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Abstract: In a biomedical study, a linear predictor is widely used as the regression

and prediction functions because of the learnability and understandability. Many statisti-

cal models are formulated by the linear predictor. Fisher’s linear discriminant analysis is

a representative example of such formulations for a binary classification. It has Bayes risk

consistency in the classification problem of two normal samples with the same variance. The

linear form is thus useful in fitting for data with homogenous structure. However, especially

in the field of biomedical science, it was revealed that there are several diseases once consid-

ered to be homotypic but later elucidated as heterotypic. Nevertheless, only the linear model

is applied and the estimated model is used for the discussion in most biomedical studies.

This fact may yield misleading for therapy efficacy by failing to reveal the potentially com-

plex mixture of substantial benefits or harm. Such heterogeneous diseases do not allow only

a single set of the biomarkers to be predictive for all patients. Moreover, the heterogeneity

may obstruct us to detect the predictive biomarkers and to learn the predictive model. We

therefore need to consider the predictor in consideration with the heterogeneous structure.

Taking such a background into account, we derive the quasi-linear predictor defined as log-

sum-exp form. It is a special case of the generalized average known as Kolmogorov-Nagumo

average. The quasi-linear predictor is made up of the combination of some linear predic-

tors with the different intercepts and coefficients. The shape of the quasi-linear predictor

is determined not only by the parameters of these linear predictors but also by the tuning

parameter for adjusting the overall nonlinearity. The quasi-linear predictor converges to

minimum, maximum and linear predictor in the limiting sense for this tuning parameter.

For analytical purpose, the tuning parameter is determined by Bayes information criteria

from the learning dataset. It results in that the suitable non-linearity of the regression or

prediction function is estimated by the data. In the thesis, we extend two ordinary models,

linear logistic model and Cox’s proportional hazard model to the quasi-linear logistic model

and the quasi-linear relative risk model, respectively. The optimality of the quasi-linear lo-

gistic model is assured when we consider the binary classification problem of mixture normal

and normal samples with equal variance for each component. In order to get more parsimo-

nious model expression, we derive the restricted quasi-linear logistic model, which is defined
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as the logistic model with the quasi-linear predictor, where each predictor is composed by

known disjoint clusters of covariates. The restricted model gives easier interpretation for the

estimated model compared to the regular quasi-linear model because each covariate is incor-

porated in only one linear predictor but not in the other linear predictors. Moreover, in case

such clusters are unknown, we derive the quasi-linear logistic model with the cross-L1 reg-

ularization. In this regularization method, we add a penalty for product of absolute values

of coefficients for same covariate in different clusters to the likelihood function. Sufficiently

higher cross-L1 regularizations therefore results in the restricted quasi-linear model and the

resultant disjoint sets of covariates are automatically given through the model estimation

procedure. The second extension, the quasi-linear relative risk model, is regarded as the

extension of a mixture hazard model. In fact, the mixture hazard model with same baseline

hazard function corresponds to the quasi-linear relative risk model with a specific tuning

parameter. As is the case with the quasi-linear logistic model, the quasi-linear relative risk

model with the cross-L1 regularization is derived. Because the extensions of these two mod-

els are performed simply by replace the linear predictor to the quasi-linear predictor, the

other extensions for the linear model are easily combined and implemented. We derive the

L1 and L2 penalized versions for both of the quasi-linear logistic and relative risk models. In

the simulation study for the binary classification problem, we checked the consistency of the

parameter estimation and compared the predictive performance between the linear logistic

model and the restricted quasi-linear logistic model. In the application studies for the bi-

nary classification problem, we compared the performance among the restricted quasi-linear

logistic model, linear logistic model and ordinary classification methods including decision

tree, random forest, support vector machine, naive Bayes, group lasso, neural network, L1

and L2 penalized linear logistic models. These simulation and application studies show that

the restricted quasi-linear logistic model has better performance in some simulated examples

and real datasets than the ordinary methods. For the regression problem on the survival

time data, we checked the true model selection probability by the Bayes information criteria

and the parameter consistency for some situations in the simulation studies and compared

the quasi-linear relative risk model with cross L1 penalty and Cox’s proportional hazard

2



model in the application studies. The simulation studies show that the parameter estima-

tion empirically has the consistency and the selection of the tuning parameter by Bayes

information criteria works very well. The application studies for the regression problem on

the survival time data show that the quasi-linear relative risk model has better performance

in some real datasets compared to the Cox’s proportional hazard model. Finally, we discuss

about the role of the quasi-linear predictor in traditional clustering method, and the rela-

tionship among the quasi-linear model, mixture of experts model and neural network model

for more discussions and future works.
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Chapter 1

Motivations

Statistical learning is usually divided into two popular types of learning: supervised and un-

supervised learning. These strategies play important roles in biomedical research, not only

in traditional setting but also in more complicated and higher dimensional setting (Foster

and others, 2014) that many researchers are working on today. For example, Casanova and

others (2011) applied a L1 logistic regression model to high dimensional structural magnetic

resonance imaging (MRI) data of brain image of Alzheimer patients for early detection of

their Alzheimer’s diseases. Because the structural MRI data has several hundreds of thou-

sands voxels1, machine learning methods for high dimensional data play essential roles in the

analysis (Suzuki and others, 2017). Likewise, shrinkage methods by L1 and L2 regulariza-

tions have been frequently used in the context of prediction (Brimacombe, 2014). van’t Veer

and others (2002) used the cross validation method to optimize the combination of genes

from a number of candidate genes to develop the predictor for breast cancer metastatic

events. Amato and others (2013) discussed the effectiveness of using artificial neural net-

work model in diagnosis and they stated that it would help physicians perform diagnosis

of various diseases. The unsupervised learning methods also reveal some novel findings in

biomedical science. For example, in the work of Sørlie and others (2001), hierarchical clus-

tering algorithm was used to visualize the differentially expressed genes of breast carcinomas

and find new subtypes without any class labels. Other than their work, clustering methods

1The voxel is a unit in which pixels are extended to three dimensions.
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has been used in the context of interpretation (Oghabian and others, 2014).

In supervised learning, the primary objective is to learn a regression or prediction func-

tion from a training dataset whose true labels or outcomes are known. We seek a better

regression function which accurately estimates an expectation of outcome measurement, or

better prediction function which correctly predicts true labels consisting of binary or more

multiple label indicators. In unsupervised learning, the goal is to get knowledge discovery

including discovering clusters, discovering latent factors and discovering graph structure

(Murphy, 2012). In these strategies, a wide variety of learning method can be regarded as a

problem of either or both of how to construct a statistical model and what loss is considered

for the learning. In the thesis, we extend linear logistic model and Cox’s proportional haz-

ard model, and give a unified discussion about K-means clustering and maximum entropy

clustering.

The linear logistic model is one of the most frequently used models in binary classifi-

cation problems. The general formulation of the logistic model was given by Cox (1958)

although it had been already applied in some areas (Berkson, 1953, 1955). In this model,

we assume that the log odds of an event are approximated by a linear predictor. Then, a

binary response which indicates whether or not an event was occurred is regarded as follow-

ing binomial distribution with the mean parameter of logistic transformation of the linear

predictor. In this sense, the logistic model is a member of generalized linear model (GLM,

Nelder and Wedderburn (1972)). Such a formulation gives an easy interpretation of the fit-

ted linear predictor because the predictor means the log odds of the event (McCulloch and

others, 2008). The parameter estimation on the linear logistic model is often performed by

the Newton-Raphson method. It is easy to fit the model to the data because the iteratively

reweighted least squares (IRLS), the special version of Newton-Raphson method, is easy to

implement and working very fast (Murphy, 2012). The linear logistic model for binary clas-

sification is often compared with Fisher’s linear discriminant analysis. It is well known that

Fisher’s linear discriminant rule has Bayes risk consistency if both of the covariate vectors

conditioned on each binary response follow normal distribution with the equal variance, say

normal-normal assumption. Accordingly, categorical variables should not be included in the
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model even though these are commonly included in the real world data. Even if all variables

are continuous, the performance of Fisher’s linear discriminant rule drops sharply when the

normal-normal assumption is violated. Consequently, the linear logistic model is preferred

because it relaxes the normal-normal assumption of Fisher’s linear discriminant rule. More-

over, even when the normal-normal assumption is correct, the logistic model still has not so

much inferior performance to Fisher’s linear discriminant analysis. Anyway, normal-normal

assumption seems a little strict for specific situations. Especially in the field of biomedical

science, it was revealed that there are several diseases once considered to be homotypic but

later elucidated as heterotypic (Wallstrom and others, 2013). This fact may yield mislead-

ing for therapy efficacy by failing to reveal the potentially complex mixture of substantial

benefits or harm (Kravitz and others, 2004). Many researchers have been focusing on such

disease heterogeneity and discussed in biomarker researches (Di Camillo and others, 2012;

Komori and others, 2013; Ein-Dor and others, 2005; Omae and others, 2016). Heteroge-

neous diseases do not allow only a single set of biomarkers to be predictive for all patients.

Moreover, the heterogeneity may obstruct us to detect predictive biomarkers and to learn

the predictive model. We therefore need to consider the predictor in consideration with

the heterogeneous structure. Taking such a background into account, it seems that more

natural assumption might be that the covariates of disease samples follow mixture distribu-

tions. In contrast with the normal-normal assumption, one of the simplest heterogeneous

assumptions is described by the case that these are distributed with normal mixture distri-

butions. In this setting, Bayes optimal classifier is no longer derived as a linear fashions, but

rather we need to replace it to the log likelihood ratio of normal mixture distribution and

normal distribution. Then the likelihood ratio is written by the probability-weighted mean

of the exponential transformation of linear predictors. Accordingly, the log likelihood ratio

results in the form of log-sum-exp. Thus we derived the logistic model with the log-sum-

exp predictor that we call the quasi-linear predictor defined in Chapter 2. The quasi-linear

logistic model is basically a logistic regression model, rather than the predictor is replaced

by the log-sum-exp form of some linear predictors and so it is a non-linear model. Such

simple extension does not lose learnability and understandability unlike any other non-linear
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methods. In Omae and others (2017), which proposed the quasi-linear logistic model first,

disjoint clusters of markers were specified by a hard clustering method in advance. The linear

predictors by these clusters were combined as the quasi-linear predictor. In this manner,

the quasi-linear logistic model could combine the unsupervised and supervised statistical

learning in a natural way. The details are described in Chapter 4.

The motivation for the quasi-linear logistic model, the disease heterogeneity, leads us to

the extension of the regression model. In the field of biomedical science, one of the most

important models is the regression model for survival time data. Cox’s proportional hazard

model (Cox, 1972) is the most commonly used model in the regression problem of survival

time analysis. The model is a member of relative risk models (Aalen and others, 2008) and

it is a semi-parametric model which combines baseline hazard and regression functions as

the non-parametric and parametric part, respectively. Cox (1972) proposed the maximum

partial likelihood method for inference of the regression coefficients. A rigorous theory of

behavior of the estimator in large sample setting was investigated by Tsiatis (1981). An-

derson and Gill (1982) gave more natural derivations for mathematical theory of Cox’s

proportional hazard model by counting process and martingale theory (Aalen and others,

2008). Moreover, the derivation from the viewpoint of counting process produced martin-

gale residuals as a natural evaluation in regression models of survival time (Barlow and

Prentice, 1988) and the residuals enable us to evaluate the goodness-of-fit for fitted model.

Such a model evaluation is very important because Cox’s proportional hazard model needs

a noncasual assumption. In fact, the model assumes that the log hazard is decomposed into

the time-dependent term and time-independent linear predictor. Nevertheless, understand-

ability of the model interpretation and the good performance for several applications has

lead to widely use of Cox’s proportional hazard model especially in the field of biomedical

science. However, for the same reason with the quasi-liner logistic model discussed above,

the sample heterogeneity should be included in building a hazard model in the specific situ-

ation. We note that a frailty model was developed by Vaupel and Yashin (1985) to describe

unobserved heterogeneity, but even the observable heterogeneity might not be caught up

by a linear predictor. In fact, the different markers for different population, which predict
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the prognosis of each group well, were detected in the analysis of the gene expressions data

(Wang and others, 2005). They used the label of different population to detect them while

such meaningful labels are unknown in general. We thus may need the relative risk model

for capturing heterogeneous structure. Although the mixture of hazard model were previ-

ously proposed and applied by Louzada-Neto and others (2002); Elmahdy and Aboutahoun

(2013); Zhang and others (2014) in parametric setting and Rosen and Tanner (1999) in

semi-parametric setting, they are in the restrictive setting and give no general formulations.

Hence we develop the quasi-liner relative risk model to describe the observable heterogene-

ity and give the general formulation based on the relative risk model. In the special case,

this model is equivalent to the relative risk model of Rosen and Tanner (1999) making as-

sumption that the hazard rate forms mixture distribution. The details of derivation for the

quasi-linear relative risk model are described in Chapter 5.

For these extensions, the key is in the form of log-sum-exp function. This is a member

of Kolmogorov-Nagumo average (Eguchi and Komori, 2015). The log-sum-exp function

is occasionally used in the field of machine-learning theory and its applications. First,

it has been used as the computation technique to prevent the numerical calculations from

overflows. The technique is called a log-sum-exp trick. Second, the softplus function (Belisle

and others , 2002) is used as an activation function in the neural network model which is

defined by log-sum-exp function. The limiting case of the softplus is rectified linear unit

function proposed by Glorot and others (2011). Because the log-sum-exp form is considered

to be an activation of the linear predictors which have large values, the quasi-linear model

is very close to the neural network model. This fact is discussed in Chapter 6. Third, the

fuzzy clustering proposed by Rose and others (1990) uses an energy function of log-sum-exp

form. This class includes K-means clustering in a limiting sense. We discuss about more

broad family by the generalized average form in Chapter 6.

The rest part of the thesis is organized as follows. The characteristics of the quasi-linear

predictor and the relation of it to the linear predictor is discussed in Chapter 2. In this

chapter, we also introduce the generalized linear predictor to discuss the role of it in the

traditional settings in Chapter 6. We summarize notations of the GLM and relative risk
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model in Chapter 3 in order to prepare for extensions of them by the quasi-linear predictor

in the next two sections. In Chapter 4, we introduce the quasi-linear logistic model, which

is extended logistic model by the quasi-linear predictor. To avoid the loss of the parameter

identifiability and instability of the parameter estimation, we propose the restricted quasi-

linear logistic model and cross-L1 regularized quasi-linear logistic model. The performance

of the restricted quasi-linear logistic model is evaluated by simulation studies and application

studies to the real datasets. In Chapter 5, we introduce the quasi-linear relative risk model,

which is extended Cox’s proportional hazard model by the quasi-linear predictor. We discuss

that it is very natural model because the quasi-linear relative risk model is also regarded

as the extension of the mixture hazard model. The performance of the cross-L1 penalized

quasi-linear relative risk model is evaluated by simulation studies and application studies to

the real datasets. In Chapter 6, we give the discussion of the connection between the quasi-

linear predictor and traditional method including K-means clustering, maximum entropy

clustering, mixture of experts model (Jordan and Jacobs, 1993) and neural network model

(Rosenblatt, 1958; Hinton and others , 1984). We also give the comprehensive discussion

and ongoing of the method of the quasi-linear predictor.
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Chapter 2

Quasi-linear predictor

2.1 Definition and properties of quasi-linear predictor

Let x be a covariate vector. Then we define the quasi-linear predictor as the log-sum-exp

average of K linear predictors:

Fτ (x;α,β) =
1

τ
log

(
1

K

K∑
k=1

exp(ταk + τβ⊤
k x)

)
, (2.1.1)

where α = (α1, α2, · · · , αK)⊤ and β = (β⊤
1 ,β

⊤
2 , · · · ,β⊤

K)⊤. Here, τ is a tuning parameter

of non-zero real number, αk is an intercept and βk is a coefficient vector for the k-th

linear predictor. Below, we may unify or omit the arguments and write Fτ (x;α,β) simply

as Fτ (x;θ), Fτ (x), Fτ (θ) or Fτ , where θ = (α⊤,β⊤)⊤. When K = 1, the quasi-linear

predictor reduces to a linear predictor defined by

F (x;α,β) = α+ β⊤x. (2.1.2)

As shown in Proposition 1, a one-parameter family {Fτ |τ ∈ R\{0}} connects between

the minimum and maximum of linear predictors. We define them as F−∞ and F∞:

F−∞(x;α,β) = min
1≤k≤K

F (x;αk,βk), (2.1.3)

F∞(x;α,β) = max
1≤k≤K

F (x;αk,βk). (2.1.4)
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We show that the tuning parameter τ controls linearity of the quasi-linear predictor by the

following proposition.

Proposition 1. The following properties follow:

1. F−∞(x;α,β) ≤ Fτ (x;α,β) ≤ F∞(x;α,β), (2.1.5)

2. lim
τ→−∞

Fτ (x;α,β) = F−∞(x;α,β), (2.1.6)

3. lim
τ→0

Fτ (x;α,β) =
1

K

K∑
k=1

F (x;αk,βk), (2.1.7)

4. lim
τ→∞

Fτ (x;α,β) = F∞(x;α,β). (2.1.8)

The proofs of Proposition 1 are given in Appendix A.1. These characteristics of the quasi-

linear predictor are visualized in Figure 2.1. We note that the average of linear predictors

(2.1.7) is regarded as the linear predictor because

1

K

K∑
k=1

F (x;α,β) =
1

K

K∑
k=1

(αk + β⊤
k x)

=
1

K

K∑
k=1

αk +

(
1

K

K∑
k=1

β⊤
k

)
x

= F

(
x;

1

K

K∑
k=1

αk,
1

K

K∑
k=1

βk

)
. (2.1.9)

Hence the quasi-linear predictor approaches the linear predictor as τ goes to 0. In this

sense, the parameter family of the quasi-linear predictors is a broader class than the sets

of all linear predictors. The tuning parameter τ controls the non-linearity and the linear

predictor corresponds to take simple averaging whereas the quasi-linear predictor reflects

the predictor with a larger (if τ > 1) or a smaller (if τ < −1) value more. For example,

1

10
log

(
1

2
(exp(10 · 20) + exp(10 · 5))

)
= 19.93 ≈ 20

and

1

−10
log

(
1

2
(exp(−10 · 20) + exp(−10 · 5))

)
= 5.069 ≈ 5.

Thus the parameter family {Fτ ;−∞ < τ < ∞, τ ̸= 0} includes the minimum, mean and
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maximum functions of K values. The nonlinearity of the quasi-linear predictor can be

adjusted by the tuning parameter. The case that τ is equal to 1 has a special meaning from

the perspective of Bayes risk consistency in the quasi-linear logistic model as discussed in

Chapter 3. It enables us to seek the proper non-linearity for a given dataset. The tuning of

τ is discussed in Chapter 5.

We need the derivatives of the quasi-linear predictor by parameter θ = (α⊤,β⊤)⊤ to

investigate the nature of the predictor and build algorithms for parameter estimation of the

model developed later chapters. The first order derivative with respect to parameter θ of

the quasi-linear predictor is given as

∂Fτ (θ)

∂θ
= (η1, · · · , ηK ,x⊤η1, · · · ,x⊤ηK)⊤, (2.1.10)

where

ηk(x; τα, τβ) =
exp(ταk + τβ⊤

k x)∑K
ℓ=1 exp(ταℓ + τβ⊤

ℓ x)
(2.1.11)

is called a softmax function (Murphy, 2012). Consider the case when K = 2, τ = 1 and

x ∈ R. Then, the first derivative is written as (η1, η2, η1x, η2x). The softmax η1 and η2

are in the relationship of seesaw while maintaining η1 + η2 = 1. If the linear predictor

of the first cluster has extremely higher value than the second cluster, the derivative is

approximated by (1, 0, x, 0). This means that the surface of the quasi-linear predictor is

almost approximated by a linear surface in the local area. The example in the case of

x = (x1, x2)
⊤ ∈ R2, α1 = α2 = 1,β1 = (1, 0)⊤ and β2 = (0, 1)⊤ is shown in Figure 2.1,

which shows that the local area {x : |(α1 + β1x1) − (α2 + β2x2)| ≫ 0} is approximated by

the linear surface.

The second order derivative with respect to parameter θ of the quasi-linear predictor is
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given as

∂2Fτ (θ)

∂θ∂θ⊤ =

 1 x⊤

x τxx⊤

⊗



η1(1− η1) −η1η2 · · · −η1ηK

−η2η1 η2(1− η2)
...

...
. . .

...

−ηKη1 · · · · · · ηK(1− ηK)


, (2.1.12)

where ⊗ denotes a Kronecker product. While the linear predictor has the zero-matrix, the

quasi-linear predictor has non-zero matrix as the second derivative.

The quasi-linear predictor is defined by the form of log-sum-exp. The form has been

used for the computation technique to prevent the numerical calculations from overflows or

underflows. Consider an example of calculation on exp(x) + exp(y). To prevent extremely

large values of exp(x) and exp(y) from the overflows, we often take logarithms of such

values: log(exp(x) + exp(y)). However, when x or y itself has a large value, the returned

value would be log(Inf) and the overflow occurs. It can be avoided by taking calculation as

log(exp(x)(1+exp(y−x)) = x+log(1+exp(y−x)) expecting that y−x is an enough small

value to calculate the exponential. The trick is also efficient against the numerical problem

of the quasi-linear predictor for all methods derived in the thesis.

2.2 Generalized quasi-linear predictor

As shown in the previous section, the quasi-linear predictor includes the linear predictor.

Moreover, we can consider broader class. In fact, the log-sum-exp average is a member of

the generalized average, called Kolmogorov-Nagumo average (Kolmogorov, 1930; Nagumo,

1930), defined as

G(z) = ϕ−1

(
1

K

K∑
k=1

ϕ(zk)

)
, (2.2.1)

where z = (z1, z2, · · · , zK) and ϕ is any invertible real-valued function. One of the most

popular examples is power mean: ϕ(z) = zp. For p ̸= 0 and zk > 0 for 1, 2, · · · ,K, it is
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defined as

Gpower(z) =

(
1

K

K∑
k=1

zpk

)1/p

. (2.2.2)

This is very close to the quasi-linear predictor because the same properties shown in Propo-

sition 1 follow for tuning parameter p. It also includes harmonic (p = −1) and geometric

(p → 0) mean. Although we cannot use the power mean for combining linear predictors

directly because of the limited support, it is useful form in the extension of the clustering

method based on the distance as discussed in Chapter 6.

Next, we introduce the quasi-linear predictor with a cumulative distribution function Φ

as ϕ defined by

C(z) =
1

τ
Φ−1

(
1

K

K∑
k=1

Φ(τzk)

)
, (2.2.3)

Because the cumulative distribution function gives an non-negative value, it plays a similar

role to the power mean. For example, consider an exponential distribution function as Φ.

In this case, we get that Φ(z) = 1− exp(−z) and Φ−1(z) = − log(1− z). Then

Cexp(z) = −1

τ
log

{
1− 1

K

K∑
k=1

(1− exp(−τzk))

}

= −1

τ
log

{
1

K

K∑
k=1

exp(−τzk)

}
. (2.2.4)

We see that Cexp(z) = −Fτ (−zk) and it is closely related to the maximum entropy clustering

introduced in Section 6.

For the other example, consider a logistic distribution function as Φ. In this case, we

get that Φ(z) = 1/(1 + exp(−z)) and Φ−1(z) = log(z/(1− z)). Then

Clogit(z) =
1

τ
log

1
K

∑K
k=1

1
1+exp(−τzk)

1− 1
K

∑K
k=1

1
1+exp(−τzk)

=
1

τ
log

1
K

∑K
k=1

1
1+exp(−τzk)

1
K

∑K
k=1

exp(−τzk)
1+exp(−τzk)

(2.2.5)
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If τ = 1, Clogit is written by the difference between two log-sum-exp averages

log

(
1

K

K∑
k=1

1

1 + exp(−zk)

)
− log

(
1

K

K∑
k=1

exp(−zk)

1 + exp(−zk)

)
. (2.2.6)

We see that the average (2.2.6) makes sense when we consider K logistic models. Each k-th

component of both terms of (2.2.6) is regarded as the estimated odds πk in the k-th logistic

model. The average (2.2.6) combines these odds as log( 1
K

∑K
k=1 πk)− log( 1

K

∑K
k=1(1−πk)).

We note that 1
K

∑K
k=1 πk +

1
K

∑K
k=1(1− πk) = 1 and therefore (2.2.6) gives summarized the

odds ratio of multiple logistic models. Besides this, Normal distribution function would give

us similar interpretation while it recalls the Probit regression model not the logistic model.

By introducing the generalized quasi-linear predictor, the roles of the quasi-linear form

in the traditional clustering method as the basis of the energy functions are easily extended,

including K-means and maximum entropy clustering as discussed in Chapter 6. Other than

it, the method extended by the quasi-linear predictor in the thesis can be further extended

broader class by the generalized quasi-linear predictor. The details are discussed in Chapter

6.
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Figure 2.1: The contour of the quasi-linear predictor for two dimensional settings. The

parameters are set as follows: α = (1, 1)⊤, β = (1, 0, 0, 1)⊤. The top left and right figures
show the surfaces of the quasi-linear predictor when τ = 1 and the linear predictor, respec-
tively. The bottom left and right figures show the surfaces of the minimum and maximum
functions, respectively.
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Chapter 3

Existing methods

In this chapter, we summarize the traditional two models, which are extended by the quasi-

linear predictor in the thesis. In Section 3.1, we give the framework of the generalized linear

model. In Section 3.2, we give the framework of the relative risk model, which includes

Cox’s proportional hazard model.

3.1 Generalized linear model

In Chapter 4, we extend the logistic model by the quasi-linear predictor. It is expected

sufficiently to deal with the data which has heterogeneous structure as shown by Bayes risk

consistency of the normal mixture-normal assumption. We therefore give the basic modeling

notation of the logistic model via the framework of the generalized linear model. We note

that while we focus only on the logistic model in the thesis, the generalized linear model is

similarly extended as the logistic model.

In the framework of generalized linear model, the linear predictor, defined as the function

of covariates vector X, is connected to the expectation of outcome Y by a link function g as

E[Y |X] = g−1(F (X;α,β)). Here, it is assumed that Y has a distribution in the exponential

family (McCullagh and Nelder, 1989). The parameter estimation is often performed by

minimizing negative log-likelihood function for parameters. The distribution function of

19



exponential family is taking the form

f(Y ; θ, ϕ) = exp

(
Y θ − b(θ)

a(ϕ)
+ c(Y, ϕ)

)
, (3.1.1)

where a(ϕ), b(θ) and c(Y, ϕ) is a known function. The parameter θ is called a canonical

parameter and ϕ is called a dispersion parameter. If the data {Y1, Y2, · · · , YN} is given, the

log-likelihood function is written as

l(θ) =
N∑
i=1

(
Yiθ − b(θ)

a(ϕ)
+ c(Yi, ϕ)

)
. (3.1.2)

The moments and derivatives are given by simple notations for the exponential family. For

example, E[Y ] = ḃ(θ), var[Y ] = b̈(θ)a(ϕ). This property leads to calling b(θ) cumulant

function. Furthermore,

∂l

∂θ
=

Y − ḃ(θ)

a(ϕ)
, (3.1.3)

∂2l

∂θ
= − b̈(θ)

a(ϕ)
, (3.1.4)

where a dot and two dots denote the first and second derivative with respect to θ, respec-

tively. If link function g is defined as g = ḃ−1, then g(E[Y |X]) = θ = α + β⊤X. Thus

the canonical parameter and the linear predictor are directly connected, and so such link

function is called a canonical link function. Some examples of the generalized linear models

are given below.

• Normal

If ϕ = σ2, a(ϕ) = ϕ, b(θ) = θ2/2 and c(Y, θ) = −(Y 2/ϕ+ log(2πϕ))/2, then

f(Y ; θ, σ2) =
1√
2πσ2

exp

{
−(Y − θ)2

2σ2

}
. (3.1.5)

The generalized linear model for (3.1.5) is known as the linear model (McCulloch and

others, 2008).

• Binomial
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If ϕ = 1, a(ϕ) = ϕ, b(θ) = log(1 + exp (θ)) and c(Y, θ) = 0, then

f(Y ; θ) =
exp(Y θ)

1 + exp(θ)
. (3.1.6)

The generalized linear model for (3.1.6) is known as the linear logistic regression model

(McCulloch and others, 2008).

• Poisson

If ϕ = 1, a(ϕ) = ϕ, b(θ) = exp(θ) and c(Y, ϕ) = − log Y !, then

f(y; θ) =
(exp(θ))Y

Y !
exp(− exp(θ)). (3.1.7)

The generalized linear model for (3.1.7) is known as the poisson regression model

(McCulloch and others, 2008). The model is linked to Cox’s proportional hazard

model (Cox, 1972) as discussed in Section 3.2.

The parameter estimation of the generalized linear model is performed by the gradient

method or Newton-Raphson method. The case of the logistic model is noted in Section 4.

3.2 Relative risk model

In Chapter 5, we extend Cox’s proportional hazard model by the quasi-linear predictor with

expectation that the extended model could capture heterogeneous structure similar to the

quasi-linear logistic model. The counting process and martingale theory is very useful to

evaluate the characteristics of Cox’s proportional hazard model. We give only the simple

notation in this section and put more rigorous discussion in Appendix A.2.

In Cox’s proportional hazard model, log hazard and covariates are connected via a linear

predictor. Let Ni(t) be number count of occurrences of the event of interest for individual

i ∈ {1, · · · , N}. For individual i and some time point t, Ni(t) = 1 if by time t the event has

been observed to occur, otherwise Ni(t) = 0. Let Xi be p-dimensional covariates vector.
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Assume that the intensity process of Ni is written as

Ai(t) = Yi(t)h(t|Xi). (3.2.1)

Here h(t|Xi) is called the hazard rate, and Yi(t) is an indicator taking the value 1 if indi-

vidual i is at risk for the event of interest just before time t and the value 0 otherwise. If

ti denotes the time to event for individual i, Yi(t) = 1(t ≤ ti), where 1(·) is an indicator

function.

The relative risk model is written as

h(t|Xi,θ) = h0(t)r(Xi,θ), (3.2.2)

where r(Xi,θ) is a relative risk function with parameter θ, and h0(t) is called the baseline

hazard function. We often normalize the r(Xi,θ) as

r(0,θ) = 1. (3.2.3)

We give examples of the relative risk model proposed to date.

• Exponential relative risk (Cox’s proportional hazard) model

r(x,θ) = exp (F (x;θ)) (3.2.4)

• Linear relative risk model

r(x,θ) = F (x;α = 1,β) (3.2.5)

• Excess relative risk model

r(x,θ) =

p∏
j=1

F (xj ;α = 1, βj) (3.2.6)
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Combining (3.2.1) and (3.2.2), We get

Ai(t) = Yi(t)h0(t)r(Xi,θ). (3.2.7)

The likelihood function of the survival data is defined by (3.2.7). To show this we define

the conditional probability

pi =
Ai(t)∑n
ℓ=1Aℓ(t)

. (3.2.8)

This is the probability that an individual experiences an event at time t, given that one of

the individuals in the risk set experiences an event at this time. The likelihood is equivalent

to the product of these probability over all individual who experiences an event during the

observation as equation (3.2.10). We derive it from the perspective of the partial likelihood

function.

Let T be a continuous random variable which indicates a survival time with a distribution

function G(t). We denote the density function, survival function and hazard function of T as

g(t), S(t) and h(t). Immediate consequence of these definitions result in their relationships

as g(t) = ∂G(t)/∂t, S(t) = 1−G(t), h(t) = g(t)/S(t).

Consider the data (Xi, ti, δi) (i = 1, 2, · · · , N), where ti is observed survival time to

some event and δi is an event indicator which takes value 1 if the individual experiences an

event by t = ti and value 0 otherwise. We assume that ti and δi are independent for all
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individuals. Then, the full likelihood of θ is written as

Lfull =

N∏
i=1

g(ti|Xi,θ)
δiS(ti|Xi,θ)

1−δi

=

N∏
i=1

h(ti|Xi,θ)
δiS(ti|Xi,θ)

=
N∏
i=1

{h0(ti)r(Xi,θ)}δi exp
{
−
∫ ti

0
Ai(u)

}

=

N∏
i=1

{h0(ti)r(Xi,θ)}δi
N∏
i=1

exp

{
−
∫ ∞

0
Yi(u)h0(u)r(Xi,θ)du

}

=

N∏
i=1

{
r(Xi,θ)∑N

ℓ=1 Yℓ(ti)r(Xℓ,θ)

}δi N∏
i=1

{
h0(ti)

(
N∑
ℓ=1

Yℓ(ti)r(Xℓ,θ)

)}δi

exp

{
−
∫ ∞

0

N∑
ℓ=1

Yℓ(u)r(Xℓ,θ)h0(u)du

}
. (3.2.9)

The inference for the parameter θ is often based on a partial likelihood defined by

L =

N∏
i=1

{
r(Xi,θ)∑N

ℓ=1 Yℓ(ti)r(Xℓ,θ)

}δi

, (3.2.10)

rather than the full likelihood (3.2.9) (Klein and Moeschberger, 2003). The maximum

partial likelihood estimator has large sample properties similar to the maximum likelihood

estimator (Aalen and others, 2008).

Practically, the maximum likelihood estimator θ̂ is got by maximizing the log partial

likelihood defined as

l =

N∑
i=1

δi

{
log (r(Xi,θ))− log

(
N∑
ℓ=1

Yℓ(ti)r(Xℓ,θ)

)}
. (3.2.11)

The estimator is the solution of the likelihood equation: U(θ) = 0, where U(θ) is defined

as the first derivative of log likelihood function:

U(θ) =

N∑
i=1

δi

{
∂
∂θr(Xi,θ)

r(Xi,θ)
−
∑N

ℓ=1 Yℓ(ti)
∂
∂θr(Xℓ,θ)∑N

ℓ=1 Yℓ(ti)r(Xℓ,θ)

}
. (3.2.12)
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By the counting process and martingale theory, we can show that θ̂ is asymptotically

multivariate normally distributed around the true value θ0 with a covariance matrix Σ,

where Σ is estimated by an inverse matrix of the observed information matrix I(θ̂) or ex-

pected information matrix F(θ̂). The difference between these matrixes is as follows. Let

r(0)(Xℓ,θ) = r(Xℓ,θ), r
(1)(Xℓ,θ) =

∂
∂θr(Xℓ,θ), r

(2)(Xℓ,θ) =
∂2

∂θ∂θ⊤ r(Xℓ,θ) and

S(m)(θ, t) =

N∑
ℓ=1

Yℓ(t)r
(m)(Xℓ,θ) (3.2.13)

for m = 0, 1, 2. Then, the observed Fisher information of θ is

I(θ) = −
N∑
i=1

δi

{ ∂
∂θ∂θ⊤ r(Xi,θ)

r(Xi,θ)
−

{
∂
∂θr(Xi,θ)

r(Xi,θ)

}{
∂
∂θr(Xi,θ)

r(Xi,θ)

}⊤


−

S(2)(θ, ti)

S(0)(θ, ti)
−

(
S(1)(θ, ti)

S(0)(θ, ti)

)(
S(1)(θ, ti)

S(0)(θ, ti)

)⊤
}. (3.2.14)

The expected Fisher information matrix is derived by predictable variation process of the

score function. This is written as

F(θ) =
N∑
i=1

δi

S(2)(θ, ti)

S(0)(θ, ti)
−

(
S(1)(θ, ti)

S(0)(θ, ti)

)(
S(1)(θ, ti)

S(0)(θ, ti)

)⊤
 (3.2.15)

In the case of Cox’s proportional hazard model, (3.2.14) is equal to (3.2.15). In fact, we get

that

∂
∂θ∂θ⊤ r(Xi,θ)

r(Xi,θ)
−

{
∂
∂θr(Xi,θ)

r(Xi,θ)

}{
∂
∂θr(Xi,θ)

r(Xi,θ)

}⊤

=
XiX

⊤
i exp (θ⊤Xi)

exp (θ⊤Xi)
−XiX

⊤
i

= 0.

However, these may differ for other models. In these case, the expected information would

be more stable than the observed one because (3.2.14) depends on each covariate values

of the individuals (Aalen and others, 2008). Cox’s proportional hazard model has a deep

connection with Poisson regression model as discussed in McCullagh and Nelder (1989).

In fact, it follows that G(t) = 1 − exp(−
∫ t
−∞ h0(s)ds exp(F (X))), S(t) = 1 − G(t) =
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exp(−
∫ t
−∞ h0(s)ds exp(F (X))) and g(t) = h0(t) exp(F (X)−

∫ t
−∞ h0(s)ds exp(F (X))). Then,

the log full-likelihood of Cox’s proportional hazard model is written as

lfull =
N∑
i=1

δi log(g(ti)) + (1− δi) log(S(ti))

=

N∑
i=1

δi(log(h0(ti)) + F (Xi))−
∫ ti

−∞
h0(s)ds exp(F (Xi))

=

N∑
i=1

δi

(
log

(∫ ti

−∞
h0(s)ds

)
+ F (Xi)

)
−
∫ ti

−∞
h0(s)ds exp (F (Xi)) + δi log

(
h0(ti)∫ ti

−∞ h0(s)ds

)

=
N∑
i=1

(δi logµi − µi) +
N∑
i=1

δi log

(
h0(ti)∫ ti

−∞ h0(s)ds

)
, (3.2.16)

where µi =
∫ ti
−∞ h0(s)ds exp(F (Xi)). The log full-likelihood is equivalent to the likelihood

of Poisson model with log-linear function when regarding the censoring label δi as Poisson

distributed with mean µi.
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Chapter 4

Quasi-linear logistic model

In this chapter, we extend the linear logistic model by the quasi-linear predictor. The

optimality of the quasi-linear predictor is assured by the Bayes optimal form in the case of

binary classification between normal and mixture-normal samples. In Section 4.1, we give

two decision rules in binary classification problem and discuss the optimal setting for normal-

normal assumption. In Section 4.2, we derive the quasi-linear logistic model. In Section 4.3,

we introduce the restricted quasi-linear logistic model and the numerical calculation method

on parameter estimation for the penalized quasi-linear logistic model including cross-L1, L1

and L2 penalties. In Section 4.4 and 4.5, we give simulation and application studies. We

close Section 4.6 with the discussion on the quasi-linear logistic model.

4.1 Statistical classification

4.1.1 Statistical decision

Consider a classification problem for binary classes. Let Y ∈ {0, 1} be a class indicator.

In accordance with the convention, Y = 0 and Y = 1 denotes a normal and disease label,

respectively. We have a continuous random vector X which has marginal density P (X),

and we wish to decide from which classes X generated. In the statistical decision theory,

there are two most popular rules: Bayes decision rule and Neyman-Pearson decision rule

(Webb and Copsey, 2011). These two rules are based on three distributions, namely a prior
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distribution: P (Y ), a posterior distribution: P (Y |X) and a class conditional distribution:

P (X|Y ).

4.1.2 Bayes decision rule

The Bayes decision rule for the binary classification problem is denoted by two posterior

distributions. It is denoted as follows:
P (Y = 1|X) ≥ P (Y = 0|X) ⇒ Ŷ = 1,

P (Y = 1|X) < P (Y = 0|X) ⇒ Ŷ = 0,

(4.1.1)

where Ŷ is an estimated class indicator. It is an intuitive natural rule in that the rule

simply classify the random sample X as the class with higher conditional probability. By

the Bayes’ theorem, P (Y |X) is written as

P (Y = y|X) =
P (X|Y = y)P (Y = y)

P (X)
(y = 0, 1) (4.1.2)

so that the decision rule (4.1.1) is equivalent to the rule


LR(X) ≥ P (Y=0)

P (Y=1) ⇒ Ŷ = 1,

LR(X) < P (Y=0)
P (Y=1) ⇒ Ŷ = 0,

(4.1.3)

where LR(X) = P (X|Y=1)
P (X|Y=0) . The class conditional probability P (X|Y ) is the probability

that the data X is obtained when a class label Y is given and it is called the likelihood.

The function LR(X) is therefore called the likelihood ratio.
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4.1.3 Neyman-Pearson decision rule

An alternative of the Bayes decision rule is the Neyman-Pearson decision rule. In the

statistical decisions, we may have two errors:

ϵ1 =

∫
Ω1

P (x|Y = 0)dx, (4.1.4)

ϵ2 =

∫
Ω0

P (x|Y = 1)dx, (4.1.5)

where Ωy is a region such that if x ∈ Ωy then x belongs to class y. The two errors ϵ1

and ϵ2 are called type I error and type II error, respectively. The type I error is the error

probability of classifying the sample from class 0 as the class 1, and the type II error is the

contrast. In particular for the classification problem, the type I and type II error is called a

false positive and negative rate, respectively. The Neyman-Pearson decision rule is derived

as the decision boundary which minimizes the ϵ2 subject to ϵ1 being equal to a constant

error ϵ0. Such minimizing problem is described by method of Lagrange multiplier as

argmin
Ω1

∫
ΩC

1

P (x|Y = 1)dx+ λ

{∫
Ω1

P (x|Y = 0)dx− ϵ0

}
= argmin

Ω1

(1− λϵ0) +

∫
Ω1

λP (x|Y = 0)− P (x|Y = 1)dx, (4.1.6)

where λ is a Lagrange multiplier. The solution is

Ω1 = {x | λP (x|Y = 0)− P (x|Y = 1) ≤ 0}

=

{
x

∣∣∣∣ P (x|Y = 1)

P (x|Y = 0)
≥ λ

}
= {x | LR(x) ≥ λ} , (4.1.7)

where λ is chosen so that
∫
Ω1

P (x|Y = 0)dx = ϵ0. The difference between Bayes and

Neyman-Pearson decision rule becomes clear by comparing (4.1.3) and (4.1.7). Both rules

are derived by the same likelihood ratio and the generally different threshold term.
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4.2 Linear logistic model

In this section, we introduce the linear logistic model. Its optimality is assured in the

framework of Bayes risk consistency, which is originally shown in Fisher’s linear discriminant

analysis.

4.2.1 Bayes risk consistency in normal-normal assumption

As described in the former section, two major decision rules depend on the likelihood ratio.

We consider a simple binary classification problem of samples from two normal distributions

with different means and the equal variance. Assume that X|(Y = 1) ∼ N(µ,Σ) and

X|(Y = 0) ∼ N(0,Σ). Let ϕ(x;µ,Σ) be a normal density function with mean vector µ and

variance matrix Σ defined as

ϕ(x;µ,Σ) = (2π)−
p
2 |Σ|−

1
2 exp

{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
. (4.2.1)

It is not strict assumption that we set mean parameter to 0 in the normal group density,

because there is a proper linear transformation in order to come down to this setting even

if E[X|Y = 0] ̸= 0. Then, the true log likelihood ratio is

log
ϕ(x;µ,Σ)

ϕ(x;0,Σ)
= log

(2π)−(p/2)|Σ|−1/2 exp
{
−1

2(x− µ)⊤Σ−1(x− µ)
}

(2π)−(p/2)|Σ|−1/2 exp
(
−1

2x
⊤Σ−1x

)
= µ⊤Σ−1x− 1

2
µ⊤Σ−1µ. (4.2.2)

Thus the decision boundary is written as Ω1 = {x|µ⊤Σ−1x − 1
2µ

⊤Σ−1µ > c}, where c is

a proper constant value. This is called Fisher’s linear discriminant analysis (LDA) rule. It

is well known that the rule has Bayes risk consistency for the setting. We note that the

log likelihood ratio is the form of linear predictor: α + β⊤x, where α = −1
2µ

⊤Σ−1µ and

β = Σ−1µ.
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4.2.2 Formulations of linear logistic model

Regardless of whether we can or cannot assume the normal distribution on the two-labeled

groups, we assume in the logistic model that the true log likelihood ratio is approximated

by the linear predictor as

log

(
P (Y = 1|x)
P (Y = 0|x)

)
= α+ β⊤x. (4.2.3)

The model is equivalent to the generalized linear model in the case that the distribution

of class label Y follows Binomial distribution. In fact, we see that the model (4.2.3) is

rewritten as

π = g(F (x;θ)), (4.2.4)

where π = P (Y = 1|x) and g(z) = 1/(1 + exp(−z)) which is called a logistic function. We

can regard the class label Y given X as a random sample from Bernoulli distribution with

mean parameter π.

4.2.3 Parameter estimation in linear logistic model

If a data set is given as {(xi, yi); 1 ≤ i ≤ N}, the log-likelihood function of the linear logistic

model is written as

l(θ) =

N∑
i=1

log
exp(yiF (xi;θ))

1 + exp(F (xi;θ))

=
N∑
i=1

yiF (xi;θ)− log(1 + exp(F (xi;θ))). (4.2.5)

Because the estimator which maximize (4.2.5) cannot be written in analytical formulation,

we need numerical optimization to get the maximum likelihood estimator. One of the

most widely used optimization strategies is Fisher’s scoring method performed by the score

function and Fisher information matrix of the log likelihood function. The score function is
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written as

∂l(θ)

∂θ
=

N∑
i=1

(yi − π̂i)
∂F (xi;θ)

∂θ

= W⊤(y − π̂), (4.2.6)

where

W =

(
∂F (x1;θ)

∂θ
,
∂F (x2;θ)

∂θ
, · · · , ∂F (xN ;θ)

∂θ

)⊤
, (4.2.7)

y = (y1, y2, · · · , yN )⊤, π̂ = (π̂1, π̂2, · · · , π̂N )⊤, (4.2.8)

and

π̂i =
exp(F (xi;θ))

1 + exp(F (xi;θ))
. (4.2.9)

The Fisher information matrix of the log likelihood is

E

[
− ∂2l

∂θ∂θ⊤

]
=

N∑
i=1

∂F (xi;θ)

∂θ

∂π̂i

∂θ⊤

=

N∑
i=1

exp(F (xi))

(1 + exp(F (xi)))2
∂F (xi)

∂θ

∂F (xi)

∂θ⊤ ,

=

N∑
i=1

π̂i(1− π̂i)
∂F (xi)

∂θ

∂F (xi)

∂θ⊤

= W⊤V W , (4.2.10)
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where V = diag(π̂)(In − diag(π̂)). The maximum likelihood estimator of θ is calculated

by the following update formula from some initial value θ(0) as

θ(t+1) = θ(t) +

{
E

[
−∂2l(θ(t))

∂θ∂θ⊤

]}−1
∂l(θ(t))

∂θ

= θ(t) +
(
W (t)⊤V (t)W (t)

)−1
W (t)⊤(y − π̂(t))

=
(
W (t)⊤V (t)W (t)

)−1
W (t)⊤V (t)(W (t)θ(t) + V (t)−1

(y − π̂(t))). (4.2.11)

In the framework of generalized linear model, Z(t) = W (t)θ(t)+V (t)−1
(y−π(t)) is called the

working response, and this algorithm is referred to as the iteratively reweighted least-square

method (Nelder and Wedderburn, 1972).

4.3 Quasi-linear logistic model

4.3.1 Bayes risk consistency in normal mixture-normal assumption

As shown in the previous section, the optimality of the linear logistic model is expected when

we consider the normal-normal assumption. However, as discussed in Chapter 1, it seems

that more natural assumption in the field of biomedical science might be that the covariate

vectors of disease samples follow mixture distribution. One of the simplest assumptions is

that these are distributed with mixture of normal distributions. In the situation, it holds

the following theorem.

Theorem 1. Assume that X|(Y = 1) ∼
∑K

k=1 pkN(µk,Σ) and X|(Y = 0) ∼ N(0,Σ),

where K is a number of mixture components and pk denotes mixing proportion for k =

1, 2, · · · ,K, satisfying
∑K

k=1 pk = 1. Then, the true log likelihood ratio forms the quasi-

linear predictor with tuning parameter τ = 1.

Proof. Let ϕ(x;µ,Σ) be a normal density function with mean parameter µ and covariance
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matrix Σ. Then, the true log likelihood ratio is given as

log

∑K
k=1 pkϕ(x;µk,Σ)

ϕ(x;0,Σ)
= log

∑K
k=1 pk(2π)

−(p/2)|Σ|−1/2 exp
{
−1

2(x− µk)
⊤Σ−1(x− µk)

}
(2π)−(p/2)|Σ|−1/2 exp

(
−1

2x
⊤Σ−1x

)
= log

(
K∑
k=1

pk exp

(
x⊤Σ−1µk −

1

2
µ⊤
k Σ

−1µk

))

= log

(
K∑
k=1

exp

(
x⊤Σ−1µk −

1

2
µ⊤
k Σ

−1µk + log pk

))

= log

(
1

K

K∑
k=1

exp(αk + β⊤
k x)

)
= F1(x;α,β), (4.3.1)

where α = (α1, α2, · · · , αK) and β = (β1,β2, · · · ,βK) with αk = −1
2µ

⊤
k Σ

−1µk + logKpk

and βk = Σ−1µk.

Theorem 1 means that the quasi-linear form is Bayes optimal in the case of the normal

mixture-normal assumption. Thus the quasi-linear predictor is expected to be ideal for

classifying the two-labeled data with intrinsic heterogeneity as expressed by the normal

mixture distribution.

4.3.2 Formulations of quasi-linear logistic model

For a data set {(xi, yi); 1 ≤ i ≤ N} we define the quasi-linear logistic model as

log

(
πi

1− πi

)
= Fτ (xi;θ), (4.3.2)

where πi = P (yi = 1|xi). Here we assume that yis are independently distributed according

to Bernoulli distribution with the mean parameter πi and the cluster number K of the

quasi-linear predictor is some fixed integer. How to determine the number of clusters is

described in the next section. Then, the log-likelihood function of the quasi-linear logistic
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model is written as

l(θ) =
n∑

i=1

yiFi − log(1 + exp(Fi)), (4.3.3)

where Fi = Fτ (xi;θ). Because the maximum likelihood estimator cannot be written analyt-

ically, we performed Fisher’s scoring method as the linear logistic model on the parameter

estimation. The score function of the log-likelihood of the quasi-linear logistic model is

written as

∂l(θ)

∂θ
= W⊤(y − π), (4.3.4)

where W = (∂F1/∂θ, · · · , ∂Fn/∂θ)
⊤, y = (y1, · · · , yn)⊤ and π = (π1, · · · , πn)⊤. The Fisher

information matrix is given by

E

[
− ∂2l

∂θ∂θ⊤

]
= W⊤V W , (4.3.5)

where V = diag{π1(1 − π1), · · · , πn(1 − πn)}. The maximum likelihood estimator of the

quasi-linear logistic model is calculated by updating some initial value repeatedly by Fisher’s

scoring method as

θ(t+1) = θ(t) +
(
W (t)⊤V (t)W (t)

)−1
W (t)⊤(y − π(t)), (4.3.6)

where W (t) = (∂F1/∂θ, · · · , ∂Fn/∂θ)
⊤ |θ=θ(t) , V (t) = diag{π(t)

1 (1−π
(t)
1 ), · · · , π(t)

n (1−π
(t)
n )}

and π(t) = (π
(t)
1 , · · · , π(t)

n )⊤. This algorithm is the natural extension of the IRLS because

the equation (4.3.6) is written as θ(t+1) =
(
W (t)⊤V (t)W (t)

)−1
W (t)⊤V (t)Z(t). We can

combine the L1 and L2 regularization method based on the penalized likelihood just as for

the penalized linear logistic model (Park and Hastie, 2007; Friedman and others, 2010).

However, we have no identifiability for the parameters in the model (4.3.3). This fact may

cause instability on the parameter estimation. Moreover, we need a simpler model in order

to improve the interpretability of the estimated model. The conceptual diagram of such

a parsimonious model is described in Figure 4.1. We have two strategies to take it into
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consideration as discussed in the next two subsections.

4.3.3 Restricted quasi-linear model

The first strategy is to use the idea of disjoint sets of covariates which were proposed by Omae

and others (2017). In the strategy, we assume that we know the disjoint decomposition ofXi

as Xi(1), · · · ,Xi(K) with a fixed cluster size K, and that this is identical among individuals.

We denote the size of Xi(k) as pk, where
∑K

k=1 pk = p. We note that such decomposition

is given by beforehand one of clustering methods for {Xi; i = 1, · · · , n} or prior knowledge

about the disjoint structure of X. The disjoint sets of covariates yield the restricted quasi-

linear predictor defined by

FRes
τ (X(1),X(2), · · · ,X(K);α,β) =

1

τ
log

(
1

K

K∑
k=1

exp(ταk + τβ⊤
k X(k))

)
. (4.3.7)

We can keep the predictor FRes
τ to have Bayes risk consistency for the normal mixture-

normal assumption if some regularity condition is satisfied as the following theorem.

Theorem 2. Let Z|(Y = 1) ∼
∑K

k=1 pkN(µk,Σ) and Z|(Y = 0) ∼ N(0,Σ), where K is a

number of mixture components and pk denotes mixing proportion for k = 1, 2, · · · ,K, sat-

isfying
∑K

k=1 pk = 1. Assume that (µ⊤
1 ,µ

⊤
2 , · · · ,µ⊤

K) are linearly independent. Then, there

exists the non-singular matrix A ∈ Rp×p such that the true log likelihood ratio forms the re-

stricted quasi-linear predictor with tuning parameter τ = 1 as FRes
1 (X(1),X(2), · · · ,X(K);α,β),

where X(k) is the vector of the k-th blocked components of (A⊤)−1Z corresponding to any

decomposition of Z into (Z(1), · · · ,Z(K)).

The proof of the Theorem 2 is given in Appendix A.2. Thus, the quasi-linear predictor

is naturally derived when we incorporate the heterogeneity as a normal mixture assumption

and modify the optimal form appropriately. We fix τ = 1 below in this section for keep the

quasi-linear predictor to be the Bayes risk consistent form.

In this setting, the unknown parameters are fully identifiable because θ1 is equal to θ2

if FRes
τ (X(1),X(2), · · · ,X(K);θ1) = FRes

τ (X(1),X(2), · · · ,X(K);θ2) for all X ∈ Rp. For

example, the Figure 4.2 is the diagram used for cluster composition in Omae and others
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Figure 4.1: The conceptual diagram of the full and parsimonious models in the setting of
p = 4 and K = 3 are drawn. The left figure shows the full model written by the quasi-linear
predictor Fτ (X;α,β) = 1

τ log(
∑K

k=1 exp (αk +
∑p

j=1 βkjXj)). The right figure shows the
parsimonious model written in the same predictor but has some zero-coefficients.
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(2017). This figure would suggest that the appropriate cluster size is 2 or 3.

4.3.4 Cross-penalized quasi-linear model

In the second strategy, we regularize the log-likelihood function by cross-L1 penalty defined

by

P (c)(β) = λ(c)
∑
ℓ ̸=m

p∑
j=1

|βℓjβmj |, (4.3.8)

where λ(c) is a regularization parameter and βkj is the j-th component of k-th coefficient

vector βk. When λ(c) goes infinity, the estimated parameter βk’s would be sparse and

βkj = 0 for any k ̸= ℓ if βℓj ̸= 0. Moreover, L1 and L2 penalties have an important role for

the high dimensional settings as in the generalized linear model. The elastic net (Zou and

Hastie, 2005) type of the regularized log-likelihood with cross L1 penalty is written as

lpen(θ) = l(θ)− P (β)− P (c)(β), (4.3.9)

where P (β) = ζλ1
∑K

k=1

∑p
j=1 |βkj |+(1− ζ)λ2

∑K
k=1

∑p
j=1 β

2
kj . The maximization of equa-

tion (4.3.9) is achieved by the full gradient algorithm (Goeman, 2010). The parameter

estimation of the quasi-linear logistic model is performed by updating some initial value

repeatedly as

θ(t+1) = θ(t) +min{topt(θ(t)), tedge(θ
(t))}d(θ(t)), (4.3.10)

where

d(θ) = (d1(θ), d2(θ), · · · , dK(1+p)(θ))
⊤

= (d
(0)
1 (θ), · · · , d(0)K (θ), d

(1)
1 (θ), · · · , d(1)p (θ), · · · , d(K)

1 (θ), · · · , d(K)
p (θ))⊤,

tedge(θ) = min
1+K≤j≤K(1+p)

(
− θj
dj(θ)

: sign(θj) = −sign(dj(θ)) ̸= 0

)
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Figure 4.2: The hierarchical clustering and the correlation matrix of 70 genes for the
dataset from van’t Veer et al. (2002). The left figure shows the clustering result. There are
70 rows representing genes and 78 columns representing samples and the gene expressions
ranging from green (negative) to red (positive) are displayed. The right figure shows the
corresponding correlation matrix. Elements of the correlation matrix ranging from blue
(negative) to yellow (positive) are displayed.
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and

topt(θ) =
|d(θ)|

d(θ)⊤ ∂2l(θ)

∂θ∂θ⊤d(θ)
.

Here d
(0)
j (θ) = l̇

(0)
j (θ) for j = 1, · · · ,K and

d
(k)
j (θ) =


h
(k)
j (θ)− λ

(k)
j sign(βkj) if βkj ̸= 0

h
(k)
j (θ)− λ

(k)
j sign(l̇

(k)
j (θ)) if βkj = 0 and |h(k)j (θ)| > λ

(k)
j

0 otherwise

(4.3.11)

for j = 1, · · · , p, where h
(k)
j (θ) = l̇

(k)
j (θ)− 2(1− ζ)λ2βkj , sign(z) is the sign function, l̇

(0)
j is

the j-th component and l̇
(k)
j is the (K + (k − 1)p + j)-th component of the score function

and λ
(k)
j =

(
ζλ1 + λ(c)

∑
ℓ ̸=k |βℓj |

)
,.

4.4 Simulation studies of quasi-linear logistic model

In this section, we show the efficiency of the restricted quasi-linear logistic models (QL)

compared with the linear logistic model (LL) by the simulation studies. All simulations in

the section were preformed in Omae and others (2017).

We conducted a simulation of five scenarios. In each scenario, we consider two popula-

tions of equal sample size. The class labels Y = 0 and Y = 1 mean the normal population

and the disease population, respectively. In subsection 4.4.1, we showed the consistency

of the parameters estimation of the restricted quasi-linear logistic model in the low dimen-

sional setting. Here, we checked it in a simple setting that has a Bayes optimal predictor

of the quasi-linear form. In this example, the sample size was set to 400 or 1600. Each

situation was tried 1000 times by random samples. In subsection 4.4.2, the performance

of the restricted quasi-linear logistic model was compared with the linear logistic model by

four settings focusing on the test AUC. Covariates of the sample from the normal popula-

tion and disease population follow normal and normal mixture distribution, respectively. In

these examples, we simulated 1,000 random data sets of 400 samples and 200 samples for

the training data set and the test data set, respectively. For these settings, we use the L1
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and L2 penalization method in order to avoid overfitting and hard computation if necessary.

The tuning parameters were determined by a cross-validation method. Below, we define

rp = (r, r, · · · , r) ∈ Rp for scalar r for simple notations.

4.4.1 Checking consistency

In this scenario, we assumed normal distribution for the normal group and normal mixture

distribution for the disease group as

X|(Y = 0) ∼ N(0⊤2 , I2), X|(Y = 1) ∼
2∑

g=1

τgN(µ1g, I2),

2∑
g=1

τg = 1. (4.4.1)

We let µ11 = (−1, 0)⊤ and µ12 = (0, 1.5)⊤. In this setting, the Bayes optimal form is

log(exp(α1+β1X1)+exp(α2+β2X2)) from (4.3.1). Figure 4.3 shows box plots of estimated

parameters in the 1000 trials. The optimal parameter derived from the true likelihood

is given as (α1, α2, β1, β2) = (−1.19,−1.82,−1.00, 1.50). The mean values of estimated

parameters from 1000 trials are (α1, α2, β1, β2) = (−1.28,−1.99,−1.07, 1.61) for the 400

samples datasets and (α1, α2, β1, β2) = (−1.21,−1.85,−1.01, 1.53) for the 1600 samples

datasets. Thus we observed that the parameter estimation was more precise and nearly

equal to the true values when the sample size was large.

4.4.2 Evaluation of test AUC

• (a): normal - normal

In this example we assumed normal distributions for both groups as

X|(Y = y) ∼ N(µy, Ip) (y = 0, 1). (4.4.2)

We had three settings of different parameters: (a)-(1) p = 2,µ0 = 0⊤2 ,µ1 = 1⊤2 , (a)-(2)

p = 100,µ0 = 0⊤100,µ1 = 0.1⊤100, (a)-(3) p = 100,µ0 = 0⊤100,µ1 = 0.5⊤100. When we

used the restricted quasi-linear logistic model, we assumed to misspecify there were

heterogeneous structure, as K = 2 and p1 = p2 = 1 for (a)-(1) or p1 = p2 = 50 for
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Figure 4.3: Box plots of the estimated parameters in the simulation of checking consistency.
The left and right figure show results from 400 samples and 1600 samples, respectively. The
red lines mean the optimal parameters derived from the true log-likelihood.
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(a)-(2) and (a)-(3).

• (b): normal - normal mixture

In this example, we assumed normal distributions for the normal group and normal

mixture distributions for the disease group as

X|(Y = 0) ∼ N(µ0, Ip), X|(Y = 1) ∼
G∑

g=1

τgN(µ1g, Ip),

G∑
g=1

τg = 1. (4.4.3)

We had four settings. In (b)-(1) and (b)-(2), we let G = 2, p = 100, τ1 = τ2 = 0.5,

µ0 = 0⊤100. In (b)-(3) and (b)-(4), we let G = 3, p = 100, τ1 = τ2 = τ3 = 1/3, µ0 =

0⊤100. The mean parameter of case group was set as (b)-(1) µ11 = (−1,099)
⊤, µ12 =

(050, 1.5,049)
⊤, (b)-(2) µ11 = (−110,090)

⊤, µ12 = (050,1.510,040)
⊤, (b)-(3) µ11 =

(−1.5,099)
⊤, µ12 = (034, 1.5,065)

⊤, µ13 = (1,099)
⊤, (b)-(4) µ11 = (−1.53,097)

⊤,

µ12 = (034,1.53,063)
⊤, µ13 = (067,13,030)

⊤. For the restricted quasi-linear logistic

model we assumed to specify correctly there were G heterogeneous structure as K = G

and p1 = p2 = 50 or p1 = 34, p2 = p3 = 33.

• (c): normal mixture-normal mixture

In this example, we assumed normal mixture distributions for both groups.

X|(Y = y) ∼
G∑

g=1

τygN(µyg, Ip),
G∑

g=1

τyg = 1 (y = 0, 1). (4.4.4)

We used the following settings: G = 2, p = 100, τyg = 0.5 (y = 0, 1, g = 1, 2),

µ01 = 0⊤100, µ02 = (050,0.310,040)
⊤, µ11 = (0.550,050)

⊤, µ12 = (050,0.850). For the

restricted quasi-linear logistic model, we assumed to specify there are two heteroge-

neous structure as K = 2 and p1 = p2 = 50.

• (d): normal- normal mixture (Correlated)

In this example, we assumed normal distributions for the normal group and normal

mixture distributions for the disease group.
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X|(Y = 0) ∼ N(µ0,Σ), X|(Y = 1) ∼
G∑

g=1

τgN(µ1g,Σ),
G∑

g=1

τg = 1. (4.4.5)

The variance assumption was based on a real dataset as shown in Figure 4.2. We used

the following settings: (1)G = 2, p = 70, τ1 = τ2 = 0.5, µ0 = 0⊤70, µ11 = (−0.55,065)
⊤,

µ12 = (035,15,030)
⊤, Σ =

Σ1 Σ2

Σ⊤
2 Σ1

, where Σ1 = 0.7I35+0.3J35,Σ2 = −0.15J35,

where Jm is a matrix of size m of which all components are 1. For the restricted quasi-

linear logistic model we assumed to specify there are two heterogeneous structure as

K = 2 and p1 = p2 = 50.

Table 4.1 - (a) summarizes the AUC values of the test datasets for the (a) settings. We

note that the linear logistic model is optimal form in the sense of likelihood ratio under this

assumption. However, the restricted quasi-linear logistic model is not less than the simple

linear model regardless of misspecifying structure. This is because the quasi-linear predictor

locally includes the linear boundary, and almost of all data points are fitted on it. As a

result, the predictions based on the quasi-linear predictor were not so mismatched.

Table 4.1 - (b) summarizes the AUC values of the test datasets for the (b) settings.

We note that the restricted quasi-linear logistic model is Bayes optimal form under this

assumption. Unlike the situation in 4.1, the quasi-linear predictor succeeded in making

a difference in performance relative to the ordinary linear predictor. As the numbers of

effective explanatory valuables increased, the difference in predictive performance between

the quasi-linear and linear predictors also grew. In these setting, the L1 shrinkage method

performed well, because the number of effective explanatory variables was small compared

to the number of noisy variables.

Table 4.1 - (c) summarizes the AUC values of test datasets for the (c) setting. When we

assumed the normal mixture assumption for both groups, the optimal form of the predictor

is no longer simple, and differs both from the linear and the quasi-linear forms. However, the

quasi-linear predictor also worked well in this setting. This result indicates that the quasi-
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Figure 4.4: t-statistic values for two datasets from van’t Veer et al. (2002). The red points
show the genes with sign mismatched t-values for these data.

45



linear predictor should have good predictive performance relative to the linear predictor in

complex heterogeneous setting which seems to be often in real datasets.

Table 4.1 - (d) summarizes the AUC values of test datasets for the (d) setting. The

quasi-linear predictor also worked well in this setting.
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4.5 Applications of quasi-linear logistic model

In this section, we shows the Application studies from Omae and others (2017). In the paper,

we compared the predictive performance between the restricted quasi-linear logistic model

and the other common methods for binary classification using real dataset. We applied

our method for two datasets, namely breast cancer and prostate cancer data. For both

types of datasets, two independent datasets were used as training and testing to evaluate

the predictive ability by test AUC. First, we compared the test AUC among decision tree

(DT), random forest (RF), support vector machine (SVM), naive Bayes (NB), group lasso

(GL), neural network (NN), L1 or L2 penalized linear logistic (LL1, LL2) and L1 or L2

penalized restricted quasi-linear logistic (QL1, QL2) model. Performance was evaluated by

the test AUC and the 95% CIs of the test AUC based on 2000 bootstrapping sampling, as

described in Yan and others (2015). The tuning parameters were determined by a grid search

and resampling method as needed. Second, the stability for marker selection was compared

among LL1, QL1 and GL. We used a similarity index proposed by Kalousis and others (2005)

defined by S(A,B) = |A∩B|/|A∪B|, where A and B are subsets of marker index set, and |A|

is a cardinality of the set A. S takes a value between 0 and 1 whose high value means high

stability. We evaluated the stability measure by 2
R(R−1)

∑R−1
i=1

∑R
j=i+1 S(Mi,Mj), where

M1, · · · ,MR are sets of the selected marker for R bootstrap sample sets from the training

data set. R was set to 100 below.

Breast Cancer data

We used the dataset from van’t Veer and others (2002) as the training dataset and the

dataset from Buyse and others (2006) as the test dataset. We focused on the 70 genes

detected by van’t Veer and others (2002) for relevant genes to the prognosis of breast cancer

patients. These datasets include 78 patients and 307 patients. In the study of van’t Veer and

others (2002), the linear predictor was evaluated to classify metastatic events. Because the

estimated parameters of the linear model are related to the t-statistic values, we checked

the t-statistics directly for the purpose of visualization. If the data have heterogeneous

structure, it can be clarified by observing the difference between two divided, independent

48



datasets. We therefore divided the data into two independent datasets, data1 and data2.

Figure 4.4 shows the correspondence of the t-statistics for both datasets. Some genes had

no consistency in the signs of their t-statistics values. It indicates that gene expressions of

some patients from the metastatic group had higher expression, whereas gene expressions

of the other patients had lower expression, relative to the non-metastatic group. This

phenomenon may be caused by heterogeneous factors (Omae and others, 2016, 2017). In

fact, due to the existence of multiple subtypes of breast cancer, the disease is known to

exhibit heterogeneity (Sørlie and others, 2001). We therefore used the dataset to compare

the performance between the restricted quasi-linear logistic model and the other methods.

Figure 4.5 displays the estimated AUC for the test dataset. The restricted quasi-linear

logistic model with L1 (QL1) and L2 (QL2) penalty, performed better than the linear logistic

model with L1 (LL1) and L2 (LL2) penalty and any other non-linear methods. The highest

test AUC was obtained when we used QL1 based on two clusters. The test AUC of the

restricted quasi-linear logistic model did not change for different cluster sizes (K = 2 and

K = 3). The numbers of selected markers in LL1, QL1 (K = 2), QL1 (K = 3) and GL were

14, 14, 24 and 70, respectively. Similarly, the stability measures were 0.323, 0.320, 0.399

and 0.960, respectively. The stability did not differ between LL1 and QL1 greatly. We note

that GL almost did not shrink any coefficients to zero in this setting.

When we use the linear logistic model, the absolute value of the coefficients of each

marker reflects the order of importance of all markers for prediction. Therefore, the linear

logistic model is understandable in the sense that we can recognize strong markers. This

is no longer a consideration when we use a generalized non-linear predictor. However, the

restricted quasi-linear logistic model enables us to compare coefficients within the same

cluster. An example is shown in Figure 4.6, which displays the ranking of the absolute

values of the estimated coefficients by the ridge regularization method based on the exis-

tence of two clusters. The gene labels are arranged in order of the rankings. We observed

that the restricted quasi-linear logistic model and the linear logistic model gave quite dif-

ferent rankings. This result shows that the quasi-linear predictor would produce different

interpretations for the relationship between the markers.
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Figure 4.7 shows learning and fitting of the quasi-linear predictor using the L1 penalty

regularization method. The estimated score distributions in the training and test datasets

were quite well-matched. Figure 4.7 shows that the restricted quasi-linear logistic model

of two clusters with L1 regularization will work well if we give a cut-off value for binary

decisions. For example, the test error rates of the restricted quasi-linear and linear logistic

models were 37.8% and 45.0%, respectively, when we used the Youden-index (Youden, 1950).

Although the quasi-linear predictor is approximately equivalent to the maximum func-

tion, the two are numerically different. In fact, the test AUC of the restricted quasi-linear

score with the L1 penalty regularization method when we assumed two clusters was 0.752,

and the corresponding predictor with maximum score F∞ is 0.745, so that the smooth

non-linearity of the quasi-linear form produced good predictive performance.

The elastic net shrinkage method (Zou and Hastie, 2005), which combines the lasso

and ridge shrinkage methods, is among the most frequently used. When we combined the

restricted quasi-linear model and the elastic net regularization, the number of the tuning

parameters was inflated. Although we used the elastic net experimentally for the application

for some selected parameters, the predictive performance was not significantly different from

the performance obtained with either the L1 or L2 penalty. Detailed results are summarized

in Table 4.2. Moreover, to check the utility of the unsupervised clustering, we randomly

divided the 70 genes into two subsets of 36 and 34 genes, and applied QL2 for the test

dataset (2000 times). Figure 4.8 shows that clustered subsets (red line) performs better

than randomly divided subsets. Thus, unsupervised clustering naturally benefits supervised

learning via the quasi-linear form.

Prostate Cancer data

The data set was taken from Setlur and others (2008) which contains expression data for

6144 genes obtained from 455 prostate cancer tumors. The tumors were from 103 subjects

determined to be fusion status-positive and 352 subjects determined to be fusion status-

negative. We randomly divided the whole dataset into two independent datasets with the

same number of tumor samples (training and test data) while maintaining the ratio of
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positive to negative statuses. First, we selected 100 relevant genes, which had top 100

absolute value of t-statistic between the two statuses using only the training dataset. Such

marker preselection has been performed in many studies (Dettling and Bühlman, 2003).

For QL, grouping of 100 genes was based on the Ward’s clustering method only by training

dataset. We had two options for dividing all the genes into clusters. In the first option,

the 100 genes were divided into two clusters, one with 81 and the other with 19 genes.

In the second option, the 100 genes were divided into three clusters of 25, 56, and 19

genes. For GL, We used two clusters option. We then compared the test AUC among all

comparative methods. Figure 4.9 displays the estimated AUC for the test dataset. As well

as the application for breast cancer data, QL1 and QL2 performed better than any other

comparative methods. The numbers of selected markers in LL1, QL1 (K = 2), QL1 (K = 3)

and GL were 31, 38, 67 and 100, respectively. Similarly, the stability measures were 0.361,

0.993, 0.982 and 1.00, respectively. The stability of QL1 was higher than LL1. We note that

GL almost did not shrink any coefficients to zero as application for breast cancer data set.

4.6 Discussion on quasi-linear logistic model

We focused on the optimal prediction function formulated by the log likelihood ratio based on

the Bayes risk consistency. At first, it was confirmed that the optimality of linear predictor

are assured when we assume that the covariates of disease and normal samples follow normal

distribution with equal variance. Then we showed that the quasi-linear predictor is the

Bayes optimal predictor when we assume that the covariates of disease and normal samples

follow normal mixture and normal distribution with equal variance respectively, assuming

that the simplest assumption of disease heterogeneity would be denoted by such normal

mixture formulation. In this chapter, we thus focused on heterogeneous structure and

investigated how to reflect such heterogeneity in the prediction function. For this purpose,

the quasi-linear predictor was used for extension of the linear logistic model. The quasi-linear

predictor was derived as the generalized mean called the Kolmogorov-Nagumo average. The

quasi-linear form is also called a soft maximum function or the log-sum-exp function (Boyd

and Vandenberghe, 2004). In the context of machine learning theory, the soft maximum
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Figure 4.5: Box plots of the test AUC for all comparative methods in breast cancer
data. The vertical axis corresponds to the test AUC values. These values are estimated by
bootstrap sampling from the test dataset.
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function intends to the differentiability and approximation of the maximum function. In

the context of computer science, the log-sum-exp function is used to avoid computational

problems such as overflow. The non-linearity of the quasi-linear predictor is explained by

the soft maximum function. The maximum score of all separated cluster achieves cluster

selection. We developed two strategy to avoid the loss of parameter identifiability and

difficulty in parameter estimation. The first strategy is to use the restricted quasi-linear

model which is defined by the quasi-linear predictor with disjoint clusters of markers. The

restricted formulation gave understandability of the parameters. Moreover, this formula

does not need any prior information or assumption to separate features to some clusters

because it can be easily obtained from the results of unsupervised learning. The simulation

and application studies indicated that the restricted quasi-linear logistic model has good

performance in the assumption of the heterogeneity, while the performance is comparable

with the linear logistic model also in the classical settings whose optimal predictor is the

linear form. The second strategy is to add the cross-penalty to the log-likelihood function

of the quasi-linear model. Such penalization method is discussed in more detail and applied

for the quasi-linear relative risk model in the next section.

The quasi-linear predictor is based on the idea of combining predictors, which is related

with several ideas in the literature. For example, a mixture of expert model discusses the

idea of decomposing input space Jacobs and others (1991), where the model divides the

problem space probabilistically and the predictors learned in all sub-spaces are combined.

The restricted quasi-linear predictor utilizes the information given by the clustering method

to reflect heterogeneity of markers and combines the linear predictors of all clusters, thus

it relies on the disjoint decomposition of the markers. The method of combining linear

predictors was also discussed in Thompson and Baker (1981), known as composite links,

which assumes that the score is formed by a weighted sum of block-wise markers. Unlike the

generalized linear model, the composite link model does not restrict single link function to

use. In the special case, the composite link logistic model corresponds to the restricted quasi-

linear logistic model. However, these ideas differ in that the composite link considers the sum

of the linked linear predictors whereas the restricted quasi-linear predictor considers a link
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of the summarization of linear predictors in all clusters. The key in our proposal is to model

the heterogeneity utilizing the information from the clustering method in the connection

of the supervised learning with the unsupervised learning without any assumptions via the

change of the predictor form from the simple average to the Kolmogorov-Nagumo average,

which mean the linear and quasi-linear, respectively.

For future work, we would extend some fixed settings in the thesis; the choice of the

clustering method in the restricted quasi-linear model, the size of the markers, the set of the

tuning parameters, the type of the outcomes and the format of targeted data. Because the

restricted quasi-linear predictor can be defined by any decomposition ideas, the performance

should be evaluated by any other clustering methods than the Ward’s method, such as the

k-means (McQueen, 1967). Moreover, we need to investigate the size of markers and the

number of candidate sets of tuning parameters adding to the parameter τ , to get more

flexible form of the quasi-linear function. The quasi-linear predictor would be also applicable

in a case of the continuous outcomes and in a regression model although we focused on the

binary outcomes and logistic model in the thesis. Regarding this point, we discuss the

survival time analysis with the quasi-linear predictor is discussed in the next section. The

performance of the quasi-linear predictor would be exhibited in the mixed-up large dataset,

which would play an important role in near future biomedical studies, because such data

must be heterogeneous. Furthermore, our method is not limited to biomedical data, and

could be also beneficial for analysis of any data which has heterogeneous structure.
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Figure 4.6: Ranking of the absolute values of the coefficients within the cluster with ridge
regularization.
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Figure 4.7: Learning and fitted plot for the training and test dataset when using the
quasi-linear predictor of two clusters with L1 penalty regularization. The horizontal and
vertical axes are the linear scores of the first and second clusters. Red points indicate the
metastatic group and black points indicate the control group. Curve lines are contours of
the quasi-linear score and blue line shows cut-off value based on Youden-index.
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Figure 4.8: Test AUCs by the quasi-linear score for the dataset from Buyse et al. (2006).
The score is learning by randomly divided genes subsets for the dataset from van’t Veer et
al (2002). The red line is the test AUC by the quasi-linear score, which consists of subsets
of genes clustered by unsupervised learning.
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Figure 4.9: Box plots of the test AUC for all comparative methods for prostate cancer
data. The vertical axis corresponds to the test AUC values. These values are estimated by
bootstrap sampling of from test dataset.
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Chapter 5

Quasi-linear relative risk model

In a relative risk model, log hazard and covariates are connected via a linear predictor. In

this chapter, we consider an extension of the relative risk model by the quasi-linear predic-

tor. In Section 5.1, we briefly derive the quasi-linear relative risk model. More theoretical

discussions are given in Appendix A.3. In Section 5.2, we discuss the normalizing expression

of the quasi-linear relative risk model. In Section 5.3 and 5,4, we derive the partial likelihood

of the quasi-linear relative risk model and develop the parameter estimation algorithm in

the basis of the maximum partial likelihood estimator as Cox’s proportional hazard model.

Moreover, as is the case of the quasi-linear logistic model, we discuss the L1, L2 and cross-L1

penalized method. In Section 5.5 and 5.6, we give simulation and application studies of the

quasi-linear relative risk model. We close Section 5.6 with the discussion on the quasi-linear

relative risk model.

5.1 Formulation of relative risk model

As noted in Section 3.2, the relative risk model is written as

h(t|X,θ) = h0(t)r(X,θ), (5.1.1)

where X and θ is a vector of covariates and parameters. The term h0(t) and r(X,θ) is

often called baseline hazard and relative risk function. Cox (1972) especially focused on the

59



linear predictor for a log relative risk model as log r(X, θ) = F (X; 0,β). We substitute the

linear predictor for the quasi-linear predictor to define a quasi-linear relative risk model:

h(t|X,θ) = h0(t) exp (Fτ )

= h0(t)

(
1

K

K∑
k=1

exp (ταk + τβ⊤
k X)

) 1
τ

. (5.1.2)

5.2 Normalized expression of quasi-linear relative risk model

Cox’s proportional hazard model usually described as the intercept-excluded form:

hC(t|X,β) = h0(t) exp (β
⊤X). (5.2.1)

This is because the intercept-included form is verbose in parameterization as

hC(t|X,β) = h
′
0(t) exp (α+ β⊤X)

= {h′
0(t) exp (α− c)} exp (c+ β⊤X)

= h0(t) exp (c+ β⊤X), (5.2.2)

where h0(t) = h
′
0(t) exp (α). Then the intercept parameter is not identifiable. Often we

regard c = 0 in equation (5.2.2) which is equivalent to the equation (5.2.1). Thus we call

h0(t) as “baseline hazard” because h(t|0,β) = h0(t), where X = 0 is regarded as the

reference values of all covariates. In a similar meaning, the intercept parameter of the

quasi-linear relative risk model should have the property that

h(t|0,θ) = h0(t)

(
1

K

K∑
k=1

exp(ταk)

)1/τ

= h0(t) (5.2.3)
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for any τ ̸= 0. It follows that
∑K

k=1 exp(ταk) = K from the equation (5.2.3). Thus we have

the normalized expression of the quasi-linear relative risk model as

h(t|X,θ) = h0(t)

(
K∑
k=1

(
exp (ταk)∑K
k=1 exp(ταk)

)
exp

(
τβ⊤

k X
)) 1

τ

= h0(t)

(
K∑
k=1

πk exp
(
τβ⊤

k X
)) 1

τ

(5.2.4)

where πk’s are non-zero probability weights with
∑K

k=1 πk = 1.

Consider the case of the tuning parameter τ is equal to 1. Then, the quasi-linear relative

risk model is written as

h(t|X,θ) = h0(t)

(
K∑
k=1

πk exp
(
β⊤
k X

))

=
K∑
k=1

πkh0(t) exp
(
β⊤
k X

)
=

K∑
k=1

πkhk(t), (5.2.5)

where hk(t) = h0(t) exp
(
β⊤
k X

)
. We therefore regard the quasi-linear hazard model as the

mixture of hazard models when τ = 1. Rosen and Tanner (1999) derived the mixtures

of proportional hazards regression models (5.2.5) in the context of the mixture of experts

model. They therefore assumed that the weight parameters πk (k = 1, 2, · · · ,K) follow the

multinomial distribution.

Below, for easy notations, we parameterize the quasi-linear relative risk model as

h(t|X,θ) = h0(t)

(
K∑
k=1

exp
(
αk + τβ⊤

k X
))1/τ

, (5.2.6)

where
∑K

k=1 exp(αk) = 1. In this formulation, we get that the quasi-linear relative risk

model is characterized by the modification of the relative risk model whose relative risk
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function is replaced by

r(X,θ) = exp(Fτ (X,α/τ,β)). (5.2.7)

5.3 Partial likelihood of quasi-linear relative risk model

Consider the data (Xi, ti, δi) (i = 1, 2, · · · , N), where Xi is a p-dimensional covariates

vector, ti is observed survival time to some event, and δi is an event indicator which takes

value 1 if the sample experiences the event by t = ti and value 0 otherwise. We assume

that ti and δi are independent for all i = 1, 2, · · · , N . Then, the partial log likelihood of the

quasi-linear relative risk model is written as

l =

N∑
i=1

δi

{
1

τ
log

(
K∑
k=1

η̃ik

)
− log

 ∑
ℓ∈R(ti)

(
K∑
k=1

η̃iℓ

)1/τ
} (5.3.1)

from the equation (3.2.11), whereR(ti) = {l ∈ {1, · · · , N}|ti ≤ tℓ} and η̃ik = exp (αk + τβ⊤
k Xi).

Because the maximum partial likelihood estimator of (5.3.1) cannot be calculated analyt-

ically, we need the numerical optimization method as gradient method or newton-raphson

method. We get from (5.2.7) that

∂r

∂θ
=

1

τ

{
K∑
k=1

exp (αk + τβ⊤
k X)

} 1
τ
−1



exp (α1 + τβ⊤
1 X)

...

exp (αK + τβ⊤
KX)

τX exp (α1 + τβ⊤
1 X)

...

τX exp (αK + τβ⊤
KX)


=

1

τ

{
K∑
k=1

η̃k

} 1
τ
−1

R, (5.3.2)
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where R =
(
η̃1, · · · , η̃K , τX⊤η̃1, · · · , τX⊤η̃K

)⊤
, and

∂2r

∂θ∂θ⊤
=

1

τ

(
1

τ
− 1

)( K∑
k=1

η̃k

) 1
τ
−2

RR⊤

+
1

τ

{
K∑
k=1

η̃k

} 1
τ
−1
 1 τx⊤

τx τ2xx⊤

⊗ diag(R). (5.3.3)

Therefore, the score function, observed Fisher information matrix and expected Fisher in-

formation matrix are written as

U(θ) =

N∑
i=1

δi

{
∂
∂θr(Xi,θ)

r(Xi,θ)
−
∑

ℓ∈R(ti)
∂
∂θr(Xℓ,θ)∑

ℓ∈R(ti)
r(Xℓ,θ)

}

=
N∑
i=1

δi
1

τ

(
R∑K

k=1 η̃ik
−
∑

ℓ∈R(ti)
(
∑K

k=1 η̃ik)
1
τ
−1R∑

ℓ∈R(ti)
(
∑K

k=1 η̃ik)
1
τ

)
(5.3.4)

I(θ) = −
N∑
i=1

δi

{
∂2

∂θ∂θ⊤ r(Xi,θ){r(Xi,θ)} − ∂
∂θr(Xi,θ)

∂
∂θ⊤ r(Xi,θ)

{r(Xi,θ)}2

−
∑

ℓ∈R(ti)
∂2

∂θ∂θ⊤ r(Xℓ,θ){r(Xℓ,θ)} − ∂
∂θr(Xℓ,θ)

∂
∂θ⊤ r(Xℓ,θ)

{
∑

ℓ∈R(ti)
r(Xℓ,θ)}2

}

=
N∑
i=1

δi
1

τ

[{
(
1

τ
− 1)(

K∑
k=1

η̃ik)
−2RR⊤ + (

K∑
k=1

η̃ik)
−1P

}

−
∑

ℓ∈R(ti)
−(
∑K

k=1 η̃ik)
2/τ−2RR⊤ + (

∑K
k=1 η̃ik)

2/τ−1P

(
∑

ℓ∈R(ti)
(
∑K

k=1 η̃ik)
1/τ )2

]
(5.3.5)

F(θ) =

N∑
i=1

δi

{∑
ℓ∈R(ti)

∂2

∂θ∂θ⊤ r(Xℓ,θ){r(Xℓ,θ)} − ∂
∂θr(Xℓ,θ)

∂
∂θ⊤ r(Xℓ,θ)

{
∑

ℓ∈R(ti)
r(Xℓ,θ)}2

}

=
N∑
i=1

δi
1

τ

{
−
∑

ℓ∈R(ti)
(
∑K

k=1 η̃ik)
2/τ−2)RR⊤ + (

∑K
k=1 η̃ik)

2/τ−1P

(
∑

ℓ∈R(ti)
r(Xℓ,θ))2

}
(5.3.6)

from the equation (3.2.12), (3.2.14) and (3.2.15), where P =

 1 τx⊤

τx τ2xx⊤

 ⊗ diag(R).

These formulations are common among general relative risk models except for the difference

in relative risk function. If the relative risk function is the exponential relative risk (3.2.4),

then the observed information matrix and the expected information matrix coincides while

these differ in other cases. Aalen and others (2008) insist that the expected information
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matrix tends to be stable among the two because it depends only on the summary amount

over the risk sets, while the observed information matrix depends on the covariate values

of the individuals who experience events. We therefore use the expected one when we need

the second derivatives of the log-likelihood on each parameter estimation step in iteratively

method as Newton-Raphson algorithm.

5.4 Parameter estimation in quasi-linear relative risk model

5.4.1 Parameter estimation without regularization

The parameter estimation without regularization is performed by Newton-Raphson method

with Lagrange multiplier. The objective function is given as

Q = l(θ)− λg(θ), (5.4.1)

where λ ∈ R and g(θ) =
∑K

k=1 exp (αk)− 1. By a Taylor expansion, we get that

Q ≈ l(θ(t)) +
∂l(θ(t))⊤

∂θ
(θ − θ(t)) +

1

2
(θ − θ(t))⊤

∂2l(θ(t))

∂θ∂θ⊤ (θ − θ(t))

− λ(t)

{
g(θ(t)) +

∂g(θ(t))

∂θ
(θ − θ(t)) +

1

2
(θ − θ(t))⊤

∂2g(θ(t))

∂θ∂θ⊤ (θ − θ(t))

}

− (λ− λ(t))

{
g(θ(t)) +

∂g(θ(t))

∂θ
(θ − θ(t)) +

1

2
(θ − θ(t))⊤

∂2g(θ(t))

∂θ∂θ⊤ (θ − θ(t))

}
.

The first derivatives of the objective functions are given as

∂Q

∂θ
≈ ∂l(θ(t))⊤

∂θ
+

∂2l(θ(t))

∂θ∂θ⊤ (θ − θ(t))− λ(t)

{
∂g(θ(t))⊤

∂θ
+

∂2g(θ(t))

∂θ∂θ⊤ (θ − θ(t))

}

− (λ− λ(t))

{
∂g(θ(t))⊤

∂θ
+

∂2g(θ(t))

∂θ∂θ⊤ (θ − θ(t))

}
, (5.4.2)

∂Q

∂λ
≈ −

{
g(θ(t)) +

∂g(θ(t))⊤

∂θ
(θ − θ(t))

}
. (5.4.3)
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We get the maximum partial likelihood estimator by updating parameters from some proper

initial values θ(0) by

 θ(t+1)

λ(t+1)

 =

 θ(t)

λ(t)

+B−1b, (5.4.4)

where

B =

 F(θ(t))− λ(t) ∂
2g(θ(t))

∂θ∂θ⊤ −∂g(θ(t))
∂θ

∂g(θ(t))⊤

∂θ 0

 , (5.4.5)

b =

 −U(θ(t)) + λ(t) ∂g(θ
(t))

∂θ

−g(θ(t))

 . (5.4.6)

5.4.2 Parameter estimation with L1 and L2 penalty

When the dimension of covariates vector is very high, the parameter estimation of the

quasi-linear relative risk model often becomes unstable as the learning in ordinary models.

This problem can be avoided by the regularization by L2-norm, ridge penalty. With the

additional penalty for equation (5.4.1), the object function is written as

Q2 = l(θ)− λg(θ)− 1

2

K∑
k=1

ϵkβ
⊤
k βk. (5.4.7)

Then, the update formula of parameters are the same with the equation (5.4.4) other than

that the equation (5.4.5) and (5.4.6) are replaced by

B =

 F2(θ
(t))− λ(t) ∂

2g(θ(t))

∂θ∂θ⊤ −∂g(θ(t))
∂θ

∂g(θ(t))⊤

∂θ 0

 , (5.4.8)

b =

 −U2(θ
(t)) + λ(t) ∂g(θ

(t))
∂θ

−g(θ(t))

 . (5.4.9)
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where

U2(θ
(t)) = U(θ(t))−



0K

ϵ1β1

...

ϵKβK


, (5.4.10)

F2(θ
(t)) = F(θ(t))−

 0KK

diag(ϵ)

 (5.4.11)

with ϵ = (ϵ1, · · · , ϵK)⊤.

For the sparse estimation, we add a L1 penalty which is known as lasso in the linear

model. Moreover, L1 and L2 penalty can be combined. The combined penalty is called

elastic net penalty (Zou and Hastie, 2005). The object function with these penalties is

written as

Q = l(θ)− ρ
K∑
k=1

ϵ1k||βk||1 − (1− ρ)
1

2

K∑
k=1

ϵ2kβ
⊤
k βk, (5.4.12)

where 0 ≤ ρ ≤ 1, ϵ1k and ϵ2k (k = 1, · · · ,K) are positive parameters. We use the parameter

estimation procedure of the full gradient algorithm proposed by (Goeman, 2010). The

update formulae is written as

θ(t+1) = θ(t) +min{topt(θ(t)), tedge(θ
(t))}d(θ(t)), (5.4.13)

where d(θ) = (d1(θ), · · · , dp+K(θ))⊤,

tedge(θ) = min
1+K≤j≤p+K

(
− θj
dj(θ)

: sign(θj) = −sign(dj(θ)) ̸= 0

)

and

topt(θ) =
|d(θ)|

d(θ)⊤ ∂2l(θ)

∂θ∂θ⊤d(θ)
.
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Here dj(θ) = l̇j(θ) for j = 1, · · · ,K and

dj(θ) =


l̇j(θ)− ρϵ1ksign(θj)− (1− ρ)ϵ2kθj if θj ̸= 0

l̇j(θ)− ρϵ1ksign(l̇j(θ))− (1− ρ)ϵ2kθj if θj = 0 and |l̇j(θ)− (1− ρ)ϵ2kθj | > ρϵ1k

0 otherwise

for j = K + 1, · · · , p +K, where sign(z) is a sign function, l̇j is the j-th component of the

score function and k denotes the cluster number that the j-th covariate belongs to. In each

step, topt provides the optimal solution of the gradient descent algorithm and tedge controls

the direction of the gradient so as not to change the signs of parameters. The vector of the

tuning parameters (ϵ1, · · · , ϵK)⊤ is determined by Bayes Information Criteria (BIC) defined

as

BIC = −2l(θ) +

(K − 1) +

K∑
k=1

p∑
j=1

I(βkj ̸= 0)

 logN (5.4.14)

5.4.3 Parameter estimation with cross-L1 penalty

To get the parsimonious expression as discussed in the development of the quasi-linear

logistic model, we derive the log likelihood function with cross-L1 penalty for the quasi-

linear relative risk model. It is defined as

lpen(θ) = l(θ)− P (β)− P c(β), (5.4.15)

where P (β) is an elastic net penalty and P (c)(β) is penalty function defined by (4.3.8). The

maximization of the objective function (5.4.15) is achieved by the full gradient algorithm

((Goeman, 2010)) as the quasi-linear logistic model.

5.5 Simulation study of quasi-linear relative risk model

In this section, we show the results of the simulation studies for the quasi-linear relative risk

model with cross-L1 penalty. In all simulation studies introduced here, the inverse function
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method was used for data generation process.

First, the covariates X were generated from the multivariate normal distribution with

mean 0 and variance matrix 2I, the apparent censored time T1 was generated from the

exponential distribution with mean 1000 and the random variable U was generated from

the uniform distribution on [0, 1]. Let the baseline survival time be followed the exponential

distribution with mean 100. Then, the true survival time corresponding to the log relative

risk function F (X;θ) was given as T2 = −(log(U)/100) exp(F (X;θ)). Based on T1 and T2,

let T = min(T1, T2) be the observational survival time and δ = I(T1 < T2) be the censored

indicator before event time.

The simulation studies are roughly divided into two scenarios. In the first scenario, we

assumed that the log relative risk function was expressed by the quasi-linear form of the

disjoint covariates combination. In the next scenario, we assumed that log relative risk

function was expressed by the quasi-linear form of combination of covariates with overlap.

The sample size were set to N = 100 or N = 200 in all scenarios. The number of the

clusters were determined from 2 or 3 for all settings by the BIC with the tuning parameter

λ of cross-L1 penalty. The tuning parameter λ was determined from some candidates. We

note that the maximum candidate value of the tuning parameter λ was controlled sufficiently

to achieve the restricted quasi-linear form for every setting.
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• Simulation−Disjoint

We performed simulations of 4 scenarios as follows. The true relative risk function

forms the restricted quasi-linear function as discussed in the Chapter 4.

1. K = 2, τ = 1, θ = (log (0.7), log (0.3), (0, 0, 1, 1), (1, 1, 0, 0))⊤.

2. K = 2, τ = 3, θ = (log (0.7), log (0.3), (0, 0, 1, 1), (1, 1, 0, 0))⊤.

3. K = 3, τ = 1, θ = (log (0.2), log (0.3), log (0.5), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 1))⊤.

4. K = 3, τ = 3, θ = (log (0.2), log (0.3), log (0.5), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 1))⊤.

• Simulation−Overlap

We performed simulations of 4 scenarios as follows.

1. K = 2, τ = 1, θ = (log (0.7), log (0.3), (0, 0, 1, 1), (1, 1, 1, 0))⊤.

2. K = 2, τ = 3, θ = (log (0.7), log (0.3), (0, 0, 1, 1), (1, 1, 1, 0))⊤.

3. K = 3, τ = 1, θ = (log (0.2), log (0.3), log (0.5), (0, 0, 1, 1), (1, 1, 1, 0), (1, 0, 0, 1))⊤.

4. K = 3, τ = 3, θ = (log (0.2), log (0.3), log (0.5), (0, 0, 1, 1), (1, 1, 1, 0), (1, 0, 0, 1))⊤.

First, we checked whether the tuning parameter was correctly selected in each scenario.

The results of the simulation-disjoint and simulation-overlap are summarized in Table 5.1

and 5.2, respectively. In all scenarios with small sample size (N = 100), the true tuning

parameters τ and cluster size K were correctly selected in most cases (50%-84%). The

accuracy was improved when the sample size was larger (N = 200, 71%-89%). Moreover,

misspecifying of cluster sizes K and tuning parameter τ rarely happened in large sample
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settings. These results empirically indicate that we have the consistency in the selection of

tuning parameter by BIC. Second, we checked the consistency of the parameter estimation in

disjoint and large sample settings. Figure 5.1, 5.2, 5.3 and 5.4 are box plots of the estimated

parameters in Disjoint-1, 2, 3 and 4 settings for N = 200 samples. We can show that the

parameter estimation procedure worked very well if the true tuning parameter τ and cluster

size K were determined by BIC. Moreover, the bias for the coefficient vector was little even

if the wrong tuning parameter τ were selected although the proportion parameters α’s are

relatively largely biased.
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Figure 5.1: Box plot of the estimated parameters in simulation Disjoint-1. There are no
plots in the right side figure because misspecifying of the cluster size did not occur. The
red lines denotes the true value getting from data generation process.
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Figure 5.2: Box plot of the estimated parameters in simulation Disjoint-2. There are no
plots in the right side figure because misspecifying of the cluster size did not occur. The
red lines denotes the true value getting from data generation process.
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Figure 5.3: Box plot of the estimated parameters in simulation Disjoint-3. There are no
plots in the figure of K = 2 and τ = 3 because misspecifying as such tuning parameters did
not occur. The red lines denotes the true value getting from data generation process.
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Figure 5.4: Box plot of the estimated parameters in simulation Disjoint-4. There are no
plots in the left side figure because misspecifying of the cluster size did not occur. The red
lines denotes the true value getting from data generation process.
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5.6 Applications of quasi-linear relative risk model

In this section, we show the results of the application studies for two breast cancer datasets

in order to evaluate the performance of the quasi-linear relative risk model. For all analysis

in this section, the initial values of parameters were set to the equal probability weighting

parameters exp(αk) = 1/K and the coefficients vector of Cox’s proportional hazard models

estimated from random K samples sets on the parameter estimation of the quasi-linear

relative risk model. To evaluate the predictive ability of the learned model, we calculated

the AUC of time dependent ROC (Heagerty and others, 2000) using test dataset. The

predictive performance was compared between Cox’s proportional hazard model and the

quasi-linear relative risk model.

1. GBCS dataset

The first dataset is German breast cancer research data (Hosmer and Lemeshow,

1989). For 680 breast cancer patients, number of progesterone receptor and estrogen

receptor and overall survival time data with some censors are obtained in the dataset.

First of all, all samples were randomly divided into two datasets for training and test.

Learning of Cox’s proportional hazard model and the quasi-linear relative risk model

were carried out using the training dataset. The number of clusters K is 2 with 2

markers because of the purpose of visualization. The candidate value of τ were 1, 2,

3, 4, 5 and 6, and the candidate value for the tuning parameter λ of cross-L1 penalty

were 1, 2, 4, 8, 16, 32, 64. These tuning parameters were determined by BIC.

As a result, the tuning parameter τ = 5 and λ = 1 were selected by BIC. The test

AUCs for some time points are drawn in Figure 5.5. For every time points, the test

AUC of the quasi-linear relative risk model is higher than Cox’s proportional hazard

model. The learning curves are displayed in Figure 5.6. The linear and quasi-linear

predictors give almost proportional risk scores for the high risk patients although the

definitely different trends in the lower risk patients.
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Table 5.1: Model selected probability (estimated by 100 simulations, N=100)

τ = 1, K = 2 τ = 3, K = 2 τ = 1, K = 3 τ = 3, K = 3

Dis-1 72% 28% 0% 0%

Dis-2 37% 63% 0% 0%

Dis-3 16% 1% 59% 24%

Dis-4 0% 0% 44% 56%

Ove-1 66% 33% 1% 0%

Ove-2 38% 60% 1% 1%

Ove-3 29% 12% 50% 9%

Ove-4 0% 8% 8% 84%

Table 5.2: Model selected probability (estimated by 100 simulations, N=200)

τ = 1, K = 2 τ = 3, K = 2 τ = 1, K = 3 τ = 3, K = 3

Dis-1 84% 16% 0% 0%

Dis-2 17% 83% 0% 0%

Dis-3 1% 0% 74% 25%

Dis-4 0% 0% 17% 83%

Ove-1 80% 19% 1% 0%

Ove-2 29% 71% 0% 0%

Ove-3 9% 2% 79% 10%

Ove-4 0% 0% 11% 89%
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Figure 5.5: The test AUC changes in German breast cancer research dataset. Two line
graphs show the AUC values at each time calculated from time dependent ROC for the
linear (red) and quasi-linear (blue) predictor.
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Figure 5.6: The upper figures show the learning surfaces and fitted score plots of the
quasi-linear predictor and linear predictor. The lower figure shows the relationship between
these fitted scores.
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2. Seventy genes dataset

The second dataset is the same dataset that we applied the quasi-linear logistic model

in Section 4.5. We used the dataset from van’t Veer and others (2002) as the training

data and the dataset from Buyse and others (2006) as the test data. These include

the gene expressions of 70 genes and survival time with some censors. Except for

samples with missing values, there are 75 samples in training data and 220 samples

in test data, respectively. In this application, we extracted the top 10 relevant genes

to evaluate the model performance without L1 and L2 regularizations. Such marker

preselection has been performed in many studies (Dettling and Bühlman, 2003). The

candidate values of tuning parameter τ were 1, 2, 3, 4, 5 and 6, and the candidate

values for the penalty coefficient λ of cross-L1 penalty were 1, 2, 4, 8, 16. These tuning

parameters were determined by BIC.

As a result, the tuning parameter τ = 1, the penalty coefficient λ = 1 and cluster size

K = 2 were selected. The test AUCs for some time points are drawn in Figure 5.7.

For every time points, the test AUC of the quasi-linear relative risk model is higher

than Cox’s proportional hazard model. The estimated coefficients for K = 1 (Linear),

2, 3 and 4 (Quasi-linear) are displayed in Figure 5.8.

5.7 Discussion on quasi-linear relative risk model

We extended Cox’s proportional hazard model by the quasi-linear predictor. We saw that the

quasi-linear relative risk model is the generalization of the mixture hazard model proposed

in the literatures. Thus it would have better performance for the modeling of the dataset

with heterogeneous structure than Cox’s proportional hazard model. Like the quasi-linear

logistic model, the non-linearity of the quasi-linear predictor yielded the flexibility of the

model.

In order to introduce the parsimonious expression in the quasi-linear relative risk model,

we applied the model with cross-L1 penalty while the disjoint expression were used in the

application of the quasi-linear logistic model as discussed in section 4.5. We therefore need
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Figure 5.7: The test AUC changes in the dataset from Buyse and others (2006). Four
line graphs show the AUC values at each time calculated from time dependent ROC for the
linear (red) and quasi-linear (blue, K=2; yellow, K=3; green, K=4) predictor.
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Figure 5.8: The estimated coefficients in the dataset from van’t Veer and others (2002). In
order from the top, the bar plots of the estimated values are displayed for Cox’s proportional
hazard model, the quasi-linear relative risk model (K = 2, 3 and 4).

81



the tuning of the regularization parameter of the cross-L1 penalty. Our simulation studies

showed that BIC is useful for the tuning of this parameter. It is good property that the mis-

specifying of cluster size K rarely happens in model selection. Although the misspecifying of

tuning parameter τ sometimes occurs, the estimated score did not differ from the estimated

score with true tuning parameter so much. These facts show that moderate large sample

size sufficiently results in the inference of the appropriate non-linearity in the parameter

family {Fτ , 0 < τ < ∞}.

The cross-L1 penalty works well in the simulation and application studies. In fact,

the true model were correctly selected and achieved consistent parameter estimation in the

simulation study by cross-L1 penalty and BIC. Although the application study showed that

the different cluster sizes K result in the different trend in the estimated parameter as

show in Figure 5.8. Such unstable phenomenon may be caused by small sample size in the

training dataset. In fact, the dependency of the estimated values on the initial values on

the estimation algorithm was observed in the small sample size situations in the simulation

studies. It is the future task to solve the problem of the initial value dependency in the small

sample size learning. However, while having such instability, the quasi-linear relative risk

model achieved higher performance than Cox’s proportional hazard model about predictive

ability for the independent dataset. It seem to be the reason why the proposed method

worked well that the form of the combination of the quasi-linear predictor, cross-L1 penalty

and BIC succeeded in the learning of the heterogeneous structure in the dataset.
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Chapter 6

The roles, relationships and future

works of quasi-linear form among

ordinary methods

In this chapter, we discuss the roles of the quasi-linear form in the clustering methods

and the relationships among quasi-linear, mixture of experts and neural network models.

Moreover, we also refer to the future works related to the proposed method.

6.1 K-means and maximum entropy clustering

Clustering algorithms are divers. Fahad and others (2014) gave an overview of cluster-

ing taxonomy and they divide them into 5 categories: partitioning, hierarchical, density,

grid and model based clustering algorithms. One of the most widely used and studied for-

mulations is K-means algorithm (Kanungo and others, 2002). The K-means algorithm is

one of the partitioning-based methods, that is, the method that all clusters are determined

promptly. In particular, the K-means algorithm is called a hard clustering because it assigns

all samples to one cluster from candidate clusters definitely. Let xi be a covariate vector

for i-th sample (i = 1, 2, · · · , N). Then, the K-means clustering of K clusters is given as a
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minimization problem of

argmin
µ1,··· ,µK

N∑
i=1

min
k

||xi − µk||2, (6.1.1)

where µk is a center point for k-th cluster (k = 1, 2, · · · ,K). This is a minimization problem

of loss function

L =

N∑
i=1

min
k

||xi − µk||2. (6.1.2)

There are some variants to solve the problem (6.1.1) while the most common algorithm is

referred to as Lloyd’s algorithm as follows (Kanungo and others, 2002). The optimization of

(6.1.2) only takes the center point of the nearest cluster into account for each observation.

Set cluster centers µ
(0)
1 ,µ

(0)
2 , · · · ,µ(0)

K . For t = 1, 2, · · · , repeat (1) and (2) until the algo-

rithm converges for all k = 1, 2, · · · ,K.

(1) Assign each sample to the nearest cluster in the sense of Euclidean distance:

M
(t)
k = {xi; ||xi − µ

(t)
k || < ||xi − µ

(t)
j || (∀j ̸= k)} (6.1.3)

(2) Update the center

µ
(t+1)
k =

1

|M (t)
k |

∑
xj∈M

(t)
k

xj (6.1.4)

A fuzzy C-means algorithm (Dunn, 1973) is known as the soft clustering method based

on the K-means clustering. The objective function of the C-means is defined as follows

(Fahad and others, 2014):

E =

N∑
i=1

K∑
k=1

µm
ik||xi − µk||2, (6.1.5)

where µik = 1/
∑K

ℓ=1(
|xi−µk|
|xi−µℓ|

)2/(m−1) and m(> 1) is a fuzzyness factor. Let consider an
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opposite extreme case of the K-means:

E0 =

N∑
i=1

K∑
k=1

||xi − µk||2. (6.1.6)

Minimizing equation (6.1.6), we get µk = 1
N xi for all k, corresponding to the smallest energy

function of Euclidean distance when taking all cluster centroids for each observation into

consideration, and produces one point center as the global mean. These two problems are

connected by the generalized exp-mean:

Eτ =
N∑
i=1

−1

τ
log

{
K∑
k=1

exp
{
− τ ||xi − µk||2}

}
, (6.1.7)

where τ is a positive parameter. Applying Proposition 1, the equation (6.1.7) is equivalent

to the equation (6.1.2) when τ goes to infinity. The energy function (6.1.7) was used as

the objective function of the maximum entropy clustering proposed by Rose and others

(1990). In contrast to the hard clustering, the soft clustering method gives assignments

in probability to each cluster for all samples. The quasi-linear form was thus used as the

energy function in the clustering method. We can extend the energy function (6.1.7) by the

generalized average form (2.2.1). Then we define a generalized energy function by

Gτ =

N∑
i=1

ϕ−1

(
K∑
k=1

πkϕ(||xi − µk||2)

)
. (6.1.8)

Different choice of the function ϕ seem to yield the different property of the resultant clus-

tering. It is one of the future works to evaluate the property of the energy function (6.1.8).

6.2 Mixture of experts and neural network model

A mixture of experts model was introduced by Jacobs and others (1991). The mixture of

experts model is composed by experts and gating functions. Let x be a covariate vector
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and y be a response valuable. Then, the mixture of experts model is described as

P (y|x;θ) =

K∑
k=1

P (y, k|x,θ)

=
K∑
k=1

P (k|x,θg)P (y|x,θe
k), (6.2.1)

where θ = (θg⊤,θe
1
⊤, · · · ,θe

K
⊤)⊤ with θg = (αg⊤,βg⊤)⊤ and θe

k = (αe
k
⊤,βe

k
⊤)⊤. In the

equation (6.2.1), the first term: P (k|x,θg) is called a gating function and the second term:

P (y|x,θe) is called a experts model. The gate function is defined by

P (k|x,θg) = ηk(x;α
g,βg), (6.2.2)

where ηk is the softmax function introduced in (2.1.10). There are some variants but the

experts in the regression model was originally defined as

P (y|x,θe
k) = ϕN (αe

k + βe
k
⊤x,Σk), (6.2.3)

and the predicted response valuable is given by

ŷ =
K∑
k=1

P (k|x, θ̂g

k)ŵ
⊤
k x. (6.2.4)

In the case of the binary classification model for the binary class label y = 0, 1, the experts

are defined by

P (y|x,θe
k) = η̃0(x;α

e
k,β

e
k)

(1−y)η̃1(x;α
e
k,β

e
k)

y, (6.2.5)

where η̃y(x;α
e
k,β

e
k) =

exp(αe
ky+βe

ky
⊤x)∑1

c=0 exp(α
e
kc+βe

kc⊤x)
. The class label y is predicted as

ŷ = argmax
y

K∑
k=1

P (k|x, θ̂g

k)η̃y(x; α̂
e
k, β̂

e

k). (6.2.6)
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The parameters of mixture of experts model are estimated by EM algorithm (Dempster

and others, 1977). Focusing on the mixture of experts model is regarded as a mixture

model, consider that the each response value (yi) is generated from one distribution and it

is indicated by hidden variables

zik =


1 if yi is from k-th expert

0 else.

(6.2.7)

Then the complete log likelihood of the data {(xi, yi); i = 1, · · · , N} is written as

l(θ) =

N∑
i=1

K∑
k=1

zik (logP (k|xi,θ
g) + logP (yi|xi,θ

e
k)) . (6.2.8)

The object function to optimize for each step in EM algorithm is given as

Q(θ|θ(t)) =

N∑
i=1

K∑
k=1

E[zik|xi, yi,θ
(t−1)] (logP (k|xi,θ

g) + logP (yi|xi,θ
e
k)) . (6.2.9)

Here, the conditional expectation of the hidden indicator is calculated as

E[zik|xi, yi,θ
(t−1)] = P (zik = 1|xi, yi,θ

(t−1))

=
P (yi|zik = 1,xi,θ

(t−1))P (zik = 1|xi,θ
(t−1))

P (yi|xi,θ
(t−1))

=
P (yi|xik,θ

c(t−1)
k )P (k|xi,θ

g(t−1)
k )∑K

k=1 P (yi|xik,θ
c(t−1)
k )P (k|xi,θ

g(t−1)
k )

. (6.2.10)

From an initial value, computing E[zik|xi, yi,θ
(t−1)] and updating θ is alternately repeated

until convergence.

The mixture of experts model and the hierarchical modified version (hierarchical mixture

of experts model, Jordan and Jacobs (1993)) have been used in numerous regression and

classification applications in the healthcare and the other areas (Yuksel and others, 2012).

These models are parts of the neural network models. The neural network model is based

on the divide and conquer principle. In the model, the problem space is divided between
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some neural networks, and supervised by a gating network (Masoudnia and Ebrahimpour,

2014). The aim is to separate complex pattern into some local pattern easier to solve for

the specific learner or neuron, and achieve effective learning.

As discussed in Chapter 5, the mixture of experts model was used as mixtures of propor-

tional hazard regression models (Rosen and Tanner, 1999). Such a mixture form is similar

but differ to the quasi-linear models. Although the mixture of experts model is basically

the mixture model for the outcome, the quasi-linear model is the mixture model for the re-

gression or prediction function. On the extension of the relative risk model, the quasi-linear

relative risk model is equivalent form to the mixture model only when the tuning parameter

τ = 1.

An neural networks model, or artificial neural networks is widely used in many science

areas (Amato and others, 2013). We give a brief introduction of the feedforward neural

network. This is often called a multi-layer perceptron because it has a original source in

a single layer perceptron proposed by Rosenblatt (1958), which is a vanilla type of neural

networks (Hastie and others, 2001). The network consists of several units. Each unit receives

multiple inputs and computes one output. The input value y is linear combination of the

outputs from all previous units. The input value y is characterized by the linear predictor

as

y = F (X, α,β). (6.2.11)

The intercept parameter α is often called a bias in the neural network model. Then, the

unit outputs activated value of input as

z = f(y), (6.2.12)

where f is called an activation function. A number of activation functions have been pro-

posed up to date. We give examples of the activation functions as follows.
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• identity function (Rosenblatt, 1958)

f(u) = u (6.2.13)

• Logistic function

f(u) =
1

1 + exp (−u)
(6.2.14)

• hyperbolic tangent function (LeCun and others, 1998)

f(u) = tanh(u) (6.2.15)

• rectified linear function (Glorot and others, 2011)

f(u) = max(u, 0) (6.2.16)

• approximated logistic function

f(u) =


−1 u ≤ −1

u −1 ≤ u < 1

1 1 ≤ u

(6.2.17)

• softplus (Glorot and others, 2011)

f(u) = log (1 + exp(u)) (6.2.18)

The multilayer perceptron connects the two or more layers each of which is composed of

several units. If we focus on 2 layers with I and J units, the output is calculated as

yj =

I∑
i=1

βjixi + αj (6.2.19)

zj = f(yj) (6.2.20)

for j = 1, 2, · · · , J . Such relationships are handed down to the last layer. We assume that

the final output is a scalar and write it y(xi;α,B), whereB is a vector of all coefficients. The

training of the neural network model is performed by minimizing some error function. For

example, let {(x1, y1), (x2, y2), · · · , (xN , yN )} be the training data, where xi is a covariates
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vector and yi is a true binary label from i-th sample. In this case, the logistic activation

function (6.2) is often used to model P (y = 1|x). Then the error function is similar to the

negative log likelihood of the linear logistic model. It is defined as

E(α,B) = −
N∑
i=1

(yi log(y(xi;α,B)) + (1− yi) log(1− y(xi;α,B))) . (6.2.21)

In general, when there are many layers of neurons, it is very difficult to calculate the deriva-

tive of the error function by the parameters of the layer closer to the input side. This

problem can be avoided by the back propagation algorithm proposed by Rumelhart and

others (1986).

The neural network model is similar to the quasi-linear model with respect to combining

some linear predictors. However, the neural network model is unclear in relation to the linear

model as with the quasi-linear model, and it is difficult to interpret the parameters. The

restricted quasi-linear model and the quasi-linear model with cross L1 penalizations achieves

the parsimonious expression and it results in an easy interpretation for the estimated model.

Conversely, the proposed method in the thesis can be combined with the neural network

model. First, the activate function (6.2.15) and (6.2.18) are connected by the quasi-linear

form as f(u) = log(exp(τ · 0) + exp(τu))/τ . Then, the tuning of parameter τ may yield

better activation function according to the training data. Second, the cross L1 penalty

with the neural network model would result in the parsimonious network model. It may

improve the generalization ability of the complicated network and result in better predictive

performance.
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Appendix

A.1 proof of Proposition 1

(1) It is easy to see the following inequality:

K min
k=1,··· ,K

{exp(zk)} ≤
K∑
k=1

exp(zk) ≤ K max
k=1,··· ,K

{exp(zk)}

for zk ∈ R(k = 1, 2, · · · ,K). Divide by K and take the logarithms and divide by τ , then we

get that

1

τ
min

k=1,··· ,K
{zk} ≤ 1

τ
log

(
1

K

K∑
k=1

exp(zk)

)
≤ 1

τ
max

k=1,··· ,K
{zk} (A.1)

Let zk = τ(αk + β⊤
k x). Then (1) of Proposition 1 follows.

(2) Let αm + β⊤
mx = min

k=1,··· ,K
{zk}. Then

Fτ (x;α,β)− (αm + β⊤
mx) =

1

τ
log

(
1

K

K∑
k=1

exp(ταk + τβ⊤
k x)

)

− 1

τ
log
(
exp(ταm + τβ⊤

mx)
)

=
1

τ
log

(
1

K

K∑
k=1

exp
(
(ταk + τβ⊤

k x)−
(
ταm + τβ⊤

mx
)))

=
1

τ
log

(
1

K

K∑
k=1

exp (τ(γk))

)
,
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where γk = (αk + β⊤
k x)−

(
αm + β⊤

mx
)
. Here, since γk ≥ 0 for all k = 1, 2, · · · ,K,

lim
τ→∞

Fτ (x;α,β)− (αm + β⊤
mx) = 0 (A.2)

(3) When τ goes to 0, we see by l′Hôpital′s rule that

lim
τ→0

Fτ (x;α,β) = lim
τ→0

log
(

1
K

∑K
k=1 exp(ταk + τβ⊤

k x)
)

τ

= lim
τ→0

1
K

∑K
k=1(αk + β⊤

k x)exp(ταk + τβ⊤
k x)

1
K

∑K
k=1 exp(ταk + τβ⊤

k x)

=
1

K

K∑
k=1

αk + β⊤
k x

=
1

K

K∑
k=1

F (x;α,β). (A.3)

Therefore, (3) of Proposition 1 follows.

(4) It is easy to see the following inequality:

max
k=1,··· ,K

{exp(zk)} ≤
K∑
k=1

exp(zk) ≤ K max
k=1,··· ,K

{exp(zk)}

for zk ∈ R(k = 1, 2, · · · ,K). Divide by K and take the logarithms and divide by τ for each

side of the inequality, then we get that

1

τ
max

k=1,··· ,K
{zk} −

logK

τ
≤ 1

τ
log

(
1

K

K∑
k=1

exp(zk)

)
≤ 1

τ
max

k=1,··· ,K
{zk}. (A.4)

Let zk = τ(αk + β⊤
k x) in the inequality (A.4). Then, Fτ converges to F∞ by a sandwich

theorem when τ goes to infinity.

A.2 proof of Theorem 2

Let γk = Σ−1µk for k = 1, 2, · · · ,K. By the assumption we get that γ1,γ2, · · · ,γK

are linearly independent. Then, there exists the non-singular matrix A ∈ Rp×p such that

Aγk = (0, . . . , 0,β⊤
k , 0, · · · , 0)⊤ for any k ∈ {1, 2, · · · ,K}, where βk ∈ Rpk . For example,
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we set

A = B(R⊤R)−1R⊤ + C(Ip −R(R⊤R)−1R⊤), (A.5)

where

B =



β1 0p1 · · · 0p1

0p2 β2 · · · 0p2
...

...
. . .

...

0pK · · · · · · βK


, (A.6)

R = (γ1, · · · ,γK) and C is any square matrix of size p. Then AR = B, or equivalently

Aγk = (0, · · · , 0,β⊤
k , 0, · · · , 0)⊤ for any k ∈ {1, 2, · · · ,K}. Let C be fixed so as to satisfy

that A is non-singular. Then,

γ⊤
k Z = (Aγk)

⊤(A⊤)−1Z

= (0, · · · , 0,β⊤
k , 0, · · · , 0)(X(1), · · · ,X(K))

⊤

= β⊤
k X(k).

By the Theorem 1 and the existence of such a transformation A confirms that the true log

likelihood forms F (X) = log{
∑K

k=1 exp(αk + β⊤
k X(k))}.

A.3 Counting Process and Martingale theory in Cox’s proportional hazard model

This part is written referencing Kalbfleisch and Prentice (2002); Aalen and others (2008).

We prepare the definitions and notations as follows.

1. Counting process {N(t), t ≥ 0} is defined as a nonnegative discrete, nondecreasing and

right-continuous with left-hand limit, say cadlag , stochastic process with N(0) = 0.

2. At-risk process {Y (t), t ≥ 0} is defined as a left continuous process which takes 1 or 0.

3. Covariate process {X(t), t ≥ 0} is defined as a left continuous process, where X(t) is

a covariates vector.
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4. A history or filtration of n individuals between a interval [0, t) is defined as

Ft = σ{Ni(u), Yi(u
+),Xi(u

+), i = 1, · · · , n, 0 ≤ u < t}, (A.7)

where σ denotes a sigma field of all events.

5. A stochastic process U = {U(t), t ≥ 0} is said to be adapted to the filtration Ft if for

each t, U(t) is a function of Ft, that is, Ft-measurable.

6. A stochastic process U = {U(t), t ≥ 0} is said to be predictable with respect to Ft if

for each t, the value of U(t) is a function of Ft−.

7. A stochastic process {M(t), 0 ≤ t ≤ τ} is a martingale with respect to the filtration

Ft if it is cadlag, adapted to Ft and satisfies the martingale property

E[M(t)|Fs] = M(s) for all s ≤ t ≤ τ. (A.8)

Especially, it is called as zero-mean martingale if E[M(0)] = 0.

8. A stochastic process {M̄(t), 0 ≤ t ≤ τ} is a submartingale with respect to the filtration

Ft if it is cadlag, adapted to Ft and satisfies the submartingale property

E[M̄(t)|Fs] ≥ M̄(s) for all s ≤ t ≤ τ. (A.9)

9. A martingale is said to be square-integrable if E[M2(t)] < ∞ for all t ≤ τ .

10. A predictavle variation process of a square-integrable martingale M is defined as

⟨M⟩(t) =
∫ t

0
var[dM(u)|Fu−]. (A.10)

Now we are consciously about the stochastic process so that let Xi be a vector of

covariates for the i-th individual, and admit (1) Xi’s depend on time; Xi = Xi(t), (2)

to replace the covariates to the p-dimensional predictive function of covariates and time;

Zi = Zi(Xi, t). We assume that the process Zi(t) is at least left continuous. For simplicity,

101



consider the only case of no event ties and independent censoring. Cox proportional hazard

model assume that

λi(t) = λ0(t) exp(Z
⊤
i β). (A.11)

For i-th individual, let Ni(t) = 1(ti ≤ t, ci ≤ t) be the right continuous counting process,

where each Ni(t) counts the number of observed event on (0, t], and let Yi(t) = 1(ti ≥

t, ci ≥ t) be the left continuous at-risk process which shows the observation status at time

t, where ci and ti are censoring and true survival time. Define the filtration as Ft =

{Ni(u), Yi(u
+),Xi(u

+); i = 1, · · · , n; 0 ≤ u ≤ t}. Then the corresponding intensity process

of Ni(t) is defined by

Λi(t)dt = P (dNi(t) = 1|Ft−). (A.12)

Cox proportional hazard model is described by such counting process formulations as

P (dNi(t) = 1|Ft−) = Yi(t)λ0(t) exp {Zi(t)
⊤β}dt, (A.13)

where dNi(t) = Ni(t
−+dt)−Ni(t

−). The partial log-likelihood function, the score function

U(β) and the Fisher information matrix I(β) are written as

lp =

n∑
i=1

∫ ∞

0
{Zi(u)

⊤β}dNi(u)−
∫ ∞

0
log


n∑

j=1

Yj(u) exp {Zj(u)
⊤β}

dN·(u)

=

n∑
i=1

∫ ∞

0

Zi(u)
⊤β − log

 n∑
j=1

Yj(u) exp (Zj(u)
⊤β)

 dNi(u), (A.14)

U(β) =

n∑
i=1

∫ ∞

0
{Zi(u)− E(β, u)}dNi(u), (A.15)

I(β) =

∫ ∞

0

n∑
i=1

{Zi(u)− E(β, u)}{Zi(u)− E(β, u)}⊤pi(β, u)dNi(u) (A.16)
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where N· =
∑n

i=1Ni(u) and E(β, u) =
∑n

ℓ=1Zℓ(u)pℓ(β, u) with

pℓ(β, u) =
Yℓ(u) exp {Zℓ(u)

⊤β}∑n
j=1 Yj(u) exp {Zj(u)⊤β}

. (A.17)

Consider the score function based on data available up to time t,

U(β, t) =

n∑
i=1

∫ t

0
{Zi(u)− E(β, u)}dNi(u), (A.18)

Doob-Meyer decomposition theorem mentions that any sub-martingale M̄(t) is uniquely

decomposed into a mean zero martingale M(t) and an increasing cadlag predictable process

C(t), called compensator, which satisfies C(0) = 0 and dC(t) = E[dM̄(t)|Ft−] as M̄(t) =

M(t) + C(t). Thus Ni(t) is decomposed into compensator Ai(t) and Mi(t), which is a

zero-mean martingale with respect to Ft. Thus we derive a process {Mi; i = 1, · · · , n} as

Mi(t) = Ni(t)−Ai(t), (A.19)

where Ai(t) =
∫ t
0 P (dNi(t) = 1|Ft−). Then,

U(β, t) =
n∑

i=1

∫ t

0
{Zi(u)− E(β, u)}dMi(u) +

n∑
i=1

∫ t

0
{Zi(u)− E(β, u)}dAi(u)(A.20)

=

n∑
i=1

∫ t

0
{Zi(u)− E(β, u)}dMi(u) (A.21)

since the second term of (A.20) is equal to 0. Let U(β, t) = [U1(β, t), · · · , Up(β, t)] and

define the vector of predictable variation process as

⟨U⟩(t) =
∫ t

0
E[dU(t)dU(t)⊤|Ft−] (A.22)

Focus on the form as (A.21): U(t) =
∑n

i=1

∫ t
0 Gi(u)dMi(u). When M1, · · · ,Mn are

orthogonal (i.e. ⟨Mi,Mj⟩(t) =
∫ t
0 Cov[dMi(u), dMj(u)|Fu−]=0 for all i ̸= j) mean zero

martingales and Gi(u) is a p-dimensional vector of predictable processes with respect to the

same filtration Ft, it is known that the predictable variation process is written as
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⟨U⟩(t) =
n∑

i=1

∫ t

0
Gi(u)Gi(u)

⊤d⟨Mi⟩(u). (A.23)

Since we assumed that there is no ties of events, for i ̸= j

Cov[dMi(u), dMj(u)|Fu−] = Cov[dNi(u), dNj(u)|Fu−]

= 0

and since

Var[dM(t)|Fu−] = Var[dN(t)|Fu−]

= Pr[dN(t) = 1|Fu−],

so that

⟨U(β)⟩(t) =

n∑
i=1

∫ t

0
Gi(u)Gi(u)

⊤d⟨Mi⟩(u)

=

n∑
i=1

∫ t

0
Gi(u)Gi(u)

⊤var[dMi(u)|Fu−]

=
n∑

i=1

∫ t

0
Gi(u)Gi(u)

⊤Yi(u)λ0(t) exp {Zi(u)
⊤β}du, (A.24)

where Gi(u) = Zi(u)− E(β, u). Let

S(0)(β, t) =
n∑

i=1

Yi(t) exp {Zi(t)
⊤β} (A.25)

S(1)(β, t) =
∂

∂β
S(0)(β, t)

=

n∑
i=1

Yi(t)Zi(t) exp {Zi(t)
⊤β} (A.26)

S(2)(β, t) =
∂2

∂β∂β⊤S(0)(β, t)

=

n∑
i=1

Yi(t)Zi(t)Zi(t)
⊤ exp {Zi(t)

⊤β} (A.27)
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and ||A|| be the maximum component of vector or matrix A. We denote the true value of β by

β0. Under the existence of an open neighborhood B of β0 and functions s(j)(β, t), j = 0, 1, 2

defined on B× [0, τ ] which satisfy the following conditions, partial likelihood estimator β̂ is

consistent for β0.

1. supβ∈B,t∈[0,τ ]||n−1S(j)(β, t)− s(j)(β, t)|| p→ 0 as n → ∞

2. s(0)(β, t) is bounded away from 0 for t ∈ [0, τ ]

3. For j = 0, 1, 2, s(j)(β, t) is a continuous function of β uniformly in t ∈ [0, τ ], where

s(1) and s(2) are the first and second derivative of s(0)

4. Σ(β, τ) =
∫ τ
0 v(β, u)s(0)(β, u)λ0(u)du is positive definite for all β ∈ B, where v(β, t) =

s(2)/s(0)(β, t)− e(β, t)e(β, t)⊤ with e(β, t) = s(1)(β, t)/s(0)(β, t).

proof. We give an outline of the proof. As for details, refer to Anderson and Gill (1982).

Consider the process

X(β, t) = n−1[l(β, t)− l(β0, t)]

= n−1
n∑

i=1

∫ t

0

{
Zi(u)(β − β0)− log

S(0)(β, u)

S(0)(β0, u)

}
dNi(u). (A.28)

This is a submartingale with compensator

X̃(β, t) = n−1

∫ t

0

{
S(1)(β, u)⊤(β − β0)− log

S(0)(β, u)

S(0)(β0, u)
S(0)(β0, u)

}
λ0(u)du.

It can be shown that X(β, t)− X̃(β, t) is a square integrable martingale. X̃(β, τ) for β ∈ B

converges in probability to

f(β) =

∫ τ

0

{
s(1)(β, u)⊤(β − β0)− log

s(0)(β, u)

s(0)(β0, u)
s(0)(β0, u)

}
λ0(u)du. (A.29)

By Lenglart’s inequality, X(β, τ) converges in probability to the same value with the limit of

X̃(β, τ): f(β). The first derivative of the f(β) is zero at β = β0 and the second derivative

of the f(β) is a negative definite matrix at β = β0. Thus X(β, τ) converges in probability
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to a concave function of β with a unique solution β0. From the definition, β̂ maximize

X(β, τ). Then we get that β̂
p→ β0 from the concavity of the function f(β).
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