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SUMMARY 

 

Human endogenous retrovirus (HERV) belongs to a class of transposable elements (TEs) and 

occupies approximately 8% of the entire human genome. Although HERVs were initially thought to 

be non-functional and merely parasitic sequences in the genome, evidences have been accumulated 

that the human genome carries enormous HERV-derived functional elements, which affect host 

physiologies and diseases. These elements play a role in the DNA level (i.e., transcriptional 

regulatory elements), RNA level (i.e., non-coding RNA), or protein level. Recent efforts using 

high-throughput sequencing have generated a massive amount of genomic, epigenomic, and 

transcriptomic data. In this doctoral thesis, I aimed to identify HERV-derived functional elements 

(particularly regulatory elements and transcripts) by reanalyzing epigenomic and transcriptomic 

sequencing data accumulated in the public databases. 

 In Chapter 1 (general introduction), I describe basic knowledge about HERVs and recent 

progresses that have showed associations of HERV-derived functional elements with host 

physiologies and diseases.  

 In Chapter 2, I investigated HERV-derived regulatory elements using 519 ChIP-Seq data 

for 97 transcription factors (TFs) provided by ENCODE and Roadmap Epigenomics. I identified 

794,972 TF-binding events on HERVs and 2,201 specific HERV-TF associations. Using 

unsupervised clustering analysis, I demonstrated that HERVs could be grouped according to TF 

binding patterns: HERV groups bound by pluripotent TFs (e.g., SOX2, POU5F1, and NANOG), 

embryonic endoderm/mesendoderm TFs (e.g., GATA4/6, SOX17, and FOXA1/2), hematopoietic 

TFs (e.g., SPI1 (PU1), GATA1/2, and TAL1), and CTCF were identified. By analyzing the 

three-dimensional chromosomal interactions, I demonstrated that HERV-derived regulatory elements 

tend to interact with host genes relating to the innate immune response. This suggests that the 

HERV-derived regulatory elements play a role in the modulation of this biological pathway. We 

further demonstrated heterogeneities of regulatory elements within LTR7 group: SOX2, POU5F1, 

and KLF4-binding sites were highly enriched in the youngest subgroup of LTR7, which had the 

highest transcriptional activity in pluripotent cells. This suggests that the subgroup acquired those 

regulatory activities for efficient replication in the host germ cells. Furthermore, my colleagues and I 



  

constructed dbHERV-REs (http://herv-tfbs.com/), a database of HERV-derived regulatory elements. 

 In Chapter 3, I investigated HERV-derived transcripts in tumors by reanalyzing RNA-Seq 

data of 5,550 patients across 12 solid tumors provided by TCGA. I identified 10,060 transcribed 

HERV loci in tumors and the corresponding normal tissues. In nine out of 12 tumor types, the overall 

transcription levels of HERVs significantly increased. Particularly, transcription levels of HERVH 

group were highly up-regulated in a broad range of tumors. In unsupervised clustering analysis based 

on the HERV transcriptome, RNA-Seq samples clustered according to tumor and tissue types, and 

even molecular subtypes within a type of tumors. This indicates that HERVs had unique 

transcription profiles among tumor/tissue types and the subtypes. The transcriptionally up-regulated 

HERVs in tumors were associated with TFs that were overexpressed in the tumors. In case of breast 

cancer, the up-regulated HERVs tended to be bound by ESR1 (estrogen receptor 1), PGR 

(progesterone receptor), GATA3, and FOXA1, which were overexpressed in the cancer type. 

Furthermore, transcription levels of HERVs in tumors were positively correlated with those of genes 

targeted by ZNF274, TRIM28, and/or SETDB1. These are known to form a protein complex and 

suppress the transcription of TEs in mouse embryos. This result suggests that these genes work on 

the transcriptional silencing of HERVs also in human tumors. Some HERVs were transcribed as 

parts of mRNA of genes and contributed to produce non-canonical transcripts of those genes. For 

example, the fused transcript of ERVL-B4-int and TMPRSS4, a major causal gene of prostate cancer, 

was highly up-regulated in prostate adenocarcinoma. The ERVL-B4-int locus worked as an 

alternative transcription start site of TMPRSS4 and contributed to the overexpression of this gene in 

the tumors. 

 This doctoral thesis depicts the landscape of HERV-derived functional elements providing 

insights into effects of these elements on host physiologies and diseases. 
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Chapter 1: General Introduction 
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Transposable element (TE), known as mobile element, is a DNA sequence that can 

change its position within a genome [1]. TEs constitute the majority of the eukaryotic 

genome and play an essential role in expanding its genome size [1-3]. TEs are classified 

into two major groups according to the mechanism of the transposition; retrotransposon 

and DNA transposon (Fig. 1) [1]. Retrotransposon is transcribed from DNA to RNA, 

and then the RNA is reversely transcribed to DNA (complementary DNA (cDNA)) by 

its reverse transcriptase [1, 3]. The cDNA is inserted into a new genomic position [1, 3]. 

This manner of the transposition is referred to as copy and paste because the original 

insert is retained after the transposition [1, 3] (Fig. 1). DNA transposon is cut out from 

the host chromosome by its transposase, and then the cut DNA is inserted into a new 

genomic position [1, 4]. This manner of the transposition is referred to cut and paste 

because the original insert is lost after the transposition (Fig. 1) [1, 4]. Due to the 

difference in the transposition manner, retrotransposons tend to increase their copy 

number in the host genome more than DNA transposons [2, 3]. Retrotransposon is 

classified into three major groups; long terminal repeat (LTR)-type retrotransposon, 

long interspersed element (LINE), and short interspersed element (SINE) [1, 3]. 

LTR-type retrotransposon is further classified into endogenous retrovirus (ERV) and 

others [5, 6]. ERVs highly resemble exogenous retroviruses (i.e., retroviruses 

horizontally transmitting such as human immunodeficiency virus type 1 (HIV-1)) 

probably because ERVs were arisen from exogenous retroviruses (described in the later 

paragraph) [6]. In this doctoral thesis, I refer to LTR-type retrotransposons simply as 

ERVs because almost all LTR-type transposons in mammalian genomes are ERVs. In 

the human genome, repetitive sequences derived from TEs occupy almost half of the 

genome [7]; LINEs (20% of the entire genome), SINEs (13%), DNA transposon (3%), 

and human ERVs (HERVs) (8%).  
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HERVs are composed of 5′- and 3′-LTR sequences and an internal sequence 

(Fig 2A) [6]. The LTRs contain various regulatory elements and modulate viral 

transcription [6]. HERVs are transcribed as mRNA species by the host machinery 

including RNA polymerase II (Pol II) [6]. The internal sequence contains three viral 

genes: gag (encoding structural proteins of the viral core), pol (encoding reverse 

transcriptase, integrase, and protease), and env (encoding envelope protein) [6]. 

Although most HERVs have lost the protein-coding capacity due to the accumulation of 

mutations, some still retain the capacity [5, 8]. In the host chromosome, HERVs are 

present either as a complete structure (referred to as provirus) or as a single LTR 

structure (referred to as solo-LTR) [5, 6] (Fig. 2A). The solo-LTR was generated 

through the homologous recombination between 5′- and 3′-LTRs (Fig. 2B) [5, 6].  

Figure 1. Transposition manners of retrotransposon and DNA transposon. 
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HERVs were generated from ancient exogenous retroviruses, which were 

horizontally transmitted among individuals of the host (the ancestors of humans), 

through the infection to host germ cells [6]. This step is referred to as retroviral 

endogenization [9]. The endogenization could have repeatedly occurred because >100 

of phylogenetically distinct groups of HERVs are present in the human genome [5]. 

After the endogenization, HERVs have vertically transmitted to the host offspring as a 

part of host chromosomes [6]. While transmitting vertically, HERVs increased their 

copy number in the host genome by replicating (i.e., re-infecting or retrotransposing) in 

germ cells [6]. Through this replicating process, HERVs could have gradually lost an 

“identity” as exogenous retroviruses (e.g., high pathogenesis, horizontal transmission, 

Figure 2. Genomic structures of HERVs. A) Genomic structures of provirus and solo-LTR. B) A mechanism of solo-LTR 
formation. Recombination between the two LTRs of a provirus results in deletion of the internal sequence and formation of the 
solo-LTR.  
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and replicating in somatic cells) and gained that as TEs (e.g., low pathogenesis and 

replicating in germ cells). Present-day HERVs have lost their replication and 

transposition activities in germ cells owing to the accumulation of mutations [6]. 

Because the mutation rate of host chromosomes is much slower than those of 

exogenous retroviruses and replicating TEs, present-day HERVs can be considered as 

genomic “fossils” of ancient exogenous retroviruses and past HERVs that replicated in 

germ cells [9]. Therefore, the traits and evolutionary dynamics of ancient retroviruses 

and their descendants can be inferred by scrutinizing present-day HERVs [9]. 

TEs were initially thought to be non-functional and parasitic sequences of the 

genome [10]. However, evidences have been accumulated that functional elements 

derived from TEs, particularly HERVs, have diverse effects on host physiologies [9, 11, 

12]. The phenomenon is called as “exaptation”, “co-option”, or “domestication” of TEs 

because functional elements of selfish TEs have came to play a role in biological 

processes of the host [9]. TEs can work at three biochemical levels; DNA, RNA, and 

proteins. At the DNA level, TEs work as regulatory sequences (i.e., promoter, enhancer, 

and insulator) that modulate transcriptions of host genes [13, 14]. This is because TEs 

harbor various regulatory elements (transcription factor-binding sites (TFBSs)) that 

originally modulated TE’s transcriptions [13, 14]. For example, LTR7 (a group of 

HERVs) harbors POU5F1- (OCT4-), SOX2-, KLF4-, and NANOG-binding sites 

[15-18]. The insertions of LTR7 modulate transcriptions of protein-coding/non-coding 

genes that are essential for maintaining the cellular pluripotency [15-18]. At the RNA 

level, TEs work as non-coding RNA, especially as long non-coding RNA (lncRNA) 

[19]. Indeed, most (>70%) of lncRNA contain sequences derived from TEs [19]. As 

mentioned above, LTR7-derived lncRNAs work in maintaining the cellular 

pluripotency [15-18]. Several studies showed that the over-expression of HERV RNAs 

trigger innate immune responses via sensors to exogenous RNA (i.e., viral RNA) 

[20-22]. At the protein level, a retroviral envelope protein encoded by HERVW, 
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Syncytin-1, works in placentation [11, 23]. Thus, several lines of evidences support that 

TEs have served as functional elements in the host. However, these examples seem to 

be a tip of the iceberg because 1) enormous TEs (>4.6 million of TE loci; >1,000 of TE 

groups) have been identified in the human genome, and 2) functions of a limited 

number of TEs have been experimentally examined. In Initial sequencing and analysis 

of the human genome, Lander ES et al. mentioned that TEs are extraordinary trove of 

information about biological process [7]. Exploration of the trove, that is, 

comprehensive investigation of TE-derived functional elements is needed. 

Some TE-derived functional elements are associated with specific diseases, 

particularly cancers [24, 25]. In tumors particularly treated with DNA methyltransferase 

inhibitor, a set of HERV loci works as alternative promoters of host genes and alters 

global transcriptome patterns [26, 27]. In breast cancer, the overexpression of the 

envelope protein of HERVK activates the proliferation and migration of the cancer cells 

via the activation of Ras/ERK pathway [28-30]. The overexpression of protein-coding 

HERVs is associated with high infiltration of cytotoxic T cells in several tumors [31, 

32]. This is probably because HERVs work as cancer-germ cell antigens, which are 

expressed only in germ cells and tumors and associated with antigen-specific responses 

to tumors [31, 32]. Thus, TE-derived functional elements can affect both on host 

physiologies and diseases. 

Recent efforts using high-throughput sequencing techniques have produced a 

massive amount of genomic, epigenomic, and transcriptomic data of various cells. 

Particularly, several international consortiums have played a central role in the data 

production: Encyclopedia of DNA Elements (ENCODE) [33] and Roadmap 

Epigenomics (Roadmap) [34, 35] projects have decoded epigenomic and transcriptomic 

states of hundreds of primary and cultured cells in order to characterize functional 

elements in the human genome. The Cancer Genome Atlas (TCGA) [36] has produced 

multi-dimensional omics data of >10,000 tumors across >30 tumor types in order to 
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identify cancer-causal mutations, therapeutic targets, and molecular subtypes within a 

tumor type. The subtype classification is clinically important because these subtypes 

show distinct phenotypes (e.g., drug response and diagnose) [36]. Importantly, the data 

is publicly available, and researcher can reuse the data for their professional interests. 

Since TE is a part of the genome, we can extract epigenomic and transcriptomic 

information about TEs from these data. 

In this doctoral thesis, I would like to discuss human functional elements 

(particularly regulatory elements and transcripts) derived from TEs. I have particularly 

focused on HERVs among TEs because HERVs showed the strongest statistical 

associations with functional elements among TEs in previous studies [19, 37, 38]. The 

aims of this doctoral thesis are: 1) to identify HERV-derived functional elements based 

on publicly available epigenomic and transcriptomic datasets, and 2) to make a catalog 

of the HERV-derived functional elements. First, I systematically identified 

HERV-derived regulatory elements using ENCODE [33] and Roadmap [35] datasets 

(CHAPTER 2). Based on the results, my colleague and I developed dbHERV-REs 

(http://herv-tfbs.com/), a database of HERV-derived regulatory elements. Second, I 

comprehensively identified unannotated transcripts derived from HERVs in solid 

tumors using TCGA dataset [36] (CHAPTER 3). Additionally, by examining regulatory 

elements of present-day HERVs, I attempted to illustrate evolutionary dynamics of the 

transcriptional regulation system of HERVs that had occurred probably for the 

adaptation to germ cells (CHPTER 3). Through this doctoral thesis, I would like to 

discuss about various effects of HERV-derived functional elements on host 

physiologies and diseases.  
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Chapter 2: Systematic identification of regulatory elements derived 
from human endogenous retroviruses 

 
The contents of this chapter are also described in the below paper: 

Systematic identification and characterization of regulatory elements 

derived from human endogenous retroviruses. Ito J. et al. (2017) PLoS 

Genet. 
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Introduction 

Transposable elements (TEs) were initially thought to be parasitic, selfish, and junk 

DNA [7, 10]. However, evidences have been accumulated that some TEs are co-opted 

by the host and acquire new physiological functions as protein-coding/-non-coding 

genes and regulatory elements for host genes [9, 16-19, 23, 37, 39-44]. TEs have their 

own regulatory elements for transcription and replication [16-18, 37, 42-53]. Such 

TE-derived regulatory elements are abundant in the human genome and have various 

effects on transcriptional modulations of host genes as promoters, enhancers, and 

insulators [14, 16-18, 37, 42-44, 54-62]. Notably, numerous TE insertions sharing the 

same regulatory elements can affect multiple genes in a coordinate manner. Several 

studies have suggested that TE insertions have contributed to the rewiring and evolution 

of regulatory networks by recruiting multiple genes into the same regulatory circuit [13, 

14, 16-18, 37, 38, 42-44, 62, 63]. 

Human endogenous retroviruses (HERVs) are a class of TEs that developed 

through the infection of host germ cells by ancient retroviruses, followed by their 

transmission to the offspring (referred to as endogenization) [6]. HERVs occupy 

approximately 8% of the human genome [7]. HERVs have lost their replication and 

transposition activities in germ cells owing to the accumulation of mutations [6]. 

According to RepeatMasker (20-Mar-2009) (http://www.repeatmasker.org/), 375 and 

130 groups of LTRs and internal sequences of HERVs, respectively, have been 

discovered in the human genome. This indicates that HERVs show the greatest diversity 

for all classes of human TEs. 

HERVs are transcribed as mRNA by RNA polymerase II (Pol II), and many 

regulatory elements bounded to Pol II-associated transcription factors (TFs) are present 

in LTR sequences [6, 64]. HERVs show the highest enrichment in regulatory sequences 

such as open chromatin regions among all classes of human TEs [37, 38, 65]. Reflecting 

the considerable diversity of HERVs, each group of HERVs has various regulatory 
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elements involved in modulating diverse host genes [16-18, 37, 42-44, 49-53]. For 

instance, LTR7 insertions provide POU5F1- (OCT4-), SOX2-, KLF4-, and 

NANOG-binding sites for protein-coding/non-coding genes, which are essential for 

maintaining pluripotency in embryonic stem (ES) and induced pluripotent stem (iPS) 

cells [15-18, 42, 64, 65]. As a further example, MER41 insertions harboring STAT1- 

and IRF1-binding sites in several genes contribute to primate-specific interferon 

responses [43]. Clarifying the properties of HERVs regulatory elements provides a 

better understanding of their impact on host transcriptional regulation. 

I systematically identified and characterized regulatory elements derived from 

HERVs based on publicly available datasets of chromatin immunoprecipitation 

followed by sequencing (ChIP-Seq) of sequence-specific TFs. The ChIP-Seq datasets 

were provided by ENCODE [33] and Roadmap Epigenomics (Roadmap) (Tsankov et al. 

[35]) projects. Previous studies have comprehensively investigated regulatory elements 

of TEs (including HERVs) based on the ENCODE dataset [33, 37, 38, 64-66]. Jacques 

et al. demonstrated that the majority of primate-specific regulatory sequences are 

derived from TEs [37]. Because this particular study was mainly focused on the dataset 

of DNase I hypersensitive sites (DHSs), it provided a limited insight into the specific 

associations of TEs and TFs [37]. Sundaram et al. showed specific associations of TEs 

and TFs using a dataset of ChIP-Seq for TFs [38]. However, the number of 

sequence-specific TFs investigated in that study was restricted (15 sequence-specific 

TFs) owing to the focus on TFs for which ChIP-Seq was performed in both human and 

mouse cells to compare the binding profiles [38]. In the present study, I performed a 

more comprehensive study than earlier of regulatory elements on HERVs by evaluating 

519 ChIP-Seq datasets of 97 sequence-specific TFs (Table 1). Furthermore, my 

colleagues and I constructed dbHERV-REs, a database of HERV regulatory elements 

with an interactive interface (http://herv-tfbs.com/). This study provides fundamental 

information to understand the impact of HERVs on host transcription. 
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Dataset TFs 

ENCODE ATF3, BATF, BCL11A, BCL3, BCLAF1, BHLHE40, BRCA1, CEBPB, CTCF, CTCFL, E2F4, E2F6, 

EBF1, EGR1, ELF1, ELK4, ESR1, ETS1, FOS, FOSL1, FOSL2, FOXA1, FOXA2, FOXP2, GABPA, 

GATA1, GATA2, GATA3, HNF4A, HNF4G, IRF1, IRF3, JUN, JUNB, JUND, MAFF, MAFK, MAX, 

MEF2A, MEF2C, MXI1, MYC, NANOG, NFE2, NFKB1, NFYA, NFYB, NR2C2, NR3C1, NRF1, 

PAX5, PBX3, POU2F2, POU5F1, PRDM1, REST, RFX5, RXRA, SIX5, SP1, SP2, SPI1, SREBF1, 

SRF, STAT1, STAT2, STAT3, TAL1, TCF12, TCF7L2, THAP1, USF1, USF2, YY1, ZBTB33, 

ZBTB7A, ZNF143, ZNF263, ZNF274 

Roadmap CTCF, EOMES, FOXA1, FOXA2, GATA4, GATA6, HAND1, HAND2, HEY1, HNF1B, HNF4A, 

KLF5, LEF1, MYC, NANOG, OTX2, PAX6, POU5F1, PRDM1, SMAD1, SMAD2/3, SMAD4, 

SNAI2, SOX17, SOX2, SP1, TCF4 

 

 

 
Results 

Detection of transcription factor-binding sites (TFBSs) using ChIP-Seq datasets 

I analyzed 519 ChIP-Seq datasets provided by ENCODE and Roadmap. The datasets 

included ChIP-Seq analysis of 97 sequence-specific and Pol II-associated TFs (Table 1). 

The ChIP-Seq experiments were performed using 94 cell types. Although ENCODE 

and Roadmap provided datasets of pre-determined ChIP-Seq peaks (pre-determined 

TFBSs), there are substantial differences in analytical pipelines between the two 

projects (Table 2). Therefore, I determined ChIP-Seq peaks using a uniform analytical 

pipeline (Fig. 3B). In the next generation sequence (NGS) analysis focusing on 

repetitive sequences such as HERVs, it is necessary to handle carefully multiple 

mapped reads, which are NGS reads that can be mapped to two or more genomic 

Table 1. TFs for which ChIP-Seq data was used in the present study. 

Bold TFs were used for ChIP-Seq by ENCODE and Roadmap. 
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regions [38, 67]. If multiple mapped reads are not excluded, false positive peaks may be 

detected at regions that have sequences similar to those authentically bounded by the TF. 

If they are excluded, it is unfeasible to identify ChIP-Seq peaks on recently integrated 

HERVs that show low sequence divergence among the copies. Some studies on TEs 

excluded multiple mapped reads [37], while others did not [16]. Therefore, I generated 

two types of ChIP-Seq peak datasets: all-read and unique-read TFBSs (Fig. 3B). 

All-read TFBSs are ChIP-Seq peaks that were determined with all reads mapped to the 

human reference genome. The unique-read TFBSs are ChIP-Seq peaks that were 

determined with only the reads uniquely mapped to the reference genome; in other 

words, multiple mapped reads were excluded before the peak calling of ChIP-Seq. 

Consequently, I identified 7,262,985 and 6,833,767 of all- and unique-read TFBSs, 

respectively (Fig. 4A); for estimating the numbers, overlapped TFBSs of the same TF 

were merged among cell types. 
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Figure 3. An analytical pipeline for peak calling of ChIP-Seq. A) TFs for which ChIP-Seq was performed in this 
study. ChIP-Seq data for MYC, CTCF, FOXA1, FOXA2, HNF4A, NANOG, POU5F1, PRDM1, and SP1 were provided 
by ENCODE and Roadmap. ChIP-Seq data for other TFs were provided by either ENCODE or Roadmap. Detailed 
information is summarized in Table 1. B) An analytical pipeline for peak calling of ChIP-Seq. I generated two types of 
TFBS datasets: all- and unique-read TFBSs. All-read TFBSs are ChIP-Seq peaks called with all reads mapped to the 
reference human genome. Unique-read TFBSs are ChIP-Seq peaks called with only reads that were uniquely mapped to 
the reference human genome. 
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  ENCODE (HAIB lab) Roadmap 

Read length 25-50 bp 25-36 bp 

Layout Single Single/Paired 

Platform Genome Analyzer HiSeq2000 

Mapping Eland/Bowtie MAQ/Bowtie2 

Filtering multiple mapped reads Yes No 

Peak calling SPP peak caller with calculation of IDR 

(Irreproducible Discovery Rate)  

MACS 

Using input control for peak calling Yes No 

  

Table 2. Sequencing and analytical pipelines of ChIP-Seq used in ENCODE and Roadmap. 
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Figure 4. TFBSs, HERV-TFBSs, and HSREs identified from all- and unique-read TFBSs. A) Proportions of HERV-TFBSs 
and HERV-TFBSs with HSREs. The left and right panels show results of all- and unique-read TFBSs, respectively. Proportions 
of HERV-TFBSs harboring HSREs in entire TFBSs (left value) and in HERV-TFBSs (right value) are shown. In the “merged” 
dataset, TFBSs of the same TF were merged between ENCODE and Roadmap, and were then counted. B) Comparison between 
the numbers of HSRE types identified from all- and unique-read TFBSs. A dot indicates a HERV group. C) Comparison 
between the numbers of HERV-TFBSs harboring HSREs from all- and unique-read TFBSs. A dot indicates a HERV group. 
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Detection of TFBSs on HERVs (HERV-TFBSs) 

I identified TFBSs observed on HERV sequences (HERV-TFBS overlaps 

(HERV-TFBSs)) belonging to the all- and unique-read TFBSs (Fig. 5A). I first 

identified HERV-TFBSs in each cell type, and then merged HERV-TFBSs of the same 

TF in all cell types (merged HERV-TFBSs). Thus, I identified 866,649 merged 

HERV-TFBSs from all-read TFBSs and 794,972 from unique-read TFBSs (Fig. 4A). 

HERV-TFBSs respectively occupied 11.9% and 11.6% of entire TFBSs in all- and 

unique-read TFBSs (Fig. 4A). 

 

 

 

Figure 5. Scheme of identification of HERV-TFBSs and HSREs. HERV-TFBSs and HSREs were identified separately using 
ENCODE and Roadmap datasets. HERV-TFBSs and HSREs were identified for all- and unique-read TFBSs. A) HERV-TFBSs were 
identified in respective cell types by examining overlaps between HERVs and TFBSs. HERV-TFBSs of each TF were merged among 
cell types (merged HERV-TFBSs). B) In each HERV group, MSA of HERV copies was constructed with the consensus sequence, and 
then the position of the merged HERV-TFBS was mapped on each HERV sequence in the MSA. Red and pink regions indicate 
HERV-TFBSs for TF X and Y, respectively. C) TF-binding motif was scanned in HERV-TFBS and mapped on each HERV sequence in 
the MSA. Star and triangle marks indicate TF-binding motifs for TF X and Y, respectively. A set of TF-binding motifs was regarded as 
HSRE if the TF-binding motifs were shared among greater than 60% of HERV-TFBSs at the same position in MSA. Boxed TF-binding 
motifs are HSREs for TF X and Y, respectively. 
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To evaluate the differences between all- and unique-read TFBSs, I compared 

the number of HERV-TFBSs for both the TFBS datasets. In most HERV groups, the 

numbers of HERV-TFBSs were approximately the same for all- and unique-read 

TFBSs; however, the difference was quite large for some HERV groups such as LTR7 

and LTR5_Hs (Figs. 6A, 6C, and 6D). These HERV groups were recently inserted [see 

dbHERV-REs (http://herv-tfbs.com)] and showed low ‘genomic mappability’ (sequence 

uniqueness) (Figs. 6B and 6E). Therefore, a substantial number of sequence reads was 

not uniquely mapped on the HERVs and was discarded. Based on these results, I 

generally used unique-read TFBSs for further analyses. When I individually focused on 

HERV groups with low genomic mappability, such as LTR7 and LTR5_Hs, I used 

all-read TFBSs. 
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Figure 6. Comparison of all- and unique-read TFBSs. A) Comparison between the numbers of HERV-TFBSs of all- and unique-read 
TFBSs. The comparison was performed in respective ChIP-Seq experiments, and the results for SPI1 in K562 cells from the ENCODE 
dataset, POU5F1 in HUES64 cells from the Roadmap dataset, and NANOG in HUES64 cells from the Roadmap dataset are shown. In all 
the three ChIP-Seq experiments, 36-bp single-end sequencing was performed. A dot indicates a HERV group. In most HERVs, numbers 
of HERV-TFBSs were approximately the same. However, in some HERVs such as LTR5_Hs and LTR7, numbers of HERV-TFBSs was 
higher for all-read TFBSs than for unique-read TFBSs. B) Distribution of genomic mappability (uniqueness) scores on HERV sequences. 
Scores are normalized between 0 and 1, with 1 representing a unique sequence and 0 representing a sequence that occurs more than 4 
times in the genome (see http://genome.ucsc.edu/). Mappability score of 36-bp single-end sequencing was calculated with 
gem-mappability. Average mappability scores of HERV copies were calculated, and the distribution was shown separately in respective 
HERV groups. With respect to median value of the mappability score, the worst 50 of HERV groups are shown. C) Comparison between 
the numbers of HERV-TFBSs of all- and unique-read TFBSs. The comparison was performed in respective HERV groups. Results for 
MLT1J and LTR5_Hs are shown. A dot indicates a ChIP-Seq experiment. Linear regression was performed, and the slope was indicated. 
In MLT1J with high genomic mappability (average score = 0.98), numbers of HERV-TFBSs in respective ChIP-Seq experiments are 
approximately the same for all- and unique-read TFBSs (slope = 1.0). In LTR5_Hs with low genomic mappability (average score = 0.38), 
numbers of HERV-TFBSs in respective ChIP-Seq experiments tended to be approximately four times higher for all-read TFBSs than for 
unique-read TFBSs (slope = 4.0). D) Distribution of slopes of linear regressions (mentioned in (C)) in respective HERVs. The X-axis is 
log2 scale. HERVs with slopes >2 are listed in the right table. E) Association between the slopes and average values of genomic 
mappability scores. A dot indicates a HERV group. The X-axis is log2 scale. 
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 I compared HERVs with other classes of TEs with respect to the TF binding 

profiles. In the unique-read TFBSs, LINE, SINE, and DNA transposons were 

respectively overlapped to 15%, 16%, and 6% of the entire TFBSs (Fig. 7A). It is 

important to check whether a TF binds to a group of TE significantly more than 

expected, because TEs occupy a large fraction of the genome, and therefore, TF binding 

would be partially observed on the TEs regardless of the absence of a special 

association between the TEs and TFs. Therefore, I evaluated statistical enrichment of 

binding of a TF in respective groups of TEs to random expectation. The enrichment of 

TF binding was measured using a randomization test shuffling genomic positions of 

TFBSs (see Materials and Methods). Subsequently, I counted the number of TFs 

bounded significantly to a group of TE, and then the distribution was compared among 

the TE classes (Fig. 7B). I demonstrated that the number of TFs binding significantly to 

a TE group tended to be substantially higher in the HERV class than the other TE 

classes (Fig. 7B). In the other TE classes, a few TEs were bounded by a large number of 

TFs (Fig. 7C). Thus, HERVs were distinguished from the other TEs with respect to 

numbers of TF bindings. Previous studies reported the same tendency that HERVs have 

more regulatory sequences (e.g., DHSs and TFBSs) than the other TEs [37, 38]. 
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Figure 7. Comparison of HERVs with other TE classes with respect to TF binding. Results of unique-read TFBSs are 
shown. A) Number of TFBSs overlapping with respective TE classes. B) Distribution of the number of TFs significantly 
binding to respective TE groups. Out of 106 TFs (79 ENCODE TFs + 27 Roadmap TFs), the number of TFs that are 
significantly bounded to a TE group was counted. The distribution is separately shown in respective TE classes. Outliers of 
TE groups are not shown. Enrichment significance values were measured using a randomization test shuffling genomic 
position of TFBSs. TFs with z score >5 and fold enrichment score >2 were considered as significantly binding to the TE 
group. To statistically compare HERV with other TEs with respect to the numbers of TFs, Mann-Whitney U test was 
performed. C) TE groups bounded by many TFs. 
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Classification of HERVs based on TF binding patterns 

To understand the characteristic patterns of TF binding to HERVs, I performed 

hierarchical clustering analysis based on statistical enrichments of TF binding to 

random expectation (Fig. 8A). Enrichment significance was measured for each 

combination between HERVs and TFBSs in respective cell types to consider the cell 

type-specific binding of TFs to HERVs. Fourteen HERV and TFBS clusters were 

identified (Fig. 8A), of which, I characterized 8 TFBS clusters (TF_1–8) (Fig. 8B) [33, 

35, 68-70]: TF_1 contained TFBSs for FOXA1/2, GATA4/6, and SOX17, which are 

critical for the differentiation of embryonic mesendoderm or endoderm. TF_2 contained 

TFBSs for POU5F1, SOX2, and NANOG, essential for pluripotency of ES and iPS cells. 

TF_3 contained TFBSs for GATA1/2 and TAL1, essential in hematopoietic and 

leukemia cells. TF_4 contained SPI1, which is critical for the differentiation of 

hematopoietic cells. TF_5 and TF_6 contained TFBSs for NFYA/B, USF1/2, and other 

TFs expressed in a broad-range of cell types. TF_8 contained TFBSs for PAX5 and 

PBX3, essential for the differentiation of B lymphocytes. TF_7 contained 

CTCF-binding sites found in all the cell types, which function as insulators and regulate 

chromatin architecture. I also characterized 9 HERV clusters (HERV_1–9) (Figs. 8A-C). 

HERV_1 was enriched in TF_1 (endoderm TF cluster) and TF_2 (pluripotent TF 

cluster). HERV_2 was enriched in TF_2 (pluripotent TF cluster). HERV_3 was 

enriched in TF_8 (B-lymphocyte TF cluster). HERV_4 cluster was enriched in TF_5 

cluster. HERV_5 and HERV_7 were enriched in TF_7 (CTCF cluster). HERV_6 was 

enriched in TF_5 and TF_6 clusters. HERV_8 was enriched in TF_3 and TF_4 

(hematopoietic TF clusters). Lastly, HERV_9 was not enriched in most TFBSs. Taken 

together, I identified the characteristic clusters of HERVs by the hierarchical clustering 

analysis, indicating that HERV groups can be classified based on their TFBSs. Each 

HERV cluster typically contained several HERV groups belonging to different HERV 

families (Fig. 8C). This indicates that the pattern of HERV regulatory elements do not 
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match their phylogenic classifications. TFBSs for FOXA1/2, GATA4/6, NANOG, 

POU5F1, SP1, GATA2, TAL1, MAX, USF1, SPI1, ZNF143, and YY1 were enriched 

in various groups of HERVs (Fig. 8A right). 
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Figure 8. Statistical enrichment of respective TFBSs in each group of HERVs. Results from unique-read TFBSs are shown. A) 
The heatmap with hierarchical clustering, which shows statistical enrichment of respective TFBSs in each group of HERVs. Color in 
heatmap (from blue to red) indicates enrichment significance (z score) to random expectation. The row indicates TFBSs from a 
ChIP-Seq analysis. The column indicates a HERV group. The dendrograms were cut at heights denoted by broken lines. Fourteen 
clusters were identified for HERVs and TFBSs. Of these, characteristic clusters of TFBSs (TF_1–8) and HERVs (HERV_1–9) are 
shown. The cut heights and the characteristic clusters were manually chosen according to dendrograms and color patterns in 
heatmap. The number of HERV groups highly enriched in each TFBS dataset (z score >5) is shown on the right side of the heatmap. 
B) Characteristic clusters of TFBSs (TF_1–8). Ectoderm, endoderm, mesoderm, and mesendoderm were differentiated from 
HUES64 cells. C) Characteristic clusters of HERVs (HERV_1–9). Classification of the HERV family is based on RepeatMasker 
(20-Mar-2009) (http://www.repeatmasker.org/). 
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Identification of HERV-shared regulatory elements (HSREs) 

HERV-shared regulatory element (HSRE) was defined as a TF-binding motif identified 

in a substantial fraction of HERV-TFBSs at the same consensus position (Fig. 5). 

HSREs can indicate that the regulatory elements of HERVs are present before their 

insertions into the respective genomic loci [71]. I identified HSREs according to a 

scheme shown in Fig. 5. HSREs were identified separately from ENCODE and 

Roadmap dataset. In total, 2,525 and 2,201 types of HSREs were respectively identified 

from all- and unique-read TFBSs. Regarding all-read TFBSs, HSREs comprised 

specific associations of 370 HERVs and 85 TFs. These HSREs were composed of 

255,225 genomic loci and present in 21% of the total HERV-TFBSs and in 2.5% of the 

entire TFBSs (Fig. 4A). For unique-read TFBSs, HSREs comprised specific 

associations between 354 HERVs and 84 TFs. These HSREs were composed of 

178,121 genomic loci and present in 17% of the total HERV-TFBSs and in 2.0% of the 

entire TFBSs (Fig. 4A). In most HERV groups, the numbers of identified HSREs were 

approximately the same between unique- and all-read TFBSs; however, in HERV 

groups with low genomic mappability (e.g., LTR7 and LTR5_Hs), more HSREs were 

identified from all-read TFBSs than unique-read TFBSs (Figs. 4B and 4C). This was 

consistent with the comparison of the number of HERV-TFBSs between the two 

datasets (Fig. 6). Concerning HERV-TFBSs harboring HSREs, approximately half of 

HERV-TFBSs had more than one of TF-binding motif corresponding to HSRE (Fig. 

9A). Most of the HSREs were identified in LTR sequences (87%; 1,935/2,201 

combinations in unique-read TFBSs), and the others were identified in the internal 

sequences of HERVs (13%; 266/2,201 combinations). Large proportions of copies of 

LTR12, LTR22, LTR13 groups and LTR6B contained HSREs (with respect to 

proportions of copies harboring HSREs, top 15 of HERVs are shown in Table 3). 

Regarding TFs, MER41B, LTR13/13A, LTR8/8A, LTR10A/10F, LTR9/9B, and 

LTR5B/5_Hs contained various HSREs (Fig. 9B). HSREs were identified in both 
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recently and anciently inserted HERVs, the latter of which was inserted into the genome 

of the common ancestor of the clade Eutheria (Figs. 9C, 9D, and 9E). As degrees of 

divergences (or ‘ages’) of HERVs increased, proportions of copies harboring HSREs 

decreased (Fig. 9D), indicating regulatory elements of ancient HERVs were more 

divergent than those of young HERVs. As in the case of HERV-TFBSs, HSREs 

bounded by TFs essential for pluripotent, embryonic endoderm, and hematopoietic cells 

were frequently identified in addition to CTCF (Figs. 9F and 9G). HSREs bounded by 

CTCF were frequently observed in internal sequences rather than LTR sequences (Figs. 

9H and 9I). Regarding LTR2B, LTR5B, MER41B, and MLT1J, HSREs identified from 

unique-read TFBSs are shown in Fig. 10. 
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Figure 9. Characteristics of HSREs. Results of unique-read TFBSs are shown. A) Distribution of HSREs present in 
HERV-TFBSs. The Y-axis indicates the number of HERV-TFBSs containing 1, 2, 3, 4, and greater than or equal to 5 
HSREs. B) HERVs that contained many types of HSREs (TFs). C) and D) average divergence of each HERV group from 
the consensus sequence and absolute numbers (C) or proportions (D) of copies containing HSREs. Color of a dot indicates 
insertion period of the HERV group judged by distribution of orthologous copies in the mammalian genome. E) average 
divergence of each HERV group from the consensus sequence and proportions of HERV-TFBSs containing HSREs. Please 
note the difference in Y-axis between (D) and (E). F) HSREs (TFs) observed in many HERV copies. G) HSREs (TFs) 
observed in many groups of HERVs. H) and I) HSREs (TFs) observed in many groups of HERVs classified into LTR (H) 
and internal sequence (I). 
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Table 3. Absolute numbers and proportions of HERV copies harboring HSREs. 

Family Group # of copies with HSREs Proportion 

ERV1 LTR12 675 0.87 

ERV1 LTR6B 123 0.80 

ERVK LTR22C 294 0.75 

ERV1 LTR12_ 414 0.75 

ERV1 LTR12C 1,993 0.73 

ERVK LTR13 355 0.72 

ERVK LTR13A 130 0.69 

ERV1 LTR12D 336 0.69 

ERVK LTR22B 157 0.67 

ERV1 MER48 129 0.67 

ERVL LTR18A 170 0.66 

ERVK LTR22A 115 0.61 

ERV1 LTR10F 259 0.58 

ERV1 LTR10A 181 0.58 

ERV1 LTR12B 119 0.56 
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Figure 10. HSREs identified from unique-read TFBSs. Left panel: number of HERV-TFBSs mapped on each consensus 
position of LTR2B (A), LTR5B (B), MER41B (C), and MLI1J (D). The X-axis indicates the nucleotide position on the 
consensus sequence of the corresponding HERV group. The Y-axis indicates the number of HERV copies harboring 
HERV-TFBSs at each position. Right panel: number of TF-binding motifs in HERV-TFBSs mapped on each consensus position 
of LTR2B (A), LTR5B (B), MER41B (C), and MLI1J (D). The X-axis indicates the nucleotide position of the consensus 
sequence. The Y-axis indicates the number of HERV copies harboring the TF-binding motifs at each position. Peaks of the 
motifs corresponding to HSREs are indicated with an asterisk (*) with motif names. 
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Characteristics of HSREs in LTR7 

Characteristics of HSREs in LTR7 identified from the Roadmap dataset are shown in 

Fig. 11. LTR7 showed low genomic mappability (Fig. 6B), and, therefore, the results of 

all-read TFBSs were considered (those of unique-read TFBSs are shown in Fig. 12). 

LTR7 is an LTR sequence of the HERVH provirus belonging to the ERV1 family. In 

our clustering analysis, LTR7 belonged to the HERV_2 cluster, whose members were 

highly bounded by SOX2, POU5F1, and NANOG (Fig. 8). These TFBSs were observed 

at approximately the same consensus positions of LTR7 among those copies (Figs. 11A 

and 11B). For example, a peak of SOX2 binding was observed at around the 150th 

nucleotide position on the consensus sequence of LTR7 (Fig. 11B). Splits of 

HERV-TFBS peaks were observed in NANOG, EOMES, and FOXA1/2 due to an 

insertion/deletion in multiple sequence alignment of LTR7. TF-binding motifs in 

HERV-TFBSs were observed at approximately the same consensus position of LTR7 

among those copies (Figs. 11C and 11D). I identified HSREs according to the scheme 

described in Fig. 5 (and Materials and Methods). To identify HSREs, I compared 

heights of the peaks between HERV-TFBSs and TF-binding motifs (Fig. 13). If the 

peak of TF-binding motifs (Figs. 11C and 11D) was higher than 60% of that of 

HERV-TFBSs (Figs. 11A and 11B), the set of TF-binding motifs was regarded as 

HSRE. I identified novel HSREs in LTR7, such as EOMES, FOXA1/2, and GATA6, 

and confirmed the previous reports showing that NANOG-, SOX2-, and 

POU5F1-binding sites were shared across the LTR7 copies [16-18, 42]. Although the 

HSREs of NANOG, EOMES, FOXA1, and SOX2 were recaptured from unique-read 

TFBSs, the peaks of HERV-TFBSs in unique-read TFBSs were substantially lower than 

those in all-read TFBSs (Fig. 12). Chromatin accessibilities evaluated by DHSs and 

chromatin states [64-66] showed that the regulatory elements of LTR7 were specifically 

active in ES cells (Figs. 11E and 11F), consistent with the results of previous studies 

[16-18, 37, 72]. 
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Figure 11. Characteristics of HSREs identified in LTR7 from the Roadmap dataset. Results from all-read TFBSs are shown. A) and 
B) Number of HERV-TFBSs mapped on each consensus position of LTR7. Results for NANOG and EOMES are shown in (A), and 
those for FOXA1, SOX2, POU5F1, FOXA2, and GATA6 are sown in (B). The X-axis indicates nucleotide position of the consensus 
sequence of LTR7. The Y-axis indicates the number of HERV copies harboring HERV-TFBSs at each position. C) and D) Number of 
TF-binding motifs in HERV-TFBSs mapped on each consensus position of LTR7. Results for NANOG and EOMES are shown in (C), 
and those for FOXA1, SOX2, POU5F1, FOXA2, and GATA6 are shown in (D). Peaks of the motifs corresponding to HSREs are denoted 
by an asterisk (*) with motif names (e.g., SOX2 M0). E) The number of HERV-DHSs (DHSs on HERVs) mapped on each consensus 
position of LTR7. F) Proportion of LTR7 copies overlapped with each chromatin state predicted by genome segmentation method. TSS, 
promoter region including TSS; PF, predicted promoter flanking region; E, enhancer; WE, weak enhancer or open chromatin cis 
regulatory element. G) The unrooted phylogenetic tree of LTR7 copies reconstructed using the maximum likelihood method with 
RAxML. Representative supporting values calculated by Shimodaira-Hasegawa (SH)-like test are shown on the corresponding branches. 
Identified phylogenetic subgroups (subgroups I, II, and III) are shown. H) Orthologous copies of LTR7 in the reference genomes of 
primates. The order of LTR7 copies is the same to (G). I) TFBSs on each LTR7 copy. J) TF-binding motifs at positions corresponding to 
HSREs on each LTR7 copy. Black and gray colors respectively indicate the presences of motifs with p values of <0.0001 and <0.001, 
identified by FIMO. K) Enrichment of sequence reads mapped to LTR7 copies belonging to respective subgroups. The Y-axis shows 
reads per million (RPM) relative to that of input control. L) Insertion dates of proviruses of HERVH/LTR7 along with the species tree of 
primates. Upper panel: The boxplot showing insertion dates of the respective proviruses estimated by sequence comparison between 5′- 
and 3′-LTRs. Insertion dates of the proviruses are separately shown in the respective subgroups. Categories of subgroups I, II, and III 
contained 66, 248, and 227 copies of proviruses, respectively. Lower panel: Phylogenetic tree of primates with time scale. The tree was 
obtained from TIMETREE. Red branch in the tree indicates the period when the rewiring of the core regulatory network of pluripotent 
cells seems to have occurred. 
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Figure 12. Characteristics of HSREs of LTR7 identified from unique-read TFBSs. A) Number of HERV-TFBSs mapped on 
each consensus position of LTR7. Results of NANOG and EOMES are shown in the left panel, and those of FOXA1, SMAD1, 
and SOX2 are shown in the right panel. The X-axis indicates nucleotide position of the consensus sequence of LTR7. The 
Y-axis indicates the number of HERV copies harboring HERV-TFBSs at each position. B) Number of TF-binding motifs in 
HERV-TFBSs mapped on each consensus position of LTR7. Results of NANOG and EOMES are shown in the left panel, and 
those of FOXA1, SMAD1, and SOX2 are shown in the right panel. The X-axis indicates a consensus position of LTR7. The 
Y-axis indicates the number of HERV copies harboring the TF-binding motifs in TFBSs at each position. Peaks of the motifs 
corresponding to HSREs are indicated by an asterisk (*) with motif names (e.g., SOX2 M0). C) Left, phylogenetic tree of LTR7 
copies as seen in Fig 3G. Middle, TFBSs on each LTR7 copy. The order of LTR7 copies is the same to the left tree. Right, 
TF-binding motifs at positions corresponding to HSREs on each LTR7 copy. The order of LTR7 copies is the same to the left 
tree. Black and gray colors respectively indicate the presence of motifs with p values of <0.0001 and <0.001. 
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Heterogeneity of regulatory elements in LTR7 

To approach the evolutionary dynamics of HERV regulatory elements, I investigated 

heterogeneity of the regulatory elements. I focused on HSREs that was 

disproportionately present in a specific subgroup of a HERV group. LTR7 copies were 

classified into three main subgroups (subgroups I, II, and III) by phylogenetic analysis 

based on the sequences (Fig. 11G). Examining orthologous copies of LTR7 in primates 

indicated that these subgroups were inserted at different time points (Fig. 11H). 

NANOG- and EOMES-binding sites were uniformly present among the three subgroups 

(Fig. 11I). SOX2- and POU5F1-binding sites were found to be enriched in subgroup III, 

and FOXA1-binding sites (and, to a certain extent, FOXA2- and GATA6-binding sites) 

were enriched in subgroup II (Fig. 11I). I referred to the ChIP-Seq dataset provided by 

Ohnuki et al. [16] (Fig. 14) because this dataset contained ChIP-Seq of SOX2, POU5F1, 

and KLF4 in iPS cells, and the sequence read lengths (75-bp) were much longer than 

those of ENCODE/Roadmap dataset (25- or 36-bp). I also referred to the ChIP-Seq data 

of NANOG in ES cells provided by Durruthy-Durruthy et al. [44], performing 100-bp 

pair-ended sequencing (Fig. 14). Genomic mappability of LTR7 substantially improved 

in the 75-bp sequencing compared with 36-bp (Fig. 14A). In this dataset, I demonstrated 

Figure 13. The method to identify HSREs. A) MSA of HERV copies (blue) harboring HERV-TFBSs (red). TF-binding motifs 
in HERV-TFBSs are indicated as star marks. B) Number of HERV-TFBSs (red) and TF-binding motifs (black) mapped on each 
consensus position of the HERVs. To identify HSREs, peak heights are compared between HERV-TFBSs and TF-binding 
motifs. If the height of the TF-binding motif peak is greater than 60% of the height of the HERV-TFBS peak, I regard the set of 
TF-binding motifs as HSRE. 
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that binding of SOX2, KLF4, and POU5F1 were enriched in subgroup III (Fig. 14D). In 

particular, the enrichments were observed in both all- and unique-read TFBSs. 

POU5F1-binding motifs at positions corresponding to HSREs were enriched in 

subgroup III, while FOXA1/A2-binding motifs were excluded (Fig. 11J). To 

quantitatively compare TF binding among the subgroups, I counted the number of reads 

mapped on LTR7 copies and summed them in respective subgroups, and then I 

estimated the enrichment of the reads to input control in respective subgroups (Fig. 

11K). In NANOG and EOMES, the enrichment was relatively higher in subgroup III 

although the reads were enriched in all the three subgroups. In SOX2 and POU5F1, the 

reads were enriched in subgroup III. In FOXA1 (and, to a certain extent, in FOXA2- 

and GATA6-binding sites), the reads were enriched in subgroup II. Thus, I 

demonstrated subgroup-specific TF binding in LTR7. In a previous study, LTR7 copies 

were divided into transcriptionally active and inactive groups based on RNA-Seq using 

pluripotent cells [17]. I further demonstrated that the active LTR7 copies were enriched 

in the subgroup III (Fig. 15). Some LTR7 copies fuse with host coding/noncoding genes 

and play an essential role in maintenance of cell pluripotency [15-18]. I demonstrated 

that most of the LTR7 copies comprising the chimeric transcripts belonged to the 

subgroup III (Fig. 15). Finally, I attempted to estimate insertion dates (i.e., ages) of 

proviruses of HERVH/LTR7 based on sequence comparison between 5′- and 3′-LTRs 

(see Materials and Methods). As shown in Fig. 11L, majority of the subgroup I, II, and, 

III seem to have been inserted in branch of the genera Catarrhini and Hominoidea and 

the span from the end of Hominoidea to the beginning of Homininae (interquartile 

range of insertion dates; 29.7–42.0, 19.4–31.1, and 13.5–22.7 million years ago (Mya), 

respectively). This is consistent with the insertion dates estimated by presence of 

orthologous copies in primates (Fig. 11H). 
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Figure 14. TFBSs of LTR7 identified in ChIP-Seq with 75-bp single-end or 100-bp paired-end sequencing. ChIP-Seq 
data on SOX2, KLF4, and POU5F1 (75-bp single-end) was provided by Ohnuki et al.. ChIP-Seq data on NANOG (100-bp 
paired-end) was provided by Durruthy-Durruthy et al.. A) Comparison between genomic mappability scores of LTR7 for 
36-bp and 75-bp sequencing. B) Number of HERV-TFBSs mapped on each consensus position of LTR7. Results of all- and 
unique-read TFBSs are shown in the left and right panels, respectively. C) Number of TF-binding motifs in HERV-TFBSs 
mapped on each consensus position of LTR7. Results of all- and unique-read TFBSs are shown in the left and right panel, 
respectively. D) Left, phylogenetic tree of LTR7 copies as seen in Fig 3G. Middle and right, TFBSs on each LTR7 copy in 
all-read (middle) and unique-read (right) TFBSs. The order of LTR7 copies is the same to the left tree. 
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Changes in regulatory elements during LTR5 evolution 

I showed that regulatory elements of HERVs were different within the same HERV 

group (Figs. 11G-K). In order to approach evolutionary dynamics of regulatory 

elements in HERVs, I examined changes in the regulatory elements in the LTR5 

(HERVK/HML-2) group. LTR5 is composed of LTR5A, LTR5B, and LTR5_Hs. 

LTR5_Hs is the youngest HERV group, and a previous study reported that LTR5_Hs 

has regulatory elements for POU5F1, SOX2, and NANOG [50]. Also consistent with 

the results of a previous study [73], phylogenetic analysis and examination of 

orthologous copies indicated that LTR5B was the oldest ancestral group, and LTR5A 

and LTR5_Hs were independently generated from LTR5B-like viruses (Figs. 16A and 

16B). Here, I divided LTR5 into five groups (groups I–V) based on their phylogenetic 

relationship and the TFs binding to them (Figs. 16A, 16C, and 16E). Group I was rarely 

bounded by TFs (Figs. 16C and 16E). Group II was bounded by SPI1, TAL1, and 

GATA1/2, which are vital in hematopoietic cells. Group III was bounded by GATA4/6, 

SOX17, and FOXA1/2, essential in embryonic endoderm cells, together with the 

Figure 15. LTR7-chmeric transcripts and transcriptional activities of LTR7. Left, the unrooted tree of LTR7 copies as 
seen in Fig 3G. LTR7 copies fused with ABHD12B, C4orf51, ESRG, HHLA1, LINC-ROR, and LINC00458 are shown 
with markers. Right, transcriptional activities of LTR7 copies in pluripotent cells as defined by Wang et al.. Red, highly 
active; yellow, moderately active; blue, inactive. 
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hematopoietic TFs. Group IV was bounded by NANOG, MYC, POU5F1, and SOX2, 

which are critical in pluripotent cells, in addition to the hematopoietic and the endoderm 

TFs. In group V, which is the youngest group, binding levels of some hematopoietic 

TFs (SPI1 and GATA1/2) and endoderm TFs (GATA4/6 and SOX17) were low. These 

differences in TF binding correlated with the differences in TF-binding motifs at 

positions corresponding to the HSREs (Fig. 16D). Chromatin accessibilities evaluated 

by DHSs indicate that the cell specificity of LTR5 members shifted along with their 

gain/loss of TFBSs (Fig. 16F). Group I was not active in any cell types, as expected 

owing to the absence of the regulatory elements. Group II was active in K562 

(leukemia) cells. Group III was active in HepG2 (hepatoblastoma) and A549 (lung 

epithelial cancer) cells, in addition to K562 cells. Group IV was active in H1-hESC 

(ES) cells, in addition to the above cells; group V was not active in K562 cells. 
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Figure 16. Changes in regulatory elements in LTR5 group. Results from all-read TFBSs are shown. A) The unrooted phylogenetic 
tree of LTR5A (red), LTR5B (green), and LTR5_Hs (blue) copies constructed using the maximum likelihood method. LTR5 was divided 
into five groups (I–V) based on the tree and their TFBSs (shown in (C)). Fragmented and outlier copies were excluded from the analysis. 
Copies of 233, 300, and 532 respectively belonging to LTR5A, LTR5B, and LTR5_Hs were included in the tree (out of 265, 431, and 
645, respectively). Representative bootstrap values are shown at the corresponding nodes. B) Orthologous copies in the reference 
genomes of primates. The order of LTR5 copies is the same to (A). C) TFBSs present on each copy; representative TFBSs are shown. 
TFBSs of SPI1, TAL1, and GATA1/2 were from the ENCODE dataset, and others were from the Roadmap dataset. The order of LTR5 
copies is the same to (A). D) TF-binding motifs at positions corresponding to HSREs on each LTR5 copy. The order of LTR5 copies is 
the same to (A). Black and gray colors respectively indicate the presence of motifs with p values of <0.0001 and <0.001, as identified by 
FIMO. E) Enrichment of sequence reads mapped to LTR5 copies belonging to respective subgroups. The Y-axis shows RPM relative to 
that of the input control. F) Relative number of HERV-DHSs mapped on each consensus position. The X-axis indicates nucleotide 
position in the consensus sequence of LTR5_Hs. The Y-axis indicates proportion of HERV copies harboring HERV-DHSs at each 
position. 
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Signatures of the HERV regulatory elements 

I examined chromatin states [64-66] of HERVs with and without TFBSs/HSREs. 

Compared with the entire population of HERVs, HERVs harboring HERV-TFBSs or 

HSREs were enriched in promoter [transcription start site (TSS) and promoter flanking 

regions (PF)], enhancer (E), weak enhancer (WE), and CTCF-binding regions (CTCF), 

but not in transcribed (T) and repressed (R) regions (Fig. 17A). The HERV groups 

enriched in enhancer regions were different across different cell types (Fig. 17B). These 

differences seem to reflect the differences of their HSREs; LTR2B [37], LTR7 [17, 37, 

72], MER41B, and LTR5B, which were respectively enriched in the enhancer regions 

of GM12878, H1-hESC, K562/HeLa-S3, and HepG2 cells, had HSREs bounded by TFs 

essential in the corresponding cell types (Figs. 10A, 11A-B, 10C, 10B, respectively). 

Unlike enhancers, HERVs enriched in CTCF-binding regions remained unchanged 

among the cell types (Fig 17C), which is consistent with previous findings [35]. 
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I examined TFs in which large fractions of TFBSs were occupied by 

HERV-TFBSs (Table 4). Binding sites of NFYA/B, USF1/2, GATA4/6, TAL1, SOX2, 

SOX17, and TCF4 were highly overlapped with HERVs. Nearly half of NFYB-binding 

sites were observed on HERVs [74]. NFYA/B frequently bound to members of the 

HERV_4 cluster in Fig. 8 (e.g., LTR12, MER51, and MER57 groups) and members of 

the HERV_6 cluster (MLT1 group) (Fig. 8). These HERVs contained HSREs for 

Figure 17. HERVs enriched in regions with various chromatin signatures. A) Proportion of HERV copies overlapped with each 
chromatin state. Chromatin states were predicted by genome segmentation method. Proportions in total HERVs, HERVs with 
HERV-TFBSs, and HERVs with HSREs are separately shown. Results of unique-read TFBSs are shown. Averages of the 
proportions among six cells (GM12878, H1-hESC, K562, HepG2, HeLa-S3, and HUVEC) are shown. TSS, promoter region 
including TSS; PF, predicted promoter flanking region; E, enhancer; WE, weak enhancer or open chromatin cis regulatory element; 
CTCF, CTCF enriched element; T, transcribed region; R, repressed or low activity region. B) Word clouds showing HERVs enriched 
in enhancer regions of each cell type. The word sizes are proportional to −log10 (p values) calculated with Fisher’s exact test. The 
word colors indicate HERV families. Word clouds were created by wordcloud package implemented in R. C) Word clouds showing 
HERV groups enriched in CTCF-binding regions of each cell type. 
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NFYA/B [see dbHERV-REs (http://herv-tfbs.com/)]. 

 

 

 
TF TFBSs HERV-TFBSs Proportion 

NFYB 20,930 9,805 46.8% 

NFYA 8,786 1,999 22.8% 

GATA6 32,230 7,073 21.9% 

USF1 138,147 29,524 21.4% 

GATA4 81,738 16,359 20.0% 

TAL1 35,321 6,951 19.7% 

SOX2 9,018 1,710 19.0% 

SOX17 13,348 2,470 18.5% 

USF2 33,600 6,205 18.5% 

TCF4 12,764 2,209 17.3% 

EOMES 32,963 5,662 17.2% 

STAT1 21,727 3,515 16.2% 

YY1 193,183 30,506 15.8% 

GATA1 49,133 7,714 15.7% 

OTX2 126,138 19,576 15.5% 

MAX 268,057 41,571 15.5% 

SPI1 131,487 19,731 15.0% 

ZNF143 72,347 10,813 14.9% 

GATA2 112,602 16,309 14.5% 

SRF 32,776 4,623 14.1% 

NANOG 102,008 13,903 13.6% 

NFE2 56,155 7,528 13.4% 

JUNB 31,088 4,086 13.1% 

JUND 220,440 28,583 13.0% 

STAT3 114,240 14,509 12.7% 

 

Then, I investigated specific associations between the insertion dates of 

HERVs and TFs that bound to the HERVs (Fig. 18). HERVs integrated after the 

Table 4. Proportions of HERV-TFBSs in the entire TFBSs in respective TFs. 
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divergence of primates were highly bounded by members of TF_2 (pluripotent cluster) 

shown in Fig. 8, such as POU5F1, SOX2, SMAD1, TCF4, and NANOG (Figs. 18 and 

8). This is consistent with the results of a previous study showing that SOX2- and 

POU5F1-binding sites were amplified after the divergence of primates by insertions of 

HERVs harboring the binding sites [42]. HERVs integrated before the divergence of 

primates were highly bounded by members of the TF_6 cluster, such as SIX5, USF1/2, 

and ATF3 (Figs. 18 and 8). This is because these TFs frequently bound to the MLT1 

group (Fig. 8), which inserted before the divergence of primates. HERVs that inserted at 

the span from Catarrhini to Hominoidea were highly bounded by NFYA/B and LEF1 

(Fig. 18). This is because these TFs bound to the LTR12 group, which inserted at the 

span from Catarrhini to Hominoidea [see dbHERV-REs (http://herv-tfbs.com/)]. 
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Characteristics of host genes in the vicinity of HERV regulatory elements 

It is important to clarify whether HERV-TFBSs contribute to the regulation of host 

genes, especially in a cell type-specific manner. I examined the association between 

Figure 18. Proportions in HERV-TFBSs stratified by insertion date. Results of unique-read TFBSs are shown. In respective 
TFs, HERVs with TFBSs were stratified by insertion date. TFs in which HERV-TFBSs overlapped with HERVs at least 1,000 
times are shown. The integration date of HERV groups was judged by distribution of orthologous of HERVs among the 
mammalian genome (see Materials and Methods). Proportions in all HERVs are shown at bottom of the figure. 
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HERV-TFBSs and genes specifically expressed in a particular cell type. In six cell types 

(GM12878, H1-hESC, K562, HepG2, HeLa-S3, and HUVEC cells), I identified 200 

genes that specifically expressed in each cell type. Subsequently, I examined the 

enrichment of HERV-TFBSs according to the cell types in regions nearby the genes that 

were specifically expressed. I demonstrated that HERV-TFBSs in each cell type were 

enriched in region nearby the specifically expressed genes in the corresponding cell 

type (Fig. 19A). This suggests that HERV-TFBSs are involved in cell type-specific 

regulation of host genes. 
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To ascertain which biological functions are associated with 

HERV-TFBSs/HSREs, I performed Gene Ontology (GO) enrichment analysis with 

GREAT [75]. First, I performed the analysis using a set of all HERV-TFBSs in one cell 

type (Fig. 19B). HERV-TFBSs in cells such as GM12878 and K562 were highly 

enriched in regions nearby the genes associated with innate immunity-related pathways 

such as “response to interferon-gamma” and “type I interferon signal pathway” (Fig. 

Figure 19. Characteristics of genes in the vicinity of HERV-TFBSs. Results from unique-read TFBSs are shown. A) Enrichment of 
HERV-TFBSs as seen in regions near cell type-specific genes. In respective cell types, 200 of the specifically expressed genes according 
to the cell type were identified. Then I measured enrichments of HERV-TFBSs of respective cell types in regions near the cell 
type-specific genes using the GREAT. Fold enrichment scores (left) and p values (right) are shown as heatmaps. Fold enrichment scores 
of >1.2 are shown with the corresponding p values. B) Distance-based GO enrichment analysis. GO terms in the category of biological 
process were examined. The GREAT analyses were performed using sets of all HERV-TFBSs in respective cell types. HERV-TFBSs 
identified in cells treated with special conditions (e.g., supplement of interferon) were excluded. GO terms were summarized by REVIGO. 
GO terms with hold enrichment scores of >2 are shown. 
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19B). The MER41 and MLT1 groups occupied significant fractions of HERV-TFBSs 

nearby the genes associated with the above biological processes (Fig. 20; left panel). 

Regarding TFBSs, binding sites of SPI1, POU2F2, ZNF263, and USF1 were found to 

be enriched (Fig. 20 right panel). Next, I ascertained biological processes in GO term 

with which HERV-TFBSs were more enriched compared to the other TFBSs (i.e., 

TFBSs did not overlap with HERVs). HERV-TFBSs showed significantly stronger 

associations with biological processes relevant to immune responses compared to the 

other TFBSs (Table 5). I also performed GO enrichment analysis to examine biological 

functions in which HERV-TFBSs were enriched compared to the entire population of 

HERVs, and I obtained similar results (Table 6). Finally, I performed the GO 

enrichment analyses to infer biological functions with which each type of HSRE is 

associated. In this analysis, I used sets of HERV-TFBSs harboring each type of HSRE 

in respective cell types. In total, 39,946 significant associations for combinations of cell 

types, HSREs, and GO terms were identified [summary data is deposited in 

dbHERV-REs (http://herv-tfbs.com/)]. Consistent with the above analyses, GO terms 

associated with the immune response were frequently observed (Table 7), and the 

associations between HSREs and various biological processes were identified [see 

dbHERV-REs (http://herv-tfbs.com/)]. 
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Cell GO term (biological process) 

P value 

(-log10) 

Fold 

enrichment 

GM12878 negative regulation of viral process 62.4 4.5 

  cytidine deamination 51.5 3.5 

  positive regulation of type 2 immune response 43.6 2.6 

  glutamate receptor signaling pathway 42.9 2.1 

  DNA cytosine deamination 42.2 3.9 

H1-hESC heparan sulfate proteoglycan metabolic process 32.3 2.2 

 

negative regulation of viral process 27.9 3.1 

 

serotonin receptor signaling pathway 27.9 2.0 

 

presynaptic membrane assembly 24.4 2.0 

 

positive regulation of fever generation 23.8 2.7 

K562 cholesterol catabolic process 100.5 2.4 

  cellular response to estrogen stimulus 73.2 2.1 

Figure 20. HERVs (left) and TFs (right) occupying significantly large fractions in HERV-TFBSs associated with 
interferon-related biological processes. Regarding biological processes identified in Fig 5B, enrichment significance values of 
HERVs and TFs are shown. The word sizes are proportional to −log10 (p value) calculated with Fisher’s exact test. The word 
colors indicate HERV families. 

Table 5. Distance-based GO enrichment analysis to ascertain biological processes in which 

HERV-TFBSs were more enriched compared to the other TFBSs. 
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  heparan sulfate proteoglycan metabolic process 51.7 2.3 

  negative regulation of triglyceride catabolic process 41.7 2.1 

  positive regulation of type 2 immune response 41.2 2.5 

HepG2 flavonoid biosynthetic process 61.4 2.9 

 

cellular glucuronidation 46.7 2.3 

 

thyroid hormone metabolic process 39.7 2.3 

 

doxorubicin metabolic process 39.5 2.3 

 

cellular response to prostaglandin D stimulus 39.2 3.3 

HeLa-S3 cholesterol catabolic process 44.9 2.8 

  positive regulation of chemokine secretion 22.9 2.6 

  stabilization of membrane potential 20.5 2.1 

  androgen biosynthetic process 19.0 2.1 

  opioid receptor signaling pathway 18.2 3.0 

HUVEC flavonoid biosynthetic process 8.2 3.6 

 

neuroligin clustering involved in postsynaptic 

membrane assembly 8.1 2.1 

 

oligosaccharide biosynthetic process 7.8 2.0 

 

cholesterol catabolic process 7.1 2.3 

  protection from natural killer cell mediated cytotoxicity 7.0 3.4 
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Cell GO term (biological process) P value 

(-log10) 

Fold 

enrichment 

GM12878 type I interferon signaling pathway 55.0 2.6 

  liver regeneration 28.9 2.5 

  blood vessel endothelial cell migration 18.1 2.7 

  negative regulation of viral genome replication 16.7 2.1 

  entrainment of circadian clock by photoperiod 16.5 2.3 

H1-hESC response to purine-containing compound 8.4 2.1 

 positive regulation of keratinocyte differentiation 8.2 2.2 

 positive regulation of meiotic nuclear division 8.1 2.0 

 negative regulation of protein dephosphorylation 6.4 2.2 

 high-density lipoprotein particle clearance 6.3 2.7 

K562 platelet aggregation 37.5 2.0 

  hepatocyte apoptotic process 31.6 2.5 

  liver regeneration 30.9 2.1 

  cholesterol catabolic process 26.3 2.5 

  regulation of cytokine production 26.1 2.2 

HepG2 cellular response to estrogen stimulus 15.2 2.0 

 platelet-derived growth factor receptor-beta signaling 

pathway 

13.8 2.8 

 cholesterol catabolic process 13.4 2.1 

 L-serine transport 12.7 2.3 

 cellular response to nutrient levels 10.9 2.3 

HeLa-S3 cholesterol catabolic process 17.7 2.9 

  embryonic placenta development 16.0 2.3 

  liver regeneration 15.4 2.1 

  regulation of interferon-gamma-mediated signaling 

pathway 

14.5 2.3 

Table 6. Distance-based GO enrichment analysis to ascertain biological processes in which 

HERV/LTRs harboring TFBSs were more enriched compared to entire HERV/LTRs. 
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  positive regulation of transcription from RNA 

polymerase II promoter in response to endoplasmic 

reticulum stress 

13.9 3.5 

HUVEC programmed necrotic cell death 11.1 3.0 

 positive regulation of nitric-oxide synthase activity 8.1 2.2 

 protection from natural killer cell mediated cytotoxicity 7.2 3.9 

 high-density lipoprotein particle clearance 6.7 4.3 

  androgen biosynthetic process 6.6 2.6 

 

Cell GO term (biological process) 

# of HSRE types associated 

with the GO term 

GM12878 negative regulation of transcription from RNA polymerase II promoter 17 

  interferon-gamma-mediated signaling pathway 16 

  transcription, DNA-templated 14 

  small molecule metabolic process 14 

  blood coagulation 14 

  response to estradiol 13 

  regulation of transcription, DNA-templated 13 

  protein phosphorylation 12 

  liver regeneration 12 

  inflammatory response 12 

  transforming growth factor beta receptor signaling pathway 11 

  positive regulation of defense response to virus by host 11 

H1-hESC transcription, DNA-templated 16 

 small molecule metabolic process 14 

 response to wounding 14 

 liver regeneration 14 

 defense response to bacterium 13 

 positive regulation of canonical Wnt signaling pathway 12 

 positive regulation of Wnt signaling pathway 12 

Table 7. Biological processes in which many types of HSREs were enriched. 
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 negative regulation of transcription, DNA-templated 12 

 negative regulation of transcription from RNA polymerase II promoter 12 

 response to endoplasmic reticulum stress 11 

 positive regulation of transcription, DNA-templated 11 

 negative regulation of cell proliferation 11 

 negative regulation of NF-kappaB transcription factor activity 11 

K562 small molecule metabolic process 79 

  transcription, DNA-templated 52 

  protein phosphorylation 49 

  immune response 41 

  blood coagulation 39 

  innate immune response 38 

  negative regulation of transcription from RNA polymerase II promoter 37 

  oxidation-reduction process 32 

  negative regulation of transcription, DNA-templated 31 

  inflammatory response 31 

  viral process 30 

  cellular lipid metabolic process 30 

  xenobiotic metabolic process 29 

  transforming growth factor beta receptor signaling pathway 29 

  regulation of transcription, DNA-templated 29 

  gene expression 29 

HepG2 small molecule metabolic process 23 

 xenobiotic metabolic process 20 

 defense response to bacterium 18 

 viral process 17 

 transcription, DNA-templated 14 

 response to wounding 14 

 negative regulation of apoptotic process 14 

 kidney development 14 

 cell differentiation 14 

 blood coagulation 14 
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 angiogenesis 14 

 ubiquitin-dependent protein catabolic process 13 

 positive regulation of transcription from RNA polymerase II promoter 13 

 chondroitin sulfate metabolic process 13 

 response to ethanol 12 

HeLa-S3 small molecule metabolic process 14 

  immune response 14 

  liver regeneration 11 

  interferon-gamma-mediated signaling pathway 11 

  cytokine-mediated signaling pathway 11 

  cellular response to lipopolysaccharide 11 

  cellular nitrogen compound metabolic process 11 

 
Long-range interactions between promoters and HERV regulatory elements 

Some regulatory elements affect the remote genes via three-dimensional (3D) 

interactions by forming chromatin loops [70]. I attempted to extract such 3D 

interactions between HERV-TFBSs/HSREs and promoters of host genes from the data 

on promoter-captured Hi-C (pcHi-C) in GM12878 cells [76, 77]. pcHi-C is a modified 

“chromosome conformation capture” method for a comprehensive identification of the 

3D interaction between promoters and other genomic regions [76]. I first examined 

HERV-TFBSs or HSREs present in promoter-interacting regions (interacting regions). 

In total, 26,194 and 3,860 of HERV-TFBSs and HSREs-containing HERV-TFBSs, 

respectively, were present in the interacting regions. Some interacting regions were 

associated with several genes, and 81,536 or 12,452 of interactions between promoters 

of genes and HERV-TFBSs or HSREs-containing HERV-TFBSs were identified, 

respectively. The average interval of interactions between promoters and interacting 

regions containing HERV-TFBSs was 392 kb (average interval of interactions between 

promoters and all interacting regions was 411 kb in this dataset). HERVs harboring 

TFBSs or HSREs were enriched two-fold in interacting regions compared with the 
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population of the entire HERVs (Fig. 21A). Transcription levels (reads per kilobase per 

million mapped reads; RPKM) of genes tended to be higher as the number of 

HERV-TFBSs interacting with the genes increased (Fig. 21B). Thus, the HERV 

regulatory elements in interacting regions seem to work as transcriptional modulators of 

host genes via long-range interactions. Members of the MLT1, MER21, and MER41 

groups were enriched in interacting regions, together with LTR8, LTR54, and LTR13 

(Fig. 21C). Next, I developed and performed a “Hi-C-based” GO enrichment analysis 

by modifying a statistical method used in GREAT [75] (see Materials and Methods). As 

shown in Fig. 21D, HERV-TFBSs were highly enriched in GO terms associated with 

immune response such as “positive regulation of interleukin-2 production” and 

“dendritic cell chemotaxis,” consistent with the result of “distance-based” GO 

enrichment analysis as shown in Fig. 19B. Furthermore, using the Hi-C-based GO 

enrichment analysis, I ascertained biological processes in GO term with which 

HERV-TFBSs were more enriched compared to the other TFBSs. Consistent with the 

above results, HERV-TFBSs showed significantly stronger associations with biological 

processes relevant to immune responses compared to the other TFBSs (Table 8). 
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Figure 21. Long-range interactions between HERV-TFBSs/HSREs and promoters of host genes. The interactions were 
extracted using pcHi-C dataset in GM12878 cells. Results from unique-read TFBSs are shown. A) Proportion of HERV copies 
overlapped with promoter-interacting regions. Proportions of total HERVs, HERVs with HERV-TFBSs, and HERVs with HSREs 
are separately shown. B) Transcription levels (log10 (RPKM+1)) of protein-coding genes and number of HERV-TFBSs interacting 
with the genes. Genes were divided into five categories based on the number of HERV-TFBSs interacting with the genes (0, 1, 2–5, 
6–10, and 10<). Categories of the 0, 1, 2–5, 6–10, and 10< respectively contained 13,265, 1,179, 1,946, 822, and 1,639 of genes. P 
values were calculated using the Mann-Whitney U test with adjustment for multiple tests using the BH method. C) The word cloud 
indicating HERV groups enriched in the interacting regions. Word sizes are proportional to the −log10 (p value) calculated using the 
Fisher’s exact test. The word colors indicate HERV families. D) Hi-C-based GO enrichment analysis. A set of all HERV-TFBSs in 
GM12878 cells was used. HERV-TFBSs identified in cells treated with special conditions (e.g., supplement of interferon) were 
excluded. GO terms were summarized by REVIGO. GO terms with hold enrichment scores of >2 are shown. 
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GO term (biological process) P value (-log10) 

Fold 

enrichment 

N-glycan processing 50.0 4.3 

intraciliary transport 48.6 5.3 

positive regulation of interleukin-2 production 35.4 3.6 

dendritic cell chemotaxis 33.6 3.0 

positive regulation of alpha-beta T cell proliferation 32.6 3.7 

positive regulation of keratinocyte differentiation 32.4 2.7 

positive regulation of synapse maturation 28.4 3.5 

detection of chemical stimulus involved in sensory perception of smell 28.4 2.1 

phosphate ion transmembrane transport 27.1 2.6 

cellular response to exogenous dsRNA 25.7 3.0 

regulation of cysteine-type endopeptidase activity involved in apoptotic 

process 25.7 3.5 

positive regulation of dendrite morphogenesis 24.3 2.5 

regulation of phagocytosis 23.8 3.4 

positive regulation of protein oligomerization 23.7 3.5 

response to tumor necrosis factor 23.1 2.1 

 
Construction of dbHERV-REs 

My colleagues and I constructed dbHERV-REs, a database of HERV regulatory 

elements with an interactive user interface (http://herv-tfbs.com/) (Fig. 22). The 

database provides (i) general information on HERVs such as family classification, copy 

number, and insertion date judged by distribution of orthologous copies among 

mammalian genome; (ii) positions of HERV-TFBSs, HSREs, and HERV-DHSs in the 

consensus sequence of HERVs and in the human reference genome; and (iii) results of 

GO enrichment analyses with GREAT [75] using sets of respective HSREs. The 

Table 8. Hi-C-based GO enrichment analysis to ascertain biological processes in which 

HERV-TFBSs were more enriched than the other TFBSs. 
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database also can compare phylogenetic relationship of HERV copies with the presence 

of orthologous copies across the mammalian genome, TFBSs, and TF-binding motifs. 

Results of all- and unique-read TFBSs are available in the database. Additionally, the 

database provides results on pre-determined TFBSs provided by ENCODE and 

Roadmap, which were based on their analytical pipelines of ChIP-Seq peak calling 

(Table 2). As of May 2017, TFBSs for 97 TFs and DHSs for 125 cell types were 

deposited. A user can focus on significant associations between HERVs and TFs by 

setting statistical and other thresholds. 

  

Figure 22. A screenshot of dbHERV-REs (http://herv-tfbs.com/). The screenshot when LTR5B was selected is shown. 
A) Statistical and other parameters filtering HERV-TFBSs, HSREs, and HERV-DHSs. B) The list of HERVs that can be 
selected under the parameters. C) General information of the selected HERVs. D) Visualized data. In this figure, the graph 
shows number of HERV-TFBSs mapped on each consensus position. 
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Discussion 

I showed that HERVs frequently contained HERV-TFBSs/HSREs for TFs essential in 

hematopoietic (e.g., SPI1, TAL1, and GATA1/2), pluripotent (e.g., SOX2, POU5F1, 

and NANOG), and embryonic endoderm/mesendoderm cells (e.g., GATA4/6, SOX17, 

and FOXA1/2). Hematopoietic regulatory elements of HERVs seem to descend from 

ancestral exogenous retroviruses, which would have replicated in the hematopoietic (or 

blood) cells, considering that modern exogenous retroviruses frequently contain such 

regulatory elements [6]. Pluripotent regulatory elements seem to have been crucial for 

efficient replication of HERVs in germ cells, as with other TEs such as LINE1, because 

transcriptional environments are similar between pluripotent and early embryonic cells 

[50, 78]. Endoderm/mesendoderm regulatory elements also seem to be important for 

HERVs, possibly for their replication in the host germ cells immediately after the 

endogenization, as these TFs highly expressed in both somatic and germ cells [35]. A 

previous study showed that the regulatory elements of HERVs are active in various cells 

and tissues by evaluating enrichment of active histone modifications on HERVs [72]. 

Therefore, as the number of available ChIP-Seq datasets increase, a greater number of 

regulatory elements of HERVs will be identified. 

Although the role of retroviral internal sequences in transcription remains 

unclear, it is known that an internal sequence in Human T-cell Leukemia Virus Type 1 

(HTLV-1) contains a CTCF-binding site functioning as an insulator [79]. In the present 

study, I found that a substantial fraction of HSREs was present in the internal sequences, 

and the most frequently observed HSRE in the internal sequences was the 

CTCF-binding site (Fig. 9I). These findings suggest that regulatory elements, 

particularly CTCF-binding sites, would be present in the internal sequences of 

retroviruses, including HERVs, more than previously considered [6, 79]. Further 

investigation is needed for clarifying the role of retroviral internal sequences in 

transcriptional modulation. 
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Pluripotent regulatory elements seem to be essential for HERVs and other 

TEs to replicate efficiently in the host germ cells and to expand in the host genome. 

However, the pluripotent regulatory elements are rarely observed in exogenous 

retroviruses, even though HERVs descended from ancient exogenous retroviruses [6]. 

In this study, I demonstrated the heterogeneity of regulatory elements among subgroups 

in LTR7 (Figs. 11G-K), LTR5 group (Fig. 16), LTR6A (Fig. 23), LTR9 (Fig. 24), 

MER11C (Fig. 25), and MER11B (Fig. 26). Such heterogeneity of regulatory elements 

was also observed in endogenous retroviruses (ERVs) of other mammals [80, 81]. 

These indicate that gains or losses of the regulatory elements occurred during genomic 

expansions of the HERVs (or the ERVs). I observed a tendency that younger subgroup 

of HERVs had more regulatory elements for pluripotent TFs (e.g., NANOG, POU5F1, 

and SOX2) in LTR7, LTR5_Hs, LTR6A, and MER11C (Figs. 11G-K, 16, 23, and 25, 

respectively) although I observed an opposite tendency in MER11B (Fig. 26). Thus, 

HERVs seem to have frequently acquired pluripotent regulatory elements. I hypothesize 

that these HERVs acquired the pluripotent regulatory elements after endogenization for 

efficient replication and genomic expansion in the host germ cells. Thus, investigation 

of heterogeneity of regulatory elements of HERVs can illuminate the evolutionary 

dynamics of transcriptional modulation system of HERVs. 
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Figure 23. Characteristics of HSREs identified in LTR6A from Roadmap dataset. Results of all-read TFBSs are shown 
except for (G). A) Number of HERV-TFBSs mapped on each consensus position of LTR6A. The X-axis indicates nucleotide 
position of the consensus sequence. The Y-axis indicates number of HERV copies harboring HERV-TFBSs at each position. B) 
Number of TF-binding motifs in HERV-TFBSs mapped on each consensus position of LTR6A. The X-axis indicates nucleotide 
position of the consensus sequence. The Y-axis indicates number of HERV copies harboring the TF-binding motifs at each 
position. Peaks of the motifs corresponding to HSREs are indicated by an asterisk (*) with motif names. C) The unrooted 
phylogenetic tree of LTR6A copies constructed by maximum likelihood method. Fragmented and outlier copies were excluded 
from the analysis. In total, 204 (out of 288) of LTR6A copies were included in the tree. Representative supporting values 
calculated by SH-like test are shown on the corresponding branches. D) Orthologous copies of LTR6A in the reference genomes 
of other mammals. E) TFBSs on each LTR6A copy. F) TF-binding motifs on each copy at positions corresponding to HSREs. 
Black and gray colors respectively indicate presence of motifs with p values of <0.0001 and <0.001. G) TFBSs on each LTR6A 
copy. Results of unique-read TFBSs are shown. 
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Figure 24. Characteristics of HSREs identified in LTR9 from Roadmap dataset. Results of all-read TFBSs are shown 
except for (G). A) Number of HERV-TFBSs mapped on each consensus position of LTR9. The X-axis indicates nucleotide 
position of the consensus sequence. The Y-axis indicates number of HERV copies harboring HERV-TFBSs at each position. B) 
Number of TF-binding motifs in HERV-TFBSs mapped on each consensus position of LTR9. The X-axis indicates nucleotide 
position of the consensus sequence. The Y-axis indicates number of HERV copies harboring the TF-binding motifs at each 
position. Peaks of the motifs corresponding to HSREs are indicated by an asterisk (*) with motif names. C) An unrooted 
phylogenetic tree of LTR9 copies constructed using the maximum likelihood method. Fragmented and outlier copies were 
excluded from the analysis. In total, 1,077 (out of 2,011) of LTR9 copies were included in the tree. Representative supporting 
values calculated by SH-like test are shown on the corresponding branches. D) Orthologous copies of LTR9 in reference 
genomes of other mammals. E) TFBSs on each LTR9 copy. F) TF-binding motifs on each copy at positions corresponding to 
HSREs. The black and gray colors respectively indicate the presence of motifs with p values of <0.0001 and <0.001. G) TFBSs 
on each LTR9 copy. Results of unique-read TFBSs are shown. 
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Figure 25. Characteristics of HSREs identified in MER11C from Roadmap dataset. Results of all-read TFBSs are shown. 
A) Number of HERV-TFBSs mapped on each consensus position of MER11C. The X-axis indicates nucleotide position of the 
consensus sequence. The Y-axis indicates number of HERV copies harboring HERV-TFBSs at each position. B) Number of 
TF-binding motifs in HERV-TFBSs mapped on each consensus position of MER11C. The X-axis indicates nucleotide position 
of the consensus sequence. The Y-axis indicates number of HERV copies harboring the TF-binding motifs at each position. 
Peaks of the motifs corresponding to HSREs are indicated by an asterisk (*) with motif names. C) An unrooted phylogenetic tree 
of MER11C copies constructed using the maximum likelihood method. Fragmented and outlier copies were excluded from the 
analysis. In total, 748 (out of 866) of MER11C copies were included in the tree. Representative supporting values calculated by 
SH-like test are shown on the corresponding branches. D) Orthologous copies of MER11C in reference genomes of other 
mammals. E) TFBSs on each MER11C copy. F) TF-binding motifs on each copy at positions corresponding to HSREs. The 
black and gray colors respectively indicate the presence of motifs with p values of <0.0001 and <0.001. 
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Figure 26. Characteristics of HSREs identified in MER11B from Roadmap dataset. Results of all-read TFBSs are 
shown. A) Number of HERV-TFBSs mapped on each consensus position of MER11B. The X-axis indicates nucleotide 
position of the consensus sequence. The Y-axis indicates number of HERV copies harboring HERV-TFBSs at each 
position. B) Number of TF-binding motifs in HERV-TFBSs mapped on each consensus position of MER11B. The X-axis 
indicates nucleotide position of the consensus sequence. The Y-axis indicates number of HERV copies harboring the 
TF-binding motifs at each position. Peaks of the motifs corresponding to HSREs are indicated by an asterisk (*) with motif 
names. C) An unrooted phylogenetic tree of MER11B copies constructed using the maximum likelihood method. 
Fragmented and outlier copies were excluded from the analysis. In total, 377 (out of 548) of MER11B copies were included 
in the tree. Representative supporting values calculated by SH-like test are shown on the corresponding branches. D) 
Orthologous copies of MER11B in reference genomes of other mammals. E) TFBSs on each MER11B copy. F) TF-binding 
motifs on each copy at positions corresponding to HSREs. The black and gray colors respectively indicate the presence of 
motifs with p values of <0.0001 and <0.001. 
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LTR7 is essential for the maintenance of pluripotency in ES and iPS cells, and 

it has been hypothesized that LTR7 insertions rewired the core regulatory network of 

the pluripotent cells [16-18]. I further clarified the heterogeneity among subgroups of 

LTR7 with respect to insertion dates, TF binding profiles, and transcriptional activities. 

Subgroup III, the youngest subgroup of LTR7, was most frequently bounded by SOX2, 

POU5F1, and KLF4 (Figs. 11G-K and 14). Subgroup III also showed the highest 

enrichment of ChIP-Seq reads of NANOG (Fig. 11K). Subgroup III showed the highest 

transcriptional activity in pluripotent cells (Fig. 15). Most LTR7-chimeric transcripts, 

which are vital in maintaining pluripotency [15-18], were composed of LTR7 belonging 

to the subgroup III (Fig. 15). These findings suggest that the evolutionary rewiring of 

the core regulatory network of pluripotent cells was caused by a specific population of 

LTR7, i.e., members of the subgroup III, rather than by the entire population of LTR7 

(Fig. 11L). Moreover, this rewiring seems to have occurred more recently than 

previously thought [82], the branch from the end of Hominoidea to Homininae. This is 

because the rewiring should have occurred during the period when subgroup III was 

inserted (Figs. 11G, 11H, and 11L). Further investigation is needed to elucidate the 

evolution of pluripotent cells due to LTR7 insertions. 

The GO enrichment analysis based on genomic positions of 

HERV-TFBSs/HSREs demonstrated that HERV-TFBSs/HSREs tend to be located near 

the genes involved in innate immune responses such as cytokine-mediated signaling 

(Figs. 19B, Tables 5, 6, 7). This tendency was recaptured by Hi-C-based GO analysis, 

which used information on 3D interactions between HERV-TFBSs and promoters of 

host genes in B-lymphocytes (GM12878 cells) (Fig. 21). In those GO enrichment 

analyses, HERV-TFBSs showed significantly stronger associations with biological 

processes relevant to innate immune responses compared to the other TFBSs (Tables 5 

and 8). This suggests that HERV regulatory elements were likely to be associated with 

regulatory networks controlling innate immune responses. Furthermore, this tendency 
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seems to be more attributable to natural selection of HERVs after the insertions than 

preferential insertions in specific genomic regions, because HERV copies with TFBSs 

were more enriched in regions near the genes related to innate immune response than 

HERVs without TFBSs (Table 6). The tendency of regulatory elements of HERVs 

being associated with innate immune response seemed to be affected by cell types (e.g., 

B-lymphocytes) in which ChIP-Seq was performed. Therefore, as the number of cell 

types in which ChIP-Seq are performed increase, more associations between HERVs 

with TFBSs and specific biological functions will be identified. Finally, GO enrichment 

analyses showed that each type of HSRE was statistically associated with various 

biological processes in addition to the immune response [deposited in dbHERV-REs 

(http://herv-tfbs.com)]. Further research, especially knockout-based studies such as the 

one by Chong et al. [43], is necessary to prove the causal relationship between 

regulatory elements of HERVs and regulatory networks controlling specific biological 

processes. 

To summarize, I identified various HERV regulatory elements involved in 

several host regulatory networks. Our study provides the foundation to understand the 

impact of HERVs on host transcription, and provides insights into transcriptional 

modulation systems that HERVs and ancestral retroviruses of HERVs originally used. 
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Materials and Methods 

Datasets 

Information on the ChIP-Seq dataset is summarized in the “peak calling of ChIP-Seq” 

section. RepeatMasker output file 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/chromOut.tar.gz) was 

downloaded from the UCSC genome browser (https://genome.ucsc.edu/). This is an 

annotation file of repetitive elements on the human reference genome (GRCh37/hg19) 

used in RepeatMasker track in the genome browser. Consensus sequences of HERVs 

were obtained from the RepeatMasker library (20140131 release) and Repbase Update 

(1.1.3 release) in Repbase (http://www.girinst.org/server/RepBase/). DHS datasets were 

obtained from ENCODE. Genome segmentations in six cell types (combined between 

ChromHMM and Segway) [64-66] were obtained from ENCODE. Datasets of Cold 

Spring Harbor Laboratory (CSHL) LongPolyA RNA-Seq were obtained from 

ENCODE in the GTF format. Ontology file (go-basic.obo, date; 3/16/2016) and GO 

association file (gene_association.goa_human, submission date; 3/16/2016) were 

downloaded from the GO Consortium (http://geneontology.org/). The UCSC known 

genes were downloaded from UCSC 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/knownGene.txt.gz). pcHi-C 

dataset in GM12878 cells [76, 77] 

(GSE81503_GM12878_PCHiC_merge_final_seqmonk.txt.gz and 

GSE81503_GM12878_PCHiC_merge_final_washU_text.txt.gz, accession GSE81503) 

were obtained from the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/). 

 
Peak calling of ChIP-Seq 

An analytical pipeline used in this study is summarized in Fig. 3B. For the Roadmap 

dataset, I obtained a sequence read file (fastq format) from the Sequence Read Archive 

(SRA) using the SRA Toolkit fastq-dump 
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(http://www.ncbi.nlm.nih.gov/books/NBK158900/). For the ENCODE dataset, I 

downloaded an unfiltered alignment file, if available, for GRCh37/hg19 (bam format) 

from the ENCODE database (http://www.encodeproject.org/). The unfiltered alignment 

file was generated using the ENCODE Processing Pipeline with BWA 0.7.10 (aln and 

samse). If the unfiltered alignment file was not available, I downloaded a fastq file from 

the ENCODE database. Fastq or bam files of biological replicates were then 

concatenated. Sequence reads in the fastq files were mapped to human reference 

genome (GRCh37/hg19) using BWA 0.7.12 (aln and samse/sampe). In the default 

setting of BWA aln, a multiple mapped read is randomly assigned to a particular 

genomic position chosen from candidate positions. For the all-read TFBSs, ChIP-Seq 

peaks were called using MACS2 with default setting. For unique-read TFBSs, multiple 

mapped reads or reads with low mapping quality (reads with MAPQ score of <10) were 

removed using samtools view [83], and then ChIP-Seq peaks were called. In peak 

calling, input control file was used with ChIP-treated file. 

 
Identification of HERV-TFBSs and HSREs 

HERV-TFBSs and HSREs were identified separately in ENCODE and Roadmap 

datasets. HERV-TFBSs and HSREs were identified both in all- and unique-read TFBSs. 

I identified HERV-TFBSs in respective cell types by examining the overlaps 

between HERVs and TFBSs with bedtools intersect [84]. In the respective TFs, TFBSs 

or HERV-TFBSs among all cell types or conditions were merged with bedtools merge 

[84] (referred to as the merged TFBSs or HERV-TFBSs). For counting TFBSs and 

HERV-TFBSs, the merged TFBSs and HERV-TFBSs were used. 

For the identification of HSREs, the merged HERV-TFBSs were used. First, 

sequences of HERV copies were extracted from human reference genome 

(GRCh37/hg19) using bedtools getfasta [84]. Multiple sequence alignment (MSA) of 

HERV copies was constructed with a consensus sequence of the corresponding HERV 
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group. MAFFT v7.239 [85] was used for the construction of MSA with the options 

--addfragments, --keeplength, and --retree 2. In this setting, the consensus sequence was 

used as input, and sequences of HERV copies were used as fragment sequence. In MSA, 

the position of HERV-TFBSs was mapped on each HERV sequence, and then the 

number of the mapped HERV-TFBSs was counted at every consensus position (referred 

to as “depth” of HERV-TFBSs). For setting the threshold to identify peaks of 

HERV-TFBSs, randomized (shuffled) TFBS datasets were generated with bedtools 

shuffle [84] for 500 times. In the respective randomized datasets, the depth of 

HERV-TFBSs was counted for each consensus position with the above-mentioned 

procedures. For every consensus position, average and standard deviation of the depth 

of HERV-TFBSs among randomized datasets was calculated. Standardized score (z 

score) of HERV-TFBS depth was calculated for every consensus position with the 

average and standard deviation in randomized datasets (termed as base-wise z score). If 

base-wise z score of a given region (>50-bp) in the consensus sequence was higher than 

four, the region was defined as a peak of HERV-TFBSs. Finally, known TF-binding 

motifs of the corresponding TF were scanned in original HERV-TFBS sequences. For 

motif scanning, FIMO [86] and known TF-binding motifs recorded in JASPAR [87] 

and HOCOMOCO [88] were used. The threshold (p value) of the motif scanning was 

set at 0.001. In MSA, position of the TF-binding motif was mapped on each HERV 

sequence, and then the number of the mapped motifs was counted at every consensus 

position (referred to as “depth” of TF-binding motifs). To identify HSREs, heights of 

peaks of depths were compared between HERV-TFBSs and TF-binding motifs. If the 

height of the TF-binding motif peak is (i) greater than or equal 10 and (ii) greater than 

60% of the height of the HERV-TFBS peak, I regard the set of TF-binding motifs as 

HSRE (Fig. 13). For counting the number of genomic positions of HSREs, overlapping 

HSREs of the same TF were merged for avoiding double counts. This is because some 

TF-binding motifs were present in both strands at approximately the same positions due 
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to their palindrome signatures. 

After identifying HSREs, overlaps between HSREs and HERV-TFBSs in 

respective cell types were examined, and the cell specificities of HSREs were 

determined. 

 
Randomization test shuffling genomic positions of TFBSs 

HERV-TFBS overlaps were counted for all combinations. In each dataset of TFBS, I 

generated 100 times of randomized TFBS datasets using bedtools shuffle [84] and 

counted the number of HERV-TFBS overlaps in the randomized datasets. Among the 

randomized datasets, average and standard deviation of numbers of HERV-TFBS 

overlaps were calculated. In each HERV-TFBS combination, I calculated z score 

(count-based z score) using the number of HERV-TFBS overlaps in an observed dataset 

and the average and standard deviation among randomized datasets. 

For TEs other than HERVs, z scores for all combinations of respective TE 

groups and the merged TFBSs were calculated using the same procedures. 

 
Hierarchical clustering 

I used unique-read TFBSs, and separately dealt with TFBSs of the same TF in distinct 

cell types. If there were several TFBS files for the same ChIP-Seq condition, the TFBS 

files were merged using bedtools merge [84]. All TFBSs (e.g., SOX2-binding sites in 

HUES64 cells from Roadmap) were used for the analysis, except for CTCF-binding 

sites; I used CTCF-binding sites that were determined in tier 1 and 2 cells of ENCODE 

(GM12878, H1-hESC, K562, HepG2, HeLa-S3, and HUVEC), HUES64 cells, and 

germ layer (ectoderm, endoderm, mesoderm, and mesendoderm) cells that were 

differentiated from the HUES64 cells. Z scores were calculated using the method in the 

“randomization test shuffling genomic positions of TFBSs” section. A matrix 

containing the z scores was created. HERV group whose copy number was less than 
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100 was excluded from the matrix. Rows (TFBSs) and columns (HERVs) were 

excluded if they did not contain any elements whose z scores were greater than or equal 

to 10. Distance matrix was constructed using the Euclid method based on the z score 

matrix. I performed hierarchical clustering with the distance matrix using Ward’s 

method. All analyses were performed by packages of amap and ReorderCluster 

implemented in R. 

 
Phylogenetic analyses 

Phylogenetic trees were constructed for HERV groups satisfying the following criteria: 

(i) after removal of the fragmented copies (described below), the number of copies fell 

within the range of 10–2,500; and (ii) greater than 30% of their copies remained after 

the removal of fragmented copies. Fragmented and outlier copies were excluded from 

the analysis. For defining the fragmented copies, I constructed preliminary MSA of 

HERV copies with the consensus sequence using MAFFT v7.239 [85] with options of 

--addfragments, --keeplength, and --retree 2 (in this setting, the consensus sequence was 

used as input, and sequences of HERV copies were used as fragment sequence). HERV 

copies were defined as fragmented if less than 80% of their sequences were only 

aligned to the consensus sequences in the preliminary MSA. After the removal of 

fragmented copies, I constructed MSA of HERV copies using MAFFT v7.239 with 

--auto options. Sites in the MSA containing gaps were excluded if site coverages of 

those positions were less than 30%. For defining the outlier copies, a preliminary tree 

was reconstructed with RAxML v8.2.0 [89]. GTRCAT was used as a nucleotide 

substitution model. Z score of the length of external branch was calculated for the 

preliminary tree. Outlier copy, whose z score of the branch length was greater than three, 

was excluded from the MSA. I constructed the final tree using the same procedures with 

the preliminary tree. Supporting values were calculated using the SH-like test [90]. In 

addition to the SH-like test, rapid bootstrap analysis [89] (100 times) was performed for 
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the phylogenetic tree of the LTR5 group. 

 
Estimation of the insertion dates of HERVH/LTR7 copies 

The age of a provirus of ERVs can be estimated by sequence comparison between 5′- 

and 3′-LTRs of the ERVs, as sequences of both LTRs were identical at the time of 

insertion, and after the insertion, both LTRs independently accumulated mutations as a 

part of the host genome [91]. In this analysis, I used the annotation of a provirus of 

HERVH/LTR7 as reported previously [17]. I only analyzed proviruses of 

HERVH/LTR7 harboring two LTR7 sequences that were categorized in the same 

subgroup in the tree (Fig. 11G). For each provirus, a pairwise sequence alignment of 5′- 

and 3′-LTRs was constructed using the EMBOSS Stretcher program [92]. After removal 

of all gapped sites in the alignment, p-distance of the paired LTRs was calculated, and 

then the genetic distance of the paired LTRs was computed using the Jukes-Cantor 69 

model. A substitution rate of HERVs of 1.0 × 10-9 per site per year was used as 

described previously [93]. Insertion date of the provirus was calculated with the formula, 

D/2R (D, genetic distance of the paired LTRs; R, substitution rate of HERVs). 

 
Insertion date (i.e., age) judged by distribution of orthologous HERV copies in the 

mammalian genome 

For judging whether an orthologous copy of a HERV copy was present in a certain 

reference genome, liftOver 

(http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/liftOver) was used. If liftOver 

successfully converted the genomic position of a particular HERV copy in human 

reference genome to that of a reference genome of other species, I judged an 

orthologous copy of the HERV copy was present in the genome of the corresponding 

species. A minimum match parameter was set at 0.5. Reference genomes of PanTro4 

(chimpanzee), GorGor3 (gorilla), PonAbe2 (orangutan), Nomleu3 (gibbon), RheMac3 
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(rhesus macaque), CalJac3 (marmoset), TarSyr1 (tarsier), MicMur1 (mouse lemur), 

Mm9 (mouse), Bostau7 (cow), and CanFam3 (dog) were used. 

Classification of insertion date of HERVs was defined as follows: 

~Hominoidea; greater than 10% of orthologous copies of the HERV group present in 

any of the chimpanzee, gorilla, orangutan, and gibbon genomes but absent in that of the 

rhesus macaque. Catarrhini; greater than 10% of orthologous copies of the HERV 

group present in the chimpanzee, gorilla, orangutan, gibbon, and rhesus macaque 

genomes but absent in that of the marmoset. Simiiformes; greater than 10% of 

orthologous copies of the HERV group present in the chimpanzee, gorilla, orangutan, 

gibbon, rhesus, and marmoset genomes but absent in those of the tarsier and mouse 

lemur. Primates; greater than 10% of orthologous copies of the HERV group present in 

the chimpanzee, gorilla, orangutan, gibbon, rhesus, marmoset, tarsier, and mouse lemur 

genomes but absent in those of the mouse, cow, and dog. Eutheria~; greater than 10% 

of orthologous copies of the HERV group present in the chimpanzee, gorilla, orangutan, 

gibbon, rhesus, marmoset, tarsier, mouse lemur, mouse, cow, and dog genomes. I only 

analyzed HERV groups whose copy numbers were greater than or equal to 100. 

 
Gene ontology enrichments analysis 

Unique-read TFBSs were used in GO enrichment analyses. GO associations described 

in gene_association.goa_human were used. GO term associated with greater than or 

equal to five genes was used in the analyses. 

 In distance-based GO enrichment analysis, the createRegulatoryDomains 

command in the local version of GREAT [75] was used for defining regulatory domains 

of respective GO terms with the option of basal (five kb upstream and one kb 

downstream of the TSS) plus extension (up to one Mb). I used the TSS annotation based 

on the UCSC known genes. Enrichment score and p values with binomial test were 

calculated by the original R script. 
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To determine the GO term in which TFBSs with HERVs were more enriched 

than the other TFBSs (TFBSs not on HERVs), I counted the number of TFBSs with 

HERVs and the entire TFBSs in regulatory domains associated with a certain GO term. 

Then, the enrichment significance was calculated by Fisher’s exact test. 

In order to examine the GO term in which HERVs harboring TFBSs were 

more enriched than the entire HERVs (all HERVs regardless of overlaps with TFBSs), I 

estimated the number of HERVs harboring TFBSs and the entire HERVs overlapped to 

regulatory domains associated with a certain GO term. The enrichment significance was 

calculated by Fisher’s exact test. 

To ascertain the GO term in which each type of HSRE was enriched, I 

performed the GREAT analysis [75] using a set of HERV-TFBSs harboring a HSRE in 

each cell type. The threshold for statistical significance was set at 0.1, with false 

discovery rates calculated using the Benjamini–Hochberg (BH) method. 

 I thus developed the “Hi-C-based” GO enrichment analysis by modifying the 

GREAT algorithm [75]. Interacting regions in pcHi-C [76, 77] of all genes were merged 

using bedtools merge [84] and were defined as “total region”. Interacting regions of 

genes associated with a particular GO term were merged and were defined as 

“regulatory domain” for the corresponding GO term. The lengths of the total region and 

regulatory domain were calculated (termed total_length and regdom_length, 

respectively). HERV-TFBSs overlapping with the total region and regulatory domain 

were also counted (termed total_count and regdom_count, respectively). For calculating 

the enrichment significance, I performed a binomial test using the above total_count and 

regdom_count in addition to the ratio of regdom_length and total_length 

(regdom_length/total_length). 

In Hi-C-based GO enrichment analysis, I performed GO enrichment analysis 

to determine the GO term in which TFBSs with HERVs were more enriched than the 

other TFBSs. I counted the number of TFBSs with HERVs and the other TFBSs in 



 72 

regulatory domains associated with a certain GO term. Then, the enrichment 

significance was calculated by Fisher’s exact test. 

 

 
Enrichment of HERV-TFBSs near the cell type-specifically expressed genes 

In CSHL LongPolyA RNA-Seq, protein-coding genes with RPKM >3 in any cell type 

were included in the analysis. For every gene, z score of RPKM was calculated for each 

cell type by using the average and standard deviation of the six cell types (GM12878, 

H1-hESC, K562, HepG2, HeLa-S3, and HUVEC cells). Regarding the z scores, top 200 

genes in each cell type were defined as those expressed specifically in the 

corresponding cell type. Regulatory domain for genes specifically expressed in a certain 

cell type was created by using the createRegulatoryDomains command in GREAT [53] 

with a setting of basal (5 kb upstream and 1kb downstream of TSS) plus extension (up 

to 1 Mb). Enrichment scores and p values with binomial test were calculated by original 

R scripts. 

 
Construction of dbHERV-REs 

The system is running on Amazon Web Service (http://aws.amazon.com/). The 

relational database was constructed with MySQL. The server program was written in 

Python using Twisted (http://twistedmatrix.com/), an event-driven networking 

framework. The user interface was designed upon AJAX (Asynchronous JavaScript + 

XML) philosophy. plotly.js (http://plot.ly/javascript/) is used for data visualizations. 

jQuery (http://jquery.com/) was used for the browser scripting. 
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Chapter 3: Systematic identification of unannotated transcripts 
derived from human endogenous retroviruses in solid tumors 
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Introduction 

Decades of studies have reported the reactivation of human endogenous retroviruses 

(HERVs) in tumors: The increases of mRNAs, proteins, and even viral-like particles 

(VLPs) (i.e., non-infectious viral particles) of HERVs have been observed in various 

tumors (see review: [94, 95]). Particularly, studies using next generation sequencing 

(NGS) techniques showed the presence of a large number of unannotated transcripts 

derived from HERVs in tumors [27, 96]. Although effects of HERV-derived 

transcript/proteins on tumor characteristics have been controversial, some protein/RNAs 

of HERVs are likely to have the capacity to promote the tumorigenesis. Envelope (Env) 

protein of HERVK activates the proliferation of cancer cells via the activation of 

Ras/ERK pathway [28-30, 97]. The lncRNAs derived from HERVH, which play critical 

roles in the cellular reprograming [16-18], are highly expressed in bladder and 

colorectal tumors and promotes the invasion and metastasis of the tumors [98, 99]. 

  Mechanisms underlying the up-regulation of HERV transcriptions in human 

tumors are mostly unknown [100]. Although the global epigenetic change such as the 

DNA demethylation in tumors is thought to be a major cause of the up-regulation of 

HERV transcriptions, there are only a few evidences supporting this hypothesis [100, 

101]. Studies based on mouse model have demonstrated that a protein complex 

comprising KRAB zinc finger proteins (e.g., ZNF274), TRIM28, and SETDB1 plays a 

central role in the transcriptional suppression of ERVs and other retrotransposons 

during early embryonic development [9, 102-106]. However, roles of these genes on the 

suppression of HERVs in human tumor tissues are little known. Furthermore, HERVs 

possess specific regulatory elements for TFs such as ESR1 (estrogen receptor 1) that are 

overexpressed and rewire the gene regulatory network in tumors (CHPTER 2) [107, 

108]. Therefore, these TFs seem to play an essential role in the up-regulation of HERV 

transcriptions in tumors; however, the associations of TFs and the HERV up-regulations 

in tumors are poorly understood. 
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 HERVs can contribute to the production of non-canonical and unannotated 

transcripts of host genes in tumors transcribed as parts of mRNA of these genes [109]. 

In HERV-fused gene transcripts, HERVs work as alternative transcription start sites 

(TSSs), exons, and transcriptional terminal sites (TTSs). Alternative TSSs originated 

from HERVs are activated in tumors particularly under the treatments with DNA 

methyltransferase inhibitor (DNMTi) or histone deacetylase inhibitor (HADCi) [27, 

110]. Since non-canonical transcripts of genes are likely to encode non-canonical forms 

of proteins, the production of these transcripts possibly have various effects on tumors, 

such as the disruption of the protein-protein network in cancer cells [111, 112]. For a 

better understanding of the landscape of transcriptome in tumors, it is needed to 

investigate the HERV-fused gene transcripts. 

 To improve our understanding of tumor pathogenesis, The Cancer Genome 

Atlas (TCGA) has generated multi-dimensional omics data for >11,000 patients across 

33 types of tumors [36]. One of the major purposes of TCGA is to stratify a type of 

tumors (e.g., breast carcinoma) into subtypes based on molecular profiles of the tumors 

[36]. The subtype classification is clinically important because these subtypes show 

distinct phenotypes (e.g., prognosis or drug resistance). Another purpose of TCGA 

study is to identify pathogenic mechanisms that are shared across distinct types of 

tumors. This effort is referred to as pan-cancer analysis [36]. TCGA is a publicly 

available dataset. Therefore, using this dataset, TCGA group and others have carried out 

pan-cancer analyses from specific viewpoints, such as the alternative splicing [111, 112], 

immune cell inflation [32, 113], and mutation signature [114, 115]. 

Although importance of the HERV reactivation in tumors has been 

emphasized [94, 95], previous TCGA studies have not approached information on 

HERV transcriptome in tumor tissues. Transcriptome information of HERVs can be 

extracted from RNA-Seq, particularly ploy A-enriched mRNA-Seq. Previous studies 

using TCGA data examined only a limited number of HERV loci and tumor types [29, 
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32, 101]. Therefore, the landscape of the HERV transcriptions in tumors is still unclear. 

In the present study, I mined the HERV transcriptome data from the TCGA RNA-Seq 

dataset for 5,550 patients across 12 solid tumors and performed pan-cancer analysis 

focusing on transcripts derived from HERVs. This study will provide a better 

understanding of tumor characteristics from the pan-cancer view of HERV 

transcriptions. 

 

 
Results 

Extracting HERV transcriptome information from TCGA RNA-Seq data 

Because HERV annotations are not included in transcript models such as GENCODE 

[116] and RefSeq [117], I first constructed “gene-HERV” transcript model based on 

GENCODE and RepeatMasker, an annotation dataset of repetitive sequences including 

HERVs (http://www.repeatmasker.org/) (Fig. 27A). A few HERVs are annotated as 

genes (e.g., syncytin-1/2 [23, 39]) and included in the gene transcript model. To focus 

on unannotated HERV-derived transcripts, I removed HERV loci overlapping with 

known gene transcripts from the gene-HERV model. This gene-HERV model contains 

60,483 protein coding/non-coding genes and 138,124 HERV loci. The total sequence 

length of HERVs in the model corresponds to 3.5% of the human genome. In order to 

extract transcriptome information of genes and HERVs, I counted RNA-Seq fragments 

mapped on genes and HERVs, respectively, using TCGA RNA-Seq data (BAM file) 

with the gene-HERV model (Fig. 27B). HERVs contribute to the production of 

non-canonical and unannotated transcripts of genes in tumors transcribed as parts of 

mRNA of these genes [109]. To identify such fused transcripts of genes and HERVs, I 

counted RNA-Seq fragments mapped both on genes and HERVs (Fig. 27B). 
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In total, approximately 70 terabyte of RNA-Seq BAM files were analyzed. 

These RNA-Seq data were produced using the pair-ended and 48–50 bp sequencing. I 

mined transcriptome data of host genes, HERVs, and the gene-HERV fused transcripts 

for 5,550 patients across 12 TCGA projects analyzing solid tumors: bladder urothelial 

carcinoma (BLCA) [118, 119], breast invasive carcinoma (BRCA) [107, 108], colon 

adenocarcinoma (COAD) [120], head and neck squamous cell carcinoma (HNSC) [121], 

kidney chromophobe renal cell carcinoma (KICH) [122], kidney clear renal cell 

carcinoma (KIRC) [123], kidney renal papillary cell carcinoma (KIRP) [124], liver 

hepatocellular carcinoma (LIHC) [125], lung adenocarcinoma (LUAD) [126], lung 

squamous cell carcinoma (LUSC) [127], prostate adenocarcinoma (PRAD) [128], and 

thyroid carcinoma (THCA) [129]. Sample information is summarized in Table 9. Of 

these 5,550 patients, 590 patients had transcriptome data both for tumors and normal 

Figure 27. Mining of transcriptome data using the gene-HERV transcript model. A) The gene-HERV transcript model. Black 
boxes and dot lines respectively indicate exons and intronic regions of genes. Blue boxes indicate HERV sequences. As a gene 
model, GENCODE Version 22 was used, which contains 19,814 protein-coding genes and 40,669 non-coding genes. As a HERV 
model, RepeatMakser out file (15-Jan-2014) was used with filtering out unreliable HERV loci (Smith–Waterman (SW) score 
<2,500). The HERV model contains 138,124 HERV loci. The gene-HERV model was constructed by merging the gene and HERV 
models. HERV sequences overlapped with exons were excluded from the gene-HERV model. B) Three types of counting methods of 
RNA-Seq fragments. Fragments mapped on genes and HERVs were counted ((i) and (ii), respectively). To identify gene-HERV 
fused transcripts, fragments mapped both on genes and HERVs were counted (iii). 
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tissue controls (i.e., non-tumor tissues adjacent to tumors). The other patients only had 

the tumor data. 

 

 

 

 

TCGA project (tumor type) Abbreviation Patients 
Patients with        

normal tissue control 

Breast invasive carcinoma BRCA 1,091 112 

Kidney renal clear cell carcinoma KIRC 523 72 

Lung adenocarcinoma LUAD 515 57 

Thyroid carcinoma THCA 502 58 

Lung squamous cell carcinoma LUSC 501 49 

Head and Neck squamous cell carcinoma HNSC 501 43 

Prostate adenocarcinoma PRAD 496 52 

Bladder urothelial carcinoma BLCA 408 19 

Liver hepatocellular carcinoma LIHC 371 50 

Kidney renal papillary cell carcinoma KIRP 289 31 

Colon adenocarcinoma COAD 287 24 

Kidney chromophobe renal cell carcinoma KICH 66 23 

 

In the NGS analysis focusing on repetitive sequences such as HERVs, it is 

necessary to handle carefully multi-mapped fragments, which are NGS fragments that 

can be mapped to two or more genomic regions [67, 130]. To examine effects of the 

multi-mapped fragments, I generated transcriptome data in the presence or absence of 

the multi-mapped fragments and then compared these two data (Fig. 28). Although the 

effect of the multi-mapped fragments on the HERV transcriptome was recognized, the 

effect was comparable with that of the gene transcriptome (Fig. 28). Thus, the effect of 

multi-mapped fragments on the HERV transcriptome is not so problematic in this 

Table 9. Summary of RNA-Seq samples. 
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dataset. Therefore, I showed results only for transcriptome data excluding multi-mapped 

reads in the main figures of this paper. 

 

The transcriptome landscape of HERVs in tumors and normal tissues  

To examine global transcription levels of HERVs in tumors and normal tissues, I 

calculated proportions of RNA-Seq fragments mapped on HERVs in each sample (Fig. 

29A). In most tumor and normal tissue samples, proportions of the fragments mapped 

on HERVs were less than 0.5 % (Fig. 29A). In tumor samples of BLCA, COAD, HNSC, 

Figure 28. Effects of including/excluding multi-mapped fragments in transcriptome analysis. A)–C) Comparisons of transcriptome 
data in the presence or absence of multi-mapped fragments. Results in BRCA are shown for genes (A), HERV loci (B), and HERV 
groups (C). The X-axis indicates fragment counts in the absence of multi-mapped fragments, and the Y-axis indicates the counts in the 
presence of multi-mapped fragments. The median values of the log2-transformed counts (with +1 pseudocounts) are shown. The lines 
with slope 1 and intercept 0 or ±1 are shown. Genes/HERVs with >2 fold differences in the counts are shown in the outside of the two 
dashed lines. D) Proportions of genes/HERVs in which fragment counts were >2 fold different in the presence or absence of 
multi-mapped fragments. 
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KIRC, KIRP, LIHC, LUAD, LUSC, and PRAD, proportions of HERVs in total 

transcripts significantly increased compared to the normal tissues (Fig. 29A). Next, I 

identified transcribed HERV loci in tumor and normal tissues. In this study, I defined 

transcribed HERVs as HERV loci that were transcribed with >0.2 fragments per million 

(FPM) in >10% of samples in either of 12 TCGA projects. In this criterion, I identified 

10,060 of transcribed HERV loci in 12 tumors and the normal tissue controls. Of these 

transcribed HERVs, an approximately half of them were present in upstream regions of 

transcription sites (TSSs), downstream regions of transcriptional terminal sites (TTSs), 

or intronic regions (Fig. 29B). 
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Figure 29. The landscape of HERV transcriptions in tumors and normal tissues. A) Global transcription levels of HERVs in tumors 
and normal tissues. Proportions of RNA-Seq fragments mapped on HERVs are shown. Results of tumors and normal tissues are 
respectively shown in grey and white. Outliers are not shown. Asterisks (*) denote significant up-regulation in tumors (adjusted p < 
0.05). The adjusted p value was calculated using the Wilcoxon signed-rank test with Benjamini–Hochberg (BH) method. B) Proportions 
of all and transcribed HERVs in each category of genomic region. Results are shown for categories of upstream (<5kb) regions of 
transcription start sites (TSSs), downstream (<5kb) regions of transcription terminal sites (TTSs), and intronic regions. C) A heatmap 
showing relative transcription levels of HERVs in tumors and normal tissues. The heatmap was dealt with hierarchical clustering. A 
column indicates a RNA-Seq library. A row indicates a HERV group. Transcription levels were normalized as standardized (z) score in 
each row (HERV group). Fifty HERV groups with the highest variances were used in the analysis. Samples of patients having both of 
tumor and normal samples were only used. C) A heatmap showing relative transcription levels of HERVs in BRCA tumor samples. 
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To examine whether transcriptome of HERVs shows unique patterns 

depending on the tumor and tissue types, I performed unsupervised clustering analysis 

based on the HERV transcriptome information (Fig. 29C). In this analysis, I used the 

HERV group level transcriptome data, which was obtained by summing fragment 

counts of HERV loci in respective HERV group. Generally, samples clustered 

according to tumor and tissue types. For example, three kidney tumors (KICH, KIRC, 

and KIRP) separately clustered, whereas normal tissues of them (i.e., samples of normal 

kidney tissues) clustered together (Fig. 29C). TCGA classified a tumor type (e.g., 

BRCA) into molecular subtypes (e.g., Basal-like, HER2-enrichd, Luminal A/B, and 

Normal-like subtypes for BRCA) based on transcriptome and other information [36, 

107, 108]. I investigated whether the HERV transcriptome shows unique patterns in 

each molecular subtype (Fig. 29D). In BRCA, samples of Basal-like, HERV2-enriched, 

and Luminal A/B were separated in unsupervised clustering based on the HERV 

transcriptome information (Fig. 29D). Thus, the HERV transcriptome showed unique 

patterns depending on the tumor and tissue types, and even the subtypes. This indicates 

that transcriptome of HERVs is informative for knowing cellular features as with that of 

host genes. 

 
Identification of up/down-regulated HERVs in tumors 

To identify specific HERVs that are up/down-regulated in tumors compared to the 

corresponding normal tissues (referred to as differentially expressed HERVs 

(deHERVs)), I performed differential expression analysis of HERVs with DESeq2 

[131] (Fig. 30). I examined deHERVs at two levels; HERV locus and group levels. At 

the HERV locus level, 7,387 deHERVs were identified across 12 tumor types, which 
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corresponded to 73% of the transcribed HERV loci. At the HERV group level, 408 

deHERV groups were identified. Although previous studies have emphasized the 

overexpression of HERVs in tumors [94], both of up/down-regulated HERVs in tumors 

were identified. Although expression levels of deHERVs were likely to be lower than 

those of differentially expressed genes (deGenes), some deHERVs such as 

HERVH-int/LTR7Y in HNSC showed relatively high expression levels (Figs. 30A and 

30B). HERVH-int is the internal sequence of HERVH, and LTR7Y is a type of the LTR 

sequence of HERVH (there are four types of HERVH having distinct LTR sequences: 

LTR7, LTR7B, LTR7C, and LTR7Y). To compare deHERVs across tumors, I 

performed unsupervised clustering analysis based on fold change values in the 

differential expression analysis (Figs. 30C and 30D). Although deHERVs varied among 

tumors, some deHERVs were commonly identified in several tumors. Particularly, 

HERVH-int, LTR7Y, and HERVL18-int were up-regulated in broad ranges of tumors 

(Fig. 30D). 
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Associations of HERV transcriptions and epigenetic signatures 

DNA methylation particularly at CpG sites is essential to suppress transcriptions of 

HERVs and other retrotransposons in early embryos and matured tissues [100]. 

However, effects of the DNA methylation status on HERV transcription in tumors are 

poorly understood [100]. To clarify this point, I examined association of the overall 

transcription level of HERVs and the global DNA methylation level in each tumor type. 

Figure 30. Differentially expressed HERVs (deHERVs) on tumors. A) and B) MA-plots showing genes and HERVs that were 
differentially expressed between tumor and normal tissue samples in HNSC. Results at the HERV locus and group levels are respectively 
shown in (A) and (B). The X-axis indicates mean transcription levels between tumors and normal tissues. The Y-axis indicates fold 
changes of transcription levels (tumors on normal tissues). Differentially expressed genes and HERVs are respectively shown in yellow 
and red (family-wise error rates (FWER) <0.05), and the others are shown in grey. C) and D) Heatmaps showing fold changes of 
deHERVs. Results at the HERV locus and group levels are respectively shown in (C) and (D). The heatmaps contain HERVs that were 
differentially expressed in ≥1 tumor types. In the heatmap (D), deHERV groups with high transcription levels (>20 FPM) in ≥1 tumor 
types are only shown. 
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In case of HNSC, the HERV transcription level was negatively correlated with the 

global DNA methylation level (Spearman’s correlation coefficient: -0.33) (Fig. 31A). 

Next, I examined associations of transcription levels of respective HERV groups and 

the global DNA methylation level in each tumor type (Fig. 31B). In case of HNSC, 

transcription levels of most HERV groups were negatively correlated with the global 

methylation level (Fig. 31B). Similar negative correlations were observed in LIHC, 

BLCA, KIRP, and COAD (Fig. 31B), suggesting that DNA methylation plays a role in 

the regulation of HERV transcriptions in these tumors. On the other hand, such negative 

correlations were not observed in KICH, THCA, PRAD, and BRCA (Fig. 31B), 

suggesting that DNA methylation does not play a major role in HERV regulations in 

these tumors.  
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 Transcription of HERVs is also affected by availability of specific 

transcription factors (TFs) [78, 80, 100]. To identify TFs responsible for the 

up-regulation of HERV transcriptions in tumors, I searched TFs whose binding sites 

were statistically enriched in up-regulated HERVs compared to transcribed HERVs (Fig. 

31C and Table 10). In this analysis, I investigated 2,644 datasets of TF-binding sites 

(TFBSs) provided by ChIP-Atlas (http://chip-atlas.org/). In case of BRCA, TFBSs for 

ESR1 (estrogen receptor 1), PGR (progesterone receptor), GATA3, FOXA1, and others 

Figure 31. Associations of HERV transcriptions with epigenetic signatures. A) Association of the overall transcription level of 
HERVs and the global DNA methylation level in HNSC. A dot indicates a particular patient. The X-axis indicates the median value of 
methylation levels (beta values) among probes in the methylation array HumanMethylation450 (Illumina). The Y-axis indicates 
proportion of RNA-Seq fragments mapped on HERVs. B) Associations of transcription levels of respective HERV groups and the 
global methylation level in each tumor type. Colors in the heatmap indicate Spearman’s correlation coefficients. HERV groups with >5 
of FPM are only shown. C) TFBSs that were statistically enriched in the up-regulated/transcribed HERVs. Results for BRCA are 
shown. Results are shown for comparisons of up-regulated HERVs vs. transcribed HERVs and transcribed HERVs vs. all HERVs. 
Results are shown only for TFBSs with >1.5 of odds ratio (OR) and <0.01 of FDR in the both comparisons. D) Comparisons of 
transcription levels of HERVs targeted by ESR1, PGR, GATA3, and FOXA1 between BRCA subtypes with or without expressing ER 
and PGR. Basal-like subtype is ER and PGR-negative, whereas Luminal A/B subtypes are ER and PGR-positive. TF-binding statuses 
of HERVs were extracted from TFBS datasets shown in red in (C). 
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were statistically enriched in up-regulated HERVs (Fig. 31C). All of these were TFBSs 

for ChIP-Seq whose experiments were performed in breast tumor/cell lines. ESR1 and 

PGR play a critical role in tumorigenesis of breast cancer [107, 108]. GATA3 and 

FOXA1 modulate ESR1 expression in breast cancer, and gain-of-function mutations of 

these genes are frequently observed in breast cancer [108]. 

 

 

 
Project 
Id 

TF Sample Sample class Up vs. transcribed Transcribed vs. all 
OR FDR OR FDR 

BLCA BRD4 K-562 Blood 3.9  2.6.E-03 4.4 4.6.E-11 
BLCA EP300 hESC H9 Pluripotent stem cell 1.9  8.0.E-04 1.6 3.0.E-17 
BLCA FOXA1 MDA-MB-453 Breast 1.7  5.5.E-03 2.7 1.3.E-105 
BLCA FOXA1 T-47D Breast 1.8  4.0.E-04 2.1 1.0.E-57 
BLCA NR3C1 Unclassified Unclassified 2.7  5.4.E-03 2.5 3.6.E-11 
BLCA TBP K-562 Blood 2.2  1.7.E-04 3.3 1.8.E-60 
BRCA APOBEC3B MCF-7 Breast 2.6  9.8.E-05 2.6 2.9.E-09 
BRCA ESR1 BT-474 Breast 2.0  2.1.E-06 1.8 1.1.E-13 
BRCA ESR1 H3396 Breast 2.5  7.5.E-03 1.9 4.0.E-03 
BRCA ESR1 LY2 Breast 1.6  1.7.E-03 2.0 1.2.E-37 
BRCA ESR1 Tumour tissues Others 2.2  5.5.E-07 3.0 1.9.E-33 
BRCA FOXA1 MCF-7 Breast 1.7  7.0.E-03 1.6 2.7.E-10 
BRCA GATA3 T-47D Breast 1.6  4.7.E-03 2.2 1.1.E-54 
BRCA NR2F2 MCF-7 Breast 1.7  7.8.E-04 2.4 1.6.E-51 
BRCA PGR MCF-7 Breast 1.8  8.2.E-03 2.2 1.8.E-18 
COAD ATF2 LoVo Digestive tract 1.7  2.6.E-03 5.4 3.8.E-68 
COAD CDX2 LS-180 Digestive tract 2.2  1.7.E-08 3.2 5.2.E-45 
COAD CEBPB LS-180 Digestive tract 1.5  2.0.E-03 2.5 6.2.E-50 
COAD FOXA1 A549 Lung 1.6  7.6.E-03 1.9 6.6.E-17 
COAD FOXA1 hESC derived 

mesendodermal cells 
Pluripotent stem cell 1.5  2.1.E-03 1.7 1.2.E-22 

COAD FOXA1 MCF-7 Breast 2.0  5.9.E-08 1.9 4.8.E-17 
COAD FOXA1 VCaP Prostate 1.5  7.4.E-04 1.7 7.9.E-25 
COAD FOXA2 A549 Lung 1.6  7.0.E-04 2.2 1.1.E-36 
COAD FOXA2 hESC derived 

mesendodermal cells 
Pluripotent stem cell 2.0  6.0.E-06 2.0 1.1.E-16 

COAD FOXP1 LoVo Digestive tract 2.2  3.3.E-05 3.8 1.0.E-28 
COAD KLF5 GP5d Digestive tract 2.5  1.9.E-03 4.7 3.2.E-15 
COAD KLF5 KATOIII Digestive tract 1.8  7.5.E-05 5.2 1.2.E-74 
COAD NR1H3 HT-29 Digestive tract 1.6  3.4.E-03 2.9 6.0.E-41 

Table 10. TFBSs enriched in enriched in up-regulated HERVs. 
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COAD RUNX1 LoVo Digestive tract Inf 5.9.E-03 17.1 7.3.E-03 
COAD RUNX2 C4-2 Blood 1.6  3.2.E-03 2.4 2.4.E-37 
COAD RXRA LS-180 Digestive tract 2.9  7.6.E-06 5.7 3.7.E-34 
HNSC 5-mC MCF-10A Breast 2.2  1.9.E-03 2.4 4.8.E-08 
HNSC 5-mC MCF-7 Breast 1.7  3.0.E-03 2.0 3.0.E-14 
HNSC BRD4 MCF-10A Breast 6.4  9.3.E-12 11.3 1.0.E-24 
HNSC CDX2 LS-180 Digestive tract 1.9  2.7.E-03 2.6 1.2.E-20 
HNSC EP300 hESC H9 Pluripotent stem cell 1.6  1.6.E-03 2.0 1.5.E-29 
HNSC FOXA1  Pluripotent stem cell 1.6  7.5.E-04 2.0 3.8.E-31 
HNSC FOXA2 A549 Lung 1.6  3.4.E-03 2.7 1.2.E-54 
HNSC FOXA2 hESC derived 

mesendodermal cells 
Pluripotent stem cell 2.4  6.1.E-10 2.4 3.2.E-26 

HNSC PAX5 OCI-LY-7 Blood 2.4  2.3.E-03 3.3 6.4.E-10 
HNSC RXRA LS-180 Digestive tract 3.4  6.9.E-09 8.7 2.0.E-56 
HNSC SFPQ MCF-7 Breast 1.6  5.6.E-03 1.9 2.0.E-49 
KIRC ARNT 786-O Kidney 5.3  4.9.E-04 12.4 1.9.E-22 
KIRC ARNTL 786-O Kidney 3.2  2.5.E-04 7.5 2.9.E-32 
KIRC EPAS1 786-O Kidney 2.7  1.4.E-05 5.6 4.3.E-36 
KIRC RBPJ B-Lymphocytes Blood 3.3  5.6.E-08 3.8 1.0.E-25 
KIRP ARNT 786-O Kidney 5.9  3.2.E-07 10.8 2.4.E-17 
KIRP ARNTL 786-O Kidney 3.7  1.5.E-06 6.5 1.4.E-23 
KIRP BATF GM12878 Blood 1.7  8.2.E-06 2.0 3.0.E-27 
KIRP EPAS1 786-O Kidney 3.3  3.6.E-09 5.1 2.5.E-28 
KIRP FOXA1 CFPAC-1 Adipocyte 1.5  9.5.E-03 1.8 3.6.E-18 
KIRP NR3C1 ECC-1 Uterus 1.7  5.5.E-03 3.4 8.5.E-45 
KIRP RBPJ B-Lymphocytes Blood 3.6  9.3.E-12 4.1 7.9.E-28 
KIRP SPI1 DOHH-2 Blood 1.6  1.5.E-06 2.0 4.9.E-34 
KIRP SPI1 GM12878 Blood 1.5  1.7.E-04 1.9 3.0.E-32 
LUAD ETV5 LoVo Digestive tract 1.8  2.1.E-03 2.8 4.2.E-22 
LUAD FOSL2 A549 Lung 1.6  2.0.E-04 2.1 9.2.E-26 
LUAD FOXA1 A549 Lung 1.6  2.3.E-04 1.9 5.9.E-26 
LUAD FOXA1 CFPAC-1 Adipocyte 1.8  1.3.E-09 2.0 2.6.E-30 
LUAD JUND Calu-3 Lung 1.9  2.9.E-03 1.8 2.4.E-04 
LUAD JUND HT-29 Digestive tract 1.7  2.6.E-04 2.0 1.2.E-14 
LUAD KLF5 CFPAC-1 Adipocyte 1.7  1.1.E-05 3.4 1.9.E-64 
LUAD KLF5 KATOIII Digestive tract 1.6  2.7.E-03 3.8 2.9.E-53 
LUAD NKX2-1 NCI-H441 Lung 1.6  4.4.E-07 2.6 2.6.E-66 
LUAD NR1H3 HT-29 Digestive tract 1.6  4.4.E-04 2.6 6.0.E-41 
LUAD PPARG HT-29 Digestive tract 1.6  6.8.E-03 2.3 2.3.E-24 
LUAD SMAD3 NCI-H441 Lung 1.7  1.2.E-06 2.4 2.0.E-44 
LUAD STAT3 HCC1143 Breast 1.8  3.8.E-03 2.1 9.2.E-12 
LUAD USF2 HeLa Uterus 1.8  8.7.E-05 2.2 1.4.E-18 
LUSC 5-mC MCF-7 Breast 1.5  1.2.E-03 2.0 8.9.E-27 
LUSC CDX2 LS-180 Digestive tract 1.6  6.5.E-03 2.0 9.5.E-17 
LUSC RXRA LS-180 Digestive tract 3.0  1.8.E-08 5.3 5.5.E-40 
PRAD AR Prostate cancer Prostate 2.4  1.0.E-03 2.9 9.0.E-12 
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PRAD AR VCaP Prostate 1.7  1.9.E-03 2.3 1.5.E-26 
PRAD GATA2 LNCAP Prostate 1.7  2.1.E-03 2.0 1.0.E-21 
PRAD PIAS1 VCaP Prostate 2.0  1.4.E-03 2.5 5.0.E-16 
PRAD RXRA HepG2 Liver 1.7  3.2.E-03 3.3 7.0.E-49 

 

 Breast cancer is composed of several molecular subtypes showing distinct 

expression statuses of estrogen receptor (ER) and PGR: Basal-like (a.k.a., 

Triple-Negative) subtype expresses ER and PGR, whereas Luminal A/B subtypes do 

not [107, 108]. Subtypes expressing ER and PGR (Luminal A/B) are major group in 

BRCA (Fig. 29D) [107, 108], and these subtypes also highly expressed GATA3 and 

FOXA1 [108]. To examine effects of the availability of these four TFs on HERV 

transcriptions in BRCA, I compared transcription levels of HERVs targeted by these 

four TFs between Basal-like and Luminal A/B subtypes (Fig. 31D). Transcription levels 

of HERVs targeted by any of these four TFs in Luminal A/B subtypes were higher than 

those in Basal-like subtype (Fig. 31D). Meanwhile, transcription levels of HERVs that 

were not targeted by any of these four TFs were comparable between the two groups 

(Fig. 31D). Thus, HERVs targeted by these four TFs showed transcription patterns 

consistent with the availability of these TFs. Taken together, ESR1, PGR, GATA3, and 

FOXA1 were likely to be critical for up-regulation of HERV transcriptions in BRCA 

Luminal A/B subtypes.	 In many tumor types including BRCA (BLCA, BRCA, 

COAD, HNSC, KIRP, and LUAD), TFBSs for FOXA1 were statistically enriched in 

up-regulated HERVs (Table 10). This indicates importance of this TF for the 

up-regulation of HERVs in a broad range of tumor types. 

 
Regulatory axes associated with HERV transcriptions 

To gain further insights into regulatory mechanisms of HERV transcriptions in tumors, 

I searched TFs whose activities were associated with HERV transcriptions. Activities of 

TFs can be estimated from transcriptome data by examining transcription levels of sets 

of genes targeted by the TFs [132]. To perform this estimation, TFBS-based gene set, 
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which is a set of genes targeted by a particular TF in a certain condition, was defined 

using TFBS datasets in ChIP-Atlas (http://chip-atlas.org/). Transcriptional activities of 

the TFBS-based gene sets in each sample were measured with gene set variation 

analysis (GSVA) [133], and then associations of the activities and the overall HERV 

transcription level in each tumor type were examined. As a representation, result for the 

HERV transcription level and the activity of the set of genes targeted by TRIM28 in 

BRCA is shown in Fig. 32A. In this case, positive correlation was observed 

(Spearman’s correlation coefficients: 0.43) (Fig. 32A). Similarly, comparisons were 

performed for all combinations of TFBS-based gene sets and HERV transcription levels 

in respective tumor types. To identify TFBS-based gene sets associated with HERV 

transcriptions across tumor types, TFBS-based gene sets that showed correlations with 

HERV transcriptions in most tumor types were extracted (Figs. 32B and 32C). 

Transcriptional activities of genes targeted by TRIM28, SETDB1, and ZNF274 were 

positively correlated with transcription levels of HERVs in most tumor types (Fig. 32C). 

These three are known to form a complex and suppress transcriptions of HERVs and 

other retrotransposons in early embryos [9, 102-106]. Taken together, these three were 

likely to play a role in HERV regulation in tumors as well as early embryos. 

Additionally, several epigenetic modifiers such as MDB2, BRD3/4, and FANCD2 were 

identified in the analysis (Fig. 32C). BRD4 was also identified in a search of TFs whose 

binding sites were enriched in up-regulated HERVs in BLCA and HNSC (Table 10), 

suggesting importance of this epigenetic modifier for the regulation of HERV 

transcriptions in tumors. 
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Figure 32. Estimation of regulatory axes associated with HERV transcriptions. A) Association of the overall transcription level 
of HERVs and the transcriptional activity of a set of genes targeted by TRIM28 in H1-hESC. Results for BRCA are shown. The 
X-axis indicates transcriptional activity (normalized enrichment score (NES)) of the gene set calculated with gene set variation 
analysis (GSVA). B) Associations of the overall HERV transcription level and transcriptional activities of TFBS-based gene sets in 
each tumor type. Colors in the heatmap shows Spearman’s correlation coefficients. A row indicates a TFBS-based gene set. Results 
are shown only for TFBS-based gene sets with >0.25 of absolute values of medians of Spearman’s correlation coefficients among 
tumor types. C) TFBS-based gene sets whose transcriptional activities were positively correlated with HERV transcription levels in 
most tumor types. Top 15 TFBSs are shown with respect to the median value of Spearman’s correlation coefficients among tumor 
types. 
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Biological pathways associated with HERV transcriptions 

To find tumor characteristics associated with HERV transcriptions, I investigated 

biological processes whose transcriptional activities were correlated with HERV 

transcriptions (Fig. 33). I used an approach similar to the one described in the last 

section: For all gene sets in the category of biological process (BP) in Gene Ontology 

(GO), transcriptional activities of the gene sets were calculated, and then correlations 

between the activities and the overall transcription level of HERVs were examined in 

each tumor type (for example, Fig. 33A). Gene sets that were correlated with HERV 

transcriptions in several tumor types were extracted (Figs. 33B, 33C, and 33D). GO 

terms relating to the epigenetic regulation were positively correlated with HERV 

transcriptions in most tumor types, supporting importance of the epigenetic regulation 

on HERV transcriptions (Fig. 33C). In addition to these, GO terms relating to the cilium 

development, centriole assembly, inner dynein arm assembly, and mitochondrion 

distribution were positively correlated with HERV transcriptions in most tumor types 

(Fig. 33C). All of these processes are microtubule/tubulin-mediated biological processes. 

Meanwhile, GO terms relating to the apoptosis, immune response (e.g., antigen 

processing and presentation) were negatively correlated with HERV transcriptions in 

most tumor types (Fig. 33D). 
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Gene-HERV fused transcripts in tumors 

Some HERVs are transcribed as a part of mRNA of genes and formed non-canonical 

(and unannotated) transcripts in tumors (and even in normal tissues) [109]. As described 

in Fig. 27B, I identified such gene-HERV fused transcripts by counting RNA-Seq 

fragments mapped both on genes and HERVs. To identify the fused transcripts that 

were up/down-regulated in tumors, I performed differential expression analysis using 

Figure 33. Biological functions associations with HERV transcriptions. A) Association of the overall transcription level of 
HERVs and the transcriptional activity of the gene set “epithelial cilium movement”. This gene set is collected in the category of 
biological process (BP) in Gene Ontology (GO). B) Associations of overall HERV transcription level and transcriptional activities of 
gene sets in each tumor type. Colors in the heatmap show Spearman’s correlation coefficients. A row indicates a GO BP-based gene 
set. Results are shown only for gene sets with >0.3 of absolute values of medians of Spearman’s correlation coefficients among 
tumor types. C) and D) Gene sets whose transcriptional activities showed positive (C) or negative (D) correlations with HERV 
transcription levels in most tumor types. Top (C) or worst (D) 15 GO terms are shown with respect to the median value of 
Spearman’s correlation coefficients among tumor types. 
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count data of the fragments mapped on junctions of the fused transcripts. In total, 1,410 

gene-HERV fused transcripts were differentially expressed in ≥1 tumor types. To 

examine whether genes forming the fused transcripts are statistically enriched in known 

gene sets, I performed GO enrichment analysis. Genes forming the fused transcripts 

were statistically enriched in genes relating to metabolic processes of lipid or other 

small molecules (Table 11). 

 

Project GO term (biological process) Odds ratio Adjusted p value 

COAD Organonitrogen compound metabolic process 3.9 7.E-03 

KICH Cofactor metabolic process 6.2 3.E-02 

KIRC Fatty acid metabolic process 6.6 5.E-02 

LUSC Lipid metabolic process 4.8 4.E-03 

PRAD Lipid metabolic process 6.7 2.E-04 

PRAD Small molecule metabolic process 5.3 1.E-03 

PRAD Single organism biosynthetic process 6.1 1.E-03 

PRAD Lipid biosynthetic process 7.8 3.E-03 

PRAD Cellular lipid metabolic process 5.4 4.E-03 

PRAD Organonitrogen compound metabolic process 4.7 4.E-03 

PRAD Cellular catabolic process 5.3 6.E-03 

PRAD Small molecule biosynthetic process 6.5 9.E-03 

PRAD Organic acid metabolic process 4.6 9.E-03 

PRAD Monocarboxylic acid metabolic process 4.9 2.E-02 

PRAD Catabolic process 3.4 2.E-02 

PRAD Organic hydroxy compound metabolic process 4.3 2.E-02 

PRAD Single organism catabolic process 3.6 2.E-02 

THCA Establishment of protein localization 4.6 2.E-02 

THCA Protein localization 3.9 2.E-02 

THCA Establishment of localization in cell 4.0 2.E-02 

 

Table 11. GO enrichment analysis using genes forming the gene-HERV fused transcripts. 

GO terms with >2 of odds ratio and <0.05 of adjusted p value are shown. 
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Next, I examined whether cancer-associated genes are included in the list of 

genes forming the fused transcripts that were differentially expressed in tumors. I 

particularly focused on 567 cancer causal genes annotated by Cancer Gene Census 

[134]. A total of 11 gene-HERV fused transcripts was identified across 12 tumor types 

(Fig. 34A). Of these, the fused transcript of ERVL-B4-int 

(chr21:41,511,218-41,512,860) and TMPRSS2 were approximately 10 times 

up-regulated in tumor samples of PRAD (Fig. 34A). TMPRSS2 is a major causal gene 

of prostate cancer [128]. In PRAD, FPM values (relative transcriptions) of the 

ERVL-B4-int locus and the junction of the fused transcript were highly up-regulated in 

tumors, whereas that of TMPRSS2 was moderately up-regulated (Fig. 34B). The 

ERVL-B4-int locus was located on the upstream region of the constitutive TSS of 

TMPRSS2 (Fig. 34C). The unannotated exon on the ERVL-B4-int locus had 3´-splice 

junctions much more than 5´-splice junctions. The transcription level of this exon was 

up-regulated in the tumor sample (Fig. 34C). Taken together, the ERVL-B4-int locus 

worked as an alternative TSS of TMPRSS2, and the activity of this TSS was 

up-regulated in tumors. 
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Figure 34. The HERV-derived alternative TSS of TMPRSS2 in prostate adenocarcinoma. A) Gene-HERV fused 
transcripts differentially expressed in tumors. Results are shown only for transcripts fused with cancer causal genes annotated by 
Cancer Gene Census. The fused transcript of ERVL-B4-int (chr21: 41,511,218-41,512,860) and TMPRSS2 in PRAD is 
highlighted in red. B) Relative transcription levels of the fused transcript of ERVL-B4-int and TMPRSS2. Results in PRAD are 
shown. FPM values of the ERVL-B4-int locus, the junction of the fused transcript, and TMPRSS2 are shown. Results of tumors 
and normal tissues are respectively shown in grey and white. C) A genome browser snapshot of the fused transcript. Results in 
PRAD are shown. Integrated Genome Viewer (IGV) shows read depths of RNA-Seq with the gene-HERV transcript model. 
Tumor and normal tissue data of a particular patient (case ID: TCGA-EJ-7331) is shown. The ERVL-B4-int locus was located 
on the upstream region of the constitutive TSS of TMPRSS2 and worked as an alternative TSS in tumor. 
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Discussion 

Although importance of the HERV reactivation in tumors has been emphasized [94, 95], 

previous TCGA studies have not approached information on HERV transcriptome in 

tumor tissues. This is because the widely used gene transcript models do not contain the 

HERV information. In the present study, I constructed the transcript model containing 

the HERV information and produced HERV transcriptome data by reanalyzing the 

TCGA RNA-Seq dataset (Fig. 27). I identified a large number of transcripts derived 

from HERVs in tumors and normal tissues. Importantly, these were unannotated 

transcripts because I only focused on HERVs that were not overlapped with known 

transcripts (Fig. 27A). Based on the HERV transcriptome information, I carried out a 

pan-cancer analysis focusing on HERV transcriptions. 

Previous studies examining transcriptions of HERVs in tumors investigated 

only a limited number of HERV loci or tumor types (or cell lines) [32, 96, 101]. In the 

present study, I comprehensively identified the HERV-derived transcripts and depicted 

the landscape of HERV transcriptions in 12 solid tumors and the corresponding normal 

tissues (Fig. 29). The HERV transcriptome showed unique profiles according to tumor 

and tissue types, and even the molecular subtypes (Figs. 29C and 29D). Thus, 

transcriptome of HERVs is informative as with that of genes. 

 Mechanisms of the up-regulation of HERV transcriptions in tumors have not 

been clarified. In the present study, I investigated associations of HERV transcriptions 

and epigenetic signatures in tumors (Fig. 31). In some tumor types such as HNSC and 

LIHC, HERV transcriptions were negatively correlated with the global DNA 

methylation levels (Figs. 31A and 31B). Meanwhile, in other tumor types, such negative 

correlations were not observed (Fig 31B). Thus, global DNA methylation levels are 

likely to be not necessary associated with HERV transcriptions in tumors. I showed that 

several TFs were associated with up-regulation of HERV transcriptions in tumors (Figs. 

31C and 31D). In case of BRCA Luminal A/B subtypes, the transcriptional 
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up-regulation of HERVs was associated with ESR1, PGR, GATA3, and FOXA1 (Figs. 

31C and 31D), which are overexpressed in the subtypes [108]. Thus, the overexpression 

of TFs was likely to play an essential role in the transcriptional up-regulation of HERVs 

in tumors. The reason why up-regulated HERVs were different among tumor types 

(Figs. 29 and 30) is probably that overexpressed TFs differ among tumor types. 

Furthermore, I showed that overall transcription levels of HERVs were positively 

correlated with transcriptional activities of sets of genes targeted by ZNF274, TRIM28, 

and SETDB1 (Fig. 32). Although these three are known transcriptional suppressors 

against HERVs working in early embryos [9, 102-106], it has not been clarified whether 

these suppressors work in tumors. My result suggests that these suppressors work in 

tumors as well as early embryos. Similarly, other epigenetic modifiers such as MBD2 

and BRD3/4 also showed positive correlations with HERV transcriptions (Fig. 32G). 

These epigenetic modifiers are candidates of a novel transcriptional regulator of HERVs 

working in tumors. 

 I identified a large number of gene-HERV fused transcripts in tumors (and 

even in normal tissues). This indicates the presence of abundant non-canonical and 

unannotated gene transcripts containing HERV sequences. Of these, I particularly 

focused on the fused transcript of ERVL-B4-int and TMPRSS2 identified in PRAD (Fig. 

34). TMPRSS2 is a causal gene of prostate cancer [128]. In prostate tumorigenesis, 

TMPRSS2 causes the overexpression of ERG, a ETS transcription factor, through gene 

fusion [128]. Indeed, the TMPRSS2-ERG fusion is the most frequently observed gene 

alteration in prostate cancer [128]. In TMPRSS2, the ERVL-B4-int locus worked as an 

alternative TSS that was highly up-regulated in tumors (Fig. 34B and 34C). Together, I 

consider that the ERVL-B4-int locus plays an essential role in the tumorigenesis in 

prostate cancer through the up-regulation of expressions of TMPRSS2 and ERG. 

Further investigation based on molecular works (i.e., the knock out experiment with 

CRISPR-Cas9 system) is needed to prove the essentiality of the ERVL-B4-int locus in 
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the tumorigenesis. 

 In summary, I identified unannotated HERV-derived transcripts in tumors and 

normal tissues. These transcripts seemed to be modulated as a part of the gene 

regulatory network. Furthermore, I generated a resource of HERV transcriptome for 

thousands of tumors. Thus, this study provides fundamental information to understand 

impacts of transcripts derived from HERVs in tumors. 
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Materials and Methods 

Ethical approval 

The utilization of TCGA RNA-Seq data was authorized by dbGaP 

(http://dbgap.ncbi.nlm.nih.gov) as the following project: Systematic identification of 

reactivated human endogenous retroviruses in cancers (#15126). 

 
The construction of the gene-HERV transcript model 

As a gene transcript model, GENCODE Version 22 was downloaded from the 

GENCODE website (http://www.gencodegenes.org/). The model is for GRCh38/hg38. 

From the gene transcript model, “retained intron”-type transcripts were excluded. As a 

HERV transcript model, the RepeatMasker output file (15-Jan-2014) was downloaded 

from the UCSC genome browser (http://genome.ucsc.edu/). This is an annotation of 

repetitive sequences including HERVs in the human reference genome (GRCh38/hg38). 

From the HERV transcript model, unreliable HERV loci (Smith-Waterman (SW) score 

<2,500) were excluded. HERV sequences overlapping with known transcripts in 

GENCODE Version 22 were also excluded. The gene-HERV transcript model was 

constructed by merging the gene and HERV transcript models. The gene-HERV 

transcript model includes 60,483 protein-coding/non-coding genes and 138,124 HERV 

loci. 

 
Extracting transcriptome information of HERVs from TCGA RNA-Seq data 

Poly A-enriched RNA-Seq (mRNA-Seq) data was provided by TCGA. Of the RNA-Seq 

data, I only analyzed the data produced by the paired-ended and 48–50 bp sequencing. 

Of 33 TCGA projects (tumor types), 12 solid tumors were analyzed. In these tumor 

types, RNA-Seq data of tumors and normal tissue controls was provided for >20 

patients (Table 9). 

NGS read alignment (BAM) file of TCGA RNA-Seq was downloaded from 

GDC data portal (http://portal.gdc.cancer.gov/) using GDC Data Transfer Tool 



 101 

(http://gdc.cancer.gov/access-data/gdc-data-transfer-tool/). This BAM file is for 

GRCh38/hg38. This BAM file was generated using the GDC mRNA analysis pipeline 

(http://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline

/). This pipeline used STAR [135] with the 2-pass mapping mode, which is the most 

sensitive setting to align RNA-Seq reads on unannotated transcripts. 

To obtain transcriptome data of HERVs and genes, RNA-Seq fragments 

mapped on HERVs and known transcripts of genes were counted using featureCounts in 

subread package [136] with the BAM file and the gene-HERV transcript model. The 

“fracOverlap” argument, which is the minimum fraction of overlapping bases in a 

fragment that is required for read assignment, was set at 0.25. Fragments assigned to 

more than one features were discarded (the “allowMultiOverlap” option was not used). 

In case of generating transcriptome data including multi-mapped fragments, the 

“primaryOnly” option was added. In this setting, a multi-mapped fragment is assigned 

to one genomic position with the best alignment score (in case of a tie, one genomic 

position is randomly chosen from the positions with the best score). The mean and 

standard deviation of assigned RNA-Seq fragments were 57.0 and 15.9 million, 

respectively. 

To obtain transcriptome data of the gene-HERV fused transcripts, RNA-Seq 

fragments mapped both on HERVs and known transcripts of genes were identified with 

featureCount [136]. To this aim, the “allowMultiOverlap” and “reportReads SAM” 

options were added to the setting mentioned in the above paragraph. In this setting, a 

NGS read alignment (SAM) file is generated with an extra column reporting assigned 

features for each NGS read. In the outputted SAM file, fragments assigned both to 

HERVs and genes were counted using the original python script. 

 The quality control of each RNA-Seq library was performed. Regarding the 

proportion of non-assigned fragments (fragments mapped not on HERVs nor transcripts 

of genes), outliers were recursively detected using Smirnov-Grubbs test (the threshold 
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was set at 0.05). The outlier RNA-Seq libraries were not used in the downstream 

analysis. 

 
Unsupervised clustering based on the HERV transcriptome information 

The analysis was performed in R. Transcriptome information at the HERV group level 

was used. The count data of RNA-Seq fragments was normalized using 

variance-stabilizing transformation in DESeq2 [131]. In this step, the size factor of each 

RNA-Seq library was also normalized. In the analysis, 50 HERV groups with the 

highest variance were used. Euclid distances among RNA-Seq libraries or HERV 

groups were calculated. Hierarchical clustering was performed with Ward method. The 

heatmap was created using the ComplexHeatmap package [137]. Clinical and other 

information of each patient (gender, population, tumor stage) was downloaded from 

GDC data portal (http://portal.gdc.cancer.gov/). The molecular subtype information of 

each tumor was obtained using the TCGAbiolinks package [138]. 

 
Differential expression analysis of genes and HERVs 

The analysis was performed in R. The analysis was conducted in each tumor type. 

RNA-Seq data of patients having both of tumor and the normal tissue control data was 

used. The paired comparison of tumor and the normal tissue control data performed 

using DESeq2 [131]. Genes or HERVs with >2 of fold change and <0.05 of family-wise 

error rate (FWER) were regarded as differentially expressed genes or HERVs. The 

FWER was calculated by Bonferroni correlation. 

 Differential expression analysis of the gene-HERV fused transcripts was 

performed by the procedure similar to the above. As a difference, I used count data of 

RNA-Seq fragments mapped both on HERVs and known transcripts of genes. 
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DNA methylation data analysis 

DNA methylation data for tumors and normal tissue controls were obtained from GDC 

data portal (http://portal.gdc.cancer.gov/) using GDC Data Transfer Tool 

(http://gdc.cancer.gov/access-data/gdc-data-transfer-tool/). These data are text files 

describing the methylation level (beta value; proportion of methylated CpG at a CpG 

site) of each probe in the methylation micro array HumanMethylation450 (Illumina). 

After removing probes overlapping with single nucleotide polymorphisms (SNPs) that 

have >0.05 of minor allele frequency, the median value of beta values of probes were 

calculated for using the downstream analysis. 

 
Identification of TFBSs enriched in up-regulated/transcribed HERVs 

The 2,644 TFBS datasets were downloaded from ChIP-Atlas (http://chip-atlas.org/). 

ChIP-Seq peaks (TFBSs) with <1.0E-5 of MAC2 Q-value were used. Since TFBS 

datasets provided by ChIP-Atlas are for GRCh37/hg19, genome coordinates of these 

TFBSs were converted for GRCh38/hg38 using UCSC liftOver 

(http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/liftOver). In each category of 

up-regulated HERVs, transcribed HERVs, and all HERVs, number of TFBSs present 

within 5kb from HERVs was counted with bedtools slop [84]. Using these counts, 

comparisons of up-regulated HERVs vs. transcribed HERVs and transcribed HERVs vs. 

all HERVs were performed with Fisher’s exact test. FDR was calculated with 

Benjamini–Hochberg (BH) method. 

 
Gene set variation analysis 

Gene Set Variation Analysis (GSVA) [133] is a modified method of Gene Set 

Enrichment Analysis (GSEA) [139]. GSVA calculates sample-wise enrichment score 

(or activity) of a gene set in an unsupervised manner [133]. To perform GSVA, two 

kinds of gene sets were prepared: Gene Ontology biological process (GO BP)-based and 
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TFBS-based gene sets. GO BP-based gene sets were obtained from in MSigDB Version 

6.1 [139]. TFBS-based gene set, which is a set of genes targeted by a particular TF in a 

certain condition, was defined for each TFBS dataset in ChIP-Atlas 

(http://chip-atlas.org/) as described below: Genes having GO annotations in the BP 

category were extracted from GENCODE Version 22 (most of these genes were 

protein-coding genes). Of these genes, genes in which TFBSs were present within 5 kb 

upstream or 3 kb downstream from the TSSs were selected. Of these selected genes, up 

to 1,000 genes with potent TFBS signals were chosen, and then these chosen genes 

were defined as a gene set for the TFBS dataset. Using the two kinds of gene sets, 

GSVA was performed with the default setting. 
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