
Building a Treebank for Vietnamese

Syntactic Parsing

NGUYEN Thi Quy

Doctor of Philosophy

Department of Informatics

School of Multidisciplinary Sciences

SOKENDAI (The Graduate University for

Advanced Studies)

Building a Treebank for Vietnamese
Syntactic Parsing

Author:
NGUYEN Thi Quy

Supervisor:
Assoc. Prof. Yusuke MIYAO

Doctor of Philosophy

Department of Informatics
School of Multidisciplinary Sciences

SOKENDAI (The Graduate University for Advanced Studies)

June 2017

A dissertation submitted to Department of Informatics,
School of Multidisciplinary Sciences,

SOKENDAI (The Graduate University for Advanced Studies),
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Advisory Committee

1. Assoc.Prof. Yusuke Miyao National Institute of Informatics,
SOKENDAI

2. Prof. Ken Satoh National Institute of Informatics,
SOKENDAI

3. Assoc.Prof. Jun’ichi Yamagishi National Institute of Informatics,
SOKENDAI

4. Prof. Akiko Aizawa National Institute of Informatics

5. Assoc.Prof. Masayuki Asahara National Institute for Japanese
Language and Linguistics

Acknowledgements

Foremost, I want to express my gratitude and thanks to my supervisor, Prof. Yusuke
Miyao. He always gives me valuable advice and encouragement when I have trouble
in research, writing paper, preparing slides, and so on. This thesis would not been
completed without his help. It is my honor to be his student.

I would like to thank my advisory committee members: Prof. Ken Satoh, Prof. Akiko
Aizawa, Prof. Junichi Yamagishi, and Prof. Masayuki Asahara for spending time to
help and give detailed comments on my presentations. Their comments are valuable
sources so that I can improve my research and complete my thesis.

I also want to thank my friends and colleagues at National Institute of Informatics (NII),
Japan for their support and advice.

ii

SOKENDAI (THE GRADUATE UNIVERSITY FOR ADVANCED STUDIES)

Abstract
School of Multidisciplinary Sciences

Department of Informatics

Doctor of Philosophy

Building a Treebank for Vietnamese Syntactic Parsing

by NGUYEN Thi Quy

Treebanks, corpora annotated with syntactic structures, are important resources for re-
searchers in natural language processing, linguistic theory, as well as speech processing.
They provide training and testing materials so that different algorithms can be com-
pared. However, it is not a trivial task to construct high-quality treebanks. We have
not yet had a proper treebank for such a low-resource language as Vietnamese, which
has probably lowered the performance of Vietnamese language processing. In order to
alleviate such a situation, this thesis has tackled with two objectives, viz., (1) develop-
ing a consistent and accurate Vietnamese treebank and (2) applying our treebank to
parsing, a crucial problem in improving the quality of speech processing and natural
language processing applications. This study is not only beneficial for the development
of computational processing technologies for Vietnamese, a language spoken by over 90
million people, but also for similar languages such as Thai, Laos, and so on.

For the first objective, we propose an annotation scheme for the Vietnamese treebank.
In comparison with the previous one (VLSP treebank’s scheme), our scheme is bet-
ter because it can cover and distinguish among various constructions and linguistic
phenomena in Vietnamese. We also develop three sets of guidelines corresponding to
three annotation layers of our treebank, including: word segmentation guidelines (44
pages), part-of-speech (POS) tagging guidelines (73 pages), and bracketing guidelines
(182 pages). Our guidelines contain rules to address the challenges of Vietnamese lan-
guage. Specifically,we hand-crafted 9 rules for segmenting ambiguous expressions, 34
rules for tagging ambiguous words, and 39 rules for bracketing ambiguous expressions.
These guidelines, which are used to train the annotators, are valuable resources that
serve the use of the treebank.

In addition to developing the annotation guidelines, we describe other issues of ensuring
the annotation quality including an appropriate annotation process, a well-designed

iv

process of training annotators, and software tools to support the annotation as well as to
control the quality. Inter-annotator agreement, intra-annotator agreement, and accuracy
of the developed treebank are higher than 90%, which shows that the annotated treebank
is reliable and satisfactory. In comparison with the VLSP treebank, our annotation
scheme is more fine-grained than the one of the VLSP treebank. For example, our POS
tag set includes 33 tags, while there are 17 tags in the VLSP treebank. However, our
treebank gives the higher performance in comparison with the VLSP treebank on all
of the tasks, namely, automatic word segmentation, POS tagging, and parsing. This
indicates that our treebank is more consistent than the VLSP treebank.

For the second objective, we first evaluate representative parsing models on the Viet-
namese treebank. We then investigate the errors produced by the parsers and find
the reasons for them. Our analysis focuses on four possible sources of the parsing er-
rors, viz., limited training data, word segmentation errors, confusing POS tags, and
ambiguous constructions. We use an analysis method that combines the advantages of
automatic tools and a manual analysis. While automatic analysis can be applied to a
large amount of parsing output, manual investigation can capture the reasons of the
parsing errors precisely. As a result, we find that parsing models based on conditional
random field (CRF) and neural network are good for Vietnamese. On the other hand,
the quality of Vietnamese parsing can also be improved through enriching contextual
information, such as using the hierarchical state-splitting for unlexicalized parsing or
exploiting the rich input features of the surface spans for CRF parsing. However, these
performances (about 72% in F-score) of Vietnamese parsing are still far lower than the
performances reported for English (about 90% in F-score) and Chinese (about 86% in
F-score). This indicates that existing models cannot capture contextual information like
words working as prefixes and suffixes.

The investigation of parsing errors has revealed the frequent errors in Vietnamese pars-
ing that are VP attachment, NP attachment, PP attachment, and clause attachment. In
addition, we found that we could not obtain significant improvement of the Vietnamese
parsing by simply enlarging the training data. Among the three factors of word seg-
mentation errors, POS tagging errors, and ambiguous constructions, although the first
and second ones have significantly contributed to many parsing errors, the third one is
the major problem that causes the low performance of Vietnamese parsing. Ambiguous
constructions in Vietnamese appear in many forms, such as ambiguous POS sequences
or ambiguous symbol sequences. They are caused by the characteristics of Vietnamese
such as the lack of inflectional morphemes, post-head modifying lexical words, and drop-
ping words. This research has also shown that although Vietnamese has many confusing
constructions, these ambiguities can be tackled based on contextual information such

v

as the words playing the roles as prefixes and suffixes, function words, fine-grained
categorizations, head words of the phrases, main verbs of the clauses, etc.

Contents

Acknowledgements ii

Abstract iii

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivations . 1
1.2 Treebank annotation scheme . 2
1.3 Challenges of annotating Vietnamese . 3
1.4 Contributions . 4
1.5 Thesis overview . 5

2 Background 7
2.1 Efforts on treebank construction . 7

2.1.1 Constituency treebank . 7
2.1.2 Dependency treebank . 11
2.1.3 Other structures . 13

2.2 The use of treebank . 14
2.2.1 Word segmentation tool . 14
2.2.2 POS tagger . 15
2.2.3 Parser . 15
2.2.4 Applications of syntactic analysis tools 16

2.3 Technologies for treebank development . 17
2.3.1 Annotation guidelines . 17
2.3.2 Division of labor . 18
2.3.3 Tools . 19
2.3.4 Annotator . 19
2.3.5 Annotation process . 20
2.3.6 Material . 20

2.4 An overview of parsing methods . 21
2.4.1 Probabilistic context-free grammar 21
2.4.2 Conditional random field . 23

vii

viii

2.4.3 Feedforward neural network . 24
2.4.4 Recurrent neural networks . 25
2.4.5 Recursive neural network . 27
2.4.6 Evaluating parsers . 28
2.4.7 Development of parsing methods 31

2.5 Previous work on Vietnamese treebank and parsing 31
2.5.1 Characteristics of Vietnamese language 32

2.5.1.1 No word delimiters or inflectional morphemes 32
2.5.1.2 Flexible word orders . 32
2.5.1.3 Word omission . 33
2.5.1.4 Conflicting definitions among linguists 33

2.5.2 Vietnamese treebank . 36
2.5.2.1 VLSP annotation scheme 36
2.5.2.2 VLSP guildelines . 39
2.5.2.3 VLSP supporting tools 41

2.5.3 Vietnamese parsing . 41

3 Building a syntactic treebank for Vietnamese 43
3.1 Introduction . 44
3.2 Methods and material . 46

3.2.1 Methodology for creating a high-quality treebank 46
3.2.2 Data preparation . 48

3.3 Annotation guidelines . 49
3.3.1 Word segmentation guidelines . 49

3.3.1.1 Word categories . 49
3.3.1.2 Challenges of word segmentation 51
3.3.1.3 Policy for annotation of word segmentation 52
3.3.1.4 Comparison with the VLSP treebank 54

3.3.2 Part-of-speech tagging guidelines 55
3.3.2.1 Building a part-of-speech tag set 55
3.3.2.2 Challenges of POS tagging 56
3.3.2.3 Policies for annotating part-of-speech 58
3.3.2.4 Comparison with the VLSP Treebank 59

3.3.3 Bracketing guidelines . 60
3.3.3.1 Representation scheme 60
3.3.3.2 Challenges of bracketing 63
3.3.3.3 Policies for annotating brackets 66
3.3.3.4 Internal structures . 71
3.3.3.5 Comparison with VLSP Treebank 72

3.4 Quality control . 74
3.4.1 Training annotators, revising the guidelines and evaluating our

treebank . 75
3.4.2 Tools . 78

3.4.2.1 Annotation tool . 80
3.4.2.2 Speed up annotation with automatic tools 81
3.4.2.3 Tools to clean up the treebank 82

3.5 Conclusion . 83

ix

4 An Empirical Investigation of Error Types in Vietnamese Parsing 85
4.1 Introduction . 85
4.2 Parsing evaluation . 87

4.2.1 PARSEVAL evaluation . 89
4.2.2 TEDEVAL evaluation . 91

4.3 Investigating behaviour of the parsers . 92
4.4 Impact of training data size . 94
4.5 Impact of tagging errors . 95

4.5.1 Contributions of tagging improvement to error types 95
4.5.2 Impact of ambiguous POSs on parsing errors 97

4.6 Ambiguous constructions in Vietnamese 100
4.6.1 Classified constructions . 100
4.6.2 “Other” class . 105

4.7 Conclusion . 112

5 Conclusion and future work 115
5.1 Conclusion . 115
5.2 Future work . 117

Bibliography 119

List of Figures

1.1 An example shows that one POS sequence Vv Nn Vv can have different
annotations. Meanings of the present symbols are: VP–verb phrase; NP–
noun phrase; S–sentence; Vv–verb; and Nn–noun. 4

2.1 A sentence annotated with phrase structure extracted from the Penn En-
glish Treebank. The original sentence is "They are all priced at par." . . . 8

2.2 The constituent tree of the sentence "They are all priced at par." anno-
tated according to the Penn Treebank II’s scheme. 9

2.3 Stanford Dependencies representation for the sentence "They are all priced
at par". 12

2.4 Graph representation for the sentence "They are all priced at par". 12
2.5 A screen shot of the PTB bracketing guidelines. 18
2.6 A screen shot of the ITU treebank annotation tool. 19
2.7 Two parse trees for the sentence program trading has increased chances

for market crashes under the PCFG in Table 2.7. 23
2.8 Feedforward neural network. 24
2.9 Recurrent neural network. 26
2.10 Recursive neural network. 28
2.11 Examples of exceptions of word order in Vietnamese. 33
2.12 Examples illustrate flexible word orders in Vietnamese. 34
2.13 Examples showing different ways of bracketing a sentence in Vietnamese.

Figure 2.13a shows a sentence in which the head word of the predicate
is not a verb. Figure 2.13b and 2.13c present two bracketing ways by [1]
and [2] respectively. 35

2.14 Examples show how the reduced relative clause was bracketed in the VL-
SP treebank (Figure a) and our treebank (Figure b). 40

2.15 Examples showing that tất_cả was assigned to different tags in VLSP
Treebank. 41

3.1 An example to illustrate the process of treeing a Vietnamese sentence. . . 45
3.2 Grammatical relations used in our bracketing guidelines. 61
3.3 An example showing two relations used in our treebank. 62
3.4 An example showing the use of null elements in our treebank. 63
3.5 Expressions that have the same structure, but should be bracketed in

different ways. 65
3.6 An example illustrating flexible word orders in Vietnamese. 67
3.7 An example of confusion caused by ellipsis. 68
3.8 An example about the elliptical compound sentence in our treebank. . . . 70

xi

List of Figures xii

3.9 Examples show how complements are labeled in the VLSP treebank (Fig-
ures a and b) and our treebank (Figures c and d). 73

3.10 Example of bracketing a special sentence in our treebank (Figure b) in
comparison with VLSP treebank (Figure a). 74

3.11 Examples to illustrate how the reduced relative clauses are bracketed in
Nguyen et al. [3]’s treebank (Figure a) and our treebank (Figure b). . . . 75

3.12 Accuracy and inter-annotator agreement of the nine-round training process. 77
3.13 An inconsistent annotation between the two annotators in a polysemous

expression. The left tree is annotated by A1, the right one is by A2. . . . 79
3.14 A screen shot of our annotation tool which shows how our annotation tool

worked when the annotator bracketed a noun phrase. 80
3.15 A screen shot of our annotation tool which shows how our annotation tool

worked when the annotator tagged POS for a word. 81
3.16 A screen shot of our tool for revising the Vietnamese Treebank. 83

4.1 Parsing results from the parsers with different amounts of training data. . 95
4.2 Results from the parsers on two different versions of test set, Predicted-

POS and GoldPOS. 96
4.3 Examples illustrating the ambiguity between noun phrases and simple

sentences in Vietnamese. 102
4.4 Examples illustrating an ambiguity between subordinate and separate

constructions in Vietnamese. 104
4.5 Examples illustrating ambiguity between coordination and subordinate

construction in Vietnamese. 105
4.6 Examples illustrating a clause attachment error in Vietnamese. 106
4.7 Examples illustrating the ambiguity between subordinate and separate

constructions in Vietnamese. 107
4.8 Examples illustrating the ambiguity between separate constructions and

subordinate constructions that caused NP attachment errors in Viet-
namese parsing. 107

4.9 Examples illustrating the ambiguity in determining the head of a prepo-
sitional phrase. 108

4.10 Examples illustrating a clause attachment error that cannot be recognized
by the analysis tool. 109

4.11 Examples illustrating an adjective attachment error that cannot be rec-
ognized by the annalysis tool. 110

4.12 Examples illustrating how to determine the meaning of the preposition cho.111

List of Tables

2.1 The Penn Treebank POS tag set. 9
2.2 The Penn Treebank constituent tag set. 10
2.3 The Penn Treebank function tags. 10
2.4 The Penn Treebank null elements. 11
2.5 Grammatical relations used in UD version 2. 13
2.6 Parsing results on different treebanks. "F1" presents the evaluation results

for constituency parsers. UAS (unlabeled attachment score) and LAS
(labeled attachment score) present the evaluation results for dependency
parsers. 16

2.7 A simple PCFG. For each rule, we have to assign a probability, such as
the rule NP −→ NN NN has a probability of 0.2. 23

2.8 Examples of polysemous expressions in Vietnamese. 32
2.9 VLSP treebank’s POS tag set. 36
2.10 Constituency tags used in VLSP Treebank. 37
2.11 Function tags used in VLSP Treebank. 37
2.12 Null element tags used in VLSP Treebank. 38
2.13 Inconsistencies in labeling POS tags for words indicating "the whole" in

the VLSP Treebank. For each pair of X_Y, X denotes POS tag and Y
denotes the number of times that the word was tagged as X in VLSP
treebank. Tags are separated by the comma. 39

2.14 Examples containing instances of tiền của. Sentences with a star-marked
number are incorrect annotated. 42

2.15 Results of evaluating Vietnamese treebank on MST and Malt parsers . . . 42

3.1 Topics of texts in our treebank. 48
3.2 Statistics of word types in our treebank. 48
3.3 Statistics of POS tagging in our treebank. The column “Words” presents

the number of words that were annotated with one POS tag, two POS
tags, or so on. The column “Instances” presents the number of instances
of words in the corpus. 49

3.4 Statistics of internal structures in our corpus. The last two columns
present frequency of each construction in the data sets. 49

3.5 Examples shows how inflection in English is presented in Vietnamese. . . 51
3.6 Examples shows an ambiguity between reduplicative words and reitera-

tion forms in Vietnamese. 51
3.7 Examples to illustrate the principles of word segmentation. 53
3.8 Examples show the compound words in Vietnamese that have the same

previous syllable (A) but different following syllables (B). 55
3.9 The POS tag set designed for our treebank. 56

xiii

List of Tables xiv

3.10 Examples show different POS tags of a word in Vietnamese. 56
3.11 Examples illustrating ambiguities in POS tagging. 58
3.12 Examples of polysemous words in Vietnamese. 60
3.13 Our constituency tags. 61
3.14 Our functional tags. 62
3.15 Our null elements. 63
3.16 Examples illustrating ambiguities between noun phrase and simple sen-

tences. 64
3.17 Examples of noun phrases, verb phrases and adjective phrase illustrating

fixed word order in Vietnamese. 66
3.18 Several examples illustrating flexible word order in Vietnamese. 66
3.19 Expressions illustrating ambiguities in differentiating phrases that have

the same POS sequences. 66
3.20 Examples of bracketing expressions that have the same structure. 69
3.21 Our internal structure tags. 71
3.22 Examples show expressions bracketed with internal structure tags. 72
3.23 Examples show different types of treatment for an expression constituted

by a classifier noun and a common noun. 72
3.24 Inter-annotator agreement measured on new texts. 77
3.25 Performance of word segmenter, POS tagger and parser trained on the

VLSP treebank and a subset of 10,000 sentences of our treebank. 78
3.26 Annotation speeds of our annotators for three layers of annotation. 81

4.1 PARSEVAL evaluations on the test set of the seven parsers. 90
4.2 TEDEVAL evaluations on the test set of the seven parsers. 91
4.3 Average number of bracket errors per sentence for the development set

of Vietnamese treebank. For example, Stanf-U produces output that has
2.23 note errors per sentence that is caused by VP attachment. Values in
the “Worst” row are presented by full black bars. Values in the “Best”
row are presented by empty bars. 92

4.4 Statistics on errors produced by RNNGs-G on two different versions of de-
v set, Pred. and Gold. “Gain” represents gain (positive number) and loss
(negative number) of node errors per sentence when replacing automat-
ically predicted POS tags with gold POS tags (i.e., Errors per sentence
(Pred.) - Errors per sentence (Gold)). 96

4.5 Top ten confusing POS pairs in Vietnamese. 97
4.6 Most frequently confusing POS tag pairs in Vietnamese POS tagging. ∆

F1 indicates decreases in F-scores when gold POS tags were replaced with
predicted POS tags. Meanings of POS tags are: Nn: common nouns, Vv:
common verbs, and Aa: adjectives. 98

4.7 Gains and Losses of bracket errors when the gold POS tags are replaced
by the POS tags predicted by the automatic tagger. For example, the
number 80 in row “Single Word Phrase” indicates that replacing the gold
POS tag Nn (common noun) by the predicted POS tag Vv (common
verb), number of Single Word Phrase error increases 80 errors. 99

4.8 Several frequent ambiguous constructions in Vietnamese parsing. 101

Chapter

1
Introduction

1.1 Motivations

Treebanks are parsed text corpora that include syntactic analysis of natural language
text. They are important resources for researchers in natural language processing (NLP),
speech processing, and linguistic research. For example, in NLP, treebanks provide
training and testing materials for developing word segmentation, part-of-speech (POS)
tagging tools and syntactic parsers. These tools then are applied to improving the quality
of NLP applications, such as machine translation [4–6] and question answering [7–9].

Because of its importance, treebanks have been developed for many languages. Most
typically, the Penn English Treebank [10] has played a crucial role in the success of
English part-of-speech taggers [11, 12] and parsers [13–15]. The methodology and an-
notation scheme of the Penn English Treebank have been adapted for the Penn Korean
Treebank [16], Penn Chinese Treebank [17], French Treebank [18], etc.

To strengthen the automatic processing of the Vietnamese language, a Vietnamese Tree-
bank (VLSP Treebank) was built as a part of a national project, entitled “Vietnamese
language and speech processing (VLSP)” [3]. This corpus contains 10,374 sentences in
social and political topics, collected from an online daily newspaper, the Youth (Tuổi
Trẻ) [3]. The VLSP Treebank was annotated with three layers: word segmentation,
part-of-speech (POS) tagging and bracketing1. However, Nguyen et al. [19, 20] showed

1Bracketing is the annotation of constituent structure.

1

Chapter 1. Introduction

that the quality of VLSP Treebank, including the quality of the annotation scheme, the
annotation guidelines and the annotation process, is not satisfactory and is a possible
source for the low performance of Vietnamese language processing [21–23].

To alleviate these issues, in this work, we carried out two main tasks. Firstly, we build a
new treebank for Vietnamese. Secondly, we train several state-of-the-art parsers on the
new treebank to find the actual problems that cause the low performance of Vietnamese
parsing. Regarding the first task, we study the engineering issues for keeping annota-
tion consistency and accuracy while ensuring a reasonable annotation speed, including
annotation guidelines, annotation process, annotator, and supporting tools. Besides e-
valuating our treebank through several measurements such as inter-annotator agreement,
intra-annotator agreement, and annotation accuracy, we also compare our treebank with
the VLSP treebank on the automatic word segmentation, part of speech tagging, and
parsing. For the second task, after evaluating our treebank on different state-of-the-art
parsing methods, we investigate all possible problems that can affect the parsing quality
including a small size of treebank, ambiguous POS tags, and confusing constructions.

This study is not only beneficial for the development of computational processing tech-
nologies for Vietnamese, a language spoken by over 90 million people, but also for similar
languages such as Thai, Laos, and so on. This study also promotes the computational
linguistics studies on how to transfer methods developed for a popular language, like
English, to a language that has not yet intensively studied.

1.2 Treebank annotation scheme

Treebanks are typically annotated with four consecutive layers ordered as follows (1)
word segmentation, (2) morphological analysis, (3) POS, and (4) syntactic structure.
The upper layer is annotated on top of the previous one, which makes it more compli-
cated. It is clear that the most complicated one is the top layer—syntactic structure.
There are two primary types of syntactic annotation, constituency annotation and func-
tional annotation. According to Chomsky [24], grammatical functions can be derived
from the constituent structure. Following this viewpoint, several treebanks such as the
Lancaster Parsed Corpus [25] and the original Penn Treebank [10] were annotated with
constituent structures (phrase structures).

However, since Melčuk [26]—the father of dependency syntax, assumed that the func-
tional structure is more fundamental than the constituent structure, the functional an-
notation has become increasingly important. Basically, several dependency treebanks

2

Challenges of annotating Vietnamese

have been built for the languages with free word order, such as the Japanese Tree-
bank [27], the Turkish Treebank [28], and the Prague dependency treebank for Czech
[29]. Meanwhile, for the languages with fixed word order, the constituent structure has
been used but with extended for functional annotation. An example for this extension is
the Penn Treebank II [30] (PTB) that originated from the original Penn Treebank [10].
Following the success of the PTB, constituent treebanks for a wide range of languages
such as Chinese [17], Korean [16], Arabic [31], and Spanish [32], have been built in which
the annotation scheme are the adapted versions of the PTB’s scheme. Vietnamese word
order is also quite fixed. Therefore, our annotation scheme is also adapted from the
scheme of the PTB.

1.3 Challenges of annotating Vietnamese

Difficulties of Vietnamese language have been recognized by many researchers [21, 33–
35]. Until now, there are still little consensus in annotating Vietnamese syntax. Several
main reasons for such situation are as follows. In comparison with English, Vietnamese
does not have word delimiters and inflectional morphemes. While similar problems also
occur in Chinese [36], annotating Vietnamese is probably more difficult because the
modern Vietnamese writing system is based on Latin characters, which represent the
pronunciation but not the meanings of words. As a result, there are many polysemous
expressions, i.e., expressions having the same surface form but different interpretations,
in Vietnamese. Difficulties in annotating Vietnamese are also caused by word orders.
Although Vietnamese is a subject-verb-object (SVO) language like English and Chinese,
its word orders are different from the others. For example, in Vietnamese, the word
order in noun phrases is exactly the same as those in simple sentences, which leads to
ambiguities in labelling these two types of expressions. In addition, other problems such
as dropping words, conflicted definitions among linguists, etc. have also caused many
challenges for annotating Vietnamese texts.

Figure 1.1 presents several ambiguous expressions in Vietnamese. We can see that
expressions in Figures 1.1a, 1.1b and 1.1c have the same POS sequence Vv Nn Vv (a
verb stands in front of a noun and another verb). However, they should be annotated
in different ways. In Figure 1.1a, the noun and the later verb should separately modify
the head verb. Meanwhile, the later verb in Figure 1.1b is a modifier of the noun. In
Figure 1.1c, the noun and the later verb are the subject and the predicate of a simple
sentence that modifies the head verb mongto hope. These ambiguous expressions do not
occur in English because the modifying lexical word stands in front of the head word
in English noun phrases (see English translation below Figure 1.1b). In addition, we

3

Chapter 1. Introduction

a) VP

Vv

dạy
{to teach}

NP

Nn

con
{child/
children}

VP

Vv

hát
{to sing}

b) VP

Vv

chia_sẻ
{to share}

NP

Nn

kinh_nghiệm
{experience}

Vv

giảng_dạy
{to teach}

c) VP

Vv

mong
{to hope}

S

NP

Nn

con
{child/
children}

VP

Vv

thành_công
{to success}

{to teach the children singing} {to share teaching experiences} {to hope that the children will success}

Figure 1.1: An example shows that one POS sequence Vv Nn Vv can have different
annotations. Meanings of the present symbols are: VP–verb phrase; NP–noun phrase;

S–sentence; Vv–verb; and Nn–noun.

can recognize subordinating clauses in English based on the conjunctions introducing
the clauses such as that, which, etc. (Figure 1.1c). Unfortunately, such clues are not
presented in Vietnamese text, leading to confusions of annotating Vietnamese in both
manual and automatic annotations.

Because of the above-mentioned challenges, building a consistent and accurate treebank
for Vietnamese is not a trivial problem.

1.4 Contributions

Our research includes two tasks: building a treebank for Vietnamese, and training a
syntactic parser on the treebank. For the first task, our contributions consist of:

• Proposing annotation rules to address the challenges of Vietnamese language,

• Designing better POS and bracket tags for Vietnamese treebank,

• Developing three sets of annotation guidelines for Vietnamese treebank including
word segmentation guidelines, POS tagging guidelines and bracketing guidelines,

• Proposing an appropriate annotation procedure to develop a treebank

• Building tools to support the annotation as well as quality control.

To date, we have completed the annotation of about 20,000 sentences of our treebank.
The treebank has archived the inter-annotator agreement, intra-annotator agreement,
and annotation accuracy of more than 90%. This indicates that the treebank is reliable.
In comparison with the previous Vietnamese treebank, the new developed treebank

4

Thesis overview

produces better performances on three fundamental NLP tasks of word segmentation,
POS tagging, and parsing.

For the second task, we have trained different parsing methods, including probabilistic
context free grammars (PCFGs), conditional random fields (CRFs), and neural networks,
on our treebank. By comparing the parsing outputs produced by the parsers, we have
found the parsing techniques appropriate for Vietnamese language. We have also carried
out a comprehensive analysis based on the parsing outputs. The results of this task have
revealed the reasons for the low performance of Vietnamese parsing. Our analysis results
have also showed the most frequent errors caused by different parsing methods. These
results are valuable clues for improving the quality of Vietnamese parsing in the future.

1.5 Thesis overview

The remain of this thesis is organized as follows.

In Chapter 2, we present the background by introducing efforts on treebank develop-
ment, how treebanks are used, and the engineering issues that need to be considered
in developing a treebank. It then provides an overview of parsing methods. Finally,
we present the characteristics of the Vietnamese language and how the treebank and
parsing were developed in Vietnamese.

In Chapter 3, building a syntactic treebank for Vietnamese, we firstly present our method
to construct a high-quality treebank and our data preparation. Next, we describe chal-
lenges and solutions in building the annotation guidelines for Vietnamese in Section 3.3.
We also discuss our method about how to ensure the annotation quality while still
remaining a reasonable annotation speed in Section 3.4.

Chapter 4 presents an empirical investigation of error types in Vietnamese parsers. In
this chapter, we firstly evaluate the Vietnamese treebank on different parsing methods.
We then investigate four possible sources for the errors produced by the parsers: the
small size of training data, the word segmentation errors, the confusing POS tags, and
the ambiguous constructions. Our analysis method combines the automatic tool and
manual analysis. By comparing the analysis results, we can understand which error
types can be tackled by the parsing methods as well as which error types are difficult
for the parsers. In addition, manual analysis on the parsing errors can help us capture
reasons for each error type.

Finally, in Chapter 5, we summarize the results obtained in this research and give
directions for future studies.

5

Chapter

2
Background

This chapter gives the background that is used throughout this thesis. It contains the
issues as follows. Firstly, we introduce the efforts on treebank development and how a
treebank is used. We then present the engineering issues that need to be considered in
developing a treebank. In addition, an overview of parsing methods is also provides in
this chapter. Finally, we present the characteristics of Vietnamese and how the treebank
and parsing were developed in Vietnamese language.

2.1 Efforts on treebank construction

The treebank is annotated with the syntactic structure beyond the part-of-speech tags.
However, depending on the intended use, it can be enhanced with various type of in-
formation such as semantic information. There are two main groups of the treebank
classified by the enhanced information: constituency treebank–treebank annotated with
syntactic information and dependency treebank–treebank annotated with dependency
information.

2.1.1 Constituency treebank

In the original constituency treebank such as the original Penn Treebank [10], the syn-
tactic information added beyond the POS tags is phrase categories such as NP (noun
phrase) and VP (verb phrase). In addition, constituency treebanks can be annotated

7

Chapter 2. Background

((S
 (NP-SBJ-1 (PRP They))
 (VP (VBP are) (DT all)

(VP (VBN priced)
(NP (-NONE- *-1))
(PP-CLR (IN at)

(NP (JJ par)))))
(. .)))

Figure 2.1: A sentence annotated with phrase structure extracted from the Penn
English Treebank. The original sentence is "They are all priced at par."

with grammar functions, e.g., Penn Treebank II [30]. Figure 2.1 is an example extracted
from the PTB corpus that shows how a simple sentence is annotated. This example can
be presented as a tree as shown in Figure 2.2. In this tree, the leaf nodes (terminals) are
words in the sentence. Pre-terminals (preceding terminals) are POS tags of the words.
Higher levels are the phrase categories. We can also see that the noun phrase (NP) They
and the prepositional phrase (PP) at par were annotated with the function tags SBJ
(subject) and CLR (closely related) respectively to indicate their syntactic functions.
In addition, the null argument1 of the verb priced was also marked with an asterisk
coindexed (1) with the noun phrase They. Specifically, the verb priced requires a direct
object to complete its meaning. However, this object is used the subject of the sentence,
which is the noun phase They. Therefore, the null object of the verb priced is marked
with the asterisk. The subject noun phrase (NP-SBJ) and asterisk are also marked with
the same index (1) to indicate that they are similar.

The PTB was annotated with two layers of part-of-speech tagging and bracketing. The
POS tag set used in this treebank includes 36 tags as shown in Table 2.1. The bracket-
ing layer is a combination of the constituent structure and grammatical functions that
includes constituency tags, function tags, null elements, and reference indexes. Tables
2.2, 2.3, and 2.4 present the constituent tags, function tags, and the null elements used
in the PTB respectively. These tables include 26 constituent tags, 10 function tags, and
6 null elements. The PTB is the first large-scale annotated corpus. It consists of about
50,000 sentences of American English collected from the Wall Street Journal (WSJ).

Following the success of the PTB, the Penn Chinese Treebank [17] has been built. This
treebank has the annotation scheme adapted from the PTB. However, as words in Chi-
nese sentences are not distinguished by the blank spaces, the Penn Chinese Treebank
was provided word boundaries before annotating POS and brackets. This treebank has
used 33 POS tags, 17 constituent tags, 26 function tags, and 7 null elements. The Penn

1An argument is a mandatory syntactic unit that completes meaning of the sentence. When an
argument is omitted, it is marked by a null element in the Penn Treebank II.

8

Efforts on treebank construction

S

NP-SBJ-1

PRP

They

VP

VBP

are

DT

all

VP

VBN

priced

NP

-NONE-

*-1

PP-CLR

IN

at

NP

JJ

par

.

.

Figure 2.2: The constituent tree of the sentence "They are all priced at par." anno-
tated according to the Penn Treebank II’s scheme.

Table 2.1: The Penn Treebank POS tag set.

No. Tag Meaning No. Tag Meaning

1 CC Coordinating conj. 19 PP$ Possessive pronoun
2 CD Cardinal number 20 RB Adverb
3 DT Determiner 21 RBR Adverb, comparative
4 EX Existential there 22 RBS Adverb, superlative
5 FW Foreign word 23 RP Particle
6 IN Preposition 24 SYM Symbol
7 JJ Adjective 25 TO Infinitive to
8 JJR Adjective, comparative 26 UH Interjection
9 JJS Adjective, superlative 27 VB Verb, base form
10 LS List item marker 28 VBD Verb, past tense
11 MD Modal 29 VBG Verb, gerund/present pple
12 NN Noun, singular or mass 30 VBN Verb, past participle
13 NNS Noun, plural 31 VBP Verb, non-3rd ps. sg. present
14 NNP Proper noun, singular 32 VBZ Verb, 3rd ps. sg. present
15 NNPS Proper noun, plural 33 WDT Wh-determiner
16 PDT Predeterminer 34 WP Wh-pronoun
17 POS Possessive ending 35 WP$ Possessive wh-pronoun
18 PRP Personal pronoun 36 WRB Wh-adverb

9

Chapter 2. Background

Table 2.2: The Penn Treebank constituent tag set.

No. Tag Meaning

1 ADJP Adjective phrase
2 ADVP Adverb phrase
3 CONJP Conjunction phrase
4 FRAG Fragment
5 INTJ Interjection
6 LST List marker
7 NAC Used to show the scope of certain prenominal modifiers within

a NP
8 NP Noun phrase
9 NX Used within certain complex NPs to mark the head of the NP
10 PP Prepositional phrase
11 PRN Parenthetical
12 PRT Particle
13 QP Quantifier phrase
14 RRC Reduced relative clause
15 UCP Unlike coordinated phrase
16 VP Verb phrase
17 WHADJP Wh-adjective phrase
18 WHAVP Wh-adverb phrase
19 WHNP Wh-noun phrase
20 WHPP Wh-prepositional phrase
21 X Unknown, uncertain, or unbracketable
22 S Simple declarative clause
23 SBAR Clause introduced by a (possibly empty) subordinating conjunction
24 SBARQ Direct question introduced by a wh-word or a wh-phrase
25 SINV Inverted declarative sentence
26 SQ Inverted yes/no question, or main clause of a wh-question

Table 2.3: The Penn Treebank function tags.

No. Tag Meaning No. Tag Meaning

1 ADV Adverbial 11 DIR Direction
2 NOM Nominal 12 EXT Extent
3 DTV Dative 13 LOC Locative
4 LGS Logical subject 14 MNR Manner
5 PRD Predicate 15 PRP Purpose or reason
6 PUT Locative complement of put. 16 TMP Temporal
7 SBJ Surface subject 17 CLR Closely related
8 TPC Topicalized 18 CLF Cleft
9 VOC Vocative 19 HLN Headline
10 BNF Benefactive 20 TTL Title

10

Efforts on treebank construction

Table 2.4: The Penn Treebank null elements.

No. Label Meaning

1 *T* Trace of A-movement
2 (NP *) Arbitrary PRO, controlled PRO, and trace of A-movement
3 0 Null complementizer
4 *U* Unit
5 *?* Placeholder for ellipsed material
6 *NOT* Anti-placehoder in template gapping

Chinese Treebank is also a large scale corpus consisting of 40,000 sentences. The material
was collected from Xinhua newswise, Hong Kong news, and the Sinorama magazine.

The Penn Korean Treebank [16] also follows the PTB styles. It was annotated with
two layers of POS tagging and bracketing. However, different from PTB and the Penn
Chinese Treebank where the material was collected from the newspapers, the Penn
Korean Treebank is constituted by texts from military language training manuals. In
addition, each word in the Penn Korean Treebank was annotated not only with POS
tags but also with morphological tags because Korean is a morphologically rich language.
This treebank includes about 54 thousand words in 5,000 sentences.

Furthermore, adapted versions of the PTB’s scheme are also found in the Penn Arabic
Treebank [31], the Spanish Treebank [32], etc.

2.1.2 Dependency treebank

The dependency structure, different from the phrase structure, does not use phrasal
nodes. In the dependency structure, the main verb is considered as the center of a clause.
The dependency relations between the main verb and the other words are presented by
directed links. For example, Figure 2.3 shows the Stanford Dependencies representation
for the sentence They are all priced at par. The graph representation for this sentence
is given in Figure 2.4. In general, each representation X(g-i, d-j) is a binary relation
between the head word g at the position i of the sentence and the dependent word d at
the position j of the sentence. Six grammatical relations in the sentence are expressed
as follows:

• nsubjpass(priced-4, They-1): The word They at position 1 of the sentence is the
head word of the passive nominal subject of the passive clause. In this passive
clause, the word priced at position 4 is the main verb.

11

Chapter 2. Background

((S
 (NP-SBJ-1 (PRP They))
 (VP (VBP are) (DT all)

(VP (VBN priced)
(NP (-NONE- *-1))
(PP-CLR (IN at)

(NP (JJ par)))))
(. .)))

nsubjpass(priced-4, They-1)
auxpass(priced-4, are-2)
advmod(priced-4, all-3)
root(ROOT-0, priced-4)
case(par-6, at-5)
nmod(priced-4, par-6)

Figure 2.3: Stanford Dependencies representation for the sentence "They are all priced
at par".

They are all priced at par

nsubjpass

auxpass

advmod

root

case

nmod

Figure 2.4: Graph representation for the sentence "They are all priced at par".

• auxpass(priced-4, are-2): are is a non-main verb playing a role as the passive
auxiliary of the passive clause.

• advmod(priced-4, all-3): all is an adverbial modifier of the main verb priced.

• root(ROOT-0, priced-4): The root of the sentence is the word priced. ROOT is
a fake node used as the governor. ROOT is indexed with 0, since the indexing of
real words in the sentence starts at 1.

• case(par-6, at-5): The preposition at does not directly modify the main verb. It
introduces the noun phrase par.

• nmod(priced-4, par-6): par is a nominal modifier of the main verb placed.

You can see that the word at in this example does not have a direct relation with the
main verb. However, its head word directly connects to the head verb of the sentence.

Similarly to the constituent structure, the dependency structure is also a primary syn-
tax. While the constituent structure is usually selected for languages having fixed word
order, the dependency structure is suitable with languages having freer word order such
as Japanese [27], Russian [37], Turkish [28], and Czech [29]. This is because the phrase
structure is not rigid in languages with free word order. These languages allow syn-
tactically discontinuous expressions. The dependency structure is selected because it

12

Efforts on treebank construction

Table 2.5: Grammatical relations used in UD version 2.

No. Relation Meaning No. Relation Meaning

1 acl Clausal modifier of noun 19 expl Expletive
(adjectival clause) 20 fixed Fixed multiword expression

2 advcl Adverbial clause modifier 21 flat Flat multiword expression
3 advmod Adverbial modifier 22 goeswith Goes with
4 amod Adjectival modifier 23 iobj Indirect object
5 appos Appositional modifier 24 list List
6 aux Auxiliary 25 mark Marker
7 case Case marking 26 nmod Nominal modifier
8 cc Coordinating conjunction 27 nsubj Nominal subject
9 ccomp Clausal complement 28 nummod Numeric modifier
10 clf Classifier 29 obj Object
11 compound Compound 30 obl Oblique nominal
12 conj Conjunct 31 orphan Orphan
13 cop Copula 32 parataxis Parataxis
14 csubj Clausal subject 33 punct Punctuation
15 dep Unspecified dependency 34 reparandum Overridden disfluency
16 det Determiner 35 root Root
17 discourse Discourse element 36 vocative Vocative
18 dislocated Dislocated elements 37 xcomp Open clausal complement

is flatter than the constituency structure, such as the finite verb phrase constituents2

are not admitted in the dependency structure. It should be noted that despite of the
structure a treebank is annotated under, we can convert the treebank from one structure
to another [38–40].

Recently, Universal Dependencies [41] (UD), a project that develops cross-linguistically
consistent treebank annotation for many languages, has received a wide interest from
many researchers. The universal annotation scheme is a combination of Stanford depen-
dencies [42], Google universal POS tags [43], and Interset interlingua for morphosyntactic
tag sets [44]. UD version 2 contains 37 grammatical relations between words that are
listed in Table 2.5. To date, 70 treebanks of 50 languages have been released3. Other
10 treebanks will be released next time.

2.1.3 Other structures

Some treebanks have a combined annotation scheme between constituent annotations
and dependency annotations. For instance, in the TIGER Treebank [45] for German,
each sentence is presented as a syntactic tree where non-terminal nodes present phrasal
categories and edges indicate syntactic functions. A variation of this treebank type is

2Verb phrases generally divided into two types, finite and non-finite. The finite verb phrases have
head words that are the finite verbs. While, heads of the non-finite verb phrases can be an infinitive, a
participle, or a gerund (non-finite verbs). A finite verb has a subject. However, a non-finite verb appears
below the finite verb in the hierarchy of syntactic structure.

3http://universaldependencies.org

13

Chapter 2. Background

found in Italian Syntactic-Semantic Treebank [46]. In this treebank, constituent struc-
ture and dependency relations are distributed over two different layers.

Both dependency and constituency treebanks can be enhanced with semantic annotation.
For example, in the Sinica Treebank [47] for Chinese, a semantic role4 is assigned to each
constituent. Semantic roles are also assigned to the dependency-based annotation for
the Turin University Treebank [48].

While dependency and constituency treebanks are usually intended to be theory-neutral,
in which they use uncontroversial categories that can be recognized in most syntactic
theories [49], some treebanks follow a specific linguistic theory. For examples, head-
driven phrase structure grammar (HPSG) [50] has been used for the English Treebank
[51], the Bulgarian TreeBank (BulTreeBank) [52], etc.; The CCGBank that uses the
combinatory categorial grammar (CCG) [53] were also created for English [54], German
[55], etc.

2.2 The use of treebank

Treebanks are used to train word segmentation tools, part-of-speech tagging tools and
parsers. These tools then are applied to improve the performance of natural language
processing applications.

2.2.1 Word segmentation tool

Word segmentation is the task of splitting a sentence into words. For languages like
English, it is not necessary to do word segmentation because words are separated by
blank spaces. However, such delimiters do not appear in Chinese, Japanese, Vietnamese,
Thai, Myanmar, etc. Various automatic word segmentation tools have been developed
for these languages by using treebanks for training and testing. For examples, Sun and
Xu [56], Chen et al. [57] and Chen et al. [58] used the Penn Chinese Treebank [17] to
train their Chinese word segmentation. Kaji and Kitsuregawa [59] produced Japanese
word segmentation by using the Japanese Treebank [27].

Meanwhile, there is also research on word segmentation that used corpora annotated
with only word boundaries. For example, Dinh et al. [60] and Huyen et al. [61] used
a Vietnamese word segmentation corpus including 1,264 articles (507,358 words) of the
"Politics – Society" section downloaded from the newspaper Tuổi Trẻ. Noyunsan et al.

4A semantic role expresses a relationship that a dependent has with the main verb of a sentence. A
relationship can be accompaniment, agent, beneficiary, causer, dative, result, etc.

14

The use of treebank

[62] used a Thai word segmentation corpus, BEST5, containing about 5 million words
belonging to four different genres, including academic articles, encyclopaedic text, nov-
el(s), and news. Ding et al. [63] used a Myanmar word segmentation corpus including
60,000 sentences. One reason for the use of such corpora is that there is no treebanks
available for these languages. Another possible reason is that the size of the word seg-
mentation corpus is much larger than that of the treebank, which is better for statistical
methods.

2.2.2 POS tagger

Many POS taggers were developed by using treebank to train and evaluate their models.
According to a report at ACL Wiki6, there are 18 state-of-the-art POS taggers developed
for English by using the Penn Treebank Wall Street Journal (WSJ) and 3 state-of-the-
art French POS taggers used the French Treebank [18]. The best English POS tagger
was created by Choi [64] which achieved an accuracy of 97.64%. For French, the best
tagger [65] has an accuracy of 97.80%.

For other languages such as Chinese, Japanese, Korean, etc., many POS taggers have
been developed. For example, Sun and Wan [66] and Huang et al. [67] used the Penn
Chinese Treebank [17] to develop the Chinese POS taggers. The tagger by Sun and
Wan [66] obtained an accuracy of 95.34%. For Japanese language, many POS taggers
[59, 68, 69] were trained on the Japanese Treebank [27].

2.2.3 Parser

The development of treebanks has promoted research in parsing. We report several
English and Chinese parsers and their accuracy in Table 2.6. In this table, column
F1 presents the evaluation results for constituency parsers7. The last two columns,
UAS (unlabeled attachment score) and LAS (labeled attachment score), present the
evaluation results for dependency parsers. For English, the parsing accuracy has been
about 90% for both constituency and dependency parsers. Meanwhile, Chinese parsers
have reached about 86% in F-score. It is also necessary to note that these parsers
used the same portion of the treebanks in their training and evaluating stages. For the
Penn Treebank, sections 2-21 (39,832 sentences) were used for training, section 22 (1,700
sentences) was used as the dev set and 23 (2,416 sentences) was used as the test set.
The Penn Chinese Treebank was divided as follows: articles 26-270 (16,091 sentences)

5http://thailang.nectec.or.th/best/
6https://www.aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)
7Parsing evaluation methods are presented in Section 2.4.6

15

Chapter 2. Background

Table 2.6: Parsing results on different treebanks. "F1" presents the evaluation re-
sults for constituency parsers. UAS (unlabeled attachment score) and LAS (labeled

attachment score) present the evaluation results for dependency parsers.

Parser Method Treebanks F1 UAS LAS

English
Dyer et al. [74] RecurrentNN - G PTB [30] 92.4
Dyer et al. [74] RecurrentNN - D PTB [30] 89.8
Petrov and Klein [70] Unlexicalized PCFG PTB [30] 90.1
Hall et al. [72] CRF PTB [30] 89.2
Durrett and Klein [73] Neural CRF PTB [30] 91.1
Klein and Manning [75] Unlexicalized PCFG PTB [30] 85.7
Socher et al. [15] RecursiveNN & PCFG PTB [30] 90.44
Dyer et al. [76] Stack LSTM Dep. [38] 93.1 90.9
Chen and Manning [77] Neural network Dep. [38] 91.8 89.6

Chinese
Dyer et al. [74] RecurrentNN - G CTB [17] 82.7
Dyer et al. [74] RecurrentNN - D CTB [17] 80.7
Petrov and Klein [70] Unlexicalized PCFG CTB [17] 78.6
Wang et al. [78] FeedforwardNN CTB [17] 86.6
Dyer et al. [76] Stack LSTM CTB-Dep. 87.2 85.7
Chen and Manning [77] Neural network CTB-Dep. 83.9 82.4

as the training set, articles 1-25 (803 sentences) as the developing set, articles 271-300
(1,910 sentences) as the testing set.

In addition, the development of different treebanks that followed the same syntactic
theory has promoted the development of multi-lingual parsers. For example, the con-
stituency parser by Petrov and Klein [70] was trained on three treebanks, the Penn
Treebank, the Penn Chinese Treebank, and the German Treebank [71]. The parser
by Hall et al. [72] and Durrett and Klein [73] were trained on ten different treebanks
for English, Arabic, Basque, French, German, Hebrew, Hungarian, Korean, Polish, and
Swedish.

2.2.4 Applications of syntactic analysis tools

Word segmentation and POS tagging are the fundamental pre-processing steps not only
for syntactic parsers but also for machine translation [79, 80], text classification [81, 82]
and so on. Specially, parsers were used in a wide variety of natural language processing
applications. For example, in machine translation, parsers were applied for reordering
[4–6]. In question answering, Jijkoun et al. [7] improved the number of correctly answered
questions by using a dependency parser, Verberne et al. [8] used syntactic information
to improve why-question answering, Galitsky et al. [9] applied a syntactic parser to

16

Technologies for treebank development

find structural similarity between questions and answers in order to rank the candidate
answers, etc. In information retrieval, parsers were used to parse text before retrieving.
Chinkina et al. [83] and Barr et al. [84] showed that part-of-speech tags and other
syntactic information can be used to improve the web search results significantly.

2.3 Technologies for treebank development

Building a high-quality treebank while ensuring a reasonable annotation speed and cost
is one of the most important consideration in corpus development. This requires well-
documented annotation guidelines, an appropriate division of labor, good supporting
tools, annotators who understand the guidelines and familiar with the annotation, and
a proper annotation process. In addition, the material selection is also an issue that
needs to be considered in developing the treebank.

2.3.1 Annotation guidelines

In a consistent treebank, expressions having the same structure have to be annotated
in the same way. Annotation guidelines are required for ensuring this. The guidelines
are used to train the annotators as well as serving the use of the treebank in the future.
Therefore, the guidelines have to present an annotation scheme, general principles of
annotation. In addition, the linguistic phenomena and their annotation examples have
to be described as detailed as possible in the guidelines. Figure 2.5 shows a guideline
sample extracted from the bracketing guidelines of the PTB. This guideline illustrates
how to bracket a small clause and its near relatives. We can see from the figure that
beside a clear instruction, we need to give examples with completed annotations so that
annotators can be easily understand the guideline.

Because of the diversity of the linguistic phenomena, the guidelines cannot be completed
before the treebank is annotated. The guideline development often includes at least two
stages [10, 16, 36]. The first version of the guidelines is created on the basis of the
linguistic literature and group meetings. Then, the guidelines are improved with the
newly found constructions during the annotation process.

For a treebank, guidelines usually include several sets corresponding to the annotated
layers. For example, the guidelines for the Penn English Treebank include two sets,
POS tagging guidelines involving 32 pages [85] and bracketing guidelines consisting of
317 pages [86]. For the case of Chinese, in which word boundaries are not apparent
by blank spaces as those in English, the word segmentation guidelines (30 pages) [87]

17

Chapter 2. Background

Figure 2.5: A screen shot of the PTB bracketing guidelines.

were built together with the POS tagging guidelines (43 pages) [88] and the bracketing
guidelines (191 pages) [89].

2.3.2 Division of labor

A treebank can be annotated manually, automatically or semi-automatically. Manual
annotation means human annotators have to do their work from scratch, such as SynTag
for Swedish [90], or in the first stage of the treebank development when a parser was not
available and there is no data to train a parser either [3, 17]. Since manual annotation is
very expensive and also takes time, it cannot be applied on a large corpus. We instead use
automatic annotation in such cases. For example, the Google Books n-gram corpus has
been automatically annotated with syntactic information [91]; similarly to 700 million
words of Lassy Large Treebank for Dutch [92]. Although the automatic annotation
can be applied on large corpora, it usually produces a high ratio of errors. One of the
reasons is that automatic annotation is unable to annotate particular constructions as
correctly as the manual annotation can. In order to utilize the advantages of manual
and automatic annotations, high-quality treebanks such as Penn English Treebank [10]
and Penn Chinese Treebank [17] applied semi-automatic annotation. In this annotation
method, automatic tools were used to annotate the data before human editing. Marcus
et al. [10] showed that semi-automated tagging is superior to the entirely manual tagging
on three measures: speed, consistency, and accuracy.

18

Technologies for treebank development

Figure 2.6: A screen shot of the ITU treebank annotation tool.

2.3.3 Tools

Supporting tools are used to ensure the annotation quality as well as improving the
annotation speed. Various tools are required. In semi-automatic annotation, we have to
prepare tools for preliminary annotation before manual editing, including POS tagger,
parser, etc. An annotation tool is required to support the manual annotation or edit-
ing. By using the annotation tool, the annotation speed can be improved significantly
as errors caused by typing can be eliminated. Figure 2.6 presents a screen shot of the
annotation tool of the ITU treebank [93]. This tool is designed only for Turkish with
dependency structures. We can see from this figure that all annotations are done by
selecting check boxes and combo boxes hence avoiding typing errors. After the anno-
tating, a variety of tools are used to detect and correct the annotation errors in the
treebanks [19, 20, 94, 95].

2.3.4 Annotator

Human annotators play a crucial role in building a high-quality treebank and improving
the annotation speed. Therefore, annotators should have a good background (e.g. grad-
uate training in linguistics), understand the guidelines and familiar with the annotation.
To ensure this, besides finding good-background annotators, we need to have an appro-
priate training process. The quality of annotators are measured through the accuracy
and inter-annotator agreement. In treebanks such as the Penn English Treebank [10]

19

Chapter 2. Background

and the Penn Chinese Treebank [17], the inter-annotator agreements were higher than
90%.

2.3.5 Annotation process

A proper annotation process is also necessary in building a high-quality treebank. In
general, an annotation process includes feasibility study, guideline development, tree-
bank annotation, and quality control. However, the order of these steps can be different
between treebanks. For example, in the Penn Chinese Treebank, Xue et al. [17] de-
signed an annotation process of five steps. In the feasibility study, they identified major
controversial topics and tested whether consistent annotation was possible. They then
created the first draft of the annotation guidelines based on the literature. The anno-
tation included two passes. In the first pass, they recognized difficult constructions and
revised the guidelines. The second pass involved correcting the output of the first pass
and measuring the inter-annotator agreement. Finally, they cleaned up the data with
the support of automatic tools. Different from Xue et al. [17], Han et al. [16] completed
the guidelines before the annotation stage began. Instead of applying the quality control
while annotating the treebank as Xue et al. [17], Han et al. [16] conducted the quality
control when the annotation of the treebank was finished.

For multi-layer treebanks, it is also necessary to consider the order to annotate different
layers and whether the layers should be annotated separately or in parallel. In many
cases, there are dependencies between layers. For example, we have to determine word
boundaries in Chinese and Japanese sentences before assigning a POS tag to them; or
determining POS can be based on the phrase category or vice versa. These dependencies
stipulate the order in which the layers should be annotated. In practice, there are
treebanks in which their layers are annotated together [96]. However, each annotator
usually works with a single layer at a time [17, 27, 97].

2.3.6 Material

Material selection is also an essential issue that needs to be considered in the construction
of a treebank. An important question is whether we should select a balanced sample of
different text genres or focus on a specific text type or domain. Most available treebanks
include texts collected from newspapers. An example is the Wall Street Journal section
of the Penn Treebank [10], which has impacted as a common schema for many other
treebanks such as the TIGER Treebank for German [45], the French Treebank [18],
and the Penn Chinese Treebank [17]. However, Gildea [98] showed that parsing models
trained on a treebank that focuses on news domain did not give a satisfied performance

20

An overview of parsing methods

on other domains because the treeabank does not cover all syntactic as well as semantic
aspects. This may promote the development of specific-domain treebanks such as the
Penn Korean Treebank focusing on the military [16] and SCTB Treebank for Chinese [99]
focusing on the scientific domain. For the case of the ITUWeb Treebank [97], the selected
material was different from the above mentioned treebanks. It is an unnatural language
used in the web. Besides treebanks with a specific text type or domain, several treebanks
with different text genres have been built. For example, the SUSANNE Treebank [100]
was developed based on a subset of the Brown Corpus, which is a balanced treebank.

2.4 An overview of parsing methods

While the probabilistic context-free grammar (PCFG) is a typical generative parsing
model, conditional random fields (CRF) represent the discriminative parsing method.
These two algorithms have been successfully applied on many languages [70, 72, 75, 101–
103]. Recently, neural networks have also been used for parsing [15, 73, 74]. In Chapter 4
of this thesis, we will evaluate the Vietnamese Treebank on these parsing models. In the
following subsections, we will briefly describe these parsing methods (2.4.1, 2.4.2, 2.4.4,
2.4.5, and 2.4.3). Then, we introduce techniques to evaluate parsers (Subsection 2.4.6).
Finally, we present parsing developments that based on these methods (Subsection 2.4.7).

2.4.1 Probabilistic context-free grammar

Probabilistic context-free grammar (PCFG) is the most fundamental model for con-
stituency parsing. Before defining PCFG, we have to study CFG first.

A context-free grammar G includes four components:

• N is a finite set of non-terminal symbols.

• Σ is a finite set of terminal symbols.

• R is a finite set of rules. Each rule has the form as α → β in which α ∈ N and β
∈ {N ∪ Σ}.

• S ∈ N is a start symbol.

A left-most derivation is a sequence of strings including s1 ... sn where

• s1 = S, the start symbol

21

Chapter 2. Background

• sn is a string of words taken from Σ

• si (for i = 2 ... n) is derived from si−1 by replacing the the left-most non-terminal
α in si−1 by β where α → β ∈ R

A PCFG is a CFG in which each rule α → β ∈ R is assigned with a probability. This
probability is defined as P(α → β | α), which is the conditional probability of choosing
the rule α → β, given that α is a non-terminal symbol being expanded in the derivation.
For any non-terminal α ∈ N, we have the following constraints:

∑
α→β∈R

P (α→ β | α) = 1 (2.1)

P (α→ β | α) ≥ 0 (2.2)

Assume that t is a parse tree (derivation) of a sentence s, the probability of the tree t is
the product of the probabilities of the rules α1 → β1, α2 → β2, ..., αn → βn that form
t. Formally, this probability can be defined as follows:

P (t) =
n∏
i=1

P (αi → βi | αi) (2.3)

Assume T(s) is a set of possible parse trees of a sentence s under the grammar G, the
most likely tree for the sentence s is defined as follows:

tbest(s) = arg max
t∈T (s)

P (t) (2.4)

For example, Figure 2.7 presents two parse trees for the sentence program trading has in-
creased chances for market crashes under the PCFG given in Table 2.7. The probability
for each tree is computed as follows:

P(t1) = 1.0 * 0.2 * 0.2 * 0.7 * 0.4 * 0.1 * 0.8 * 0.2 * 0.2 * 0.5 * 0.7 * 1.0 * 0.4 * 1.0
* 0.3 * 0.6 = 0.0000009032

P(t2) = 1.0 * 0.2 * 0.2 * 0.1 * 0.1 * 0.8 * 0.2 * 0.2 * 0.5 * 0.7 * 1.0 * 0.4 * 1.0 * 0.3
* 0.6 = 0.0000003226

The probability of the tree t1 is higher than that of the tree t2. So, the PCFG parser
will select the tree t1.

22

An overview of parsing methods

Table 2.7: A simple PCFG. For each rule, we have to assign a probability, such as
the rule NP −→ NN NN has a probability of 0.2.

S −→ NP VP 1.0 NN −→ program 0.2
NP −→ NN NN 0.2 NN −→ trading 0.5
NP −→ NN NNS 0.2 NN −→ market 0.3
NP −→ NP NP 0.1 NNS −→ crashes 0.6
NP −→ NP PP 0.4 NNS −→ chances 0.4
NP −→ NNS 0.1 IN −→ for 1.0
VP −→ VBZ VP 0.2 VBZ −→ has 0.7
VP −→ VBN NP 0.7 VBZ −→ crashes 0.3
VP −→ VBN NP PP 0.1 VBN −→ increased 1.0
PP −→ IN NP 0.8 VB −→ program 0.7
PP −→ IN CC IN NP 0.2 VB −→ market 0.3

t1) S

NP

NN

program

NN

trading

VP

VBZ

has

VP

VBN

increased

NP

NP

NNS

chances

PP

IN

for

NP

NN

market

NNS

crashes

t2) S

NP

NN

program

NN

trading

VP

VBZ

has

VP

VBN

increased

NP

NNS

chances

PP

IN

for

NP

NN

market

NNS

crashes

Figure 2.7: Two parse trees for the sentence program trading has increased chances
for market crashes under the PCFG in Table 2.7.

2.4.2 Conditional random field

Similar to PCFG parsing, conditional random field (CRF) parsing also begins from a
context-free grammar. However, instead of assigning the probability to each rule so that
∀α ∈ N,

∑
α→β∈R P (α → β | α) = 1, CRF defines a scoring function (clique potential

function) φ(r | s; θ) for each input sentence s and an anchored rule r. An anchored rule
is the conjunction of the CFG rule and the span which refers to the start, stop, and split
positions where the rule is anchored. A tree t is a collection of anchored rules.

CRF parsing typically achieves higher performance in comparison with PCFG parsing
due to the ability to incorporate arbitrary features. For example, although span length
affects the parsing probability, it is not easy to take span length into account in PCFG
parsing. While features used in CRF parsing can be span length, the first and last words
of the span, the words immediately preceding and immediately following the span, the
words at and around the split point of the binary rule, the parent of the rule, the identity
of the rule, and span shape features.

23

Chapter 2. Background

	

1	

2	

3	

x1

x2

x3

V

xt+1

ht+1

W

U

yt+1

V

xt

ht

W

U

yt

s[m,n]

y[m,n] y[l,m]

s[l,n]

y[l,n]

s[n,k]

y[n,k]

s[l,k]

W

s[l,m]

V

xt-1

ht-1

W

U

yt-1

W

y[l,k]

4	

5	

6	

7	

8	

 Hidden layer Output layer Input layer

y8

y7

Figure 2.8: Feedforward neural network.

In CRF parsing, assuming that T(s) is a set of possible parse trees for a given sentence
s, the probability of a tree t ∈ T(s) conditioned on the sentence s is defined as follows:

P (t | s; θ) = 1
Zs

∏
r∈t

φ(r | s; θ) (2.5)

where
Zs =

∑
t′∈T (s)

∏
r∈t′

φ(r | s; θ) (2.6)

Assume that we have a vector function f(r,s) that computes the value for each feature,
a feature fi will have the value fi(r,s). The scoring function is presented as follows:

φ(r | s; θ) = exp

(∑
i

θifi(r, s)
)

(2.7)

where θi is the parameter corresponding to feature fi that can be learned through max-
imizing the log conditional likelihood of the training data [72, 73, 103].

2.4.3 Feedforward neural network

Figure 2.8 illustrates a feedforward neural network that includes no cycles. The informa-
tion moves forward, from the input nodes, through the hidden nodes and to the output
nodes. A neural network can have hidden layers or not. Each node in the network is
associated with all nodes of the next layer, and each association has a weight wij .

In the feedforward neural network in figure 2.8, the input nodes (including nodes 1, 2,
and 3) do not compute any thing. They are connected with the input data (xi) and pass

24

An overview of parsing methods

the values to the processing nodes. For nodes that belong to the first hidden layer, the
input value at each node is computed as follows:

vj =
m∑
i=1

wijxi (2.8)

where m is number of input nodes.

For other nodes from the second hidden layer to the output layer, the input value of
each node is computed as follows:

vj =
m∑
i=1

wijyi (2.9)

where m is the number of neurons of the previous layer, and yi are the output of the
previous neurons.

The output value of each neuron is computed as follows:

yj = a+ f(vj) (2.10)

where a is called as bias, f is the activation function that can be a linear function, a
logistic function, etc. The weights wij are learned during the training process.

The feedforward neural network was used in Durrett and Klein [73] to learn dense fea-
tures. Firstly, a sequence of words was extracted on the basis of anchor rules. These
words were then embedded to form a vector representation. This vector was fed through
a one-layer feedforward neural network in order to produce a dense feature representa-
tion.

2.4.4 Recurrent neural networks

Figure 2.9 presents a typical recurrent neural network (RNN) including input, hidden
state, and output.

• The input includes two components, ht−1 is a real-valued vector representing the
previous hidden state, and xt is the embedding of the input word of the word
sequence at the time step t.

• The hidden state at the time step t (ht) is computed based on ht−1 and xt as
follows:

ht = F (Wxt + Uht−1) (2.11)

25

Chapter 2. Background

	

1	

2	

3	

x1

x2

x3

V

xt+1

ht+1

W

U

yt+1

V

xt

ht

W

U

yt

s[m,n]

y[m,n] y[l,m]

s[l,n]

y[l,n]

s[n,k]

y[n,k]

s[l,k]

W

s[l,m]

V

xt-1

ht-1

W

U

yt-1

W

y[l,k]

4	

5	

6	

7	

8	

 Hidden layer Output layer Input layer

y8

y7

Figure 2.9: Recurrent neural network.

where F is usually a nonlinear function such as tanh or ReLU. ht can be considered
as memory of the network.

• yt = softmax(Vht) is the output at the time step t. It is a vector of probabilities
used to predict the next word in the sentence.

We can see from Figure 2.9 that RNN is actually a chain that repeats modules of neural
network. The hidden state at each time step t is computed recurrently on the basis of the
previous hidden state and the embedding of the current word (xt). In addition, RNN uses
the same parameters W, U, and V across the time steps. These parameters are learned
using back-propagation through time. This means that the gradient at each output
depends not only on the calculations of the current time step, but also on the previous
time steps. Theoretically, this allows the network to learn long-term dependencies over
the sequence. However, Pascanu et al. [104] showed that it is difficult to train RNN
because of the vanishing gradient and exploding gradient problems. Fortunately, Long
Short-Term Memory (LSTM) [105] was specifically designed to solve these problems.
The LSTM remembers information for long periods of time.

Long Short-Term Memory is fundamentally similar to RNN in terms of architecture,
i.e., it has a chain of repeating modules of neural network. However, each repeating mod-
ule has a simple structure in RNN, such as a tanh layer, while in LSTM, the repeating
module includes four neural network layers, viz three sigmoid layers and one tanh layer.
Moreover, beside the output at each time step, LSTM also computes a cell state Ct at
each time step.

The three sigmoid layers in each module represent three gate functions, namely forget
gate, input gate, and output gate. They control how much the next cell state will be
influenced by the previous cell state, how much it will be influenced by the new input,
and how much of the cell state will be released as output respectively. These functions
are computed on the basic of the current input and the hidden state of the previous
time step.

26

An overview of parsing methods

ft = σ(Wf [ht−1, xt] + bf) (2.12)

it = σ(Wi[ht−1, xt] + bi) (2.13)

ot = σ(Wo[ht−1, xt] + bo) (2.14)

A vector of new candidate cell state is created using a tanh layer as follows.

C̃t = tanh(WC [ht−1, xt] + bC) (2.15)

The new cell state is then created by combining the previous cell state weighted by the
forget gate and the candidate cell state weighted by the input gate.

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.16)

Finally, values of the output gate are multiplied by the new cell state through a tanh
function. This help us to determine things that we want to output.

ht = ot ∗ tanh(Ct) (2.17)

LSTM has been successfully applied to machine translation [106]. The idea is that
LSTM reads the input sequence in a left-to-right order and encodes it into a vector.
Then, the LSTM extracts the output sequence using information in those vectors. The
syntactic constituency parsing can be formulated as a translation problem. This was
done by linearizing the parse tree [107] as the target language. So, we can apply the
above translation model to parsing as well.

2.4.5 Recursive neural network

While RNN is usually used for sequential structures because they operate on the linear
progress of time, recursive neural network generates a hierarchical structure by com-
bining child representations to generate parent representations. For example, s[l,m] and
s[m,n] in Figure 2.10 are vector representations of the child nodes. They are combined

27

Chapter 2. Background

	

1	

2	

3	

x1

x2

x3

V

xt+1

ht+1

W

U

yt+1

V

xt

ht

W

U

yt

s[m,n]

y[m,n] y[l,m]

s[l,n]

y[l,n]

s[n,k]

y[n,k]

s[l,k]

W

Hidden

s[l,m]

V

xt-1

ht-1

W

U

yt-1

W

y[l,k]

Output

Input

4	

5	

6	

7	

8	

 Hidden layer Output layer Input layer

y8

y7

Figure 2.10: Recursive neural network.

into the parent s[l,n] by using a weight matrix W that is shared across the whole network,
and a non-linearity function such as tanh as follows:

s[l,n] = tanh(W [s[l,m]; s[m,n]] + b) (2.18)

In parsing, l, m, and n are indexes of the word sequence. s[l,n] presents a non-terminal
node covering from l to n. In the case s[l,m] and s[m,n] are leaf nodes, they are word
vectors that can be computed by using Word2Vec [108] or GloVe [109]. Note that a
parent node has to have the same dimensionality as its children. Suppose s[l,m] and
s[m,n] ∈ Rn×1, [s[l,m]; s[m,n]] denotes the concatenation of the two nodes, which is a
R2n×1 vector, and hence W ∈ Rn×2n.

y[l,n] shows the score indicating how reasonable a parent should be created. It can be
computed using an inner product as follows:

y[l,n] = W scores[l,n] (2.19)

where W score ∈ R1×n is a row vector.

2.4.6 Evaluating parsers

In this section, we present four evaluation methods: PARSEVAL, Leaf-Ancestor (LA),
dependency-based evaluation, and error analysis proposed by Kummerfeld et al. [110].

28

An overview of parsing methods

PARSEVAL [111] is considered as a standard measure to estimate the performance of
constituency parsers [72, 75, 103, 112–114]. PARSEVAL computes recall, precision, and
F1-score over parse trees as follows.

Recall = number of correct constituents
number of constituents in the gold parse tree (2.20)

Precision = number of correct constituents
number of constituents in the output parse tree (2.21)

F1 = 2 * Recall * Precision
Recall + Precision (2.22)

It should be noted that PARSEVAL does not take POS tags into account when com-
puting these scores.

TEDEVAL (tree-edit distance evaluation) [115] is different from PARSEVAL in
terms that it allows different numbers of terminals between parse and gold trees, while
PARSEVAL requires those numbers identical. TEDEVAL computes the TED accuracy
on the basis of deleting (DEL) and adding (ADD) nonterminals and word entries (each
word entry includes a word and its POS tag) from/to the parse tree to make it the same
as the gold tree. Assuming a is an operation, i.e., DEL or ADD, if the function C(a) =
1 assigns a unit cost to each operation a, the cost of a sequence 〈 a1, ..., am 〉 is defined:

C(〈a1, ..., am〉) =
m∑
i=1

C(ai) (2.23)

The tree-edit distance (TED) is defined as follows:

TED(y1, y2) = min
ES(y1,y2)

C(ES(y1, y2)) (2.24)

Where ES(y1,y2) = 〈 a1, ..., am 〉 is a sequence of operations that tunes tree y1 to tree
y2.

The accuracy of a parse tree p in comparison with the gold tree g is defined as follows
(TED accuracy):

TEDEV AL(p, g) = 1− TED(p, g)
|p|+ |g| − 2 (2.25)

29

Chapter 2. Background

Where |p| is the cost of deleting all word entries and nonterminals in the parse tree; |g|
is the cost to add all word entries and nonterminals of the gold tree to the parse tree.

Leaf-Ancestor (LA) [116] is also different from the PARSEVAL. It does not check
constituent labels and their word span. For each terminal node, LA computes the
sequence of node labels from the terminal node to the root node S in the parser output
and the gold tree. The similarity between the two trees is computed by using the
Levenshtein distance [117]. The score of a tree is the average value of all terminals in
the tree.

Dependency evaluation [118, 119] does not use the phrase structure, which means
that the phrase categories as well as the function tags are not considered during the eval-
uation. In the dependency evaluation, constituent trees are converted into dependency
structures with a form like "word pos head". Then recall and precision are computed as
follows:

recall = percentage of the triples "word pos head" in the gold tree

that are also found in the parser output
(2.26)

precision = percentage of the triples "word pos head" in the parser output

that are also found in the gold tree
(2.27)

In comparison with other metrics, PARSEVAL is more accurate [120]. For example,
dependency evaluation gives an unsatisfactory result on attachment errors because it
did not consider propagating errors while PARSEVAL often produces a reasonable e-
valuation. Moreover, PARSEVAL penalizes every constituents while the dependency
evaluation does not consider missing nodes or additional nodes during converting the
phrase structure to the dependency structure. This means that these error types are
ignored by the dependency evaluation as well.

Kummerfeld et al. [110] claimed that evaluation scores produced by PARSEVAL do not
express the linguistic information corresponding to each type of parsing errors. There-
fore, they proposed an error analysis tool that automatically compares the parser output
with the gold trees and classifies the errors into different types such as PP attachment,
NP attachment, and coordination. However, this tool was designed specific for English
and then modified to make it compliant to Chinese [121]. For other languages that
consist of constructions that are different from English and Chinese, this analysis tool
is not applicable.

30

Previous work on Vietnamese treebank and parsing

2.4.7 Development of parsing methods

In the last two decades, many approaches have been studied on parsing and largely
focused on major languages such as English and Chinese. One dominant approach is
the generative model for parsing with PCFG. However, the original PCFG trained on a
corpus such as English Penn Treebank cannot attain the high-quality performance due to
the lack of contextual information. Various strategies have been proposed to enrich the
grammar. For example, Collins [102] associated each category with a lexical item; Klein
and Manning [75] proposed a method to increase structural annotations. Matsuzaki
et al. [114] splitted non-terminal symbols into a fixed number of subsymbols. Specially,
Petrov and Klein [70] (Berkeley parser) used a hierarchical split-merge strategy to create
an accurate grammar automatically. Their parser has attained high performance on the
English Penn Treebank (90.7% of F-score) and many other languages.

Discriminative parsing with conditional random fields (CRF) is also a popular approach
[72, 103, 113]. In these parsers, syntactic information can be enriched via features.
There have been many methods of exploiting these features. While Petrov and Klein
[113] produced a CFG parsing with latent annotations, Finkel et al. [103] focused on the
implementation. Hall et al. [72] extracted rich input features of surface spans. Their
parser outperformed the Berkeley parser on a wide range of languages.

Another popular approach to parsing is using neural networks. For example, Socher et al.
[15] combined a standard PCFG with a recursive neural network in which the neural
network is used to learn features and phrase representations. Different from Socher et al.
[15], Durrett and Klein [73] extended a CRF parsing with a feedforward neural network,
in which the feedforward neural network was used to learn dense features of the surface
spans. This parser has attained an F-score of over 91% in English. Recently, Dyer et al.
[74] have presented another neural-based parser that uses a recurrent neural network.
This parser achieved the state-of-the-art performance in English.

2.5 Previous work on Vietnamese treebank and parsing

In this section, we first describe the Vietnamese characteristics in Section 2.5.1 to show
that annotating Vietnamese is a challenging problem. Then we will present efforts in
building the Vietnamese treebank and parser in Sections 2.5.2 and 2.5.3 respectively.

31

Chapter 2. Background

Table 2.8: Examples of polysemous expressions in Vietnamese.

No. Vietnamese sentence Translation

1 Cái bàntable làto be củaof tôiI/me The table is mine
2 Cái bàn_làiron củaof tôiI/me The iron is mine/my iron

2.5.1 Characteristics of Vietnamese language

Vietnamese belongs to Austroasiatic language family. It is written in Latin characters.
This section describes four main characteristics of the Vietnamese language that lead to
difficulties in building a treebank.

2.5.1.1 No word delimiters or inflectional morphemes

Unlike Western languages, in which blank spaces denote word delimiters, blank spaces
in Vietnamese not only play the roles of word delimiters but also those of syllable
delimiters. Furthermore, unlike English and Japanese, Vietnamese is not an inflectional
language, in which morphological forms can provide useful clues for word segmentation,
POS tagging, and bracketing. While similar problems also occur with Chinese [36], it
may be more difficult to annotate Vietnamese words because the modern Vietnamese
writing system is based on Latin characters, which represent its phonology but not its
semantics. As a result, Vietnamese has many polysemous expressions, i.e., terminologies
that have the same surface structure but different interpretations. For example, the two
sentences8 in rows 1 and 2 of Table 2.8 have the same surface structure. However, we
treat the expression bàntable làto be/to iron in row 1 as two single-syllabic words while the
expression bàn là in row 2 as a compound word. This treatment creates two sentences
that have different interpretations.

2.5.1.2 Flexible word orders

Although people agree that Vietnamese (like English and Chinese) is a subject-verb-
object (SVO) language, the Vietnamese word order is different from that in English and
Chinese. Modifying lexical words in English and Chinese noun phrases precede the head
noun. However, in Vietnamese, modifying lexical words come after the head word in all
phrase types. Moreover, there are several exceptions, such as modifying lexical words

8In this example, cái is a classifier noun in Vietnamese. Classifier nouns indicate two types of entities:
animate and inanimate things.

32

Previous work on Vietnamese treebank and parsing

a) b) c)

NP-SBJ

ADJP

R

rất
{very}

Aa

ít
{few}

Nn

người
{person}

NP

Nn

điểm
{point}

Vv

xuất_phát
{to start}

NP

Vv

xuất_phát
{to start}

Nn

điểm
{point}

{very few people} {starting point} {starting point}

Figure 2.11: Examples of exceptions of word order in Vietnamese.

have to be placed before the head word (see Figure 2.11a), or different types of word
order have the same interpretation (as can be seen in Figures 2.11b and 2.11c).

Nevertheless, there are cases where word orders in Vietnamese and English are similar.
For instance, relative clauses come after the head noun or things that are possessed
follow the owner, as shown in Figure 2.12a.

2.5.1.3 Word omission

The problem of dropped words occurs frequently in Vietnamese for various types of
words. We can see in Figure 2.12a that the subordinate conjunction màwho/which/that/...
is a unique visual sign to recognize relative clauses. Similarly, the preposition củaof can
be used to identify possessive relations. However, these words can be omitted in real
texts (Figure 2.12b).

2.5.1.4 Conflicting definitions among linguists

In Vietnamese, there is little consensus in community about how to define words, phrases
and grammatical structures. For example, the two expressions of cáfish rôanabas {anabas}
and bệnhillness sởimeasles {measles} have the same construction: a combination of a
categorization noun9 and a specific noun. However, cá_rô is treated as a compound
word while bệnh sởi is treated as two single words [1, 122].

As we mentioned above, people agree that Vietnamese is a subject-verb-object (SVO)
language. However, Figure 2.13a shows a sentence that the head word of the predicate
is not a verb. For sentences that do not have the main verb, we can use the coordi-
nating conjunction thì to link the subject and the predicate as shown in Figure 2.13b.

9Categorization nouns indicate general entities, such as cáfish and câytree.

33

Chapter 2. Background

a) S

NP-SBJ

Nn

Cô_gái
{girl}

PP

Cs

mà
{who/that/...}

VP

Vv

chơi
{to play}

NP-DOB

Nn

đàn
{musical

instrument}

Nn

pi-a-nô
{piano}

VP

Vc

là
{to be}

NP-CMP

Nn

học_trò
{student}

PP

Cs

của
{of}

NP

Nr

Nam

PU

.

{The girl playing piano is a student of Nam.}

b) S

NP-SBJ

Nn

Cô_gái
{girl}

VP

Vv

chơi
{to play}

NP-DOB

Nn

đàn
{musical

instrument}

Nn

pi-a-nô
{piano}

VP

Vc

là
{to be}

NP-CMP

Nn

học_trò
{student}

NP

Nr

Nam

PU

.

{The girl playing piano is a student of Nam.}

Figure 2.12: Examples illustrate flexible word orders in Vietnamese.

However, when the conjunction thì is used, linguists disagree about how to bracket this
sentence. Diep [1] considered this sentence as a single sentence (Figure 2.13b), in which
the conjunction thì is used to link the subject and the predicate. SCSSV [2], in contrast,
considered this sentence as a subordinate compound sentence (Figure 2.13c) because the
conjunction thì is used to link two clauses of a subordinate compound sentence.

The above-mentioned characteristics of the Vietnamese language and their combina-
tions cause many challenges for annotating Vietnamese texts. We will describe these
challenges and how we solve them to build a Vietnamese treebank in Chapter 3.

34

Previous work on Vietnamese treebank and parsing

Meaning: The construction unit is too slow.

a)

S

NP-SBJ

Nn-H

Đơn_vị
{unit}

Vv

thi_công
{to construct}

ADJP-PRD

R

quá
{too}

Aa-H

chậm_chạp
{slow}

PU

.

b)

S

NP-SBJ

Nn-H

Đơn_vị

Vv

thi_công

Cp

thì
{to be}

ADJP-PRD

R

quá

Aa-H

chậm_chạp

PU

.

c)

S

SPL

NP

Nn-H

Đơn_vị

Vv

thi_công

Cp

thì

SPL

ADJP

R

quá

Aa-H

chậm_chạp

PU

.

Figure 2.13: Examples showing different ways of bracketing a sentence in Vietnamese.
Figure 2.13a shows a sentence in which the head word of the predicate is not a verb.

Figure 2.13b and 2.13c present two bracketing ways by [1] and [2] respectively.

35

Chapter 2. Background

Table 2.9: VLSP treebank’s POS tag set.

No. POS tag Description

1 N Noun
2 Np Proper noun
3 Nc Classifier noun
4 Nu Unit noun
5 V Verb
6 A Adjective
7 P Pronoun
8 L Determiner
9 M Number
10 R Adverb
11 E Preposition (Subordinating conjunction)
12 C Coordinating conjunction
13 I Interjection
14 T Particle
15 B Borrowed/foreign word
16 Y Abbreviation
17 X Can-not-classified word

2.5.2 Vietnamese treebank

To strengthen the automatic processing of the Vietnamese language, a Vietnamese Tree-
bank (VLSP Treebank) was built as a part of a national project, entitled “Vietnamese
language and speech processing (VLSP)” [3]. This corpus contains 10,374 sentences in
social and political topics, collected from an online daily newspaper, the Youth (Tuổi
Trẻ) [3]. However, previous studies [19, 20] showed that the VLSP Treebank contains
inconsistent and inaccurate annotations.

2.5.2.1 VLSP annotation scheme

The VLSP Treebank was annotated with three layers: word segmentation (WS), part-
of-speech (POS) tagging and bracketing. The tag sets created for this treebank include
17 POS tags (except the tags for the punctuation), 16 constituency tags, 19 function
tags and 3 null-element tags which are presented in Tables 2.9, 2.10, 2.11, and 2.12
respectively.

The VLSP annotation scheme includes inappropriate considerations for WS, POS and
bracketing. For example,

36

Previous work on Vietnamese treebank and parsing

Table 2.10: Constituency tags used in VLSP Treebank.

No. Constituency tag Meaning

1 NP Noun phrase
2 VP Verb phrase
3 AP Adjective phrase
4 RP Adverb phrase
5 PP Prepositional phrase
6 QP Quantitative phrase
7 MDP Modal phrase
8 UCP Unlike corordinated phrase
9 LST List mark phrase
10 WHNP Interrogative noun phrase
11 WHAP Interrogative adjective phrase
12 WHRP Interrogative adverb phrase
13 WHPP Interrogative prepositional phrase
14 S Statement sentence
15 SQ Question sentence
16 SBAR Subordinate clause

Table 2.11: Function tags used in VLSP Treebank.

No. Function tag Meaning

1 H Head of phrase
2 SUB Subject
3 DOB Direct object
4 IOB Indirect object
5 TPC Topic
6 PRD Predicate
7 LGS Logical subject
8 EXT Frequency or range complement
9 VOC Vocative
10 TMP Temporal adjunct
11 LOC Location adjunct
12 DIR Direction adjunct
13 MNR Manner adjunct
14 PRP Purpose adjunct
15 CND Condition adjunct
16 CNC Cnc adjunct
17 ADV Adverbial adjunct
18 EXC Exclamination sentence
19 CMD Cammand sentence

37

Chapter 2. Background

Table 2.12: Null element tags used in VLSP Treebank.

No. Null-element tag Meaning

1 *T* Null element (trace within sentence)
2 *E* Null element in ellipsis phenomenon
3 *0* Null element in complementizer

• Inappropriate word segmentation. Nguyen et al. [3] proposed a substitution trans-
formation rule to recognize coordinate and subordinate compound words in Viet-
namese as follows:
“if A (or B) can be substituted by A’, A”, . . . (or B’, B”, . . .) of the same
type, then AB is not likely to be a word. The more productive the transformation
is, the less likely that AB is a word.”
According to this rule, expressions like ănto eat ởto live {to live/to behave/...} and
ănto eat uốngto drink {to eat and drink/to give feasts/...} are not compound words
because the second syllable (B) can be substituted by B’ having the same type
(verb). Regarding the meaning of the expressions, Nguyen et al. [3] suggested a
non-compositionality rule as follows
“If the meaning of AB can not be inferred from the meanings of A and B, then
AB is likely to be a word”.
According to this rule, cases like ănto eat ởto live {to live/to behave/...}, ănto eat

uốngto drink {to give feasts/...}, quầntrousers áoshirt {clothing/clothes/...}, etc. are
not compound words either because their meanings (AB) can be inferred from the
meanings of A and B. However, linguists [122, 123] consider these expressions as
compound words. We share the same point of view with Corp. [123] and Hoang
[122] that these expressions can be treated as single words or compound words
depending on their context. The reason is that although the meaning of a com-
bination form (AB) can be inferred from the meanings of A and B, it is different
from the meaning of A and B.

• Insufficient POS tag set. Nguyen et al. [3] classified words based on their combi-
nation abilities and syntactic functions. However, with 17 POS tags, their tag set
cannot cover all combination abilities as well as syntactic functions of Vietnamese
words. For example, they used the tag P to annotate all pronouns. However, per-
sonal pronouns, such as tôiI and chúng_tawe, always play roles of the head words
in noun phrases. Demonstrative pronouns, which are used to express space or time
such as nàythis and đóthat, in contrast, can be modifiers of the head nouns in noun
phrases. In addition, combination abilities of demonstrative pronouns and per-
sonal pronouns are also different. Demonstrative pronouns can be combined with
nouns. For instance, in the expression câytree nàythis {this tree}, the demonstrative

38

Previous work on Vietnamese treebank and parsing

Table 2.13: Inconsistencies in labeling POS tags for words indicating "the whole" in
the VLSP Treebank. For each pair of X_Y, X denotes POS tag and Y denotes the
number of times that the word was tagged as X in VLSP treebank. Tags are separated

by the comma.

No. Word POS tag and number of occurent
1 toàn_bộ L_31, P_3, N_1
2 tất_cả P_59, L_11
3 toàn_thể L_2, P_1
4 toàn L_5, R_24, P_9, A_2, N_2
5 cả P_313, T_92, R_9, A_2, L_2

pronoun nàythis is a post-modifier of the noun câytree. However, personal pronouns
cannot be combined with nouns. This example shows that personal pronouns and
demonstrative pronouns should be annotated with different POS tags.

• Insufficient brackets. Nguyen et al. [3]’s bracketing guidelines did not explicitly
mention any rules to label reduced relative clauses. However, when investigating
their treebank, we found that reduced relative clauses like the bold expression in
Figure 2.14a) are annotated as a predicate. Reduced relative clauses should be
bracketed as post-modifiers of the head words that they modify (as an example in
Figure 2.14b).

2.5.2.2 VLSP guildelines

VLSP has designed three sets of guidelines for their treebank. The word segmentation
guidelines [124] include 11 pages, the POS tagging guidelines [125] include 7 pages, and
the bracketing guidelines [126] consist of 56 pages. In comparison with the guidelines
for the PTB and the Penn Chinese Treebank, these guidelines are too short to cover all
complex and diversified syntactic constructions and linguistic phenomena in Vietnamese.

Another problem is that the guidelines contain overlapping and conflicting instructions
through different annotation layers. For example, in the POS tagging guidelines (ver-
sion 2) [125] (page 6), words, e.g., hơnmorethan, trênover, dướilessthan, gầnalmost/nearly,
and khoảngabout, that modify a quantifier are tagged with the label A (adjective). How-
ever, these words are considered as an adjunct (label R) in the bracketing guidelines
(version 2.2) [126] (page 17). Important constructions (e.g., reduced relative clauses
and constructions including a pair of conjunctions) were not covered in the guidelines.
Furthermore, the guidelines did not address several challenges of the Vietnamese lan-
guage, which are the main clues of inconsistent annotations. As a result, the VLSP
treebank contains many inconsistent annotations. For instance, the words tất_cảall in
Figure 2.15a) and 2.15b) have the same syntactic function, combination ability and

39

Chapter 2. Background

a) S

NP-SUB

Nc-H

Người
{person}

N

đàn_ông
{male}

VP

VP

V-H

có
{to have}

S

NP-SUB

M

nửa
{half}

N-H

đời
{life}

N

người
{human}

VP

V-H

là
{to be}

NP

N-H

thợ_săn
{hunter}

VP

V-H

vờn
{to play}

V-H

đuổi
{to chase}

NP-DOB

N-H

hổ
{tiger}

A

dữ
{ferocious}

PP-LOC

E-H

trong
{in}

NP

N-H

rừng
{forest}

A

rậm
{dense}

{The man who has been working as a hunter for a half of his life is chasing
ferocious tigers in the forest}

b) S

NP-SBJ

Nc-H

Người

Nn

đàn_ông

VP

Ve-H

có

S-CMP

NP-SBJ

Nq

nửa

Nn-H

đời

NP

Nn-H

người

VP

Vc-H

là

NP-CMP

Nn-H

thợ_săn

VP

Vv-H

vờn

Vv-H

đuổi

NP-DOB

Vv-H

hổ

ADJP

Aa-H

dữ

PP-LOC

Cs-H

trong

NP

Nn-H

rừng

Aa

rậm

{The man who has been working as a hunter for a half of his life is chasing
ferocious tigers in the forest}

Figure 2.14: Examples show how the reduced relative clause was bracketed in the
VLSP treebank (Figure a) and our treebank (Figure b).

meaning, but they are annotated with different POS tags, i.e., P and L in the VLSP
treebank. Table 2.13 presents the inconsistency of POS labeling in the VLSP treebank
for words that denote "the whole", which play a role as a pre-modifier in noun phrases.
Such inconsistent annotations are possible sources for the low performance of Vietnamese
language processing [21–23].

40

Previous work on Vietnamese treebank and parsing

a) NP

P

tất_cả
{all}

L

những
{-s/-es}

N

đối_tượng
{subject}

VP

V

phá
{destroy}

NP

N

rừng
{forest}

b) NP

L

tất_cả
{all}

L

những
{-s/-es}

N

người
{person}

VP

V

sở_hữu
{have}

NP

N

trang_trại
{farm}

{all subjects destroying forest} {all people having farm}

Figure 2.15: Examples showing that tất_cả was assigned to different tags in VLSP
Treebank.

2.5.2.3 VLSP supporting tools

Nguyen et al. [3] implemented several tools for their treebank developemnt including
preprocessing tools, an annotation tool and a tool for detecting annotation errors (de-
tection tool). However, their tools did not completely support the annotation. For
instance, their annotation tool did not fully support annotators. When annotating the
VLSP treebank, annotators had to manually type all tags and brackets, which may
cause typing errors. Another disadvantage comes from the detection tool as follows.
Nguyen et al. [3]’s detection tool is applicable to only the word segmentation and POS
tagging layers. For the bracketing errors, Nguyen et al. [3] did not study the detection
method. However, there is also a problem when we applied Nguyen et al. [3]’s detection
tool to the word segmentation and POS tagging layers. This tool calculated the error
possibility of a word based on its surrounding words. For example, according to Nguyen
et al. [3]’s method, instances of tiền của from rows 1 to 4 of Table 2.14 are candidates of
word segmentation errors. The score for evaluating error possibility is computed based
on the frequency of the surrounding words. Instances that have the maximum score are
considered as incorrectly annotated. However, the surrounding words of the instances
of tiền của are different. This results equal scores for the instances. Therefore, Nguyen
et al. [3]’s method can not detect the annotation error in such cases.

2.5.3 Vietnamese parsing

Since the VLSP treebank has been built [127], a few research adapted available con-
stituent parsers to construct a parser for Vietnamese. For example, AC. Le et al. [22]
modified the Bikel’s parser [128] and Le-Hong et al. [129] modified the LTAG parser de-
veloped by LORIA laboratory10. However, parsing performances are far lower than the

10http://www.loria.fr

41

Chapter 2. Background

Table 2.14: Examples containing instances of tiền của. Sentences with a star-marked
number are incorrect annotated.

No. Sentence
1 công_văndocument xinask vayborrow tiềnmoney củaof Công_tycompany Tiếp_thịmarketing

{document for borrowing money of the marketing company}
2 mánhtrick kiếmfind tiềnmoney củaof đámgroup trẻchild

{trick of the children for finding the money}
3 phong_tràomovement gópcontribute tiền_củafortune chofor/to công_cuộcwork

kháng_chiếnresistance war
{movement of contributing fortune to the resistance war}

4∗ tập_trunggather tiềnmoney củafortune màto giúphelp dânpeople
{gather the fortune to help people}

Table 2.15: Results of evaluating Vietnamese treebank on MST and Malt parsers

MST Malt
UAS LAS UAS LAS

With gold POS 79.08 71.66 77.37 70.49
Automatic POS 76.21 66.95 74.52 65.77

performances reported for English, Chinese, French, etc. To date, the F1-scores reported
for the English parser is higher than 90%. The performance of the Chinese constituency
parser is also higher than 86% [78, 130]. For Vietnamese, the parsing accuracy reported
by Nguyen et al. [127] is around 78% of F-score for sentences having less than 40 words.
We also trained the Berkelay parser [70] on the VLSP Treebank, and the parser has
achieved an F1 of 71.71%.

Recently, Nguyen et al. [23] has proposed a method to convert the VLSP Treebank to
the dependency structure. They also evaluated their converted treebank using MST
[131] and Malt parsers [132]. The parsing performances are presented in Table 2.15. We
can see that these performances are still far lower than the performances reported for
English and Chinese dependency parsers (Table 2.6).

42

Chapter

3
Building a syntactic treebank for

Vietnamese

In this research, we develop a new constituency treebank for Vietnamese. Our treebank
is annotated with three layers: word segmentation, part-of-speech tagging, and bracket-
ing. For each layer, we develop detailed annotation guidelines by presenting Vietnamese
linguistic issues as well as methods to address them. We also describe approaches to
control the annotation quality while ensuring a reasonable annotation speed. Specif-
ically, we design an appropriate annotation process and an effective process to train
annotators. In addition, we implement several supporting tools to improve the annota-
tion speed and to control the consistency of the treebank. This chapter is organized as
follows: we introduce our research in Section 3.1. Section 3.2 presents our methodology
for creating a high-quality treebank and data preparation. Next, we discuss challenges of
Vietnamese language and solutions to build annotation guidelines in Section 3.3. Then,
in Section 3.4, we present our methods to keep annotation consistency and accuracy
while ensure a reasonable annotation speed. Finally, we conclude our work in Section
3.5.

43

Chapter 3. Building a syntactic treebank for Vietnamese

3.1 Introduction

Treebanks–corpora annotated with syntactic structures, are important resources for re-
searchers in natural language processing. Treebanks provide training and testing ma-
terials for developing word segmentation tools, part-of-speech (POS) tagging tools and
parsers. These tools have been applied to improve the quality of natural language
processing applications. For examples, word segmentation and POS tagging are the
fundamental pre-processing steps not only for syntactic parsers but also for machine
translation [79, 80], text classification [81, 82] and so on. Specially, parsers were used
in a wide variety of natural language processing applications. In machine translation,
parsers were applied for reordering [4–6]. In question answering, Jijkoun et al. [7] im-
proved the number of correctly answered questions by using a dependency parser; Ver-
berne et al. [8] used syntactic information to improve why-question answering; Galitsky
et al. [9] applied a syntactic parser to find structural similarity between questions and
answers in order to rank candidate answers. In information retrieval, parsers were used
to parse text before retrieving. Chinkina et al. [83] and Barr et al. [84] showed that part-
of-speech tags and other syntactic information can be used to improve the web search
results significantly.

Because of its importance, treebank has been developed for many languages. Most
typically, the Penn English Treebank [10] has played a crucial role in the success of
English part-of-speech taggers [11, 12] and parsers [13–15]. The methodology and an-
notation scheme of the Penn English Treebank have been adapted for the Penn Korean
Treebank [16], Penn Chinese Treebank [17], French Treebank [18], etc.

To strengthen the automatic processing of the Vietnamese language, a Vietnamese Tree-
bank (VLSP Treebank) was built as a part of a national project, entitled “Vietnamese
language and speech processing (VLSP)” [3]. This corpus contains 10,374 sentences in
social and political topics, collected from an online daily newspaper, the Youth (Tuổi
Trẻ) [3]. The VLSP Treebank was annotated with three layers: word segmentation,
part-of-speech (POS) tagging and bracketing. However, Nguyen et al. [19, 20] showed
that the quality of VLSP Treebank, including the quality of the annotation scheme,
the annotation guidelines and the annotation process, is not satisfactory and is a pos-
sible source for the low performance of Vietnamese language processing [21–23]. To
alleviate these issues, we have been building a new Vietnamese Treebank with about
40,000 sentences covering 14 topics collected from the Vietnamese online newspapers.
Our treebank is annotated with three layers: word segmentation, part-of-speech tagging,
and bracketing, as shown in Figure 3.11.

1Underscore "_" is used to link syllables of Vietnamese multi-syllable words. English translations of
Vietnamese words are given as subscripts. If a Vietnamese word does not have a translatable meaning,

44

IntroductionTreeing a Vietnamese sentence
Original sentence:

Nam kể về tai nạn hôm qua.

{Nam tells about the yesterday's accident.}

1. Word segmentation:

Nam kểto tell vềabout tai_nạnaccident hôm_quayesterday .

2. POS tagging:

Nam/Nr kể/Vv về/Cs tai_nạn/Nn hôm_qua/Nt ./PU

3. Bracketing:
(S

(NP-SBJ (Nr-H Nam))

(VP (Vv-H kể)

(PP-DOB (Cs-H về)

(NP (Nn-H tai_nạn)

(NP-TMP (Nt-H hôm_qua)))))

(PU .))

Figure 3.1: An example to illustrate the process of treeing a Vietnamese sentence.

We have found that ensuring the annotation consistency and accuracy is one of the
most important considerations in annotating treebank. However, it is not easy to keep
the treebank accurate and consistent, especially for Vietnamese, due to the following
reasons. In comparison with English, Vietnamese does not have word delimiters and
inflectional morphemes. While similar problems also occur in Chinese [36], annotating
Vietnamese may be more difficult because the modern Vietnamese writing system is
based on Latin characters, which represent the pronunciation but not the meanings of
words. As a result, there are many polysemous expressions, i.e., expressions having the
same surface form but different interpretations, in Vietnamese. Difficulties in annotating
Vietnamese are also caused by word orders. Although Vietnamese is a subject-verb-
object (SVO) language like English and Chinese, its word orders are different from the
others. For example, in Vietnamese, the word order in noun phrases is exactly the same
as those in simple sentences, which leads to ambiguities in labelling these two types of
expressions. In addition, other problems such as dropping words, conflicted definitions
among linguists, etc. have also caused many challenges for annotating Vietnamese texts.

In order to keep the treebank accurate and consistent, we have carefully documented
the annotation guidelines. An annotation scheme, principles to treat different linguistic
phenomena, annotation examples and other relevant issues are presented as detailed as
possible in the guidelines. Then, we have carefully trained annotators to ensure that
they understand the guidelines and familiar with the annotation. During the annotation
process, we used several supporting tools to control the annotation quality as well as
keeping a reasonable annotation speed.

the subscript is blank. The translation for the Vietnamese sentence is given in curly brackets below the
original text.

45

Chapter 3. Building a syntactic treebank for Vietnamese

In this chapter, we described Vietnamese linguistic issues and our solutions to tackle
them completely. We also discuss several methods to ensure that our treebank is as
widely useful as possible. Beside representing our annotation scheme completely, we
further compare it with that of the VLSP Treebank [3] in this chapter. Moreover, we
present engineering issues to ensure annotation consistency and accuracy while still keep-
ing a reasonable annotation speed, including an annotation process, a process used to
train annotators and measure inter-annotator agreement and accuracy, and several tools
to support annotation and quality control. This work also reveals several techniques to
adapt methods of Chinese Penn Treebank [87–89] and English Penn Treebank [85, 86] to
Vietnamese Treebank. Our research, therefore, is not only beneficial for the development
of computational processing technologies for Vietnamese, a language spoken by over 90
million people, but also for similar languages such as Thai and Laos. This study also
promotes the computational linguistic studies on how to transfer methods developed for
a popular language, like English, to a language that has not yet intensively been studied.

The following sections are organized as follows. Section 3.2 presents our method to
create a high-quality treebank and our data preparation. Next, we present challenges and
solutions in building the annotation guidelines for Vietnamese in Section 3.3. Section 3.4
discusses our method to ensure the annotation quality while still remaining a reasonable
annotation speed. Finally, Section 3.5 concludes this work and describes the future
work.

3.2 Methods and material

3.2.1 Methodology for creating a high-quality treebank

Xue et al. [17] described four issues to ensure the annotation quality: annotation guide-
lines, tools to support the annotation, the quality of annotators and annotation process.
Regarding the first issue, we prepared the guidelines for Vietnamese Treebank includ-
ing three sets: word segmentation guidelines, POS tagging guidelines and bracketing
guidelines. Our guidelines, the only document that annotators have to follow during
the annotation process, cover all possible structures that can appear in the real texts.
Furthermore, for each instruction, we provide as many illustrated examples as possible.
By doing so, we can boost the generality of our instructions and make them easy to
follow. To alleviate the conflicted word and phrases definitions in Vietnamese, we study
annotation criteria that can be automatically transferred to each other. Hence, our
treebank can be used under different points of view.

46

Methods and material

To build the guidelines that satisfy the above-mentioned properties, we adopt the fol-
lowing approaches:

• We refer to Vietnamese grammar books [1, 2] and discuss with our collaborators,
who are linguistics experts, to solve the ambiguities and difficulties.

• We study the guidelines of Chinese Penn Treebank [87–89], English Penn Tree-
bank [85, 86] and a previous Vietnamese Treebank [124–126], and adapt them to
our guidelines if possible.

• During the annotation process, annotators are requested to discuss with us about
constructions that they cannot annotate or feel unsure. These constructions are
important clues to revise the guidelines.

• We conduct nine rounds of measurement of accuracy and inter-annotator agree-
ment, for which both annotators annotate the same data. The inconsistencies and
annotation errors found in each round are important clues to improve annotation
guidelines and to train the annotators again.

Beside preparing consistent and complete annotation guidelines, using tools, such as
an annotation tool, pre-processing tools and cleaning up tools, not only improves the
annotation speed but also helps us to avoid annotation errors.

In this work, we recruited two Vietnamese annotators. One of them is a master student
in linguistics (A1); she also joins in developing the annotation guidelines. The other (A2)
is a senior student in linguistics. Both annotators are excellent in Vietnamese grammar.
However, building a treebank is far more complicated than things mentioned in litera-
ture. Therefore, we have to carry out an appropriate process of training annotators to
make them familiar with the annotation of the treebank.

Regarding the annotation process, we conducted the following steps:

1. We refer to the literature and discuss with linguistics experts to create a draft of
the annotation guidelines.

2. After being trained with the drafted guidelines, the two annotators are required
to annotate 600 texts (about 8,000 sentences). During this annotation, we receive
feedbacks from the annotators and revise constructions that our guidelines do not
cover or instructions that can not apply to new texts.

3. We re-train the annotators with the updated guidelines, and measure the accuracy
and the inter-annotator agreement.

47

Chapter 3. Building a syntactic treebank for Vietnamese

Table 3.1: Topics of texts in our treebank.

No. Topic No. Topic

1 politics-society 8 health
2 information technology 9 world
3 life 10 sports
4 education 11 entertainment
5 science 12 travel
6 economic 13 law
7 military 14 life of youth

Table 3.2: Statistics of word types in our treebank.

Internal Two-syllable Three-syllable
Data structures Single words words words Others Total

VLSP 4,210 180,634 41,773 1,504 423 228,544
Ours 1,806 95,524 34,492 1,180 255 133,257

4. The annotators edit the 600 texts and annotate the new texts. We update the
guidelines for new constructions (if any).

5. Annotation results of each annotator are checked and edited by the other annota-
tor.

6. Cleaning up the treebank: We run tools to detect annotation errors. These errors
are manually edited by the annotators before we release the treebank.

3.2.2 Data preparation

Our treebank includes two sets of raw texts: VLSP and our own texts. The raw texts
of VLSP, downloaded from Youth (Tuổi Trẻ)–an online daily newspaper2, focuses on
social and political topics [3]. Meanwhile, our texts, including about 30,000 sentences
collected from a Vietnamese online newspaper–Thanhnien news3, cover 14 topics as
shown in Table 3.1. We selected an equal number of texts for each topic. So far, we
have annotated 10,374 sentences of the VLSP texts and 5,168 sentences of our texts.
Statistics of the data sets are shown in Tables 3.24, 3.3, and 3.45.

2http://tuoitre.com
3http://thanhnien.vn
4Types of words are presented in Section 3.3.1
5Internal structures are presented in Section 3.3.3.4

48

Annotation guidelines

Table 3.3: Statistics of POS tagging in our treebank. The column “Words” presents
the number of words that were annotated with one POS tag, two POS tags, or so on.

The column “Instances” presents the number of instances of words in the corpus.

Types VLSP Ours
Words Instances Words Instances

One-POS words 12,262 95,412 9,197 67,576
Two-POS words 1,119 38,127 846 29,927
Three-POS words 249 33,741 201 19,046
Four-POS words 71 24,787 55 6,747
5-POS words 24 24,109 20 6,109
6-POS words 8 6,836 6 2,093
7-POS words 2 1,321 2 368

Table 3.4: Statistics of internal structures in our corpus. The last two columns present
frequency of each construction in the data sets.

Constructions VSLP Ours

Sv + Vietnamese original word (Nn/Vv/Aa/...) 665 608
Ncs + modifier (Vv/Aa/...) 772 597
Nc + modifier (Nn) 2,713 571
Categorization noun (Nn) + modifier 52 27
Repetition form 8 3
Total 4,210 1,806

3.3 Annotation guidelines

This section will present in detail the annotation guidelines for the three layers in our
treebank including word segmentation, part-of-speech tagging, and bracketing. Specif-
ically, in each subsection, we will describe challenges of each task, suggest solutions to
alleviate the challenges, and compare our guidelines with those by VLSP.

3.3.1 Word segmentation guidelines

3.3.1.1 Word categories

Words are the most basic units of a treebank [133], and defining words is the first step
in the annotation process. In this work, we follow the word definition by Di Sciullo and
Williams [133]. Specifically, a word is defined as the smallest syntactic unit that conveys
complete meanings. Moreover, there is no syntactic rules can be applied to a word to
analyze its structure. On the basis of this definition, we classify Vietnamese words into
seven categories.

49

Chapter 3. Building a syntactic treebank for Vietnamese

• Single words are words that have only one free syllable6. A single word can be
a lexical word such as quầntrousers and hátto sing or a function word such as sẽwill
and màthat/which.

• Coordinating compounds are words that include two or more syllables, where
the syllables can be single words. However, meanings of an coordinating compound
are equally combined meanings of its components. For example, both đấtland and
nướcwater are single words. However, if we treat đất nước as an coordinating
compound, it means country.

• Subordinate compound words are words that include two or more syllables,
where the syllables are combined according to a main-subordinate relationship.
The main syllable is a word. The other syllables are not necessarily words. For
examples, chânfoot and vịtduck are single words. The combination of chân and vịt
will create a subordinate compound word which means presser foot (of a sewing
machine). In the subordinate compound word gầy guộc {skinny}, gầythin/skinny
can stand alone as a single word. However, guộc is a bound syllable7 that does not
have meaning.

• Reduplicative words are constructed from the phonetic repetition phenomenon
of syllables. Reduplicative words include two types, full word reduplication, such
as xafar xafar {in the distance}, and partial reduplication, such as long lanh {glis-
tening}.

• Reiteration forms look like full reduplicative words. However, the reiteration
form is constructed contingently by reiterating a word many times when we want
to emphasize a large amount, a high frequency, etc. For examples, người người
{everybody} is a reiteration form created by reiterating the single word ngườiperson;
tối tối {every night} is created by reiterating the single word tốinight;

• Other multi-syllable words are constructed from syllables that do not have
meaning in Vietnamese. The syllables in a word do not have phonetic or semantic
association. The words can be originally Vietnamese such as bồ nông {pelican},
or transcribed from Chinese such as bù nhìn {puppet} or French such as xà phòng
{soap}

• Other types that are considered in our word segmentation guidelines are prop-
er names, names of law, resolution and agreement, phone numbers, fax, e-mail

6Free syllables are syllables having either lexical meaning or functional meaning. A free syllable can
stand alone as a word.

7A bound syllable is a syllable that can not stand alone as a single word. A bound syllable does not
necessarily have meaning. It always combines with other syllables or words to create a compound word.

50

Annotation guidelines

Table 3.5: Examples shows how inflection in English is presented in Vietnamese.

No. Expression Meaning WS Number of words

1 nhà-er nghiên cứuresearch researcher nhà nghiên_cứu 2 words
2 nghiên cứuresearch viên-er researcher nghiên_cứu_viên 1 word

Table 3.6: Examples shows an ambiguity between reduplicative words and reiteration
forms in Vietnamese.

No. Category Expression Meaning Number of words

1 Reduplicative word tốidark tốidark slightly dark 1 word
2 Reiteration form tốinight tốinight every night 1 word/2 words

addresses, websites, nick names, home addresses, idioms and locutions, numeral
expressions, foreign words, abbreviations, and punctuations.

3.3.1.2 Challenges of word segmentation

Due to several characteristics of Vietnamese, including no explicit word delimiters and
inflectional morphemes (Section 2.5.1.1) and conflicted word definitions (Section 2.5.1.4),
the task of word segmentation becomes complicated. As our observation, there are three
main ambiguities in Vietnamese word segmentation as follows.

Single words or coordinating compound words. Rows 1 and 2 in Table 3.7, for
example, show that the expression quần áo can be segmented in two different ways: (1)
two single words which mean trousers and shirt, and (2) a coordinating compound word
which means clothing or clothes.

Single words or subordinate compound words. Table 3.5, for instance, shows that
the word nghiên cứu means to research. To express researcher, we can add nhà before
nghiên cứu or add viên after nghiên cứu. Although expressions in rows 1 and 2 have the
same meaning, they are segmented in different ways by linguists [1, 2].

Reduplicative words or reiteration forms. Table 3.6 shows two examples in which
a reduplicative word and a reiteration form are constructed in the same way, which is
repeating a single word two times. However, the reduplicative word (row 1) is treated
as a word by linguists. Meanwhile, there is little consensus in community about treating
reiteration forms (row 2). For example, Hoang [122] did not consider reiteration forms
as words. In contrast, SCSSV [2] treated them as words.

51

Chapter 3. Building a syntactic treebank for Vietnamese

3.3.1.3 Policy for annotation of word segmentation

In our WS guidelines, we propose the following rules to address the difficulties in Viet-
namese word segmentation:

1. If A and B8 have different meanings and the meaning of the combination form
(A_B) is different from the split form (A B), we select the form that has a more
appropriate meaning for the context. Rows 1 and 2 in Table 3.7 show an expression
have two different interpretations because of different word segmentations.

2. If A and B have different meanings and A_B has the same meaning as A or B,
A_B is a compound word, as illustrated in row 3 of Table 3.7.

3. If A and B have the same meaning, A_B is treated as a compound word (row 4
in Table 3.7).

4. If another syllable can be inserted between A and B, A and B are words (rows 5
and 6 in Table 3.7).

5. If A or B (or both A and B) is bound syllable, A_B is treated as a compound
word. For example, we can not consider đúa in row 7 of Table 3.7 as a single word
because it is a bound syllable. đúa does not have any meaning in Vietnamese.
Hence, it is treated as a component of the compound word.

6. For expressions composed by a categorization noun (A) and other words (B), if B
indicates something different from what the expression indicates, A_B is treated
as a compound word. In contrast, if B has a similar meaning to A B, A and B are
treated as two words (rows 8 and 9 in Table 3.7).

7. An expression composed by one or more Sino-Vietnamese syllables and an original
Vietnamese word is not treated as a word when the Sino-Vietnamese syllables
are the elements used to create similar words, such as antonyms and hyponyms.
For example, nghiên_cứuto research and nghiên_cứu viên {researcher} in row 10 of
Table 3.7 are similar words, in which the Sino-Vietnamese syllable viên plays the
same role as the morpheme -er/-or in English. Expressions like nghiên_cứu viên
are not treated as words in our treebank. However, in cases as sinhto bear viên
(row 11 of Table 3.7), we consider this expression as a word because sinhto bear and
sinh_viênstudent are not similar to each other.

8Without loss of generalization, we assume the expression we want to segment is A B, where A and
B can be syllables or words.

52

Annotation guidelines

Table 3.7: Examples to illustrate the principles of word segmentation.

No. Expression (A B)
Number

Meaningof words

1 quầntrousers áoshirt 1 word clothes/clothing
2 quầntrousers áoshirt 2 words trousers and shirt
3 ănto eat nóito speak 1 word to speak
4 tìmto search kiếmto search 1 word to search
5 nồipot đồngcopper 2 words copper pot
6 nồipot bằngby đồngcopper 3 words copper pot
7 đenblack đúa 1 word black
8 cáfish heopig 1 word dolphin
9 cáfish lia_thiabetta fish 2 words betta fish
10 nghiên_cứuto research viên-er 2 words researcher
11 sinhto bear viên-er 1 word student
12 nhà-er nghiên_cứuto research 2 words researcher
13 ầmboom ầmboom 1 word rumble
14 quầntrousers quầntrousers áoshirt áoshirt 4 words clothes/clothing
15 quầntrousers quầntrousers vớiwith áoshirt áoshirt 5 words clothes/clothing
16 xafar lơ xafar lắc 1 word very far

8. Special classifier nouns9 are treated as single words (row 12 in Table 3.7).

9. If reduplicative words or reiteration forms are constituted by two syllables, they
are treated as single words (row 13 in Table 3.7). In cases they have more than
two syllables, if we can insert a comma or a conjunction between the syllables, we
treat each syllable as a single word (rows 14 and 15 in Table 3.7). Otherwise, the
whole expression is considered as a word (row 16 in Table 3.7).

The above-mentioned rules do not necessarily conform to rules used by linguists. For
example, Diep [1] treats the Sino-Vietnamese syllable viên−er, as shown in row 10 in
Table 3.7, as a component of compound words and treats the special classifier noun
nhà−er in row 12 as a single word. We, in contrast, treat both viên−er and nhà−er as
single words because we found that both words have the same grammatical function
used to create similar words. Such rules make the word segmentation more consistent.
However, it is worthy to note that word types that have received little consensus from
linguists are labeled with internal structure tags. This makes them more flexible to be
converted according to specific requirements. Details of using the internal structure tags
are presented in Section 3.3.3.4

9Special classifier nouns, e.g., sự−ing/−ion/−ity/..., việc−ing/−ion/−ity/..., and nhà−er/−or, are consid-
ered as classifier nouns by Nguyen et al. [3]. However, combination ability of special classifier nouns
is different from that of classifier nouns such as cái and con. Classifier nouns are placed in front of
categorization nouns to indicate animate things (con cáfish) and inanimate things (cái bàntable). While
special classifier nouns play the same role as affixes in English, they can combine with a verb, such as
việc−ion lựa_chọnto select {selection}, or an adjective such as sự−ity nhập_nhằngambiguous {ambiguity}.

53

Chapter 3. Building a syntactic treebank for Vietnamese

3.3.1.4 Comparison with the VLSP treebank

We and Nguyen et al. [3, 124] agree that Vietnamese has single words, coordinating
compounds, and so on. However, our word definitions are different from those by Nguyen
et al. [3] as follows.

In Vietnamese, reiteration forms can have two or more syllables as mentioned in Sec-
tion 3.3.1.3. Vietnamese linguists consider them neither as words nor as phrases [1, 2].
However, reiteration forms are considered as words in the VLSP Treebank. In our
guidelines, we consider only reiteration forms including two syllables as words because
of the following reasons. Firstly, the two-syllable reiterations are stable expressions,
which means that we can not insert any other words between the two syllables of the
expressions. Secondly, there is little consistency for considering the reiteration forms
constituted by two syllables. For example, SCSSV [2] considers oe oe {cries of new-
borns} as a full reduplicative word. Diep [1] and Corp. [123], in contrast, treat it as a
reiteration form. Finally, meanings of two-syllable reiteration forms do not change when
we split or combine the syllables. Regarding reiteration forms constituted by more than
two syllables, we have observed that they are presented with many forms by Vietnamese
people. For example, the reiteration form quầntrousers quầntrousers áoshirt áoshirt can be
presented with various structures such as quầntrousers quầntrousers vớiwith áoshirt áoshirt
or quầntrousers quầntrousers, áoshirt áoshirt. We, therefore, do not treat such reiteration
forms as words. We, instead, use internal structure tags to mark them so that they can
be converted according to specific requirements.

For compound words, Nguyen et al. [3] suggested that if the meaning of the combination
form A_B can not be inferred from the meaning of the split form A B, then A B likely to
be a word (non-compositionality rule). However, as we mentioned above, there are many
polysemous expressions. Hence, segmenting an expression in different ways will cause
different interpretations, as illustrated in rows 1 and 2 of Table 3.7. Therefore, in our
guidelines, if the meaning of the combination form A_B is different from the meaning
of the split form A B, we select the form that has the most appropriate interpretation
for the context (rule 1).

In addition, Nguyen et al. [3] also proposed that if A (or B) can be substituted by A’,
A”, . . . (or B’, B”, . . .) of the same type, then AB is not likely to be a word.
Based on this rule, expressions in Table 3.8 are not compound words because B can
be replaced by B’ having the same type (verb). If we apply the non-compositionality
rule of Nguyen et al. [3] to these examples, they are also not compound words. The
reason is that although the meanings of compound words (AB) are different from those
of A and B, we can infer them from the meanings of A and B. Unlike Nguyen et al. [3],

54

Annotation guidelines

Table 3.8: Examples show the compound words in Vietnamese that have the same
previous syllable (A) but different following syllables (B).

No. Expression Meaning WS

1 ănto eat ởto live board and lodging, to behave, etc. 1 word/2 words
2 ănto eat uốngto drink food and drink, to give feasts, etc. 1 word/2 words

according to our first rule of word segmentation, expressions in Table 3.8 can be treated
as compound words or splitted into single words based on their real context.

3.3.2 Part-of-speech tagging guidelines

In this section, we first present definitions of POS tags for Vietnamese. Then, we will
discuss ambiguities in tagging POS. Next, we describe our methods to tag POS. Finally,
we compare our POS tag set with that of the VLSP Treebank [3, 125].

3.3.2.1 Building a part-of-speech tag set

Designing a POS tag set can be based on meaning of words, morphological information,
syntactic distribution, etc. However, to build a treebank, meaning of words has not been
considered [10, 16, 17]. For inflectional languages like English or Korean, the POS tag
set was designed on the basis of morphological information [10, 16]. The POS tag set
of Penn Chinese Treebank was designed on the basis of syntactic distribution because
Chinese has very little, if any, inflectional morphology [17].

For the Vietnamese language, we based on the combination abilities10 and the syntactic
functions11 of words to classify them. We referred to the linguistics literature, carefully
analyzed roles of words on the basis of the VLSP Treebank, and discussed with our
linguistics colleagues to create a new POS tag set for Vietnamese consisting of 33 tags,
as shown in Table 3.9. The detailed definition of each POS tag is available in our POS
tagging guidelines.

In our POS tag set, the two-capital-character POS tags, e.g., VA, VN, and NA, are used
to tag words of which there are conflicted definitions among linguists. For example, rows
1 and 2 of Table 3.10 show two different POS tags (noun and adjective) that the word

10Combination abilities of a word express the abilities of the word to combine with other words. For
example, the demonstrative pronoun nàythis/these can combine with a noun (e.g., câytree này this {this
tree}). While personal pronouns, such as chúng_tôiwe/us, họthey/them, etc. do not have that combination
ability.

11Syntactic functions of a word denote the syntactic roles of the word in phrases (such as a head of a
phrase or a modifier) and in sentences.

55

Chapter 3. Building a syntactic treebank for Vietnamese

Table 3.9: The POS tag set designed for our treebank.

No.
POS

Meaning of tag No.
POS

Meaning of tagtag tag

1 SV Sino-Vietnamese 17 NA Noun-adjective
syllable 18 Vcp Comparative verb

2 Nc Classifier noun 19 Vv Other verb
3 Ncs Special classifier noun 20 An Ordinal number
4 Nu Unit noun 21 Aa Other adjective
5 Nun Special unit noun 22 Pd Demonstrative pronoun
6 Nw Quantifier indicating 23 Pp Other pronoun

the whole 24 R Adjunct
7 Num Number 25 Cs Preposition or conjunction
8 Nq Other quantifier introducing a clause
9 Nr Proper noun 26 Cp Other conjunction
10 Nt Noun of time 27 ON Onomatopoeia
11 Nn Other noun 28 ID Idioms
12 Ve Exitting verb 29 E Exclamation word
13 Vc Copula "là" verb 30 M Modifier word
14 D Directional verb 31 FW Foreign word
15 VA Verb-adjective 32 X Unidentified word
16 VN Verb-noun 33 PU Punctuation

Table 3.10: Examples show different POS tags of a word in Vietnamese.

No. Phrase Word POS tagging

1 tăng_cườngto increase an_ninhsecurity an_ninh adjective{increase security}

2 cơ_quanservice an_ninhsecurity an_ninh noun{security service}

3 tăng_cườngto increase an_ninhsecurity an_ninh noun or adjective{increase security}

4 cơ_quanservice an_ninhsecurity an_ninh noun or adjective{security service}

an_ninh was assigned by the Lac Viet dictionary [123]. Meanwhile, Hoang [122] claimed
that an_ninh can be treated as a noun or an adjective in all contexts (illustrated in rows
3 and 4). In our treebank, for cases like an_ninh, we tagged them with double-POS
tags so that they can be automatically changed to others.

3.3.2.2 Challenges of POS tagging

Polysemous expressions cause ambiguities not only in word segmentation but also in
POS tagging. For example, we can interpret the word mới in two ways as shown in rows

56

Annotation guidelines

1 and 2 in Table 3.11. If we treat mới as an adjective modifying the preceding noun
nghiên_cứuresearch, mới means new. However, if we treat it as an adjunct modifying
the following verb thực_hiệnto conduct, mới means recently or just.

Another ambiguity is between verbs and nouns. For instance, the word báo cáo in
Table 3.11 can be labelled as a verb, which means to report in row 3, and as a noun, which
means report in row 4. We can see that such an ambiguity does not occur in inflectional
languages, e.g. English, since a verbal noun will be used when a verb appears in the
position of a noun. However, as mentioned above, Vietnamese does not have inflectional
morphemes, which are useful for recognizing POS. Furthermore, a verb or an adjective
can have the same position as a noun in Vietnamese. In fact, this ambiguity can be
addressed by adding a special classifier noun or a classifier noun before the word báo
cáo. Specifically, for the case of báo cáoto report (row 5), if there is a special classifier
noun of việc12 preceding it, it is easy for us to label báo cáo as a verb. Meanwhile, for
the case of báo cáo (row 6), if we place a classifier noun of cuốn or bản before it, báo
cáo becomes a noun whose meaning is report. Although those classifier nouns are useful
clues for us to decide the POS tag of a word, they are usually omitted in Vietnamese
sentences.

Confusion between adjectives and verbs is also common in Vietnamese POS tagging.
Some linguists [1, 2] have claimed that such confusion can be tackled based on the
adjuncts modifying the word, such as adjuncts indicating degree and tenses will modify
adjectives and verbs, respectively. However, this approach does not necessarily work
sufficiently with real texts. In practice, many verbs and adjectives in Vietnamese can
be modified by the same adjunct. The adjunct indicating tense sẽwill in Table 3.11
illustrates this point. We can see that sẽ can modify both the adjective đẹpbeautiful (row
7) and the verb đigo (row 8).

The task of POS tagging becomes more challenged because there is no consensus among
linguists about methodologies to classify words. For instance, both Diep [1] and SC-
SSV [2] classified words based on their meanings, their combination abilities, and their
syntactic functions. However, Diep [1] treated words expressing the whole, e.g., cảall,
tất_cảall, and toàn_bộall, as pronouns, while SCSSV [2] treated them as nouns, and
Hoang [122] treated cả as a pronoun and tất_cả as a noun in all contexts.

12Việc is a special classifier noun that is understood as -ion, -ment, -ing, -ity, -ness, etc. when it
precedes verbs or adjectives. A combined expression of the special classifier noun việc and a verb or an
adjective is understood as a noun in English. For example, học_tập means to learn, hence, we can say
việc học_tập to express learning.

57

Chapter 3. Building a syntactic treebank for Vietnamese

Table 3.11: Examples illustrating ambiguities in POS tagging.

No. Word in context Word POS

1 Một nghiên cứu mới thực hiện tại Nhật. mớinew Adjective{A new reseach conducted in Japan.}

2 Một nghiên cứu mới thực hiện tại Nhật mớijust Adjunct{A research has just been conducted in Japan.}

3 Báo cáo rất tốt. báo_cáoto report Verb{Reporting is very good.}

4 Báo cáo rất tốt. báo_cáoreport Noun{The report is very good.}

5 Việc báo cáo rất tốt. báo_cáoto report Verb{Reporting is very good.}

6 Cuốn/bản báo cáo rất tốt. báo_cáoreport Noun{The report is very good.}

7 Bạn sẽ đẹp vào tối nay. sẽwill Adjunct{You will be a beautiful girl tonight.}

8 Tôi sẽ đi vào tối nay. sẽwill Adjunct{I will leave tonight.}

3.3.2.3 Policies for annotating part-of-speech

We assigned POS tags for words on the basis of the following criteria:

• Combination abilities of a word. For example, khó_khăn can be understood as
difficulty or difficult. However, if it is a noun, it cannot combine with the adjunct
rấtvery. If it is an adjective, it cannot combine with the quantifier những−s/−es.

• Syntactic functions of a word. For example, a quantifier indicating the whole
will be tagged as Nw if it modifies a noun. It will be labeled as Pp if it is the head
word of a noun phrase.

• Meanings of a word in a sentence. For example, considering the verb đigo
and the adjective đẹpbeautiful in Table 3.11, their combination abilities are iden-
tical since they are both modified by the adjunct đã. They also have the same
syntactic function that is the head word of the predicate. However, if we take into
account their meanings, they are totally different. The verb đi expresses an action,
while the adjective đẹp expresses quality or property of something. This explains
the reason why we should consider the meaning of words in specific sentences in
addition to their combination ability and syntactic function.

There are words that give us no clues to determine their POS if we only refer to single
sentences as the case of báo_cáo mentioned above. In such cases, annotators are required

58

Annotation guidelines

to observe all of texts surrounding the words and decide the most appropriate tag. When
contexts are not helpful, we decide to tag words with all cases that they can occur. For
example, given the sentence in row 1 of Table 3.11, there is no clue to determine if the
word mới is an adjective or an adjunct. Therefore, in our corpus, we duplicate that
sentence. The word mới in the first sentence will be annotated as an adjective. mới in
the second sentence will be annotated as an adjunct.

It should be noted that the cases like mớinew/just are ambiguous words, which are totally
different from unidentified words. An ambiguous word has two or more POSs. The exact
POS of its instances can be determined based on the context. Meanwhile, POS of an
unidentified word can not be defined. In our treebank, unidentified words are labeled
with the POS tag X (unknown tag). Duplicating sentences to label all possible POS tags
is probably not good for training POS taggers. However, this is good for the bracketing
layer because annotators can use these POS tags to annotate phrases. For example, if
mới is an adjective (i.e., means new), it will be bracketed as a post-modifier of the noun
nghiên_cứuresearch. Meanwhile, if mới is an adjunct (i.e., means recently or just), it
is annotated as a pre-modifier of the verb thực_hiệnto conduct. Although our treebank
contains duplicated sentences, we have documented all duplicated cases (including file
names, sentence no., and reasons of duplication). These information can be used to
pre-process the treebank before using it.

3.3.2.4 Comparison with the VLSP Treebank

Our criteria to classify words are the same as those of the VLSP Treebank [3], i.e.,
both of us based on the combination abilities and the syntactic functions of words.
The POS tag set designed by Nguyen et al. [3] cannot cover all combination abilities
as well as syntactic functions of Vietnamese words. For example, they used the tag P
to annotate all pronouns. However, pronouns should be fine-grained according to their
specific functions. Specifically, demonstrative pronouns used to express space or time,
such as nàythis and đóthat, should be distinguished from personal pronouns, e.g., tôiI
and chúng_tawe because their syntactic functions are different. Demonstrative pronouns
can be modifiers of head nouns in noun phrases. Meanwhile, personal pronouns always
play roles of the head words in noun phrases. These two types of pronouns also have
different combination abilities. Demonstrative pronouns can be combined with nouns,
e.g., câytree nàythis {this tree}, while personal pronouns cannot.

By creating 33 POS tags, we not only solve the above-mentioned controversial cases
but also better label roles of words in phrases or sentences. For instance, demonstrative
pronouns modifying the head word of a noun phase will be labeled as Pd, and other

59

Chapter 3. Building a syntactic treebank for Vietnamese

Table 3.12: Examples of polysemous words in Vietnamese.

No. Sentence Word Combination ability and Our POS tag VLSP Treebank’s
syntactic function POS tag

1 Tôi là quần áo rất nhanh làto iron
làto iron can be modified by Vv V{I iron clothes very fast} a direct object and a modifier

2 Tôi là sinh viên giỏi làto be
Copula làto be is used to express Vc V{I am a good student} the equivalent between two objects

3
Tôi với bạn có cùng họ

vớiand vớiand is a coordinating conjunction Cp C{You and I have the same
last name}

4 Tôi sẽ đi với bạn vớiwith vớiwith is a subordinate conjunction Cs C{I will go with you}

5 Nhà ấy rất giàu ấythat
ấythat is a demonstrative pronoun Pd P{That family is very rich} modifying the head noun nhàfamily

6 Ấy đang làm gì vậy? ấyyou
ấyyou is a personal pronoun which is Pp P{What are you doing?} always a head word of a noun phrase

pronouns that are head words of noun phrases will be annotated with a Pp label. Such
annotations are better than those by Nguyen et al. [3] since they do not produce any
conflicts.

Nguyen et al. [3] claimed that tags can be splitted into more specific sub-tags easily
based on lexical information. However, as presented above, polysemous expressions can
cause difficulties in splitting or tagging POS for Vietnamese words. Table 3.12 shows
several examples of polysemous words, to which we should assign different POS tags as
their combination abilities and syntactic functions are different.

3.3.3 Bracketing guidelines

In this section, we first describe an annotation scheme for the Vietnamese Treebank.
Then, we discuss challenges of bracketing the Vietnamese sentences. We next present
our methods to tackle the challenges. After that, we describe how internal structures
are annotated in our treebank. Finally, we compare our bracketing guidelines with those
of the VLSP Treebank [3, 126].

3.3.3.1 Representation scheme

Following the English Penn Treebank [10], phrases in our treebank are bracketed on
the basis of the syntactic relationships between constituents. These relationships are
expressed by constituency tags and functional tags. Additionally, we also use null ele-
ments to mark ellipses and reference indices to mark syntactic movements. Similar to
the VLSP Treebank [3], we also use the functional tag H to tag head words of phrases.
Details of each tag type are explained below.

60

Annotation guidelines

Table 3.13: Our constituency tags.

No. Tag Explanation

1 NP Noun phrase
2 QP Quantitative phrase
3 VP Verb phrase
4 ADJP Adjective phrase
5 PP Prepositional phrase
6 RP Adjunct phrase
7 CONJP Conjunction phrase
8 UCP Unlike coordinated phrase
9 QNP Questioning noun phrase
10 QRP Questioning adjunct phrase
11 QPP Questioning prepositional phrase
12 QADJP Questioning adjective phrase
13 MDP Modal phrase
14 S Simple/compound declarative sentence
15 SQ Question
16 SPL Special sentence
17 SBAR Subordinate clause
18 XP Unknown phrase

[S [NP-SBJ [QP [R khoảng] [Num-H 4] [Nq-H triệu]] [Nn-H người][Nr VN]]

 [VP [R đang] [Vv-H sinh_sống]

 [PP-CMP-LOC [Cs-H tại]

 [NP[QP [R hơn] [Num-H 100]]

 [NP [NP [Nn-H quốc_gia]

 [PP *T*-1]]

 [Cp và]

 [NP [Nn-H vùng]

 [NP [Nn-H lãnh_thổ]]

 [PP-1 [Cs-H trên]

 [NP [Nn-H thế_giới]]]]]]]]

[PU .]]

Khoảng

XP

pre-modifier head post-modifier <CONJ>

XP

<CONJ> XP1 XP2 …

Subordination Coordination

Figure 3.2: Grammatical relations used in our bracketing guidelines.

Constituency tags. The 18 constituency tags showed in Table 3.13 indicate syntac-
tic categories of phrases. In our treebank, phrases are bracketed on the basis of two
grammatical relations: subordination and coordination. Their structures are presented
in Figure 3.2. In subordinate relationships, a head can include one or more terminal
nodes. A pre-modifier and a post-modifier can include terminal and non-terminal nodes.
In coordinate relationships, CONJ can be dropped. If CONJ is used, it can be a ter-
minal or a non-terminal node. XP1 and XP2 are terminal or non-terminal nodes, and
can have the same type or different types. Figure 3.3 shows a tree that includes both
grammatical relations. The relationship between NP3 and NP4 is coordination. VP
expresses a modification relation in which sinh_sốngto live is the head word, the adjunct
đang13 is a pre-modifier, and the prepositional phrase PP, which is annotated with two
functional tags CMP and LOC, is the post-modifier.

13đang is an adjunct used to express the continuation. For example, sinh_sống means to live. To
express to be living, we use đang sinh_sống.

61

Chapter 3. Building a syntactic treebank for Vietnamese

S

NP-SBJ

QP

R

Khoảng
{about}

Num-H

4

Nq-H

triệu
{million}

Nn-H

người
{person}

Nr

VN
{Vietnam}

VP

R

đang
{-ing}

Vv-H

sinh_sống
{to live}

PP-CMP-LOC

Cs-H

tại
{in}

NP

QP

R

hơn
{over}

Num-H

100

NP

NP3

Nn-H

quốc_gia
{country}

PP

*-1

Cp

và
{and}

NP4

Nn-H

vùng
{area}

Nn

lãnh_thổ
{territory}

PP-1

Cs-H

trên
{over}

NP

Nn-H

thế_giới
{world}

PU

.

About 4 million Vietnamese people are living in over 100 countries and territories all over the world.

Figure 3.3: An example showing two relations used in our treebank.

Table 3.14: Our functional tags.

No. Tag Explanation No. Tag Explanation

1 H Head of phrase 12 TMP Temporal
2 SBJ Subject 13 LOC Locative
3 LGS Logical subject 14 MNR Manner
4 PRD Predicate that is not VP 15 PRP Purpose or reason
5 DOB Direct object 16 CND Condition
6 IOB Indirect object 17 CNC Concessions
7 CMP Complement 18 ADV Adverbial
8 TPC Topicalized 19 HLN Headline
9 MDP Modal phrase 20 TTL Title
10 VOC Vocative 21 EXC Exclamative sentence
11 PRN Parenthetical 22 CMD Imperative sentence

Functional tags. Table 3.14 shows 22 functional tags designed for our treebank. These
tags give additional information about syntactic function of phrases. For example, in
Figure 3.3, SBJ following NP indicates that NP is the subject of the sentence. In
addition, our functional tags also distinguish among different types of adverbial phrases.
For example, in Figure 3.3, two functional tags, CMP and LOC following PP indicate
that the PP not only plays a role of a complement of the verb sinh_sốngto live, but it is
also an adverbial phrase indicating location.

62

Annotation guidelines

Table 3.15: Our null elements.

No. Tag Explanation

1 *T* Trace of phrase movement
2 *E* Ellipses without trace for phrase
3 * Ellipses with trace for phrase
4 *0* Null complementizer
5 *P* Null passive verb
6 *H* Ellipses with trace for head word
7 *D* Ellipses with trace for direct object of reduced relative clause

a) b)
NP

NP2

Nn-H

quốc_gia
{country}

PP1

Cs-H

trên
{in}

NP

Nn-H

thế_giới
{world}

Cp

và
{and}

NP4

Nn-H

vùng
{area}

Nn

lãnh_thổ
{territory}

PP2

Cs-H

trên
{over}

NP

Nn-H

thế_giới
{world}

NP

NP2

Nn-H

quốc_gia
{country}

PP1

*-1

Cp

và
{and}

NP4

Nn-H

vùng
{area}

Nn

lãnh_thổ
{territory}

PP2-1

Cs-H

trên
{over}

NP

Nn-H

thế_giới
{world}

{countries all over the world and territories all over the world} {countries and territories all over the world}

Figure 3.4: An example showing the use of null elements in our treebank.

Null elements. Our null elements include seven categories as showed in Table 3.15.
They are used to mark ellipses. This marking is to understand the syntactic structure
of a sentence so that we can understand the meaning of the sentence. For example,
Figure 3.4a shows a complete structure of a noun phrase in Vietnamese, in which post-
modifiers of NP2 and NP4 include the same prepositional phrases. In some cases, PP1 is
dropped. Therefore, we mark PP1 with the label *, and mark the same reference indices
for * and PP2 (Figure 3.4b).

3.3.3.2 Challenges of bracketing

The four characteristics of the Vietnamese language cause many confusing expressions
in bracketing Vietnamese texts. Specifically, expressions that have the same structure
or the same surface form can be bracketed in different ways. Follows are some common
ambiguous cases in Vietnamese bracketing.

Noun phrases or simple sentences. In Vietnamese, both noun phrases and simple
sentences have the same word orders. For example, for the expression chimbird hótto sing

in rows 1 and 2 of Table 3.16, the word order is the verb follows the noun. However,

63

Chapter 3. Building a syntactic treebank for Vietnamese

Table 3.16: Examples illustrating ambiguities between noun phrase and simple sen-
tences.

No. Bracketing Word order Example

1 S TôiI đã-ed tìmto find ra nơiplace chimbird hótto sing
Verb follows {I have found the place where the birds sing}

2 NP
noun Chimbird hótto sing làto be chimbird sơn_canightingale

{The singing birds are nightingale}/
{The birds that are singing are nightingale}

3 S Câytree nàythis láleaf vàngyellow
Adjective {This tree’s leaves are yellow/This tree’s leaves have been yellow}

4 NP follows noun Mùaseason thuAutumn cóto have láleaf vàngyellow
{There are yellow leaves in Autumn}

the expression in row 1 is labelled as a simple sentence while it is a noun phrase in row
2. This ambiguity occurs due to the following reasons: (1) verbs are not marked with
morphological information, which is an important clue to distinguish between modifying
verbs and predicative verb phrases; (2) when a verb follows a noun, it can be a mod-
ifier, a relative clause, or a predicate. In Vietnamese, a relative clause is placed after
a subordinate conjunction màwhich/that/..., rằngwhich/that/..., etc., but such subordinate
conjunctions are frequently dropped.

The same situation occurs with the expression láleaf vàngyellow in rows 3 and 4, in which
the adjective follows the noun. In this case, the expression in row 3 is labeled as a simple
sentence while it is a noun phrase in row 4.

Separated constituents or a simple sentence. There are expressions that have
the same structure, but should be bracketed in different ways. For instance, Figure 3.5
shows verb phrases having the same structure of Vv NP VP. However, the expressions
NP VP modifying the head verbs can be bracketed as simple sentences (Figures a and
c) or annotated separately (Figures b and d). We can see in the figure that such an
ambiguity does not occur in English, despite the fact that the English and Vietnamese
phrases convey the same content. One of the reasons for this is that in English, we
have clues, e.g., inflexions, to distinguish between subjects and objects, and between
predicative verb phrases and modifying verb phrases. In contrast, such clues are not
presented in Vietnamese. Subordinate conjunctions introducing a relative clause, as
mentioned above, is frequently dropped.

Ambiguities caused by flexible word orders. The flexible word orders in Viet-
namese make the bracketing task even more difficult. Rows 1, 2, and 3 of Table 3.17
present common word orders, in which lexical words follow head words in phrases. On
the other hand, in many phrases, the word order is reversed, i.e., modifying lexical words
are placed in front of the head words (as presented in row 4 of Table 3.17). There are

64

Annotation guidelines

a) VP

Vv

mong
{to hope}

S

NP

Nq

các
{-s/-es}

Nn

con
{child}

VP

Vv

học
{to study}

ADJP

Aa

giỏi
{good/well}

b) VP

Vv

đưa
{to take}

NP-DOB

Nq

các
{-s/-es}

Nn

con
{child}

VP-CMP

Vv

đi
{to go}

NP

Nn

công_viên
{park}

{hope that the children study well} {take the children to the park}
c) VP

Vv

khiến
{to make}

S

NP

Pp

nó
{he/him}

VP

Vv

chờ
{to wait}

ADJP

Aa

lâu
{for a long time}

d) VP

Vv

đề_nghị
{to ask}

NP-DOB

Pp

anh
{you}

Pd

ấy
{that}

VP-CMP

Vv

nghỉ
{to stop}

NP

Nn

việc
{work}

{make him waiting so long} {ask him to stop working}

Figure 3.5: Expressions that have the same structure, but should be bracketed in
different ways.

also cases of which the word orders are opposite to each other, but the interpretation
is the same, as illustrated in Table 3.18. Such flexible word orders cause ambiguities in
distinguishing phrases that have the same POS sequences. Table 3.19 presents examples
of such ambiguities between a noun phrase and an adjective phrase (rows 1 and 2), a
verb phrase and an adjective phrase (rows 3 and 4), and a noun phrase and a verb phrase
(rows 5 and 6).

Flexible word orders can be generalised to flexible phrase orders, which also cause brack-
eting ambiguities. We can see from Figures 3.6a and 3.6b that although we invert the
noun phrase and the prepositional phrase, interpretations of the verb phrases are the
same. However, it is worth to note that when the prepositional phrase is placed at
the end of the verb phrase, we can bracket the verb phrase in two ways: (1) the noun
phrase and the prepositional phrase are two separated phrases (Figure 3.6a), or (2) the
prepositional phrase is a post-modifier of the previous noun (Figure 3.6c).

Ellipses. Ellipses frequently occur in Vietnamese texts and cause confusion for not only

65

Chapter 3. Building a syntactic treebank for Vietnamese

Table 3.17: Examples of noun phrases, verb phrases and adjective phrase illustrating
fixed word order in Vietnamese.

No. Phrase POS sequence Example

1 NP Nn Aa ngườiperson đẹpbeautiful {beautiful person}
2 VP Vv Aa chạyto run nhanhquick {run quickly}
3 ADJP Aa Nn đẹpbeautiful ngườiperson {good looking}
4 NP Aa Nn nhiềua lot kinh_nghiệmexperience {a lot of experiences}

Table 3.18: Several examples illustrating flexible word order in Vietnamese.

No. Phrase POS sequence Example

1 VP Aa Vv lầm_lũisilent sốngto live {live silently}
2 VP Vv Aa sốngto live lầm_lũisilently {live silently}
3 VP Aa Vv trực_tiếpdirect báo_cáoto report {report directly}
4 VP Vv Aa báo_cáoto report trực_tiếpdirect {report directly}

Table 3.19: Expressions illustrating ambiguities in differentiating phrases that have
the same POS sequences.

No. Pair of POS Example Treatmentphrases sequense

1 Aa Nn nhiềua lot kinh_nghiệmexperience NP
NP and {a lot of experiences}

2 ADJP Aa Nn nhiềua lot kinh_nghiệmexperience ADJP
{experienced}

3 VP and Aa Vv lầm_lũisilently sốngto live {live silently} VP
4 ADJP Aa Vv ítlittle họclearn {unlearned} ADJP
5 VP and Vv Nn xuất_phátto start điểmpoint {starting point} NP
6 NP Vv Nn họcto study toánmath {study math} VP

annotators but also linguists. Diep [1] treated the sentence in Figure 3.7 as a single
sentence (Figure 3.7b), in which the expression before the comma is a subordinate
component expressing the manner. However, this sentence can be understood as a
subordinate compound sentence [2], in which the subject of the first clause is dropped
because it is identical to that of the second clause (Figure 3.7c).

3.3.3.3 Policies for annotating brackets

In general, we have addressed ambiguities of the bracketing layer by checking expressions’
meanings in their contexts and their meanings after inserting, replacing, and reordering
their words. For some cases, we have to remove words in expressions to determine how
the words are important to the expressions. Details of applying these criteria to real
texts are described below.

66

Annotation guidelines

a) VP

Vv

học
{to learn}

NP

Nn

tính
{character}

Aa

nhẫn_nại
{patient}

PP

Cs

của
{from}

NP

Nn

bố_mẹ
{parent}

b) VP

Vv

học
{to learn}

PP

Cs

của
{from}

NP

Nn

bố_mẹ
{parent}

NP

Nn

tính
{character}

Aa

nhẫn_nại
{patient}

{to learn patience from one’s parents} {to learn patience from one’s parents}

c) VP

Vv

học
{to learn}

NP

Nn

tính
{character}

Aa

nhẫn_nại
{patient}

PP

Cs

của
{of}

NP

Nn

bố_mẹ
{parent}

{to learn the parent’s patience }

Figure 3.6: An example illustrating flexible word orders in Vietnamese.

Distinguish between noun phrases and simple sentences. For cases that an
expression is constituted by a noun preceding a verb (as rows 1 and 2 of Table 3.16),
we will insert a subordinate conjunction or a demonstrative pronoun into the expression
and check its meaning to decide the appropriate label. For instance, we can insert the
subordinate conjunction màthat/which before the bold expression in row 1 of Table 3.16
(as demonstrated in row 1 of Table 3.20) without changing the original interpretation.
This indicates that the bold expression in this sentence is a relative clause that should
be bracketed as a simple sentence (with the S label). Meanwhile, the bold expression
in row 2 of Table 3.16 should be annotated as a noun phrase because we can insert
the demonstrative pronoun đóthat/those14 after the verb hótto sing (as shown in row 2 of
Table 3.20). This insertion reveals that the verb hót {singing} (like the demonstrative
pronoun đóthat/those) is a modifier of the head noun chimbird. On the other hand, we
can also insert the subordinate conjunction màthat/which before the verb hótto sing in row
2 of Table 3.16 (as demonstrated in row 3 of Table 3.20). As a result, hótto sing can be
recognized as a reduced relative clause modifying the previous noun chimbird. In this

14Demonstrative pronouns in Vietnamese, such as nàythis/these, đóthat/those, ấythat/those, and
kiathat/those play the same roles as demonstrative adjectives in English, but they are placed at the
end of noun phrases.

67

Chapter 3. Building a syntactic treebank for Vietnamese

a) Original text:
Muốn tăng thu nhập, chúng ta phải thường xuyên tăng ca.
{To increase the income, we must work overtime frequently.}

b) Bracketed as a single sentence
S

VP-MNR

Vv-H

Muốn
{to want}

VP-CMP

Vv-H

tăng
{to increase}

NP-DOB

Nn-H

thu_nhập
{income}

PU

,

NP-SBJ

Pp-H

chúng_ta
{we}

VP

Vv-H

phải
{must}

VP-CMP

ADJP

Aa-H

thường_xuyên
{frequent}

Vv-H

tăng
{to increase}

NP-DOB

Nn-H

ca
{shift}

PU

.

c) Bracketed as a compound sentence
S

S

NP-SBJ

*-1

VP

Vv-H

Muốn

VP-CMP

Vv-H

tăng

NP-DOB

Nn-H

thu_nhập

PU

,

S

NP-SBJ-1

Pp-H

chúng_ta

VP

Vv-H

phải

VP-CMP

ADJP

Aa-H

thường_xuyên

Vv-H

tăng

NP-DOB

Nn-H

ca

PU

.

Figure 3.7: An example of confusion caused by ellipsis.

example, hótto sing can be considered as either a modifying verb phrase or a reduced
relative clause. In our treebank, we decided to annotate such phrases as modifying
phrases to the previous noun. There are two reasons for our selection. Firstly, meaning of
sentences that contain such phrases does not change when we treat the phrases like that.
Secondly, distinguishing between modifying verb phrases and reduced relative clauses
is not an easy task (as illustrated in the above-mentioned example). Bracketing them
in the same structure will ensure consistent annotations. For cases like the expression
in row 4 of Table 3.20, we can label the verb hoạt_độngto operate as a modifier of the

68

Annotation guidelines

Table 3.20: Examples of bracketing expressions that have the same structure.

No. Ambiguity Phrase in context Considered expression Treatment Reason of treatment

1 S or NP
Tôi đã tìm ra nơi mà chim hót chimbird hótto sing

S
We can insert the subordinate

{I have found the place where {the birds sing} conjunction màthat before
the birds sing} the considered expression

2 S or NP
Chim hót đó là chim sơn ca chimbird hótto sing

NP
We can insert the demonstrative

{Those singing birds are nightingale} {the singing birds} pronoun đóthat/those after
the verb hót

3 S or NP
Chim mà hót là chim sơn ca chimbird hótto sing

NP
We can insert the subordinate

{The birds that are singing are {the birds that are conjunction màthat before
nightingale} singing} the verb hót

4 S or NP

Nguyên tắc hoạt động của máy này Nguyên_tắcprinciple

NP

A head noun can be modified
tạo ra công suất rất lớn hoạt_độngto oprerate by a possessive prepositional
{The operating principle of this {operating principle} phrase that its head preposition
machine creates a big capacity} is củaof

5 S or NP
Cây này lá đã vàng láleaf vàngyellow

S
We can insert the adjunct

{This tree’s leaves have been yellow} {the leaf has been yellow} indicating tense đã−ed
before the adjective vàngyellow

6 S or NP
Mùa thu có lá vàng láleaf vàngyellow

NP
We can not add an adjunct

{There are yellow leaves {yellow leaves} indicating tense as a modifier
in Autumn} of the adjective vàngyellow

7 NP or ADJP
Tôi có nhiều kinh nghiệm. nhiềualot kinh_nghiệmexperience

NP
We can replace nhiều

{I have a lot of experiences.} {a lot of experiences} by the other quantifiers
such as 2 or vàiseveral

8 NP or ADJP
Tôi là người nhiều kinh nghiệm. nhiềualot kinh_nghiệmexperience

ADJP
Phrase nhiều kinh_nghiệm

{I am an experienced person.} {exprerienced} modifies the noun người person
about quality.

9 VP or ADJP

Anh ấy lầm lũi sống. lầm_lũisilently sốnglive VP Inverting the adjective lầm_lũi
{He lives silently.} {lives silently} and the verb sống does not
Anh ấy sống lầm lũi. sốnglive lầm_lũisilently VP cause meaning change.
{He lives silently.} {lives silently}

10 VP or ADJP
Tôi học ít. {I learn little.} họclearn ítlittle {learn little} VP Inverting the adjective ítlittle
Tôi ít học. {I am unlearned} ítlittle họclearn {unlearned} ADJP and the verb họclearn

causes meaning change.

noun nguyên_tắcprinciple by adding the possessive prepositional phrase củaof máymachine
nàythis {of this machine} after hoạt_độngto operate. Since the possessive prepositional
phrase can be a modifier of the noun nguyên_tắcprinciple, the verb hoạt_độngto operate

also plays the same role.

Regarding expressions that are constituted by an adjective preceding a noun (bold ex-
pressions in rows 3 and 4 of Table 3.16), if we can insert an adjunct indicating tense
as a pre-modifier of the adjective, the expressions should be bracketed with an S label
(example 5 in Table 3.20). In contrast, the expressions will be treated as noun phrases
(example 6 in Table 3.20).

Distinguish between noun phrases and adjective phrases. For a noun phrase
and an adjective phrase that have the same structure as shown in rows 1 and 2 of Table
3.19, to determine the phrase tags, we can base on the criterion of word replacement or
meaning of the expression in the context. Rows 7 and 8 of Table 3.20 show the expres-
sions nhiều kinh nghiệm presented in two contexts. In row 7, the word nhiềumany/a lot of

modifies the noun kinh nghiệm in terms of quantity. We can replace nhiều by other
quantifiers, such as 2 or vàiseveral. Therefore, the expression nhiều kinh nghiệm {a lot
of experiences} in this case should be bracketed as a noun phrase. In contrast, the
expression nhiều kinh nghiệm {experienced} in row 8 of Table 3.20 should be bracketed

69

Chapter 3. Building a syntactic treebank for Vietnamese

S

Cp

Vì
{because}

S

NP-SBJ

*-1

VP-MNR

Vv-H

Muốn
{to want}

VP-CMP

Vv-H

tăng
{to increase}

NP-DOB

Nn-H

thu_nhập
{income}

Cp

nên
{so/therefore}

S

NP-SBJ-1

Pp-H

chúng_ta
{we}

VP

Vv-H

phải
{must}

VP-CMP

ADJP

Aa-H

thường_xuyên
{frequent}

Vv-H

tăng
{to increase}

NP-DOB

Nn-H

ca
{shift}

PU

.

{Since we want to increase the income, we must work overtime frequently.}

Figure 3.8: An example about the elliptical compound sentence in our treebank.

with an ADJP because it modifies the noun ngườiperson in terms of quality and we can
not replace nhiều in this context by a number or a quantifier, e.g., vàiseveral, các−s/−es
or một ítalittle.

Distinguish between verb phrases and adjective phrases. For a verb phrase
and an adjective phrase that have the same structure, if its words can be inverted
without changing the meaning, the phrase is annotated with a VP label (see example 9
in Table 3.20). Otherwise, if the inversion causes another interpretation, the phrase are
bracketed on the basic of the common word orders in Vietnamese, the modifying lexical
word follows the head word (see example 10 in Table 3.20).

Ellipses. Since the meaning of a sentence does not change when we annotate it as a
simple sentence or a compound sentence, we select a consistent structure for each type
of sentences. For example, sentences like the one in Figure 3.7 is annotated as a simple
sentence (Figure 3.7b). However, we bracket sentences like the one in Figure 3.8 as a
compound sentence because this sentence is constructed with a conjunction pair, vìbecause
... nênso/therefore. In our guidelines, conjunction pairs vìbecause ... nênso/therefore, không
những ... mà còn {not only ... but also}, tuyalthough ... nhưngbut, etc. are used to link
not only two clauses of a compound sentence but also two coordinate phrases. In Figure
3.8, although the first expression–Muốn tăng thu nhập is a verb phrase, similar to the
sentence in Figure 3.7, the expression is placed between two conjunctions vìbecause and
nênso/therefore, and coordinated with a clause. Therefore, we treat the first expression
as an elliptical clause, in which the subject is dropped because it is the same as that of
the second clause.

70

Annotation guidelines

Table 3.21: Our internal structure tags.

Group Tag Description

Word

Nn_w A combination of one or more Sino-Vietnamese
elements and a Vietnamese original word to create a noun

Vv_w A combination of a Sino-Vietnamese element
and a Vietnamese original word to create a verb

Aa_w A combination of a Sino-Vietnamese element and
a Vietnamese original word to create an adjective

R_w A combination of a Sino-Vietnamese element and
a Vietnamese original word to create an adjunct

Nn_swsp A sequence of a classifier noun (Nc) and its modifier
that means as a noun

Nn_swsp A sequence of a special classifier noun (Ncs) and its
modifier that means as a noun

Supra-word Nn_swsp A sequence of a categorization noun (Nn) and its
sub-phrase modifier that means as a noun

Vv_swsp_Rt Repetition form that means as a verb
Aa_swsp_Rt Repetition form that means as an adjective
Nn_swsp_Rt Repetition form that means as a noun
ON_swsp_Rt Repetition form is a sound

3.3.3.4 Internal structures

In this project, we aim to build a treebank that is widely useful for the research commu-
nity. Therefore, for cases that have little consensus in the community as to methodology
to treat them, we use structures that can be automatically converted into others. Dis-
cussions in the above sections already showed several structures. In this section, we will
describe the use of internal structures to bracket the other cases.

In the bracketing guidelines, internal structure tags are classified into two types, word
(w) and supra-word sub-phrase (swsp), as showed in Table 3.21. Tags that belong to the
word group are used to bracket expressions of Sino-Vietnamese elements and Vietnamese
original words. In these expressions, the Sino-Vietnamese elements play the same role
as affixes in English.

As mentioned above, the Sino-Vietnamese elements are not treated as words by lin-
guists [1, 2]. They consider expressions composed by Sino-Vietnamese elements and
Vietnamese original words as subordinate compound words. However, in Vietnamese,
special classifier nouns are treated as words by linguists, despite the fact that they have
the same grammatical functions as Sino-Vietnamese elements. In our corpus, we con-
sider both special classifier nouns and Sino-Vietnamese syllables as single words. We
use internal structure tags to mark two types of expressions: (1) expressions composed

71

Chapter 3. Building a syntactic treebank for Vietnamese

Table 3.22: Examples show expressions bracketed with internal structure tags.

No. Types of expression Examples

1 SV and Vv (Nn_w (Vv nghiên_cứu) (SV viên)) {researcher}
2 Ncs and Vv (Nn_swsp (Ncs nhà) (Vv nghiên_cứu)) {researcher}

Table 3.23: Examples show different types of treatment for an expression constituted
by a classifier noun and a common noun.

No. Author Treatment

1 Corp. [123] (NP (Num 2) (Nn cây) (Nn lúa)) {two rice plants}
2 SCSSV [2] (NP (Num 2) (Nn cây_lúa)) {two rice plants}
3 Our (NP (Num 2) (Nn_swsp (Nn cây) (Nn lúa))) {two rice plants}

by Sino-Vietnamese elements and Vietnamese original words, and (2) expressions com-
posed by special classifier nouns and other words, in which Sino-Vietnamese syllables
and special classifier nouns play the same role as affixes in English. Table 3.22 shows
two examples of such expressions.

Other internal structure tags in the swsp group are used to bracket expressions that are
considered as words or phrases by linguists. For example, rows 1 and 2 in Table 3.23
show two different ways that Corp. [123] and SCSSV [2] (respectively) treat cây lúa–
an expression composed by a categorization noun and a specific noun in Vietnamese.
Specifically, Corp. [123] considers câytree/plant lúarice {rice plant} as a phrase. SCSSV
[2], in contrast, labels it as a compound word. In our guidelines, expressions composed
by a categorization noun and a specific noun are segmented on the basis of the word
segmentation rule 6. Splitted expressions, like cây lúa will be bracketed with the internal
structure tag Nn_swsp, as illustrated in row 3.

Expressions bracketed with internal structure tags can be automatically converted to
make them suitable for specific needs. For example, if we want to treat the example
in row 2 of Table 3.22 as a word, we can combine the words nhà and nghiên_cứu
automatically. The POS tag of the new word nhà_nghiên_cứuresearcher is Nn, which
are characters standing in front of the hyphen in the internal structure tag Nn_swsp.

3.3.3.5 Comparison with VLSP Treebank

Regarding bracketing tags, Nguyen et al. [3] did not use internal structure tags to bracket
expressions having little consensus in the linguistic community. Our treebank is the
first corpus that has addressed controversial expressions of the Vietnamese language.
Additionally, on the basis of Nguyen et al. [3]’s tag sets, we have redefined several tags

72

Annotation guidelines

a) VP

V-H

phải
{must/have to}

VP

V-H

đi
{to go}

VP

V-H

vay
{to borrow}

b) S

NP-SBJ

N-H

lãi
{interest}

VP

V-H

vay
{to borrow}

VP

V-H

chồng
{to accumulate}

PP

C-H

lên
{over}

NP

N-H

nợ
{debt}

N

gốc
{origin/original}

{have to borrow} {Interest accumulated over the original dept}
c) VP

Vv-H

phải
{must/have to}

VP-CMP

Vv-H

đi
{to go}

VP-CMP

Vv-H

vay
{to borrow}

d) S

NP-SBJ

Nn-H

lãi
{interest}

VP

Vv-H

vay
{to borrow}

VP

Vv-H

chồng
{to accumulate}

PP-CMP

Cs-H

lên
{over}

NP

Nn-H

nợ
{debt}

Nn

gốc
{origin/original}

{have to borrow} {Interest accumulated over the original dept}

Figure 3.9: Examples show how complements are labeled in the VLSP treebank
(Figures a and b) and our treebank (Figures c and d).

and added new tags. For example, Nguyen et al. [3] used the function tag EXT to mark
verbs’ complements, which are noun phrases expressing frequency or range [126]. Based
on this definition, the verb phrases modifying the verbs phảimust/haveto and đito go in
Figure 3.9a and the prepositional phrase modifying the verb chồngto accumulate in Figure
3.9b should not be labeled with the functional tags. However, we found that these verb
phrases and the prepositional phrase are required by the previous head verb. We cannot
understand the sentence’s meaning if the modifying verb phrases and the prepositional
phrase are removed. Therefore, in our bracketing guidelines, we have re-defined the
complement tag as follows: "A complement (CMP) can be a phrase or a clause which
is required by the head verb. We cannot understand the sentence if the complement
is deleted. However, complement is different from DOB and IOB". According to this
definition, we mark the verb phrases modifying the verbs phảimust/haveto and đito go

and the prepositional phrase modifying the verb chồngto accumulate with the function tag
CMP, i.e., VP-CMP and PP-CMP, as illustrated in Figures 3.9c and d.

Figure 3.10 presents another example where we bracketed a Vietnamese sentence with a

73

Chapter 3. Building a syntactic treebank for Vietnamese

a) Nguyen et al. [3]’s bracketing b) Our bracketing

S

VP

V-H

Có
{There are}

NP

M

2

Nc-H

cuốn

N

sách
{book}

PP-LOC

E-H

trên
{on}

NP

N-H

bàn
{table}

PU

.

SPL

VP

Ve-H

Có
{There are}

NP-CMP

Num

2

Nc-H

cuốn

Nn

sách
{book}

PP-LOC

Cs-H

trên
{on}

NP

Nn-H

bàn
{table}

PU

.

{There are two books on the table.} {There are two books on the table.}

Figure 3.10: Example of bracketing a special sentence in our treebank (Figure b) in
comparison with VLSP treebank (Figure a).

new added label—SPL (Figure 3.10b), which is different from Nguyen et al. [3] (Figure
3.10a). We can see from this figure that although Vietnamese is a SVO language, there
are special sentences having only one main component. In our treebank, such special
sentences are bracketed with the label SPL in order to distinguish them from normal
sentences, which are composed by two main components (the subject and the predicate)
and bracketed with the tag S. Meanwhile, Nguyen et al. [3] used only one tag S to
annotate both of the two types of sentences.

Investigating the VLSP treebank, we have found many expressions that are bracketed
with different structures from ours. For instance, in Nguyen et al. [3]’s treebank, a
reduced relative clause modifying the head noun of the subject was annotated as a
predicate (the bold expression in Figure 3.11a). We, in contrast, bracket reduced relative
clauses as post-modifiers of the modified head words (Figure 3.11b).

3.4 Quality control

To ensure the annotation consistency and accuracy, we consider four issues: building
good annotation guidelines, having an appropriate annotation process, training the an-
notators, and using tools to support the annotation. We have presented the annotation
guideline development in Section 3.3 and our annotation process in Section 3.2. In
this section, first, we will present our process to train the annotators and measure the
inter-annotator agreement and accuracy. Then, we describe software tools are used to
improve the annotation speed as well as to control the annotation quality.

74

Quality control

a) S

NP-SUB

Nc-H

Người
{person}

N

đàn_ông
{male}

VP

VP

V-H

có
{to have}

S

NP-SUB

M

nửa
{half}

N-H

đời
{life}

N

người
{human}

VP

V-H

là
{to be}

NP

N-H

thợ_săn
{hunter}

VP

V-H

vờn
{to play}

V-H

đuổi
{to chase}

NP-DOB

N-H

hổ
{tiger}

A

dữ
{ferocious}

PP-LOC

E-H

trong
{in}

NP

N-H

rừng
{forest}

A

rậm
{dense}

{The man who has been working as a hunter for a half of his life is chasing ferocious tigers in the forest}

b) S

NP-SBJ

Nc-H

Người

Nn

đàn_ông

VP

Ve-H

có

S-CMP

NP-SBJ

Nq

nửa

Nn-H

đời

NP

Nn-H

người

VP

Vc-H

là

NP-CMP

Nn-H

thợ_săn

VP

Vv-H

vờn

Vv-H

đuổi

NP-DOB

Vv-H

hổ

ADJP

Aa-H

dữ

PP-LOC

Cs-H

trong

NP

Nn-H

rừng

Aa

rậm

{The man who has been working as a hunter for a half of his life is chasing ferocious tigers in the forest}

Figure 3.11: Examples to illustrate how the reduced relative clauses are bracketed in
Nguyen et al. [3]’s treebank (Figure a) and our treebank (Figure b).

3.4.1 Training annotators, revising the guidelines and evaluating our
treebank

Although we tried to construct the guidelines as completely as possible before the anno-
tation process began, revising the guidelines during the annotation process is unavoidable
since real text is far more complicated than examples mentioned in the literature. In

75

Chapter 3. Building a syntactic treebank for Vietnamese

this section, we will discuss our method to improve the quality of annotation guidelines
and to ensure correct and consistent annotation. We also present the performance of
word segmenting, POS tagging, and parsing tools trained on our treebank.

After finishing a draft of the annotation guidelines, we trained two annotators and asked
them to annotate 600 texts (about 8,000 sentences) as preliminary annotation. In this
preliminary stage, we received feedbacks from the annotators about constructions that
they found difficult to annotate because of ambiguities or other reasons. Based on these
feedbacks, we revised instructions that cannot be applied to new data and those that
are not covered by the guidelines. After revising the guidelines, we retrained annotators
with the second version. Then, we carried out nine measurement rounds to calculate
accuracy and inter-annotator agreement. Each round includes the following steps:

• We randomly select three texts (about 40 sentences) from the results of the pre-
liminary annotation;

• Each annotator re-annotates the texts independently;

• Accuracy is computed by comparing the annotations of each annotator to a bench-
mark data, while inter-annotator agreement is computed by comparing the anno-
tations by one annotator to those by the other;

• We discuss with the annotators about errors and inconsistencies, and revise the
annotation guidelines (if necessary).

The benchmark data used to estimate the accuracy includes all texts selected in the
above-mentioned nine rounds, i.e., about 360 sentences. The benchmark data were
double-blind annotated by the two annotators. The resulting annotations were checked
and revised (if necessary) during group meetings.

Figure 3.12 presents the accuracy and the inter-annotator agreement after the nine
measurement rounds for three layers of annotation, including word segmenting, POS
tagging and bracketing. Figure 3.12a shows the accuracy of each annotator (denoted
by A1 and A2) compared to the benchmark data. Figure 3.12b shows the agreement
between two annotators. We use F-scores for evaluating WS and bracketing, and use
the precision scores for evaluating POS tagging. The figure shows that from the sixth
round, the accuracy and the inter-annotator agreement were higher than 90%, which is
satisfactory.

Moreover, we have also evaluated the quality of our annotators through new texts as
follows. After the ninth round of measuring the accuracy and inter-annotator agreement

76

Quality control

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9

WS

POS

Bracketing

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9

A1 WS

A1 POS

A1 Bracketing

A2 WS

A2 POS

A2 Bracketing

1

Rounds

Rounds

F-
sc
or
es

F-
sc
or
es

a) Accuracy

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9

WS

POS

Bracketing

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9

A1 WS

A1 POS

A1 Bracketing

A2 WS

A2 POS

A2 Bracketing

1

Rounds

Rounds

F-
sc
or
es

F-
sc
or
es

b) Inter-annotator agreement

Figure 3.12: Accuracy and inter-annotator agreement of the nine-round training
process.

Table 3.24: Inter-annotator agreement measured on new texts.

Data WS POS Parsingtagging
R P F P R P F

Test 1 99.72 99.44 99.58 97.18 90.54 90.70 90.62
Test 2 99.66 99.54 99.60 98.05 91.98 91.32 91.65

mentioned above, we randomly selected two tests from the preprocessed corpus15, each
test includes three texts (about 40 sentences) focusing on three different topics. Each test
was then individually annotated by our annotators (A1 and A2). The inter-annotator
agreement was presented in Table 3.24. We can see from this table that the agreement
between our two annotators for three layers of annotation were higher than 90%. This
again verifies that our treebank is reliable.

Our observations on the inconsistent annotations and errors have revealed that most
15Preprocessing steps includes cleaning data, topic classification, sentence segmentation, and annotat-

ing by using automatic tools.

77

Chapter 3. Building a syntactic treebank for Vietnamese

Table 3.25: Performance of word segmenter, POS tagger and parser trained on the
VLSP treebank and a subset of 10,000 sentences of our treebank.

Data WS POS Parsingtagging
R P F P R P F

VLSP treebank 96.3 95.0 95.6 93.13 70.40 73.07 71.71
Our treebank 96.00 96.34 96.17 94.83 74.73 77.21 75.95

inconsistencies were caused by ambiguous expressions. Figure 3.13 shows an inconsis-
tent example of the two annotators, in which the annotator A1 bracketed the prepo-
sitional phrase củaof khách_hàngclient {of client} as a post-modifier of the head noun
nhu_cầudemand (Figure 3.13a). In contrast, the annotator A2 treated của khách_hàng as
a post-modifier of the previous noun tổ_chứcdemand (Figure 3.13b). In fact, both anno-
tators are correct since the whole expression can be interpreted in two different ways as
illustrated in Figure 3.13. Although our guidelines contain many examples of ambiguous
expressions as well as their correct annotations, they cannot cover all ambiguous cases.
In real texts, ambiguous expressions appear in various forms and structures. As a result,
it is very difficult to detect all of them and put them in the guidelines. Another cause of
the inconsistencies is probably the carelessness of the annotators. Therefore, in order to
achieve a high agreement ratio, we can (1) train the annotators carefully and let them
practice more on the basis of real texts so that they become familiar with annotating
and analyzing the texts, and (2) update the guidelines for new constructions through
the annotation process.

In addition to measuring the accuracy and inter-annotator agreement, we have trained
tools of word segmenting, POS tagging, and parsing on a subset of our treebank including
10,000 sentences. We randomly selected 1,000 sentences for testing. The rest, including
9,000 sentences, was used for training. For the word segmenter, as there is no Vietnamese
word segmenting tool allowing us to re-train on a new corpus, we implemented our
own method by using YamCha16. For the POS tagger, we used a method proposed by
Nghiem et al. [33]. For the parser, we trained the Berkeley parser [13] with our treebank.
The evaluation results presented in Table 3.25 show that tools trained on our treebank
obtained better performance than those trained on the VLSP treebank [20, 34, 134].

3.4.2 Tools

This section first describes our annotation tools and then discusses several tools used
to pre-process texts so that our annotation becomes a semi-automatic process. We also

16http://chasen.org/ taku/software/yamcha/

78

Quality control

a) NP-DOB

Nn-H

nhu_cầu
{demand}

VP

Vv-H

chuyển
{transfer}

NP-DOB

Nn-H

tiền
{monney}

PP-IOB

Cs-H

cho
{to}

NP

Nq

các
{-s/-es}

Nn-H

tổ_chức
{organization}

PP

Cs-H

của
{of}

NP

Nn-H

khách_hàng
{client}

{the client’s demand to transfer money to organizations}

b) NP-DOB

Nn-H

nhu_cầu
{demand}

VP

Vv-H

chuyển
{transfer}

NP-DOB

Nn-H

tiền
{monney}

PP-IOB

Cs-H

cho
{to}

NP

Nq

các
{-s/-es}

Nn-H

tổ_chức
{organization}

PP

Cs-H

của
{of}

NP

Nn-H

khách_hàng
{client}

{demand to transfer money to the client’s organizations}

Figure 3.13: An inconsistent annotation between the two annotators in a polysemous
expression. The left tree is annotated by A1, the right one is by A2.

show the improvement of the annotation speed when texts were pre-processed before
the manual editing stage. Finally, we describe tools used to clean up our treebank.

79

Chapter 3. Building a syntactic treebank for Vietnamese

Figure 3.14: A screen shot of our annotation tool which shows how our annotation
tool worked when the annotator bracketed a noun phrase.

3.4.2.1 Annotation tool

Nguyen et al. [127] developed a tool to support the annotation of Vietnamese Treebank.
This tool allows annotators to visualize all annotation layers (word segmentation, part-
of-speech tagging, and bracketing) in a textbox. Annotators have to type all tags and
brackets. However, typing the tags not only wastes the time, but also causes annotation
errors because of the carelessness of the annotators [19, 20].

To speed up the annotation as well as avoid typing errors, we have modified the anno-
tation tool. In our annotation tool, each tag is presented by a button. The annotation
and modification of all layers are implemented by using mouse. For example, to bracket
a noun phrase, we select an expression that we want to bracket; then, we click the NP
button. The NP tag and brackets are automatically inserted to the sentence as illus-
trated in Figure 3.14. In addition, we have also built a Vietnamese dictionary based
on Hoang [122] and our annotation guidelines. This dictionary is applied to recommend
word segmentation and POS tags. For instance, when we select the word W to annotate,
all buttons that are potential POS tags of the word W will be highlighted. If W is not a
word in the dictionary, all buttons are disabled. An annotator can also see all meanings
of the word W and its corresponding POS tags in the editor. Figure 3.15 shows how our
annotation tool worked when the annotator tagged POS for a word.

80

Quality control

Figure 3.15: A screen shot of our annotation tool which shows how our annotation
tool worked when the annotator tagged POS for a word.

Table 3.26: Annotation speeds of our annotators for three layers of annotation.

Annotator Word segmentation POS tagging Bracketing

A1 19/6 14/11 53/74
A2 20/6 18/15 55/70

3.4.2.2 Speed up annotation with automatic tools

Additionally, we use several tools to automatically annotate the corpus before manually
editing. We use a tool built by Dinh and Vu [135] for word segmentation. A POS tagging
tool implemented by Nghiem et al. [33] is used to annotate POS. For the bracketing layer,
as there is no available tool, we constructed a supporting tool by training a Berkeley
parser [13] on the VLSP Treebank. Because the tag sets of the VLSP Treebank and ours
are different, we automatically mapped the VLSP Treebank’s tags to ours. Table 3.26
shows the annotation speed of each annotator (denoted by A1 and A2) for three layers of
annotation (WS, POS tagging and bracketing), which were measured after we finished
nine rounds of measurement of the accuracy and the inter-annotator agreement. In the
table, each pair of numbers (x1/x2) is the speed (in minutes) to annotate 347 words (11
sentences) manually without using automatic tools and the speed to manually edit 347
words (11 sentences) after the automatic tools were applied to the raw texts respectively.

81

Chapter 3. Building a syntactic treebank for Vietnamese

These results indicate that using tools to annotate texts before manually editing increases
the annotation speed of WS and POS tagging significantly. However, this pre-process
decreases the speed of bracketing. One of the reasons might be the low performance
of the parser (71.71% of F-score). Since the parsing results contain many spans and
crossing bracket errors, it takes time to delete spans and crossing bracket errors before
re-bracketing.

3.4.2.3 Tools to clean up the treebank

As the final step of quality control, we run tools to detect annotation errors, and ask the
annotators to manually correct them. Specifically, we use three different tools for three
annotation layers of Vietnamese Treebank. To detect WS errors, we use a tool developed
by us [19]. This tool detects expressions that have the same surface form or the same
syntactic structure, but should be annotated in different ways. Such expressions are
ambiguity and can potentially cause inconsistency between the two annotators. In order
to identify true inconsistent annotations, we use heuristics based on n-gram sequences
and phrase structures. Our tool was used to detect inconsistent annotations in the VLSP
Treebank as well. The results showed that 99.2% of detected expressions are inconsistent
annotations.

We also implemented a tool to detect POS inconsistent annotations [20]. We classified
POS inconsistencies into two types. Nc-inconsistency is a sequence of a classifier noun
and its modifier, in which the classifier noun has more than one way of POS annota-
tions in the corpus. The second type of inconsistency is multi-POS inconsistency. We
found that at each part (pre-modifier, head, or post-modifier) in each phrase category,
each word that is not a classifier noun has only one POS tag. For example, the word
củaproperty, which is the head word of a noun phrase, has to be annotated as Nn. If củaof
is the head word of a prepositional phrase, it has to be labelled as Cs. If a word is not
classifier noun and has more than one POS tag at each part in each phrase category, it
is considered as a multi-POS inconsistency. To detect inconsistent annotations for Viet-
namese POS tagging, we used the position of words in phrases, phrase categories, and
2-gram sequences. The inconsistent POS annotations of the VLSP treebank produced
by our tool is 97.5%.

After correcting annotation errors in WS and POS tagging, we run our TreeSearch tool
to revise the bracketing layer. A screen shot of our tool is shown in Figure 3.16. The
input of this tool is the treebank. All constituency tags in the corpus are automatically
listed in the combo box Constituency tag. When users want to check and edit a structure,
they first select a constituency tag, such as NP (noun phrase). All structures of noun

82

Conclusion

Figure 3.16: A screen shot of our tool for revising the Vietnamese Treebank.

phrases in the corpus will be found and listed automatically in the combo box Structure.
When they select a structure that they want to check and edit, e.g., NP = Nn NP PP,
our tool will mark sentences containing a phrase structure of NP = Nn NP PP with
the label [CHECK]. When users select a sentence marked with the label [CHECK], all
phrases having the structure NP = Nn NP PP will be coloured yellow. Users can edit
the phrases easily by using the mouse. For example, if users want to change the tag PP
in the yellow expression in Figure 3.16 to VP, they first click the mouse immediately
before the tag PP and then select the button VP on the tool bar. By using our tool,
searched structures are automatically extracted from the corpus. Such a feature not
only saves time for creating queries but also ensures that no structure in the corpus is
missed. Moreover, the search results are automatically highlighted in the editor, which
is convenient for checking and editing.

3.5 Conclusion

This chapter described our efforts to build a high-quality Vietnamese Treebank while
ensuring a reasonable annotation speed. We presented issues of the Vietnamese lan-
guage and our methods to address them to develop the clear, consistent and complete
annotation guidelines, including WS, POS tagging, and bracketing guidelines. These
guidelines, which is used to train the annotators, are valuable sources that serve the

83

Chapter 3. Building a syntactic treebank for Vietnamese

use of the treebank. In addition to developing the annotation guidelines, this chapter
also described other issues of ensuring the annotation quality, including an appropriate
annotation process, an appropriate process of training annotators and software tools
to support the annotation as well as to control the quality. Inter-annotator agreement
ratios and accuracy are higher than 90%, which shows that the annotated treebank is
reliable and satisfactory.

For the goal of a treebank with about 40,000 syntactic trees, we have completed 15,535
trees. The rest of the Vietnamese Treebank, which includes 24,465 trees, is now being
annotated. We will also update the annotation guidelines for new constructions (if any).
As mentioned in Section 3.4.2.2, we still have not had a good enough parser to pre-
process texts in order to improve the annotation speed of the bracketing layer. Hence,
we are planning to use our annotated syntactic trees to train a parser for Vietnamese.
We hope that the results of our research are useful for not only Vietnamese but also
other languages that have similar issues.

84

Chapter

4
An Empirical Investigation of

Error Types in Vietnamese
Parsing

We evaluated representative parsing models on the Vietnamese Treebank to find the
most suitable parsing method for Vietnamese in this chapter. We then combined the ad-
vantages of automatic and manual analysis to investigate errors produced by the parsers
and find the reasons for them. Our analysis focused on four possible sources of parsing
errors, namely limited training data, word segmentation errors, part-of-speech tagging
errors, and ambiguous constructions. This chapter is constructed as follows. Firstly, we
introduce our research in Section 4.1. Section 4.2 presents the parsing evaluation and
how word segmentation errors affect the performance of parsers. Our investigation on
the behaviour of the parsers is presented in Section 4.3. Section 4.4 discusses the impact
of the size of training data on parsing performance. Contributions of ambiguous POS
tags and confusing constructions to parsing errors are described in Sections 4.5 and 4.6
respectively. Finally, we conclude our work in Section 4.7.

4.1 Introduction

Syntactic parsing plays a crucial role in improving the quality of natural language pro-
cessing (NLP) applications and speech processing. Parsing has been broadly studied for

85

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

languages such as English and Chinese hence the development of many parsing methods.
For example, Klein and Manning [75], Petrov and Klein [70], Huang and Harper [101],
Collins [102], etc. used a generative probabilistic model called probabilistic context-free
grammar (PCFG) to develop the constituent parsers for English, Chinese, etc. However,
the original PCFG uses coarse context-free grammar that cannot attain the high-quality
parsing result due to the fact that there is not enough contextual information to dis-
tinguish the phrases having the similar behavior. Various strategies have been used
to enrich contextual information for such generative parsers. For examples, Matsuzaki
et al. [114] and Petrov et al. [13] employed automatic state-splitting; Collins [102] as-
sociated each category with a lexical item; Klein and Manning [75] applied structural
annotation.

Other trend of parsing is to use discriminative probabilistic models in which syntactic in-
formation can be enriched with features. Recent research has shown that discriminative
parsing has given superior performance to generative parsing. Two typical discriminative
algorithms used in parsing are conditional random fields (CRF) and neural networks.
Finkel et al. [103] and Hall et al. [72] reported that the feature-based CRF parsing at-
tained an F-score of over 90% on English. The English parsers used neural network
could also produce performances higher than 90% in F-score [73, 74].

The parsing problem has not yet been studied thoroughly for Vietnamese. Since the
first Vietnamese treebank was built [127], a few researchers have adapted available con-
stituent parsers to Vietnamese, such as AC. Le et al. [22] modified the Bikel’s parser [128]
and Le-Hong et al. [129] modified the LTAG parser developed by LORIA laboratory1.
However, the parsing accuracies were far lower than the performances reported for En-
glish, Chinese, and French.

It is hard to parse Vietnamese due to its linguistic characteristics. Vietnamese does not
have word delimiters and inflectional morphemes in comparison with English. While
similar problems also occur in Chinese [36], parsing Vietnamese may be more difficult
because the modern Vietnamese writing system is based on Latin characters, which
represent the pronunciation but not the meanings of words. As a result, there are many
polysemous expressions in Vietnamese, i.e., expressions having the same surface form
but different interpretations. Difficulties in Vietnamese parsing are also caused by word
orders. Although Vietnamese is a subject-verb-object (SVO) language like English and
Chinese, its word orders are different from these languages. For example, the word order
in noun phrases (NPs) in Vietnamese, is exactly the same as those in simple sentences,
which leads to ambiguities in labelling these two types of expressions. In addition, other
problems, such as word omission, cause many complications in parsing Vietnamese texts.

1http://www.loria.fr

86

Parsing evaluation

A worthwhile effort would be to analyze parsing errors to improve the quality of parsers.
We consider how to modify the parsers to capture the necessary information to model the
syntax based on this analysis. Several studies [136, 137] have manually investigated the
parsing errors. While manual investigations can find specific reasons causing parsing
errors, they are limited to only a few syntactic phenomena. Moreover, they are not
applicable to a large amount of parsing outputs. Kummerfeld et al. [110] developed
a tool to automatically classify English parsing errors within a set of predefined error
types such as NP attachment and VP attachment. However, based on these analyzing
results, we cannot specify any reasons to explain why the error types occurred, which is
important clues to improve the parser.

We firstly evaluate representative parsing models on the Vietnamese treebank in this
research. We then investigate four possible sources of errors produced by parsers. The
first source is the small size of the training data. In this phase, we evaluate the parsers
on different sizes of the training data to check whether the current size of Vietnamese
treebank is large enough for building a good parser. The second source may come
from word segmentation errors. We evaluate the parsers on two different versions of
the Vietnamese treebank, using gold word segmentation and word boundary predicted
by an automatic word segmentation tool. By doing so, we can estimate how word
segmentation errors affect the parsing performance. The third source is the confusing
POS tags. In this investigation, by experimenting the input data with and without
gold POS tags, we can isolate and quantify error types that can be solved by improving
Vietnamese POS tagging. The final possible source is the ambiguous constructions. We
used Kummerfeld et al. [110]’s tool in the automatic phase to quantify how often each
type of errors occurred in parsers. By comparing the results obtained from this analysis,
we could identify which types of errors could be addressed by different parsers, as well as
which errors were difficult for parsers to tackle. We manually investigate parsing errors
in the second phase based on the results obtained from analysis of the first phase to find
the reasons for each error type.

4.2 Parsing evaluation

We evaluated the representative parsers in the literature for English and Chinese on the
Vietnamese Treebank. For each parser, we used parameter settings that had the best
accuracy in English.

Stanford-Unlex [75] is an unlexicalized probabilistic context free grammar (PCFG)
parser where the coarse categories of PCFG, such as NP for noun phrases or VP for

87

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

verb phrases, are manually enriched by several simple structural annotations that are
state splitting (parent annotation and head lexicalization) and tag splitting.

Stanford-RNN [15] is a combination of a PCFG with a recursive neural network.
Phrase representations in this model are learned via the recursive neural network that
is conditioned on the coarse PCFG.

Berkeley parser [13] is an unlexicalized PCFG parser where the PCFG is automati-
cally enriched and generalized by using informative latent annotations.

Epic-CRF [72] is a CRF parser in which the anchored rules are scored by using the
sparse features of the surface spans.

Epic-NeuralCRF [73] is a CRF parser in which the anchored rules are scored using
dense features that are computed via a feedforward neural network.

RNNGs [74] is a top-down transition-based neural model in which a recurrent neural
network conditions on full input sentences to parameterize decisions. The RNNGs parser
supports two training models, i.e., discriminative (RNNGs-D) and generative models
(RNNGs-G).

We used the Vietnamese Treebank developed by Nguyen et al. [138] which includes
10,377 sentences. We randomly selected 1,000 sentences for the development (dev) set,
1,000 sentences for the test set, and the rest, including 8,377 sentences, was used for
training. We evaluated parsers in two different versions of the input data: (i) Raw: ap-
plying automatic analysis for word segmentation2 and POS tagging3, (ii) PredictedPOS:
using only gold word segmentation.

We use PARSEVAL for evaluating parsing performances on the PredictedPOS data set
and use TEDEVAL [115] for evaluating the parsing results in both Raw and Predict-
edPOS scenarios. Although the PARSEVAL evaluation does not accept the different
numbers of terminals between parse and gold trees, it was used in most parsing re-
search. All parsers used in this research were also evaluated by the PARSEVAL metric.
By using the same evaluation method with previous research, we can measure perfor-
mances of the Vietnamese parsing in comparison with other languages such as English.
Compared to the PARSEVAL evaluation, the TEDEVAL is not a popular evaluation
method. However, it allows different terminals between parse and gold trees. In this

2We have trained a Vietnamese word segmentation tool using SVM yamcha
(http://chasen.org/∼taku/software/yamcha/) and left right maximum matching. The training
data is the same as the one used for training parsers in this research. Our WS tool archives an F-score
of 96.31% on the test set.

3The POS tags were predicted by the parsers. However, the RNNGs parser does not have that
function. We have trained a Vietnamese POS tagger by using the method proposed by Nghiem et al.
[33]. The training data is the same as the one used for training parsers in this research. Our POS tagger
archives an accuracy of 94.65% on the test set.

88

Parsing evaluation

research, the TEDEVAL evaluation not only provides another view of the performance
of the Vietnamese parsing but also reveal the impact of word segmentation errors on the
parsing performance.

4.2.1 PARSEVAL evaluation

Table 4.1 shows parsing results produced by Evalb4 on the test set for the parsers. These
results indicate that:

• Stanf-RNN archived a higher performance in comparison with Stanford-Unlex.
The reason is that although Stanf-RNN was developed on the basis of the Stanford-
Unlex, it used a recursive neural network to study phrase representations that can
capture the lexical and semantic information. However, both Stanford-Unlex and
Stanf-RNN have achieved low performances on the Vietnamese Treebank. That
is because they used a manual method to enrich the contextual information for
subcategories designed only in the Penn Treebank. It is difficult to apply these
parsers to other treebanks such as the Vietnamese Treebank.

• Berkeley parser, similar to the Stanford-Unlex, is also an unlexicalized PCFG
parser in which the grammar is enriched by the grammar splitting. However,
the Berkeley parser produced much higher performance in comparison with the
Stanford-Unlex as well as the Stanf-RNN. This is because grammars are splitted
more heavily where needed in the Berkeley parser. This provides more effective
subcategories for the parser. Moreover, the grammars are splitted automatically
in the Berkeley parser, which makes it easy to apply to other treebanks than the
Penn Treebank.

• The Epic-CRF and Epic-NeuralCRF that are CRF parsers with rich input features
automatically extracted from the surface spans also work well on the Vietnamese
treebank. However, the parsing results show that the dense features computed via
a feedforward neural network [73] are not effective on the Vietnamese Treebank as
the sparse features do [72].

• Rows RNNGs-D and RNNGs-G show that a transition-based neural model, in
which top-down syntactic information was used, is also a suitable method for
Vietnamese parsing. In this parser, a recurrent neural network that conditions on
the entire syntactic derivation history was used to parameterize decisions. This
has greatly relaxed context-free independence assumptions. As a result, it has
improved the performance of parsers for not only Vietnamese but also for English

4http://nlp.cs.nyu.edu/evalb/

89

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

Table 4.1: PARSEVAL evaluations on the test set of the seven parsers.

Parsers Tagging R P Faccuracy
Stanf-Unlex 89.92 52.15 56.38 54.18
Stanf-RNN 91.83 63.66 66.15 64.88
Berkeley 93.94 70.38 73.48 71.90
Epic-CRF 93.15 72.20 72.96 72.58
Epic-NeuralCRF 93.85 71.68 72.42 72.05
RNNGs-D 94.65 71.94 72.45 72.19
RNNGs-G 94.65 71.71 74.21 72.94

and Chinese [74]. However, these parsing results also show that the generative
model (RNNGs-G) obtains a higher performance than the discriminative model
(RNNGs-D). This is because the discriminative model conditioned on all history,
stack, and input buffer, while the generative model only accessed the history and
stack. Using larger and unstructured conditioning contexts (input buffer that
contains unprocessed terminal symbols) in the discriminative model is difficult
and provides opportunities to overfit.

As shown in Table 4.1, RNNGs-G, a top-down transition-based neural model, has
achieved the highest performance on the Vietnamese Treebank, while the differences
among the RNNGs-G, Berkeley parser, Epic-CRF, and Epic-NeuralCRF are not very
significant. However, in comparison with English, these parsers still have achieved much
lower performances. One possible reason is that although each parsing method has it-
s own advantages, they are not good enough to address all Vietnamese constructions.
Specifically, we can see that although the RNNGs-G did not use features, it conditions
on the full input sentence that can capture the impact of a wide range of the surround-
ing words. This is beneficial for not only Vietnamese parsing but also English parsing.
However, why does the RNNGs-G achieve much lower performance in Vietnamese than
in English? One of the reasons is possibly that grammatical categories in English can be
recognized on the basis of inflectional morphemes or function words, while Vietnamese
does not have such inflectional morphemes. An additional characteristic of Vietnamese
is that Vietnamese uses Latin characters in the writing system which represents the
pronunciation but not meaning of the words. As a result, there are many words having
the same surface form but different interpretations in Vietnamese. Moreover, dropping
words including function words frequently occurs in the Vietnamese text. These indicate
that simply conditioning on the surface form of the words cannot address all Vietnamese
constructions.

The results of the Berkeley parser, Epic-CRF, and Epic-NeuralCRF have indicated that
enriching the contextual information is beneficial for the Vietnamese parsing. The con-
textual information can be fine-grained categorizations or features extracted from the

90

Parsing evaluation

Table 4.2: TEDEVAL evaluations on the test set of the seven parsers.

Parsers Labeled accuracy
Raw PredictedPOS

Stanf-Unlex 70.65 73.63
Stanf-RNN 72.34 75.33
Berkeley 80.55 81.32
Epic-CRF 80.60 83.59
Epic-NeuralCRF 80.51 83.75
RNNGs-D 81.22 88.06
RNNGs-G 81.81 88.45

surface spans of the anchor rules including the first and last words of the spans, the
span length, span shape descriptions, the start, stop, and split indexes where the rule
is anchored, etc. However, it seems that the contextual information extracted on the
basis of CFG rules did not sufficiently capture the Vietnamese constructions. While the
RNNGs have modeled sequences based on the full input sentence that could capture
more useful contextual information.

Two conclusions that can be made from this parsing evaluation is that: (1) contextual
information is very necessary for the Vietnamese parsing to capture the meaning of
words in different contexts. The contextual information can be words playing the roles
as inflectional morphemes in English, function words, fine-grained categorizations, etc.;
(2) the contextual information is determined not only on the basis of CFG rules but also
from the surrounding words.

4.2.2 TEDEVAL evaluation

Table 4.2 presents the TED accuracy on the test set of the seven parsers. Similarly to the
PARSEVAL evaluation, RNNGs-G has also achieved the highest scores in this evaluation
method in both Raw and PredictedPOS scenarios. However, although Epic-CRF has
achieved a higher F-score than the Epic-NeuralCRF in the PARSEVAL evaluation, it
has obtained lower TED accuracy than Epic-NeuralCRF.

Comparing the TED accuracy in Raw and PredictedPOS scenarios shows that the parsers
have achieved higher performances on the PredictedPOS data set. This indicates that
the word segmentation errors also contribute to the parsing errors. Specially, word
segmentation errors have a significant impact on the sequential models. The TED
accuracy of RNNGs-D and RNNGs-G have dropped 6.84% and 6.64% respectively when
we used the predicted word boundaries. This indicates that to improve the quality
of Vietnamese parsing, we should also improve the quality of the Vietnamese word
segmentation.

91

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

Table 4.3: Average number of bracket errors per sentence for the development set of
Vietnamese treebank. For example, Stanf-U produces output that has 2.23 note errors
per sentence that is caused by VP attachment. Values in the “Worst” row are presented

by full black bars. Values in the “Best” row are presented by empty bars.

1-Word VP NP PP Clause NP Mod Diff XoverX
Parser F-score Phrase Unary Attach Attach Attach Attach Int. Attach Label Co-ord Unary Other
Stanf-Unlex 53.49
Stanf-RNN 64.16
Berkeley 71.79
Epic-CRF 72.03
Epic-NeuralCRF 71.66
RNNGs-D 70.86
RNNGs-G 72.22
Best 0.86 0.48 1.36 1.10 0.87 0.81 0.38 0.38 0.70 0.03 0.02 1.78
Worst 1.33 0.86 2.23 1.86 1.80 1.06 0.68 0.96 0.92 0.07 0.03 4.06

The evaluation of the Vietnamese Treebank on different parsing methods has given an
overview of the parsing performances on the Vietnamese language. While RNNGs-G has
achieved the highest performance, this result is still much lower than that reported in
English and Chinese, despite of using the gold word segmentation. What are the reasons
for the low performance of Vietnamese parsing? Which clues can we use for improving
the quality of Vietnamese parsing in the future? We will investigate the parsing errors
in the following sections. This investigation is a valuable step towards improving the
quality of the Vietnamese parsing.

4.3 Investigating behaviour of the parsers

This investigation was aimed at clarifying two main issues: (1) what are the most fre-
quent errors in Vietnamese parsing and (2) which errors can be addressed by different
parsing methods? To answer these two questions, we used the tool developed by Kum-
merfeld et al. [110] to classify the parsing errors into error types such as VP attachments,
NP attachments, and Coordination5. We then computed the average number of bracket
errors per sentence for each error type. The results from analysis on the development
set of the Vietnamese treebank are presented in Table 4.36.

There are 11 error types (columns from “1-Word Phrase” to “XoverX Unary”) detected
by the analysis tool. The “Other” class contains about 20% of the Vietnamese parsing
errors that cannot be classified by the analysis tool7. Values in the “Worst” and “Best”
rows present the average number of bracket errors per sentence. For each parser, full
black bars have the value presented in the “Worst” row. Values of the empty bars are
presented in the “Best” row. For example, the full black bar at the row “Stanford-Unlex”
and column “VP attach” of Table 4.3 indicates that the Stanford-Unlex produces the

5It should be noted that each VP attachment error, NP attachment error, etc. can include one or
more node errors (bracketing errors) [110].

6The types of errors reported in this paper are the same as those in Kummerfeld et al. [110].
7The bracketing errors classified into “Other” class will be manually investigated in Section 4.6.

92

Investigating behaviour of the parsers

parsing output that contains, on average, 2.23 bracketing errors per sentence that are
caused by VP attachments. However, the empty bar in the row “RNNGs-G” and column
“VP attach” shows that the RNNGs-G produces, on average, 1.36 bracketing errors per
sentence due to VP attachments.

By comparing 11 types of errors produced by the parsers (columns from “1-Word Phrase”
to “XoverX Unary” in Table 4.3), we can see that bracket errors caused by VP attach-
ments are the most frequent in Vietnamese parsing. In addition, we can see from this
table that the errors that are due to NP attachments, PP attachments, 1-word phrase,
and clause attachments also frequently appear in Vietnamese parsing. Moreover, Table
4.3 also indicates how the errors can be addressed by different parsing methods. For
example, the RNNGs-G has created more Co-ordination (Co-or) errors than the Epic-
CRF. It also created more XoverX Unary errors than the Berkeley and Epic-CRF but
the differences are very small. However, for other error types, it is more productive than
other parsers.

Hence, this analysis has shown the challenging constructions in Vietnamese parsing, in
which the top three challenges are VP, NP, and PP attachments. This analysis has also
indicated that the RNNGs-G is the best method for addressing almost error types in
Vietnamese parsing. In addition, the quantification of error types also provides a chance
of investigating challenges of Vietnamese parsing in comparison with other languages. A
detailed comparison between Vietnamese and English parsing errors [110] is as follows:

• Most error types that appeared in English parsing also appeared in Vietnamese
parsing, excepts the NP internal structure8. However, the frequency with which
each error type occurred in Vietnamese parsing was much higher than that in
English, except for Co-ordination.

• Although the most problematic constructions in English parsing, i.e., PP attach-
ments, were not the most difficult constructions in Vietnamese parsing, PP at-
tachment errors appeared more frequently in Vietnamese parsing than in English
parsing.

• VP attachment errors were the most frequent errors in Vietnamese parsing. How-
ever, this error type did not appear in English parsing.

Kummerfeld et al. [121] also analyzed Chinese parsing errors. However, it was diffi-
cult for us to directly compare the results obtained from analysis for Vietnamese and
Chinese parsing. This was because we used the method of error classification proposed

8The NP internal structure is not annotated in the Vietnamese Treebank.

93

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

by Kummerfeld et al. [110], which was substantially different from that of Kummerfeld
et al. [121]. However, we drew three main conclusions from the observation of error
analysis results: (i) the NP internal structure is the most problematic construction in
Chinese parsing, while it is rare in Vietnamese parsing. (ii) Although VP, NP, and PP
attachments are the top three difficult constructions in Vietnamese parsing, they are
not frequent errors in Chinese parsing. No NP attachment errors have even appeared
in Chinese parsing and (iii) one-word phrases are the most problematic constructions in
both languages.

Hence, apart from containing the same complex constructions as English and Chinese
such as PP attachments, Vietnamese parsing has its own constructions, such as VP
attachments, that cannot be solved with the current parsing methods. A new parsing
method of addressing specific issues in the Vietnamese language is required. In addition,
by quantifying each error type produced by different parsing methods, our investigation
provided an orientation for improving the quality of Vietnamese parsing. For example,
solving the most frequent errors, such as VP attachment, NP attachment, and PP
attachment errors can significantly improve the quality of parsers. However, we could
not find reasons of error types from this investigation, which are very important clues
to solving errors. We will investigate three possible sources for the poor performance
of Vietnamese parsing in the following sections, viz., the impact of training data size
(Section 4.4), impact of POS tagging errors (Section 4.5), and impact of ambiguous
constructions (Section 4.6).

4.4 Impact of training data size

Our training data included 8,337 sentences, which were much fewer than the data used
for English and Chinese parsing. To identify whether the small size of training data was
the reason for the poor accuracy of the parsers, we evaluated them on different amounts
of training data including 1,337, 2,337, 4,337, 6,337, and 8,337 sentences. The parsing
results (F1) on the test set of the Vietnamese Treebank are presented in Figure 4.1.
We can see from this figure that the quality of the parsers increased when we increased
the training data from 1,337 to 2,337, 4,337, and 6,337. However, the F-score is almost
saturated when we increased the training data from 6,337 to 8,337 sentences. Therefore,
we could not expect a significant improvement in accuracy by simply increasing the
amount of data. Hence, the amount of training data was not the main reason for the
poor performance of the parsers.

94

Impact of tagging errors

Parser 1337 2337 4337 6337 8337
Stanf-U 50.02 52.44 53.05 53.71 54.18
Stanf-RNN 56.98 60.12 62.88 64.56 64.88
Berkeley 64.46 67.25 69.98 71.5 71.9
Epic-CRF 61.76 65.87 69.99 71.75 72.58
Epic-NeuralCRF 59.18 63.98 69 70.82 72.05
RNNGs-D 66.39 68.31 70.7 71.82 72.19
RNNGs-G 67.46 70.1 71.95 72.98 72.94

0	

10	

20	

30	

40	

50	

60	

70	

80	

F-
sc
or
es
	

Parsers	

1337	

2337	

4337	

6337	

8337	

Figure 4.1: Parsing results from the parsers with different amounts of training data.

4.5 Impact of tagging errors

Figure 4.2 presents the PARSEVAL evaluations (F-scores) of the parsers on two different
versions of the test set, PredictedPOS and GoldPOS, which used gold word segmenta-
tion and POS tags. These results indicate that using gold POS tags could improve the
accuracies of the parsers. The F-score of RNNGs-G especially achieved 78.2%, which
increased by 5.26% in comparison with the use of automatically tagged POSs (Predict-
edPOS). However, this figure does not indicate the error types that could be solved by
improving POS tagging. We will investigate the contributions of tagging improvement
to each error type in Section 4.5.1. Then, we explore how each ambiguous POS pair
impacts parsing errors in Section 4.5.2.

4.5.1 Contributions of tagging improvement to error types

To find how the gold POS tags affected parsing errors, we compared the error types
produced by the best parser, RNNGs-G, on two different versions of the dev set: (1)
Gold: by using gold word segmentation and POS tags and (2) Pred.: by only using gold
word segmentation. Table 4.4 presents a breakdown of these errors. In this table, the
“Occurences” columns indicate the number of times that each error type occurs. The
“Node errors” columns present the number of node errors that are caused by each error
type. For example, VP attachment errors occur 392 times in the parsing output with
automatically predicted POS tags. These 392 VP attachment errors have caused 1,362
bracketing errors. The “Node errors per sentence” columns indicate the average number
of bracketing errors per sentence. “Gain” presents the gain (positive number) and loss
(negative number) of node errors per sentence when the automatically predicted POS

95

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

Parsers Auto.	POS	 Gold	POS	
Stanf-U	 54.18 59.96
Berkeley	 71.9 75.67
Epic-CRF	 72.58 76.32
Epic-	NeuralCRF	 72.05 75.19
RNNGs-D	 72.19 77
RNNGs-G	 72.94 78.2

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

F-
sc
or
es
	

Parsers	

Auto.	POS		

Gold	POS		

Figure 4.2: Results from the parsers on two different versions of test set, Predicted-
POS and GoldPOS.

Table 4.4: Statistics on errors produced by RNNGs-G on two different versions of
dev set, Pred. and Gold. “Gain” represents gain (positive number) and loss (negative
number) of node errors per sentence when replacing automatically predicted POS tags
with gold POS tags (i.e., Errors per sentence (Pred.) - Errors per sentence (Gold)).

Error type Occurrences Node errors Node errors
Gainper sentence

Pred. Gold Pred. Gold Pred. Gold
Single Word Phrase 765 517 857 544 0.86 0.54 0.32
Unary 475 386 475 386 0.48 0.39 0.09
VP Attachment 392 373 1362 1368 1.36 1.37 -0.01
PP Attachment 415 345 936 837 0.94 0.84 0.10
Different label 350 157 700 314 0.70 0.31 0.39
NP Attachment 333 339 1104 1101 1.10 1.10 0.00
Clause Attachment 327 277 814 696 0.81 0.70 0.11
Modifier Attachment 216 182 381 362 0.38 0.36 0.02
NP Internal Structure 245 211 379 324 0.38 0.32 0.06
Co-ordination 34 44 34 44 0.03 0.04 -0.01
XoverX Unary 24 25 24 25 0.02 0.03 0.01
Other 969 729 1779 1435 1.78 1.44 0.34
Sum 4545 3585 8845 7436

tags were replaced by gold POS tags (i.e. Errors per sentence (Auto.) - Errors per
sentence (Gold)).

The results in Table 4.4 indicate that improved tagging reduced the occurrence of some
error types. However, these reductions were insignificant. Improved tagging did not
especially help two of the most frequent error types in Vietnamese parsing, i.e., VP
and NP attachments. We can see from Table 4.4 that occurrences of VP attachment
errors reduce when we replace the automatically predicted POS tags by the gold POS
tags. However, the gain does not occur for node errors caused by VP attachment errors.

96

Impact of tagging errors

Table 4.5: Top ten confusing POS pairs in Vietnamese.

No. Confused tags Occurences
1 Nn/Vv 106
2 Vv/Nn 87
3 Aa/Vv 77
4 Vv/Aa 69
5 Vv/Cs 62
6 Aa/Nn 51
7 Cs/Vv 40
8 Nc/Nn 38
9 Nn/Aa 37
10 R/Vv 32

The possible reason is that tagging improvement can help for several VP attachments.
However, other VP attachment errors have occurred because of ambiguous constructions
that caused more node errors.

4.5.2 Impact of ambiguous POSs on parsing errors

In this subsection, we investigate what are challenges of Vietnamese POS tagging, and
how these challenges contribute to the parsing errors.

For the first issue, comparing the dev set with automatically predicted POS tags against
the dev set with POS tags shows that there are 167 ambiguous POS pairs which occur
1,287 times in the dev set. The top ten confusing POS pairs and their frequency are
presented in Table 4.5. Each POS tag pair x/y in this table indicates that the gold POS
tag x is mispredicted as the POS tag y by the POS tagger. We can see from this table
that distinguishing between the noun (Nn) and the verb (Vv) is the most ambiguous in
Vietnamese POS tagging. Specifically, the confusion Nn/Vv occurs most often that is
106 times in the dev set. These challenges come from the characteristics of Vietnamese
languages such as the lack of inflectional morphemes and using Latin characters in the
writing system which represents the pronunciation but not the meaning of the word.
These create a lot of polysemous words in Vietnamese text. In addition, other contex-
tual information that can help for recognizing POSs such as adjuncts indicating tenses
standing before verbs, special classifier nouns standing before verbs, or classifier nouns
standing before nouns, are also frequently omitted in the real text.

For the second issue, to see how each ambiguous POS pair impacts the parsing errors,
we used the same method as Kummerfeld et al. [121] to find how an ambiguous POS
pair impacted parsing errors. We began from Gold, and replaced the gold tags with
tags that were predicted by the automatic tagger (semi-gold input). We then parsed
the semi-gold input by using RNNGs-G and obtained the results from the PARSEVAL
evaluation and automatic analysis. The impacts of the top four confusing POS pairs

97

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

Table 4.6: Most frequently confusing POS tag pairs in Vietnamese POS tagging. ∆
F1 indicates decreases in F-scores when gold POS tags were replaced with predicted
POS tags. Meanings of POS tags are: Nn: common nouns, Vv: common verbs, and

Aa: adjectives.

Confusing Bracketing
tags Occurrences Errors F1 ∆ F1
Nn/Vv 106 7694 76.26 -1.94
Vv/Nn 87 7764 76.15 -2.05
Aa/Vv 77 7897 75.62 -2.58
Vv/Aa 69 7749 76.07 -2.13
Gold POSs 7436 78.20

on overall bracketing errors and F-scores are presented in Table 4.6. We can see that
all of these four confusing POS pairs were potential contributors to bracketing errors
that caused significant decreases in F-scores. However, this table also indicates that
the frequency of confusing POS pairs was not directly proportional to the contributions
they made to parsing errors. For example, although Aa/Vv was the third most confusing
POS pair, it contributed most to parsing errors and caused the highest decrease in F-
scores (2.58). While occurrences of Nn/Vv were highest (106 times), they caused the
lowest decrease in F-scores (1.94). The reason originates from different complexities of
the phrases. The complexities of NP and VP are quite similar, for example both Nn
and Vv can be modified by the SBAR or PP. Therefore, when a Nn was mispredicted as
the Vv, the noun phrase where the Nn is the head word could be bracketed as the VP.
Frequencies of parsing errors for these two constructions are not very different. While,
the construction of ADJP is more simple than VP, for example, the Aa is not modified
by a PP, except the PP with the head word nhưas which expresses the equal comparison,
or the Aa cannot be modified by a SBAR. When a parsing error occurred in the ADJP,
it caused few bracketing errors. However, when an Aa was mispredicted as a Vv, the
ADJP with the head word Aa was bracketed as the VP. And the phrases such as PP
and SBAR, which should be bracketed separately from the previous Aa, were bracketed
as the modifier of the Vv. This has caused the significant difference of bracketing errors
when the Aa was mispredicted as the Vv or reverse.

Table 4.7 summarizes the impact the top four confusing POS pairs had on each error
type. The positive and negative numerals correspond to the number of bracketing errors
that were created or reduced in parsing output when we replaced gold POS tags with
predicted POS tags. Analysis based on five of the most frequent error types of VP
attachment, NP attachment, PP attachment, clause attachment, and single word phrase
revealed the following.

• VP and NP attachments: As was previously explained, improved POS tagging
did not assist in preventing VP and NP attachment errors. We can see from

98

Impact of tagging errors

Table 4.7: Gains and Losses of bracket errors when the gold POS tags are replaced
by the POS tags predicted by the automatic tagger. For example, the number 80 in row
“Single Word Phrase” indicates that replacing the gold POS tag Nn (common noun)
by the predicted POS tag Vv (common verb), number of Single Word Phrase error

increases 80 errors.

Error type Nn/Vv Vv/Nn Aa/Vv Vv/Aa
Single Word Phrase 80 70 66 68
Unary 16 22 52 38
VP Attachment -26 44 -45 17
NP Attachment -65 -45 37 -43
PP Attachment 27 51 83 48
Clause Attachment 75 26 103 70
NP Internal Structure 69 21 50 30
Modifier Attachment 11 25 -11 -14
Different label 42 44 32 22
Co-ordination -21 -14 -14 -21
XoverX Unary -1 -1 -2 -1
Other 51 85 110 99

Table 4.7 that bracketing errors caused by VP attachment errors increased when
we replaced gold POS tags Vv with predicted POS tags Nn or Aa. Bracketing
errors caused by NP attachment errors also increased when we replaced gold POS
tags Aa with predicted POS tags Vv. This indicated that gold POS tags were
of help in these cases. However, using predicted POS tags was better for some
constructions, e.g., using predicted POS tags Vv instead of gold POS tags Nn
reduced 65 bracketing errors that were caused by NP attachment errors. This
reveals that low performance of Vietnamese parsing is caused by other reasons.

• PP attachments: All four confusing POS pairs caused these types of parsing
errors. However, Aa/Vv was the major contributor to parsing errors.

• Clause attachments: Aa/Vv was the major contributor to these types of parsing
errors. In addition, ambiguous POS pairs, such as Nn/Vv and Vv/Aa, also created
significant numbers of bracketing errors.

• Single word phrase: All four confusing POS pairs caused this type of parsing
errors.

Hence, the quality of Vietnamese parsing could be improved by 5% through improving
the Vietnamese POS tagging. We also found that all frequent ambiguous POS pairs
contributed to parsing errors in which Aa/Vv was the major contributor. In addition,
our investigations also found that improved POS tagging was beneficial for some con-
structions, such as PP attachment, clause attachment, and single word phrase. We
should develop further processes for VP and NP attachments, which were two of the
most confusing constructions, apart from improving POS tagging.

99

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

4.6 Ambiguous constructions in Vietnamese

An ambiguous construction is a tag sequence (including POS tags and phrase tags) that
can be bracketed in different ways. For example, the sequence of POS tags Nn Vv can
be bracketed as a noun phrase (NP) in which Vv is a modifier of the head noun Nn.
This tag sequence can be also bracketed as a simple sentence where Nn is the subject
and Vv is the predicate.

This section aims to investigate parsing errors that were caused by ambiguous construc-
tions in Vietnamese. To isolate such type of errors, we eliminated impacts of small size
of training data, word segmentation errors, and confusing POS tags from the parsing
output. The above-mentioned evaluations showed that the parsing result by RNNGs-G
did not change significantly when we increased the training data from 6,337 to 8,337
sentences. Therefore, by using the RNNGs-G parsing model trained on 8,337 sentences,
we can eliminate the impact of small size of the training data. In addition, we also
used the gold word segmentation and POS tags when we parsed the development set in
the following experiment. As a result, parsing errors produced by the RNNGs-G in the
development set are purely caused by ambiguous constructions in Vietnamese.

In this investigation, we manually analyze the error types produced by the analysis tool
developed by Kummerfeld et al. [110]. This tool was designed to classify the English
parsing errors. By directly applying it to the Vietnamese parsing output, we found
about 20.1% of the errors placed in the “Other” type (for English, this ratio is about
11.3%). Although we do not modify the tool so that it can classify specific errors of
Vietnamese parsing, we will manually analyze these errors to capture the reasons that
caused them.

4.6.1 Classified constructions

The results obtained from a manual investigation based on 100 sentences randomly se-
lected from the parsing output of the dev set indicated that Vietnamese included many
ambiguous constructions. Table 4.89 presents several frequent ambiguous construction-
s in Vietnamese parsing that were found in this manual investigation. The column
“Ambiguous construction” in this table presents frequent ambiguous tag sequences in
Vietnamese. The error type, which is caused by ambiguous tag sequences, is indicated
in the column “Error type". For example, the tag sequences Nn Vv VP, Nn Aa VP,
Nn Nn VP, Vv Vv VP, and so on are candidates for VP attachment errors. For each

9Nn in Table 4.8 represents a noun that can be Nn (a common noun), Nc (a classifier noun), or Ncs
(a special classifier noun). Each component of the tag sequence can be generalized as a phrase, e.g.,
instead of Nn, a noun phrase with head word Nn can be placed in the position of Nn

100

Ambiguous constructions in Vietnamese

Table 4.8: Several frequent ambiguous constructions in Vietnamese parsing.

Ambiguous construction Error type Frequency
Nn|Vv|Aa|Cs Vv|Aa|Nn VP VP attachment 19/34
Vv|Nn Vv|Aa|Nn NP NP attachment 25/39
Nn|Vv Nn|Vv PP PP attachment 17/29
NP VP NP VP Clause attachment 10/26
NP|VP NP|VP VP Clause attachment 6/26
Cs NP VP Clause attachment 4/26

pair of x/y in the column “Frequency", the x represents the number of times that each
ambiguous tag sequence caused errors in 100 investigated sentences. The y indicates
the frequency of each error type in 100 investigated sentences. For example, we found
26 clause attachment errors in 100 investigated sentences, in which 10 clause attach-
ment errors were caused by tag sequence NP VP NP VP. We will next present several
examples of frequent ambiguous constructions in Vietnamese parsing.

Figure 4.310 shows a VP attachment error caused by the ambiguous construction Ncs Vv
Nn VP11. In this figure, RNNGs-G annotated the verb phrase VP as a modifier of the
noun nhà−er/−or while this verb phrase was treated as a predicate of the simple sentence
in the gold tree. This ambiguity occurred because Vietnamese does not have inflectional
morphemes as well as supporting function words that are important clues to distinguish
between the modifying verb phrase and the predicative verb phrase. This ambiguity
is also caused by the problem of the word order. Unlike English and Chinese, where
modifying lexical words stand in front of the head noun, in Vietnamese noun phrases,
modifying lexical words follow the head word. It is difficult to distinguish between noun
phrases and simple sentences because they have the same structure. Another possible
reason for this ambiguity is that polysemous words occur frequently in Vietnamese. We
can see in Figure 4.3 that the word cho can be understood as so that, which can be used
to introduce a clause, or can be understood as for or to followed by a phrase.

Figure 4.4 presents another VP attachment error caused by the ambiguous tag sequence
Vv Nn Vv. Similarly to this figure, the second Vv follows a Nn in Figure 4.3. However,
in this case, the second Vv should be annotated as a modifier of the previous noun (gold
tree) rather than the head of the phrase as in Figure 4.3a. In practice, similar to the
example in Figure 4.3, RNNGs-G also considered the second Vv and the Nn in this
example as two separate phrases (the parsing output). This confusion is also caused by

10Underscore “_” is used to link syllables of Vietnamese multi-syllable words. English translations of
Vietnamese words are given as subscripts. If a Vietnamese word does not have a translatable meaning,
the subscript is blank. The translation for the Vietnamese sentence is given in curly brackets below the
original text.

11The sequence Ncs Vv is a combination of the special classifier noun nhà−er/−or and the verb
đầu_tưto invest that means as the noun investor. Therefore, we can consider the construction Ncs Vv Nn
VP as a similar form of the ambiguous construction Nn Nn VP mentioned in Table 4.8.

101

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

a) Parser output

PP

Cs

cho
{so that/for/to}

NP

Ncs

nhà
{-er/-or}

Vv

đầu_tư
{to invest}

NP

Nn

nước_ngoài
{overseas}

VP

Vv

đầu_tư
{to invest}

PP

Cs

vào
{in}

NP

Nr

VN
{Vietnam}

{for overseas investors who invest in Vietnam}

b) Gold tree

PP

Cs

cho
{so that/for/to}

S

NP

Ncs

nhà
{-er/-or}

Vv

đầu_tư
{to invest}

NP

Nn

nước_ngoài
{overseas}

VP

Vv

đầu_tư
{to invest}

PP

Cs

vào
{in}

NP

Nr

VN
{Vietnam}

{so that overseas investors invest in Vietnam}

Figure 4.3: Examples illustrating the ambiguity between noun phrases and simple
sentences in Vietnamese.

102

Ambiguous constructions in Vietnamese

the phenomenon that the modifying verb (hẹnto make an appoinment) follows the head noun
(giấypaper) in the noun phrase. In addition, there is no clue such as function words or
inflection to distinguish the modifying verb from the head verb in a verb phrase. It is
difficult to differentiate a noun phrase having a modifying verb (or verb phrase) from
a separate structure including a noun phrase and a verb phrase because they have the
same structure.

There is also ambiguity between coordination and subordinate constructions in Viet-
namese. Figure 4.5 shows another VP attachment error caused by the structure of two
adjacent verbs. This expression is bracketed as a subordinate construction by RNNGs-
G, but it is a coordination in the gold tree. In this figure, we also cannot find any clue
to determine whether this expression is a coordinate construction or a subordinate one.
In English subordinate constructions, the second verb can be preceded by a to or added
an inflectional morpheme -ing. In Vietnamese, we do not have such clues. In practice,
there is a conjunction such as vàand or hoặcor or a comma between two words in Viet-
namese coordinate constructions. However, it is frequently dropped in real text. These
characteristics lead to the situation that coordinate and subordinate constructions have
the same structures.

Dropping words is also one of the reasons for the clause attachment error shown in
Figure 4.6. We can see that the conjunction introducing the SBAR (gold tree) is
dropped. This creates a POS sequence including two adjacent nouns thành_quảproductt
nhà_nướcgovernment. It is ambiguous to determine the role of the noun nhà_nướcgovernment
because it can be a modifier of the previous noun or combines with the later words. We
can also see from this example that the role of the coordinate conjunction vàgovernment
is predicted incorrectly. It is because this conjunction can be used to link two clauses of
a compound sentence (as the parsing output) or it can belong to a coordinating phrase
(as the gold tree) in Vietnamese.

Figure 4.7 presents the construction Vv Vv NP that causes NP attachment error in
Vietnamese parsing. When a noun phrase follows two verbs, it is difficult to determine
that this noun phrase is the modifier of the first verb (as in the gold tree) or the second
verb (as the parsing output). This ambiguity is caused by the common word order in
Vietnamese, in which modifying lexical words follow the head word. In addition, it
also results from the lack of inflectional morphemes. We can see in the figure that this
is not an ambiguous construction in English parsing (as well as in Chinese) because
cases like mở_rộngto extend are expressed by adverbs standing before the head verb and
cannot be combined with a noun. However, Vietnamese does not have adverbs; verbs
and adjectives are used in such contexts. It is confusing to bracket these constructions
because the noun phrase can modify both.

103

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

a) Parser output

VP

Vv

cầm
{to hold}

NP

Nn

giấy
{paper}

VP

Vv

hẹn
{to make an
appointment}

PP

Cs

sau
{after}

NP

Num

một
{a/one}

Nt

tháng
{month}

VP

Vv

đến
{to come}

VP

Vv

nhận
{to receive}

{to hold the note of appointment, to come here to receive after a month}

b) Gold tree

S

S

VP

Vv

cầm

NP

Nn

giấy

Vv

hẹn

S

PP

Cs

sau

NP

Num

một

Nt

tháng

VP

Vv

đến

VP

Vv

nhận
{to hold the note of appointment, to come here to receive after a month}

Figure 4.4: Examples illustrating an ambiguity between subordinate and separate
constructions in Vietnamese.

104

Ambiguous constructions in Vietnamese

a) Parser output b) Gold tree

S

NP

Nn

xe
{car}

VP

Vv

lên
{forth}

VP

Vv

xuống
{back}

S

NP

Nn

xe
{car}

VP

Vv

lên
{forth}

Vv

xuống
{back}

{cars go back and forth} {cars go back and forth}

Figure 4.5: Examples illustrating ambiguity between coordination and subordinate
construction in Vietnamese.

Figure 4.8 presents an example to illustrate how an adjective in Vietnamese plays the
same role as an adverb in English. We can see that the adjective modifying the head
verb is placed after the head verb. This causes the confusion in deciding whether a
noun phrase should modify the previous adjective or the head verb. RNNGs-G consid-
ered this noun phrase as a modifier of the previous adjective (as shown in the parsing
output). Meanwhile, it should annotate the adjective and the noun phrase as separate
constructions (as in the gold tree).

Figure 4.9 presents a PP attachment error caused by the ambiguous construction Vv Nn
PP. It is confusing because PP can modify the head verb or attached to the previous
noun. This error results from the polysemous preposition để, which can be understood
as to or for. While prepositional phrases having the head word đểto are frequently
attached to the head verbs, the other ones with the head word đểfor commonly modify
the previous nouns.

4.6.2 “Other” class

The automatic analysis tool classified 20.1% bracketing errors into the “Other” class.
Manually investigating these errors based on 100 output sentences shows that the major
sources for them are similar to those of the above-mentioned error types. Several errors
can be classified into the existing types such as clause attachment and VP attachment.
For example, the error in Figure 4.10 can be considered as a clause attachment error, in
which the clause S2 should be attached to the root S (as in the gold tree) rather than
the verb vềto come back (as in the parsing output). In Vietnamese, the conjunction pair
nếuif ... thìthen is used to link two clauses of a compound sentence. Sometimes, thì can

105

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

a) Parser output

S

S

NP

Nw

Tất_cả
{all}

Nn

đường
{road}

Nn

bêtông
{concrete}

VP

Vc

là
{to be}

NP

Nn

thành_quả
{product}

NP

Nn

Nhà_nước
{government}

Cp

và
{and}

S

NP

Nn

nhân_dân
{people}

VP

ADJP

Aa

cùng
{together}

Vv

làm
{to work}

{all concrete roads are products that government and people work together}

b) Gold tree

S

NP

Nw

Tất_cả

Nn

đường

Nn

bêtông

VP

Vc

là

NP

Nn

thành_quả

SBAR

S

NP

Nn

Nhà_nước

Cp

và

Nn

nhân_dân

VP

ADJP

Aa

cùng

Vv

làm

{all concrete roads are products that government and people work together}

Figure 4.6: Examples illustrating a clause attachment error in Vietnamese.

106

Ambiguous constructions in Vietnamese

a) Parser output b) Gold tree

VP

Vv

điều_tra
{to inspect}

VP

Vv

mở_rộng
{to extend}

NP

Nc

vụ
{<classifier
noun>}

Nn

án
{case}

VP

Vv

điều_tra

VP

Vv

mở_rộng

NP

Nc

vụ

Nn

án

{inspect to extend the case} {extendedly inspect the case}

Figure 4.7: Examples illustrating the ambiguity between subordinate and separate
constructions in Vietnamese.

a) Parser output b) Gold tree

VP

Vv

thực_hiện
{to observe}

ADJP

Aa

nghiêm_chỉnh
{strict}

NP

Nn

luật_pháp
{law}

Aa

sở_tại
{local}

VP

Vv

thực_hiện

ADJP

Aa

nghiêm_chỉnh

NP

Nn

luật_pháp

Aa

sở_tại

{Strictly observe local laws} {Strictly observe local laws}

Figure 4.8: Examples illustrating the ambiguity between separate constructions and
subordinate constructions that caused NP attachment errors in Vietnamese parsing.

be replaced by a comma. However, we can see from Figure 4.10 that the second linking
word (thìthen or comma) and the subject of the second clause were omitted. This created
a construction similar to the verb phrase that includes two or more adjacent verbs, as
mentioned above. It is ambiguous to determine whether the second verb modifies the
previous verb or they should be annotated separately. One possible reason for such
incorrect classification is that this construction does not appear in English.

In addition, we also found several errors caused by incorrect attachment of adjectives.
Figure 4.11 presents an illustrating example for this. Similarly to the cases mentioned
above, this error is also caused by the word order in which modifying lexical words
(namely adjective phrases) follow the head noun in a noun phrase. Another reason is

107

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

a) Parser output

VP

Vv

làm
{to prepare}

NP

Nn

thủ_tục
{procedure}

PP

Cs

để
{to/for}

VP

Vv

xin
{to ask}

VP

Vv

được
{<expressing
passive>}

VP

Vv

cấp
{to issue}

NP

Nn

hộ_chiếu
{passport}

Aa

mới
{new}

{prepare the procedure to ask for a new passport}

b) Gold tree

VP

Vv

làm

NP

Nn

thủ_tục

PP

Cs

để

VP

Vv

xin

VP

Vv

được

VP

Vv

cấp

NP

Nn

hộ_chiếu

Aa

mới
{prepare the procedure for asking for a new passport}

Figure 4.9: Examples illustrating the ambiguity in determining the head of a prepo-
sitional phrase.

108

Ambiguous constructions in Vietnamese

a) Parser output

S

Cp

nếu
{if}

NP

Nr

Liên

VP

Vv

về
{to return}

VP

Vv

bảo
{to ask}

VP

Vv

gọi
{to call}

R

ngay
{imediate}

PP

Cs

cho
{for}

NP

Nn

chị
{Ms.}

Nr

Thảo

PU

.

{If Lien returns, you ask her to call Ms. Thao immediately.}

b) Gold tree

S

Cp

Nếu

S1

NP

Nr

Liên

VP

Vv

về

S2

VP

Vv

bảo

SBAR

S

VP

Vv

gọi

R

ngay

PP

Cs

cho

NP

Nn

chị

Nr

Thảo

PU

.

{If Lien returns, you ask her to call Ms. Thao immediately.}

Figure 4.10: Examples illustrating a clause attachment error that cannot be recog-
nized by the analysis tool.

109

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

a) Parser output b) Gold tree

NP

Nn

Đường_đất
{earth road}

ADJP

Aa

nhỏ
{small}

S

NP

Nn

Đường_đất

ADJP

Aa

nhỏ

{a small earth road} {The earth road is small}

Figure 4.11: Examples illustrating an adjective attachment error that cannot be
recognized by the annalysis tool.

that the predicate of a simple sentence is not necessarily a verb phrase; it can be an
adjective phrase, a prepositional phrase, a noun phrase, or a clause. This causes the
ambiguity between a noun phrase and a simple sentence because they have the same tag
sequence.

In summary, ambiguous constructions are the major contributor to errors in Vietnamese
parsing. Statistics on top four frequent error types, VP, NP, PP, and clause attachments,
indicated that there is about 63% of attachment errors caused by the frequent ambiguous
constructions in Vietnamese. These ambiguities are resulted from the characteristics of
Vietnamese language such as the lack of inflectional morphemes, polysemous words,
dropping words, and word order in which modifying lexical words follow the head word.
However, we find that these ambiguities can be addressed based on the context. For
example, as we mentioned above, the polysemous word cho is one of the reasons that
caused the ambiguity in Figure 4.3. This ambiguity will be solved if the meaning of the
word cho is determined. If cho means for or to, the expression of Ncs Vv Nn VP is a
noun phrase in which VP is a post-modifier. In the case that cho is interpreted as so
that, this expression is a simple sentence where VP is the predicate. Determining the
meaning of the word cho can be relied on the word that it modifies. For example, the
word cho is interpreted as for when it modifies the word thủ_tụcprocedure (Figure 4.12a).
However, cho means so that when it modifies the word chắp_nốito make a link (Figure
4.12b).

While solving the ambiguity in Figure 4.3 needs to consider the meaning of the surround-
ing words, the contextual information used to disambiguate the expression Vv Nn Vv in
Figure 4.4 can be found within the expression itself. We can see that because Vietnamese
does not have inflectional morphemes, the verb hẹnto make an appointment plays the same
role as a specific noun that modifies the categorization noun giấypaper (as in the gold
tree). Therefore, we will bracket the expression Nn Vv in Figure 4.4 as a subordinate

110

Ambiguous constructions in Vietnamese

a) NP

Nn

thủ_tục
{procedure}

PP

Cs

cho
{so that/for/to}

NP

Ncs

nhà
{-er/-or}

Vv

đầu_tư
{to invest}

NP

Nn

nước_ngoài
{overseas}

VP

Vv

đầu_tư
{to invest}

PP

Cs

vào
{in}

NP

Nr

VN
{Vietnam}

{the procedure for overseas investors who invest in Vietnam}

b) VP

Vv

chắp_nối
{to provide a link}

PP

Cs

cho
{so that/for/to}

S

NP

Ncs

nhà
{-er/-or}

Vv

đầu_tư
{to invest}

NP

Nn

nước_ngoài
{overseas}

VP

Vv

đầu_tư
{to invest}

PP

Cs

vào
{in}

NP

Nr

VN
{Vietnam}

{to provide a link so that overseas investors invest in Vietnam}

Figure 4.12: Examples illustrating how to determine the meaning of the preposition
cho.

111

Chapter 4. An Empirical Investigation of Error Types in Vietnamese Parsing

construction modifying the first verb if information to recognize the categorization noun
giấypaper is provided. We found that categorization nouns can be distinguished from
the other nouns by tag splitting. In the Vietnamese Treebank, although categorization
nouns were annotated by the same POS tag as other common nouns (Nn), expressions
of the categorization noun and specific noun were bracketed with the internal structure
tag Nn_swsp. We can use this annotation for splitting POS tags.

Although Vietnamese has many confusing constructions, these ambiguities can be tack-
led on the basis of the contextual information such as words playing roles as prefixed
or suffixes, function words, fine-grained categorizations, the head words of phrases, the
main verbs of clauses, etc. Therefore, to improve the quality of Vietnamese parsing, we
need to study new methods that can capture these contextual information.

4.7 Conclusion

To date, challenges of Vietnamese parsing have not been studied thoroughly. We tried to
alleviate such situation by evaluating representative parsing models on the Vietnamese
Treebank. Then by quantifying the error types produced by the parsers, we could
capture the behaviour of parsers, viz parsing models based on CRF and neural network
are good for Vietnamese; contextual information is very beneficial for improving the
parsing performance. This investigation has revealed that there are four frequent errors
in Vietnamese parsing: VP attachment, NP attachment, PP attachment, and clause
attachment.

Our investigation has also shown that we could not expect a significant improvement
of Vietnamese parsing by enlarging the training data. Although improvement of word
segmentation is beneficial for parsing, the gains are insignificant. The POS tagging
improvement can enhance the performance of the parser about 5% in F-score. However,
it could not address two of the most frequent error types in Vietnamese parsing, VP
attachment and NP attachment.

In addition, our investigation on parsing errors has revealed that ambiguous construc-
tions are the major contributor to the parsing errors in Vietnamese. Statistics on the
top four frequent error types, VP, NP, PP, and clause attachments, has indicated that
there is about 63% of attachment errors caused by ambiguous constructions. These am-
biguities resulted from the characteristics of the Vietnamese language such as the lack
of inflectional morphemes, polysemous words, dropping words, and word order in which
modifying lexical words follows the head word. However, these errors can be addressed

112

Conclusion

by using contextual information such as fine-grained categorizations and objects of verb-
s. To improve the quality of Vietnamese parsing, we need to study new parsing methods
that suit the characteristics of the Vietnamese language, so that parsers can capture the
necessary contextual information for parsing Vietnamese constructions.

113

Chapter

5
Conclusion and future work

5.1 Conclusion

Treebanks and parsers play crucial roles in the growth of natural language processing
(NLP) and linguistic research. To impulse the development of NLP on Vietnamese as
well as other resource-inadequate languages, we built a high-quality Vietnamese treebank
while ensuring a reasonable annotation speed. In addition, we evaluated our treebank
on different parsing methods and investigated the sources of errors produced by the
parsers.

Our efforts to build a high-quality Vietnamese treebank were presented in Chapter
3. In that chapter, we described challenges of Vietnamese language processing and our
methods to address them. We developed three clear, consistent, and complete annotation
guidelines, including WS guidelines (44 pages), POS tagging guidelines (73 pages), and
bracketing guidelines (182 pages). These guidelines are valuable resources that serve
the training of annotators and the use of the treebank. The quantity of rules in the
guidelines is as follows.

• 9 rules for segmenting ambiguous expressions

• 34 rules for tagging ambiguous words

• 39 rules for bracketing ambiguous expressions

115

Chapter 5. Conclusion and future work

In addition to the annotation guidelines, Chapter 3 also described issues of ensuring
the quality of the treebank, including appropriate processes of annotator training and
annotation as well as software tools to support the annotation and control the quality.

Our treebank is reliable and satisfied. Inter-annotator agreement, intra-annotator a-
greement, and accuracy are higher than 90%. Our treebank is also more consistent and
accurate than VLSP, the only existing Vietnamese treebank, although our annotation
scheme is more complicated. Typically, we defined twice more POS tags than those of
VLSP, but still, our treebank helped achieve better accuracy on important NLP tasks:
automatic word segmentation, POS tagging, and parsing.

Evaluating representative parsing models on our treebank was described in Chapter 4.
Among the tested parsers, RNNGs-G [74], a probabilistic model of phrase-structure
trees based on recurrent neural network, achieves the highest accuracy. Other context-
aware methods such as hierarchical state-splitting for unlexicalized parsing [13] and
exploiting the rich input features of the surface spans for CRF parsing [72], also obtained
competitive results. However, their F1 score (0.72) is lower than that of testing in English
(0.90) and Chinese (0.86). The main reason is that those parsers cannot capture all
contextual information in Vietnamese sentences.

To find the detailed reasons for the low performance of the Vietnamese parsing, we
investigated the possible issues including a small size of treebank, word segmentation
errors, confusing POS tags, and confusing constructions. The results showed that we
could not expect a significant improvement by enlarging the training data. Although
word segmentation errors and tagging confusions affect the parsing results, confusing
constructions are the major cause of the low performance. Confusing constructions in
Vietnamese appear in many forms, such as ambiguous POS sequences or ambiguous
symbol sequences. They are caused by the characteristics of Vietnamese such as lack
of inflectional morphemes, post-head modifying lexical words, and dropping words. Al-
though Vietnamese has many confusing constructions, these ambiguities can be solved
based on the contextual information such as the words playing the roles as prefixed and
suffixes, function words, fine-grained categorizations, headwords of the phrases, main
verbs of the clauses, etc.

Results of this thesis are worth contributions for the development of the Vietnamese
language processing. Our treebank provides resources so that different algorithms can
be tested and improved. Our parsing error analyses provide clues to modify parsers to
capture the necessary information for syntax modeling. We envision that our research
is not only beneficial for Vietnamese language processing but also for similar languages
such as Thai, Laos, and so on.

116

Future work

5.2 Future work

As we mentioned in Chapter 2, a treebank can include three annotations: constituent
annotation, functional annotation, and semantic annotation. Our treebank has been
annotated with the constituent structure and grammar functions. In the future, we
will extend our treebank with the semantic information so that it can serve a broader
range of NLP problems. We will also convert our treebank into other structures such as
dependency structure, HPSG [139], and CCG [54, 140].

For the parsing problem, we will study new parsing techniques as well as methods for en-
riching the contextual information to address the confusing constructions in Vietnamese.
In addition, the quality of Vietnamese word segmentation and POS tagging needs to be
improved. Given high-quality tools for word segmentation, POS tagging, and parsing,
we can build advanced NLP systems for Vietnamese, such as machine translation and
question answering.

117

Bibliography

[1] Quang-Ban Diep. Vietnamese grammar. Vietnam Education Publisher, 2005.

[2] SCSSV. Vietnamese grammar. Social Sciences Publishers, 1983.

[3] Phuong-Thai Nguyen, Anh-Cuong Le, Tu-Bao Ho, and Van-Hiep Nguyen. Viet-
namese treebank construction and entropy-based error detection. Language Re-
sources and Evaluation, pages 1–33, 2015.

[4] Jason Katz-Brown, Slav Petrov, Ryan McDonald, Franz Och, David Talbot, Hi-
roshi Ichikawa, Masakazu Seno, and Hideto Kazawa. Training a parser for machine
translation reordering. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 183–192. Association for Computational Lin-
guistics, 2011.

[5] Jingsheng Cai, Masao Utiyama, Eiichiro Sumita, and Yujie Zhang. Dependency-
based pre-ordering for chinese-english machine translation. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics, pages 155–
160. Association for Computational Linguistics, 2014.

[6] Sho Hoshino, Yusuke Miyao, Katsuhito Sudoh, Katsuhiko Hayashi, and Masaaki
Nagata. Discriminative preordering meets kendall’s tau maximization. In Proceed-
ings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Short
Papers), pages 139–144. Association for Computational Linguistics, 2015.

[7] Valentin Jijkoun, Maarten De Rijke, and Jori Mur. Information extraction for
question answering: Improving recall through syntactic patterns. In Proceedings
of the 20th international conference on Computational Linguistics, page 1284. As-
sociation for Computational Linguistics, 2004.

[8] Suzan Verberne, Lou Boves, Nelleke Oostdijk, and Peter-Arno Coppen. Using
syntactic information for improving why-question answering. In Proceedings of
the 22nd International Conference on Computational Linguistics-Volume 1, pages
953–960. Association for Computational Linguistics, 2008.

119

Bibliography

[9] Boris Galitsky, Dmitry I Ilvovsky, Sergei O Kuznetsov, and Fedor Strok. Match-
ing sets of parse trees for answering multi-sentence questions. In Proceedings of
RANLP, pages 285–293, 2013.

[10] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a
large annotated corpus of english: The penn treebank. Computational linguistics,
19(2):313–330, 1993.

[11] Yoshimasa Tsuruoka, Yusuke Miyao, and Jun’ichi Kazama. Learning with looka-
head: can history-based models rival globally optimized models? In Proceedings
of the Fifteenth Conference on Computational Natural Language Learning, pages
238–246. Association for Computational Linguistics, 2011.

[12] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer.
Feature-rich part-of-speech tagging with a cyclic dependency network. In Proceed-
ings of the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology-Volume 1, pages
173–180. Association for Computational Linguistics, 2003.

[13] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate,
compact, and interpretable tree annotation. In Proceedings of the 21st Inter-
national Conference on Computational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics, pages 433–440. Association for
Computational Linguistics, 2006.

[14] Yusuke Miyao and Jun’ichi Tsujii. Feature forest models for probabilistic hpsg
parsing. Computational Linguistics, 34(1):35–80, 2008.

[15] Richard Socher, John Bauer, Christopher D Manning, and Andrew Y Ng. Pars-
ing with compositional vector grammars. In Proceedings of the ACL conference.
Citeseer, 2013.

[16] Chung-hye Han, Na-Rare Han, Eon-Suk Ko, and Martha Palmer. Development
and evaluation of a korean treebank and its application to nlp. In Proceedings of
the 3rd International Conference on Language Resources and Evaluation (LREC-
2002), pages 1635–1642, 2002.

[17] Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta Palmer. The penn chinese tree-
bank: Phrase structure annotation of a large corpus. Natural language engineering,
11(02):207–238, 2005.

[18] Anne Abeillé, Lionel Clément, and François Toussenel. Building a treebank for
french. Treebanks, pages 165–187, 2003.

120

Bibliography BIBLIOGRAPHY

[19] Quy T. Nguyen, Ngan L.T. Nguyen, and Yusuke Miyao. Comparing different
criteria for vietnamese word segmentation. In Proceedings of 3rd Workshop on
South and Southeast Asian Natural Language Processing (SANLP), pages 53–68.
Citeseer, 2012.

[20] Quy T. Nguyen, Ngan L.T. Nguyen, and Yusuke Miyao. Utilizing state-of-the-art
parsers to diagnose problems in treebank annotation for a less resourced language.
In Proceedings of the 7th Linguistic Annotation Workshop & Interoperability with
Discourse, pages 19–27. Association for Computational Linguistics, 2013.

[21] Hong-Phuong HP. Le, Thi-Minh-Huyen Nguyen, and Azim Roussanaly. Viet-
namese parsing with an automatically extracted tree-adjoining grammar. In Pro-
ceedings of Research, Innovation and Vision for the Future in Computing and
Communication Technologies (RIVF), pages 1–6. IEEE, 2012.

[22] Anh-Cuong AC. Le, Phuong-Thai Nguyen, Hoai-Thu Vuong, Minh-Thu Pham,
and Tu-Bao Ho. An experimental study on lexicalized statistical parsing for viet-
namese. In Proceedings of Knowledge and Systems Engineering, pages 162–167.
IEEE, 2009.

[23] Dat Quoc Nguyen, Dai Quoc Nguyen, Son Bao Pham, Phuong-Thai Nguyen, and
Minh Le Nguyen. From treebank conversion to automatic dependency parsing for
vietnamese. In International Conference on Applications of Natural Language to
Data Bases/Information Systems, pages 196–207. Springer, 2014.

[24] Noam Chomsky. Aspects of the Theory of Syntax, volume 11. MIT press, 1965.

[25] Roger Garside, Geoffrey Leech, and Tamás Váradi. The lancaster parsed corpus.
a machine-readable syntactically analyzed corpus of 144,000 words. available for
distribution through icame. Technical report, Technical Report. Bergen: The
Norwegian Computing Centre for the Humanities, 1992.

[26] Igor Aleksandrovič Melčuk. Dependency syntax: theory and practice. SUNY press,
1988.

[27] Sadao Kurohashi and Makoto Nagao. Building a japanese parsed corpus while
improving the parsing system. In Proceedings of The 1st International Conference
on Language Resources & Evaluation, pages 719–724. Citeseer, 1998.

[28] Kemal Oflazer, Bilge Say, Dilek Zeynep Hakkani-Tür, and Gökhan Tür. Building
a turkish treebank. Treebanks, pages 261–277, 2003.

[29] Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora Hladká. The prague
dependency treebank. In Treebanks, pages 103–127. Springer, 2003.

121

Bibliography

[30] Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann
Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. The penn treebank: an-
notating predicate argument structure. In Proceedings of the workshop on Human
Language Technology, pages 114–119. Association for Computational Linguistics,
1994.

[31] Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. The penn
arabic treebank: Building a large-scale annotated arabic corpus. In NEMLAR
conference on Arabic language resources and tools, volume 27, pages 466–467,
2004.

[32] A Moreno and S López. Developing a spanish treebank, 2003.

[33] Minh Nghiem, Dien Dinh, and Mai Nguyen. Improving vietnamese pos tagging
by integrating a rich feature set and support vector machines. In Proceedings of
Research, Innovation and Vision for the Future in Computing and Communication
Technologies (RIVF), pages 128–133. IEEE, 2008.

[34] Phuong Le-Hong, Azim Roussanaly, Thi Minh Huyen Nguyen, and Mathias Rossig-
nol. An empirical study of maximum entropy approach for part-of-speech tagging
of vietnamese texts. In Traitement Automatique des Langues Naturelles-TALN
2010, page 12, 2010.

[35] Hieu Le Trung, Vu Le Anh, and Kien Le Trung. An unsupervised learning and sta-
tistical approach for vietnamese word recognition and segmentation. In Asian Con-
ference on Intelligent Information and Database Systems, pages 195–204. Springer,
2010.

[36] Fei Xia, Martha Palmer, Nianwen Xue, Mary Ellen Okurowski, John Kovarik,
Fu-Dong Chiou, Shizhe Huang, Tony Kroch, and Mitchell P Marcus. Developing
guidelines and ensuring consistency for chinese text annotation. In Proceedings
of the Second International Conference on Language Resources and Evaluation,
2000.

[37] Juri Apresjan, Igor Boguslavsky, Boris Iomdin, Leonid Iomdin, Andrei Sannikov,
and Victor Sizov. A syntactically and semantically tagged corpus of russian: State
of the art and prospects. In Proceedings of LREC, pages 1378–1381, 2006.

[38] Marie-Catherine De Marneffe, Bill MacCartney, and Christopher D Manning. Gen-
erating typed dependency parses from phrase structure parses. In Proceedings of
LREC, volume 6, pages 449–454. Genoa, 2006.

[39] Lingpeng Kong, Alexander M Rush, and Noah A Smith. Transforming dependen-
cies into phrase structures. In Human Language Technologies: The 2015 Annual

122

Bibliography BIBLIOGRAPHY

Conference of the North American Chapter of the ACL, page 788–798. Association
for Computational Linguistics, 2015.

[40] Sebastian Schuster and Christopher D Manning. Enhanced english universal de-
pendencies: An improved representation for natural language understanding tasks.
In Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC 2016), 2016.

[41] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan
Hajic, Christopher D Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. Universal dependencies v1: A multilingual treebank collec-
tion. In Proceedings of the 10th International Conference on Language Resources
and Evaluation (LREC 2016), pages 1659–1666, 2016.

[42] Marie-Catherine De Marneffe, Timothy Dozat, Natalia Silveira, Katri Haverinen,
Filip Ginter, Joakim Nivre, and Christopher D Manning. Universal stanford de-
pendencies: A cross-linguistic typology. In LREC, volume 14, pages 4585–92,
2014.

[43] Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech
tagset. arXiv preprint arXiv:1104.2086, 2011.

[44] Daniel Zeman. Reusable tagset conversion using tagset drivers. In LREC, 2008.

[45] Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George
Smith. The tiger treebank. In Proceedings of the workshop on treebanks and
linguistic theories, volume 168, 2002.

[46] Simonetta Montemagni, Francesco Barsotti, Marco Battista, Nicoletta Calzolari,
Ornella Corazzari, Alessandro Lenci, Antonio Zampolli, Francesca Fanciulli, Maria
Massetani, Remo Raffaelli, et al. Building the italian syntactic-semantic treebank.
Treebanks, pages 189–210, 2003.

[47] Keh-Jiann Chen, Chi-Ching Luo, Ming-Chung Chang, Feng-Yi Chen, Chao-Jan
Chen, Chu-Ren Huang, and Zhao-Ming Gao. Sinica treebank. Treebanks, pages
231–248, 2003.

[48] Cristina Bosco and Vincenzo Lombardo. Dependency and relational structure in
treebank annotation. In Proceedings of Workshop on Recent Advances in Depen-
dency Grammar at COLING’04, 2004.

[49] Anke Lüdeling. Corpus linguistics, volume 1. Walter de Gruyter, 2008.

[50] Carl Pollard and Ivan A Sag. Head-driven phrase structure grammar. University
of Chicago Press, 1994.

123

Bibliography

[51] Stephan Oepen, Dan Flickinger, Kristina Toutanova, and Christopher D Manning.
Lingo redwoods. Research on Language and Computation, 2(4):575–596, 2004.

[52] Kiril Simov, Gergana Popova, and Petya Osenova. Hpsg-based syntactic treebank
of bulgarian (bultreebank). A rainbow of corpora: Corpus linguistics and the
languages of the world, pages 135–142, 2002.

[53] Mark Steedman and Jason Baldridge. Combinatory categorial grammar. Non-
Transformational Syntax: Formal and Explicit Models of Grammar. Wiley-
Blackwell, 2011.

[54] Julia Hockenmaier and Mark Steedman. Ccgbank: a corpus of ccg derivations
and dependency structures extracted from the penn treebank. Computational
Linguistics, 33(3):355–396, 2007.

[55] Julia Hockenmaier. Creating a ccgbank and a wide-coverage ccg lexicon for ger-
man. In Proceedings of the 21st International Conference on Computational Lin-
guistics and the 44th annual meeting of the Association for Computational Lin-
guistics, pages 505–512. Association for Computational Linguistics, 2006.

[56] Weiwei Sun and Jia Xu. Enhancing chinese word segmentation using unlabeled
data. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 970–979. Association for Computational Linguistics, 2011.

[57] Xinchi Chen, Xipeng Qiu, Chenxi Zhu, and Xuanjing Huang. Gated recursive
neural network for chinese word segmentation. In ACL (1), pages 1744–1753,
2015.

[58] Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei Liu, and Xuanjing Huang. Long
short-term memory neural networks for chinese word segmentation. In EMNLP,
pages 1197–1206, 2015.

[59] Nobuhiro Kaji and Masaru Kitsuregawa. Accurate word segmentation and pos tag-
ging for japanese microblogs: Corpus annotation and joint modeling with lexical
normalization. In EMNLP, pages 99–109, 2014.

[60] Quang Thang Dinh, Hong Phuong Le, Thi Minh Huyen Nguyen, Cam Tu Nguyen,
Mathias Rossignol, and Xuan Luong Vu. Word segmentation of vietnamese texts:
a comparison of approaches. In Proceedings of 6th international conference on
Language Resources and Evaluation, 2008.

[61] Nguyen Thi Minh Huyen, Azim Roussanaly, Hô Tuong Vinh, et al. A hybrid
approach to word segmentation of vietnamese texts. In International Conference

124

Bibliography BIBLIOGRAPHY

on Language and Automata Theory and Applications, pages 240–249. Springer,
2008.

[62] Chaluemwut Noyunsan, Choochart Haruechaiyasak, Seksan Poltree, and Kan-
da Runapongsa Saikaew. A multi-aspect comparison and evaluation on thai word
segmentation programs. In JIST (Workshops & Posters), pages 132–135, 2014.

[63] Chenchen Ding, Ye Kyaw Thu, Masao Utiyama, and Eiichiro Sumita. Word
segmentation for burmese (myanmar). ACM Transactions on Asian and Low-
Resource Language Information Processing, 15(4):22, 2016.

[64] Jinho D Choi. Dynamic feature induction: The last gist to the state-of-the-art. In
Proceedings of NAACL-HLT, pages 271–281, 2016.

[65] Pascal Denis, Benôıt Sagot, et al. Coupling an annotated corpus and a morphosyn-
tactic lexicon for state-of-the-art pos tagging with less human effort. In PACLIC,
pages 110–119, 2009.

[66] Weiwei Sun and Xiaojun Wan. Towards accurate and efficient chinese part-of-
speech tagging. Computational Linguistics, 2016.

[67] Zhongqiang Huang, Vladimir Eidelman, and Mary Harper. Improving a sim-
ple bigram hmm part-of-speech tagger by latent annotation and self-training. In
Proceedings of Human Language Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for Computational Linguistics,
Companion Volume: Short Papers, pages 213–216. Association for Computational
Linguistics, 2009.

[68] Graham Neubig, Yosuke Nakata, and Shinsuke Mori. Pointwise prediction for
robust, adaptable japanese morphological analysis. In Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguistics: Human Language
Technologies: short papers-Volume 2, pages 529–533. Association for Computa-
tional Linguistics, 2011.

[69] Nobuhiro Kaji and Masaru Kitsuregawa. Efficient word lattice generation for joint
word segmentation and pos tagging in japanese. In IJCNLP, pages 153–161, 2013.

[70] Slav Petrov and Dan Klein. Improved inference for unlexicalized parsing. In HLT-
NAACL, volume 7, pages 404–411. Association for Computational Linguistics,
2007.

[71] Wojciech Skut, Brigitte Krenn, Thorsten Brants, and Hans Uszkoreit. An annota-
tion scheme for free word order languages. In Proceedings of the fifth conference on

125

Bibliography

Applied natural language processing, pages 88–95. Association for Computational
Linguistics, 1997.

[72] David Hall, Greg Durrett, and Dan Klein. Less grammar, more features. In Pro-
ceedings of the 52rd Annual Meeting of the Association for Computational Lin-
guistics, pages 228–237, 2014.

[73] Greg Durrett and Dan Klein. Neural crf parsing. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing, page 302–312. Association for
Computational Linguistics, 2015.

[74] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith. Recurrent
neural network grammars. In Proceedings of NAACL-HLT 2016, page 199–209.
Association for Computational Linguistics, 2016.

[75] Dan Klein and Christopher D Manning. Accurate unlexicalized parsing. In Pro-
ceedings of the 41st Annual Meeting on Association for Computational Linguistics-
Volume 1, pages 423–430. Association for Computational Linguistics, 2003.

[76] Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A Smith.
Transition-based dependency parsing with stack long short-term memory. arXiv
preprint arXiv:1505.08075, 2015.

[77] Danqi Chen and Christopher D Manning. A fast and accurate dependency parser
using neural networks. In EMNLP, pages 740–750, 2014.

[78] Zhiguo Wang, Haitao Mi, and Nianwen Xue. Feature optimization for constituent
parsing via neural networks. In Proceedings of ACL, pages 1138–1147, 2015.

[79] Pi-Chuan Chang, Michel Galley, and Christopher D Manning. Optimizing chinese
word segmentation for machine translation performance. In Proceedings of the
third workshop on statistical machine translation, pages 224–232. Association for
Computational Linguistics, 2008.

[80] Alexandre Allauzen, Lauriane Aufrant, Franck Burlot, Elena Knyazeva, Thomas
Lavergne, and François Yvon. Limsi@ wmt’16: Machine translation of news. In
Proceedings of the First Conference on Machine Translation, pages 239–245. As-
sociation for Computational Linguistics, 2016.

[81] Fuchun Peng and Xiangji Huang. Machine learning for asian language text classi-
fication. Journal of Documentation, 63(3):378–397, 2007.

[82] Alex Chengyu Fang and Jing Cao. Enhanced genre classification through linguis-
tically fine-grained pos tags. In Proceedings of PACLIC, pages 85–94, 2010.

126

Bibliography BIBLIOGRAPHY

[83] Maria Chinkina, Madeeswaran Kannan, and Detmar Meurers. Online information
retrieval for language learning. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics—System Demonstrations, pages 7–12,
2016.

[84] Cory Barr, Rosie Jones, and Moira Regelson. The linguistic structure of english
web-search queries. In Proceedings of the conference on empirical methods in natu-
ral language processing, pages 1021–1030. Association for Computational Linguis-
tics, 2008.

[85] Beatrice Santorini. Part-of-speech tagging guidelines for the penn treebank project
(3rd revision). University of Pennsylvania, 1990.

[86] Ann Bies, Mark Ferguson, Karen Katz, Robert MacIntyre, Victoria Tredinnick,
Grace Kim, Mary Ann Marcinkiewicz, and Britta Schasberger. Bracketing guide-
lines for treebank ii style penn treebank project. University of Pennsylvania, 1995.

[87] Fei Xia. The segmentation guidelines for the penn chinese treebank (3.0). technical
report ircs 00-06. University of Pennsylvania, 2000.

[88] Fei Xia. The part-of-speech tagging guidelines for the penn chinese treebank (3.0).
technical report ircs 00-07. University of Pennsylvania, 2000.

[89] Nianwen Xue, Fei Xia, Shizhe Huang, and Anthony Kroch. The bracketing guide-
lines for the penn chinese treebank (3.0). technical report ircs 00-08. University of
Pennsylvania, 2000.

[90] Jarborg Jerker. Manual for syntaggning. Technical report, Gothenburg University,
Department of Swedish., 1986.

[91] Yuri Lin, Jean-Baptiste Michel, Erez Lieberman Aiden, Jon Orwant, Will Brock-
man, and Slav Petrov. Syntactic annotations for the google books ngram corpus. In
Proceedings of the ACL 2012 system demonstrations, pages 169–174. Association
for Computational Linguistics, 2012.

[92] Gertjan Van Noord, Gosse Bouma, Frank Van Eynde, Daniel De Kok, Jelmer
Van der Linde, Ineke Schuurman, Erik Tjong Kim Sang, and Vincent Vandeghin-
ste. Large scale syntactic annotation of written dutch: Lassy. In Essential Speech
and Language Technology for Dutch, pages 147–164. Springer, 2013.

[93] Gülşen Eryiğit. Itu treebank annotation tool. In Proceedings of the Linguistic
Annotation Workshop, pages 117–120. Association for Computational Linguistics,
2007.

127

Bibliography

[94] Markus Dickinson and W Detmar Meurers. Detecting inconsistencies in treebanks.
In Proceedings of TLT, volume 3, pages 45–56, 2003.

[95] Alexander Volokh and Günter Neumann. Automatic detection and correction of
errors in dependency tree-banks. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies: short
papers-Volume 2, pages 346–350. Association for Computational Linguistics, 2011.

[96] Ann Taylor, Mitchell Marcus, and Beatrice Santorini. The penn treebank: an
overview. In Treebanks, pages 5–22. Springer, 2003.

[97] Tugba Pamay, Umut Sulubacak, Dilara Torunoglu-Selamet, and Gülsen Eryigit.
The annotation process of the itu web treebank. In The 9th Linguistic Annotation
Workshop held in conjuncion with NAACL 2015, page 95, 2015.

[98] Daniel Gildea. Corpus variation and parser performance. In Proceedings of the
2001 Conference on Empirical Methods in Natural Language Processing, pages
167–202, 2001.

[99] Chenhui Chu, Toshiaki Nakazawa, Daisuke Kawahara, and Sadao Kurohashi. Sctb:
A chinese treebank in scientific domain. In The 12th Workshop on Asian Language
Resources, page 59, 2016.

[100] Geoffrey Sampson. English for the computer: The susanne corpus and analytic
scheme, 1995.

[101] Zhongqiang Huang and Mary Harper. Self-training pcfg grammars with latent
annotations across languages. In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 2-Volume 2, pages 832–841.
Association for Computational Linguistics, 2009.

[102] Michael Collins. Head-driven statistical models for natural language parsing. Com-
putational linguistics, 29(4):589–637, 2003.

[103] Jenny Rose Finkel, Alex Kleeman, and Christopher D Manning. Efficient, feature-
based, conditional random field parsing. In ACL, volume 46, pages 959–967, 2008.

[104] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International Conference on Machine Learning,
pages 1310–1318, 2013.

[105] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

128

Bibliography BIBLIOGRAPHY

[106] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages
3104–3112, 2014.

[107] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey
Hinton. Grammar as a foreign language. In Advances in Neural Information
Processing Systems, pages 2773–2781, 2015.

[108] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[109] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Glob-
al vectors for word representation. In Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, 2014. URL http://www.aclweb.org/

anthology/D14-1162.

[110] Jonathan K Kummerfeld, David Hall, James R Curran, and Dan Klein. Parser
showdown at the wall street corral: An empirical investigation of error types in
parser output. In Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning,
pages 1048–1059. Association for Computational Linguistics, 2012.

[111] E Black, S Abney, D Flickinger, C Gnadiec, R Grishman, P Harrison, D Hindle,
R Ingria, F Jelinek, J Klavans, et al. A procedure for quantitatively comparing the
syntactic coverage of english. In Proceedings DARPA Speech and Natural Language
Workshop, Pacific Grove, Morgan Kaufmann, 1991.

[112] Michael Collins. Three generative, lexicalised models for statistical parsing. In
Proceedings of the eighth conference on European chapter of the Association for
Computational Linguistics, pages 16–23. Association for Computational Linguis-
tics, 1997.

[113] Slav Petrov and Dan Klein. Discriminative log-linear grammars with latent vari-
ables. In NIPS, pages 1153–1160, 2007.

[114] Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. Probabilistic cfg with la-
tent annotations. In Proceedings of the 43rd annual meeting on Association for
Computational Linguistics, pages 75–82. Association for Computational Linguis-
tics, 2005.

[115] Reut Tsarfaty, Joakim Nivre, and Evelina Andersson. Joint evaluation of mor-
phological segmentation and syntactic parsing. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics: Short Papers-Volume
2, pages 6–10. Association for Computational Linguistics, 2012.

129

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

Bibliography

[116] Geoffrey Sampson and Anna Babarczy. A test of the leaf-ancestor metric for parse
accuracy. Natural Language Engineering, 9(04):365–380, 2003.

[117] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[118] Dekang Lin. Dependency-based evaluation of minipar. In Workshop on the Eval-
uation of Parsing Systems, Granada, Spain, 1995.

[119] Sandra Kübler and Heike Telljohann. Towards a dependency-oriented evaluation
for partial parsing. In Proceedings of Beyond PARSEVAL–Towards Improved E-
valuation Measures for Parsing Systems (LREC 2002 Workshop). Citeseer, 2002.

[120] Ines Rehbein and Josef Van Genabith. Evaluating evaluation measures. 2007.

[121] Jonathan K Kummerfeld, Daniel Tse, James R Curran, and Dan Klein. An em-
pirical examination of challenges in chinese parsing. In ACL (2), pages 98–103,
2013.

[122] Phe Hoang. Vietnamese Dictionary. Scientific & Technical Publishing, 1998.

[123] DCS LacViet Corp. Vietnamese Dictionary. LacViet Corp., 2011.

[124] Thi-Minh-Huyen Nguyen, Thi-Tuyen-Linh Hoang, and Xuan-Luong Vu. Viet-
namese word segmentation guidelines. technical report sp8.2. Ministry of Educa-
tion and Training (Vietnam), 2010.

[125] Phuong-Thai PT. Nguyen, Xuan-Luong Vu, and Thi-Minh-Huyen Nguyen. Viet-
namese part-of-speech tagging guidelines. technical report sp 7.3. Ministry of
Education and Training (Vietnam), 2010.

[126] Phuong-Thai PT. Nguyen, Xuan-Luong Vu, Thi-Minh-Huyen Nguyen, Minh-Thu
Dao, Thi-Minh-Ngoc Dao, and Kim-Ngan Le. Vietnamese bracketing guidelines.
technical report sp7.3. Ministry of Education and Training (Vietnam), 2010.

[127] Phuong-Thai Nguyen, Xuan-Luong Vu, Thi-Minh-Huyen Nguyen, Van-Hiep N-
guyen, and Hong-Phuong Le. Building a large syntactically-annotated corpus of
vietnamese. In Proceedings of the Third Linguistic Annotation Workshop, pages
182–185. Association for Computational Linguistics, 2009.

[128] Daniel M Bikel. On the parameter space of generative lexicalized statistical parsing
models. PhD thesis, Citeseer, 2004.

[129] Phuong Le-Hong, Thi-Minh-Huyen Nguyen, and Azim Roussanaly. Vietnamese
parsing with an automatically extracted tree-adjoining grammar. In Computing

130

Bibliography BIBLIOGRAPHY

and Communication Technologies, Research, Innovation, and Vision for the Future
(RIVF), 2012 IEEE RIVF International Conference on, pages 1–6. IEEE, 2012.

[130] ZhiguoWang and Nianwen Xue. Joint pos tagging and transition-based constituent
parsing in chinese with non-local features. In Proceedings of ACL, pages 733–742,
2014.

[131] Ryan McDonald, Kevin Lerman, and Fernando Pereira. Multilingual dependency
analysis with a two-stage discriminative parser. In Proceedings of the Tenth Con-
ference on Computational Natural Language Learning, pages 216–220. Association
for Computational Linguistics, 2006.

[132] Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, San-
dra Kübler, Svetoslav Marinov, and Erwin Marsi. Maltparser: A language-
independent system for data-driven dependency parsing. Natural Language Engi-
neering, 13(02):95–135, 2007.

[133] Anne-Marie Di Sciullo and Edwin Williams. On the definition of word, volume 14.
Springer, 1987.

[134] Phuong Le-Hong, Thi Minh Huyen Nguyen, Azim Roussanaly, and Tuong Vinh
Ho. A hybrid approach to word segmentation of vietnamese texts. In Proceed-
ings of the 2nd International Conference on Language and Automata Theory and
Applications, 2008.

[135] Dien Dinh and Thuy Vu. A maximum entropy approach for vietnamese word
segmentation. In Proceedings of Research, Innovation and Vision for the Future
in Computing and Communication Technologies, pages 248–253. IEEE, 2006.

[136] Roger Levy and Christopher Manning. Is it harder to parse chinese, or the chinese
treebank? In Proceedings of the 41st Annual Meeting on Association for Com-
putational Linguistics-Volume 1, pages 439–446. Association for Computational
Linguistics, 2003.

[137] Tadayoshi Hara, Yusuke Miyao, and Jun’ichi Tsujii. Descriptive and empirical ap-
proaches to capturing underlying dependencies among parsing errors. In Proceed-
ings of the 2009 Conference on Empirical Methods in Natural Language Processing:
Volume 3-Volume 3, pages 1162–1171. Association for Computational Linguistics,
2009.

[138] Quy T. Nguyen, Yusuke Miyao, Ha T.T. Le, and Ngan L.T. Nguyen. Challenges
and solutions for consistent annotation of vietnamese treebank. In Proceedings of
the Language Resources and Evaluation Conference, 2016.

131

Index

[139] Yusuke Miyao, Takashi Ninomiya, and Jun’ichi Tsujii. Corpus-oriented grammar
development for acquiring a head-driven phrase structure grammar from the penn
treebank. In International Conference on Natural Language Processing, pages
684–693. Springer, 2004.

[140] Daniel Tse and James R Curran. Chinese ccgbank: extracting ccg derivations from
the penn chinese treebank. In Proceedings of the 23rd International Conference
on Computational Linguistics, pages 1083–1091. Association for Computational
Linguistics, 2010.

132

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivations
	1.2 Treebank annotation scheme
	1.3 Challenges of annotating Vietnamese
	1.4 Contributions
	1.5 Thesis overview

	2 Background
	2.1 Efforts on treebank construction
	2.1.1 Constituency treebank
	2.1.2 Dependency treebank
	2.1.3 Other structures

	2.2 The use of treebank
	2.2.1 Word segmentation tool
	2.2.2 POS tagger
	2.2.3 Parser
	2.2.4 Applications of syntactic analysis tools

	2.3 Technologies for treebank development
	2.3.1 Annotation guidelines
	2.3.2 Division of labor
	2.3.3 Tools
	2.3.4 Annotator
	2.3.5 Annotation process
	2.3.6 Material

	2.4 An overview of parsing methods
	2.4.1 Probabilistic context-free grammar
	2.4.2 Conditional random field
	2.4.3 Feedforward neural network
	2.4.4 Recurrent neural networks
	2.4.5 Recursive neural network
	2.4.6 Evaluating parsers
	2.4.7 Development of parsing methods

	2.5 Previous work on Vietnamese treebank and parsing
	2.5.1 Characteristics of Vietnamese language
	2.5.1.1 No word delimiters or inflectional morphemes
	2.5.1.2 Flexible word orders
	2.5.1.3 Word omission
	2.5.1.4 Conflicting definitions among linguists

	2.5.2 Vietnamese treebank
	2.5.2.1 VLSP annotation scheme
	2.5.2.2 VLSP guildelines
	2.5.2.3 VLSP supporting tools

	2.5.3 Vietnamese parsing

	3 Building a syntactic treebank for Vietnamese
	3.1 Introduction
	3.2 Methods and material
	3.2.1 Methodology for creating a high-quality treebank
	3.2.2 Data preparation

	3.3 Annotation guidelines
	3.3.1 Word segmentation guidelines
	3.3.1.1 Word categories
	3.3.1.2 Challenges of word segmentation
	3.3.1.3 Policy for annotation of word segmentation
	3.3.1.4 Comparison with the VLSP treebank

	3.3.2 Part-of-speech tagging guidelines
	3.3.2.1 Building a part-of-speech tag set
	3.3.2.2 Challenges of POS tagging
	3.3.2.3 Policies for annotating part-of-speech
	3.3.2.4 Comparison with the VLSP Treebank

	3.3.3 Bracketing guidelines
	3.3.3.1 Representation scheme
	3.3.3.2 Challenges of bracketing
	3.3.3.3 Policies for annotating brackets
	3.3.3.4 Internal structures
	3.3.3.5 Comparison with VLSP Treebank

	3.4 Quality control
	3.4.1 Training annotators, revising the guidelines and evaluating our treebank
	3.4.2 Tools
	3.4.2.1 Annotation tool
	3.4.2.2 Speed up annotation with automatic tools
	3.4.2.3 Tools to clean up the treebank

	3.5 Conclusion

	4 An Empirical Investigation of Error Types in Vietnamese Parsing
	4.1 Introduction
	4.2 Parsing evaluation
	4.2.1 PARSEVAL evaluation
	4.2.2 TEDEVAL evaluation

	4.3 Investigating behaviour of the parsers
	4.4 Impact of training data size
	4.5 Impact of tagging errors
	4.5.1 Contributions of tagging improvement to error types
	4.5.2 Impact of ambiguous POSs on parsing errors

	4.6 Ambiguous constructions in Vietnamese
	4.6.1 Classified constructions
	4.6.2 ``Other'' class

	4.7 Conclusion

	5 Conclusion and future work
	5.1 Conclusion
	5.2 Future work

	Bibliography

