applications of

(mono-objective) COP and DCOP can actually be considered with multiple objectives and ef-

forts should be made to adapt some of the existing applications and benchmarks with multiple

objectives.

• Sensor networks problems [35, 36, 115, 119] can be considered with multiple objectives

such as quality of observation, quality of communication between agents, total area cov-

ered, . . . .

• Scheduling problems [37–39] can be considered with many various constraints based on

conflicts between events and preferences of users. All these different objectives can be

considered independently to view the problems as MO-DCOPS.

6.2.3 Evaluating and Comparing Solution Selection Methods

There does not currently exist ways to compare different Multi-Objective Decision Making

methods. The only way to evaluate a selection method is to apply it in practice Any solu-

tion selected from the Pareto front can be accepted for implementation. However, two solutions

from the Pareto front can impact a system in very different ways. Thus, in the future, methods to

evaluate the impact of selection methods should be studied. We believe that dynamic problems

would be suited for such evaluation, as the impact of the selection method can be observed as

the problem changes and new solutions are implemented. This is illustrated in Figure 6.3 where

we can consider selecting two different solutions leading to different problems.
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FIGURE 6.3: Impact of different selection methods on a dynamic problem.

As a first step, we proposed a simulation of dynamic mobile sensor teams [120] to observe

the impact of different selection methods. In this preliminary work, preference-based selection

methods using the weighted-sum are compared by changing the weights used. Results clearly

show that the long term results obtained for the different objectives can greatly vary, even lead-

ing to undesirable extreme states. Future work should thus study additional ways to compare

selection methods. In dynamic problems, self-adaptive selection methods should be studied and

we believe using learning techniques could provide interesting results.
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