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Abstract

The word ‘metabolome’ means the whole set of metabolites existing in an organism. To
diagnose disease or examine in�uence of drugs and diets, metabolome in human urine,
exhaled air, blood, etc. have been measured in various studies. Functional genomics
also often utilizes metabolome as the endpoint of cellular regulation which responds to
genotype and environment.

One of the major techniques to measure metabolome is mass spectrometry (MS).
MS distinguishes metabolites according to their mass in high sensitivity. To obtain
detailed structural information of metabolites, especially to classify structural isomers,
tandem mass spectrometry (MS/MS) is utilized. Each metabolite is decomposed into
fragments which correspond to its substructures. Mass and abundance of each fragment
is described as an MS/MS spectrum. As the fragmentation pattern depends on the
metabolite structure, matching of the measured MS/MS spectrum with a standard one,
which is stored in databases, is an important criterion to identify metabolites.

Current bottleneck of metabolite identi�cation is insu�ciency of MS/MS spectral
databases. In a metabolome measurement, usually only up to ∼ 20% of detected
metabolites are identi�ed because of absence of matching standard MS/MS spectra.
Since the standard spectra are measured from puri�ed metabolites, there are limitations
to obtain MS/MS spectra of all existing metabolites by experimental measurements.

To overcome that, many research groups have tried to build a theoretical MS/MS
spectral library independent of the measurements. Several groups, including us, have
achieved that, but mechanisms of metabolite fragmentation are not fully clari�ed.
Without mechanistic insights, prediction of general metabolite fragmentation will not
be realized. To reach the mechanistic prediction of metabolite fragments, I will discuss
utilization of physicochemical calculation. The aim of the present study is to construct
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a physicochemical strategy to predict metabolite fragmentation in MS/MS.
At �rst, I examine ability of physicochemical calculation to determine fragment

structures. The subjects to calculate are putative substructures annotated on peaks of
MS/MS spectra with matching compositional formulae. The compositional formulae
count in movement of hydrogen atoms along the fragmentation, which is formalized
as hydrogen rearrangement (HR) rules. Comparison of enthalpy calculated with
computational chemistry between bound and fragmented state provides evidence
that the putative fragments indeed arise in experimental measurements with feasibly
low activation energy. Furthermore, several putative fragments which have unusual
electronic structure, such as radicals, are proved su�ciently stabilized by broadly
distributed electronic structures con�rmed by the calculation. The physicochemical
calculation reveals energetic stability of fragments and the origin of the stability by
elucidating electronic structures on metabolites.

As an extension of the energetic analyses, I will present metabolite identi�cation
without standard MS/MS spectra. The metabolite to identify is a lipid, β-hydroxyl
ceramide, measured with negative-ion mode MS/MS. It has structural isomers such as
an α-hydroxyl ceramide and a ceramide with phytosphingosine. Since the β-hydroxyl
ceramide has no authentic standard, its standard MS/MS spectrum is not available in
any database. Chromatographic separation and positive-ion mode MS/MS discriminate
the β-hydroxyl ceramide from most of its structural isomers. However, another
isomer, γ-hydroxyl ceramide, remains unseparated. The problem is whether β- and
γ-hydroxyl ceramides can produce the diagnostic fragment experimentally measured
in negative-ion mode MS/MS. I simulate the entire fragmentation processes of the
ceramides by computational chemistry. The simulation reveals that the β-hydroxyl
ceramide smoothly produces the measured fragment, while the γ-hydroxyl ceramide
hardly produces it because of the high energy barrier. From that, we identify metabolite
structure of the measured MS/MS spectrum as the β-hydroxyl ceramide without
standard spectra.

The investigation stated above uncovers the energetic in�uence of chemical groups
for bond cleavage. A chemical group next to the cleaved bond fairly lowers the energy
barrier of the fragmentation.

Finally, I integrate the e�ects of chemical groups into spectral prediction as bonding
pattern assignment. Each chemical bond composing a metabolite is assigned a bonding
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pattern which consists of two bound atoms and neighboring chemical groups. Precise
cleavage activation energy of the bonding pattern is calculated with physicochemical
simulation of its fragmentation process. By tracing low-energy cleavage steps, a
theoretical MS/MS spectrum is predicted. On a dipeptide molecule, its experimental
standard MS/MS spectrum is successfully reproduced by this strategy. Physicochemical
calculation is proved promising to predict MS/MS spectra only from metabolite
structures. Details of the prediction as well as several improvements suggested by
another molecule will be discussed in this dissertation.

To build a theoretical MS/MS spectral library which can cope with the enormous
variety of metabolites, activation energy of all bonding patterns need to be pre-
computed and stored in a form of library. With the library, each bond composing a
metabolite can be assigned its cleavage activation energy with its bonding pattern
recognized. Then fragmentation of the metabolite is predicted by tracing low-energy
cleavage to produce a theoretical MS/MS spectrum. Remaining problems to realize that
will be discussed at the end of this dissertation.
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1
General Introduction

1.1 The beginnings of metabolite pro�ling

Metabolic pro�les began to be measured in the late 1940s. However, the measurement
was not tangible and needed tremendous e�ort until chromatographic technologies
advanced su�ciently in the late 1960s [3]. In 1971, Pauling et al. quanti�ed about 250
substances from samples of breath and about 280 substances from urine vapor by
using gas chromatography (GC) [4]. This is one of the earliest study on quantitative
metabolite pro�ling. A few years later, he and his coworkers identi�ed 42 metabolites
from urine vapor with mass spectrometry (MS) coupled with gas chromatography
(GC-MS) [5].

In the purpose of developing diagnosis procedures of diseases, a number of groups
began to quantify and identify metabolites from biological samples by using GC-MS
from the late 1970s [6, 7]. Around 2000, Phillips et al. discovered di�erence in presence
of volatile metabolites included in breath between schizophrenia patients and normal
people [8]. Poli et al. also analyzed volatile organic compounds (VOC) in exhaled air of
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patients of lung cancer, healthy smokers, and non-smokers. They successfully classi�ed
patients with their VOC pro�les [9]. They succeeded in distinguishing the patients
with pattern recognition of the metabolite pro�les. In the latest time, technologies in
chromatography, MS, and statistical analyses have made signi�cant progress. An
instance of their practical use is development of a diagnosis kit for depression based on
reduced ethanolamine in depressed patients [10].

1.2 Metabolomics as biochemical phenotyping

Metabolites are considered as the �nal products resulting from responses of biological
systems against genetic or environmental changes [11]. The metabolite pro�les
provided broader insights on a function of a gene. For example, productions of some
kinds of lipids were altered by mutation on a gene involved in stomatal development [12].
Metabolome analyses has provided quantitative and wide knowledge on metabolism as
the endpoint of cellular regulation depending on genotype and environment.

From around 2000, quantitative changes of metabolites has been utilized in
functional genomics. Oliver et al. suggested that changes in the concentrations of
metabolites were required to elucidate function of a gene [13, 14]. With metabolome
analyses, Raamsdonk et al. elucidated function of a gene that shows no apparent
phenotypes when deleted [15]. They showed quantitative variations in metabolite
pro�les caused by di�erences on genotype and cultural environment. Tweeddale et al.
called a total metabolite pool “metabolome” and quanti�ed its changes in Escherichia
coli as response to an environmental change [16]. Fiehn et al. showed that metabolite
pro�les obtained by GC-MS represented variations in genotypes of Arabidopsis thaliana.
They detected and quanti�ed over 300 metabolites [12]. Half of them were identi�ed
with their structures by comparing data obtained from commercially available standard
compounds.

1.3 Techniques for metabolite identi�cation

There are two main techniques to quantify and identify metabolites: one is nuclear
magnetic resonance (NMR), and the other is MS. Each technique has speci�c advantages
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and disadvantages. For example, MS is usually more sensitive than NMR, but NMR
does not need prior separation of metabolites needed by MS; NMR can be performed
directly on biological systems. In this section, principles of the metabolite identi�cation
by 1H NMR [17] and MS [18] are summarized.

1.3.1 Proton nuclear magnetic resonance

The proton (1H) NMR method detects magnetization of hydrogen nuclei composing
compounds. When an external magnetic �eld having particular frequency is supplied
to a nucleus, it is signi�cantly magnetized; that is resonance. The frequency that causes
the resonance is peculiar to species of the nucleus, but it shifts depending on a chemical
condition where the nucleus is; for example, hydrogen nuclei in a methyl group (RCH3)
and in a methylene group (R2CH2) show resonance in di�erent frequency. They are
called chemical shifts and important clues to infer the structure of the compound.
Chemical shifts of a broad range of chemical structures have been thoroughly analyzed
and collected. Thanks to that, we can guess what compounds are included in a sample
by 1H NMR. There are also NMR methods targeting other species of nuclei like 13C.

The major advantage of NMR compared to MS is ability to measure intact tissues.
NMR can be applied to biological �uids without any separation or derivatization. Owing
to that, NMR-based study can analyze metabolite pro�les altered by physiological
stimuli in living systems [19, 20]. In particular, this sort of studies focusing on dynamical
changes of metabolite pro�les in living systems is called “metabonomics.”

1.3.2 Mass spectrometry

In a mass spectrometer, compounds included in a biological sample are ionized and
separated by their mass-to-charge ratios (m/z). The unit of massm is Dalton (Da); 1 Da
means 1/12 of 12C mass. The charge z is measured in units of a charge of an electron
(1.602 × 10−19 C). The values ofm/z are measured by observing motions of the ions in
an electromagnetic �eld. The number of ions having each value ofm/z is counted
separately and described as intensities in a mass spectrum.

There are several variations of ionization instruments. Electron ionization (EI) is
one of widely used techniques. Accelerated electrons collide with compounds and an
electron is dispelled out of the compound. That leads to odd-electron radical cations.
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As the cations are provided excess energy by the collision, they are fragmented into
substructures; EI is called “hard” ionization owing to this feature. Therefore, a mass
spectrum obtained with EI contains several peaks corresponding to an entire molecule
and fragments. The spectra including structural information are useful to identify the
compounds. Theoretical prediction of fragmentation in EI-MS has been challenged for
a long time [21, 22, 23]. Another common technique is electrospray ionization (ESI). In
contrast to long-established EI, ESI has attracted signi�cant attention since around
1990. A solution including compounds and some ions, e.g. H+, K+, or CH3COO−,
is electrically sprayed from a capillary. When sprayed, the compounds catch one
or more ions to form even-electron ions. Great di�erence from EI is that ESI can
produce negative ions by bonding anions to compounds. Because of “soft” ionization,
ESI maintains the original structures of fragile compounds. Thus, ESI is suitable for
polysaccharides, peptides, and proteins. Production of polyvalent ions also helps with
measuring macromolecules by reducingm/z values. There are other options such as
chemical ionization, �eld desorption, fast atom bombardment, and matrix assisted laser
desorption ionization; their details are omitted here.

There are also some kinds of mass analyzers. The �rst one is a magnetic sector.
When accelerated ions �y through a magnetic �eld, their paths are curved by magnetic
force. The curvatures are di�erent depending on the mass of ions; a heavier ion draws
the arc with a larger radius owing to strong centrifugal force. Because the path to
the ion detector is �xed by the equipment, by scanning the magnetic �eld strength,
ions with the speci�c mass are collected. Another is a quadrupole. Four rod-shaped
electrodes surrounding the path of ions are supplied voltage with high frequency. The
voltage causes oscillation to the ions, and ions having speci�c mass can pass through
the analyzer to the detector. The quadrupole is suitable to ESI, where arising ions
have relatively low velocity. A time of �ight (TOF) analyzer has high sensitivity and
resolving power. Ions are accelerated by a certain voltage and drift through a tube to
the detector. Supplied with the same energy, light ions �y faster than heavy ones. By
measuring the time till arrival, mass of ions are estimated. There are in principle no
loss of ions; thus TOF analyzers demonstrate high sensitivity. Its resolving power
can be increased by elongating the drift tube. Ion traps and Fourier transform-ion
cyclotron resonance are other examples, but I will skip them.

Since there are isobaric metabolites, having identical mass,m/z is sometimes not
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enough for the separation. In most cases, mass spectrometers are used in combination
with chromatographic techniques, e.g. GC and liquid chromatography (LC). MS has
a good a�nity to the chromatographic techniques. As EI ionizes compounds in a
gas phase, it is highly compatible with GC. LC can be directly combined with ESI
where compounds are ionized from a solution. These techniques provide additional
separation of compounds. Another way to distinguish isobaric compounds is tandem
mass spectrometry (MS/MS). Details of MS/MS are explained in the next subsection.

1.3.3 Tandem mass spectrometry

In tandem mass spectrometry (MS/MS or MS2), one peak in a mass spectrum is picked,
and corresponding precursor ions are transferred into second mass analyzing with
fragmented into product ions. One way to implement that is serial connection of
two mass analyzers. For example, it can be executed by triple quadrupoles. Ions
are separated in the �rst quadrupole, and then ions with one speci�c mass value
are transferred into the second quadrupole. In the second quadrupole, the picked
ions are fragmented by collision induced dissociation (CID), of which details are
described below. Product ions from the second quadrupole are analyzed in the third
quadrupole. Mass and intensities of product ions are described as a tandem mass or
MS/MS spectrum.

CID is a technique to activate precursor ions and cause fragmentation. It is e�ective
to soft ionization like ESI which produces low-energy ions [24]. Precursor ions go
through a chamber �lled with neutral gas such as He, N2, or Ar. The ions collide with
the molecules of the gas and receive energy. The energy is immediately converted into
internal vibration of the ions and induces dissociation of chemical bonds resulting in
fragment ions. There are two types of CID depending on amount of kinetic energy
given to the ions. Low-energy collision accelerates ions with 1-200 electron volt (eV),
while high-energy collision employs energy in order of keV.
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1.4 Metabolite identi�cation with tandemmass spec-

trometry

1.4.1 Importance and insu�ciency of standard spectral library

The chemical analysis working group in The Metabolomics Standard Initiative (MSI)
de�ned four levels of metabolite identi�cation:

• level 1: identi�ed metabolites
• level 2: putatively annotated compounds
• level 3: putatively characterized compound classes
• level 4: unknown metabolites

Level 1 needs that results from experimental measurement are compared with results
from puri�ed authentic standards measured in the same laboratory with the same
analytical methods. Level 2 can be achieved without measuring authentic standards by
guessing the name of the compound from comparison between experimental results
and public or commercial spectral libraries. If some features characteristic of a certain
compound class, but not characteristic to a single chemical species, the analysis is on
level 3. Level 4 means only that the obtained peak is not a noise. Many of MS-based
studies refer to spectral libraries instead of data of authentic standards obtained in own
laboratories. Therefore, they achieve annotation of level 2, not identi�cation of level 1,
according to the de�nition. In this dissertation, “identi�cation” means the annotation
of level 2.

In metabolome analyses, tandem mass spectrometry (MS/MS) is a powerful tool to
identify various metabolites from a biological sample at once. Nowadays most of
mass spectrometric analyses are accompanied by GC or LC, but coelution of some
metabolites makes the separation unclear. MS/MS provides additional information
to distinguish metabolites, especially isobaric ones. Metabolites are decomposed
into fragments by CID in a tandem mass spectrometer. Mass and intensity of each
fragments are described as an MS/MS spectrum. Since fragmentation patterns of
metabolites are di�erent depending on their molecular structure, MS/MS spectra are
characteristic of metabolites and considered as key clues for identi�cation.

Although metabolites are identi�ed by searching standard MS/MS spectra stored in
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public, commercial, or private repository, insu�ciency of current spectral libraries
impedes comprehensive identi�cation of metabolites. If a standard spectrum similar to
a measured one is found, the corresponding metabolite is identi�ed; otherwise, the
metabolite remains unidenti�ed and the measured spectrum is discarded. Several groups
have endeavored to create substantial spectral libraries, NIST Tandem Mass Spectral
Libraries [25], MassBank [26], METLIN [27], GNPS [28], and Human Metabolome
Database (HMDB) [29] for example. Nevertheless chemical space to discover is so vast
that the libraries have covered just a tiny part. A standard spectrum is created by
measuring a puri�ed metabolite; that is a complicated and costly process. In PubChem
database, about 92 million compounds including synthetic ones are registered. Against
such numerous compounds, measuring standard spectra one by one is supposed
impossible. For those reasons, current metabolomics studies have not reached “omics”
in a true sense. The majority of entire metabolites existing in organisms are out of our
sight; we are focusing on their extremely limited part.

As I mentioned in Subsection 1.3.2, mass spectra obtained by EI-MS also include
fragment information. Since species of ions produced by EI-MS and MS/MS with
CID are di�erent, they result in di�erent spectra. Standard spectra from EI-MS are
stored in spectral libraries separately from ones from MS/MS and also used for the
identi�cation. In this dissertation, I focus on metabolite identi�cation by ESI-MS/MS
with CID fragmentation.

1.4.2 Challenges for metabolite identi�cation independent of
standard spectral library

To overcome the insu�ciency of MS/MS spectral libraries, many research groups have
challenged to theoretically identify metabolites without measured standard spectra.
One approach is guessing metabolite structures directly from fragmentation patterns
appearing on MS/MS spectra. CSI:FingerID [30, 31] and CFM-ID [32, 33] are successful
examples in this approach. Another approach is to build databases of MS/MS spectra
derived by theoretical prediction. LipidBlast [34] successfully produced theoretical
MS/MS spectra of a wide range of lipids.

A fragmentation process starting from one metabolite structure is described as a
tree data structure called fragment tree [35, 36]. An example of fragmentation tree is
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Figure 1.1: An example structure of fragment tree. Adapted from Fig. 2 in Ref [33].

illustrated in Figure 1.1. Each node corresponds to fragments of the metabolite, and
each edge corresponds to one fragmentation step. From accurate mass represented by
each peak of MS/MS spectra, the atomic composition of the fragment can be estimated.
By analyzing an MS/MS spectrum, putative fragment trees representing the MS/MS
spectrum can be constructed. Each fragment has several fragmentation pathways
to reach itself which consist of fragmentation steps. For example, the fragment
represented by a single triangle has two pathways in Figure 1.1. If experimental
fragments can be reached without missing nodes or edges, the reliability of the
fragment tree becomes high. That can be used as a criterion to annotate a precursor
structure of the MS/MS spectrum [35].

CSI:FingerID [30, 31] utilizes fragmentation tree calculated from measured MS/MS
spectra. Here, the fragmentation tree only has compositional information; connection
among substructures, which are illustrated by a single shape, is not considered.
Means of machine learning predicts presence of characteristic substructures, called
�ngerprints, represented by a measured spectrum. Then a compound database is
searched for metabolite structures composed of the �ngerprints predicted to present
in the measured spectra. This method allows spectrum-unknown metabolites to be
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identi�ed.
CFM-ID [32, 33] is a machine learning-based strategy. It predicts MS/MS spectra

only from metabolite structures. Probability of bond cleavage depending on structural
environment in the vicinity of the bond is learned from experimental standard spectra
stored in databases. On the basis of the probability, metabolite fragmentation is
simulated as a stochastic process and MS/MS spectra are theoretically generated. To
identify metabolites without standard MS/MS spectra, candidate compounds based on
their mass are sought from compound databases; mass of unknown metabolites to be
identi�ed can be obtained from the �rst step of MS. By predicting fragmentation of the
candidates by CFM-ID, candidates are scored and ranked on the basis of similarity
between standard and predicted MS/MS spectra [33].

Building purely computational mass spectral library is attracting attention in recent
years [37]. LipidBlast [34] extrapolates fragmentation of lipids to create theoretical
spectra. A lipid molecule is regarded as combination of three moieties. As the majority
of fragmentation of lipids is decomposition into each of the moieties, theoretical
MS/MS spectra of lipids are comprehensively generated by changing their combination.

These methods are successful but provide few insights on mechanisms of fragmen-
tation in MS/MS. Machine learning is a black-box approach; why the fragmentation
occurs is unclear. LipidBlast is clearer approach, but it can be applied to lipid molecules
naturally. As metabolite fragmentation is unimolecular reaction, physicochemical
theories such as quantum chemistry and statistical dynamics can supply meaningful
prediction. In EI-MS, where metabolites decompose into odd-electron ions, quantum
mechanics and molecular dynamics have been utilized to predict mass spectra [22, 23].
On the other hand, ionization and fragmentation processes in ESI-MS/MS with CID,
where even-electron ions are dominant, are di�erent from ones in EI-MS, and the
physicochemical theories have not been applied to ESI-MS/MS to reveal mechanisms
and predict fragmentation.

1.5 Aim and organization of the dissertation

In this dissertation, I discuss application of physicochemical theories to metabolite
fragmentation in ESI-MS/MS. Computational chemistry was utilized to validate
theoretically expected fragmentation, to distinguish isobaric metabolites, and to predict
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fragmentation pathways in ESI-MS/MS. I con�rmed applicability of computational
chemistry for determining fragment structures and built a procedure to predict
fragments from a metabolite structure.

In Chapter 2, theoretical validation of “hydrogen rearrangement rules” [1] is
presented. They are simple rules based on the classic even-electron rule but powerful to
predict fragment mass including hydrogen movement. I performed enthalpy calculation
on putative fragmentation schemes to con�rm existence of the fragments. All of the
putative fragments were proved to result from properly low enthalpy changes which
could be compensated by chemical collision in MS/MS. Computational chemistry was
shown to be a useful tool for validation of fragment structures not clearly measured.

In Chapter 3, an identi�cation result of a metabolite without standard spectra
conducted with calculating energy change along its fragmentation pathway is shown.
In comprehensive identi�cation of sphingolipids [2], one of the detected metabolites
had two candidates of isobaric molecular structures. Since standard spectra of both
has not been obtained, some theoretical approaches were needed to choose a correct
structure. I energetically analyzed fragmentation pathways of two candidate structures
and provided evidence to decide which candidate is correct. From the calculation, an
important concept of adjacent group e�ect was gained.

From physicochemical analyses described in Chapter 2 and 3, I constructed
physicochemical prediction of metabolite fragmentation in MS/MS. Its detailed
procedures and results are shown in Chapter 4. The core techniques are assignment
of bonding patterns and activation energy calculation. Bonding pattern makes the
method applicable to any molecules independent of their size. By calculating activation
energy, bond cleavage tendency can be quantitatively estimated.

Conclusion remarks and discussion on future works are given in Chapter 5.
My prediction method is currently ad hoc; energy calculations are performed after
assigning bonding patterns to a target molecule. For original purpose, results of energy
calculations should be stored so that the prediction is done immediately a target
molecular structure is given. Remaining problems to incarnate that are described as
future works.
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2
Validation of hydrogen rearrangement

rules

2.1 Introduction

2.1.1 Necessity of mechanistic elucidation of metabolite frag-
mentation

To identify metabolites from biological samples by LC-MS/MS, four criteria are mainly
considered: retention time, precursorm/z, isotopic ratio, and MS/MS spectra [38].
MS/MS spectra have much information about structures of detected metabolites, but
currently many of them are unavailable because of insu�cient standard libraries as
stated in Subsection 1.4.1; the coverage is estimated at 5 % of all known metabolites [1].
By computationally predicting MS/MS spectra, many researchers have been trying to
�ll the huge gap. Especially, rigorous relation between precursor structures and product
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fragments is demanded. LipidBlast [34] succeeded for several lipid compound classes.
However, fragmentation of small molecules caused by CID is broadly unclear. In order
to facilitate metabolite identi�cation with MS/MS spectra, mechanistic association of
product ions with precursor structures is necessary.

2.1.2 Hydrogen rearrangement in MS/MS

One key to predict fragment structures is hydrogen rearrangement (HR). According to
the “even-electron rule,” even-electron cations, i.e. positive ions without unpaired
electron, will not usually lose a radical to create odd-electron ion [39]. That means
an even-electron ion will decompose into a smaller even-electron ion and a neutral
molecule. The even-electron rule is based on the Octet rule, where a stable atom should
have eight electrons around it. With satisfying the Octet rule, positive and negative
charges in even-electron ions are basically carried by protonated and deprotonated
molecules, respectively. To acquire a charge, an atom adjacent to the cleaved bond
frequently absorb a H atom from the opposite part. That causes mass of ions to shift by
1, 2, or 3 Da from a substructure of its precursor ion [40]. Thus, prediction of the exact
number of rearranged H atoms is needed to estimate accurate fragment mass.

Examples of HR are illustrated in Figure 2.1. It is assumed that one proton is
attached to the nitrogen atom to ionize the molecule. When the middle covalent
bond between a nitrogen atom and a carbon atom is cleaved, two kinds of ions are
supposed to be produced. One is produced from the upper pathway in Figure 2.1. The
nitrogen atom initially has one H atom. In the ionization step, the nitrogen atom is
protonated, and then it absorbs a H atom from the cleaved opposite side to acquire a
positive charge. The total number of rearranged H atoms is +2. The other fragment ion
is produced from the lower pathway in Figure 2.1. On this pathway, we focus on
the carbon atom connected to nitrogen, oxygen, and another carbon atoms. In both
ionization and cleavage steps, the carbon atom obtains no H atoms. After the cleavage,
the carbon atom becomes an unstable structure having less than eight electrons. The
connected oxygen atom can share a lone pair with the carbon atom to make a triple
bond. In that way, the carbon atom can be stable without absorbing H atoms.

In Figure 2.2, HR rules derived from statistics of fragment peaks in ESI-MS/MS
spectra recorded in MassBank are summarized. Bold characters indicate dominant HR
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Figure 2.1: Examples of hydrogen rearrangement.

behaviors. Since CID employed by ESI-MS/MS measurement often causes multistep
fragmentation, HR rules are classi�ed to “�rst” and “second and later” bond cleavage.
In �rst bond cleavage, fragmentation follows ionization of molecules. On the other
hand, second and later bond cleavage occurs to fragment ions which already have a
charge. Thus, the number of rearranged H atoms is di�erent in each of the cases. At
�rst bond cleavage in positive ion mode, a C atom takes no H atoms, and N and O
atoms take two atoms. P and S atoms behave like both C and N atoms; the major part
is C-like behavior. At �rst bond cleavage in negative ion mode, all �ve atoms can
undergo the cleavage without HR. C and P atoms dominantly lose two H atoms. Losing
one H atom, which violates even-electron rule, is the unique behavior by a S atom.
Second and later bond cleavage is somewhat complicated; all atoms can undergo two
HR patterns in both positive and negative ion mode.

By considering the HR rules, MS-FINDER program attempts to elucidate a metabolite
structure from MS and MS/MS spectra [1]. Considered with soft ionization, an obtained
MS spectrum has no fragment peaks; only peaks corresponds to an entire molecule
appear. Even though the spectrum does not include fragment ions, there are several
peaks because of isotopes like 13C. Isotopic ratio calculated from the MS spectrum
is also an important clue. The program generates chemical formula from accurate
precursor mass, isotopic ratio, and some other criteria. After that, chemical structures
coinciding with the generated formula are searched for from structural databases. The
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Figure 2.2: Summary of hydrogen rearrangement rules. Reproduced from Ref. [1].

candidate structures are computationally fragmented, and mass of the fragments are
checked against the measured MS/MS spectrum. In this comparison, fragment mass is
scored on the basis of the HR rules. The program ranks the candidates by the score and
suggests metabolite structures likely to be measured. That is the purpose to derive the
HR rules.

The HR rules were veri�ed both statistically and theoretically. Statistics from
MS/MS spectra recorded in MassBank revealed that the major part of carbon, nitrogen,
and oxygen atoms follows the even-electron rule, while sulfur and phosphorus atoms
showed di�erent behavior [1]. There are also some exceptions in C, N, and O atoms.
I investigated the causes of the rule-violating behavior of S and P atoms and the
exceptions of C, N, and O atoms by using computational chemistry. In addition, I
calculated enthalpy changes in fragmentations predicted by the MS-FINDER program
to con�rm the fragmentation is likely to occur. Since the structural prediction was
applied on spectrum-unknown metabolites, we needed a basis for rightness of the
prediction. Computational chemistry revealed that predicted fragmentations can be
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su�ciently activated by energy supplied from low-energy CID.

2.2 Enthalpy calculation in putative fragmentation

pathways

2.2.1 Hypothesizing fragmentation pathways

Fragmentation pathways which led to predicted fragment ions were hypothesized
manually. The MS-FINDER program annotated fragment structures onto peaks
of MS/MS spectra measured from several metabolites on the basis of HR rules.
Fragmentation trees like an example illustrated in Figure 1.1 were then constructed.
Fragmentation pathways to produce the annotated fragments were investigated by
tracing electron transfer within the molecule.

At �rst, a position of protonation or deprotonation which facilitate subsequent
fragmentation was assumed. A proton can absorb an electron pair from heteroatoms,
i.e. other than C and H atoms, or double- or triple-bonded C atoms. Heteroatoms
provides a lone pair to the proton, and π-electron composing the multiple bonds can
catch the proton. The protonation causes a positive charge on the site. Acidic sites
such as phosphate and sulfate were mainly selected as deprotonation sites, which carry
a negative charge. Generally, moieties around a charge are relatively unstable. Thus,
the charged sites were the starting points for the fragmentation pathways.

A charge can be stabilized by heteroatoms or charge distribution. Heteroatoms can
maintain a charge with sutsifying the Octet rule. When a positively charged atom cuts
one of the bonds connected to itself, the opponent of the cleaved bond receives a
charge. In Figure 2.3 a, a charge is initially on the N atom and moves to the middle C
atom after the cleavage. The charged C atom has only six electrons (a single bond
with a C atom and a double bond with an O atom) and is therefore in a unstable state.
The initially charged N atom can absorb a proton from the opposite part to remove a
charge (the upper part of Figure 2.3 a). Otherwise, the O atom adjacent to the C atom
which received a charge can provide a electron pair (the lower part of Figure 2.3 b).
Since the N and O atoms have eight electrons (four single bonds and a triple bond and
a lone pair, respectively), the conclusive ions are stable. Even if there are only C atoms,
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Figure 2.3: Typical fragmentation schemes of positive ions. (a) Two possible schemes to
stabilize the charge which arose on the middle C atom. Two dots indicate paired elec-
trons, and curved arrows indicate transfer of paired electrons. (b) Charge distribution
within a phenyl group.

a charge can be stabilized by distribution (see Figure 2.3 b). In a toluene structure,
the position of the charge can be changed without rearranging the atoms. The true
structure of the ion is an average structure of the four structures. Thus, magnitude of
the charge in each structure is regarded as 1/4; this is called “partial charge” because, in
reality, an electron cannot be divided. By decreasing the partial charge, an ion can
stabilize its structure.

Metabolites should undergo fragmentation pathways with stable structures. By
tracing stable structures stated above from ionized metabolites to their fragments, I
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generated putative fragmentation pathways. To examine reliability of the putative
pathways, enthalpy changes along them were calculated with computational chemistry.

2.2.2 A semi-empirical method for enthalpy calculation

Molecular orbital (MO) method is a computational method to determine electron
distribution over molecular orbitals held by a molecule. Calculation of potential energy
and geometrical optimization can be performed by the calculation. Potential energy
depends on arrangement of atoms such as bond length, bond angle, and bond torsion.
Geometrical optimization is executed by repeating slight changes of the arrangement
which cause energy decrease. If the energy decrease becomes smaller than a certain
threshold, an optimal structure of the molecule is achieved.

In this study, a calculation method called “semi-empirical” in contrast with “�rst
principle” was used. In �rst principle calculation, potential energy of a molecule
is fully derived by solving quantum mechanic equations. As the equations cannot
be solved analytically, they are solved by repeating numerical integrations. That
causes massive computational cost. Semi-empirical methods are developed in order to
decrease the computational cost. In �rst principle calculation, there are numerous
integrations having less e�ects than the core integrations. Semi-empirical methods
neglect these less in�uential integrations [41]. To compensate for the approximation,
they introduce parameters instead of the integrations; the values originally derived
from the integrations are replaced by provided parameters based on experimental and
computational data. Semi-empirical methods are classi�ed by how to approximate and
parameterize.

All enthalpy calculations in this chapter were performed by using MOPAC2012
(Molecular Orbital PACkage) program [42]. Approximation method was modi�ed
neglect of diatomic overlap (MNDO) [43], no additional approximation other than
above, and parameterization method was parametric method number 7 (PM7) [44, 45].
In this method, enthalpy of the molecule is derived from four parameters: electronic
energy, nuclear-nuclear repulsion energy, energy to eliminate all the valence electrons,
and total enthalpy of atomization of all atoms. Former two were calculated by numerical
integration and latter two were assigned empirically to each element.

Enthalpy changes in fragmentation pathways were calculated as energy di�erence
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between the precursor ion and its fragments. The precursor and fragment ion
structures are built in a graphical user interface of MOPAC, WebMO [46]. Heats of
formation of the precursor ion (∆Hprec

f ), the fragment ion (∆H frag,ion
f ), and the neutral

fragment (∆H frag,neut
f ) were calculated with MOPAC2012. Enthalpy change along

the fragmentation pathway was calculated as ∆H frag,ion
f + ∆H

frag,neut
f − ∆H

prec
f . If the

enthalpy change is lower than 0 kcal mol−1, fragments are more stable than their
precursor ion. That means the fragmentation easy to occur with mild activation by CID.
Calculation of each Hf took several seconds with a laptop equipped with 4 GB memory.

2.3 Results of presuming fragmentationpathways and

enthalpy calculation on them

2.3.1 Behaviors of P and S atoms

Despite identical electron placement in the outermost shell between N and P atoms,
having three valence electrons, HR behaviors of them were di�erent according to the
statistic (see Figure 2.2). The same can be said for O and S atoms.

A manual inspection found that P atoms exist majorly as phosphates in biological
environments; that is the reason why they behave di�erently from N atoms. MS/MS
peak annotation for 2′-deoxycytidine 5′-diphosphate is shown in Figure 2.4 a. Of these,
fragment a, d, and f result from bond cleavage on P atoms. Fragmentation scheme for
fragment a is in Figure 2.4 b. This is dehydration from the β phosphate group. The
whole fragmentation pathways annotated to all fragments in Figure 2.4 are illustrated
in Figure 2.5 and 2.6. Fragment d and f are also explained by similar schemes where H
atoms in the phosphate groups move to other O atoms. A negative charge is stably
maintained by charge distribution over the phosphate group. The fragmentation
occurs independently of the charged site and needs low energy. Enthalpy changes
along the schemes for fragment a, d, and f were calculated as −59.3, −47.9, and −48.0
kcal mol−1, respectively (Table 2.1). The changes were as low as those in production of
fragment b or e, which followed the HR rules for C or O atoms, respectively. The
low-energy cleavage of P–O bonds is characteristic of the phosphate group structures.
Therefore, the HR behavior of P atoms is di�erent from N atoms.
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Figure 2.4: (a) Annotation for MS/MS spectral peaks of 2′-deoxycytidine 5′-diphosphate
measured in negative ion mode and (b) a fragmentation scheme for fragment a.
Reproduced from Ref. [1].

Table 2.1: Enthalpy changes in fragmentation of 2′-deoxycytidine 5′-diphosphate.
fragment enthalpy change (kcal mol−1)

a −59.3
b −49.8
c −30.0
d −47.9
e −31.3
f −48.0

S atoms showed particular behavior which violate the even-electron rule. Fragmen-
tation of 3-indoxyl sulfate in negative ion mode indicated an example to produce an
odd-electron ion (Figure 2.7). The odd-electron ion results from “homolysis,” where an
electron pair composing a bond is divided into single electrons upon cleavage of the
bond. If an electron pair moves together, the bond cleavage is called “heterolysis”
and results in even-electron ion. Since odd-electron ions produced by homolysis are
generally less stable than even-electron ions, odd-electron ions are considered to
hardly arise in CID-activated fragmentation. However, the sulfate structure was able to
stabilize the unpaired electron by distributing it over the structure. Calculated enthalpy
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Putative fragmentation scheme of 2’-deoxycytidine 5’-diphosphate

precursor 1

precursor 1

precursor 1

fragment a

fragment b

fragment c

fragment e

Figure 2.5: Putative fragmentation pathways of 2′-deoxycytidine 5′-diphosphate to
produce fragments a, b, c, and e in Figure 2.4. Reproduced from Ref. [1].

value of the odd-electron ion (fragment b’ in Figure 2.7) relative to its precursor ion,
−31.3 kcal mol−1, was as low as that of the even-electron ion (fragment b), −37.4
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precursor 2

precursor 2

fragment d
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Figure 2.6: Putative fragmentation pathways of 2′-deoxycytidine 5′-diphosphate to
produce fragments d and f in Figure 2.4. Reproduced from Ref. [1].

kcal mol−1. The value was as low as that of fragment a (see Figure 2.8 and Table 2.2).
Actually, fragment b’ was more abundant than fragment b; nevertheless fragment b’
has higher enthalpy. The possible reason is that fragment b needs to absorb a H atom
from the distant N atom to compensate its valence. The movement of the H atom
requires proper conformation of the molecule, and that decreases reaction rate of the
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Figure 2.7: Annotation for MS/MS spectral peaks of 3-indoxyl sulfate measured in
negative ion mode. Reproduced from Ref. [1].

Table 2.2: Enthalpy changes in fragmentation of 3-indoxyl sulfate.
fragment enthalpy change (kcal mol−1)

a −32.8
b −37.4
b’ −31.3

heterolysis fragmentation. The homolysis requires no particular conformation. Thus,
fragment b’ is produced faster than fragment b.

2.3.2 Exceptions of C, N, and O atoms to HR rules

Exceptional fragments to the HR rules are exempli�ed in Figures 2.9, 2.10, and 2.11. They
are classi�ed into two patterns: radical ions and charge-transferred ions. I computed
their stable electronic structures and enthalpy changes along the fragmentation.

Example 1. Phosphocholine. The loss of three H atoms along cleavage on N-C
and C-O bonds in phosphocholine (Figure 2.9) is explained by a radical cation. Again,
the odd-electron cation is unstable. The unpaired electron is distributed over the
conjugated bond indicated by a blue circle. Calculated enthalpy change along the
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Figure 2.8: Putative fragmentation pathways of 3-indoxyl sulfate to produce fragments
a, b, and b’ in Figure 2.7. Reproduced from Ref. [1].

cleavage was 65.02 kcal mol−1 ∼ 2.8 eV. As low-energy CID provides energy ∼ 10 eV, this
fragmentation can be activated su�ciently. In addition, the computational chemistry
method can estimate spin population, which infers localization of an unpaired electron,
on each atom. If the spin population of an atom is 1 or −1, the unpaired electron
is completely localized on the atom; that means the radical is unstable. The spin
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Figure 2.9: Exceptional fragment ions observed in MS/MS spectra of phosphocholine
measured in positive-ion mode ESI-MS/MS. The red peak is an exceptional fragment to
HR rules. The unpaired electron was distributed over conjugated bonds in the blue
circle to gain a stable electronic structure. Reproduced from Ref. [1].

populations on the C and N atoms in the blue circle in Figure 2.9 were calculated
as 0.67 (∼ 2/3), −0.33 (∼ −1/3), and 0.68 (∼ 2/3) from the left top. Sum of the three
populations nearly equals to 1; i.e., one unpaired electron is distributed over the three
atoms. These results mean the unpaired electron is distributed over the three atoms to
stabilize the radical cation.

Example 2. Kaempferide. In Figure 2.10, another exception caused by a radical
anion is shown. Here, the range of conjugation is much broader because of the aromatic
structure. Spin population on each atom involved in the conjugation is summarized
in Table 2.3. The densest population is 0.26 ∼ 1/4 on atom 5 and 10; that is sparser
than population on phosphocholine with the smaller conjugation moiety. The broad
conjugation moiety contributes to lower relative enthalpy of the radical anion as 34.71
kcal mol−1 ∼ 1.5 eV.

If there are some conjugated bonds adjacent to a cleavage position where an
unpaired electron arises, the radical ion is stabilized and easily produced even from an
even-electron ion. That is the origin of odd-electron-related exceptions to the HR rules.

Example 3. Isoproturon. Example in Figure 2.11 does not originate from radical
ions. Charge transfer caused the exception to the HR rule for N–C bond cleavage.
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Figure 2.10: Exceptional fragment ions observed in MS/MS spectra of kaempferide
measured in negative-ion mode ESI-MS/MS. The red peak is an exceptional fragment
to HR rules. The unpaired electron was distributed over conjugated bonds in the blue
circle to gain a stable electronic structure. Reproduced from Ref. [1].

According to the HR rules, a charged N atom side which results from N–C bond
cleavage captures two H atoms. That HR is needed to raise a charge on the N atom.
In the case of isoproturon, the N atom side gained a charge without movement of a
H atom. The charge arose on a C atom composing the benzene moiety instead of
the N atom. Bond rearrangement in the benzene moiety occurred immediately after
the cleavage, and the N atom no longer needed to capture two H atoms to gain a
charge. Usually, a charge prefers being on N and O atoms rather than C atoms in
order to satisfy the Octet rule. Here, the charge was however stabilized on C atoms
by distribution. Partial charges on each moiety (C, N atoms and bound H atoms)
is summarized in Table 2.4. As there were three charged sites (moiety 4, 6, and 9),
resonance structures to distribute the charge were formulated as Figure 2.12. Because
of the distribution, relative energy was su�ciently low as 37.0 kcal mol−1 ∼ 1.6 eV.
From the MO calculations, distribution of a positive charge facilitating the exceptional
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Table 2.3: Spin population on each atom included in conjugated bonds of a fragment
radical anion produced from kaempferide.

O   

O      

O      

O            

1

3

4

5

10

9

2
7

6

8

atom No. spin population
1 0.14
2 −0.03
3 0.21
4 −0.12
5 0.26
6 −0.13
7 0.23
8 0.12
9 0.03
10 0.26

Figure 2.11: Exceptional fragment ions observed in MS/MS spectra of isoproturon
measured in positive-ion mode ESI-MS/MS. The red peak is an exceptional fragment to
HR rules. A positive charge caused by the cleavage immediately moves to the benzene
structure to gain a stable electronic structure. Reproduced from Ref. [1].

fragmentation was revealed.
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Table 2.4: Calculated partial charges on each moiety of a fragment cation produced
from isoproturon. A moiety includes one C or N atom and bound H atoms; e.g., moiety
1 includes one C and three H atoms.

C      
+      

N      H    

C      H      3      

H      3      C      
1

2

3

4

5
6

10

7
8

9

moiety No. partial charge
1 0.08
2 0.03
3 0.07
4 0.37
5 −0.05
6 0.19
7 0.07
8 0.03
9 0.33
10 −0.12

C      
+      

N      H      

C      H      3      

H      3      C      C      H      
+      

N      H      

C      H      3      

H      3      C      

C      
H      

+      
N      H      

C      H      3      

H      3      C      

Figure 2.12: Resonance structures of fragment radical cation of isoproturon.

2.4 Conclusion

HR is an important key to elucidate exact fragment structures from MS/MS spectra
as well as reveal detailed fragmentation mechanisms which occur in tandem mass
spectrometer. Typical HR behaviors were formulated as the HR rules, and they were
utilized for metabolite identi�cation with MS/MS. Semi-empirical MO calculation
quanti�ed relative enthalpy of fragment ions and electron distribution over them.
The calculation revealed how stable the fragment ions were and how they stabilized
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their charged structures to ensure their existence. Especially, the origins of several
exceptions to the HR rules were clari�ed by comparing enthalpy and analyzing
electron distribution. That consolidated reliability of the HR rules. Through this
study, computational chemistry was proved helpful to investigate mechanisms of
CID-activated fragmentation in MS/MS.
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3
Comprehensive identi�cation of

sphingolipids

3.1 Introduction

3.1.1 Building theoreticalMS/MS spectral libraries for sphingolipid
classes to identify them comprehensively

LipidBlast is a theoretical MS/MS spectral library covering 26 lipid classes and has
ability to expand its coverage [47, 48, 38]. LipidBlast has succeeded in comprehensively
constructing in silico MS/MS spectral libraries for glycerolipids and sphingolipids
[34]. The construction is based on extrapolating measured fragmentation of lipid
molecules. Variations of lipids are computationally generated by changing combination
of functional groups (fatty acids), sca�olds, and header groups. A heuristic method
utilizing experimentally measured MS/MS spectra produces theoretical MS/MS spectra
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Figure 3.1: Three moieties composing sphingolipid structures. Reproduced from Ref.
[2].

for computationally generated lipid molecules to cover all varied structures in a class.
As the developers has been providing LipidBlast templates for novel lipid classes,
theoretical libraries for lipids not originally covered in LipidBlast can also be generated
[47].

Theoretical MS/MS spectral libraries for 21 sphingolipid classes in negative ion
mode ESI-MS/MS were newly constructed [2]. The classes included eight human
ceramide classes [49], one murine ceramide class [50], their monoglycosides, and
sphingomyelin. Sphingolipid structures were regarded as combination of three moieties:
fatty acid, sphingoid base, and header (Figure 3.1). The abbreviated names of the
classes were originally used by Masukawa et al. [49]; for example, a sphingolipid
consisting of an α-hydroxyl fatty acid (A), a sphingosine base (S), and a hydrogen atom
header (Cer) is denoted as “Cer [AS]”. The 21 sphingolipid classes were represented by
variations of the combination.

By using in silico MS/MS spectral libraries, sphingolipids included in several biolog-
ical samples were comprehensively identi�ed. By extrapolating typical fragmentation
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of sphingolipid classes measured from authentic standards, comprehensive MS/MS
spectral libraries were built. With the libraries, sphingolipids in mouse ear tissue,
mouse liver tissue, and two types of human cells (HeLa and HEK) were throughly
identi�ed. Around 150-230 sphingolipids were identi�ed on each of the samples [2].

3.1.2 Detailed annotation of diagnostic fragments produced from
each sphingolipid class

In order to elucidate typical fragmentation patterns of sphingolipid classes, MS-FINDER
program with HR rules [1] was utilized to annotate substructures to diagnostic fragment
ions. Sphingolipid molecules representative of their class were measured with negative
ion mode ESI-MS/MS. Substructures of the sphingolipid were assigned to product ion
peaks in the measured MS/MS spectrum counting in hydrogen movements according
to the HR rules with manual curation.

Diagnostic fragments produced from Cer [NS] are shown in Figure 3.2. Fragment a,
corresponding to loss of 30 (CH2O) or 32 (CH3OH) Da, can determine the header; loss
of hexose or phosphocholine headers must result in larger decrease in mass. Fragments
b, c, and d are speci�c to fatty acids. On the fatty acid moiety, length of its carbon
chain and nonexistence of a hydroxy group ([A] or [B]) or an ester bond ([EO]) are
con�rmed from mass of these fragments. From fragments e and f, the structure of the
sphingoid base is determined. They re�ect length of the carbon chain and existence of
the double bond in sphingosine [S]. For dihydrosphingosine [DS] or phytosphingosine
[P], mass of 2 Da (two H atoms) or 18 Da (two H and one O atoms) will be added there,
respectively. Fragments a and b showed dehydration which resulted in loss of 16 Da.

Ceramide having an α-hydroxyl fatty acid, Cer [AS], showed additional diagnostic
fragments (Figure 3.3). Fragments a, b, d, and e of Cer [AS] corresponds to addition of a
hydroxy group to fragments a, b, c, and d of Cer [NS], respectively. The identical one
to fragment f of Cer [AS] was observed in Cer [NS] as fragment f. Here, a recombined
structure of fragment d, described as −NH+O, was detected. The recombination
frequently occurs when measuring ceramides in negative-ion mode ESI-MS/MS [51].
Actually, Cer [NS] also displayed the recombination, but its abundance was too low
to be detected. Fragment c was characteristic of Cer [AS] as well as its subsequent
fragment h. Fragment g resulting from dissociation of the α carbon was also newly
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Figure 3.2: Diagnostic fragments of a Cer [NS] molecule. The substructures are
described in neutral form with the number of rearranged hydrogen atoms. Reproduced
from Ref. [2].

observed.

Representative molecules of other sphingolipid classes were also measured in
negative-ion mode ESI-MS/MS, and their diagnostic fragments were annotated to
measured MS/MS spectra. Based on the annotated diagnostic fragments, theoretical
MS/MS spectral libraries for sphingolipid classes were constructed.
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Figure 3.3: Diagnostic fragments of a Cer [AS] molecule. The substructures are
described in neutral form with the number of rearranged hydrogen atoms. Reproduced
from Ref. [2].

3.1.3 Absence of authentic standards for ceramideswith a β-hydroxyl
fatty acid

Madison et al. suggested that Cer [BS] existed in mouse skin by the chromatographic
study [50]. There were some signs that Cer [BS] was likely to exist also in the
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LC-MS/MS measurement of the murine samples in Ref. [2]. Positional di�erence of a
hydroxy group in mass-identical pairs, such as Cer [BS] and Cer [AS] or Cer [BDS] and
Cer [NP] (see Figure 3.1), cannot be distinguished by MS because the mass is identical.
To identify ceramides with β-hydroxyl fatty acids, theoretical evidences which can be
obtained without measuring authentic standards were required.

One method is predicting retention time (RT) of ceramides in LC. To predict the RT,
Log P value, which is an index of hydrophobicity and known to correlate with the RT
[52], was estimated with XLogP algorithm [53]. In addition to Log P value, PaDEL
program [54] was utilized to estimate other properties. Several properties as well as
Log P were selected to build a regression model to predict RT of ceramides. From the
prediction using the regression model, RT of Cer [BS] was earlier than Cer [AS] [2].

Another is using MS/MS spectra. As any authentic standards of ceramides with a
β-hydroxyl fatty acid were unavailable, a theoretical library of the ceramide classes
cannot be built from MS/MS spectra of authentic standards. Then, I performed energetic
analysis on fragmentation of Cer [BS] by computational chemistry. The computation
revealed that a fragment unique to a ceramide likely to be Cer [BS] was truly produced
from the Cer [BS] structure. Comparison with calculation results on another possible
structure ensured the existence of Cer [BS]. Details of my computation will be described
in the next section.

3.2 Identifying the unknownmolecule by using com-

putational chemistry

3.2.1 Computational methods

The computational method I used here was also semi-empirical MO calculation, whose
details are described in Subsection 2.2.2. The software was updated to MOPAC2016
[55]; however, the computational method was same (PM7 parameterization [44, 45]).

To obtain the maximum enthalpy change, or “activation enthalpy,” along a fragmen-
tation process, one-dimensional grid calculation was conducted (Figure 3.4). One bond
in a molecule is selected and repeatedly elongated by a small step size, e.g. 0.05 Å. On
each grid point, the molecular structure is optimized, and its enthalpy is calculated.
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C C C C

bound cleaved
1.5 Å 4.0 Å

elongate
0.05 Å

optimize structure,
calculate enthalpy

repeat from bound to cleaved

Figure 3.4: Conceptual diagram of one-dimensional grid calculation on cleavage of the
C–C bond.

The elongation and calculation are repeated until the structure reaches a destinated
structure. Here, the initial structure is a bound molecule and the �nal structure is
dissociated two molecules. To simulate fragmentation processes of ceramides, bond
elongation from 1.5 Å to 4.0 Å with step size of 0.05 Å, i.e. 51 grid points, was computed.

Since the grid calculation requires many repeated computations, stronger computa-
tional resource was needed. NIG Supercomputer System was utilized for the grid
calculation. It took around two hours to �nish the grid calculation on one ceramide
with 32 GB memory (4 GB × 8 CPUs). Two long carbon chains, a fatty acid and a
sphingoid base, increased the computational time of each structural optimization.

3.2.2 Energetic comparison of fragment processes to annotate
its precursor structure

The candidate molecule for Cer [BS] produced a characteristic fragment withm/z = 340
(fragment a in Figure 3.5). It is produced by α-elimination, where α carbon of hydroxy
group is dissociated, from ceramides with a β-hydroxyl fatty acid. The α-elimination is
common in fragmentation of sphingolipids [51].

Another candidate which might be recognized as the precursor of the fragment
a in Figure 3.5 was a γ-hydroxyl ceramide. It has a hydroxy group on the C atom
next to the one that a β-hydroxy group is attached to; this is an imaginary structure.
By predicting RT and checking MS/MS spectra in positive-ion mode, other isobaric
ceramides such as Cer [AS] and Cer [NP], which have a hydroxy group on di�erent
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Figure 3.5: The experimental MS/MS spectrum of Cer [BS] in negative-ion mode
ESI-MS/MS. Fragment a is most abundant and characteristic to the β-hydroxy group.
Reproduced from Ref. [2].

positions, were excluded from the candidates [2]. Then, the problem was to con�rm
that the characteristic fragment with m/z = 340 was correctly produced from the
β-hydroxyl ceremide, not the γ-hydroxyl ceramide.

Possible fragmentation schemes of β- and γ-hydroxyl ceramides are summarized
in Figure 3.6. Scheme A is α-elimination on the β-hydroxyl ceramide resulting in
the diagnostic fragment a in Figure 3.5. The negatively charged hydroxy group was
transformed into a formyl group by the α-elimination. Then the negative charge
transferred to the dissociated C atom and spread to the O atom of the carbonyl group.
Both the neutral fragment and the product ion were considered structurally stable. To
produce the same fragment, the γ-hydroxyl ceramide needs to undergo Scheme B in
Figure 3.6. Here, the structure of neutral fragment was di�erent from one produced in
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Figure 3.6: Fragmentation schemes of β- and γ-hydroxyl ceramides. Schemes A and B
result in the characteristic fragment a in Figure 3.5, while Scheme C produces another
fragment. Reproduced from Ref. [2]

Scheme A in contrast to the same structure of the product ion. The epoxy structure,
having a small triangle, caused large distorsion of the angles between the bonds; the
triangle had angles around 60 degrees, which were much smaller than the stable angle
of 109.5 degrees. Scheme C is α-elimination on the γ-hydroxyl ceramide, which leads
to the di�erent structure of the product ion. In this case, neutral fragment formed a
stable formyl group instead of the unstable triangle structure.

Activation enthalpy for each scheme is written under the arrow in Figure 3.6.
Whole enthalpy changes along the schemes are plotted in Figure 3.7. The graph
shows enthalpy changes along the bond elongation from 1.5 to 3.0 Å; there were no
signi�cant enthalpy changes after the bond length became 3.0 Å. Both Scheme A
and C were α-elimination and showed similarly low activation enthalpy, 17.23 and
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Figure 3.7: Enthalpy changes along the bond elongation in Schemes A, B, and C
illustrated in Figure 3.6. Arrows indicate the activation enthalpy, which is the maximum
change of enthalpy.

15.90 kcal mol−1, respectively. On the other hand, Scheme B showed much higher
activation enthalpy, 37.14 kcal mol−1. With lower activation enthalpy, fragmentation
proceeds exponentially faster. This result indicated two facts: the diagnostic fragment
withm/z = 340 was easily produced from the β-hydroxyl ceramide (Scheme A), and
production of the fragment from the γ-hydroxyl ceramide (Scheme B) would be
inhibited by much faster fragmentation where the fragment with m/z = 354 was
produced (Scheme C). Therefore, we concluded that the MS/MS spectrum having the
fragment withm/z = 340 (Figure 3.5) was truly measured from the Cer [BS].

Large decrease of enthalpy in Scheme C in Figure 3.7 was caused by Van der Waals
interaction between the fatty acid and the sphingoid base; it was a kind of arti�cial
parts of the computation. In the initial state, carbon chains of the fatty acid and the
sphingoid base were separated. After the bond cleavage, the two chains contacted with
each other in parallel as they lost a structural hindrance in their connected site. The
contact along their carbon chains reach broadly and decreased enthalpy drastically
with the intermolecular forces. In practical MS/MS measurement, provided energy
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is so large that fragments split immediately. Therefore, the enthalpy drop after the
cleavage should be ignored here. That is the reason why the maximum enthalpy was
employed to discuss existence of the fragments.

Since the MS/MS spectrum in Figure 3.5 was identi�ed as Cer [BS], theoretical
MS/MS spectral libraries for β-hydroxyl ceramides were constructed with extrapolation
of the MS/MS spectrum. By using them, a total of 415 lipids was identi�ed from
four kinds of samples: murine ear, murine liver, HeLa cell, and HEK cell. Ceramides
with a β-hydroxy group were speci�c to murine ear; four structures of Cer [BDS]
and six structures of Cer [BS] were identi�ed. Human cells and murine liver did not
contain any Cer [BDS] nor Cer [BS]. Means of computational chemistry assisted with
identifying sphingolipid classes whose authentic standards were unavailable.

3.3 Conclusion

Theoretical MS/MS spectral libraries were constructed by extrapolating typical
fragmentation of their representative molecules in order to comprehensively identify
lipids contained by the biological samples. With authentic standards, experimental
MS/MS spectra was obtained from the measurements, and theoretical libraries were
constructed on the basis of them. The problem was about ceramides with a β-hydroxy
group; no authentic standards of them were available. Against that, I performed
computational precursor annotation by computing activation enthalpy to con�rm
existence of the fragment. My computation excluded the wrong candidate, a γ-hydroxyl
ceramide, and proved that the obtained experimental spectrum was surely gained
from the β-hydorxy ceramide. The examined spectrum was utilized to construct
the theoretical libraries, and inclusion of β-hydorxy ceramides of murine ear was
con�rmed by using them.

From these analyses, two concepts were veri�ed to be useful to analyze fragmenta-
tion pathways: activation enthalpy and adjacent chemical groups. Activation enthalpy
pointed easiness of bond cleavage out more properly than enthalpy di�erence between
precursor and product structures. Product structures are sometimes, especially when
the molecules is large, stabilized in surplus by unintended interactions. By considering
activation enthalpy, we can exclude the excess stabilization. The lowered activation
enthalpy of Scheme C compared with Scheme B in Figure 3.6 originated from the
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hydroxy group adjacent to the cleaved bond. That implied chemical groups were
possible to decrease activation enthalpy by altering electron structures around them.
In the next chapter, I will discuss computational fragment prediction with the two
concepts.
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4
Physicochemical prediction of

metabolite fragmentation in MS/MS

4.1 Introduction

4.1.1 Limitation ofmetabolite identi�cationusing standard spec-
tral libraries

In metabolome analyses, MS/MS is a powerful tool to identify metabolites from
biological samples. In MS/MS, metabolites are fragmented into their substructures
and the fragmentation pattern at each time slice is recorded as an MS/MS spectrum.
Since MS/MS spectra are di�erent for each structure, they are used as �ngerprints
to identify metabolites, especially to distinguish structurally isomeric metabolites.
For the purpose of metabolite identi�cation, many databases, either commercial or
public domain, provide standard MS/MS spectra[25, 26, 27, 28, 29]. The matching of a
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standard spectrum with an experimentally observed one is considered a prerequisite of
the metabolite identi�cation.

An apparent drawback of the library approach is that no database is comprehensive
in a true sense; we cannot prepare spectra for all possible metabolites. In the PubChem
database for example, over 94 million structures, including synthetic ones, are registered.
To obtain a standard MS/MS spectrum, we need to measure a pure, i.e. commercially
extracted, metabolite with a MS/MS platform one by one, and the measurement is a
complicated and costly process. It is therefore technically di�cult to prepare a spectral
library of more than thousands of standard compounds.

4.1.2 Current prediction methods to build theoretical standard
libraries

To overcome this intrinsic limitation, many research groups have challenged to predict
MS/MS spectra only from molecular structures. For phosphoglycerolipids, whose
fragmentation pattern is well known, a theoretical library has been constructed by
extrapolating their fragment mass values and their intensities for possible structural
variants combinatorially [47]. This approach should be applicable for other structure
classes. The library construction, however, seems much harder for small metabolites,
especially for those containing heteroatoms such as oxygen and nitrogen. Actually,
FravonoidSearch, which is a throughly curated theoretical MS/MS spectral library for
�avonoids, required several years to be built because of much complex variations of
�avonoid structures [56].

One successful spectrum prediction was achieved by machine learning systems
[32, 33], which learn fragmentation patterns from existing spectra in databases. Other
groups systematically classi�ed fragmentation patterns in order to understand the
mechanism of fragmentation in MS/MS [57, 58, 59]. Nevertheless, how fragmentation
processes proceed in MS/MS remains largely unclear and theoretical clues for more
accurate prediction have been awaited.
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4.1.3 Incarnating mechanistic fragment prediction by physico-
chemical theories

Here, I focus on physicochemical properties of metabolites. As stated in Chapter 2 and
3, I have calculated bond cleavage energy and electron distributions of some metabolite
structures by means of computational chemistry and clari�ed mechanisms of their
fragmentation pathways in ESI-MS/MS.

I extend this physicochemical approach to predict fundamental fragmentation in ESI-
MS/MS. Each bond is assigned a “bonding pattern” (BP) including its neighborhood, i.e.
two atoms and chemical groups adjacent to the bond. Then activation energy of each BP
is calculated with computational chemistry. Prediction of fragmentation is performed
by �nding the lowest activation energy and its comparison with experimentally
measured spectra are explained. Since any molecular structure can be regarded as a
composition of BPs, this method is applicable to a variety of metabolites in principle.

4.2 Prediction methods

4.2.1 Assignment of bonding pattern and cleavage

BPs consist of two bound atoms and their adjacent chemical groups. They are assigned
for all single bonds between a carbon atom and a heteroatom, which are principal
candidates for cleavage. Single bonds between two carbon atoms or multiple bonds are
excluded from the cleavage candidates.

For each BP, two types of bond cleavage, “direct” and “rearranged,” are computed.
When a BP is cleaved, the heteroatom adjacent to the bond is assumed to be protonated.
Since our study presuppose fragmentation in positive-ion mode ESI-MS/MS, only
positive even-electron ions are considered [39]; although there were some example of
odd-electron ions in Chapter 2, they were rare cases. Direct cleavage is not accompanied
with hydrogen movement; a positive charge moves to the carbon atom. Rearranged
cleavage is associated with hydrogen movement from the carbon atom side to the
heteroatom. If small molecules such as water, ammonia, ethylene, and carbon monoxide
are dissociated, hydrogen movement to such small molecules is ignored.

All BPs analyzed in the present study are summarized in Table 4.1. They are chosen
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Table 4.1: Bonding patterns analyzed in the present study.
activation energy (kJ mol−1)

No. bound atoms neighboring groups direct rearranged
1 C–N C(−CONH2) N(none) 203 –
2 C–N C(−CH3,=O) N(−CH3) 124 95
3 C–N C(−CH3,=O) N(=CH2) 100 68
4 C–N C(−CH3,−COOH) N(none) 236 –
5 C–N C(−CH3,−COOH) N(−COCH3) 197 161
6 C–O C(−CH3,=O) O(none) 25 –
7 C–C C(−NH2) C(=O) −99 –
8 C–C C(−CH3,−NHCH3) C(=O) −153 –
9 C–N C(−CH3) N(none) 245 –
10 C–N C(−CH3) N(−CNHNH2) 238 132
11 C–N C(−CH3) N(=C=NH) 206 –
12 C–N C(=NH) N(−CH3) 403 –
13 C–N C(−NH2,=NH) N(−CH3) 105 79
14 C–N C(−NHCH3,=NH) N(none) 51 –
15 C–O C(−CH3) O(−COCH3) – 105
16 C–O C(−CH3,=O) O(−CH3) 28 91
17 C–C C(−CH3,−NH2) C(=O) −129 –

from two example molecules: leucylglycine and ethyl argininate (Figure 4.1(a) and (b),
respectively). The numbers in Figure 4.1 correspond to the number of BPs described in
Table 4.1. Cleavage activation energy is an indicator of cleavage easiness. By assigning
BPs and their cleavage activation energy on chemical bonds composing a metabolite
structure, fragmentation pathways constituted by several bond cleavage steps are
predicted.

To make the computation simpler, substructures distant from the bond are replaced
with hydrogen atoms. For example, in BP 5, a precise group next to the bond is isobutyl
(−CH2CH(CH3)2). However, the group is replaced with a methyl group (−CH3, see
Figure 4.1(a) and Table 4.1). This simpli�cation is applied for all BPs.
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Figure 4.1: Assignment of BPs on (a) leucylglycine and (b) ethyl argininate. Bonds
crossed by dashed lines are assigned BPs. Only single bonds between a carbon atom
and a heteroatom, which are likely to be cleaved, are considered.

4.2.2 Calculation of activation energy

Activation energy required to cleave each BP is calculated with computational chemistry
software. Here, stability of molecular structures are evaluated with “Gibbs free energy,”
which includes an entropy term in addition to enthalpy. First, a model molecular
structure of each BP is built computationally. Then a reaction pathway is simulated
from the initial connected structure to the cleaved structure, and the corresponding
change of Gibbs free energy along the dissociation is calculated by Reaction plus [60].
If the dissociation process exhibits maximal free energy between the initial and the
cleaved state, transition state optimization starting from the structure with maximal
free energy is performed by Gaussian 09 [61]. Activation energy is de�ned as the
energy di�erence between the initial state and the transition state. If the initial or
cleaved state has the maximal energy, activation energy is de�ned as the free energy
di�erence from the initial state to the cleaved state. This means that the activation
energy is negative when the initial state is high-energy.

High-precision Gibbs free energy of the initial state, transition state and fragmented
state (ions and neutrals) is calculated by the CBS-QB3 method [62], where a typical
error is around 1 kcal mol−1[63]. Structural optimization of all molecules is performed
with the density functional theory (DFT) method. Functional and basis set are CAM-
B3LYP including the long-range correction and 6-31+G(d,p) including polarization
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and di�usion of atomic orbital, respectively. The long-range correction is important
for bond-breaking and making reactions [64]. All calculations here are done with
Gaussian 09.

4.2.3 Computational time

The computation time depends on the structural environment, especially the number of
atoms, of each BP. It typically takes around three hours to calculate activation energy
of one BP, which includes reaction pathway optimization and high-precision energy
calculation. In a few cases, computational time exceeded ten hours. For example,
computation for BP 5 composed of 18 atoms required 19 hours to obtain activation
energy.

Computational environments are as follows. For reaction pathway optimization,
246.4 GB memory (7.7 GB × 32 cores, Intel Xeon E5-2690) was utilized. For structural
optimization and high-precision energy calculation of each molecule (initial, transition,
and fragmented states), 61.6 GB memory (7.7 GB × 8 cores, Intel Xeon E5-2690) was
utilized. All the computations were executed with supercomputer systems in Research
Center for Computational Science, Okazaki, Japan.

4.3 Prediction results for two example molecules

4.3.1 Strategy of the prediction using bonding patterns

The fragment prediction is based on assignment of BPs, which represent the vicinity of
cleaved bond, with their cleavage activation energy. All bonds composing a metabolite
are scanned, and candidates for bond cleavage, i.e. single bonds formed by a carbon
atom and a heteroatom, are transcribed as BPs which include two atoms forming the
bond and its neighboring chemical groups. A list of activation energy of BPs is referred
to, and values of activation energy are assigned on the candidate bonds to be cleaved.
By cleaving the candidate bonds with low activation energy, fragment structures are
predicted. Assignment of BPs on the predicted fragment structures predicts their
further fragmentation. Collecting m/z values of the predicted fragments yields a
theoretical MS/MS spectrum. Here, I will present example processes of fragment
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prediction on leucylglycine and ethyl argininate.
Activation energy for cleavage of each BP can be calculated irrespective of

metabolite structures and stored in the form of Table 4.1, though here only BPs included
in leucylglycine and ethyl argininate are listed to explain examples of the prediction.
By expanding the table of calculated activation energy for BPs, the coverage of our
prediction method becomes broader. Rough estimation of the number of BPs possibly
existing in all metabolites is presented in Section 4.4. How to reduce the BPs in order
to cover the huge metabolite space is also discussed.

4.3.2 Leucylglycine

Activation energy for cleavage of each BP in leucylglycine was assigned from the upper
part of Table 4.1. The lowest activation energy was obtained as direct cleavage of BP 6
(25 kJ mol−1), i.e. the C-O bond was the easiest to cleave. This cleavage corresponded
to water elimination from a carboxyl group, which is common fragmentation in MS/MS
[59]. Rearranged cleavage of the BP 2 showed relatively low activation energy (95 kJ
mol−1). This was an amide cleavage and its product ion was equivalent to the y-ion of
a general peptide bond cleavage [65]. Through this analysis, we could con�rm that the
activation energy was indeed lower for experimentally obtained fragmentations.

Next, activation energy for further fragmentation was calculated for leucylglycine
(Figure 4.2). In the second fragmentations, C–C bonds might become cleavage
candidates because a carbon atom might be charged after the �rst fragmentation. A
positively charged carbonyl group by the cleavage of BP 2(direct) or 6(direct) may
be dissociated as a carbon monoxide. In this case, the C–C bond cleavage becomes
energetically favorable; otherwise the C–C cleavage requires much higher energy and
not regarded as a candidate for fragmentation. Some of the second fragmentation
showed negative activation energies, i.e. the product structure is more stable than the
initial structure. In particular, cleavage of BP 6 is followed by the cleavage of BP 8
immediately (activation energy = −153 kJ mol−1), and the product ions may undergo
further rearranged cleavages of BP 3 with relatively low activation energy (68 kJ
mol−1).

Fragmentation pathways of leucylglycine were predicted from the activation
energies. The pathway with the lowest energy, i.e. the most likely to occur in
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Figure 4.2: Second and third fragmentation of product ions from leucylglycine. The
numerals correspond to the number of BPs in Table 4.1. Cleavage of the BP leading to
each fragment is shown on its bottom or right.

experiments, was the consecutive cleavage of BPs 6(direct)→ 8(direct)→ 3(rearranged),
where activation energies were 25→ −153→ 68 kJ mol−1, respectively. Rearranged
cleavage of BP 2 (activation energy = 95 kJ mol−1) was also energetically favorable, but
the cleavage would not proceed to the next cleavage of BP 4 due to its high activation
energy (253 kJ mol−1). The predicted fragmentation pathways are illustrated in Figure
4.3. When compared with a measured standard spectrum from MassBank database
(MassBank ID: KO003025) [26] in Figure 4.4, the prediction successfully reproduced the
major fragmentations.

4.3.3 Ethyl Argininate

Activation energy for cleavage of each BP in ethyl argininate was assigned from
the lower part of Table 4.1 (see Figure 4.1 (b)). Here, BP 4, which appeared in the
leucylglycine molecule, was assigned again on the middle amino group. The lowest
energy was calculated as the direct cleavage of BP 15 (28 kJ mol−1), which corresponded
to the dissociation of an alcohol from the ester bond moiety. It is noteworthy that this
cleavage is similar to water elimination from the carboxyl group with the lowest
activation energy (25 kJ mol−1) in BPs on leucylglycine. This fact implies that e�ects
on bond cleavage of a methoxy group is not much di�erent from that of a hydroxy
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Figure 4.3: Predicted fragmentation pathways of leucylglycine. The cleaved BP with D
(direct) or R (rearranged) and its activation energy are described. Initial direction of
arrows indicates the side of the protonated substructures.

group. Rearranged cleavage of BP 13 (dissociation of carbodiimide from the guanidine
moiety) and direct cleavage of BP 14 (ammonia elimination) also showed relatively low
activation energy (79 and 51 kJ mol−1, respectively).

For ethyl argininate, no third-step cleavage was considered stable and only second-
step cleavage was investigated (see Figure 4.5). The fragmentation pathway with the
lowest activation energy was the cleavage of BPs 14(direct)→ 17(direct) (28→ −129 kJ
mol−1), which resulted in the fragment of m/z = 129. The other second fragmentation
required more than 200 kJ mol−1 to be activated.

By selecting relatively low activation energy from the calculation results,m/z
values of fragments predicted to be produced are 161 (rearranged cleavage of BP 13
activated by 79 kJ mol−1), 186 (direct cleavage of BP 14 activated by 51 kJ mol−1), 157
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Figure 4.4: A standard MS/MS spectrum of leucylglycine (MassBank ID: KO003025).
Numerals on top of major peaks indicate m/z. The spectrum was experimentally
obtained by positive-ion mode LC-ESI-QQ MS/MS with collision energy = 20 eV.

(direct cleavage of BP 16 activated by 28 kJ mol−1), and 129 (consecutive direct cleavage
of BPs 16 and 17 activated by 28 and −129 kJ mol−1, respectively) (see Figure 4.6).
Rearranged cleavage of BP 16 can be activated by relatively low 91 kJ mol−1 of energy;
whereas, direct cleavage of BP 16 is activated by much lower energy (28 kJ mol−1) and
may suppress the rearranged cleavage of BP 16 as its competitor. This prediction
was coincided with a measured standard spectrum from MassBank (MassBank ID:
KO002249) in Figure 4.7 only at one major peak withm/z = 186.

Two of the major peaks (m/z = 144 and 60) in the standard spectrum were predicted
to require high activation energy (238 kJ mol−1for direct cleavage of BP 10 and 132 kJ
mol−1for rearranged cleavage of BP 10, respectively). The fragment withm/z = 144
could also be produced from a two-step cleavage of BPs 14(direct)→ 11(direct), which
required 51→ 206 kJ mol−1, respectively, or BPs 13(rearranged)→ 9(direct), which
required 79→ 245 kJ mol−1, respectively. The former was the lower-energy pathway to
produce the fragment ofm/z = 144 than the latter; however, the maximum activation
energy of 206 kJ mol−1is still high. On ethyl argininate, intensities of the product
ions relative to the precursor ion were lower in comparison with leucylglycine. This
implies that the precursor ion of ethyl argininate is harder to decompose than that of
leucylglycine. That is consistent with the observed relatively high activation energies.
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Figure 4.5: Second fragmentation of product ions from ethyl argininate. Two fragmen-
tation pathways can be considered for resonance structures of the product ion from
direct cleavage of bonding pattern 14.

The fragment ofm/z = 70 never appeared in the prediction. This missing fragment
most likely came from a charge remote fragmentation (see Fig. 4.6). It is produced
when the fragment produced with the lowest activation energy, whosem/z is 129, loses
59 Da. That loss of mass is regarded as elimination of guanidine moiety on the right
side of ethyl argininate. This fragmentation is called charge remote fragmentation,
where a bond distant from the charged site is cleaved. In the present prediction, no
charge remote fragmentation was considered. Energy released by the cleavage of BP 17
(129 kJ mol−1) might help the further fragmentation.

Another inconsistency was the absence ofm/z 161 in the standard spectrum despite
its relatively low activation energy (79 kJ mol−1). This is explained by further loss of
ammonia resulting inm/z = 144; however, activation energy of the cleavage is high
(245 kJ mol−1). Such high activation energy should come from an unstable structure of
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Figure 4.7: A standard MS/MS spectrum of ethyl argininate (MassBank ID: KO002249).
Numerals on top of peaks indicate m/z values. The spectrum was obtained by
positive-ion mode LC-ESI-QQ MS/MS with collision energy = 20 eV.
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the fragment ion having a charge on the carbon atom connected by two hydrogen
atoms. The highly electrophilic structure could absorb electron lone pairs on the
amino group or the carbonyl group to cause a ring structure, and the rearrangement
could accelerate the ammonia elimination. In the introduction of our BPs, remote
structures were ignored and caused the discrepancy between computation and actual
fragmentation.

4.4 The number of bonding patterns which exist in

all metabolite structures

To apply the prediction to any metabolites, we need to include all BPs which appear
in metabolite structures. The question is how many BPs exist. When considering
nearest-neighbor four kinds of atoms (hydrogen, carbon, nitrogen, and oxygen) to a
cleaved bond, the number of BPs becomes as follows:

(4H3 + 3 × 4 + 2) × (4H2 + 3 + 4) = 34 × 17 = 578 (4.1)

where H is “repeated combination,” which is computed as nHr = n+r−1Cr . The left
and right parentheses indicate patterns of carbon atom side and heteroatom side,
respectively (see Figure 4.8). If the patterns are extended to a broader range which is
reached by two bonds from the cleaved bond, the number of patterns becomes roughly
70,000.

I am considering some strategies to reduce the number of BPs. First of all, the
estimation above includes unnatural patterns like a nitrogen atom connected by two
nitrogen atoms. Such patterns can be excluded by searching metabolite database.

Superposition of e�ects from multiple chemical groups should also be investigated.
If an e�ect from a set of three methyl groups can be represented by superposing an
e�ect from one methyl group, the number of BPs decreases drastically. In the fragment
prediction of leucylglycine and ethyl argininate, there were some sets of similar BPs.
For example, BP 6 and 16 were di�erent only about the oxygen atom connected by a
hydrogen atom and a methyl group, respectively, and their activation energies were
almost same. BPs 7, 8, and 17 correspond to elimination of carbon monoxide. With
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Figure 4.8: Possible patterns of atoms adjacent to a cleaved bond. The total number of
the patterns is calculated in Equation 4.1.

more methyl groups added, their activation energies became lower (BP 7 > 17 > 8, see
Table 4.1). These results suggest that addition of methyl groups on a carbon atom side
reduces activation energy in contrast to addition on an oxygen atom side. Additional
calculation of BPs with more methyl groups will contribute to elucidate superposed
e�ects from multiple chemical groups.

Comparison of similar chemical groups is also important to simplify structures
included in BPs. BP 9 is the most basic one, which includes only a methyl group
as its neighboring group. BP 1 has a neighboring group founded on a carbon atom
(−CONH2), but the group is di�erent from a methyl group and lowers activation energy
by 42 kJ mol−1. On the other hand, BP 4 including a methyl group and a carboxyl
group, which are founded on carbon atoms, has similar activation energy to the basic
BP 9. Such comparison will clarify whether chemical groups on a carbon atom, like
−CONH2 and a carboxyl group, can be treated as a methyl group or not. We are now
investigating it by computing BPs composed of several carbon modi�cations.
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4.5 Conclusion

Current standard MS/MS spectrum library is not su�cient for comprehensive identi-
�cation of metabolites. I have presented MS/MS spectrum prediction by means of
computational chemistry, and the prediction well matched with the standard spectrum
of a dipeptide, leucylglycine. For another molecule, ethyl argininate, additional
fragmentation pathways with high activation energy and recombination were required
to reproduce its standard spectrum.

The examples show bene�ts and limitation of the approach: assignment of
bonding patterns (BPs) and activation energy calculation. By focusing on a local
structure, BPs are independent of size of metabolites and can be applied widely to most
metabolites. Energetical analyses can provide quantitative results on fragmentation
mechanism. However, two improvements are required to extend applicability of the
prediction method. One is the introduction of charge remote fragmentation, which
can be implemented by assigning BPs on bonds without ionization. The other is
the consideration of energetic dependency applied to accelerate fragmentation in
experimental systems. Activation energy can be converted into reaction rate of the
fragmentation and its dependency on applied energy or temperature can be computed.
The computation, however, will become combinatorially complex. From quantitatively
detailed energetics, I plan to estimate plausible threshold of activation energy to judge
whether a fragment ion is produced.

To extend the coverage of the prediction, I need to calculate more BPs and store
their activation energy. As a simple estimation suggests enormous number of BPs to be
calculated, we need to decrease the number by merging chemical groups having similar
energetical e�ects. To achieve that, I currently work on additional computations in
order to obtain correct simpli�cation of chemical groups included in BPs.
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5
Conclusion

5.1 Summary

In metabolome analyses, insu�ciency of standard MS/MS spectral libraries is a
bottleneck for comprehensive metabolite identi�cation. The metabolite identi�cation
depends on spectral libraries, but costly processes to obtain a standard MS/MS spectrum
impede expansion of the libraries. Theoretical approaches such as machine learning and
empirical extrapolation have been developed; nevertheless, mechanisms of metabolite
fragmentation in MS/MS measurements are widely unclear.

In this dissertation, I have discussed applicability of computational chemistry to
mechanistic prediction of metabolite fragmentation in MS/MS. Molecular enthalpy
derived from physicochemical calculation on metabolite structures was utilized to
con�rm existence of the fragments. Free energy extended from the enthalpy functioned
as a criterion to predict proper fragment structures feasible to be produced.

In Chapter 2, enthalpy calculation provided evidence that fragments predicted by
HR rules really existed. Physicochemical stability highly depends on arrangement
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of electrons on the molecule. Derived from the even-electron rule, where behavior
of electrons is regulated, the HR rules provide physicochemically stable structures
of fragments. Enthalpy calculation proved that metabolite fragments observed in
practical measurements were surely energetically stable.

Contribution of computational chemistry in Chapter 2 was not only quantitative
evaluation of stability but also elucidation of the mechanism to stabilize the fragment
structures. There were some odd-electron fragment ions, which violate the even-
electron rule, in the statistics of experimental standard MS/MS spectral libraries, though
they generally require much higher energy to dissociate. The MO calculation revealed
the electron distribution over conjugated bonds of the odd-electron ions. Delocalization
of the unpaired electron was quantitatively obtained as well as potential energy. The
unstable isolated electron was shared by several atoms to decrease potential energy of
the radical ions. This result emphasized that fragmentation tendency highly depended
on electronic structures around the cleaved bond.

A concrete application of computational chemistry to identify metabolites without
standard MS/MS spectra was presented in Chapter 3. An unknown experimental
MS/MS spectrum was �nally identi�ed as a β-hydroxy ceramide, whose authentic
standard is unavailable. Activation enthalpy calculation distinguished the proper
fragmentation pathway to produce the observed fragment from other pathways
unlikely to occur in MS/MS measurement. The fragmentation processes were fully
simulated by computational chemistry with grid calculation. With that, undesired
e�ects in the computation like intermolecular forces acting between fragments were
eliminated. Clear division between proper and improper fragmentation pathway was
achieved by computational chemistry.

An important concept arose in Chapter 3 was in�uence of neighboring groups.
Provision of an electron pair from the neighboring chemical group fairly lowered the
activation enthalpy required by the bond cleavage. The ability to provide an electron
pair depends on electronic structure of the chemical group, such as lone electron pairs
and π electrons. The results from the pathway simulation implied that, by investigating
the electronic structures represented by the chemical groups in the vicinity of cleaved
bonds, breakage tendency of the bonds would be estimated.

In Chapter 4, the ideas gained as above were integrated in prediction of MS/MS
spectra only from metabolite structures. A metabolite structure was decomposed into
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the set of bonding patterns. Activation energy to cleave each bonding pattern was
precisely calculated by pathway calculation and transition state optimization with
computational chemistry. The prediction succeeded in reproducing fragmentation of a
dipeptide molecule experimentally measured with MS/MS. For another molecule
having a long chain structure, ethyl argininate, the prediction failed to reproduce some
of experimental fragments. From detailed inspection of failure prediction, necessity of
charge-remote fragmentation and a quantitative formulation of correlation between
activation energy and intensity of fragments was indicated.

This prediction method can be applied to any metabolite structures in principle,
because bonding patterns are independent of structural size. Mechanisms to determine
fragmentation pathways were theoretically and quantitatively explained in detail by
energetic in�uence of chemical groups adjacent to the cleaved bond. The physicochem-
ical strategy was proved to be able to predict plausible fragments produced from
metabolites.

5.2 Future works

Currently, the fragment prediction I suggested is “ad hoc.” Activation energy is
calculated on demand about bonding patterns which appear in a selected molecule. In
order to apply the prediction to the vast metabolite space, cleavage activation energy of
possible bonding patterns should be computed beforehand. I am planning to compute
and store activation energy of all bonding patterns.

To execute that, the problem is how many bonding patterns need to be considered.
As Equation 4.1, possible patterns are roughly 600. However, when the bounds included
in bonding patterns are extended, the number of patterns increases explosively. The
proper simpli�cation of bonding patterns requires to be elucidated. For example,
whether energetic in�uence of a formyl group (-CHO) is di�erent from an acetyl group
(-COCH3) is a question to solve. Another problem is superposition. If e�ect of three
methyl groups is represented by adding that of one methyl group up, the number of
bonding patterns to compute decreases drastically.

At present, energetic di�erence among similar chemical groups like formyl and
acetyl is investigated. Activation energy to cleave a bonding pattern including each
of the similar chemical groups is computed and compared with each other. From
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the comparison, chemical groups which do not lower the activation energy are
excluded from the candidate bonding patterns to be computed and stored. A trend of
energetically in�uential groups has begun to appear gradually. I am also planning to
investigate in�uence from superposition of chemical groups. By collecting the results,
a set of possible bonding patterns with proper size will be derived.

The ultimate goal of this study is to build a theoretical MS/MS spectral library
adapted to any metabolite structures. For that purpose, physicochemical computation
and assignment of bonding patterns are utilized to mechanistically predict metabolite
fragmentation in MS/MS measurement. To cope with the vast metabolite space, proper
approximation of metabolite structures into bonding patterns needs to be obtained.
The ongoing comparison between cleavage activation energy of similar bonding
patterns must be continued to elucidate that.
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