
Fundamental Frequency Modeling for
Neural-Network-Based Statistical

Parametric Speech Synthesis

Xin Wang

Doctor of Philosophy

Department of Informatics

School of Multidisciplinary Sciences

SOKENDAI (The Graduate University for

Advanced Studies)

Fundamental Frequency Modeling
for Neural-Network-Based

Statistical Parametric Speech
Synthesis

by

Xin Wang

Dissertation

submitted to the Department of Informatics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

SOKENDAI (The Graduate University for Advanced Studies)

September 2018

iii

Committee

Advisor Dr. Junichi Yamagishi
Associate professor of SOKENDAI/National Institute of Informatics

Subadvisor Dr. Yusuke Miyao
Professor of SOKENDAI/National Institute of Informatics

Subadvisor Dr. Isao Echizen
Professor of SOKENDAI/National Institute of Informatics

Examiner Dr. Keiichi Tokuda
Professor of Nagoya Institute of Technology

Examiner Dr. Nobuaki Minematsu
Professor of The University of Tokyo

v

Abstract

The fundamental frequency (F0) of speech, which determines the perceived relative
highness or lowness of the sound, plays an indispensable role in both the segmental
and suprasegmental aspects of human languages. How to generate natural F0
contours from linguistic features of a text is one of the cruces in text-to-speech
(TTS) systems, especially in the TTS system that has been able to synthesize
speech with a natural segmental quality.

A TTS system may produce unnatural speech if the generated F0 contour of
that speech is incompatible with the prosodic system of the language (e.g., an
incorrect F0 pattern in a tonal language), or if it is bland and monotonous (e.g.,
an over-smoothed F0 contour). Even though a TTS system correctly plans the
prosodic structure and linguistic specification for the text to be uttered, it may
generate an unnatural F0 contour when the internal F0 model fails to fulfill the
plan. This problem is crucial in common TTS systems that use statistical F0
models, particularly using the so-called black-box neural networks.

This thesis focuses on the neural-network-based F0 models for TTS systems,
with the goal to identify potential limitations of conventional neural F0 models and
propose better solutions. Specifically, this thesis treats F0 modeling as a sequential
conversion problem where the input linguistic feature sequence is converted by
a neural F0 model into an F0 contour frame by frame. Through interpreting
and analyzing common neural F0 models or models that generate F0 with other
spectral features, this thesis identifies three potential limitations: (1) it may be a
suboptimal F0 modeling strategy to jointly model F0 with other acoustic features;
(2) common models such as the recurrent neural network (RNN) is imperfect
in modeling the temporal correlation of the F0 contour; (3) common neural F0

vi

models are inefficient if they process the linguistic features frame by frame.
On issue (1), this thesis conducted experiments using highway neural networks

and found that the network prioritized the high-dimensional spectral features over
the F0. It also found that the F0 and other acoustic features required different
hidden representations. These results cast doubt on the common practice to
model F0 and spectral features jointly. On issue (2), this thesis used random
sampling to visualize the limitation of the conventional neural F0 models such as
the RNN. It then introduced the autoregressive (AR) dependency and defined
a new model called shallow AR (SAR) model, which can be interpreted and
extended based on the theories of digital filters and feature transformation. This
thesis further identified the limitation of the SAR and proposed a deep AR (DAR)
model. As experiments showed, the DAR outperformed previous models and
enabled random F0 contour sampling, which has never been achieved by other F0
models. On issue (3), this thesis borrowed the idea of variational auto-encoder
(VAE) and decomposed a neural F0 model into an F0 contour coding part and a
linguistic association part. The coding part efficiently represents the F0 contour of
a linguistic unit using one codeword, and the association part directly links the F0
code space and the linguistic space for each linguistic unit. Experiments found
that the VAE-based F0 model learned an interpretable F0 code space and achieved
a better objective performance than the DAR even though the VAE-based model
was smaller and faster.

Although this thesis deals with the F0 and conducted experiments mainly on
the English and Japanese data, it does not assume a specific linguistic theory
about the F0. The proposed methods and models can hopefully be applied to other
speech corpora and other acoustic feature sequences. All the models mentioned in
this PhD thesis were implemented in C++/CUDA. The codes, scripts, and related
slides are uploaded online as open source softwares (http://tonywangx.github.io).

vii

Acknowledgments

I would like to express my gratitude to:

• Dr. Junichi Yamagishi, who is my supervisor. I sincerely appreciate your
decision to accept me as a Ph.D. student 4 years ago (Interspeech 2014, at
Singapore) and deeply thank you for all your efforts to guide me through
this Ph.D. course, a period that is short in time but invaluable in life;

• Prof. Nobutaka Ono, who was my subadvisor during the first two years of
the Ph.D. course at SOKENDAI. I sincerely thank you for your technical
comments and suggestions on the work related to this thesis;

• Prof. Isao Echizen and Prof. Yusuke Miyao, who are my subadvisors at
SOKENDAI and members of the dissertation committee. I sincerely thank
you for your technical comments and suggestions on this thesis and the
presentations;

• Prof. Keiichi Tokuda of Nagoya Institute of Technology, who is the member
of the dissertation committee. I sincerely thank you for all your technical
comments on this thesis and the presentations. I also thank you for accepting
me as a short-term visiting student at NIT, during which period I started
the work on Chapter 7;

• Prof. Nobuaki Minematsu of the University of Tokyo, who is the member
of the dissertation committee. I sincerely thank you for all your technical
comments on this thesis and the presentations, especially the issues related
to the speech prosody;

viii

• Dr. Shinji Takaki of NII, who gives me suggestions on my work and always
supports my work from various perspectives during the Ph.D. course. I
thank you for managing all the resources without which I could do nothing;

• Dr. Gustav Eje Henter and Dr. Jaime Lorenzo Trueba, who were project
researchers at NII. I thank you for all the discussion and comments on
various research topics, and also your support for my work;

• Prof. Simon King of the University of Edinburgh, who gave me constructive
suggestions on the work related to Chapter 7 during his stay at NIT;

• Mr. Juvela Lauri, the Ph.D. student of Aalto University, who shared with
me many wonderful ideas on speech synthesis.

• Ms. Mika Sasaki, Ms. Yuka Takedomi, and Ms. Makiko Kuwahara, who
is or used to be the secretary of Yamagishi-lab. Thank you for your work
without which I could not concentrate on the research work.

I also express my gratitude to:

• SOKENDAI, my official affiliation as a Ph.D. student, for recommending me
as the MEXT scholarship student and creating a wonderful platform for
Ph.D. students like me in national institutes of Japan;

• Ministry of Education, Culture, Sports, Science and Technology, Japan, for
accepting me as a MEXT scholarship student. I couldn’t complete the Ph.D.
course without the support from MEXT;

• National Institute of Informatics, my physical affiliation, for providing the
best research environment for me. Special thanks to the International Affairs
and Education Support Team of SOKENDAI in NII for supporting my study.

Please forgive me for not being able to remember all the names to whom I
owe this thesis. Finally, I thank my parents for supporting my decision to study
abroad.

ix

Contents

1 Introduction 1
1.1 Background . 2
1.2 Thesis overview . 3

1.2.1 Motivation . 3
1.2.2 Topic and scope . 3
1.2.3 Issues to be addressed . 5
1.2.4 Contribution . 5

1.3 Outline of thesis . 7

2 F0 Modeling for TTS 9
2.1 Introduction to F0 . 10

2.1.1 F0 in signal processing . 10
2.1.2 F0 in speech production . 11
2.1.3 F0 in speech perception . 11
2.1.4 Terminology . 13

2.2 TTS systems . 14
2.2.1 TTS front-end . 14
2.2.2 TTS back-end using SPSS 15

2.3 F0 modeling for TTS . 18
2.3.1 Deterministic F0 representation 18
2.3.2 F0 modeling based on compact F0 representation 19
2.3.3 Frame-level statistical F0 modeling 20
2.3.4 Evaluation metrics . 23

x Contents

3 Neural Networks 25
3.1 Neural networks as deterministic functions 26

3.1.1 A simple network for the XOR problem 26
3.1.2 Feedforward neural network 27
3.1.3 Recurrent neural network 29

3.2 Neural networks as probabilistic models 30
3.3 Mixture density network . 35
3.4 Neural classifier models for classification 36
3.5 Baseline neural F0 modeling method 38
3.6 Limitations of baseline neural F0 models 41

4 Investigating F0 Modeling Using Highway Networks 43
4.1 Joint modeling of F0 and spectral features? 44
4.2 Definition of highway network . 44

4.2.1 Computation flow . 44
4.2.2 Multi- and single-stream highway network for SPSS 46

4.3 Evaluation methodology and analysis tools 48
4.3.1 Evaluation methodology . 48
4.3.2 Analysis tools . 49

4.4 Results and analyses on the English corpus 51
4.4.1 Results of objective evaluation 51
4.4.2 Analyses of hidden representations 55
4.4.3 Analyzing sensitivity to input features 58

4.5 Results and analyses on the Japanese corpus 61
4.6 Summary . 63

5 Shallow Autoregressive Neural F0 model 65
5.1 Conditional independence in baseline models 66
5.2 Definition of shallow AR model . 68
5.3 SAR as neural network plus digital filters 71

5.3.1 Interpretation based on signal and filter 71
5.3.2 Stability of SAR . 73

5.4 SAR as neural network plus normalizing flow 80

Contents xi

5.4.1 Rule of changing random variable 80
5.4.2 SAR as neural network plus normalizing flow 80
5.4.3 Extended SAR with time-variant transformation 83

5.5 Evaluating SAR . 86
5.5.1 Data and configuration . 86
5.5.2 Pilot test I: effectiveness of SAR stability constraints 86
5.5.3 Pilot test II: Selection of AR dependency order 88
5.5.4 Evaluating SAR against baseline models 91

5.6 Summary . 95

6 Deep Autoregressive Neural F0 model 97
6.1 Weakness of SAR . 98

6.1.1 Random sampling on SAR 98
6.1.2 Weakness of linear AR dependency in SAR 99

6.2 From SAR to DAR . 101
6.2.1 Model definition . 101
6.2.2 Comparison between DAR and SAR 102

6.3 DAR for F0 modeling . 103
6.3.1 Quantized F0 modeling . 103
6.3.2 Hierarchical softmax for F0 modeling 104
6.3.3 Exposure bias and data dropout 106

6.4 Experiments . 107
6.4.1 Data and configuration . 107
6.4.2 Pilot test I: continuous versus quantized F0 108
6.4.3 Pilot test II: hierarchical versus normal softmax 109
6.4.4 Pilot test III: effectiveness of data dropout 111
6.4.5 Evaluation of DAR against other F0 models 114

6.5 Random sampling from DAR . 117
6.6 Summary . 120

7 Variational-auto-encoder-based F0 model 121
7.1 Motivation . 122
7.2 VAE-based F0 model . 123

xii Contents

7.2.1 VQVAE-based F0 encoder and decoder 124
7.2.2 Linguistic linker . 128

7.3 Experiments . 130
7.3.1 Data and configuration . 130
7.3.2 Part I: F0 encoding and decoding using VQVAE 131
7.3.3 Visualization of code space 135
7.3.4 Part II: Text-to-code using linguistic linker 137
7.3.5 Compare VAE-based F0 model with DAR 141

7.4 Summary . 142

8 Conclusion 145
8.1 Replies to the three issues of neural F0 modeling 145
8.2 Apply proposed F0 model in TTS systems 148
8.3 Remaining issues . 149
8.4 Final remark . 151

A Appendix 153
A.1 Linguistic features for neural-network-based SPSS 153
A.2 Data corpora and acoustic features 156

Bibliography 157

1

1
Introduction

Speech is an innate human capability for communication. A speaker encodes the
message into speech by varying what is being said and how it is said. Accordingly,
a listener decodes the information from the content and the form of speech. For an
inanimate agent such as a machine, it must know how to speak and listen well in
order to interact with human beings.

This thesis is about the techniques that enable a machine to speak naturally.
Specifically, this thesis is dedicated to the methods that improve the fundamental
frequency (F0) of the machine-produced speech, a property that affects both the
content and form of the speech. Although this topic has been explored from other
perspectives, this thesis treats it as a machine learning task and explores it on
basis of neural-network-based machine learning techniques.

As an introduction, this chapter briefly explains the background of this thesis
in Section 1.1. It then gives an overview of this thesis in Section 1.2, explaining
the motivation and the topic, the potential issues with conventional methods and
models, and the proposed solutions. The thesis outline is described in Section 1.3.

2 Chapter 1. Introduction

Text Front-end Back-endLinguistic
features

Speech
waveform

Figure 1.1: Diagram of a TTS pipeline system.

1.1 Background

The process in which machines produce human speech is called speech synthesis.
Depending on the source information, it may refer to concept-to-speech synthesis
(CTS) that converts abstract messages into speech [1] or text-to-speech synthesis
(TTS) that reads a text string aloud [2]. This thesis is concerned with TTS, with
the goal to improve TTS methods so that a machine can read the text in as
natural a manner as human beings.

When a human being reads a text string, he or she may parse the text mentally,
unconsciously predicting the pronunciation of each word and the manner in which
speak. By manner, we mean the pace, pause, intonation, and other things rather
than the word pronunciation. Given the inferred information about the text, the
speaker can drive the speech organs to speak.

TTS can be implemented as a similar process. In a conventional pipeline TTS
system plotted in Figure 1.1, a front-end parses the input text and plans what to
speak (i.e., pronunciation) and how to speak (e.g., pace, pause, and intonation).
A back-end then converts the speaking plan into a speech waveform. In TTS
systems, the speaking plan is organized and represented as linguistic features.

TTS is challenging because of two difficulties, one for the front and the other for
the back-end. First, it is difficult to parse the text and derive the linguistic features
such as the pronunciation of abbreviation, the word to emphasize, the decision to
use a question or a sarcastic voice and so on. This difficulty is unavoidable because
a text may not encode all the information that decides what to speak and how
to speak [3]. Even with accurate and sufficient linguistic features, the second
difficulty is to convert them into a natural sounding speech waveform. After all,
the linguistic features are a set of symbols or numbers while a speech waveform is
a physical signal.

1.2 Thesis overview 3

1.2 Thesis overview

1.2.1 Motivation

This thesis focuses on issues in the TTS back-end, assuming linguistic features
from the front-end are available. More specifically, this thesis deals with the
process that converts the linguistic features to an acoustic feature of the speech
waveform called fundamental frequency (F0). This conversion process is referred
to as F0 modeling.

The F0 is essential for TTS because it influences not only how accurately
each word can be heard but also how other messages encoded in the text can be
understood. As we will explain with more details in Chapter 2, the F0 is the
acoustic cue that helps the listener to perceive the lexical tone and discriminate
words with the same pronunciation; it helps the listener to find the beginning and
end of a phrase; it hints the salient word that is emphasized or contrasted with
previous words. In addition to these linguistic functions, the F0 may also help the
listener to perceive the mood, the dialect, and the social status of the speaker. In
general, a TTS system may only produce boring or even unintelligible speech if it
lacks a good model for F0 modeling.

In the recent years, there were research works showing that a TTS system can
produce speech waveforms with a natural quality [4]. However, those works tackle
the TTS issues in an end-to-end paradigm, without explicitly modeling the F0 as a
conventional TTS system does. Of course, the end-to-end paradigm is a promising
direction for TTS research and application, but the difficulties in the pipeline TTS
system still require investigation since most current TTS systems have a pipeline
structure and need an F0 model.

1.2.2 Topic and scope

F0 modeling is a classical problem in TTS, or actually a cluster of problems. As
mentioned above, the F0 relates not only to the segmental property but also the
suprasegmental and para-linguistic aspects of speech. Researchers from various
fields have worked under the name of F0 modeling but on different sub-topics,
such as predicting more informative linguistic features for F0 modeling [5], finding

4 Chapter 1. Introduction

better F0 representations (e.g., a sequence of values measured every 5ms or more
structural representation [6]), and defining better analytic and deterministic
models that describe the F0 shape [7, 8].

Due to the above reason, it is not easy to pin down the core issue addressed by
a paper on F0 modeling after reading it for the first time. To avoid such confusion,
we now explain the topic of this thesis using a more technical wording:

Given a sequence of linguistic features x1:T = {x1,x2, · · · ,xT} provided
by the TTS front-end in T frames, can we find a better statistical
model pΦ to convert the linguistic feature sequences x1:T into an F0
contour o1:T so that the speech synthesized based on the F0 contour
sounds more natural?

Note that this thesis treats the duration model as part of the front-end for the
purpose of explanation. Definition of the input x1:T and output o1:T will be further
explained in the next chapter.

Among various statistical models that can be used for F0 modeling, this thesis
considers the neural-network-based ones. Although normal neural networks such as
feedforward and recurrent networks appear to be deterministic, they are implicit
statistical models as Chapter 3 will explain. In fact, it is based on the statistical
interpretation of neural networks that this thesis identifies potential limitations
of conventional neural F0 models and proposes new ones. This thesis does not
consider other popular models such as hidden Markov model (HMM) because
neural networks are more flexible and were found to work better on the speech
corpus used in this thesis [9].

This thesis is dedicated to improving the statistical F0 models. It doesn’t
explore the design and acquisition of linguistic features but just uses existing
front-end and the automatically derived linguistic features1. Neither does this
thesis use other F0 representations or other expert-knowledge-based models to
parameterize F0. It only considers F0 generation from linguistic features directly.
Furthermore, although the data used are in a reading and neutral style, this thesis
doesn’t assume a particular domain of the speech data for the proposed models
and methods.

1List of linguistic features can be found in Appendix A

1.2 Thesis overview 5

1.2.3 Issues to be addressed

Using neural networks for F0 modeling is not a new idea [10, 11, 12]. Although it
is straightforward and convenient to use neural networks for this task (or any
task), whether the method takes full advantage of neural networks is open to
question. Furthermore, it requires theoretical and empirical investigation in order
to find a good network structure and specific modeling strategy for F0 modeling.

This thesis analyzes recent neural-network-based F0 modeling approaches and
identifies three potential issues:

• Issue 1: whether it is appropriate to jointly model F0 and other spectral
features using a normal neural network as many TTS back-ends do;

• Issue 2: whether a normal neural F0 model ignores the temporal correlation
of F0 contours. If yes, how a model can learn the correlation;

• Issue 3: whether it is efficient for a neural F0 model to process linguistic
features frame-by-frame. If not, how a more efficient and interpretable model
can be designed.

Because the topic of this thesis is on the F0 modeling, we must answer Issue 1
first. If we simply investigate the F0 modeling part in the context of normal TTS
back-ends, the unknown impact of the joint modeling may interfere with the F0
modeling performance, which may lead to unreliable results and conclusion. With
Issue 1 addressed, we can focus on the F0 model. As Chapter 3 will explain, a
neural network can be interpreted as a probabilistic model, in which the input
features are transformed into a parameter set of a specific type of distribution for
the target data. Accordingly, the performance of such a neural probabilistic model
is affected by two points: 1) whether the assumed distribution is compatible with
the target data; 2) whether the hidden layers are well designed to transform the
input data into the parameter set. These two points motivate us to ask Issue 2
and 3 above.

1.2.4 Contribution

On the issues above, this thesis conducted new analyses and proposed new models:

6 Chapter 1. Introduction

• On issue 1:

– An empirical evaluation using highway neural networks was conducted,
and the results showed that a neural network prioritized the spectral
features over the F0 when it jointly modeled both features as the target;

– Analyses on the hidden features further illustrated different network
behaviors in modeling the F0 and the spectral features. The results
provide a rationale to separate F0 modeling from spectral feature
modeling in order to improve F0 modeling performance;

• On issue 2:

– Theoretical and empirical analyses were conducted to show how the
normal neural networks ignore the temporal correlation of the target
sequential data such as the F0 contour;

– A neural F0 model called shallow autoregressive model (SAR) was
proposed to amend the missing temporal correlation in F0 modeling.
Interpretations based on digital filter and feature transformation were
provided to understand and extend the SAR;

– The shortcoming of the SAR was analyzed, and a deep autoregressive
F0 model (DAR) was proposed. Based on quantized F0 representation
and other techniques, the DAR outperformed previous models. It also
generated smooth F0 contours by random sampling, which has never
been achieved by other neural F0 models;

• On issue 3:

– Based on the DAR, a new VAE-based F0 modeling framework was
proposed. This framework encodes the F0 contour into a self-learned
compact code space. Specifically, the encoder assigns only one codeword
to each linguistic unit in the utterance no matter what the duration of
that unit is. With the sparse codes and duration of units, the decoder
can reconstruct the entire F0 contour accurately;

1.3 Outline of thesis 7

– The proposed framework further uses a separate network to learn the
mapping from the linguistic features to the codewords directly for every
linguistic unit. Combined with the VAE decoder, this network can be
used for neural F0 modeling in TTS systems. As experiments demon-
strated, this model processed the linguistic features more efficiently,
learned interpretable and sparse F0 codes, and outperformed the DAR.

1.3 Outline of thesis

The thesis is organized according to the roadmap in Figure 1.2.
Chapter 2 will describe the TTS front-end and back-end used in this work. It

also introduces the F0 from multiple perspectives and explains typical F0 modeling
methods for TTS, including neural-network-based ones. Chapter 3 will introduce
and interpret neural networks as statistical models. After that, it will re-iterate
the three issues to be investigated in this thesis.

Chapter 4 to Chapter 7 will look into three issues. Specifically, Chapter 4
reports on empirical studies of the behavior of the neural network when it models
F0 jointly with other spectral features. Results from this chapter motivate the way
to model F0 separately from spectral features for the following chapters. Chapter 5
and 6 focus on the temporal correlation of F0 models. Particularly, Chapter 5
will analysis the shortcoming of normal neural works and define a simple and
interpretable F0 model called SAR. Chapter 6 further analyzes the shortcoming of
the SAR and proposes a better model called DAR for F0 modeling. Based on
the DAR, Chapter 7 focuses on more efficient linguistic feature processing and
introduces a variational auto-encoder (VAE)-based framework.

Chapter 8 will show the performance of TTS systems equipped with the
proposed F0 models and other advanced modules. It will also explain the remaining
gap between synthetic and natural speech and mention potential directions to
further improve F0 modeling for the pipeline TTS systems.

8 Chapter 1. Introduction

Issue 2
To model the missing
temporal correlation?

SAR

DAR

Preliminary
F0 modeling in neural-network-

based TTS back-ends

Chapter 2, 3

Issue 1
Individual or subordinate

F0 modeling?

Chapter 4

Chapter 5

Chapter 6

Issue 3
More efficient model?

VAE + DAR

Chapter 7

Application & summary
Use F0 models in TTS systems

Future work

Chapter 8

Figure 1.2: Thesis outline

9

2
F0 Modeling for TTS

F0 modeling for TTS involves not only signal processing and statistical modeling
technologies but also natural and social sciences. Compared with other acoustic
features, the F0 is closely related to the linguistic side of speech and language,
which makes it notoriously difficult to model.

This chapter tries to introduce the F0 and F0 modeling from various perspectives.
Section 2.1 introduces the F0 in the linguistic hierarchy, including its acoustic
property and linguistic roles in speech and language. It also explains confusing
terminologies related to the F0. Section 2.2 then introduces pipeline TTS systems
and the statistical parametric speech synthesis (SPSS) framework for the TTS
back-end. With the TTS systems in mind, Section 2.3 introduces the existing F0
modeling methods proposed for general TTS systems or specific TTS systems
using the SPSS back-end. This section also defines the metrics to evaluate F0
modeling performance.

10 Chapter 2. F0 Modeling for TTS

1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15
Time (s)

−0.4
0.0
0.4

A
m

pl
itu

de

360 370 380 390 400 410 420 430
Frame index

200

300

400

500

F0
(H

z)

Figure 2.1: Speech waveform and F0 contour.

2.1 Introduction to F0

F0 is not a tangible object. Even under the same name, the F0 can be measured,
interpreted, and reproduced from different viewpoints. This section briefly
introduces the F0 using some of the viewpoints.

2.1.1 F0 in signal processing

If we take the perspective of signal processing, we often use the F0 to denote the
greatest common divisor (GCD) of all the frequency components contained in a
periodic signal such as a sine signal [13]. However, this definition may not apply to
the speech waveform, which contains quasi- and non-periodic components. For a
speech waveform, it is more practical to define the F0 value as the inverse of the
smallest period in the speech segment being analyzed [14]. The rationale for this
‘engineering’ point of view is rooted in speech production theory. Nevertheless,
given a small segment (e.g., 10ms in length) that is windowed from the original
waveform, an F0 value can be acquired by calculating the inverse of the period of
the repeating patterns in the segment. This speech segment is referred to as one
frame. If the window is shifted by 5ms, another F0 value can be calculated for
that frame. Similarly, a sequence of F0 values can be obtained for a whole speech
waveform and is referred to as the F0 contour. For specific algorithms to calculate
the F0 value, the readers may refer to other literature [14, 15, 16, 17, 18].

In this thesis, we use o1:T = {o1,o2, · · · ,oT} to denote an F0 contour, where T
is the number of frames. We use a bold letter o rather than a scalar to denote the

2.1 Introduction to F0 11

F0 of one frame in order to represent the F0 of speech in a general manner. As the
section on speech production will explain, a natural speech waveform may contain
aperiodic frames for unvoiced sounds in which the periodicity and F0 do not exist.
For those frames, ot does not denote a scalar value but a special ‘unvoiced’ symbol.

2.1.2 F0 in speech production

From the perspective of speech production, the F0 is determined by the vibration
frequency of the vocal folds when a human speaker utters a voiced sound [19]. The
vibrated vocal folds convert the air flows from the lungs into a quasi-periodic
sequence of air pulses, after which this pulse sequence is modulated by the vocal
tract into a speech waveform. This physical process can be described by a source-
filter model [20]. Since the sequence of pulses (source) is a quasi-periodic signal,
the waveform signal coming out from the vocal tract (filter) is also quasi-periodic.
This is the reason that we can calculate the F0 value from a voiced speech segment.

Unvoiced speech segments are uttered without the vibration of the vocal folds.
Depending on the articulation gesture, the air flow may be stopped and released
somewhere in the vocal tract. Or it may be constricted somewhere from the glottis
to the lip. In general, an unvoiced sound does not display periodicity, for example,
as the initial part of Figure 2.1 shows. For these frames, the F0 is not defined.

Notice that a speech sound can be between the ‘voiced’ and ‘unvoiced’ states.
However, in most of the F0 extractors, a sound may simply be treated as either
voiced or unvoiced [14]. This thesis also adopts this binary division to represent F0
contours. Accordingly, an F0 contour is plotted as a set of disconnected curves, for
example, as Figure 2.1 shows.

2.1.3 F0 in speech perception

When a speech waveform reaches the perception system of a human listener, the
F0 is perceived as the relative highness or lowness of speech, i.e., the pitch [21].
Although the pitch is affected by many factors such as the sound intensity, it is
mainly decided by the F0 value. Accordingly, the F0 contour is an important
acoustic cue for pitch perception.

12 Chapter 2. F0 Modeling for TTS

The perceived variation of pitch further contributes to the perception and
understanding of the speech. In tonal languages such as Mandarin, the perceived
pitch change over a syllable is recognized as one of the categorical lexical tones.
Such lexical tones help the listener to differentiate the syllables with otherwise the
same sequence of phones. For example, the syllable [ma] with a flat tone type
means ‘mother’, while the same syllable with a decreasing tone type means ‘scold’.
In pitch-accent languages such as Japanese (Tokyo Yamanote dialect), the rise-fall
pitch pattern signals the location of an accent nucleus, which also discriminates
lexical words with different meanings [22].

Another major use of the pitch is to signal post-lexical nuances. In English,
a finite set of pitch contour patterns are the acoustic cues for (post-lexical)
pitch-accents1. These pitch accents help the listener to understand the meaning
beyond the surface words. For example [24], let’s consider dialogues below, where
the displaying of the word ‘Marianna’ shows the pitch accents:

Speaker A: Who made the marmalade?

Speaker B: Marianna made the marmalade.

Speaker A: Bob made the marmalade.

Speaker B: (No,) Mari
anna made the marmalade.

In the first case, speaker B just uses a normal high pitch accent to answer ‘who
did that’. In the second one, however, speaker B uses a low-high pitch accent to
indicate that speaker A’s statement is incorrect and emphasizes Marianna rather
than Bob made the marmalade. Notice that the words uttered by speaker B
are the same in the two dialogues, but they show a semantic difference through
different pitch accents.

Beyond the lexical and post-lexical roles, the pitch may also indicate the
para-linguistic and social-linguistic information such as the social status of the
speaker [33, 34]. With other perceptual features, the pitch may also signal the

1‘Pitch-accent’ in English and that in Japanese are quite different. Although both ‘accents’
are signaled by the pitch contour, they have different functions, distributions in utterance, and
categorical types [23]

2.1 Introduction to F0 13

Table 2.1: Functions of speech prosody and acoustic cues

Level Function (Part of) Acoustic cues

Word Segment words [25] spectral tilt, duration
Distinguish lexical words [22] pitch pattern (tone)

Phrase
Signals the phrase boundary [25] pause, pitch pattern
Shows prominence in phrase [26] pitch pattern
Encodes the speech act [27] pitch pattern

Discourse
Segments the discourse [28][28] pitch range, loudness
Indicates the focus in discourse [29] pitch pattern, duration
Manages conversation [30] pitch level, mm-hm, yeah,

Global Implies the speaker’s attitude [31][32] pitch range, duration
Implies the social status [33, 34] rhythm, accent

speaker’s mood and emotion [35]. On these aspects, the pitch is used not as part
of a linguistic structure but as a type of animal communication [22].

Nevertheless, the pitch is an essential component of speech. Together with
timing, loudness, articulation effort, and other acoustic cues, the pitch determines
the speech prosody that covers almost every corner of speech and language
understanding. Table 2.1 lists some of the functions played by the speech prosody,
together with some of the acoustic cues including the pitch.

2.1.4 Terminology

In the introduction to speech perception, we have distinguished ‘F0’ from ‘pitch’.
Although in many papers ‘pitch’ is used interchangeably with ‘F0’, we only use
‘pitch’ to denote the perceived highness or lowness of sound and ‘F0’ to denote the
inverse of the basic period in waveforms. Accordingly, F0 modeling for TTS refers
to the generation of F0 contours given linguistic features.

In the previous section, we also used terms such as ‘prosody’, ‘intonation’,
‘tone’, and ‘accent’. Here, we just casually define them for explanation in this thesis.
Readers may refer to other books for thorough definition and explanation [22].

First, we use ‘tone’ to refer to the lexical tones in tonal-languages, which is
mainly the categorical patterns of pitch movement. For English, the ‘tone’ is also
used to refer to the pitch movement in an intonational structure, which may also

14 Chapter 2. F0 Modeling for TTS

be called intonational tone (e.g., phrase boundary tone in the Tone and Break
Index (ToBI) [36] labeling protocol). We use ‘pitch-accent’ to refer to the pitch
movement that discriminate lexical words in Japanese [23]. It is also used to name
the English pitch movement that consists of a single or two intonational tones. For
example, the L-H pitch accent that consists of the L intonational tone and H
intonational tone [36]. The word ‘intonation’ is used to denote the sequence of
pitch-accent in English. Finally, ‘prosody’ is the most general word to denote the
suprasegmental properties of the speech. Not only does it include pitch but also
duration, spectral tilt, or other perceived features.

2.2 TTS systems

2.2.1 TTS front-end

In Section 1.1, we briefly mentioned the TTS systems with a pipeline structure
[2, 37]. Such a TTS system consists of a front-end and a back-end, where the
front-end parses the text and decides what to speak and how to speak while the
back-end converts the speaking plan into a speech waveform.

Suppose we are asked to read a text in a foreign language (so that we consciously
know what we are doing), for example English. We may first recognize the word in
the text, guess its pronunciation, and decide the location of primary stress. This
process is quite easy if we are familiar with the words. But real cases may be much
more difficult. For example, we have to decide the way to read a date, number
(e.g., 1990), abbreviation (e.g., Dr.), non-standard words, and homographs (e.g.,
‘lives’). For some words, we need to decide the stress based on its syntactic role
(e.g., ‘project’ as a noun and ‘project’ as a verb). If there is an out-of-vocabulary
word, we may try our best to guess its pronunciation based on the stem and affixes.

A TTS front-end needs to do a similar process [38]. In technical terms, a
TTS front-end needs to recognize individual words through text tokenization,
process non-standard words through text normalization [39], and convert the
letter sequence into the phoneme sequence through letter-to-sound conversion [40].
When discriminating homographs, the front-end also conducts part-to-speech
(POS) tagging [41] and decides the pronunciation using syntactic information.

2.2 TTS systems 15

Besides ‘what to speak’, we human beings also plan ‘how to speak’, i.e., decide
the speech prosody, including the intonation, phrasing, duration and so on. This
part is the crux of the front-end. While speech prosody is essential, there is no
consensus about what should be planned, how to represent them, and from what
source information to make the plan. In practice, the POS tags and the syntactic
structure of the text may be used to decide the location and the length of pauses
(i.e., phrasing) [42], the location and type of pitch accents (i.e., intonation in
symbols) [43], and the duration of each word [44].

The above description is by no means comprehensive. On one hand, a front-end
is language dependent; on the other hand, there is no standard about what
should be predicted from the front-end for speech prosody as aforementioned.
Nevertheless, we can at least know the basic steps in the TTS front-end. The
output of the front-end is referred to as the linguistic feature. Appendix A lists
the linguistic features used in this thesis for English and Japanese TTS.

2.2.2 TTS back-end using SPSS

Given the linguistic features, the TTS back-end converts them into a speech
waveform. A few back-end frameworks have been proposed in the past, including
unit-selection [45] and formant synthesis [46]. Here we only introduce the statistical
parametric speech synthesis (SPSS) framework [47, 48] since it is used in this
thesis and many other TTS systems. A diagram of SPSS is plotted in Figure 2.2.

Parametric side of SPSS

SPSS is parametric in the sense that it produces the speech waveform through
parametric speech production models. One of the typical models is the source-filer
model, which contains a source component to produce the excitation signal and a
filter component to modulate the excitation into a speech waveform. In practice,
this model is implemented by a digital signal processing system called a vocoder.

The parameters of the source and filter components, which are referred to as
acoustic features, mainly include the spectral features and the F0. While the F0
determines the periodicity and voicing status of the source excitation signal, the
spectral features depict the frequency response of the filter compoment. Commonly

16 Chapter 2. F0 Modeling for TTS

Pulse train

White noise

Speech
waveform

Linear filter
(short-time-invariant)

Acoustic modeling

Waveform generation

Linguistic
features

Acoustic models
F0 model

Spectral featuresF0 (with U/V)

Figure 2.2: SPSS using a source-filter-based waveform generator

used spectral features include the Mel-generalized cepstral coefficients (MGC)
[49] and line-spectrum-pairs (LSP) [50]. Some vocoders also include the band
aperiodicity features (BAP), binary noise mask [51], and other spectral features
that depict the degree of aperiodicity in each frequency band.

Suppose the acoustic features, including the F0 and spectral features, have
been given as a sequence of vectors a1:T = {a1, · · · ,at, · · · ,aT} in T frames. In
practice, the vocoder may generate a small segment of the waveform using the
spectral features in each at. It then may overlap and add all the T segments
based on the period specified by the F0 information. Alternatively, a vocoder may
overlap and add the excitation pulses based on the F0 and generate the output
waveform by filtering the excitation signal. Readers may find more details in
commonly used vocoders such as STRAIGHT [15] and WORLD [18].

Note that there are also vocoders incorporating more complicated source
components, for example the glottal excitation [52, 53, 54] and mixed excitation
[55, 56]. In addition to the source-filter-based vocoder, there are also vocoders
based on the sinusoidal model [57, 58] and neural networks [59].

Statistical side of SPSS

The statistical side of SPSS is to predict the acoustic features based on the
linguistic features. Statistical approaches are necessary because there is no simple
rule to implement this conversion. For example, in order to generate the waveform
for phoneme /a/, we may need to analyze some waveform samples of /a/, calculate
the acoustic features from these samples, and store them into a lookup table.
However, due to the co-articulation effect, we need to analyze a huge number of

2.2 TTS systems 17

samples and prepare the entries in the lookup table for /a/ in every phonemic
context (i.e., allophones). The cost for such a manual process is prohibitive, before
even making the rules for prosody. Even if a set of rules can be built, we would
have to repeat this process if we want to build the system using another voice.

The statistical framework provides a flexible and effective solution: first, it
does not require too much human effort to build a TTS-back-end; second, it can
leverage large speech corpora and learn the mapping automatically; third, it allows
voice interpolation, adaption, and other manipulation applications [47, 48].

The process to convert the linguistic features to the acoustic features is referred
to as acoustic modeling, and the statistical models used for this process are
called acoustic models. Similar to other statistical modeling approaches, acoustic
modeling for SPSS requires three steps:

1. Collect a corpusD = {{a(1)
1:T1 ,x

(1)
1:T1}, {a

(2)
1:T2 ,x

(2)
1:T2}, · · · , {a

(N)
1:TN

,x
(N)
1:TN
}}, where

{a(n)
1:Tn

,x
(n)
1:Tn
} denotes the acoustic and linguistic feature sequences of the

n-th utterance;

2. Define a probabilistic model p(a1:T |x1:T ; Θ) and learn the parameter set Θ
using the maximum likelihood training criterion

Θ∗ = arg max
Θ

N∑
n=1

log p(a(n)
1:Tn
|x(n)

1:Tn
; Θ); (2.1)

3. Given x1:T of a new input text, generate â1:T by using the maximum output
probability criterion

â1:T = arg max
a1:T

p(a1:T |x1:T ; Θ∗). (2.2)

The first and second steps define the process to build the acoustic models while
the third step uses the trained acoustic model for acoustic feature generation.

One crucial point of SPSS is the definition of the acoustic models. HMM plus
the decision trees is one of the typical acoustic models for SPSS2[47, 48]. In recent

2 For HMM-based SPSS, the linguistic feature sequence x1:N is usually a set of context-
dependent phones. Hidden state q1:T is introduced to model the alignment between x1:N and
a1:T , and the acoustic model is written as p(a1:T |x1:N ; Θ) =

∑
q1:T

p(a1:T , q1:T |x1:N ; Θ).

18 Chapter 2. F0 Modeling for TTS

years, neural-network-based acoustic models are becoming popular [60, 61, 62]
because they alleviate the inappropriate model assumptions in HMMs and decision
trees [63]. We will briefly explain these acoustic models later.

Note that the above framework is not the only solution to SPSS. For example,
in the so-called ‘end-to-end’ approaches [64], the acoustic features may be mel-
spectrogram without explicit F0 features. It also integrates the front-end into the
SPSS framework, without using the aligned linguistic and acoustic feature pairs.

2.3 F0 modeling for TTS

Having introduced the TTS and SPSS, this section looks into F0 modeling. By
F0 modeling, we mean the process to generate the F0 contour o1:T given the
linguistic feature sequence x1:T . For this task, we may directly use the HMM- or
neural-network-based SPSS and generate the F0 together with spectral features.
However, because of the F0’s special role in speech and language, F0 modeling has
been investigated using various approaches beyond the SPSS-based framework.
We use s1:T to denote the spectral feature sequence.

2.3.1 Deterministic F0 representation

One class of the research is concerned with the compact representation of F0.
While an F0 contour is a sequence of values measured in every frame, the tone
and intonation are defined over syllables or longer linguistic units. What’s more,
linguistic units may span different numbers of frames. If representations can be
found to describe F0 contours for linguistic units, they would favor the association
between the F0 and the linguistic structure of the utterance.

One typical representation is based on the Autosegmental-Metrical (AM)
model, a model that describes the American English F0 contour as a sequence of
high (H) and low (L) movement [26]. Specifically, the AM model assumes that an
F0 contour of one utterance consists of three parts: the pitch accents signaled by
the excursion of F0 contours on the accented syllables, the F0 movement at the
end of the phrase, and the F0 curve linking the last pitch accent to the phrase
end. The AM model further assumes that F0 contours in the three parts can be

2.3 F0 modeling for TTS 19

abstracted into a finite set of categories. This AM-based representation is adopted
in the ToBI labeling protocol [36].

Another typical of representation is based on the Tilt model [7]. Similar to the
AM model, the Tilt model also decomposes an F0 contour into a sequence of events,
including pitch accents, boundary tones, connections, and silence. However, the
Tilt model uses continuous parameters rather than categorical symbols to describe
each event. For example, a pitch accent event is described by a starting F0 value,
duration, absolute F0 amplitude, position of the rise-all boundary, and a special
tilt parameter [7]. In addition to the Tilt model, other representations have been
proposed on the basis of the Fujisaki model [65, 66] and Parallel Encoding and
Target Approximation (PENTA) model [8]. One common characteristic of these
models is that the F0 curve is assumed to be produced from a configurable function,
for example, the exponential functions in the PENTA and the Fujisaki model. It
has been argued that these functions follow the physiology of F0 production.

Other representations may be purely engineering approaches. For example, three
target points can be used to represent a coarse F0 shape for each syllable [11, 67].
Similarly, continuous-wavelet-transformation and discrete-cosine-transformation
can also be used to represent F0 contours [68, 69]. It has been shown that a
certain degree of linguistic regularity can be observed from the F0 representation
derived using these engineering approaches [6]. Another special work is the F0
stylization for perceptual experiments, a representation that converts the F0
contour into a sequence of connected straight lines [70].

In general, the purpose of F0 representation and abstraction is to derive a
compact representation l1:N = {l1, · · · , lN} from the F0 contour o1:T . Meanwhile,
the representation l1:N should be easy to predict from linguistic features and
sufficiently detailed to recover the F0 contour. Depending on the methods, the
sequence length N may be equal to the number of accented syllables, phones, or
frames, and each ln may be a categorical value or a set of continuous values.

2.3.2 F0 modeling based on compact F0 representation

The above F0 representations can be used for F0 modeling in TTS. After F0
representations are extracted from the F0 training data, statistical models can be

20 Chapter 2. F0 Modeling for TTS

trained to map the linguistic features into the F0 representations. After that,
predicted F0 representations for a new text can be used to produce the F0 contour.

For example, F0 modeling for TTS can be constructed on the basis of the Tilt
model [71]. After the Tilt parameters are extracted from training data, regression
trees can be built to predict the Tilt parameters for each Tile event. The inputs to
the regression trees are the linguistic features of the text, including the lexical
stress of syllable, the position of the syllable within a phrase, and composition of
the syllable structure. During generation, the predicted Tilt parameters are used
to drive the Tilt synthesis model and generate the F0 contour syllable-by-syllable
for a new test. Similar F0 generation methods can be used on the basis of the
Fujisaki model [72] and the PENTA model [73].

However, not every type of F0 representation can be directly used for TTS.
The AM model represents the F0 contour in a quite sparse and abstract manner,
i.e., only a few symbols on accented syllables. Thus, a different model is required
to generate the F0 contour after the pitch accent symbols are predicted from the
linguistic features [74]. For example, a simple linear regression model can be used
to convert the pitch accents and other linguistic features into the F0 values of the
starting, middle, and ending target points for each syllable. This step-wise F0
contour can then be low-pass filtered to produce a smooth F0 contour [67].

2.3.3 Frame-level statistical F0 modeling

The deterministic representations based on the Tilt and other models assume
specific functions to represent the shape of F0 contours, which may not cover all
possible F0 curve shapes. Or, in the case of target F0 points representation, the
accuracy of the reconstructed F0 is limited.

A more flexible approach is to use statistical models to directly map the
linguistic features into the F0 contour. An F0 model for this purpose may
automatically learn the F0 shapes from the training data. To differentiate it from
the previous approaches using F0 representations, we refer to this approach as the
frame-level statistical F0 modeling. The basic procedure of this approach is identical
to the SPSS framework described in Section 2.2.2. In fact, frame-level statistical
F0 modeling is usually integrated into the HMM and neural-network-based SPSS

2.3 F0 modeling for TTS 21

Phone n

…

Spectral stream

F0 stream
p(ot|qt,✓F0)

p(st|qt,✓spec) …

… p(ot+2|qt+2,✓F0)

p(st+2|qt+2,✓spec)Linguistic
features

…

Figure 2.3: HMM-based SPSS with multi-streams, where ot and st denotes the F0
and spectral feature at the t-th frame.

frameworks, where the F0 and other spectral features are modeled simultaneously.
However, since the F0 is quite different from other spectral features, statistical F0
modeling usually requires special modeling methods.

HMM-based approach

Let’s take the HMM-based approach as an example. The major problem is the F0
in unvoiced frames. Since these F0 values are undefined, they cannot be modeled
together with the F0 values in voiced frames. In the classical HMM-based approach,
an F0 value ot is defined as either a real-valued number or a special discrete
symbol NULL, i.e., ot ∈ {NULL} ∪ R. A model called multi-space distribution
HMM (MSD-HMM) then can be used to describe the distribution of the F0 values
in the voiced frames and the probability of being unvoiced [75]. Given a hidden
state at one frame, the MSD-HMM first decides whether the frame is unvoiced. If
not, it then predicts the F0 value for that frame.

Another method is to assign artificial F0 values to the unvoiced frames and
model the interpolated F0 contour together with the binary voicing status of every
frame. In such a case, every frame has a real F0 value, i.e., ot ∈ R, and a normal
HMM can be used for statistical F0 modeling. This approach is known as the
explicit continuous F0 modeling [76].

In both approaches above, the F0 data are modeled with other spectral features
s1:T using a multi-stream HMM-structure [77]. In the generation stage, after the
hidden state sequence {q1, · · · , qT} is determined by a Gaussian-based duration

22 Chapter 2. F0 Modeling for TTS

model, the linguistic features can be used to find the distribution of the spectral
feature p(st|qt,θspec) and F0 p(ot|qt,θF0) from the leaf nodes of the decision trees.
Given the sequence of distributions, the maximum likelihood parameter generation
algorithm [78] can be used to generate the F0 and spectral feature sequences.
Notice that F0 and spectral features are described by independent distributions
given the hidden state3.

The independence of F0 and spectral features in each HMM state makes it
feasible to use more specific approaches for F0 modeling. For example, syllable-level
F0 features (e.g., mean F0 value) can be integrated into the HMM as another
stream [80, 81, 82, 83].

Neural-network-based approach

Despite the good performance of the HMM-based approach, many recent statistical
models are based on deep neural networks [61, 84, 85, 86, 62]. Compared with the
HMM-based approach, the neural-network-based approach avoids unnecessary
assumptions4. For example, it doesn’t assume that the same distribution is used
for all the frames belonging to the same hidden state. Furthermore, the decision-
tree-based model clustering process is replaced by the non-linear transformation in
neural networks, which avoids the data-fragmentation problem.

Another advantage of the neural-network-based approach is that the model can
be trained in a straightforward manner. Given the F0 and spectral features as the
target, the network can be simply trained under a minimum square error criterion
on a data corpus5. In the generation stage, outputs can be directly taken from the
last layer of the neural network. Usually, the F0 contour are interpolated before
modeling. Figure 2.4 shows one recurrent neural network (RNN) that models both
the F0 and the spectral features.

In both HMM- and neural-network-based frameworks, the F0 is usually modeled
with other acoustic features jointly. In the HMM-based SPSS framework, the F0 is
somewhat separated from spectral features because of the multi-stream HMM as

3There are also methods that model the dependency of the spectral features on the F0 [79].
4Not all the assumptions are avoided. For example, the independence between F0 and spectral

features is still held by a normal neural network, which will be explained in Chapter 3.
5This is equivalent to the maximum likelihood criterion as Chapter 3 will show.

2.3 F0 modeling for TTS 23

…

…

Recurrent layers

Feedforward layer

Linguistic features

F0 contour

Recurrent neural
network

… Spectral featuress1 s2 s3 sT

oT

xT

o3o2o1

x1 x2 x3

Figure 2.4: RNN-based acoustic model

Figure 2.3 shows. In neural networks, however, the F0 and other acoustic features
share the hidden layers. As Chapter 4 will argue, this joint training method may
be suboptimal for F0 modeling.

We leave the detailed explanation of neural networks to the next chapter. Here
we only briefly mention some works using neural networks exclusively for F0
modeling. One work uses the RNN with long-short-term-memory (LSTM) units
[87], which is also used as the baseline model in this thesis. Other F0 models based
on neural networks were proposed around 1990 [10, 12]. One of the models includes
a macro-phonemic network to predict the average F0 value for each phoneme in
addition to the frame-level network. However, the network size and design of
linguistic features are quite limited. There are other works using neural networks
for F0 modeling [88, 11]. However, these works do not model the F0 contour at
the frame level but just generate a fixed number of F0 values for each syllable.

2.3.4 Evaluation metrics

After introducing the F0 models, this section explains the common metrics used to
evaluate the performance of F0 models. These metrics are also used in this thesis.

Objective metrics

As objective metrics, we can calculate the distance between natural F0 contours
o1:T = {o1, · · · ,oT} and generated versions ô1:T = {ô1, · · · , ôT} on the test set.
We use the natural duration T of the test utterance to generate ô1:T .

24 Chapter 2. F0 Modeling for TTS

Since F0 contours contain unvoiced frames, we first extract the frames t where
both ot and ôt are voiced. Let’s use o1:Tv = {o1, · · · , oTv} and ô1:Tv = {ô1, · · · , ôTv}
to denote the extracted frames from o1:T and ô1:T , respectively. Here, Tv denotes
the number of frames where both ot and ôt are voiced. We then can calcualte:

• Root mean square error (RMSE):

RMSE(o1:Tv , ô1:Tv) =

√√√√ Tv∑
t=1

(ot − ôt)2/Tv; (2.3)

• Correlation (CORR):

CORR(o1:Tv , ô1:Tv) =
∑Tv
t=1(ot − ō1:Tv)(ôt − ¯̂o1:Tv)√∑Tv

t=1(ot − ō1:Tv)2
√∑Tv

t=1(ôt − ¯̂o1:Tv)2
, (2.4)

where ō1:Tv and ¯̂o1:Tv denote the mean of o1:Tv and ô1:Tv , respectively;

• Voicing decision error (U/V):

U/V(T, Tv) = 100%− Tv/T. (2.5)

RMSE (the lower the better) and CORR (the higher the better) measures the
accuracy of generated F0 contours while U/V (the lower the better) measures the
voicing accuracy. Their average values on the test set are used as objective metrics.

Subjective metrics

We can also use subjective evaluation metrics. After using the generated F0
contours to synthesize the speech waveform, we evaluate the synthetic and natural
samples through the Mean-Opinion-Score (MOS) test [89]. In this test, native
speakers will rate the sample from 0 (unacceptable) to 5 (perfect) in terms of the
perceived quality. Another test is the preference test, in which the participant
listens to a pair of synthetic samples and chooses the better one. Details of the
subjective tests will be given in the following chapters.

25

3
Neural Networks

This chapter introduces another keyword of this thesis: neural network. In recent
years, it has become easy to train and use neural networks using various tools. We
may think that a neural network is a production line that can converts the input
materials into a desired output. However, this view may not explain how a neural
network works when the mapping between the input and output is ambiguous.
Neither may it explain the neural networks that receive no input. For a better
explanation, this chapter tries to interpret the neural works as probabilistic models.

The chapter focuses on the neural networks with input and output features
because they are widely used in recent TTS systems. Section 3.1 reviews the
common practice to use feedforward and recurrent neural networks as trainable yet
deterministic functions. Section 3.2 then interprets these networks as probabilistic
models, which justifies the common practice. Based on this interpretation, Section
3.2 discusses the shortcomings of conventional neural networks when we use them
for F0 modeling.

It is impractical to cover most of the interesting aspects of neural networks

26 Chapter 3. Neural Networks

in a short chapter. This chapter does not explain fundamental techniques such
as back-propagation and momentum. Neither does it explain the details of
implementation. Most contents of this chapter are written based on the works
[90, 91]. More general and up-to-date introduction on neural networks can be
found in other literature [92, 93].

3.1 Neural networks as deterministic functions

Since the 1940s, various types of neural networks have been proposed for different
learning tasks [92]. The type concerned with in this thesis is designed for supervised
learning tasks. It learns the mapping from input to output data in a training
set and stores the learned ‘knowledge’ as the trainable network weights. It then
converts a new input datum into an appropriate output datum. Accordingly, such
a network can be treated as a function fΘ : X → Y, which, given the trainable
weights Θ, converts the input data of domain X into the output data of domain Y .

3.1.1 A simple network for the XOR problem

Let us use a network to solve the XOR problem by learning the ideal input and
output data pairs listed in Figure 3.1. Here we use a vector x = [x1, x2] and a
scalar o to denote an input datum and an output datum, respectively. To learn
the XOR problem, we use a network that has a single hidden unit. As plotted in
Figure 3.1, this network defines a function fΘ : R2 → R that can be written as:

fΘ([x1, x2]) = σ(w1x1 + w2x2 + w3σ(w4x1 + w5x2 + b2) + b1), (3.1)

where σ(x) = 1
1+exp (−x) is the logistic function, and Θ = {w1, w2, w3, w4, w5, b1, b2}

is the set of network weights.
The network weights Θ can be learned from the four pairs of ideal input and

output data using a mean-square-error (MSE) criterion

Θ∗ = arg min
Θ

E(Θ) = arg min
Θ

1
2× 4

4∑
n=1

(
fΘ([x(n)

1 , x
(n)
2])− o(n)

)2
, (3.2)

3.1 Neural networks as deterministic functions 27

x1 x2

w1 w2w3

w4 w5

b2

b1

0 0 0
1 0 1
0 1 1
1 1 0

Ideal input/output pairs

x1 x2 o

0 0 0.084
1 0 0.871
0 1 0.871
1 1 0.109

Network’s weights and output after learning

x1 x2 bow1 = w2 = �4.2

w4 = w4 = �6.4

w3 = �9.4

b1 = 6.3

b2 = 2.2

…

…bo1 bo2 bo3

x1 x2 x3 xT

boT

bo

h1 h2 h3 hT

W i, bi

W o, bo

bot = W oht + bo.

ht = �(W ixt + bi)
Feedforward

network

…

…bo1 bo2 bo3

x1 x2 x3 xT

boT

h
(f)
1 h

(f)
2 h

(f)
3 h

(f)
T

h
(b)
Th

(b)
3h

(b)
2h

(b)
1

Recurrent
network

Figure 3.1: A toy neural network to solve the XOR problem [94].

where the superscript (n) denotes the n-th training data pair. Unfortunately, the
best Θ∗ cannot be found analytically because of the non-linear activation functions
inside the network. A practical method is to iteratively adjust Θ so that the MSE
gradually decreases. This is known as the gradient-descent method. Starting with
a randomly initialized Θ, this method calculates the MSE and adjusts a network
weight w on the basis of its gradient with respect to the MSE. This updating
procedure can be written as w ← w− η ∂E(Θ)

∂w
, where η is a learning rate parameter.

By repeating this updating process for multiple iterations, an estimated w can
be acquired. For network weights near the input side, e.g., w4, w5, and b2 in
Figure 3.1, their gradients are calculated based on the gradients of w3. The process
to calculate the gradients is referred to as the back-propagation algorithm [94, 95].

Figure 3.1 also plots a set of learned weights for the toy network and the
output value of the network using the learned weights. The network seems to learn
the XOR operation if we think 0.87 and 0.10 are approximately equal to 1 and 0,
respectively. Nevertheless, this network shows the power of a neural network to
learn the XOR problem, which is impossible for a network without the hidden
unit. The back-propagation-based gradient descent algorithm ‘answered Minsky
and Papert’s challenge’ of finding an effective learning method for networks with
hidden units [94] and has been the keystone of deep learning.

3.1.2 Feedforward neural network

The toy network for the XOR problem can be extended to a more general network
and used for more complex tasks. Let’s consider a sequential supervised learning
task where a network needs to convert a sequence of input data x1:T = {x1, · · · ,xT}

28 Chapter 3. Neural Networks

into a target sequence o1:T = {o1, · · · ,oT} with T steps. For explanation, we
define ot ∈ RDo and xt ∈ RDx . Since the example on the XOR problem suggests
that a learned network may not generate the target data exactly equal to the ideal
value, we use ôt to denote the actual output of the network at the t-th step.

The first type of network for the sequential learning task is the feedforward
neural network (FNN), a network assuming that the mapping from x1:T to o1:T

can be conducted for each t ∈ {1, · · · , T} independently. Let’s consider an FNN
with a hidden layer and a linear output layer, which is shown in Figure 3.2. Similar
to the network for the XOR problem, this FNN can be treated as a deterministic
function fΘ : RDx → RDo , which can be written as

ôt = fΘ(xt) = W oσ(W ixt + bi) + bo. (3.3)

Here σ(·) is the logistic activation function, and Θ = {W o,W i, bo, bi} is the
set of network weights. This network generates a sequence of output ô1:T =
{ô1, · · · , ôT} = {fΘ(x1), · · · , fΘ(xT)} by repeating the conversion process for
each time step t ∈ {1, · · · , T}.

The network weights Θ can be learned similarly to the toy network on the
previous page. Without loss of generality, we consider a training data set with one
pair of input and output sequences D = {{o1:T ,x1:T}}. On this tiny corpus, Θ
can be learned on the basis of the MSE-based criterion

Θ∗ = arg min
Θ

EΘ = arg min
Θ

T∑
t=1
||ot − fΘ(xt)||2. (3.4)

In practice, a good but not necessarily the best solution can be found by using the
gradient-descent method in a similar manner to the toy XOR network.

Note that the style of Figure 3.2 is different from that in Figure 3.1 in order to
illustrate this sequential conversion process. Each circle in Figure 3.2 denotes a
scalar or vector calculated by the network. The link connecting circles denotes the
connection parameterized by the transformation weight matrix and bias vector.
Furthermore, each link is plotted repeatedly for every time step.

3.1 Neural networks as deterministic functions 29

x1 x2

h

w1 w2w3

w4 w5

b2

b1

0 0 0
1 0 1
0 1 1
1 1 0

Ideal input/output pairs

x1 x2 o

0 0 0.084
1 0 0.871
0 1 0.871
1 1 0.109

Network’s weights and output after learning

x1 x2 bow1 = w2 = �4.2

w4 = w4 = �6.4

w3 = �9.4

b1 = 6.3

b2 = 2.2

…

…bo1 bo2 bo3

x1 x2 x3 xT

boT

bo

h1 h2 h3 hT

W i, bi

W o, bo

bot = W oht + bo.

ht = �(W ixt + bi)
Feedforward

network

Figure 3.2: Using a feedforward network on sequential data.

x1 x2

h

w1 w2w3

w4 w5

b2

b1

0 0 0
1 0 1
0 1 1
1 1 0

Ideal input/output pairs

x1 x2 o

0 0 0.084
1 0 0.871
0 1 0.871
1 1 0.109

Network’s weights and output after learning

x1 x2 bow1 = w2 = �4.2

w4 = w4 = �6.4

w3 = �9.4

b1 = 6.3

b2 = 2.2

…

…bo1 bo2 bo3

x1 x2 x3 xT

boT

bo

h1 h2 h3 hT

W i, bi

W o, bo

bot = W oht + bo.

ht = �(W ixt + bi)
Feedforward

network

…

…bo1 bo2 bo3

x1 x2 x3 xT

boT

h
(f)
1 h

(f)
2 h

(f)
3 h

(f)
T

h
(b)
Th

(b)
3h

(b)
2h

(b)
1

Recurrent
network

Figure 3.3: Using a recurrent network on sequential data.

3.1.3 Recurrent neural network

The FNN has been used for sequential learning tasks such as the letter-to-sound
conversion [96]. However, since it treats the input and output sequences as a set of
time-independent data, it ignores the temporal information in the sequential data.
A better type of network is the recurrent neural network (RNN). Let us consider
an RNN with a bi-directional recurrent hidden layer [97] and a linear output
layer, which is shown in Figure 3.3. Given the input x1:T , this RNN calculates the
output as:

ôt = fΘ(x1:T , t) = W (f)
o h

(f)
t +W (b)

o h
(b)
t + bo, (3.5)

where

h
(f)
t = σ(W (f)

h h
(f)
t−1 +W (f)

i xt + b(f)
h), (3.6)

h
(b)
t = σ(W (b)

h h
(b)
t+1 +W (b)

i xt + b(b)
h), (3.7)

σ(·) is an activation function, and Θ = {W (∗)
h ,W

(∗)
i ,W (∗)

o , b
(∗)
h , bo} denotes

network weights. Notice that we use fΘ(x1:T , t) to denote the network output at
time t because it depends on not only xt but also the whole sequence x1:T . Such
an RNN then can be considered as a function fΘ : RDx×T → RDo×T .

30 Chapter 3. Neural Networks

The network weights of an RNN can be trained using the gradient descent
method. However, the gradient for each weight must be computed and accumulated
over the whole sequence. This can be conducted using an algorithm called
back-propagation through time (BPTT) [98]. Its basic idea is to follow the graph
in Figure 3.3, propagate the gradient through the recurrent link, and accumulate
the gradient for each network weight.

3.2 Neural networks as probabilistic models

Deterministic interpretation is insufficient and inappropriate

The previous section interprets neural networks as deterministic functions, which
allows us to use the MSE criterion to train the network and treat the output of a
network as the predicted target data.

Let us consider the network for the XOR problem again. In that task, the
number of possible input and output pairs is finite; the mapping from the input to
the output can be expressed as a surjective function1. Even though the learned
network does not generate the exact value of 1 or 0 because of the non-linear
activation functions and the gradient learning method, such a network can be
interpreted as a deterministic function. In fact, the toy XOR network can generate
the exact and correct 1 or 0 if it uses a binary step activation function2.

However, the deterministic interpretation cannot fully explain the ‘meaning’
of the network’s output in more complex scenarios. For more complex tasks,
the mapping from the input to the output doesn’t satisfy the definition of a
deterministic function when two different output data correspond to the same
input datum, i.e., y1 = f(x1), y2 = f(x1) while y1 6= y2. For example, the same
phoneme /t/ may be uttered by a human being as different allophones. In such
a case, a non-linear network may not simply make a compromise and generate
f(x1) = (y1 + y2)/2. Furthermore, the average (y1 + y2)/2 may be meaningless for
specific tasks, e.g., the average of a flap [t] and non-flap [t].

1A function f : X → Y is surjective if every element y in Y can find at least one element x in
X that satisfies y = f(x).

2See Figure 2 of [94]. However, such a network cannot be trained using gradient descent
method since the binary step activation function is not differentiable.

3.2 Neural networks as probabilistic models 31

If we want the network to learn from such data as a deterministic function,
we may add discriminant information as the additional input, e.g., adding the
phoneme context to the identity /t/. This method forces the mapping from the
input to the output to be surjective, and the neural network may be trained to
perfectly produce the expected output given the input. However, this method
ignores that the input/output data may contain noise or error of measurement.
The ‘function’ learned by the network may simply overfit to the observation noise
and be unable to explain the authentic generative process. In all, the deterministic
interpretation of neural networks is insufficient and inappropriate.

Probabilistic interpretation

An alternative approach is to interpret neural networks from the perspective of
statistical modeling [91]. Let’s consider the sequential learning task in the previous
section and use the toy FNN to learn it. Note that there may be ambiguous
input/output training pairs, i.e., xi = xj, oi 6= oj, j 6= i. To deal with such cases,
we can assume that true ot is equal to the sum of the network’s output fΘ(xt) and
a noise component εt, which can be written as

ot = fΘ(xt) + εt. (3.8)

This formula attributes the ambiguity to the observation noise in the output
values, which will lead to interpretations on the common usage of neural networks.
For analytic simplicity, we assume that εt is drawn from a multivariate Gaussian
distribution N (εt; 0, σ2I) with zero mean and a diagonal covariance matrix σ2I,
where I denotes an identity matrix. Accordingly, we implicitly define a conditional
probabilistic distribution for ot as

p(ot|xt; Θ) = 1
(
√

2πσ2)Do
exp

(
− ||ot − fΘ(xt)||2

2σ2

)
, (3.9)

where Do is the dimension of ot. It suggests that the network’s output determines
the mean of the distribution p(ot|xt) rather than a value ôt that we get from this
distribution. This interpretation is quite reasonable as we will explain later.

On the basis of Equation (3.9), the network weights Θ can be trained using a

32 Chapter 3. Neural Networks

maximum-likelihood criterion

Θ∗ = arg max
Θ

log p(o1:T |x1:T ; Θ)

= arg max
Θ

T∑
t=1

log p(ot|xt; Θ)

= arg max
Θ

T∑
t=1

log
[1
(
√

2πσ2)Do
exp

(
− ||ot − fΘ(xt)||2

2σ2

)]

= arg min
Θ

T∑
t=1

1
2σ2 ||ot − fΘ(xt)||2.

(3.10)

Note that we drop the additive terms unrelated to Θ in the last line; σ is kept in
the equation, but it doesn’t affect the estimation of Θ∗. By comparing Equations
(3.10) and (3.4), we can notice that the maximum-likelihood criterion under the
assumption of Gaussian distribution is equivalent to the MSE criterion. From
another perspective, we may think that the MSE-based training method implicitly
assumes a Gaussian distribution p(ot|xt) with the mean equal to fΘ(xt) and a
fixed covariance matrix. Note that the best parameter set Θ∗ of a non-linear neural
network cannot be found analytically. Only a good solution can be iteratively
updated using the gradient descent method.

The next interpretation is on the generation method. Suppose the task is to find
a good output ôt given the input x̃t and a learned parameter set Θ†. Intuitively,
we may let ôt be equal to the mean of the Gaussian distribution p(ôt|x̃t; Θ†)
because it maximizes the value of the probability density function (PDF). We refer
to this generation method as the mean-based generation method. Since the
mean of p(ôt|x̃t; Θ†) is equal to the network’s output, we can directly use the
network’s output as the generated output, i.e., ôt = fΘ†(x̃t).

The above interpretations on the conditional distribution, the MSE training
criterion, and the mean-based generation method also apply to RNNs. If we
take the toy RNN in Equation (3.5) as an example, we can get the distribution
implemented by the RNN as

p(ot|x1:T ; Θ) = 1
(
√

2πσ2)Do
exp

(
− ||ot − fΘ(x1:T , t)||2

2σ2

)
, (3.11)

3.2 Neural networks as probabilistic models 33

where fΘ(x1:T , t) denotes the output of the RNN at time t. Since this RNN uses a
bi-directional recurrent layer, the distribution of ot becomes dependent on the
whole input data sequence x1:T rather than xt only. This RNN can be trained
using the same maximum-likelihood training criterion

Θ∗ = arg max
Θ

log p(o1:T |x1:T ; Θ) = arg max
Θ

T∑
t=1

log p(ot|x1:T ; Θ). (3.12)

It can generate an output sample by taking the mean of the inferred distribution
in a similar manner to the FNN, i.e., ôt = fΘ†(x̃1:T).

Assess the probabilistic interpretation

The probabilistic interpretation is quite general and can be applied to FNNs
or RNNs with more complex network structures. Particularly, the mean-based
generation method suggests that the network’s output can be interpreted as the
mean of the conditional distribution of the target data. This interpretation is more
understandable than treating the network’s output as a fixed approximation to an
unknown target datum.

The probabilistic interpretation, however, raises one question: is it appropriate to
assume a Gaussian distribution in Equation (3.9)? We cannot answer it completely
since we don’t know the true conditional distribution p(ot|xt) or p(ot|x1:T)34.
However, we use a Gaussian distribution rather than other distributions because
there is a correspondence between the distribution assumed in the probabilistic
interpretation and the error measure used in common scenarios [99]. For example,
maximizing the likelihood on a Gaussian distribution leads to the MSE-criterion
as Equation (3.10) shows. If a Poisson distribution is assumed, maximizing its
likelihood is equivalent to minimize a generalized Kullback-Leibler divergence
between the natural data vectors and the outputs of the network [100]. In general,
the Gaussian distribution is assumed not merely for mathematic simplicity.

3We use the special font p to denote a true but unknown distribution.
4The distribution should be written as p(Ot = ot|Xt = xt) where Ot and Xt denote the

random variables while ot and xt denote the values taken by the random variables. To avoid
dense notation, we drop the symbols of random variables when the meaning of a mathematic
symbol is self-evident.

34 Chapter 3. Neural Networks

Another question is whether the network output should be interpreted as the
conditional mean of the target data in Equation (3.9). To answer this question, we
need to define a general error function based on the square error. Suppose we are
using an RNN, whose output at time t is ôt , fΘ(x1:T , t). Accordingly, the square
error for the time t can be measured using the true distribution p(ot|x1:T) as

SE(t,Θ) =
∫
ot

||ôt − ot||2p(ot|x1:T)dot. (3.13)

Let Eot|x1:T ,
∫
ot
otp(ot|x1:T)dot denote the mean of the true conditional distribu-

tion. We can then derive SE(t,Θ) as

SE(t,Θ) =
∫
ot

||ôt − Eot|x1:T + Eot|x1:T − ot||2p(ot|x1:T)dot

=
∫
ot

||ôt − Eot|x1:T ||2dot +
∫
ot

||ot − Eot|x1:T ||2p(ot|x1:T)dot

+ 2
∫
ot

(ôt − Eot|x1:T)>(ot − Eot|x1:T)p(ot|x1:T)dot

=
∫
ot

||ôt − Eot|x1:T ||2dot +
∫
ot

||ot − Eot|x1:T ||2p(ot|x1:T)dot,

(3.14)

where the third line is derived based on the fact that∫
ot

(ôt − Eot|x1:T)>(ot − Eot|x1:T)p(ot|x1:T)dot

=(ôt − Eot|x1:T)>
(∫

ot

otp(ot|x1:T)dot − Eot|x1:T

)
=(ôt − Eot|x1:T)>(Eot|x1:T − Eot|x1:T) = 0

(3.15)

Since the second term in the last line of Equation (3.14) is the intrinsic variance
of the data, it is unrelated to the RNN. Therefore, SE(t,Θ) is minimized when
ôt , fΘ(x1:T , t) = Eot|x1:T . This result suggests that a network’s output will
approximate the true mean of target data if two conditions can be satisfied: the
square-error calculated over a training corpus approximates the true square error
SE(t,Θ); the RNN is perfectly trained to minimize the square error over the
training data. This result also indicates that it is reasonable to interpret the
network’s output as the approximation to the true conditional mean Eot|x1:T . It is
thus also reasonable to use the mean-based generation method.

3.3 Mixture density network 35

3.3 Mixture density network

A normal FNN or RNN can be considered as a probabilistic model that uses a
Gaussian distribution to approximate the target data distribution. The true data
distribution, however, may not be Gaussian or even uni-mode. The assumed
Gaussian distribution may poorly fit the training data [101], and the mean of the
Gaussian distribution may be far away from any mode of the true data distribution.
Another shortcoming is that the variance of the assumed distribution is not
updated and used at all in a normal FNN or RNN.

To model the multi-mode data distribution, we need a probabilistic model
using a more flexible distribution. One candidate is the mixture density network
(MDN) [102], a type of probabilistic model that combines normal neural networks
and Gaussian mixture models (GMMs). Let’s consider an MDN that combines a
bi-directional RNN and a GMM with M mixture components and use it in the
sequential learning task. Accordingly, we can write down the conditional PDF
p(o1:T |x1:T ; Θ) as

p(o1:T |x1:T ; Θ) =
T∏
t=1

p(ot|x1:T ; Θ) =
T∏
t=1

M∑
m=1

ωmt N (ot;µmt ,Σm
t), (3.16)

where {ωmt ,µmt ,Σm
t } denotes the weight, mean, and covariance matrix of the

Gaussian distribution N (·) in the m-th mixture component at time t. At the time
t, the parameter set of the GMM Mt is generated by the RNN given x1:T as
input, which can be written as

Mt , [ω1
t , (µ1

t)>, vec(Σ1
t)>, · · · , ωMt , (µMt)>, vec(ΣM

t)>] = fΘ(x1:T , t), (3.17)

where vec(·) denotes the vectorization of a matrix.
Note that the MDN is defined as the combination of a normal neural network

and a GMM, rather than being interpreted as a probabilistic model. An MDN may
also use an FNN to generate parameter set of GMM. To differentiate the MDN
using an FNN and that using an RNN, we refer to the former case as FMDN while
the latter as recurrent MDN (RMDN)5. An RMDN based on the toy RNN network

5To our knowledge, the name was first used in [103].

36 Chapter 3. Neural Networks

x1 x2

w1 w2w3

w4 w5

b2

b1

0 0 0
1 0 1
0 1 1
1 1 0

Ideal input/output pairs

x1 x2 o

0 0 0.084
1 0 0.871
0 1 0.871
1 1 0.109

Network’s weights and output after learning

x1 x2 bow1 = w2 = �4.2

w4 = w4 = �6.4

w3 = �9.4

b1 = 6.3

b2 = 2.2

…

…bo1 bo2 bo3

x1 x2 x3 xT

boT

bo

h1 h2 h3 hT

W i, bi

W o, bo

bot = W oht + bo.

ht = �(W ixt + bi)
Feedforward

network

…

…bo1 bo2 bo3

x1 x2 x3 xT

boT

h
(f)
1 h

(f)
2 h

(f)
3 h

(f)
T

h
(b)
Th

(b)
3h

(b)
2h

(b)
1

Recurrent
network

Internal recurrent
network

…

…bo1 bo2 bo3

x1 x2 x3 xT

boT

h1 h2 h3 hT

…M3M2M1 M5

Probabilistic part
Computational part

Recurrent
MDN

Figure 3.4: A toy RMDN with an internal RNN.

in Figure 3.3 is plotted in Figure 3.4. Notice that the forward and backward
branches of the recurrent layer are denoted by → and ←, and {h(f)

t ,h
(b)
t } are

concatenated as ht.
The trainable parameter set Θ of an MDN consists of the network weights

of the internal network. They can be learned from a corpus using the gradient
descent approach under the maximum likelihood criterion. In the generation
stage, the MDN converts the input data x̃1:T into the parameters of GMMs
Mt = fΘ(x̃1:T , t). The GMM then can generate the output ôt by using the mean
of the most probable mixture component:

ôt = arg max
ot
N (ot;µm

∗

t ,Σm∗

t) = µm
∗

t ,

where m∗ = arg max
m

wmt .
(3.18)

This is the mean-based generation method for MDN.

3.4 Neural classifier models for classification

Motivation

Neural networks or MDN reviewed in the previous sections are defined for regression
tasks, where the target data are assumed to be real continuous-valued numbers.
This section considers the models for classification tasks. By saying classification
tasks, we mean that the target datum ot at time t can only take one of the K
possible outcomes from a set of categorical data {1, · · · , K}.

3.4 Neural classifier models for classification 37

The reader may think that the network for the XOR problem in Section 3.1.1
is a classification task. In fact, although the target for that task is either ‘0’ or ‘1’,
the network implicitly assumes that the target data are two continuous numbers 0
and 1. Otherwise, the network should not be trained using the MSE-criterion
because the square error in the Euclidean space is only defined for continuous
numbers but not for categorical symbols.

The reader then may wonder why not treat the classification task as a regression
one and treat the symbols ‘0’ and ‘1’ as the real numbers 0 and 1. Indeed, there
is no problem to do so. However, this strategy may suffer from the mismatch
between model assumption and data distribution. As we explained in Section 3.2,
a neural network trained with the MSE criterion implicitly assume a Gaussian
for the target data. However, the distribution of the categorical data cannot be
assumed to be Gaussian. First of all, the support of the categorical distribution is
not from −∞ to +∞, and the Gaussian distribution wastes probability mass to
observations that do not belong to {1, · · · , K}.

Definition

A better approach is to design a model using a categorical distribution under
the MDN framework. Let’s consider a sequential classification task, where the
target ot takes one of K possible outcomes, i.e., ot ∈ {1, · · · , K}. Given an input
sequence x1:T , the model computes the probability mass function (PMF) for ot as

P (ot|x1:T ; Θ) = pot,t, (3.19)

where the probabilities of the K outcomes are computed by an internal RNN as

Mt , [p1,t, · · · , pK,t] = fΘ(x1:T , t). (3.20)

Since {p1,t, · · · , pK,t} are probability values between [0, 1] and ∑K
k=1 pk,t = 1, the

internal RNN needs to use a softmax output layer [104] to calculate Mt. The
whole model can be illustrated using a figure similar to Figure 3.4. The difference
is the assumed data distribution, the meaning of Mt, and the way to calculate
Mt. This neural model is referred to as ‘neural classifier’ [104, 105].

38 Chapter 3. Neural Networks

The MDN for classification tasks can be trained using the maximum-likelihood
criterion. Suppose a training corpus contains one pair of input and output data
D = {x1:T ,o1:T}, where ot ∈ {1, · · · , K}. The log-likelihood of the MDN on the
corpus can be written as

L(Θ) , logP (o1:T |x1:T ; Θ) = log
T∏
t=1

P (ot|x1:T ; Θ) = log
T∏
t=1

K∏
k=1

P (k|x1:T ; Θ)δkot

=
T∑
t=1

K∑
k=1

δkot log pk,t,

(3.21)

where the Kronecker delta function δkot is equal to 1 only when k = ot; otherwise
δkot = 0. The negative of the last line of Equation (3.21) is also known as the
cross-entropy between the true data distribution and the categorical distribution
calculated by the MDN. A trained MDN can be used for the classification task by
assigning the output class

ôt = arg max
ot∈{1,··· ,K}

P (ot|x1:T ,Θ∗). (3.22)

This is a theoretically sound method because P (ot|x1:T ,Θ∗) approximates the true
probability P(ot|x1:T) [106]. The above framework of MDN has been used in many
tasks especially in natural language processing [105, 107, 108].

3.5 Baseline neural F0 modeling method

Based on the introduction to neural networks in this chapter and TTS in the last
chapter, we can introduce various neural models for F0 modeling in TTS. Table 3.1
lists some of the recent neural F0 models or acoustic models for SPSS-based TTS.
Because researchers usually model F0 together with spectral features, we include
those acoustic models as long as they can generate the F0 contour given input
linguistic features.

3.5
B
aseline

neural
F
0
m
odeling

m
ethod

39
Table 3.1: Some of recent neural F0 models or acoustic models with F0 modeling capability

Neural model Target F0 representation Model time Joint spectral
resolution and F0 modeling

FNN [61, 109]

Interpolated F0 ot ∈ R Frame-by-frame
x1:T → o1:T

Joint modelingFMDN [86]
GRU-RNN [110]
LSTM-RNN [62]

LSTM-RNN [111] Interpolated F0 From unit-by-unit to
frame-by-frame Joint modeling

DBN [112] Interpolated F0 of 100 frames in syllable Syllable-by-syllable Joint modeling

FNN [113] Interpolated F0 and wavelet parameters of
F0 contour Frame-by-frame Joint modeling

LSTM-RNN [87] Interpolated F0 Frame-by-frame Only F0

FNNs (parallel) [114] Interpolated F0 with DCT coefficients of
syllable, word, phrase F0 contour Frame-by-frame Only F0

LSTM-RNN [115] Interpolated F0 and F0 templates of syllables Frame-by-frame Only F0

FNN: feedforward neural network FMDN: mixture density network based on FNN
RNN: recurrent neural network DBN: deep belief network [116]
GRU: gated recurrent unit [117] LSTM: long-short-term-memory unit [118, 119]

40 Chapter 3. Neural Networks

Table 3.1 also shows a few characteristics of each model, including

• Type of target F0 representation: whether it is the original F0 value or other
representations derived from the F0 contour;

• Time resolution of model: does the model predicts the F0 value frame-by-
frame or at higher linguistic level. Note that, even if the model includes
components operating at a higher linguistic level, as long as it generates the
final F0 per frame, it is considered as frame-by-frame;

• Joint spectral and F0 modeling: whether F0 and spectral features are used
at the same time as the target of the model.

The target F0 representation is important because it determines the accuracy
of F0 modeling and the model time resolution. As the table shows, most of the
methods use the interpolated F0 contour as the target data. Accordingly, these
models must operate frame-by-frame so that the F0 value of each frame can be
generated. There is one DBN-based case where the F0 contour is modeled at the
syllable level. Specifically, it uses evenly sampled 100 frames from each syllable as
the target F0 of that syllable. During generation, the F0 contour at the frame
level has to be interpolated from the syllable-level F0 values.

The third point is on the acoustic modeling strategy. Notice that most of
the acoustic models jointly model the F0 and spectral features. For the last two
methods that only model F0, they introduce additional neural models dedicated
to F0 features. There is only one model which uses the common configuration
(interpolated F0, frame-by-frame) for F0 modeling only.

The baseline model in this thesis is the RNN [87] that models the interpolated
F0 at frame level without spectral features. The reason is that the RNN is the
most used, efficient and powerful neural model. Furthermore, the baseline model
is assumed to only model the F0 because the network may prioritize spectral
features in the case of joint modeling, which has been noticed in [112] and will be
further explored in Chapter 4. Finally, a baseline model is not required to use
additional F0 representations since this thesis focuses on the model rather than F0
representations. However, methods and models proposed in this thesis can be
directly used to model F0 and other sequential F0 representations.

3.6 Limitations of baseline neural F0 models 41

3.6 Limitations of baseline neural F0 models

Although the baseline F0 and other models that can generate the F0 performed
very well, we wonder whether F0 modeling performance can be further improved.
We are motivated by a few potential issues:

1. Issue 1: joint modeling or only F0 modeling? As Table 3.1 shows,
neural F0 modeling is usually integrated into the acoustic model where F0
and other acoustic features are modeled at the frame level. It is questionable
whether the network could well model F0 when it has to pay attention to
other acoustic features. Although simultaneous modeling of multiple types
of target features resemble the multi-task learning [120], whether different
types of acoustic features could share the hidden features is unaddressed. In
fact, when the joint modeling strategy was used, it has been noticed that the
FNN didn’t outperform HMM in terms of F0 modeling [61].

2. Issue 2: do the common neural models describe the temporal de-
pendency of F0 contours? Probably not. As the introduction to neural
networks explains, the FNN, RNN and RMDN assume that one target
datum ot1 is statistically independent from ot2 given the condition x1:T ,
∀t2 6= t1. This assumption is held whatever the type of F0 representation or
the time resolution is. The assumption made by FNN can be observed from
Equations (3.10), where the PDF of the target sequence o1:T is decomposed
as p(o1:T |x1:T) = ∏T

t=1 p(ot|x1:t). We may tend to believe that an RNN
or RMDN should avoid the assumption because of the recurrent layers.
However, an RNN or RMDN is only superior to an FNN in modeling the
dependency between the target datum ot and the entire input sequence x1:T .
This dependency allows the model to assume p(ot|x1:T) rather than p(ot|xt),
but it cannot build the temporal dependency across o1:T .

3. Issue 3: frame-by-frame processing even for linguistic features? For
the neural models operating frame-by-frame, the input linguistic feature
vector is assigned to every frame. However, the linguistic features mainly
include the phone identity, prosodic tags, and other features above the
frame level. The linguistic feature vectors of adjacent frames may be almost

42 Chapter 3. Neural Networks

identical, and processing the linguistic features frame-by-frame is unnecessary.
It also makes it more difficult for a recurrent layer to retrieve linguistic
features of adjacent linguistic units. Using a hierarchical model [111] or a
clockwork RNN [121] may increase the efficiency. But we further wonder
whether the model can derive meaningful hidden features when it processes
the linguistic features more efficiently.

We will try to answer the first question using a specific type of neural network
in Chapter 4. Then, we will address the second question and propose new models
in Chapter 5 and 6. The last question will be explored in Chapter 7 by using a
new modeling strategy.

43

4
Investigating F0 Modeling Using Highway

Networks

Modeling F0 together with other spectral features seems to be the default strategy
for neural SPSS. There may be a historical reason since the initial works on
HMM-based SPSS proposed to do so [77]. However, whether this strategy is
optimal for F0 modeling remains unclear. This is Issue 1 investigated in this
thesis.

This chapter empirically examines the above issue using a non-recurrent neural
network called highway network [122]. After introducing the highway network in
Section 4.2, this chapter uses Section 4.3 to show how a neural network prioritizes
spectral features rather than F0 in the common SPSS. It further tests how F0 is
differently modeled from other acoustic features in Section 4.4 on the basis of
two type of statistics, namely the highway gate activation histogram and the
sensitivity to the input linguistic features. These results suggest that the F0 may
be better modeled when it is modeled separately from other acoustic features.

44 Chapter 4. Investigating F0 Modeling Using Highway Networks

4.1 Joint modeling of F0 and spectral features?

In addition to the historical reason, one common belief of the default strategy is
that it could take advantage of multi-task learning so that the F0 and spectral
features can share hidden features. Another belief is that a single network can
learn the correlation between spectral and F0 features [123].

The above beliefs may be doubtful. As Chapter 3 explained, a normal FNN or
RNN assumes a Gaussian distribution with a diagonal covariance matrix for target
data vector. Accordingly, the model assumes the distribution of the F0 and those
of the spectral features are independent from each other. The other belief on
shared hidden features is also doubtful as we will show in this chapter.

In fact, there has been some literature showing evidence against the default
strategy. In [61], it was shown that the F0 RMSE achieved by the FNN was
similar to that of the HMM even though the FNN outperformed HMM in spectral
features with a large margin. Another work also showed that the performance of
F0 modeling became worse when spectral features were better generated [109].

In this chapter, we decided to use the highway neural network to test the
default strategy thoroughly. Although its performance may be inferior to RNN, it
is prohibitive to train and evaluate many RNNs, especially very deep and wide
ones, for the experiments planned in this chapter. Using the highway network
allows us to do the experiments quickly. Compared with the FNN, the highway
network is easier to train. More importantly, the highway network provides hidden
features allowing us to look inside the network.

4.2 Definition of highway network

4.2.1 Computation flow

A highway network is based on an FNN and special gating mechanism. Let’s
consider a highway network based on the toy FNN in Section 3.1.2. As Figure 4.1
plots, this highway network extracts two hidden vectors on the basis of the input

4.2 Definition of highway network 45

bo1

x1
Feedforward

Highway gate

+ ●

●
-1

Linear
ht gt

bot

g1

h1

W i, bi

W o, bo W g, bg

xt

bot

ht gt

Implementation detailsComputation flow

…

xT

boT

hT
gT

bo2

x2

h2
g2

xt

Figure 4.1: A toy highway network. � denotes element-wise product.

vector xt

ht = W of(W ixt + bi) + bo, (4.1)

gt = σ(W gxt + bg), (4.2)

where σ(·) is the logistic activation function and f(·) denotes an activation function
which can be tanh. The network then merges these two vectors using a element-wise
product � and derive the final output as

ôt = gt � ht + (1− gt)� xt. (4.3)

Each dimension of gt is constrained by the sigmoid activation function and lies
between 0 and 1. When each dimension of gt is close to 0, ôt is roughly equal
to xt; otherwise ôt approximates ht. The path that delivers xt to the output is
referred to as the highway connection. Since gt controls how much information
from the input xt is directly sent to the output ôt, it is referred to as a highway
gating vector; the layer that computes gt is referred to as a highway gate.

The toy highway network uses the highway gate at the output layer and
requires that xt, gt, ht, and ôt have the same dimension. In practice, a deep
highway network may use the gating mechanism among the hidden layers as Figure
4.2 shows. For convenience, we refer to a highway gate layer and the hidden layers
covered by the gate as a highway block. Such a deep highway network only requires
{xt,ht, gt} within a highway block to have the same dimension. The network can
easily change the dimension of different highway blocks using a linear layer.

Compared with FNNs, highway networks ease the training process even when
they are very deep. One reason is that they alleviate the gradient vanishing

46 Chapter 4. Investigating F0 Modeling Using Highway Networks

Single-stream highway network Multi-stream highway network

Linguistic features

Linear

MGC

Highway
block

Highway
block

…

Linear

F0

Highway
block

Highway
block

…

Linear

BAP

Highway
block

Highway
block

…

Linear

Linear

MGC F0 BAP

Highway
block

Highway
block

…

Linear

Linguistic features

FF
FF

gate

+ ●

● -1

g � h + (1 � g) � x

h

x

g

Figure 4.2: Single-stream (left) and multi-stream (right) highway network structure.
‘FF’ and ‘linear’ denotes a non-linear and a linear feedforward layer, respectively.

problem using the highway gate and links [124] . When the highway gate opens,
the input of each highway block is propagated by the highway link to the next
block without being non-linearly transformed. In such a case, the gradients
propagated backward are not attenuated by the non-linear transformation layers.

The definition of highway network is not unique. A more general definition
may introduce different formulae to calculate the gating and output vectors [122].
On the other hand, a more specific definition may exclude the trainable highway
gate and directly sum the ht and xt, which is known as the residual network [125].
We choose the definition in Equation (4.3) because it allows us to easily analyze
the behavior of the network as we will mention in the next subsection.

4.2.2 Multi- and single-stream highway network for SPSS

A highway network can be used as the acoustic model for SPSS in the same manner
to an FNN. Suppose the target vector ot at the t-th time step consists of F0,
MGC, and BAP features, which can be written as ot = [o(F0)>

t ,o
(MGC)>
t ,o

(BAP)>
t]>.

Accordingly the corresponding output of a highway network can be denoted by
ôt = [ô(F0)>

t , ô
(MGC)>
t , ô

(BAP)>
t]> = fΘ(xt), where Θ and xt denotes the weights

of the highway network and the input linguistic feature vector, respectively. This
highway network can be trained using the MSE-based criterion (Equation (3.4))
on the training set; it then can generate the output ôt for xt of a new text.

4.2 Definition of highway network 47

Such a highway network can be used to jointly model F0 and other acoustic
features. For example, if the network uses a linear transformation output layer and
the mean-based generation method, it calculates the output as

ôt =


ô

(F0)
t

ô
(MGC)
t

ô
(BAP)
t

 =


W o,11 W o,12 W o,13

W o,21 W o,22 W o,23

W o,31 W o,32 W o,33



ht,1

ht,2

ht,3

 = W oht, (4.4)

where W o,ij denotes a block matrix in the transformation matrix W o of the
output layer, and ht,j denotes a sub-part of the hidden feature vector ht. In
this modeling strategy, the generated F0, MGC and BAP share the same set
of base vectors in ht. Similarly, ht may be transformed from a hidden feature
vector in the previous layer. It means that {o(F0)

t ,o
(MGC)
t ,o

(BAP)
t } share the same

hidden feature vectors in the network. This strategy is commonly used in neural
SPSS as Section 3.5 explained. However, it is different from the strategy in
HMM-based SPSS framework where F0 and other acoustic features are modeled in
independent streams [77]. For this reason, we refer to this network structure as a
single-stream network, no matter whether it is a highway network or an FNN.

As a comparison, we consider a multi-stream structure, where different output
acoustic feature vectors are separately modeled. For example, a multi-stream
network may compute the output vectors as

ôt =


ô

(F0)
t

ô
(MGC)
t

ô
(BAP)
t

 =


W o,11 0 0

0 W o,22 0
0 0 W o,33



ht,1

ht,2

ht,3

 = W oht, (4.5)

where ô(F0)
t , ô(MGC)

t , and ô(BAP)
t use different base vectors and transformation

matrices. With this sparse transformation being used in the highway gates and
other hidden layers, the hidden features for different target features are separated.

A multi-stream highway network can be simply implemented as a combination
of multiple single-stream networks, where each single-stream network models
only one specific acoustic feature type. Examples of the single- and multi-stream
highway network are plotted in Figure 4.2. Notice that the multi-stream one uses
a shared linear layer to change the dimension of input linguistic features.

48 Chapter 4. Investigating F0 Modeling Using Highway Networks

4.3 Evaluation methodology and analysis tools

4.3.1 Evaluation methodology

As we questioned in Section 4.1, using the single-stream structure may be unwise
for F0 modeling in SPSS. In a single-stream network, the hidden feature vector
encodes all the information for generating both F0 and other acoustic features. It
may prioritize the part for the high-dimensional acoustic features rather than the
low-dimensional F0 because the former contributes more to the training error. If
the empirical evaluation supports the hypothesis, it will suggest that the hidden
features for the F0 are different from those for other acoustic features. It further
indicates that the F0 and other acoustic features may rely on different input
linguistic features.

The hypothesis on the potential limitation of the single-stream structure may
be justified by evaluating a single-stream network against a multi-stream one.
However, we cannot directly compare the performance of these two network types.
As Equations (4.4-4.5) suggest, the two types of network have different numbers of
network weights. Even though the network size can be set to be roughly equal by
adjusting the network width, in a single-stream network, we cannot know how
much ‘bandwidth’ of the hidden vector is used for the F0. It thus meaningless to
compare the accuracy of different acoustic features.

Since our goal is to investigate the potential limitation of the single-stream
structure, we can examine how the performance of a network changes with a
varying factor. For example, we can examine the error curve of the generated F0
after evaluating a specific network type with different numbers of hidden layers
or varied layer sizes. For this experiment, we will compare error curves of the
single- and multi-stream highway networks while using the single-stream FNN as a
reference.

We mainly test the highway networks because a deep FNN is not easy to
train due to the gradient vanishing problem. Another reason is that the highway
network is an ideal testbed to investigate the hidden features, as will be pointed
out in the next section. Even though the highway network is different from FNN,
we think the evaluation results can generalize to FNNs.

4.3 Evaluation methodology and analysis tools 49

To verify the hypothesis on the hidden features, i.e., whether F0 and other
acoustic features rely on different hidden features and input linguistic features, we
use a histogram-based analysis and an entropy-based analysis on the highway
network. These analysis tools are explained in the next section.

4.3.2 Analysis tools

Histogram of highway gating vectors

A highway block uses a gating vector to merge the output vector of non-linear
transformation layers with the input vector (i.e., gt � ht + (1− gt)� xt). The
value of the gating vector indicates the degree of non-linear transformation exerted
by the highway block on the input feature vector. Therefore, we can draw a
histogram of the gating vector values for each highway block in a multi-stream
highway network. By comparing the histograms from different sub-streams, we can
evaluate the difference of the hidden features derived for different sub-streams.

Here, we draw histograms on the test set. Specifically, we feed in the input
feature vectors x1:T of each test utterance to the network, collect the highway
gating vectors g1:T from one specific highway block, and assign each gt to a
phoneme-dependent histogram based on the phoneme identity at time t. In total,
we can draw M histograms for each highway block, where M is equal to the
number of phonemes in the corpus.

Sensitivity to input linguistic features

The second tool investigates the contribution of the linguistic features in each
sub-stream of the multi-stream network. This tool measures the sensitivity of
a highway gate to a certain class of input linguistic features, for example the
phoneme identity and the part-of-speech tags.

Similar to the steps in drawing histograms, we use the input feature vector x1:T

to excite the network and collect the highway gating vectors g1:T from a specific
highway block. Suppose the dimension of the gating vector is K. We calculate a
statistic for each dimension k ∈ {1, · · · , K} with respect to each linguistic feature

50 Chapter 4. Investigating F0 Modeling Using Highway Networks

value s in a feature class S. Specifically, we compute an average vector

ã
(s)
k =

∑T
t=1 δ(t, s)gt,k∑T
t=1 δ(t, s)

, (4.6)

where the indicator function δ(t, s) is equal to 1 if the input linguistic feature xt
contains a specific feature value s, for example the phoneme identity /a/. In other
words, ã(s)

k denotes the average value of gt,k over the time t where xt contains s. In
practice, we compute ã(s)

k over the test set. Given ã(s)
k for every s in a linguistic

feature class S such as the phoneme set {/a/, /t/, · · · }, we normalize it as

a
(s)
k = exp(ã(s)

k)∑
s∈S exp(ã(s)

k)
. (4.7)

We finally calculate an entropy value for each k and S as

ES,k = −
∑
s∈S a

(s)
k log a(s)

k

−∑s∈S
1
|S| log 1

|S|
, (4.8)

where |S| denotes the number of values that s can take.
We calculate ES,k for each linguistic feature class listed in Appendix A.3. For a

quantitive linguistic feature S such as the number of phonemes in a syllable, the
possible value of s is quantized into finite categories {1, 2, · · · , N − 1,≥ N}, where
N is a manually defined number1. The value of ES,k is maximized only when
a

(s)
k = 1

|S| , i.e., ã
(s)
k is equal for each s ∈ S. In this case, the k-th dimension of the

highway gate vector does not change no matter what the input linguistic feature s
is. In other words, the k-th dimension is insensitive to the feature class S. Overall,
ES = [ES,1, · · · , ES,K] indicates the sensitivity of the highway gate to S.

This sensitivity measure was originally defined for neural networks in speech
recognition systems [126]. The difference is that ã(s)

k is an average rather than a
sum of the vectors. Taking the average ensures that ã(s)

k is less relevant to the
number of times that s appears in the data set, which is more suitable for the
linguistic features that appear only a few times in a corpus.

1We directly used the N defined in the question set of HTS-demo for English and Japanese.
The HTS-demo can be found at http://hts.sp.nitech.ac.jp/?Download.

http://hts.sp.nitech.ac.jp/?Download

4.4 Results and analyses on the English corpus 51

4.4 Results and analyses on the English corpus

In this section, we conducted experiments on the English corpus using the single-
and multi-stream highway networks. The single-stream FNN was included as
a reference network. Details about the speech corpus and input/output figure
configuration can be found in Appendix A. Specifically, the input linguistic features
and output acoustic features (MGC, F0, BAP) are listed in Table A.3 and A.5.
The corpus is discussed in Table A.4.

The experiments evaluated the networks with different depth (experiment I) or
width (experiment II). Network configuration is detailed in each experiment. For
both experiments, the stochastic gradient descent (learning rate 1e-6) with early
stopping was used for training. The objective metrics defined in Section 2.3.4 were
calculated on the test data, given natural duration.

4.4.1 Results of objective evaluation

Experiment I: Varying network depth

The first experiment varied the network depth. In the case of highway networks,
the network depth refers to the number of non-linear transformation layers,
excluding the highway gate layers; in the case of the FNN, it refers to the total
number of non-linear transformation hidden layers. The range of the network
depth was set to {2, 4, 8, 14, 20, 40}.

Specifically, the single-stream highway network used a layer size of 382 for all
the highway blocks, which was equal to the dimension of the input linguistic
feature vector. Each highway block contained 2 non-linear transformation layers
using a tanh activation function and a gate layer using a logistic activation function.
The multi-stream highway network contained three sub-networks for MGC, F0,
and BAP, where each sub-network had the layer size of 256. Other configurations
of the highway block was the same as that of the single-stream one. Note that, for
a highway network of depth d, the number of highway blocks was equal to d/2.
Finally, the single-stream FNN had a layer size of 382 and used the tanh activation
function. All the networks were initialized using the normalized initialization
strategy [127]. The bias vector in the highway gate (bg in Equation (4.2)) was

52 Chapter 4. Investigating F0 Modeling Using Highway Networks

2 4 8 14 20 40
Network depth

1.02

1.04

1.06

1.08

1.10

1.12

1.14

M
G

C
R

M
S

E

Single-stream feedforward
Single-stream highway
Multi-stream highway

2 4 8 14 20 40
Network depth

43

44

45

46

47

F0
R

M
S

E
(H

z)

2 4 8 14 20 40
Network depth

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

F0
C

or
re

la
tio

n
(0

-1
)

Figure 4.3: Objective results of single- and multi-stream networks. Network depth
means the total number of transformation layers using tanh activation function.

initialized as -1.5 according to the original paper of highway network [122].

The results are shown in Figure 4.3, where the y-axis is the objective metric and
x-axis is the network depth. These results show that the MGC RMSE decreased
when the network depth was increased from 2 to 40 in all the three types of
networks. Obviously, the performance of MGC modeling can be consistently
improved if the network depth is increased.

However, different trends can be observed from the results on F0. For example
on F0 correlation, while the results of the single-stream highway and FNN started
from a low point and gradually improved as the network became deeper, the

4.4 Results and analyses on the English corpus 53

Table 4.1: Network structure of multi-stream highway networks in Figure 4.4

Layer size of the sub-network
MGC stream F0 stream BAP stream

MS1 256 256 256
MS2 382 256 256
MS3 512 382 256
MS4 768 512 256

curve of the multi-stream network was quite flat. These results suggest that the
performance of a multi-stream highway network on F0 modeling may not be
further improved even if the network depth is increased.

Note that we cannot directly compare the multi- and single-stream networks
in terms of the objective results because the multi-stream network had a larger
layer width (256 * 3) than the single-stream one (382). Nevertheless, the results
at least suggest that the network depth has different effects on the multi- and
single-stream networks in terms of F0 modeling.

Experiment II: Varying network width

The second experiment varied the network width, i.e., the size of all the hidden
layers. The depth of every network was fixed to 14 based on the results of
Experiment I. The experimental network width was {382, 482, 582, 782, 1024} for
the single-stream highway network and {382, 782, 8821024} for the single-stream
FNN. The range of width for the FNN was selected so that the single-stream FNN
and highway network can be compared in terms of the network size. The width
configuration for the multi-stream highway networks is listed in Table 4.1. The
training recipe was the same as Experiment I.

Objective results are shown in Figure 4.4 where the y-axis is the objective
metric while the x-axis is the number of network weights. Similar to the results in
the previous section, the multi-stream highway network achieved similar results on
F0 whatever the network width was. In contrast, the single-stream networks
achieved better results on F0 only when the network width increased. On MGC,
all the networks performed better when the width was increased.

54 Chapter 4. Investigating F0 Modeling Using Highway Networks

3.0e6 9.0e6 2.5e7
Number of network weights

1.01

1.02

1.03

1.04

1.05

M
G

C
R

M
S

E

382

782
882 1024

382 482 582

782 1024

MS1

MS2
MS3 MS4

Single-stream feedforward
Single-stream highway
Multi-stream highway

3.0e6 9.0e6 2.5e7
Number of network weights

42.5

43.0

43.5

44.0

44.5

45.0

45.5

46.0

46.5

F0
R

M
S

E
(H

z)

382

782 882

1024
382

482

582 782
1024

MS1 MS2
MS3

MS4

3.0e6 9.0e6 2.5e7
Number of network weights

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

F0
C

or
re

la
tio

n
(0

-1
)

382

782
882

1024382 482
582 782 1024

MS1
MS2

MS3
MS4

Figure 4.4: Objective evaluation on single-stream and multi-stream networks. The
integer number on the red and grey lines denotes the layer size; MSx denotes the
multi-stream network configuration listed in Table 4.1.

The results of Experiment I and II are consistent. For both multi- and single
stream networks, a larger network can improve the performance on MGC modeling.
However, a multi-stream network does not require a larger network size for F0
modeling. One hypothesis is that a single-stream network may be dominated by
the hidden features of MGC. If this hypothesis was correct, a network must be
sufficiently large in order to assign some of the network capacity to model the F0.
The hypothesis casts doubt on the default strategy of neural SPSS to model the
F0 together with spectral features.

4.4 Results and analyses on the English corpus 55

4.4.2 Analyses of hidden representations

Empirical results above also suggest that the F0 and spectral features may not
share a common hidden representation inside the single-stream network. Otherwise,
the performance of F0 modeling would be similar whether the network is single- or
multi-stream. These results further cast doubt on the default strategy of neural
SPSS: If different types of target features do not share a common hidden feature,
there is no advantage in modeling them in a single-stream network as a multi-task
learning task. This section analyzes the hidden features to find the answer.

On multi-stream highway networks

We used the histogram defined in Section 4.3.2 to analyze the multi-stream highway
networks in Figure 4.3. Specifically, we collected the histograms on the test data
for each highway block in each sub-network. Figure 4.5 (a) shows the histograms
for the 7 highway blocks in the MGC sub-network of the multi-stream network with
depth 14. Interestingly, the histogram of the first highway block near the input
side (b.1 on the left-hand side) shows a binomial distribution. From the second
block to the last one, the shape of the histogram gradually changes into a bell.
Figure 4.5 (d) shows the histogram for the highway blocks in the F0 sub-network.
Contrary to those in the MGC sub-network, none of the histograms in the F0
sub-network show a binomial distribution. From the input to the output side, the
histograms had a increased degree of sharpness. In general, the histograms in the
MGC and F0 sub-networks show different patterns.

In the highway block near the input side of the MGC sub-network (e.g., b.1),
the histogram has one peak near 0 and another peak near 1, which indicates that
the highway block used non-linear transformations on some of feature dimensions.
The histogram b.7 in the F0 sub-network has a single spike near 0.2, which was
determined by the initial value −1.5 of the bias vector bg in the highway gate
(1/(1 + exp(1.5))). A histogram with a shape spike around this location indicates
that parameters in that highway gate were not updated intensively. Meanwhile,
this highway gate delivered most of the information from the input to the output
without transformation. Such a highway block was inactive.

From the explanation above we can know that different histogram patterns in

56 Chapter 4. Investigating F0 Modeling Using Highway Networks

0 1
6

e
+

0
5 b.1 b.2 b.3 b.4 b.5 b.6 b.7

(a) MGC sub-network, multi-stream highway network with 7 blocks (depth 14)

0 1

1
e

+
0

6 b.1 b.2 b.4 b.6 b.8 b.9 b.10

(b) MGC sub-network, multi-stream highway network with 10 blocks (depth 20)

0 1

2
e

+
0

6 b.1 b.4 b.7 b.10 b.14 b.17 b.20

(c) MGC sub-network, multi-stream highway network with 20 blocks (depth 40)

0 1

7
e

+
0

5 b.1 b.2 b.3 b.4 b.5 b.6 b.7

(d) F0 sub-network, multi-stream highway network with 7 blocks (depth 14)

0 1

1
e

+
0

6 b.1 b.2 b.4 b.6 b.8 b.9 b.10

(e) F0 sub-network, multi-stream highway network with 10 blocks (depth 20)

0 1

3
e

+
0

6 b.1 b.4 b.7 b.10 b.14 b.17 b.20

(f) F0 sub-network, multi-stream highway network with 20 blocks (depth 40)

Figure 4.5: Histogram of highway gating vectors for MGC and F0 sub-networks in
multi-stream highway networks. Note that b.1 denotes the first block near the
network’s input. These histograms are counted on test set for phoneme /a/.

the MGC and F0 sub-networks indicate the difference of the hidden features for
the MGC and F0. Specifically, the MGC sub-network extracted hidden features

4.4 Results and analyses on the English corpus 57

0 1
8

e
+

0
5 b.1 b.2 b.3 b.4 b.5 b.6 b.7

(a) Single-stream highway network with 7 blocks (depth 14)

0 1

1
e

+
0

6 b.1 b.4 b.7 b.10 b.14 b.17 b.20

(b) Single-stream highway network with 20 blocks (depth 40)

Figure 4.6: Histogram of highway gating vectors for single-stream highway networks.
Note that b.1 denotes the first block near the network’s input. These histograms
are counted on test set for phoneme /a/.

from a few dimensions of the linguistic features by non-linear transformations.
However, the F0 sub-network used fewer non-linear transformations.

Another interesting difference is the number of highway blocks used to derive
the hidden features. The F0 sub-network had a few inactive highway blocks near
the output side, which indicates that the hidden features cannot be further refined.
This observation is consistent with the results in Figure 4.3, where adding more
highway blocks (increasing the depth) did not improve the F0 RMSE and CORR
of the multi-stream network. On the other hand, the highway blocks in the MGC
sub-network were quite active. If the MGC sub-network has more highway blocks,
it may further improve the MGC modeling performance, which is consistent with
the MGC RMSE curve in Figure 4.3.

Note that, when the network depth was increased to 40, the last block (b.20)
in the MGC sub-network had a sharp histogram as Figure 4.5 (c) shows. This
suggests that 40 highway blocks may be more than enough for MGC modeling on
this English corpus.

On single-stream highway networks

Next, we plotted the histograms for the single-stream highway networks of depth 14
and 40 in Figure 4.6. Note that in this case we cannot differentiate the histograms
for the MGC and F0. Interestingly, the histograms resemble those in the MGC

58 Chapter 4. Investigating F0 Modeling Using Highway Networks

sub-network of the multi-stream one (Figure 4.5 (a) and (c)). This result suggests
that the single-stream highway network mainly focused on MGC modeling. It may
explain why the single-stream network’s performance on the F0 was worse.

A single-stream network could improve F0 modeling if the network was deeper.
One reason may be that a larger network has additional capacity to model the
F0. This assumption is somewhat supported by the histogram in Figure 4.6 (b).
Notice how the last highway block did not produce a very sharp histogram if we
compare it with the b.20 in Figure 4.5 (c). This indicates that this single-stream
network fully used the network capacity to model the F0 and spectral features.

4.4.3 Analyzing sensitivity to input features

Histograms extracted from multi-stream highway networks suggest that the hidden
features for F0 may be different from those for MGC. Since the hidden features
were derived from the same input linguistic features vectors, the MGC and F0
sub-networks may focus on different linguistic features.

We used the sensitivity measure defined in Section 4.3.2 and analyzed the
multi-stream network with depth 14 Figure 4.3. Linguistic feature classes are
listed in Appendix A.3. For each feature class S, we calculated a sensitivity score
E

(l)
S,k for the k-th neuron in the l-th highway block of a sub-network. Then, we

sorted the vector E(l)
S = [E(l)

S,1, · · · , E
(l)
S,K] based on the value of E(l)

S,k for the l-th
block. We further calculated the average score ĒS = 1

KL

∑
k

∑
lE

(l)
S,k as the overall

sensitivity of a sub-network to the linguistic feature class S.
Figure 4.7 plots the vector E(l)

S for the 7 highway blocks in MGC and F0
sub-networks and for different linguistic features classes S. Table 4.2 lists the
overall sensitivities of the MGC and F0 sub-networks to some linguistic feature
classes. First, Figure 4.7 shows that the sensitivity of a sub-network varied for
different linguistic feature classes. For example, the MGC sub-network had a
lower score (high sensitivity) to the phoneme identity than to the accent type.
This is expected because the MGC correlates mainly with the segmental features.
Meanwhile, the F0 sub-network had a higher sensitivity to the features related to
the accent type. Since the MGC and F0 sub-networks acquired different sensitivity
scores, we can infer that the two sub-networks extracted different information from

4.4 Results and analyses on the English corpus 59

0.975

1
b.1

E
s

b.2 b.3 b.4 b.5 b.6 b.7

in MGC sub-network

in F0 sub-network

(a) Feature class S: central phoneme identity

0.982

1

E
s

(b) Feature class S: position of the phoneme in the current syllable

0.964

1

E
s

(c) Feature class S: accent type of the next syllable

0.999

1

E
s

(d) Feature class S: ToBI boundary tone

Figure 4.7: Sensitivity measure E(l)
S,k for the MGC (solid line) and F0 (dash

line) sub-networks of multi-stream highway networks with 7 blocks (depth 14),
l ∈ {1, · · · , 7}. b.1 denotes the first block near the network’s input. The x-axis k,
which ranges from 1 to 256, is sorted based on the value of ES,k. A low value of
ES,k denotes higher sensitivity.

the input linguistic vectors and thus derived different hidden features.

Figure 4.7 also indicates that the F0 sub-network was generally less sensitive
to the linguistic features than the MGC sub-network. In other words, the F0
sub-network found the linguistic features uninformative for F0 modeling. This may
be one reason of the inactive highway blocks in the F0 sub-network. Such a result
may be reasonable because all the linguistic features were automatically annotated
by the text-analyzer and may be too noisy for F0 modeling. Particularly, the ToBI

60 Chapter 4. Investigating F0 Modeling Using Highway Networks

Table 4.2: ĒS to each linguistic feature class S (English corpus).

MGC sub-network
Feature class S ĒS

Top five
entries

Current phoneme identity 0.9923
Position of current phoneme in syllable 0.9961
Position of current phoneme in syllable (backward) 0.9967
Number of preceding lexically stressed syllables in phrase 0.9974
Number of following lexically stressed syllables in phrase 0.9975

Bottom
five entries

Position of phrase in utterance (backward) 0.9999
Number of words in phrase 0.9999
Number of phrases in utterance 0.9999
Number of syllables in previous phrase 1.0000
ToBI boundary tone 1.0000

F0 sub-network
Feature class S ĒS

Top five
entries

Position of phoneme in syllable (forward) 0.9973
Is the next syllable bearing an English pitch-accent 0.9974
Is the previous syllable bearing an English pitch-accent 0.9980
Position of current syllable in the word 0.9980
Current phoneme identity 0.9981

Bottom
five entries

Number of words in previous phrase 0.9999
Number of words in next phrase 0.9999
ToBI boundary tone 0.9999
Number of syllables in next phrase 0.9999
Number of syllables in previous phrase 1.0000

boundary tone annotated by the text-analyzer may be useless and thus ranked as
one of the least sensitive features for the F0 sub-network as Table 4.2 shows. On
the other hand, the MGC sub-network showed high sensitivity at least to the
phoneme identity in all the highway blocks. This may explain the binomial shape
of the histogram in the MGC sub-network.

In general, the results based on the sensitivity measure are consistent with
those from the histogram analysis: first, the MGC and F0 sub-networks rely on
different input features; second, they may use a different number of hidden layers
and extract different hidden features.

4.5 Results and analyses on the Japanese corpus 61

4.5 Results and analyses on the Japanese corpus

The experiment on the English corpus has shown the different behaviors of the
F0 and MGC sub-networks. However, this result may be corpus or language
dependent. Therefore, we conducted a similar experiment on a Japanese corpus.
Details of this corpus can be found in the Appendix A.4.

Similar to the experiments on the English data, we mainly compared the
multi- and single stream highway networks with the single-stream FNN as a
reference. To simplify the experiment design, we directly adjusted the width of a
multi-stream highway network so that the network size was comparable to that of
a single-stream network with the same depth. The networks were trained using the
same recipe as that of the experiment on the English corpus.

The objective results are plotted in Figure 4.8. Similar to those on the English
corpus, the results indicate that a single-stream highway network prioritized
the MGC modeling. Especially when the network depth was less than 8, the
single-stream highway network’s performance on F0 was much worse than that of
the multi-stream one, even though they achieved similar error scores on MGC
modeling. Only when the depth of the single-stream highway network was beyond 8
did the single-stream highway network achieve a similar F0 modeling performance
to the multi-stream highway network.

The histogram analysis on the highway gating vectors shows similar patterns to
those found on the English corpus. Typically in the multi-stream highway networks,
the F0 sub-networks had more inactive blocks than the MGC sub-networks.
What’s more, F0 and MGC sub-networks acquired different sensitivity scores to
the linguistic features as Table 4.3 listed.

However, one interesting observation from Table 4.3 is on the sensitivity score
to the linguistic features related to the pitch contour. In the case of English2,
the ToBI boundary tone was ranked as the least sensitive feature, the Japanese
accent-type phrase, which specifies the location of pitch fall, was among the most
sensitive ones. This difference is reasonable in a linguistic sense. The Japanese
accent type is based on the accent type of individual words and can be somewhat

2For English systems, the question ‘is a syllable bearing an English pitch-accent’ does not
specify the accent type (high, low, or the combination).

62 Chapter 4. Investigating F0 Modeling Using Highway Networks

5.0e5 1.0e6 2.0e6 4.0e6 8.0e6
Number of Network weights

0.98

1.00

1.02

1.04

1.06

1.08

1.10

M
G

C
R

M
S

E

4

6
8

2

3

4

8
16 32

2

3
4

8

16
32

Single-stream feedforward
Single-stream highway
Multi-stream highway

5.0e5 1.0e6 2.0e6 4.0e6 8.0e6
Number of Network weights

31

32

33

34

35

36

F0
R

M
S

E
(H

z)

4 6 8

2 3

4

8
16 32

2 3 4

8

16
32

5.0e5 1.0e6 2.0e6 4.0e6 8.0e6
Number of Network weights

0.830

0.835

0.840

0.845

0.850

0.855

0.860

0.865

0.870

F0
C

or
re

la
tio

n
(0

-1
)

4 6
8

2

3

4

8
16 322

3 4 8
16 32

Figure 4.8: Objective evaluation on single-stream and multi-stream networks. The
number with each point on the error curve denotes the network depth. Note that,
for the single-stream feedforward networks with depth larger than 8, training
failed on the Japanese corpus.

predicted using a lexicon. In addition, the F0 contour is mainly depicted by the
accent type, which differentiates words with the same phoneme sequences. In
contrast, the English boundary tone is not specified by the lexicon. Therefore, the
accent type and the F0 contour may be more correlated in the Japanese corpus
than that between the ToBI boundary tone and the F0 contour in the English
corpus.

4.6 Summary 63

Table 4.3: ĒS to each linguistic feature class S (Japanese corpus).

MGC sub-network
Feature class S ĒS

Top five
entries

Current phoneme identity 0.977
Inflected forms of the current word 0.979
Position of mora in accent phrase (forward) 0.979
Number of accent phrases in breath group 0.980
Position of accent phrase in breath group (backward) 0.980

Bottom
five entries

Position of breath group (backward) 0.995
Position of accent phrase in breath group (forward) 0.996
Number of accent phrases in this utterance 0.997
Number of breath groups in this utterance 0.999
Number of moras in this utterance 0.999

F0 sub-network
Feature class S ĒS

Top five
entries

Conjugation type of the next word 0.979
Position of mora in accent phrase (forward) 0.983
Part-of-speech of the next word 0.984
Accent type (Japanese pitch-accent) of next accent phrase 0.986
Accent type (Japanese pitch-accent) of accent phrase 0.986

Bottom
five entries

Position of breath group (backward) 0.996
Position of breath group (forward) 0.997
Number of accent phrases in this utterance 0.997
Number of breath groups in this utterance 0.999
Number of moras in this utterance 1.000

4.6 Summary

In this chapter, we explored Issue 1: is it appropriate in the neural SPSS to
jointly model the F0 with other acoustic features? The answer suggested
by this chapter is negative.

To investigate this issue, we introduced the multi- and single-stream highway
networks that were easy to analyze and train. We further defined a histogram-based
analysis tool and a sensitivity measure to investigate the behavior of the highway
network. The experimental results suggest rethinking the common strategy of joint
modeling. First, a single-stream network may prioritize the spectral features over

64 Chapter 4. Investigating F0 Modeling Using Highway Networks

the F0. The network must be sufficiently large in order to assign model capacity to
the F0. Furthermore, the analyses on the histogram and sensitivity indicate that a
network may focus on different linguistic features and derive different hidden
features for the F0 and spectral features. It casts doubt on the argument that
the neural SPSS could leverage the framework of multi-task learning through
joint modeling of the F0 and spectral features. A similar result has already been
observed in the HMM-based SPSS [128].

These results suggest that the common strategy may not be the best idea at
least for neural F0 modeling. Since the F0 and MGC rely on different hidden
representations, a single-stream network must be large enough to encode the
hidden features for both F0 and other acoustic features. Since we focus on F0
modeling in this thesis, we have to be careful about the F0 modeling results if we
model the F0 with spectral features. To avoid factors that possibly affect the F0
modeling performance, we separate the F0 model from the acoustic models for
other acoustic features in the following chapters.

65

5
Shallow Autoregressive Neural F0 model

As Section 3.6 mentioned, a conventional neural F0 model such as an RNN
assumes a conditional independence when it models the F0 contour. However, this
assumption may be inappropriate because the F0 values of adjacent frames are
usually similar. This inappropriate assumption of temporal independence is Issue
2 addressed in this thesis.

To revise the model assumption, this chapter proposes the shallow autoregressive
(SAR) model, a new model that describes the autoregressive (AR) temporal
dependency for F0 contours. This chapter first explores the limitation caused by
the conditional independence assumption in Section 5.1, using a random-sampling-
based generation method. It then introduces the concept of AR dependency and
defines the SAR in Section 5.2. Interestingly, an SAR can be interpreted from
two perspectives: Section 5.3 interprets the SAR as the combination of baseline
RMDN and time-invariant filter pairs; Section 5.4 interprets the SAR as a baseline
RMDN augmented with a special normalizing flow. The latter interpretation also
brings in the idea to extend SAR to a more generalized model.

66 Chapter 5. Shallow Autoregressive Neural F0 model

100 200 300 400 500 600
Frame index (utterance ATR Ximera F009 AOZORAR 03372 T01)

160

260

360

460

560

660

F0
(H

z)

Natural F0
RMDN Sample

RMDN mean-output

273 293
160

390

Figure 5.1: Generated F0 from RMDN using mean-based generation and random
sampling on Japanese corpus. The red area shows the range of standard deviation.

5.1 Conditional independence in baseline models

Investigation using random sampling

According to Chapter 3, a baseline neural F0 model such as an RNN or RMDN
assumes that the distribution of an F0 contour o1:T conditioned on the linguistic
features x1:T can be written as p(o1:T |x1:T ; Θ) = ∏T

t=1 p(ot|x1:T ; Θ), where Θ
denotes the network weights. Therefore, it assumes that p(ot1|x1:T ; Θ) and
p(ot2|x1:T ; Θ) are independent conditional distributions, ∀t1 6= t2.

Such an assumption may be inappropriate for modeling natural F0 contours,
which are smooth contours. To verify this point, we can draw a sample F0 contour
ô1:T from the distribution p(o1:T |x1:T ; Θ) inferred by the model. If the baseline
model depicts the generative process of F0 contours authentically, the sampled
contour ô1:T should resemble natural F0 contours.

Here, we use a well-trained RMDN for F0 modeling as an example (RMDN
trained in Section 5.5.4). Given the input x1:T from the test set, we can let
the RMDN do the forward computation and infer the distribution p(ot|x1:T),
t ∈ {1, · · · , T}. Since the model assumes the conditional independent across time,
we can draw the sample ôt from p(ot|x1:T ; Θ) for t ∈ {1, · · · , T} simultaneously.
Figure 5.1 plots one sampled F0 contour ô1:T and the natural o1:T . Obviously, the
sampled sequence is very noisy. In Figure 5.1, we further plot the mean trajectory
and the standard deviation range specified by the mixture components with
the largest weight at each time step. Although the mean trajectory is smooth

5.1 Conditional independence in baseline models 67

and resembles the natural contour, the standard deviation range is quite large.
Consequently, even samples drawn from two adjacent distributions may be quite
different from each other, which results in the noisy ô1:T .

Note that if the model uses the mean-based generation method, it will generate
the smooth F0 mean trajectory. However, the smoothness of the mean trajectory
does not mean the appropriateness of the model [129]. It is by random sampling
that the capability of the generative model can be assessed [130].

Towards AR dependency

Why did the previous model infer a large standard deviation? One intuitive
explanation is that the model was trained to learn the ambiguous mapping between
input and target training data, particularly for the F0 modeling task where similar
input data sequences may correspond to quite different F0 contours. However, a
model could reduce the ambiguity if it takes into consideration the intrinsic pattern
of the target data sequences. For example, F0 contours are smooth because they
are produced under the physiological constraints of human organs. If the F0 value
at time t is known, the F0 at time t+ 1 is likely to have a similar value. Similarly,
if an F0 model observed ot, it should be more confident in predicting ot+1 than
the case when it ignores the temporal dependency.

A better model should take into account the temporal correlation in the target
feature sequence o1:T . One idea is to re-define the baseline model as a Markov
random field where o1:T form a single clique [131]. This re-defined model can
be written as p(o1:T |x1:T) = φc(o1, · · · ,oT ,x1:T)/Z, where φc(·) is a potential
function and Z =

∫
o1:T

φc(o1, · · · ,oT ,x1:T)do1:T is a normalization constant. The
model can cover the dependency between any pair of ot1 and ot2 if the potential
function φc(·) is sufficiently complex. Unfortunately, training such a model may be
intractable because of the complicated Z. In practice, we may only define φc(·) to
cover the temporal dependency within a local time window in a similar manner to
the trajectory model [132, 133, 134]. However, it is still difficult to train and use
the model because it requires sophisticated training and generation algorithms.

The aforementioned model is impractical because it relies on un-directed
temporal correlation among random variables, e.g., ot1 can affect and be affected

68 Chapter 5. Shallow Autoregressive Neural F0 model

by ot2. Another idea is to model directed or AR dependency [135], i.e., the
dependency of ot on o1:t−1. Although the dependency may be less general, it
may be more compatible with sequential data that are generated by a causal
system. What’s more, a model with the AR dependency can be factorized as
p(o1:T |x1:T ; Θ) = ∏T

t=1 p(ot|o1:t−1,x1:T ; Θ), which makes the model less complex
than undirected graphic models. As we will see in the following sections, such an
AR model can be trained and used in a similar manner to a baseline model.

5.2 Definition of shallow AR model

Definition

The SAR can be defined on the basis of the conventional RMDN and the AR
dependency. Let’s use o1:T ∈ RT×D and x1:T to denote the target and the input
data sequence, respectively. The SAR can be written as

p(o1:T |x1:T ; Θ,Ψ) =
T∏
t=1

p(ot|ot−K:t−1,x1:T ; Θ,Ψ)

=
T∏
t=1

M∑
m=1

ωmt N (ot;µmt + fΨ(ot−K:t−1),Σm
t)
, (5.1)

where Θ is the set of the neural network weights, and Ψ is the parameter set of
the function fΨ(·). Let us define Mt , {ω1

t , · · · , ωMt , µ1
t , · · · ,µMt , Σ1

t , · · · ,ΣM
t }

as the parameter set of the GMM with M mixture components. The value of
Mt is calculated by the internal RNN as Mt = fΘ(x1:T , t) in the same manner
as the baseline RMDN. In contrast to the baseline RMDN, however, the SAR
defines the distribution of ot as a conditional distribution that depends on the
previous K observations ot−K:t−1. Specifically, the SAR introduces a function
fΨ(·) to summarize ot−K:t−1 and adjust the mean of each GMM mixture at time t.
Note that K is a hyper-parameter of SAR.

The parametric form of fΨ(·) can be defined flexibly. Here, we use a simple
form

fΨ(ot−K:t−1) =
K∑
k=1
ak � ot−k + b, (5.2)

5.2 Definition of shallow AR model 69

Linguistic features

F0 sequence

Parameter of F0 distribution

Internal recurrent
neural network

Probabilistic model

Hidden layers

x1 x2 x3 x4 x5

M3 M4M2M1 M5

o1 o2 o3 o4 o5

Figure 5.2: Example SAR with K = 2

where Ψ = {a1, · · · ,aK , b} and � is the element-wise product. We refer to the
model defined based on Equation (5.1) and (5.2) as SAR because it only models
the local AR dependency using a linear function fΨ(·). An example SAR with
K = 2 is plotted in Figure 5.2.

An SAR can be trained in a similar manner to a baseline RMDN, where the
parameter set Θ and Ψ can be estimated using the maximum-likelihood criterion
and the gradient descent method. It only requires additional cost to calculate fΨ(·)
and the gradients of Ψ. In the generation time, the mean-based or sampling-based
generation method can be applied sequentially from t = 1 to t = T .

Comparison with extended RMDN

The SAR plotted in Figure 5.2 looks similar to a baseline RMDN with a recurrent
output layer [85]. However, the AR dependency link in the SAR is different from
the recurrent link in an RMDN. Let us explain this difference using two toy models
in Figure 5.3. To simplify the explanation, we assume that all the layers use a
linear activation function and set the bias to zero. What’s more, we assume the
distribution for ot as a Gaussian distribution with a unit variance. The task is to
model the target data sequence o1:2 = [o1, o2], where o1, o2 ∈ R.

For the toy extended RMDN, it is easy to show thatM1 , µ1 = w>mh1 and
M2 , µ2 = w>mh2 + wµµ1. Let µ̃2 , w>mh2, then the conditional distribution of

70 Chapter 5. Shallow Autoregressive Neural F0 model

bo1

x1
Feedforward

Highway gate

x

+ ●

●
-1

Linear

xt

ht gt

bot

g1

h1

W i, bi

W o, bo W g, bg

Implementation detailsComputation flow

…

xT

boT

hT
gT

bo2

x2

h2
g2

h2h1

RMDN SAR

h2h1

x1 x2 x1 x2

o1 o2 o1 o2

wµ

a

wm wmwm wm

M1 M2 M1 M2

DAR

h2h1

x1 x2

o1 o2

wo
wmwm W h

W i

M1 M2

Figure 5.3: Toy SAR and RMDN
o1:2 can be written as

p(o1:2|x1:2) =N (o1;µ1, 1)N (o2; µ̃2 + wµµ1, 1)

= 1
2π exp(−(o1 − µ1)2

2 − (o2 − µ̃2 − wµµ1)2

2)

= 1
2π exp(−1

2(o− µ)>Σ−1(o− µ)),

(5.3)

where o = [o1, o2]>, µ = [µ1, µ̃2 + wµµ1]>, and Σ =
1 0

0 1

. Obviously, although

the RMDN uses a recurrent link in the output layer, the covariance matrix Σ is
diagonal, which suggests that o1 and o2 are treated as being independent.

The toy SAR computesM1 , µ1 = w>mh1 andM2 , µ2 = w>mh2. Accordingly,
the distribution calculated with the model can be written as

p(o1:2|x1:2) =N (o1;µ1, 1)N (o2;µ2 + ao1, 1)

= 1
2π exp(−(o1 − µ1)2

2 − (o2 − µ2 − ao1)2

2)

= 1
2π exp(−1

2(o− µ)>Σ−1(o− µ)),

(5.4)

where o = [o1, o2]>, µ = [µ1, µ2 + aµ1]>, Σ =
1 a

a 1 + a2

, and a is the trainable

AR parameter. As long as a 6= 0, the covariance matrix Σ becomes a full matrix,
which means that the correlation between o1 and o2 is not ignored by the model.

In general, the AR dependency link in the SAR is defined among the random
variables o1:T while the recurrent link in RMDN is among outputs of the neural
layer. This difference affects the power of the model.

5.3 SAR as neural network plus digital filters 71

5.3 SAR as neural network plus digital filters

The SAR uses a linear function to capture the AR dependency. Although it is
simple in definition, it allows us to interpret the model from different perspectives
and understand the potential issues of the SAR.

5.3.1 Interpretation based on signal and filter

The first interpretation is from the perspective of digital filter and signal. Suppose
that ot ∈ RD, and the SAR uses GMMs with a single mixture component and
a diagonal covariance matrix. Then, the conditional distribution of ot can be
written as

p(ot|ot−K:t−1,x1:T) =
D∏
d=1

1√
2πσ2

t,d

exp
[
−(ot,d −

∑K
k=1 ak,dot−k,d − µt,d − bd)2

2σ2
t,d

]
,

(5.5)
where ot,d, µt,d, ak,d, and bd are the d-th dimensions of ot,µt, ak, and b, respectively,
and σt,d is the d-th diagonal element of the diagonal matrix Σt.

Let us define a new random variable as ct,d = ot,d −
∑K
k=1 ak,dot−k,d. Then,

we can find that the vector c1:T,d = [c1,d, · · · , cT,d]> and another vector o1:T,d =
[o1,d, · · · , oT,d]> are related by a linear transformation

c1:T,d = A(d)o1:T,d, (5.6)

where

A(d) =



1 0 0 0 0 · · · 0 · · · 0
−a1,d 1 0 0 0 · · · 0 · · · 0
−a2,d −a1,d 1 0 0 · · · 0 · · · 0

... ...
−aK,d · · · −a2,d −a1,d 1 0 0 · · · 0

0 −aK,d · · · −a2,d −a1,d 1 0 · · · 0
... ...
0 · · · 0 −aK,d · · · −a2,d −a1,d 1 0
0 0 · · · 0 −aK,d · · · −a2,d −a1,d 1



. (5.7)

72 Chapter 5. Shallow Autoregressive Neural F0 model

Training

Generation

RMDNFilters

…

RMDNFilters

…

x1:T

A1(z)

AD(z)

bo1:T

o1:T

bc1:T

c1:T

TY

t=1

p(ct|x1:T)

TY

t=1

p(ct|x1:T)

1/A1(z)

1/AD(z)

Figure 5.4: Interpretation of SAR based on filters and signals

Interestingly, Equation (5.6) is also a filtering process in which the input signal
o1:T,d of length T is converted into the output signal c1:T,d by using a finite impulse
response (FIR) filter. This FIR filter can be written in the z-domain as

Ad(z) = 1−
K∑
k=1

ak,dz
−k, (5.8)

where {a1,d, · · · , aK,d} are the filter coefficients. Because the triangular matrix
A(d) is invertible, an ‘inverse’ filtering process can be defined as

o1:T,d = (A(d))−1c1:T,d = H(d)c1:T,d, (5.9)

and the ‘inverse’ filter written in the z-domain is

Hd(z) = 1
Ad(z) = 1

1−∑K
k=1 ak,dz

−k . (5.10)

The above filtering process is defined for the slice of the d-th dimension of o1:T .
Generally, the filter pair {Hd(z), Ad(z)} and the signal c1:T,d can be defined for
each dimension d ∈ [1, D]. If we replace ot,d −

∑K
k=1 ak,dot−k,d in Equation (5.5)

with ct,d, we can re-write the distribution of ot as

p(o1:T |x1:T) =
T∏
t=1

p(ot|ot−K:t−1,x1:T) =
T∏
t=1

p(ct|x1:T) = p(c1:T |x1:T), (5.11)

where c1:T and o1:T are related by the filters {A1(z), · · · , AD(z)}. In other words,

5.3 SAR as neural network plus digital filters 73

as Figure 5.4 shows, the SAR can be interpreted as a combination of digital filters
and an RMDN:

• in the training stage, the filters transform o1:T into c1:T . The filter part (Ψ
of fΨ) and the RMDN part (Φ of the internal RNN) can be trained jointly
or iteratively by maximizing the likelihood of the RMDN over c1:T ;

• in the generation stage, the RMDN generates ĉ1:T , and the inverse filters
de-transform ĉ1:T into ô1:T .

Note that the combination of filters and RMDN is just for interpretation, and
no actual filter is required in the implementation of the SAR. For this reason, we
call {Hd(z), Ad(z)} the virtual filter of SAR. The implementation of the SAR is
still based on the original definition in Equation (5.1) and (5.2).

5.3.2 Stability of SAR

The above interpretation reveals one potential issue on the model stability.
As shown in Equation (5.10), since the filters {H1(z), · · · , HD(z)} are infinite
impulse response (IIR) filters, they must remain stable after the filter coefficients
{a1, · · · ,aK} are estimated in model training. Otherwise, the output signal ô1:T,d

from an unstable IIR filter Hd(z) may acquire infinite values.
A causal stable IIR filter must have all the poles inside the unit-circle in the

z-domain [136]. However, the gradient-descent training method directly updates
the filter coefficients {a1, · · · ,aK} and does not constrain the location of poles.
To ensure the filter stability, we propose three methods. While the first two
sufficient but unnecessary methods directly parameterize the filters’ poles, the
last method uses log area ratio [137] to parameterize the filter coefficients.

Note that the proposed methods just parameterize the coefficients {a1,d, · · · , aK,d},
∀b ∈ [1, D], using new parameters. This whole model is still trained using the
back-propagation and gradient-descent method.

Method 1: IIR filters with real-valued poles

We now explain the first method for the d-th filter, and we will drop the index d to
simplify the notation. The idea is to constrain the poles of an IIR filter to be

74 Chapter 5. Shallow Autoregressive Neural F0 model

real-valued numbers between -1 and 1. Let us re-write an IIR-filter as a cascade of
1st order filters and apply the tanh(·) function to constrain the value of the pole in
each 1st order filter as α = tanh(α̃). Accordingly we can get:

H(z) = 1
1−∑K

k=1 akz
−k =

K∏
k=1

1
1− αkz−1 =

K∏
k=1

1
1− tanh(α̃k)z−1 . (5.12)

The real-valued poles {α1, · · · , αK} usually have different values from the filter
coefficients {a1, · · · , aK}, but there is a deterministic mapping from {α̃1, · · · , α̃K}
to {a1, · · · , aK}. In a word, the proposed method just parameterizes the original
{a1, · · · , aK} using {α̃1, · · · , α̃K}. The parameter set {α̃1, · · · , α̃K} can be esti-
mated using the gradient-descent method jointly with the neural network weights.
Whatever the value of the estimated α̃k, the pole αk is constrained by the tanh(·)
function to be within (−1, 1), and the filter coefficients {a1, · · · , aK} calculated
from {α̃1, · · · , α̃K} always form a stable IIR filter.

As implementation, we need two additional procedures to the vanilla SAR:
one to map {α̃1, · · · , α̃K} to {a1, · · · , aK} and the other to map the gradients
{ ∂E
∂a1
, · · · , ∂E

∂aK
} to { ∂E

∂α̃1
, · · · , ∂E

∂α̃K
}, where E is the negative log-likelihood. The first

procedure is used when we need to calculate the {a1, · · · , aK} in the training and
inference stages. The second procedure is required when updating {α̃1, · · · , α̃K}
through the gradient-descent Method in the training stage.

To convert {α̃1, · · · , α̃K} into {a1, · · · , aK}, we can re-write Equation (5.12) as:

1−
K∑
k=1

akz
−k =

K∏
k=1

[
1− tanh(α̃k)z−1

]
. (5.13)

We can then just unfold the right hand side of Equation (5.13) into a polynomial
and set ak equal to the coefficient of z−k. This can be done by using Algorithm 1,
the time and space complexity of which is only O(K). Note that the loop in lines
9-10 is only for explanation and can be parallelized.

To compute the gradients { ∂E
∂α̃1

, · · · , ∂E
∂α̃K
}, we need to use the chain rule. For

example, the gradient of α̃j can be computed as

∂E

∂α̃j
=

K∑
k=1

∂E

∂ak

∂ak
∂α̃j

. (5.14)

5.3 SAR as neural network plus digital filters 75

Algorithm 1: Forward computation for Method 1: converting {α̃1, · · · , α̃K}
to {a1, · · · , aK} for filter A(z) = 1−∑K

k=1 akz
−1 and H(z) = 1/A(z). This

routine is similar to the ‘poly’ function of Numpy [138].
Input: {α̃1, · · · , α̃K}, K

1 [α1, α2, · · · , αK]← [tanh(α̃1), tanh(α̃1), · · · , tanh(α̃K)];
2 a1 ← α1;
3 if K = 1 then
4 Return {a1};
5 for k ← 2 to K do
6 a(k) ← [1,−a1, · · · ,−ak−1, 0] ; /* a(k) has k + 1 dimensions */
7 b(k) ← [0, 1,−a1, · · · ,−ak−1] ∗ −αk ; /* b(k) has k + 1 dimensions */
8 a(k) ← a(k) + b(k);
9 for p← 1 to k do

10 ap ← a(k)[p+ 1] ∗ −1 ; /* a(k)[p] is the p-th dimension */

11 Return {a1, · · · , aK};

The gradient ∂E
∂ak

is acquired through back-propagation under the maximum
likelihood criterion in a conventional manner, while ∂ak

∂α̃j
can be calculated using an

additional iterative procedure. By taking the derivative w.r.t αj on the two sides
of Equation (5.13), we get

K∑
k=1

∂ak
∂α̃j

z−k = z−1∂tanh(α̃j)
∂α̃j

K∏
k=1,k 6=j

[
1− tanh(α̃k)z−1

]
. (5.15)

We can then unfold the right hand side into a polynomial using a similar procedure
to Algorithm 1 and set ∂ak

∂α̃j
equal to the coefficient of z−k. Obviously, each ∂ak

∂α̃j

depends on the values of {α̃1, · · · , α̃K}.

In Summary, the proposed method ensures the filter stability by parameterizing
the coefficients {a1, · · · , aK} into {α̃1, · · · , α̃K} on the basis of Equation (5.12).
Compared with a vanilla SAR without any constraints, the SAR using the proposed
method just needs a forward computation procedure to convert {α̃1, · · · , α̃K} into
{a1, · · · , aK} and a backward computation procedure to calculate { ∂E

∂α̃1
, · · · , ∂E

∂α̃K
}

given { ∂E
∂a1
, · · · , ∂E

∂aK
}. These procedures are applicable to any K.

Let us consider an example where K = 2. For the forward computation (i.e.,

76 Chapter 5. Shallow Autoregressive Neural F0 model

from {α̃1, · · · , α̃K} to {a1, · · · , aK}), we follow Equation (5.13) and get

1− a1z
−1 − a2z

−2 =
[
1− tanh(α̃1)z−1

][
1− tanh(α̃2)z−1

]
. (5.16)

By unfolding the right hand side, we get

a1 = tanh(α̃1) + tanh(α̃2), a2 = − tanh(α̃1) tanh(α̃2). (5.17)

For the backward computation (i.e., from { ∂E
∂a1
, · · · , ∂E

∂aK
} to { ∂E

∂α̃1
, · · · , ∂E

∂α̃K
}),

we use Equation (5.15) and get

∂a1

∂α̃1
z−1 + ∂a2

∂α̃1
z−2 = ∂tanh(α̃1)

∂α̃1
z−1 − ∂tanh(α̃1)

∂α̃1
tanh(α̃2)z−2,

∂a1

∂α̃2
z−1 + ∂a2

∂α̃2
z−2 = ∂tanh(α̃2)

∂α̃2
z−1 − ∂tanh(α̃2)

∂α̃2
tanh(α̃1)z−2.

(5.18)

Based on the above equation, we can get

∂a1

∂α̃1
= ∂tanh(α̃1)

∂α̃1
,

∂a2

∂α̃1
= −∂tanh(α̃1)

∂α̃1
tanh(α̃2)

∂a1

∂α̃2
= ∂tanh(α̃2)

∂α̃2
,

∂a2

∂α̃2
= −∂tanh(α̃2)

∂α̃2
tanh(α̃1)

(5.19)

Finally, we can compute { ∂E
∂α̃1

, ∂E
∂α̃2
} using the chain rule in Equation (5.14).

Method 2: High-order filter with complex-poles

The first method only allows the filters to have real-valued poles. A high-order IIR
filter in practice could have one or more pairs of conjugate complex-valued poles.
To allow such a case, we propose the second sufficient but unnecessary method to
parameterize the filter coefficients for the SAR.

This method first constrains a K-order filter H(z) to have at most one real-
valued pole. It further constraints other poles of the filter to be pairs of conjugate
complex-valued numbers. Accordingly, this method assume a K-order filter can be

5.3 SAR as neural network plus digital filters 77

written as

H(z) =


1∏K/2

k=1(1− αkz−1 − βkz−2)
if K is even

1
(1− α0z−1)∏(K−1)/2

k=1 (1− αkz−1 − βkz−2)
if K is odd

. (5.20)

When K is odd, there are (K − 1)/2 pairs of conjugated complex-valued poles,
and the remaining one real-valued pole α0 ∈ R belongs to the filter 1

1−α0z−1 .
For a 2nd order filter 1

1−αkz−1−βkz−2 , its poles can be generally written as

{αk+
√
α2

k
+4βk

2 ,
αk−
√
α2

k
+4βk

2 }. Since we want these poles to be complex-valued and
conjugated, αk and βk must satisfy

α2
k + 4βk < 0, (5.21)

and the poles become {αk

2 −
√
−(α2

k
+4βk)

2 i, αk

2 +
√
−(α2

k
+4βk)

2 i}, where i =
√
−1. To

ensure the filter stability, α0 can be constrained by using a tanh(·) function when
K is odd. For a 2nd order filter, the two poles must be inside the unit circle, or
equivalently, their amplitudes should be less than 11. This requires that

∣∣∣∣αk2 ±
√
−(α2

k + 4βk)
2 i

∣∣∣∣2 = α2
k

4 + −α
2
4 − 4βk

4 = −βk ∈ (0, 1). (5.22)

The constraints in Equations (5.21-5.22) can be summarized as

βk ∈ (−1, 0), αk ∈ (−2
√
−βk, 2

√
−βk). (5.23)

As implementation, βk and αk can be parameterized as:

βk = −sigmoid(β̃k), αk = 2
√
sigmoid(β̃k)tanh(α̃k). (5.24)

We can use the forward and backward computation procedures similar to
those in the first method to calculate the filter coefficients {a1, · · · , aK} from
{α̃1, β̃1, · · · , α̃K , β̃K} and the gradients of {α̃1, β̃1, · · · , α̃K , β̃K} from { ∂E∂a1

, · · · , ∂E
∂aK
}.

1For a complex number x+ yi where [x, y] ∈ R2, its amplitude is |x+ yi| =
√
x2 + y2.

78 Chapter 5. Shallow Autoregressive Neural F0 model

Algorithm 2: Levinson recursion algorithm for Method 3: converting
log area ratio {γ̃1, · · · , γ̃K} to filter coefficients {a1, · · · , aK} for the filter
A(z) = 1−∑K

k=1 akz
−1 and H(z) = 1/A(z). This implementation is based on

frwlev in [140].
Input: {γ̃1, · · · , γ̃K}, K

1 for k ← 1 to K do
2 a

(k)
k ← tanh(γ̃k) ; /* −tanh(γ̃k) if filter is 1 +∑K

k=1 akz
−1 */

3 if k ≥ 2 then
4 for p← 1 to k − 1 do
5 a(k)

p ← a(k−1)
p − tanh(γ̃k)a(k−1)

k−p ;

6 Return: {a1, · · · , aK} ← {a(K)
1 , · · · , a(K)

K };

Method 3: Filter parameterized by log area ratio

The previous methods require unnecessary assumptions on the filter form and the
location of the poles. A more flexible method is to use the log area ratio [137]
to parameterize the filter. It is known that the coefficients {a1, · · · , aK} of an
AR filter H(z) = 1

1−
∑K

k=1 akz−1 have a deterministic relationship with reflection
coefficients (RCs) {γ1, · · · , γK}, where γk ∈ R. The values of {a1, · · · , aK} can be
calculated from {γ1, · · · , γK} using a Levinson recursion algorithm [139]. A nice
property about RC is that, as long as γk ∈ (−1, 1),∀k ∈ {1, · · · , K}, the filter
coefficients {a1, · · · , aK} calculated from {γ1, · · · , γK} will form a stable filter
H(z), and the poles of the filter will be inside the unit circle [139] .

To ensure that γk ∈ (−1, 1), we can simply set γk = tanh(γ̃k), where γ̃k is
referred to as the log area ratio2. Therefore, as long as {a1, · · · , aK} are calculated
from {γ̃1, · · · , γ̃K} using the Levinson recursion algorithm and the tanh function,
the stability of the filter is guaranteed.

To implement the SAR using the log area ratio, we need the Levinson recursion
algorithm to convert {γ̃1, · · · , γ̃K} into {a1, · · · , aK} and another backward routine
to calculate { ∂E

∂γ̃1
, · · · , ∂E

∂γ̃K
} on the basis of { ∂E

∂a1
, · · · , ∂E

∂aK
}. For reference, the

Levinson recursion algorithm is written above as Algorithm 2.
2 According to the exact definition of log area ratio [137], the relationship between γk and γ̃k

should be written as γk = tanh(γ̃k

2) = 1−exp(−γ̃k)
1+exp(−γ̃k) . In implementation, we directly use the tanh

function without the scaling factor 1
2 .

5.3 SAR as neural network plus digital filters 79

Algorithm 3: Calculating ∂aj

∂γ̃i
, ∀j, i ∈ {1, · · · , K}, for Method 3.

Input: {a(1)
1 , a

(2)
1 , a

(2)
2 , a

(3)
1 · · · , a

(K)
1 , · · · , a(K)

K }, {γ̃1, · · · , γ̃K}, K
1 for p← 1 to K do
2 for i← 1 to p do
3 for j ← 1 to p do
4 if i=p then
5 if j=p then
6

∂aj
(p)

∂γi
← 1 ; /* ∂ap

(p)

∂γp
*/

7 else
8

∂aj
(p)

∂γi
← −a(p−1)

p−j ; /* ∂aj
(p)

∂γp
, j ∈ [1, p− 1] */

9 else
10 if j=p then
11

∂aj
(p)

∂γi
← 0 ; /* ∂ap

(p)

∂γi
, i ∈ [1, p− 1] */

12 else
13

∂aj
(p)

∂γi
← ∂aj

(p−1)

∂γi
− tanh(γ̃p)∂ap−j

(p−1)

∂γi
;

14 Return ∂aj

∂γ̃i
← ∂a

(K)
j

∂γi

∂tanh(γ̃i)
∂γ̃i

, ∀j, i ∈ {1, · · · , K};

For the backward computation, we first need to calculate the gradients ∂aj

∂γ̃i
,

∀j, i ∈ {1, · · · , K}. After that, the chain rule can be then used to calculate
∂E
∂γ̃k

= ∑K
j=1

∂E
∂aj

∂aj

∂γ̃k
. Due to the complicated relationship between {γ̃1, · · · , γ̃K}

and {a1, · · · , aK}, ∂aj

∂γ̃i
must be computed using a recursive procedure listed in

Algorithm 3. This algorithm propagates the gradients backwards through the
Levinson recursion algorithm. Note that the input of Algorithm 3 includes the
intermediate filter coefficients a(k)

p for p ∈ {1, · · · , k} and k = {1, · · · , K}, which
are calculated during the Levinson recursion.

The log area ratio was proposed to parameterize the AR filter for the linear
prediction coding of speech signals around 45 years ago [137]. The original
motivation was to ensure the stability and accuracy of the filter when the parameters
are quantized and distorted during speech compression and transmission. An
alternative parameterization scheme is based on the line spectrum pairs (LSP)
[50, 141]. We leave the LSP-based approach for further work.

80 Chapter 5. Shallow Autoregressive Neural F0 model

5.4 SAR as neural network plus normalizing flow

The filter-based interpretation in Section 5.3 is not the only perspective to
understand the SAR. This section gives another interpretation on the basis of the
rule to change continuous random variables.

5.4.1 Rule of changing random variable

Suppose a random vector c ∈ Rd is drawn from a distribution pC . If an invertible
function g : Rd → Rd is used to convert c into another vector o, i.e., o = g(c), the
distribution of o can be acquired using the rule of changing random variable. Let’s
define f(·) , g−1(·); then pO(o) can be written as

pO(o) = pC(f(o))
∣∣∣det∂f(o)

∂o

∣∣∣, (5.25)

where ∂f(o)
∂o

denotes the Jacobian matrix.
Interestingly, if another invertible function g2 : Rd → Rd is applied to convert o

into s, the distribution of s can be acquired by applying the rule one more time.
Let’s define f2(·) , g−1

2 (·), then pS(s) can be written as

pS(s) = pC(f(f2(s)))
∣∣∣det∂f(o)

∂o

∣∣∣∣∣∣det∂f2(s)
∂s

∣∣∣. (5.26)

In a similar manner, the rule of changing random variable can be applied multiple
times as long as the transformation function is invertible. Such a technique is
referred to as normalizing flow in some literature [142, 143]. It is also related to
the feature transformation Method 1n HMM-based speech processing tasks such as
speaker adaption for speech recognition [144] and synthesis [145]. We use the
name normalization flow because it is applied to the entire sequential data and can
be applied multiple times (as a flow).

5.4.2 SAR as neural network plus normalizing flow

The rule of changing random variables can be used to interpret the SAR. Suppose
the target feature sequence is denoted o1:T = {o1, · · · ,oT}, where ot ∈ RD. In the

5.4 SAR as neural network plus normalizing flow 81

previous section, we introduce the random variable ct,d = ot,d −
∑K
k=1 ak,dot−k,d for

d ∈ [1, D]. This relationship can be re-written in a vector form as

ct = ot −
K∑
k=1
ak � ot−k, (5.27)

where ck = [ck,1, · · · , ck,D]>, ok = [ok,1, · · · , ok,D]>, and ak = [ak,1, · · · , ak,D]>. If
we format the vector sequences o1:T and c1:T as column vectors o1:T = [o>1 , · · · ,o>T]>

and c1:T = [c>1 , · · · , c>T]>, we can define a function f : RDT → RDT as

c1:T = f(o1:T) = Ao1:T , (5.28)

where

A =



1 0 0 0 0 · · · 0 · · · 0
−A1 1 0 0 0 · · · 0 · · · 0
−A2 −A1 1 0 0 · · · 0 · · · 0
... ...

−AK · · · −A2 −A1 1 0 0 · · · 0
0 −AK · · · −A2 −A1 1 0 · · · 0
... ...
0 · · · 0 −AK · · · −A2 −A1 1 0
0 0 · · · 0 −AK · · · −A2 −A1 1



3, (5.29)

1 is an identity matrix of size D ×D, 0 is a zero matrix, and Ak = diag(ak) is a
diagonal matrix whose diagonal line is equal to the vector ak. Notice that this
transformation is invertible and det(A) = 1.

With all the above facts, we can interpret the function f(·) in Equation (5.28)
as the ‘inverse function that recovers’ the data c1:T from the observed o1:T . Then,

3The matrix A can be formed by merging the matrices {A(1), · · · ,A(D)} defined in Equa-
tion (5.7).

82 Chapter 5. Shallow Autoregressive Neural F0 model

Training

Generation

RMDNFilters

…

RMDNFilters

…

x1:T

A1(z)

AD(z)

bo1:T

o1:T

bc1:T

c1:T

TY

t=1

p(ct|x1:T)

TY

t=1

p(ct|x1:T)

1/A1(z)

1/AD(z)

Training

Generation

RMDN

RMDN

x1:T

bo1:T

o1:T

bc1:T

c1:T

TY

t=1

p(ct|x1:T)

TY

t=1

p(ct|x1:T)

bo1:T = f�1(bc1:T)

= A�1bc1:T

c1:T = f(o1:T)

= Ao1:T

Figure 5.5: Interpretation of SAR using normalizing flow (feature transformation)

we apply the rule of changing random variable and show that

po|x(o1:T |x1:T) = pc|x(f(o1:T)|x1:T)
∣∣∣det∂f(o1:T)

∂o1:T

∣∣∣
= pc|x(f(o1:T)|x1:T)

∣∣∣detA∣∣∣
= pc|x(c1:T |x1:T)

. (5.30)

This equation explains the SAR from the perspective of normalizing flow and
justifies the equality in Equation (5.11). Specifically, the SAR uses the function
f(·) to transform the target feature o1:T into c1:T and uses the RMDN to evaluate
pc|x(c1:T |x1:T). In the generation stage, the SAR uses the RMDN to generate
a sequence ĉ1:T and recovers the target sequence ô1:T = f−1(ĉ1:T). Because
det(A) = 1, the SAR is a special case of volume-preserving normalizing flow [146]
with just a single stage of transformation.

The above interpretation indicates the potential of SAR from a different
perspective. Since a baseline RMDN cannot model the temporal correlation within
o1:T , one strategy is to transform the original data o1:T into another domain,
hoping that the transformed data c1:T contain less temporal correlation. In this
way, the transformed data c1:T may be more compatible with the model assumption
of the RMDN. This interpretation can be illustrated by Figure 5.5, which is similar
to that in Figure 5.4 except that the filters are replaced by a invertible function
f(·).

5.4 SAR as neural network plus normalizing flow 83

5.4.3 Extended SAR with time-variant transformation

Theory

The interpretation in Figure 5.5 is quite general. In the case of the SAR, the
function f(·) is determined by the AR linear transformation in Equation (5.27).
However, we can use more complicated functions as long as they are invertible and
allow the Jacobian matrix to be calculated easily.

For example, we can define a non-linear transformation as

ct = ot − fΨ(o1:t−1), (5.31)

where f(o1:t−1) : RD×(t−1) → RD is a function that merges all the previous frames
o1:t−1 into a bias vector. Although this function looks simple, it generalizes the
original SAR with a time-invariant AR dependency function (Equation 5.2) and an
extended SAR with a time-variant function:

time-invariant : fΨ(o1:t−k) =
K∑
k=1
ak � ot−k,

time-variant : fΨ(o1:t−k) =
K∑
k=1

f
(k)
ψk

(o1:t−k)� ot−k,
(5.32)

In the time-invariant case, Ψ = {a1, · · · ,aK} defines the time-invariant scaling
vectors. In the time-variant case, Ψ = {ψ1, · · · ,ψK}, and f

(k)
ψk

: RD×(t−k) → RD

calculates the scaling vectors based on o1:t−k. Compared with the two cases above,
the general function in Equation (5.31) does not use a linear weighted sum to
summarize the information only from {ot−K , · · · ,ot−1}. Therefore, it is potentially
more general and powerful.

Given the transformation function above for each time step t, the transformation
between the sequences o1:T and c1:T can be written as

c1:T = fΨ(o1:T). (5.33)

In contrast to Equation (5.28) of the original SAR, this transformation function
may not necessarily be a linear function. It is may be impractical to compute

84 Chapter 5. Shallow Autoregressive Neural F0 model

the full Jacobian matrix ∂f(o1:T)
∂o1:T

= ∂c1:T
∂o1:T

. However, the rule of changing random
variables only needs det∂f(o1:T)

∂o1:T
. If the Jacobian matrix has special structures, its

determinant can be computed without calculating all the elements in the matrix.

Fortunately, ∂c1:T
∂o1:T

based on Equation (5.31) is such a case. According to that
equation, we know that

∂ct
∂oj

=



1, j = t

0, j > t

∂ct
∂oj

, j < t

. (5.34)

Consequently, the Jacobian matrix ∂c1:T
∂o1:T

is a low-triangular matrix whose the
diagonal blocks are identity matrices, i.e.,

∂c1:T

∂o1:T
=



∂c1
∂o1

∂c1
∂o2

· · · ∂c1
∂oT

∂c2
∂o1

∂c2
∂o2

· · · ∂c2
∂oT...

∂cT

∂o1
∂cT

∂o2
· · · ∂cT

∂oT

 =


1 0 · · · 0
∂c2
∂o1

1 · · · 0
...

∂cT

∂o1
∂cT

∂o2
· · · 1

 . (5.35)

Although the off-diagonal block matrices in the lower triangular part may be
difficult to compute, the determinant of the Jacobian matrix does not depends on
them and is simply equal to one, i.e., det ∂c1:T

∂o1:T
= 1. Therefore, the rule of changing

random variables can be easily applied to the generalized SAR.

The transformation can also defined in an anti-AR manner, for example as

ct = ot − fΨ(ot+1:T). (5.36)

In this case, the Jacobian matrix will be an up-triangular matrix, and its
determinant is still equal to 1. This anti-AR transformation can be applied after
the AR transformation. There is no conflict as long as each transformation only
contains uni-directional dependency.

In this thesis, we refer to the SAR with the non-linear AR/anti-AR dependency
function as the extended SAR (eSAR). Although the transformation is now
time-variant, the extended SAR still implements the AR dependency since ct only
depends on the current and the previous observations.

5.4 SAR as neural network plus normalizing flow 85

Implementation

In implementation, we use a uni-directional RNN layer and a linear transformation
layer to calculate fΨ(o1:t−1). We refer to the combination of these two layers as
a normalizing flow block. This uni-directional RNN layer should compute in a
forward direction from t = 1 to t = T in the case of AR dependency. For the
anti-AR dependency, however, the uni-directional RNN should compute reversely
from t = T to t = 1.

In the training stage, we need to learn the parameter {Ψ,Θ} by maximizing
the likelihood function p(fΨ(o1:T)|x1:T ; Θ). Since both Ψ and Θ are the weights
of neural network, we may update them iteratively. A practical training recipe is:

1. Use a trained baseline RMDN to initialize Θ;

2. Fix Θ and update Ψ by maximizing the likelihood;

3. Fix Ψ and update Θ by maximizing the likelihood;

4. Repeat steps 2 and 3

If multiple transformations are used, we can update all the transformation networks
together, i.e., treating Ψ = {Ψ1, · · · ,ΨN} where Ψn is the network parameter set
for n-th normalizing block.

In the generation stage, we can sequentially generate ô1:T after acquiring ĉ1:T

from the RMDN part:

ô1 = ĉ1

ô2 = ĉ2 + fΨ(ô1)

· · ·

ôt = ĉt + fΨ(ô1:t−1)

· · ·

ôT = ĉT + fΨ(ô1:T−1)

(5.37)

If multiple transformation blocks are used, we have to do the above process in
each transformation block. If the transformation block is anti-AR, the generation
process should be proceeded from t = T to t = 1.

86 Chapter 5. Shallow Autoregressive Neural F0 model

5.5 Evaluating SAR

5.5.1 Data and configuration

For experiments, pilot tests were first conducted to examine the stability issue and
the filter order of the SAR. The main test was then conducted to compare the
SAR and other neural F0 models. Details of the network configuration will be
explained in each experiment. The English and the Japanese corpora were used for
experiments, details of which can be found in Appendix A.

The input linguistic features are defined in Table A.1. The target F0 is
the interpolated continuous-valued (Mel-scale) F0. Network structures will be
explained in each experiment. Unless specifically explained, all the models were
trained using stochastic gradient descent (learning rate 1e-5) with early stopping,
after which the models were further tuned using the AdaGrad optimizer [147]
(learning rate 0.001) with early stopping.

5.5.2 Pilot test I: effectiveness of SAR stability constraints

In Section 5.3.2, we proposed three methods to ensure the stability of the virtual
synthesis filter H(z) in the SAR. This pilot test examines the effectiveness of
proposed methods. In this test, we compared four SARs listed in Table 5.1 on the
English corpus. We set the SAR order K = 6 because a relatively high order can
easily reveal the instability of a naive SAR4.

All the models used the same network structure: two feedforward layers of size
512 → two bi-directional LSTM recurrent layers of size 256 and 128, respectively
→ a linear layer to generate the parameters for the target data distribution. The
target data distribution included a GMM of 2 mixture components for F0 and a
binary distribution for U/V. The internal RNN of the SAR was initialized by a
trained RNN (RNN in Section 5.5.4), and the SAR was fine tuned by using the
stochastic gradient descent (learning rate 1e-09) for 5 epochs.

After training the models, we extracted the parameters of the virtual filter
in each model and plot the poles of the synthesis filter H(z) in Figure 5.6 (a).

4For K < 6, the SAR trained on the experimental corpus happened to be stable even without
any constraint on the filter stability. However, the stability is not guaranteed for other corpora.

5.5 Evaluating SAR 87

Table 5.1: SAR models for pilot test on filter stability (K=6).

Name Form of synthesis filter H(z) Constraints on stability of H(z)
U6

1
1−∑K

k=1 akz
−k No constraints

R6
K∏
k=1

1
1− tanh(α̃k)z−1 Method 1: Stable H(z) with real-valued

poles inside the unit circle

C6
K/2∏
k=1

1
1− αkz−1 − βkz−2 Method 2: Stable H(z) with conjugated

complex poles inside the unit circle
F6

1
1−∑K

k=1 akz
−k Method 3: Stable H(z) parameterized

on the basis of log area ratio

−1.0−0.5 0.0 0.5 1.0
real part

−1.0

−0.5

0.0

0.5

1.0

im
ag

in
ar

y
pa

rt

0

poles of U6

0

poles of R6

0

poles of C6

0

poles of F6

(a) Poles of synthesis filter H(z). The black circle denotes the unit circle.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency (rad)

−15
−10
−5

0
5

10
15
20
25

A
m

pl
itu

de
(d

B
)

filter A(z)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency (rad)

−15
−10
−5

0
5

10
15
20
25

filter H(z)

U6
R6
C6
F6

(b) Frequency responses of analysis filter A(z) and synthesis filter H(z).

Figure 5.6: Poles’ location and frequency responses of virtual filters in SARs.

The results show that the H(z) of U6 acquired a real-valued pole outside the
unit-circle, which means that the filter was unstable. Figure 5.6 (b), which shows
the frequency response of the virtual filters, demonstrates that the H(z) of U6
significantly magnified the low-frequency band due to its instability.

88 Chapter 5. Shallow Autoregressive Neural F0 model

50 100 150 200
Frame index (utterance BC2011 nancy APDC2-166-00)

150

250

350

450

F0
(H

z)

Natural R6 C6 F6

Figure 5.7: Generated F0 from SAR (mean-based generation, English corpus).

In contrast, the results showed that R6, C6, and F6 ensured the stability of
the filter. Specifically, R6 constrained the synthesis filter’s poles on the real-axis
between (-1, 1) while C6 constrained the poles to be three pairs of conjugated
complex numbers within the unit circle. Compared with R6 and C6, F6 acquired
both complex- and real-valued poles within the unit-circle.

Which type of constraints should be used for F0 modeling? According to
Figure 5.7, the F0 contours generated by R6 and F6 were quite smooth while that
from C6 contained ripples. The ripple in the F0 contour is harmful to the perceived
quality of reading speech because natural F0 contours never show such kind of
rapid vibration. The ripple in the case of C6 may be caused by the synthesis filter
that learned to be a frequency selector as Figure 5.6 demonstrates. In general, C6
is unsuitable for modeling F0 contours of speech data. However, it may be useful
for other types data such as the F0 of singing voices that contain natural vibration.

5.5.3 Pilot test II: Selection of AR dependency order

Based on the first pilot test, we compared the SAR models listed in Table 5.2 in
order to examine the impact of different values of the AR dependency order K.
Note that R6 and F6 in Table 5.2 are identical to those in Table 5.1. The same
training recipe from the pilot test I was used in this test.

Figure 5.8 plots the frequency response of the virtual filters for the experimental
SAR models. Interestingly, all the R* models learned a ‘high-pass’ analysis filter
and accordingly a ‘low-pass’ synthesis filter5. With the exception of R1, filters in

5The filter should be called ‘high-emphasis’ or ‘low-emphasis’ because it increases the power

5.5 Evaluating SAR 89

Table 5.2: SAR models for pilot test on AR dependency order and its performance
(mean-based generation) on the English corpus.

Name AR order Constraints on stability of
H(z) RMSE CORR U/V

R1 K = 1 Method 1: stable H(z) with
real-valued poles inside unit
circle

47.56 0.765 4.92%
R2 K = 2 47.51 0.766 4.91%
R4 K = 4 47.98 0.765 4.91%
R6 K = 6 48.16 0.764 4.91%
F2 K = 2 Method 3: stable H(z)

using log area ratio

49.21 0.759 4.98%
F4 K = 4 48.80 0.759 4.98%
F6 K = 6 49.19 0.760 4.98%

other R* models showed similar frequency response curves. These models achieved
similar objective performances and generated similar F0 contours as Table 5.2 and
Figure 5.9 demonstrate.

The filters in R6 acquired a similar frequency response to R2 and R4 even if it
had a higher order. One possible reason is that the virtual filter is constrained
to be a cascade of 1st order filters with a real-valued pole (Equation (5.12)).
Whatever the AR order K is, the filter’s frequency response is equivalent to the
product of the frequency response of each 1st order filter. Since each 1st order
filter can either be ‘low-pass’ or ‘high-pass’, the cascade filter is highly possible to
be a simple ‘low-pass’ or ‘high-pass’ filter.

In the case of F*, the frequency response of the analysis filter is generally
‘high-pass’. The difference is that the filter frequency response curve in not
monotonically increasing. This result is reasonable because a filter parameterized
by the log-area ratio can acquire complex-valued poles. These complex-valued
poles act as frequency selectors and lead to the bumps on the frequency response
curve.

Although F* acquired virtual filters with more complicated frequency response
curves, it does not mean that they are suitable for F0 modeling. In fact, F*
performed slightly worse than R* in terms of objective performance. Comparison
of the models with different K further suggests that it is unnecessary to use an
SAR with a high AR order for F0 modeling. These suggestions may be reasonable

of the corresponding frequency band.

90 Chapter 5. Shallow Autoregressive Neural F0 model

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency (rad)

−8
−6
−4
−2

0
2
4
6
8

A
m

pl
itu

de
(d

B
)

filter A(z)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency (rad)

−8
−6
−4
−2

0
2
4
6
8

filter H(z)

R1
R2
R4
R6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency (rad)

−8
−6
−4
−2

0
2
4
6
8

A
m

pl
itu

de
(d

B
)

filter A(z)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency (rad)

−8
−6
−4
−2

0
2
4
6
8

filter H(z)

F2
F4
F6

Figure 5.8: Frequency response of analysis (left column) and synthesis filters (right
column) for SARs in Table 5.2.

100 200 300 400 500
Frame index (utterance BC2011 nancy APDC2-166-00)

150

250

350

450

F0
(H

z)

Natural R1 R2 R4 R6

100 200 300 400 500
Frame index (utterance BC2011 nancy APDC2-166-00)

150

250

350

450

F0
(H

z)

Natural F2 F4 F6

Figure 5.9: Generated F0 from SARs in Table 5.2 (mean-based generation, English
corpus). Note that the F0 contours in each figure are quire similar.

because the time-invariant virtual filter is trained to match the general shape of all
the F0 contours in the training set. Even though each individual F0 contour may
contain varied shapes, the general shape of all F0 contours is smooth. Therefore,
we set K = 2 for the SAR in the following experiments and use method 1 to ensure
the stability of the virtual filter.

5.5 Evaluating SAR 91

Layer size

512

512

256

128

linear

bi-LSTM

bi-LSTM

FF

F0

GMM

F0

FF

RNN RMDN SAR

F0

GMM

linear

bi-LSTM

bi-LSTM

FF

linear

bi-LSTM

bi-LSTM

FF

FF FF

Linguistic features

GMM

eSAR

linear

bi-LSTM

bi-LSTM

FF

FF

normflow

normflow

F0

Figure 5.10: Network structures for models in Section 5.5.4. ‘FF’, ‘bi-LSTM’,
and ‘uni-LSTM’ denotes feedforward layer, bi- and uni-directional LSTM layer,
respectively. ‘normflow’ denotes a normalizing block.

5.5.4 Evaluating SAR against baseline models

Model configuration

Four models shown in Figure 5.10 were evaluated on the Japanese corpus. All
of them had a similar network structure except the output layer. For RNN, the
linear output layer had size 2, where 1 dimension was used for F0 and the other
dimension for U/V. For RMDN, SAR, and eSAR, the output layer included a GMM of
2 mixture components for F0 and a binary distribution of U/V. Accordingly, the
preceding linear layer had size 7 6. SAR used K = 2 and the method 1 to constrain
the real-value poles. eSAR used two normalizing blocks, one for the AR and the
other for anti-AR dependency. Each block used a uni-directional LSTM layer of
size 64 and a linear layer of size 2 7.

RNN was initialized using the layer-size-dependent uniform distribution [127].
RMDN was initialized with the trained RNN except the last linear layer. These two
models were trained using the default training recipe, i.e., stochastic gradient
descent plus AdaGrad tuning. SAR and eSAR were initialized by the trained RMDN
and then further trained for 5 epochs using the stochastic gradient descent.

67 = 2 mixtures× (1 Gaussian mean + 1 Gaussian variance + 1 mixture weight) + 1 for u/v
72 = 1 dimension for F0 value + 1 dimension for U/V. The dimension for U/V is a dummy in

the implementation.

92 Chapter 5. Shallow Autoregressive Neural F0 model

Table 5.3: Objective results on Japanese corpus for models defined in Figure 5.10.
Mean-based generation method was used. GV of natural F0 is around 61.
Log-likelihood was evaluated on the validation set.

Log-likelihood RMSE CORR U/V GV
RNN - 29.31 0.894 3.26% 51.4
RMDN -3340.9 28.32 0.897 3.85% 54.2
SAR -3278.6 34.57 0.898 3.85% 71.8
eSAR -2660.5 29.74 0.897 3.70% 63.4

Objective results and analysis

Objective results of the models are listed in Table 5.3. First, the SAR and the
eSAR achieved higher likelihood on the validation set. This suggests the better
capability of the model to describe the F0 data distribution.

However, these two models did not outperform RMDN in terms of the RMSE.
The reason may be that the RMSE is more consistent with the training criterion of
RMDN. First, the maximum likelihood training criterion on RMDN is closely related
to the square-error criterion as Section 3.2 explains. Second, the mean-based
output is the ‘best-output’ in terms of mean-square-error as Equation (3.14)
proves. Therefore, RMDN’s performance on RMSE is reasonable. Although SAR and
eSAR used the same training and generation methods as RMDN, they are trained by
maximizing the likelihood on the transformed data, thus minimizing the error
in the transformed domain. This above argument cannot be applied to CORR
because none of the model was directly trained to increase CORR. Nevertheless,
all the models achieved a similar CORR score, suggesting that they all worked
properly.

The scores of CORR and RMSE are not the only objective metrics. Another
important metric for F0 modeling is the GV score. For reference, Figure 5.11
shows the box-plot of GV on the test set, whereas Table 5.3 shows the average GV
score. The results suggest that RMDN and RNN suffered from the over-smoothing
effect while SAR and eSAR maintained the dynamic range of generated F0 contours.
This difference can be observed from the generated F0 contours in Figure 5.12.
Compared with SAR, eSAR acquired a GV score closer to that of the natural F0.

5.5 Evaluating SAR 93

Natural RNN RMDN SAR eSAR
20

40

60

80

100

120
G

V
of

F0
at

ut
te

ra
nc

e-
le

ve
l(

H
z)

Figure 5.11: GV of generated F0 from models in Figure 5.10 (mean-based
generation, Japanese corpus).

190

390

F0
(H

z)

Natural RNN

190

390

F0
(H

z)

Natural RMDN

190

390

F0
(H

z)

Natural SAR

100 200 300 400 500 600
Frame index (ATR Ximera F009 AOZORAR 03372 T01)

190

390

F0
(H

z)

Natural eSAR

Figure 5.12: Generated F0 from models in Figure 5.10 (mean-based generation,
Japanese corpus)

The performance of SAR can be explained using the interpretation of signal and
filters. Similar to the frequency response in Figure 5.8, SAR acquired a virtual
analysis filter that enhanced the high-frequency bands of the F0 contour while
suppressing the low-frequency bands. Because the F0 contour usually evolves
smoothly and has most of the energy in the low-frequency band, what the analysis

94 Chapter 5. Shallow Autoregressive Neural F0 model

0% 25% 50% 75% 100%

eSAR 55.70% SAR 44.30%

Figure 5.13: Preference test comparing eSAR and SAR (mean-based generation,
Japanese corpus). The error bar shows the interval at the confidence level of 99%.

filter A(z) did was similar to whitening the F0 contour. The virtual RMDN in SAR
learned the distribution of the whitened F0 contours conditioned on the linguistic
features. Therefore, the averaging effect of statistical modeling had less impact on
the original F0 data. This may be the reason for the increased GV of SAR.

A similar argument may be used to explain eSAR, even though we cannot
interpret it on the basis of linear filters. Nevertheless, eSAR generated F0 contours
that were more similar to the natural ones than SAR, which can be observed in
Figure 5.12.

Subjective results and analysis

For the subjective evaluation, a preference test was conducted to compare eSAR
and SAR. For this evaluation, we summoned native Japanese speaker through paid
online service. In each testing round, two test utterances were randomly selected
from the test set. Let’s name the corresponding synthetic samples from eSAR as
eSAR1 and eSAR2, and those of SAR as SAR1 and SAR2. Four pairs of samples,
i.e., (eSAR1, SAR1), (SAR1, eSAR1), (eSAR2, SAR2) and (SAR2, eSAR2), were
then randomly shuffled and evaluated by the listener. Each listener can evaluate
more than one testing round.

In total, 109 listeners conducted 851 testing rounds, where each listener
conducted around 8 rounds on average. Accordingly, 3404 (=851× 4) preference
scores were collected. The result is plotted in Figure 5.13. The percentage of
selecting eSAR was around 56%. A two-sided binomial test showed that the
preference towards eSAR was statistical significant (p-value < 0.01). Therefore, we
conclude that eSAR achieved a better subjective result than SAR on the Japanese
corpus.

5.6 Summary 95

In another listening test that compared the SAR models against the baseline
RMDN and RNN, the results show that SAR performed worse than RMDN while similar
to RNN. Meanwhile, eSAR was not significantly different from RMDN even though it
is slightly better than RNN. In order to avoid reporting the results repeatedly,
we put this test to the next chapter (Section 6.4.5). Although the results may
be unsatisfactory, they can provide the initial answer to the issue asked at the
beginning of this chapter.

5.6 Summary

This chapter focused on Issue 2: Do the common neural models describe
the temporal dependency in F0 contours? The answer is simply ‘No’.

This chapter used a simple random-sampling-based generation method and
showed how a baseline RMDN ignored the temporal dependency of the target
sequential data. Then, this chapter introduced the idea of AR dependency
modeling and defined a model called SAR. A toy example showed the theoretical
advantage of the SAR over the RMDN to model the temporal dependency in the
target sequential data.

Although the model definition is simple, this chapter gave two interpretations
of the SAR, one based on the signal and filter and the other one based on the
framework of normalizing flow. Interestingly, the first interpretation revealed the
issue of model stability and motivated three methods to ensure the stability of
the SAR. On the other hand, the second interpretation allowed us to extend the
original SAR into a more general AR model using an invertible and long-term AR
dependency function.

Experimental results justified the effectiveness of proposed methods to ensure
the stability of the SAR. Among the three methods, the one assuming real-valued
poles (method 1) was found to be more suitable for F0 modeling than the other
two methods. Other experiments showed that both the SAR and the extended
SAR alleviated the over-smoothing effect. But the extended SAR was preferred
over the SAR in a subjective evaluation test.

Despite the imperfect subjective performance, the SAR and its extended
version are theoretically appealing. Besides, the theoretical advantage of using AR

96 Chapter 5. Shallow Autoregressive Neural F0 model

dependency, the linking between feature transformation, signal filtering, and filter
stability provides sound framework for sequential data modeling. Although they
may not be the best choice for F0 modeling, our other works have demonstrated
the better performance of the SAR when it was applied to model spectral feature
sequences [148, 149] (See the part of results in Section 8.2).

Note we did not show the performance of the SAR using the random-sampling-
based generation method. As the next chapter will explain, the result was negative
because of the limitation of using linear or shallow functions to capture the AR
dependency.

97

6
Deep Autoregressive Neural F0 model

This chapter also focuses on Issue 2, the issue of modeling the temporal correlation
of the F0 contours. Although Chapter 5 introduces the SAR to model the temporal
correlation, this chapter will show that the SAR failed to pass the test of random
sampling. One important reason is that the SAR relies on linear or at least
invertible functions to implement the AR dependency, which lacks the capability
to fully describe the temporal correlation in F0 contours.

One strategy is to switch to deep AR dependency, a kind of statistical
dependency that requires non-linear and non-invertible transformations upon the
target data sequence. For this purpose, this chapter introduces the deep AR
(DAR) model. Although the implementation is straightforward, a toy example can
show that the DAR is more general than the SAR. With additional techniques
such as quantized F0 modeling, a hierarchical softmax layer, and a data dropout
strategy, the DAR can achieve better performance than the previous models.
Additionally, it allows random-sampling-based F0 generation, which has not been
achieved by the previous models.

98 Chapter 6. Deep Autoregressive Neural F0 model

100 200 300 400 500 600
Frame index (utterance ATR Ximera F009 AOZORAR 03372 T01)

160

260

360

460

560

660

F0
(H

z)

Natural F0
SAR Sample

eSAR Sample
SAR mean-output

273 293
160

390

Figure 6.1: Generated F0 from SAR using mean-based and random sampling on
Japanese corpus.

Section 6.1 shows the performance of the SAR in random-sampling-based
F0 generation and explains the possible reasons. Section 6.2 introduces the
idea of DAR and uses toy examples to explain its generality. Section 6.3 then
introduces the aforementioned techniques for the DAR-based F0 model. Finally,
Section 6.4 details the evaluation on DAR, including both the mean-based and
random-sampling-based cases.

6.1 Weakness of SAR

6.1.1 Random sampling on SAR

Theory and experiment in the previous chapter indicate that the SAR is better than
the RMDN in modeling temporal correlation of the target data sequence. However,
the local and linear AR dependency modeled by the SAR may be still insufficient.
This weakness can be revealed by using the random-sampling-based generation
method. Notice that, since the SAR takes the AR dependency into consideration,
an F0 contour must be sampled from the model sequentially. Specifically, ô1

can be sampled from p(o1|x1:T), and ô2 then can be drawn from p(o2|ô1,x1:T).
Repeating this ancestral sampling process can generate an F0 contour. This same
sequential sampling process can be used on the extended SAR.

This sequential sampling process suggests that the distribution of ôt would
be influenced by the samples drawn in the previous steps. Compared with the
baseline RMDN where samples are independently drawn, the AR dependency in

6.1 Weakness of SAR 99

the SAR may perform better. However, the sampled F0s from the SAR and its
extended version (SAR and eSAR from Section 5.5.4) are still noisy as Figure 6.1
shows, which suggests that the SAR is still imperfect for F0 modeling.

6.1.2 Weakness of linear AR dependency in SAR

Although the SAR can generate smooth F0 contours using the mean-based
generation method, it only indicates the smoothness of the mean but not the
model’s confidence on the generated data, i.e., variance of the data.

To illustrate, we use the SAR with a single GMM component for explanation
and assume ot ∈ R. As explained in the previous chapter, the SAR that
models o1:T ∈ RT can be interpreted as the combination of an invertible linear
transformation c1:T = Ao1:T and an RMDN that calculates p(c1:T |x1:T) given
input features x1:T . Since the RMDN part assumes the temporal independence,
we can write p(c1:T |x1:T) = N (µ1:T , diag(σ1:T)). The rule of changing random
variable then tells us that p(o1:T |x1:T) = N (A−1µ1:T ,A

−1>diag(σ1:T)A−1).
The performance of the SAR may be limited by the linear transformation. In the

case of the normal SAR, the linear transformation matrix A is a lower-triangular
Toeplitz matrix. Consider an extreme case where K = T . In this case, A and its
inverse can be written as [150]:

A =



1 0 0 0 0
−a1 1 0 0 0
−a2 −a1 1 0 0
...

−aT−1 · · · −a2 −a1 1


,A−1 =



1 0 0 0 0
b1 1 0 0 0
b2 b1 1 0 0
...

bT−1 · · · b2 b1 1


, (6.1)

where

bk =



a1, k = 1

a1b1 + a2, k = 2
k−2∑
j=1

ak−jbj + a1bk−1 + ak, k ∈ [2, T − 1]

, (6.2)

As k increases, bk may quickly decay if a1 is smaller than 1 and ak decays quickly

100 Chapter 6. Deep Autoregressive Neural F0 model

90 95 100 105
Frame index (BC2011 nancy APDC2-166-00)

90

95

100

105

Fr
am

e
in

de
x

(a) SAR with K = 2

90 95 100 105
Frame index (BC2011 nancy APDC2-166-00)

90

95

100

105

Fr
am

e
in

de
x

(b) SAR with K = 6

Figure 6.2: Covariance matrices given by SARs and the generated F0 contours
(the blue lines) in a small segment around 20 frames.

too. This decaying would be more obvious in practice where K is smaller than T .
For example, if we use K = 1, it is easy to show that bk = (a1)k. In such a case,
the off-diagonal elements of the covariance matrix A−1>diag(σ1:T)A−1 of o1:T

may also decay quickly.
The above behavior is actually observed from the experiments’ results. We

used the two SARs with K = 2 and K = 6 from Section 5.5.3 and plotted a small
block of the covariance matrix A−1>diag(σ1:T)A−1 for each model in Figure 6.2.
We can see that the off-diagonal elements decay quickly, which indicates that the
temporal correlation described by the SAR is weak and local. Randomly sampled
F0 contours from this model are thus noisy.

Can we design an AR transformation function so that the covariance matrix of
o1:T could have large off-diagonal values? The answer may be negative. As long as
the linear AR dependency is applied, the transformation matrix A has a Toeplitz
structure. Although the extended SAR could have been better than the normal
SAR, experiments show that it cannot support random sampling either. Note
that the extended SAR cannot be analyzed using the above method because the
transformation is non-linear and the distribution of o1:T cannot be written in an
analytic formula.

6.2 From SAR to DAR 101

Linguistic features

Quantized F0

Softmax layer

X X

Internal recurrent
neural network

Probabilistic model

Hidden layers

x1 x2 x3 x4 x5

M3 M4M2M1 M5

o1 o2 o3 o4 o5

XX X drop out

Figure 6.3: Example DAR. See quantized F0 and dropout in Section 6.3.

6.2 From SAR to DAR

6.2.1 Model definition

To further improve the AR model’s capability, we may consider using non-linear and
non-invertible transformations rather than the linear or invertible transformation in
the SAR. One approach is to feed the target data of the previous frame back inside
the neural network, for example, to a uni-directional recurrent layer at the current
frame. The implementation is straightforward: concatenate ot−1 with the output
of the previous hidden layer at the t-th frame and use the concatenated vector as
an input to that recurrent layer. Because the feedback data are propagated by the
recurrent layer, hidden features extracted from o1:t−1 can be propagated to the t-th
frame. Therefore, the output of the internal RNN at the t-th frame, or consequently
the parameter of ot’s distribution, can be computed as Mt = fΘ(x1:T ,o1:t−1, t).
This means that the distribution of ot depends on o1:t−1.

Since the AR dependency is non-linear and potentially beyond a local time
window, this model is referred to as the deep AR model (DAR). The data-feedback
path is referred to as the feedback link. The idea of the feedback link was first
proposed in the Jordan network [151] and is now widely used for natural language
or audio signal processing [152, 153, 154, 155]. One example of the DAR is plotted
in Figure 6.3. Notice that the natural ot−1 is fed back during model training so
that the network can learn the dependency of natural data. In the generation
stage, the previously generated ôt−1 or other statistics can be fed back.

102 Chapter 6. Deep Autoregressive Neural F0 model

bo1

x1
Feedforward

Highway gate

x

+ ●

●
-1

Linear

xt

ht gt

bot

g1

h1

W i, bi

W o, bo W g, bg

Implementation detailsComputation flow

…

xT

boT

hT
gT

bo2

x2

h2
g2

h2h1

RMDN SAR

h2h1

x1 x2 x1 x2

o1 o2 o1 o2

wµ

a

wm wmwm wm

M1 M2 M1 M2

DAR

h2h1

x1 x2

o1 o2

wo
wmwm W h

W i

M1 M2

h2h1

RMDN SAR

h2h1

x1 x2 x1 x2

o1 o2 o1 o2

wµ

a

wm wmwm wm

M1 M2 M1 M2

Figure 6.4: Toy DAR for comparison between RMDN, SAR, and DAR

6.2.2 Comparison between DAR and SAR

Although the network structure of DAR is simple, it implements the AR dependency
in a more general manner. Let’s use toy DAR in Figure 6.4 for explanation.
We assume that all the layers use a linear activation function and set the
bias to zero. Furthermore, the distribution of ot is assumed to be a Gaussian
distribution with a unit variance. Then, it is easy to know that in the DAR
M1 , µ1 = w>mh1,M2 , µ2 = w>mh2, where h2 = W hh1 +W ix2 +woo1. If we
define µ̃2 , w>m(W hh1 +W ix2), then we can write down the distribution as

p(o1:2|x1:2) =N (o1;µ1, 1)N (o2; µ̃2 +w>mwoo1, 1)

= 1
2π exp(−(o1 − µ1)2

2 − (o2 − µ̃2 −w>mwoo1)2

2)

= 1
2π exp(−1

2(o− µ)>Σ−1(o− µ))

, (6.3)

where o = [o1, o2]>, µ = [µ1, µ̃2 + w>mwoµ1]>, Σ =
 1 w>mwo

w>mwo 1 + (w>mwo)2

.
Table 6.1 compares the distribution calculated by the toy RMDN, the SAR, and
the DAR. We can see that both SAR and DAR model the dependency between o1

and o2 because Σ is a full matrix.
In fact, the DAR is more general than the SAR. Remember that the above toy

DAR uses linear activation functions. If the DAR uses a non-linear activation
function σ(·), it computes h2 = σ(W hh1 +W ix2 +woo1). Then, the mean of
p(o2|x1:2) becomes a non-linear function of o1. Furthermore, if the data sequence
has more than two frames, the distribution of ot is also affected by o1:t−2 because
hidden features extracted from o1:t−2 are propagated and stored in ht−1.

6.3 DAR for F0 modeling 103

Table 6.1: Compare toy RMDN, SAR, and DAR in Figure 6.4. All models describe
p(o1:2|x1:2) = 1/2π exp(−1

2(o− µ)>Σ−1(o− µ)), where o = [o1, o2].

RMDN SAR DAR
µ = [µ1, µ̃2 +wµµ1] µ = [µ1, µ2 + aµ1] µ = [µ1, µ̃2 +w>mwoµ1]

µ̃2 = h>2 wm - µ̃2 = w>m(W hh1 +W ix2)

Σ =
1 0

0 1

 Σ =
1 a

a 1 + a2

 Σ =
 1 w>mwo

w>mwo 1 + (w>mwo)2



6.3 DAR for F0 modeling

The DAR theoretically shows better potential than the SAR. However, a few
issues must be addressed before the DAR is used for F0 modeling.

6.3.1 Quantized F0 modeling

The first issue is the representation of the F0. Since the F0 value is unmeasurable
in an unvoiced frame, one approach in the HMM-based SPSS is to define an
F0 datum as ot ∈ {NULL} ∪ R, where NULL is the symbol for the unvoiced
frame. Then the MSD-HMM introduced in Section 2.3.3 can be used to model
the [75]. Alternatively, artificial F0 values can be assigned to the unvoiced
frames, after which the continuous F0 ot ∈ R and unvoiced/voiced (U/V) state
vt ∈ 0, 1 can be modeled using a normal HMM [76]. Note that ‘continuous’ means
that ot ∈ R,∀t ∈ {1, · · · , T}. In this thesis, we refer to o1:T as the interpolated
continuous-valued F0 contour.

This continuous F0 modeling approach is widely used in neural F0 models,
including the RNN [87] and the SAR. However, this approach performed poorly
when the DAR is used as the model (see Section 6.4.2). The DAR may be
affected by the artificial F0 values assigned in the unvoiced frames. Since these
interpolated F0 values are artificial, they have a deterministic dependency to
previous frames. However, the natural F0 values in the voiced frames have a
somewhat stochastic dependency. The DAR may focus on the ‘easy’ temporal
dependency in the unvoiced region, ignoring the temporal dependency in natural

104 Chapter 6. Deep Autoregressive Neural F0 model

F0 contours. Another reason could be the Gaussian distribution or GMM assumed
by the model, which may be incompatible with the authentic F0 distribution
conditioned on the F0 of previous steps.

Hence, the DAR requires an alternative method to represent both unvoiced and
voiced frames without using F0 interpolation. We propose to quantize the F0 value
of voiced frames and assign one additional symbol to the unvoiced frame. In this
manner, both voiced and unvoiced frames can be represented as a set of categorical
symbols. To quantize the F0 data, the first step is to map the original F0 onto a
Mel scale, then the Mel-scale F0 is quantized into N levels. Finally, the quantized
F0 of one frame can be encoded as a one-hot vector ot = [ot,0 , ot,1, · · · , ot,N

], where
ot,j ∈ {0, 1} and ||ot||1 = 1. If the frame is unvoiced, the 1st dimension of this
one-hot vector is set to one, i.e., ot = [1, 0, · · · , 0].

The F0 quantization strategy is justifiable. First, quantized F0 may not
necessarily influence the perceived speech quality because humans have difficulty
differentiating between two sounds which have a small difference in frequency. This
is known as the just-noticeable difference of pitch [21]. The second reason is that,
given quantized F0 representation, the model can directly infer the categorical
distribution of each F0 symbol without assuming a Gaussian distribution.

6.3.2 Hierarchical softmax for F0 modeling

The DAR may use a softmax output layer to calculate the probability for each of
the quantized F0 and unvoiced symbol at each frame. However, a normal softmax
layer is not the best choice because the quantity of unvoiced data in the corpus is
much larger than that of any other quantized F0 symbol. We thus suggest using a
hierarchical softmax layer [156].

Suppose that the hot dimension of ot is indexed by j, then the PMF w.r.t. ot
can be defined as P (ot|o1:t−1,x1:T ; Θ) , Pt(J = j; Θ), where

Pt(J = j; Θ) =


eht,0

1 + eht,0
, j = 0

1
1 + eht,0

eht,j∑N
k=1 e

h
t,k
, j ∈ [1, N]

. (6.4)

6.3 DAR for F0 modeling 105

...

Unvoiced

F0 symbol 1 F0 symbol N

eh
t,0

1 + eh
t,0

1

1 + eht,0

F0 symbol j
eh

t,N

PN
k=1 eh

t,k

eh
t,j

PN
k=1 eh

t,k

...Unvoiced F0 symbol j F0 symbol N

eh
t,1

PN
k=1 eh

t,k

...U

eh
t,1

PN+1
k=1 eh

t,k

eh
t,N+1

PN+1
k=1 eh

t,k

...

eh
t,j

PN+1
k=1 eh

t,k

Voiced

Flat softmax Hierarchical softmax

Figure 6.5: Flat (left) and hierarchical (right) softmax for quantized F0 modeling

Here, ht,j is the j-th dimension of the input vector ht to the hierarchical soft-
max layer. This ht is calculated from the network given feedback data o1:t−1

and linguistic features x1:T . Accordingly, it can be written that Pt(J = j) =
fΘ(x1:T ,o1:t−1, t, j).

As Equation (6.4) shows, the first hierarchical level uses a sigmoid function to
compute a probability of being unvoiced, i.e., Pt(unvoiced) , Pt(J = 0) = e

ht,0

1+eht,0
.

The second level uses a normal softmax function to compute a conditional
probability of each quantized F0 symbol given a voiced state, i.e., Pt(J =
j|voiced) = e

ht,j∑N

k=1 e
h

t,k
, j ∈ [1, N]. Based on Equation (6.4), the network can be

trained by maximizing the likelihood or equivalently minimizing the cross-entropy.
Once the training process is finished, the DAR can be used for F0 generation.

First, if Pt(J = 0) > 0.5, the t-th frame is classified as being unvoiced. Otherwise,
this frame will be voiced and will be assigned an F0 value f̂t 1. Although the
DAR models quantized F0 data, it can generate continuous-valued F0 using a
mean-based generation method. Suppose {v1, · · · , vN} denotes the F0 values of
the N quantization levels, such as the center of each quantization interval. Since
the F0 symbols for voiced frames are quantized F0 indexes, f̂t can be generated by
taking the expected value as

f̂t =
N∑
j=1

vjPt(J = j|voiced). (6.5)

1To differentiate it from the quantized F0 one-hot vector ot, we use f̂t to denote the
continuous-valued F0 generated by the DAR.

106 Chapter 6. Deep Autoregressive Neural F0 model

This method is the mean-based generation method for the quantized F0. After f̂t
is generated, a vector of probability [Pt(J = 0), Pt(J = 1), · · · , Pt(J = N)] can be
fed back to the next frame.

Remember that random-sampling can be used to test the model’s capability.
In this case, the F0 value f̂t can be sampled by

f̂t = vj, where j ∼ Pt(J = j|voiced), j ∈ {1, · · · , N}. (6.6)

Given the sampled value j, a one-hot vector ôt with the j-th dimension turned on
is fed back to the next frame.

6.3.3 Exposure bias and data dropout

As aforementioned, the DAR feeds the natural F0 back to the network during
model training. This is known as the teacher-forced training [157]. However,
because the natural ot−1 usually has a similar value to ot, a trained DAR may
only rely on the feedback F0 data while ignoring the input linguistic features x1:T .
This behavior is unwanted because an F0 model should also use the linguistic
features. Furthermore, while natural F0 data are propagated through the feedback
links in the training stage, generated F0 data are fed back during generation.
Because the distribution of generated F0 may not be identical to the natural one,
the model may suffer from the problem called exposure bias [158]. Consequently,
generation errors in the previous frames may be propagated to the next frame,
which makes the entire generated F0 contour erratic.

We propose a data dropout strategy to alleviate the above problems. With
a probability Pd, this strategy randomly sets the feedback F0 data to zero in
both training and generation stages. It consequently forces the DAR to focus on
the linguistic features. This strategy is similar to the idea of weakening the AR
decoder for lossy variational auto-encoders [159, 155]. It will also alleviate the
exposure bias as the model relies more on the linguistic features that are given
with the same TTS front-end for both training and generation.

Some readers may suggest using a technique called schedule sampling. However,
this technique may force the model to ignore the temporal dependency of the
natural data sequence [160].

6.4 Experiments 107

Layer size

512

512

256

128

RNNQ

Quantized F0

H-softmax

linear

bi-LSTM

bi-LSTM

FF

FF

Linguistic features

DAR

Quantized F0

H-softmax

linear

uni-LSTM

bi-LSTM

FF

FF

256 X Random dropout
with probability Pd

Layer size

512

512

256

128

RNNQ

Quantized F0

H-softmax

linear

bi-LSTM

bi-LSTM

FF

FF

Linguistic features

DAR

Quantized F0

H-softmax

linear

uni-LSTM

bi-LSTM

FF

FF

256
X

Random
dropout

WaveNet-F0

Quantized F0

condition-processing module

H-softmax

post-processing module

dilated CNN blocks
(40 blocks)

linear

Figure 6.6: Network structures of quantized F0 models. ‘FF’, ‘bi-LSTM’, and ‘uni-
LSTM’ denotes feedforward layer, bi- and uni-directional LSTM layer, respectively.

6.4 Experiments

6.4.1 Data and configuration

The experiment used the Japanese corpus listed in Appendix A.2. The input and
output features were the same as those in the previous chapter. The first group
of experimental models were the RNN, RMDN, SAR, and eSAR built in Section 5.5.
These models were trained on interpolated continuous-valued F0 data. The second
group included the DAR and a reference model RNNQ. Both DAR and RNNQ modeled
quantized F0, but RNNQ did not use the feedback loop. Both models were trained
using stochastic gradient descent (learning rate 1e-05) with early stopping. Then,
they were further tuned using AdaGrad (learning rate 0.001) with early stopping.

WaveNet [59] was included as another reference model because it implements
the deep AR dependency using dilated convolutional layers rather than recurrent
ones. The structure and training recipe of the WaveNet-F0 were similar to those of
the WaveNet vocoder [149], with the dilation sizes of every 10 CNN blocks as
{1, 2, 4, · · · , 512}. However, the network used a hierarchical softmax output layer
and modeled quantized F0. Additionally, the network operated frame by frame.

For quantized F0 models, the log-scale F0 were quantized into 255 levels
between 66 and 529 on the Mel scale. The number 66 was equal to the minimum
Mel-scale F0 value in the corpus. The number 529 was computed with m+ 3σ,

108 Chapter 6. Deep Autoregressive Neural F0 model

100 200 300 400 500 600
Frame index (utterance ATR Ximera F009 AOZORAR 03372 T01)

190

290

390

490
F0

(H
z)

Natural DAR (continuous F0) DAR (quantized F0)

Figure 6.7: Generated F0 contours by DAR trained on continuous and quantized
F0 data (mean-based generation), using the Japanese corpus.

Table 6.2: Objective evaluation of pilot test I (mean-based generation, Japanese
corpus). The baseline RMDN is shown for reference.

RMSE CORR U/V error
F0 quantization 01.19 0.999 0.00%

RMDN (continuous F0) 28.32 0.897 3.85%
DAR (quantized F0) 32.04 0.881 3.82%

DAR (continuous F0) 64.10 0.588 5.16%

where m = 342.4 and σ = 62.2 are the mean and standard deviation of Mel-scale
F0 over the corpus. The number of quantization levels was decided from an
analysis-by-synthesis test, which found that using 255 levels was sufficient to
avoid perceptible F0 ‘quantization noise’. The quantized F0 and unvoiced symbol
were encoded as a one-hot vector ot ∈ {0, 1}256 for each frame. The F0 delta and
delta-delta components were not used. For reference, after we recovered the F0
contours from the quantized F0 data, the error caused by F0 quantization was
calculated and listed in the first row of Table 6.2.

6.4.2 Pilot test I: continuous versus quantized F0

The first test evaluates effectiveness of quantized F0 representation by comparing
two DAR-based models: the first model DAR was trained on the quantized F0
without using dropout; the second model was similar to DAR but trained on
interpolated continuous-valued F0 data. Accordingly, the second model uses a
linear output layer rather than softmax.

6.4 Experiments 109

Table 6.3: Objective results of DAR using different types of output softmax layer
on the Japanese corpus (mean-based generation).

Pd Softmax type U/V V→U U→V RMSE CORR

0.75 Normal 5.31% 4.57% 0.74% 28.64 0.900
Hierarchical 3.35% 1.66% 1.69% 26.52 0.909

0.50 Normal 4.87% 4.04% 0.83% 28.41 0.900
Hierarchical 3.46% 1.86% 1.60% 28.30 0.903

0.25 Normal 4.55% 3.46% 1.09% 30.09 0.890
Hierarchical 3.62% 1.86% 1.76% 29.70 0.896

0.00 Normal 4.43% 2.98% 1.45% 31.92 0.881
Hierarchical 3.82% 1.73% 2.09% 32.04 0.881

The objective results are listed in Table 6.2. They suggest that DAR performed
poorly when it was trained on the interpolated continuous-valued F0 data. This
degradation can be further illustrated by Figure 6.7. This result may be due to the
artificial F0 curves in the unvoiced frames. F0 values in the interpolated curves
have deterministic dependency to their previous frames. However, the temporal
dependency in natural F0 contours may be more complex. As the proportion of
unvoiced frames (including silence) is about 50% in this Japanese corpus, a DAR
may be well trained to maximize the likelihood over the simple artificial F0 curves
rather than the highly varied natural F0 contours.

6.4.3 Pilot test II: hierarchical versus normal softmax

Since the first pilot test suggests that the DAR should use quantized F0, this test
tries to answer which type of softmax should be used to model the quantized F0
data. For this test, we trained another DAR with the same structure as DAR except
the output softmax layer type. Different dropout rates Pd = {0.0, 0.25, 0.5, 0.75}
were used for both DAR models.

The results are listed in Table 6.3. This table also lists the error rate of
classifying unvoiced frames as voiced (U→V) and the error in the other way round
(V→U). According to the results, both hierarchical and normal softmax achieved
similar RMSE and CORR scores for each case of Pd. However, the U/V error
shows interesting results. Using a normal softmax layer, the U→V is lower than

110 Chapter 6. Deep Autoregressive Neural F0 model

that of the hierarchical case while the V→U is much higher. Compared with the
hierarchical case, the normal softmax acquired a worse overall U/V error.

The above results are related to the different modeling strategies used by the
hierarchical and normal softmax output layers. Suppose there are N quantized F0
levels and 1 level for the unvoiced symbol. Given a sequence of quantized F0 data
o1:T = {o1, · · · ,oT}, we can write down the log-likelihood L(Θ) of the DAR with
a normal softmax layer as

L(Θ) =
T∑
t=1

N∑
j=0

δot,j logPt(j; Θ)

=
T∑
t=1

[
δot,0 logPt(U; Θ) +

N∑
j=1

δot,j logPt(j; Θ)
]
,

(6.7)

where Pt(U; Θ) is the probability of being unvoiced, Pt(j; Θ) is the probability of
the j-th quantized F0 level, j ∈ [1, N], and δot,j is the indictor function whose
value is 1 only when ot denotes the j-th level. Notice that in this case

Pt(U; Θ) +
N∑
j=1

Pt(j; Θ) = 1. (6.8)

On the contrary, the log-likelihood of the DAR using a hierarchical softmax is:

L(Θ) =
T∑
t=1

[
δot,0 logPt(U; Θ) +

N∑
j=1

δot,j log[Pt(j|V; Θ)Pt(V; Θ)]
]

=
T∑
t=1

[
δot,0 logPt(U; Θ) +

N∑
j=1

δot,j logPt(j|V; Θ)

+
N∑
j=1

δot,j logPt(V; Θ)
]

, (6.9)

where Pt(j|V; Θ), j ∈ [1, N] is the probability of the j-th F0 level given that
frame is voiced, Pt(V; Θ) is the probability of being voiced, and Pt(U; Θ) is the
probability of being unvoiced. In this case

Pt(V; Θ) + Pt(U; Θ) = 1,
N∑
j=1

Pt(j|V; Θ) = 1. (6.10)

6.4 Experiments 111

The constraints in Equation (6.8) and (6.10) may have caused the different
results acquired by the flat and hierarchical softmax layers. In the training data,
about 50% of the data frames is unvoiced (including 28% silent frames), but
the ratio of a single quantized F0 level is less than 0.6%. For a normal softmax
layer, this unbalanced data distribution means that most of the model likelihood
is contributed by Pt(U; Θ). Thus, the model can be trained to achieve a high
likelihood by simply over-estimating Pt(U; Θ). Consequently, the model had a
low U→V error. However, the over-estimated Pt(U; Θ) led to a under-estimated
probability for quantized F0 levels because of the constraint in Equation (6.8).
This resulted in a high V→U error.

In the case of the hierarchical softmax, the model will not over-estimate
Pt(U; Θ). While Pt(U; Θ) was computed over the unvoiced data, another term
Pt(V; Θ) was computed over the voiced data. Because Pt(U; Θ) + Pt(V; Θ) = 1,
and the quantity of voiced and unvoiced data is similar, the model cannot achieve
a higher likelihood by over-estimating Pt(V; Θ) or Pt(U; Θ). It can achieve the
highest likelihood only when Pt(V; Θ) and Pt(U; Θ) are consistent with the training
data distribution. Therefore, using a hierarchical softmax layer achieved balanced
V→U and U→V scores and furthermore a lower overall U/V error.

6.4.4 Pilot test III: effectiveness of data dropout

This pilot test compares the performance of DAR when it was trained using dropout
rates Pd = {0.0, 0.25, 0.5, 0.75}. RNNQ was also included in this test because
it can be treated as DAR with Pd = 1.0. All the models used the mean-based
generation method. The results listed in Table 6.4 indicate that DAR with Pd > 0
acquired better RMSE and CORR scores than DAR with Pd = 0.0, which shows the
effectiveness of using dropout on DAR.

As Section 6.3.3 argues, a potential problem of using DAR is the exposure bias.
This is supported by the results in Table 6.4. First, DAR with Pd = 0.0 achieved a
higher likelihood than other cases on the validation set. Because the likelihood on
the validation set was evaluated given the natural F0 data for feedback, it suggests
that, when the natural F0 data were fed back, DAR better depicted the F0 data
without using dropout. However, on the test set in which the model had to feed

112 Chapter 6. Deep Autoregressive Neural F0 model

Table 6.4: Objective results of DAR and RNNQ on the Japanese corpus (mean-based
generation). For reference, GV of natural F0 is around 61. DAR’s scores were
copied from the ‘Hierarchical’ ones in Table 6.3.

Pd
Log-likelihood
(validation set) RMSE CORR U/V GV

RNNQ - -2443.8 26.77 0.907 5.74% 56.4

DAR

0.75 -1595.1 26.52 0.909 3.35% 57.8
0.50 -1156.3 28.30 0.903 3.46% 61.5
0.25 -943.6 29.70 0.896 3.62% 62.7
0.00 -839.7 32.04 0.881 3.82% 64.4

Natural RNNQ
DAR Pd = 0.75

DAR Pd = 0.5
DAR Pd = 0.25

DAR Pd = 0
20

40

60

80

100

120

G
V

of
F0

at
ut

te
ra

nc
e-

le
ve

l(
H

z)

Figure 6.8: GV of generated F0 from DAR and RNNQ (mean-based generation). Pd
denotes the probability to use dropout in DAR.

back the generated F0, DAR’s performance degraded in terms of RMSE and CORR.
In fact, DAR with Pd = 0.0 was very confident about the inferred F0 distribution.
This confidence can be demonstrated by the small variance of the distribution in
Figure 6.9. However, a small variance does not necessarily mean a small bias.
When DAR used its output as feedback data on the test set, a slight difference
between the generated and natural F0 may be propagated to the following frames
and accumulated.

Dropout may provide DAR with the freedom to adjust the bias and variance.
As Table 6.4 and Figure 6.9 show, a larger Pd led to a larger variance of the F0
distribution and consequently a smaller likelihood on the validation set. However,
it improved the RMSE and CORR on the test set. Particularly, DAR with Pd = 0.75
achieved the best performance in terms of RMSE and CORR.

6.4 Experiments 113

0

128

256
F0

le
ve

ls

RNNQ

0.0

0.5

1.0

0

128

256

F0
le

ve
ls

DAR Pd = 0.5

0.0

0.5

1.0

100 200 300 400 500 600
Frame index

0

128

256

F0
le

ve
ls

DAR Pd = 0

0.0

0.5

1.0

100 120 140
Index of F0 level

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

ba
bi

lit
y

of
ea

ch
F0

le
ve

l

200-th frame

100 120 140
Index of F0 level

500-th frame RNNQ
DAR Pd = 0.75

DAR Pd = 0.5

DAR Pd = 0.25

DAR Pd = 0

Figure 6.9: Top 3 rows: inferred F0 probability distribution (P (ot|o1:t−1,x1:T ; Θ)
in Equation (6.4)) for one test utterance on the Japanese corpus. Bottom row:
inferred F0 probability for two frames in the test utterance.

The rate of dropout should be selected carefully. An appropriate choice should
strike a balance between the bias and variance. Another concern indicated in
Figure 6.8 is that intensive dropout may reduce the GV of the generated F0
contours and make them over-smoothed. Because the over-smoothing effect may
be more harmful to the perception of the pitch than the degraded value of RMSE
or CORR, DAR with Pd = 0.5 was selected for the subjective evaluation discussed
in the next section.

114 Chapter 6. Deep Autoregressive Neural F0 model

Table 6.5: Objective results on the Japanese data. DAR used Pd = 0.5. GV of
natural F0 is around 61.

RMSE CORR U/V GV
RNN 29.31 0.894 3.26% 51.4
RMDN 28.32 0.897 3.85% 54.2
SAR 34.57 0.898 3.85% 71.8
eSAR 29.74 0.897 3.70% 63.4

WaveNet-F0 28.05 0.903 3.52% 60.4
DAR 28.30 0.903 3.46% 61.5

Natural RNN RMDN SAR eSAR WaveNet-F0 DAR
20

40

60

80

100

120

G
V

of
F0

at
ut

te
ra

nc
e-

le
ve

l(
H

z)

Figure 6.10: GV of generated F0 (mean-based generation, Japanese corpus)

6.4.5 Evaluation of DAR against other F0 models

This experiment compares the DAR against other F0 models. Based on the pilot
tests, we decided to use the DAR with a hierarchical softmax output layer and
trained it on quantized F0 with a dropout rate Pd = 0.5. Other F0 models, namely
RNN, RMDN, SAR, and eSAR, were trained on continuous F0 data as the experiment in
Section 5.5.4 explained. We just directly used the models trained in that Section.

The results are listed in Table 6.5. Compared with SAR and other baselines,
DAR performed slightly better in terms of RMSE and CORR. As Figure 6.11 shows,
the generated F0 contours from DAR were sufficiently smooth, even though the
model was trained given quantized F0 data. Furthremore, these generated F0
contours are not over-smoothed. For example, Table 6.5 shows that DAR with
Pd = 0.5 acquired a GV score that was closer to the natural F0. In particular,
from Figure 6.11, the generated F0 contour from DAR with Pd = 0.5 had a larger
dynamic range than those from the baseline RNN and RMDN.

6.4 Experiments 115

190

390

F0
(H

z)

Natural RNN

190

390

F0
(H

z)

Natural RMDN

190

390

F0
(H

z)

Natural SAR

190

390

F0
(H

z)

Natural eSAR

190

390

F0
(H

z)

Natural WaveNet-F0

100 200 300 400 500 600
Frame index (ATR Ximera F009 AOZORAR 03372 T01)

190

390

F0
(H

z)

Natural DAR

Figure 6.11: Generated F0 (mean-based generation, Japanese corpus)

Due to the historical reason, two mean-opinion-score (MOS) tests were
conducted to compare the experimental models. For both tests, native Japanese
listeners were paid to conduct the test, in which each listener listened to the
samples and evaluated the sample quality in terms of intonation using a scale from
1 (unnatural) to 5 (natural). In each testing round, one vocoded speech sample
and the synthetic samples from each model were played in a randomly shuffled
order. All the samples were created by the WORLD vocoder [18] using natural
spectral features. In total, 3000 and 1702 testing rounds were conducted in the
first and the second test, respectively.

The results are shown in Figure 6.12, where the figure above corresponds to

116 Chapter 6. Deep Autoregressive Neural F0 model

Natural DAR SAR RMDN RNN
Natural <1e-10 <1e-10 <1e-10 <1e-10
DAR <1e-10 <1e-10 <1e-10 <1e-10
SAR <1e-10 <1e-10 0.01785 0.7429
RMDN <1e-10 <1e-10 0.01785 0.00426
RNN <1e-10 <1e-10 0.7429 0.00426

3.00

3.25

3.50

3.75

4.00

4.25

M
O

S
4.243

3.856

3.564
3.628

3.565

Natural DAR SAR eSAR WaveNet-F0
Natural <1e-10 <1e-10 <1e-10 <1e-10
DAR <1e-10 <1e-10 9.062e-08 0.000102
SAR <1e-10 <1e-10 0.007186 0.000176
eSAR <1e-10 9.062e-08 0.007186 0.219733
WaveNet-F0 <1e-10 0.000102 0.000176 0.219733

3.00

3.25

3.50

3.75

4.00

4.25

M
O

S

4.199

3.971

3.732
3.813 3.803

Figure 6.12: MOS score (mean-based generation, Japanese corpus) and p-value of
Mann-Whitney U test between each pair of experimental models

the first MOS test and the bottom one to the second test. Although DAR was
still worse than the natural F0 (NAT), it outperformed other models. Results of
two-sided Mann-Whitney U tests demonstrated that the difference between DAR
and other F0 models was statistically significant (p < 0.01). One main reason for
DAR’s performance may be that the generated F0 contours were sufficiently smooth
but not over-smoothed. Compared with SAR, DAR’s output did not contain the
under-smoothed curves that turned out to be perceptually harmful to the synthetic

6.5 Random sampling from DAR 117

speech. Meanwhile, generated F0 contours from DAR had a proper dynamic range
and sounded less boring.

Although we cannot directly compare the results of the two tests, we can infer
that RMDN, eSAR, and WaveNet-F0 achieved similar performances while SAR and
RNN performed worse. Although WaveNet-F0 achieved similar objective results
to DAR, it lagged behind DAR in the MOS test. It is possible that the network
structure and configuration of dilation borrowed from the WaveNet-vocoder may be
suboptimal for F0 modeling. However, it is not easy to find the best configuration
of WaveNet-F0 because the number of hyper-parameters is quite large.

6.5 Random sampling from DAR

The results in the previous section have shown DAR’s capability for F0 modeling
when the mean-based generation method was used. This section tests DAR (with
Pd = 0.5) using the random-sampling-based generation method.

Random sampling results

First, F0 contours were randomly sampled from DAR for three rounds, where
each round used a different random seed for sampling. Figure 6.13 (a) plots the
three randomly sampled F0 contours for one test-set sentence. Interestingly, the
randomly sampled F0 contours were smooth and much better than the sampled
output of RMDN and SAR (Figure 6.1 and 5.1). Furthermore, these sampled F0
contours were quite close to the natural one. We found that the CORR on the test
set was 0.887, 0.890, 0.889 for the three sampling rounds, which is quite close to
the mean-based generation results. Note that the sampled F0 contours in Figure
6.13 (a) contained small spikes due to the random sampling process. However,
they are barely perceptible. Generally, these results indicate that DAR is better at
F0 modeling than SAR and RMDN.

It is not surprising to see that smooth F0 contours can be sampled from DAR.
As Figure 6.9 has shown, the F0 distribution inferred by DAR had a sharp mode,
and this mode moved slowly across frames. Thus, it is highly possible to sample a
smooth F0 contour. However, it is surprising that the sampled F0 contours were

118 Chapter 6. Deep Autoregressive Neural F0 model

100 200 300 400 500 600
Frame index (utterance ATR Ximera F009 AOZORAR 03372 T01)

190

290

390

490

F0
(H

z)

Natural Sample 1 Sample 2 Sample 3

(a) DAR trained with full input linguistic features

100 200 300 400 500 600
Frame index (utterance ATR Ximera F009 AOZORAR 03372 T01)

190

290

390

490

F0
(H

z)

Natural Sample 1 Sample 2 Sample 3

(b) DAR trained without pitch accent linguistic features

200 300 400 500 600 700
Frame index (utterance ATR Ximera F009 AOZORAR 03372 T01)

190

290

390

490

F0
(H

z)

Sample 1 Sample 2

(c) DAR trained without any linguistic feature

Figure 6.13: Results of random sampling on DAR on Japanese corpus.

quite similar to the natural one. Despite the detailed differences, the sampled and
natural F0 contours were perceived to be quite similar in terms of intonation.

Impact of linguistic features on random sampling

However, when we trained the DAR on the English corpus, the randomly sampled
F0 contours were perceived to have different pitch accents. Some sampled English

6.5 Random sampling from DAR 119

100 200 300 400 500
Frame index (utterance BC2011 nancy APDC2-166-00)

150

250

350

450
F0

(H
z)

Natural Sample 1 Sample 2 Sample 3

Figure 6.14: Randomly sampled F0 from DAR with full input linguistic features on
English corpus.

F0 contours are plotted in Figure 6.14. We hypothesized that this is due to the
characteristics of Japanese. In the case of reading speech, the F0 contour of an
utterance may be sufficiently specified by the Japanese pitch accents. Although
the Japanese pitch accents interact with each other in an utterance [161], they can
be somewhat determined by a lexicon. Therefore, in the TTS system, the input
linguistic features given by the front-end may be sufficiently informative for DAR to
determine the shape of generated F0 contours; thus leaving less space for sampling
F0 contours with varied shapes.

To verify the hypothesis, another DAR was trained after linguistic features
related to the Japanese pitch accent were removed. The sampled F0 contours
are shown in Figure 6.13 (b). Interestingly, Figure 6.13 (b) shows that sampled
contours occasionally deviated from the natural F0 contour, e.g., after the 200th
and 500th frames. According to the native Japanese speakers, those F0 curves
were perceived as either unnatural segments or different accents from the natural
ones. These results indicate that DAR’s performance in this experiment benefited
from the relatively accurate input linguistic features.

We believe that these results are somewhat consistent with the results on the
English corpus. In English TTS systems, what we can obtain from a lexicon is
the lexical stress. However, it does not sufficiently explain an F0 contour. For
specifying the general shape of the F0 contour in English, we need to have accurate
English pitch-accent information; however, the English pitch accents cannot be
perfectly inferred from the text [43]. Therefore, it is thought that the degrees of
informativeness of the English input linguistic features allowed the English DAR to

120 Chapter 6. Deep Autoregressive Neural F0 model

generate varied F0 contours through sampling.
Finally, it is interesting to see what would happen if no linguistic feature is

provided for DAR. This was implemented by setting the input sequence x1:T to
zero during both training and generation. Two samples randomly drawn from
such a DAR are shown in Figure 6.13 (c). Although these two F0 contours were
nonsense, they were smooth and resembled the high-low movement of natural F0
contours. As RMDN and SAR could not generate smooth random samples under the
same condition, this result provides further evidence of DAR’s ability to model the
temporal correlation of F0 contours.

6.6 Summary

This chapter follows the topic of the previous chapter to address Issue 2 about
the temporal dependency modeling in neural F0 models. At the beginning, this
chapter used both theoretical and empirical evidence to show that the SAR is
limited by the linear or shallow AR dependency function. Accordingly, this chapter
proposed the DAR that uses the non-linear non-invertible transformation in the
neural network to model the AR dependency. The basic idea is to feed back the
previous F0 observation as the input to a uni-directional recurrent layer. To make
the model practical, we also proposed quantized F0 representation, a hierarchical
softmax output layer, and a data dropout strategy to train the DAR.

A few experiments were conducted to show the effectiveness of the proposed
model and techniques. Particularly, experiments showed that the DAR generated
smooth and quite natural F0 contours even if random sampling was used. This
result has not been achieved with other F0 models. Furthermore, when the
standard mean-based generation method was used, the DAR generated F0 contours
with an appropriate dynamic range and high accuracy. It also outperformed the
previous F0 models in a subjective evaluation test. Thus, the proposed DAR is a
good solution to address model the temporal dependency of F0 contours for TTS.

121

7
Variational-auto-encoder-based F0 model

Given the results of the DAR in the previous chapter, this chapter switches to
the third issue of neural F0 modeling, i.e., Issue 3: Can linguistic features
be processed more efficiently? In Section 3.6, we mentioned that a baseline
neural F0 model (and the DAR) has to duplicate the linguistic features to the
frame level and process the features frame-by-frame. This processing strategy
influences the efficiency of the model and may further affect its performance.

This chapter proposes the variational auto-encoder (VAE)-based F0 modeling
framework to alleviate the above issue. In Section 7.1, the above issue is explained
in more technical detail. Section 7.2 then explains the framework of the VAE-based
F0 modeling and the practical implementation based on a special VAE called
vector-quantization VAE (VQVAE). The DAR is also merged into the framework.
After that, Section 7.3 conducts empirical evaluations on the VAE-based F0
models.

122 Chapter 7. Variational-auto-encoder-based F0 model

*

Phrase tier
Mora tier

Phone tier
Frame tier

**** ***** *********** ************ ************* ****************

F0

Linguistic
features

… …x1 xT…

Neural
network

x3p
x2p

x1p
xt3p

xt2p

Figure 7.1: Linguistic feature processing in a frame-by-frame (left) or phone-by-
phone (right) manner. T denotes T frames while 3p denotes 3 phones. Linguistic
features of different levels (from top to bottom: phrase, mora, phone, frame) are
highlighted with different colors.

7.1 Motivation

In all the previous chapters, F0 modeling is defined to be a task that converts the
input linguistic feature sequence x1:T into an F0 contour o1:T frame by frame for
T frames. This process is shown on the left part of Figure 7.1. As Appendix A
shows, the linguistic features are mainly the properties of phone, mora1, phrase,
and other segments in the linguistic hierarchy. Since a basic linguistic unit such as
phone spans multiple frames, the linguistic features of the n-th phone should be
duplicated to each frame in {xtn ,xtn+1, · · · ,xt(n+1)−1}, where tn and t(n+1) denote
the first frame of the n-th and (n+ 1)-th phone, respectively. Although some
frame counters are attached to each xt, most of the linguistic features remain the
same in the sequence of {xtn ,xtn+1, · · · ,xt(n+1)−1}.

Processing the linguistic features frame-by-frame is inefficient. When an RNN
is used, the recurrent layer has to process many frames that contain almost the
same linguistic features before it can retrieve the features of other linguistic units.
A potentially more efficient framework is plotted on the right side of Figure 7.1. It
divides the F0 model into two components: one maps the linguistic features of one
linguistic unit into an ‘excitation vector’ (light grey circle), and the other generates
the F0 contour given the ‘excitation vector’ and duration of each linguistic unit.

1The meaning of mora can be found in Table A.2.

7.2 VAE-based F0 model 123

7.2 VAE-based F0 model

We propose to cast the two-stage F0 model into a statistical framework. Suppose
the phone is the basic linguistic unit and the utterance with T frames has Np

phones in total. This statistical framework can be written as:

p(o1:T |x1:Np ; Θ) =
∫
e1:Np

p(o1:T |e1:Np ; Φ)p(e1:Np |x1:Np ; Ω)de1:Np , (7.1)

where Θ = {Φ,Ω}, and e1:Np and x1:Np denote the excitation vectors and
the linguistic feature vectors of the Np phones, respectively. For explanation,
let’s use ‘F0 contour generator’ and ‘linguistic linker’ to name the component
p(o1:T |e1:Np; Φ) and p(e1:Np |x1:Np; Ω), respectively. Since the linguistic linker
directly maps x1:Np = {x1p , · · · ,xnp , · · · ,xNp} into the excitation vectors e1:Np , it
only needs to operate for Np steps rather than T frames. Furthermore, if it uses a
recurrent layer, the linguistic linker can easily retrieve the linguistic features from
the neighboring phones.

Unfortunately, the above framework with latent e1:Np is impractical to use due
to the integration over the space of e1:Np . However, the F0 contour generator and
the linguistic linker can be trained separately in an engineering way. Accordingly,
we propose a three-step strategy:

1. Train a vector-quantization variational auto-encoder (VQVAE) [162] as
p(o1:T |e1:Np ; Φ) and extract e1:Np from the training data o1:T ;

2. Learn a linguistic linker p(e1:Np |x1:Np ; Ω) that maps x1:Np into e1:Np (or the
code indices l1:Np in the codebook of VQVAE for each vector in e1:Np);

3. Use the linguistic linker and the codebook of VQVAE to generate ê1:Np from
x1:Np for a new sentence, and use the VQVAE decoder to generate the F0
contour ô1:T given ê1:Np

2.

The first two steps describe the training method while the third step is on the
F0 generation method. These three steps are plotted in Figure 7.2 and will be
explained with mode details in the following sections.

2A separate duration model is used to predict the duration of each linguistic unit. In this
thesis, we use the natural duration acquired from force-alignment on the test utterance.

124 Chapter 7. Variational-auto-encoder-based F0 model

VQVAE Linker

Codebook

oT… …
Phone 1 Phone 2

⌦

… …bo1 boT

F0 model

E
nc

od
er

� = {�1,�2,�3}

�1

D
ec

od
er

�2

{⌦,�2,�3}

Codebook

�3

�2

e1p
e2p

z2pz1p

l1p
l2p

be2p
be1p

oT… …ot2
x1p

x2p
x1p

x2po1

o1

Step 1 Step 2 Step 3

ot2 bot2

Figure 7.2: Framework of VQVAE-based F0 model. The utterance has T frames
and 2 phones. Note lnp is the code index of the n-th phone.

7.2.1 VQVAE-based F0 encoder and decoder

Theory

A classical method to train a conditional generative model with latent variables
e1:N is the conditional VAE [163, 164], a variational Bayesian framework that
maximizes an evidence lower bound (ELBO):

log p(o1:T |x1:N) ≥Eq(e1:N |o1:T ,x1:N ;Ω1) log p(o1:T |e1:N ,x1:N ; Φ)

−KL
[
q(e1:N |o1:T ,x1:N ; Ω1)||p(e1:N |x1:N ; Ω2)

]
,

(7.2)

where q(·; Ω1) is the parametric posterior distribution, p(·; Ω2) is the true parametric
prior distribution, and KL is the Kullback-Leibler divergence.

However, when the conditional VAE is used on the sequential generative model,
it suffers from ‘posterior collapse’ [162, 159, 155], a problem where the assumed
posterior distribution q(·; Ω1) becomes identical to the prior distribution p(·; Ω2).

7.2 VAE-based F0 model 125

e1p

e2p

e3p

l2pcell

cell l3pcell l1p

z3p z1

z2

Figure 7.3: Example of vector quantization in VQVAE. The input vector z3p ∈ R2

found the nearest codeword e3p in the cell indexed by l3p .

In such a case, e1:N does not contain useful information for generating o1:N .
Meanwhile, the decoder p(o1:T |e1:N ,x1:N ; Φ) may ignore the conditional feature
x1:N . This problem is even more obvious when the decoder p(o1:T |e1:N ,x1:N ; Φ) is
a strong sequential model such as the AR model [159]. Another disadvantage is
that qΩ1 and pΩ2 must be Gaussian or simple parametric distributions so that the
KL divergence can be calculated in a closed form. These assumed distributions,
however, may be incompatible with the authentic data distributions.

To avoid the disadvantages above, we decide to use unconditioned VQVAE
[162], an engineering yet effective framework that learns a compact latent space via
minimizing the model’s negative likelihood plus a penalty term. The framework
of VQVAE is plotted on the left side of Figure 7.2. The latent variables z1:N =
{z1, · · · , zN} are extracted from o1:T by the encoder, after which each zn is
‘quantized’ into en by retrieving the nearest neighbor in the codebook as Figure 7.3
shows. e1:N is then used by the decoder to reconstruct o1:T .

The whole model is trained by minimizing

E(Φ) = − log p(o1:T |e1:N ; Φ3) + (1 + β)||e1:N − z1:N ||2, (7.3)

where
z1:N = EncoderΦ1(o1:T), e1:N = Code_searchΦ2(z1:N), (7.4)

and Φ = {Φ1,Φ2,Φ3}. Here Φ3, Φ2, and Φ1 denote the parameter set of the
decoder, encoder, and codebook, respectively. β is a hyper-parameter that scales
the loss caused by vector quantization. We use β = 0.25 as the original paper does.

126 Chapter 7. Variational-auto-encoder-based F0 model

In practice [162], the objective function is written as

E(Φ) = − log p(o1:T |e1:N ; Φ3) + ||e1:N − sg[z1:N]||2 + β||z1:N − sg[e1:N]||2, (7.5)

where the sg operator sets the gradients to zero. For example, the second term of
Equation (7.5) contributes to the gradients of e1:N but not z1:N . Another trick to
train the model is to move the gradients of e1:N calculated from log p(o1:T |e1:N ; Φ3)
to z1:N . Therefore, the encoder Φ1 is trained by the minimizing the first and third
terms of Equation (7.5), while the codebook Φ2 and the decoder Φ3 are updated
based on the second and first term, respectively.

Implementation

The implementation of the VQVAE encoder is illustrated in Figure 7.4. The
EncoderΦ1(·) is a neural network that extracts latent variable z1:N from the
observed data o1:T . After the linear transformation layer reduces the dimension
of ot, the hidden features are processed by two bi-direction LSTM-RNN layers.
Notice that, while the output of the hidden layer has T frames, z1:N should
contain N vectors where N is the number of linguistic units in the utterance. This
time-resolution reduction is implemented by simply concatenating the hidden
vectors at the first and last frames of the linguistic unit.The boundary of the
linguistic unit is acquired through force-alignment at the frame-level.

After ‘quantizing’ z1:N into e1:N by retrieving the nearest neighbor in the
codebook, e1:N can be used by the decoder to reconstruct the F0 contour o1:T .
Specifically, given the duration of each linguistic unit, each en is duplicated to the
frame-level as {etn , etn+1, · · · , et(n+1)−1}, where tn and t(n+1) − 1 denote the first
and last frame index of the n-th phone, respectively. The decoder then converts
e1:T into o1:T . Although the decoder still works frame-by-frame, it can be simpler
than a full neural F0 model. For example, as the decoder in Figure 7.2 shows, we
use the idea of DAR and implement the decoder using a uni-directional LSTM
layer that receives the feedback data and then a linear layer to change the feature
dimension. The output layer is a softmax layer that generates the probability for
quantized F0 symbol.

It is straightforward to take into account linguistic units of different levels. In

7.2 VAE-based F0 model 127

Phone
codebook

Mora
codebook

o1

e1 e2

+ +

o2o1 o2 o2

codebook

Encoder

z1 z2

e2e1

o3

Mora-level
encoder

Phone-level
encoder

Bi-LSTM

Bi-LSTM

FF

Single-level case Mora-phone-level case

zp
1p

zp
2p

zm
1m

em
1m

ep
2p

ep
1p

Figure 7.4: VQVAE encoder of single-level case (left) and multi-level (right) case.
The utterance has 3 frames {o1,o2,o3}, where {o1,o2} forms the first phone and
o3 forms the second phone. These two phones further form one mora.

this case, the VQVAE contains multiple encoders but one decoder. The right side
of Figure 7.4 plots the encoder that covers the mora and phone levels. In such
an encoder, we can extract the mora-level latent vectors zm

1:Nm
given the mora

boundary. Then, a mora codebook can be used to generate em
1:Nm

. Meanwhile, we
can use a sub-encoder at the phone-level to extract the phone-level code ep

1:Np
.

Finally, the mora-level code is duplicated to each phone in the mora, and the sum
of the mora- and phone-level codes is used as the final latent code e1:Np . In such a
multi-level encoder, the length of the final latent code sequence is determined by
the number of linguistic units at the lowest level. Note that the latent codes of
different linguistic layers have the same dimension.

In a multiple-level encoder, the sub-encoder and codebook of each level should
be trained in a top-down manner in order to prevent the VQVAE from ignoring
the latent codes provided by a high-level encoder. For the case in Figure 7.4,
the mora-level sub-encoder and codebook are first trained and fixed, after which
the phone-level part is added and trained. In this step, the mora-level part still
outputs the latent code for each mora, and the moral-level codes are summed with
phone-level codes as Figure 7.4 shows. Note that the single decoder is updated at
every level.

128 Chapter 7. Variational-auto-encoder-based F0 model

7.2.2 Linguistic linker

The VQVAE only learns to encode and decode F0 contours in an unsupervised
manner. For F0 modeling in TTS, another component should learn the mapping
from the linguistic features to the F0 codes. This is done by a linguistic linker.
Since each latent code en in the sequence e1:N is a codeword from a finite-size
codebook, the task of the linguistic linker is equivalent to a sequential classification
task, where the target is the sequence of code index l1:N = {l1, · · · , lN}, and
the input is the sequence of linguistic features x1:N = {x1, · · · ,xN}. A baseline
RMDN with a softmax output layer can be used for this task (see Section 3.4).

Naive implementation

When multiple linguistic levels are used, the linker needs to predict multiple code
index sequences given x1:N , where N denotes the number of the finest linguistic
unit. However, the index sequence of a higher linguistic level may be shorted than
N in length. In this case, a naive method is to duplicate the higher level code
index. Example of such a linker is plotted in the upper part of Figure 7.5. Here,
the mora level indices {lm1m

, lm2m
} are duplicated to the phones, and the linker learns

to predict one mora and one phone code index for every phone.

Multi-time-resolution linker

To model multiple code index sequences, a better approach is to use a multi-time-
resolution network. Suppose the mora and phone levels are used and their code
indices are denoted as lm1:Nm

and lp1:Np
, respectively. The basic idea is to emit a

hidden state and output value for a mora only when the current time step hits
the first phone in the mora, a strategy similar to the clockwork RNN [121]. One
example linker based on this strategy is plotted at the bottom of Figure 7.5. Note
that the alignment between different linguistic levels can be easily retrieved from
the linguistic features, without using the alignment at the frame-level.

Compared with the naive approach, the multi-time-resolution one does not need
to model the duplicated code indices. Furthermore, it avoids possible inconsistency
during F0 generation. For example, since a naive linker predicts a mora code
index for each phone step, a mora with multiple phones will acquire multiple

7.2 VAE-based F0 model 129

X

Phone-level:

Mora-level: {lm1m
, lm2m

}
Alignment:

X Mora-clock

{lp1p
, lp2p

, lp3p
, lp4p

}

Phone1
Mora 1 Mora 2

Phone2 Phone3 Phone4

x1p
x2p

x3p
x4p

lp1p
lp2p

lp3p
lm1m

lm2m
lp4p

Softmax

Linguistic
feature x1p

x2p
x3p

x4p

lp1p
lp2p

lp3p
lm1m

lm2m
Code index lp4p

lm1m
lm2m

Naïve implementation

Multi-time-resolution
implementation

Phone-level:

Mora-level: {lm1m
, lm2m

}

Duplication:
{lp1p

, lp2p
, lp3p

, lp4p
}

{lm1m
, lm1m

, lm2m
, lm2m

}
Alignment:

Figure 7.5: Naive linker (above) and multi-time-resolution linker (bottom) that
predicts mora-level code indices {lm1m

, lm2m
} and phone-level code indices {lp1p

, · · · , lp4p
}

mora codes that may be unequal. It is then awkward to decide which code to
use. From another perspective, the naive linker models the duplicated code
indices and assumes that they are independent samples. However, this assumption
is against the fact that duplicated indices come from to a single sample. The
multi-time-resolution linker solves this inconsistency problem.

Other tricks on network structure and training methods

Since the linker is a sequential classifier, we can use any trick that applies to a
classification model. Here are some tricks that we found to be effective in the
experiments: deep highway layers near the output side [165], dropout [166] in all
the hidden layers with a small probability (5% in our case), and the AR feedback
loop (see the feedback loop of DAR in Section 6.2). Details of the tricks can be
found in Section 7.3.4 where experiments were conducted on the linguistic linker.

130 Chapter 7. Variational-auto-encoder-based F0 model

Soft code vectors for F0 generation

After the linker is trained, a full-fledged neural F0 model for TTS can be built by
concatenating the linker, the codebook, and the VQVAE decoder. During F0
generation, given the linguistic feature sequence x̃1:N provided by the TTS front-end,
the linker can predict a sequence of most probable code index l̂1:N = {l1, · · · , lN}.
It then can search for the corresponding code vectors from the codebook and ask
the VQVAE decoder to generate the F0 contour based on the code vectors.

This above strategy is feasible, but it may not be optimal. Since Section 3.4
has explained the probabilistic side of the neural classification model, the statistics
calculated by the model could have been used. Therefore, rather than predicting
the code index directly, the linker can generate a sequence of probability vectors
P 1:N = {P 1, · · · ,PN}, where each P n = [P (ln = 1|x1:N), · · · , P (ln = M |x1:N)]
describes the probability of the code indices at the n-th step and M is the size of
the codebook. Then, for the n-the step, a soft code vector ên can be computed as
ên = ∑M

m=1 P (ln = m|x1:N)em, where em is the m-th code vector in the codebook.
Finally, the soft codes can be fed to the decoder for F0 generation.

The full-fledged neural F0 model based on the above strategy is plotted on the
right-hand side of Figure 7.2. The same strategy can be used to generate the
soft code vector for each linguistic level. Using the soft code vector ên for F0
generation approximates the integration in Equation (7.1).

7.3 Experiments

7.3.1 Data and configuration

We used the Japanese corpus and feature configuration listed in Appendix A.2.
Based on the results from the DAR, we only used quantized F0 for experiments.
The F0 quantization was conducted in the same way as that in the last chapter.
Quantized F0 of each frame was encoded as one-hot-vector of 256.

For the VQVAE part, no matter whether it had single or multiple linguistic
levels, we configured the encoder for one linguistic level with one feedforward layer
of size 64 and two Bi-LSTM layers of size 64. The codebook for each level had the

7.3 Experiments 131

size of 128, and each code had the dimension of 64. The decoder contained one
uni-directional LSTM layer of size 128, a linear layer of size 256, and a hierarchical
softmax output layer, which was identical to the upper part of DAR (Figure 6.6).
The VQVAE was trained using the Adam with default configuration [167] and
early stopping.

The structures of the linguistic linkers were explained in the corresponding
section (Section 7.3.4). All the linkers were trained using stochastic gradient
descent with early stopping (learning rate 1e-05) and further tuned using AdaGrad
(learning rate 0.001) with early stopping.

7.3.2 Part I: F0 encoding and decoding using VQVAE

The first experiment focuses on the VQVAE part and examines its performance
through F0 encoding and decoding. The task of the VQVAE is to encode the F0
contour as a few latent codes, one for each linguistic unit, and reconstruct the
F0 contour using the latent code and natural duration of each linguistic unit.
Note that each VQVAE was trained on the training set and tested on the test set.
The duration of linguistic units were acquired through force-alignment for both
training and test sets.

We considered four levels of linguistic units for the experiment: phone, mora,
word, and phrase. By counting the duration of linguistic units at each level in the
training data, we computed the median duration and list the data in Table 7.1.
These statistics could tell us the ‘bit rate’ of the VQVAE. For example, if the
VQVAE extracts one code per phone, equivalently it extracts 1/13 code per frame,
where 13 is the median of the phone duration in frames. Since the codebook size is
128 = 27, the bit rate of this VQVAE is equal to 7/13 = 0.538 bit per frame. For
reference, since the natural F0 of each frame is quantized into 256 = 28 bins, the
bit-rate of quantized F0 is 8 bits per frame.

Encoding and decoding using a single linguistic level

Let’s first compare the VQVAE’s performance on each linguistic level separately.
Reconstruction errors are listed as Phrase (qF0), Word (qF0), Mora (qF0), and
Phone (qF0) in Table 7.2, and reconstructed F0 contours are plotted in Figure 7.6.

132 Chapter 7. Variational-auto-encoder-based F0 model

Table 7.1: Median duration of linguistic unit

Phrase Word Mora Phone
Median duration (frames) 95 51 25 13

Table 7.2: Objective results of F0 encoding-coding using VQVAE

Linguistic levels Bit rate
(bit/frame) RMSE CORR U/V

F0 quantization 8 01.19 0.999 0.00%
Phrase (qF0) 7/95 61.87 0.425 28.78%
Word (qF0) 7/51 41.81 0.739 22.94%
Mora (qF0) 7/25 22.27 0.919 14.55%
Phone (qF0) 7/13 13.60 0.972 6.88%
Phrase (i-qF0) 7/95 58.83 0.469 -
Word (i-qF0) 7/51 37.05 0.796 -
Mora (i-qF0) 7/25 21.57 0.934 -

HWMP 7
95 + 7

51 + 7
25 + 7

13 11.46 0.982 4.58%
WMP 7

51 + 7
25 + 7

13 11.54 0.982 4.27%
MP 7

25 + 7
13 12.11 0.981 4.60%

Note: ‘qF0’ denotes quantized F0; ‘i-qF0’ denotes quantized F0 after
interpolation in unvoiced frames. ’HWMP’, ’WMP’, and ’MP’ denote
phrase+word+mora+phone, word+mora+phone, and mora+phone, re-
spectively. H, W, M used i-qF0 in these three encoders.

As expected, encoding-decoding at the phrase level is insufficient for F0
reconstruction. The codebook may be too small to encode the F0 contours of all
the possible phrases. Another reason may be that the VQVAE is incapable of
encoding or decoding F0 curves of roughly 95 frames in length even if the VQVAE
used a DAR-based decoder. As long as the VQVAE was trained at the mora level,
the F0 was better encoded and reconstructed despite the high U/V error. At the
phone-level, the reconstructed F0 was quite close to the natural F0 as Figure 7.6
shows.

Of course, even the reconstructed F0 from the phone-level VQVAE was
imperfect because the bit rate of the VQVAE was only 7/13, which is much lower
than 8 bits-per-frame of the quantized F0 data. What’s more, the VQVAE was
trained on the training set while tested on the test set.

7.3 Experiments 133

1
9
0

3
9
0

F0(Hz)

N
at

ur
al

P
hr

as
e

(i-
qF

0)
N

at
ur

al
P

hr
as

e
(q

F0
)

1
9
0

3
9
0

F0(Hz)

N
at

ur
al

W
or

d
(i-

qF
0)

N
at

ur
al

W
or

d
(q

F0
)

1
9
0

3
9
0

F0(Hz)

N
at

ur
al

M
or

a
(i-

qF
0)

N
at

ur
al

M
or

a
(q

F0
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Fr
am

e
in

de
x

(A
TR

X
im

er
a

F0
09

A
O

ZO
R

A
R

03
37

2
T0

1)

1
9
0

3
9
0

F0(Hz)

N
at

ur
al

P
ho

ne

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Fr
am

e
in

de
x

(A
TR

X
im

er
a

F0
09

A
O

ZO
R

A
R

03
37

2
T0

1)

N
at

ur
al

M
P

W
M

P
H

W
M

P

Fi
gu

re
7.
6:

R
ec
on

st
ru
ct
ed

F0
fro

m
V
Q
VA

E
th
ro
ug

h
en
co
di
ng

-d
ec
od

in
g.

‘q
F0

’d
en
ot
es

qu
an

tiz
ed

F0
th
at

in
cl
ud

es
th
e
un

vo
ic
ed

sy
m
bo

ls;
‘i-
qF

0’
de

no
te
s
qu

an
tiz

ed
F0

af
te
r
in
te
rp
ol
at
io
n
in

un
vo

ic
ed

fra
m
es
,w

hi
ch

do
es

no
t
co
nt
ai
n

un
vo

ic
ed

sy
m
bo

ls.
’H

W
M
P
’,
’W

M
P
’,
an

d
’M

P
’d

en
ot
e
ph

ra
se
+
w
or
d+

m
or
a+

ph
on

e,
w
or
d+

m
or
a+

ph
on

e,
an

d
m
or
a+

ph
on

e,
re
sp
ec
tiv

el
y.

H
ig
h
le
ve
le

nc
od

er
s
in

th
e
la
st

fig
ur
e
ex
ce
pt

ph
on

e
us
ed

i-q
F0

.

134 Chapter 7. Variational-auto-encoder-based F0 model

Issue with voicing status

In the previous experiment, we directly used the VQVAE to encode and decode
the quantized F0 data. Because the quantized F0 data contain unvoiced symbols,
the VQVAE needs to model not only the F0 contour but also the voicing status for
each linguistic unit. However, since the voicing status is mainly the property of
low-level linguistic units such as phones, it may be inappropriate to model the
voicing status at the level of mora, word, or phrase.

As a pilot test, we quantized the interpolated F0, which were originally used for
the RNN, and trained the VQVAE used the interpolated quantized F0 (i-qF0). The
results are listed as Phrase (i-qF0), Word (i-qF0), and Mora (i-qF0) in Table 7.2.
Although the VQVAE at the phrase level still failed to work, the VQVAE at
mora level performed quite well. As Figure 7.6 shows, the reconstructed F0 was
consistent with the shape of the natural F0 contour. Note that, since the target of
the decoder was i-qF0, the VQVAE cannot model the voicing status 3.

Encoding and decoding at multiple linguistic levels

Based on the results above, we tried to encode and decode the F0 contours using
multiple linguistic levels. In this experiment, we compared phrase + word + mora
+ phone (HWMP), word + mora + phone (WMP), and mora + phone (MP). As
explained in Section 7.2.1, encoders at different linguistic levels should be trained
in a top-down manner. In the case of WMP, we first used the i-qF0 to train the
word-level VQVAE. We then fixed the word-level encoder, added the mora-level
encoder, and trained it with the decoder using the i-qF0. Finally, we fixed the
word- and mora-level encoders, added the phone-level encoder, and trained it with
the decoder using qF0. Since the decoder was trained using the qF0 at the last
stage, it can generate both U/V status and F0 contours.

The results are listed in the last three rows of Table 7.2, and reconstructed F0
contours are plotted in Figure 7.6. The results indicate that using multiple levels
improved the F0 encoding-decoding performance.

3Although the experiments in Section 6.4.2 suggested that interpolated F0 cannot be well
modeled by the DAR, the influence of the interpolated curves may be less severe than the
unvoiced segments for the high level encoders.

7.3 Experiments 135

7.3.3 Visualization of code space

Before further experiments, we’d like to visualize the latent code spaces learned
using the mora-phone VQVAE (MP). We used t-SNE [168] to compress the
dimension of code vectors and plotted them in a two-dimensional space. The
results are plotted in Figure 7.7, where (a) shows the code space learned at the
mora level and (b) shows the phone level. For reference, the left column of the
figure shows the code indices assigned to the moras or phones in the utterance,
and the right column highlights these codes in the code space.

Interestingly, both the mora- and phone-level code spaces turned out to be
quite regular. At the mora level in Figure 7.7 (a), the code indices assigned to
the first segment of the example F0 contour were {108, 119, 59, 13, 97, 20, 53}. It
seems that the location of the code generally represented the average F0 height
of a linguistic unit. For example, the mora with the 108-th code contained an
F0 peak, and the following moras had decreasing F0 curves. Accordingly, the
line connecting the code sequence [108, 119, 59, 13, 97, 20, 53] started from the
right-bottom corner, moved along the code manifold, and ended at the left-top
corner, which indicated the decreasing average F0 value of moras.

The encoder at the phone-level seemed to encode both the voicing status and
the F0 values. For example, the code indices {114, 45, 126, 102} in Figure 7.7 (b)
were assigned to unvoiced phones and located on the right-hand side of the code
space. In contrast, the code indices for voiced phones were found on the left-hand
side and encoded the average F0 value in a similar manner to the mora-level case.

These results may help us interpret the ‘meaning’ of latent codes and the role
of the decoder in the VQVAE-based F0 model: the latent code mainly encode the
skeleton of the F0 contour (e.g., average F0 height in one unit) while the decoder
fills in detailed F0 curves and reconstructs the F0 contour. The average F0 height
may be general and safe skeleton representation for F0 contours because it does
not rely on specific linguistic or physiological theories on the F0 shapes.

We also plotted the manifold learned by the word (bottom figure in Figure 7.7)
and phrase encoders but did not find regular patterns. The reason may be the
difficulty of learning meaningful long-time F0 patterns using models trained by a
frame-level maximum-likelihood criterion.

136 Chapter 7. Variational-auto-encoder-based F0 model

−
4
0−

3
0−

2
0−

1
0

0
1
0

2
0

3
0

4
0

5
0

−
3
0

−
2
0

−
1
00

1
0

2
0

3
0

4
0

M
or

a
co

de
sp

ac
e

10
8

11
9

59

13
9720

53

11
4

11
0

8

40

1412
3

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

F0(Hz)

10
811

9 59
13

97
20

53
11

4
11

0
8

40
14

12
3

N
at

ur
al

R
ec

on
st

ru
ct

ed
F0

(a
)M

or
a-
le
ve
l(
fro

m
m
or
a-
ph

on
eV

Q
VA

E
(M

P)
).
R
ec
on

st
ru
ct
ed

F0
is
in
te
rp
ol
at
ed

fo
rv

isu
al
iz
at
io
n.

−
3
0
−

2
0
−

1
0

0
1
0

2
0

3
0

−
4
0

−
3
0

−
2
0

−
1
00

1
0

2
0

3
0

P
ho

ne
co

de
sp

ac
e

11
4

46

12
6

11
411

9 10
2

49
9494

30

33 64
15

17

4

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

F0(Hz)

11
4

46
12

6
11

4
11

9
10

2
49

9494
30

33
64

15
17

4

N
at

ur
al

R
ec

on
st

ru
ct

ed
F0

(b
)
Ph

on
e-
le
ve
l(
fr
om

m
or
a-
ph

on
e
V
Q
VA

E
(M

P)
)

−
3
0
−

2
0
−

1
0

0
1
0

2
0

3
0

−
3
0

−
2
5

−
2
0

−
1
5

−
1
0

−
505

M
or

a
co

de
sp

ac
e

11
1

82
20

77
46

87

7911
6

11
6

11
61

02

3118

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

F0(Hz)

11
1

82
20

77
46

87
79

11
6

11
6

11
6

10
2

31
18

N
at

ur
al

R
ec

on
st

ru
ct

ed
F0

(c
)
W
or
d-
le
ve
l(
fr
om

W
or
d-
m
or
a-
ph

on
e
V
Q
VA

E
(W

M
P)

)

Fi
gu

re
7.
7:

Ex
pl
or
e
la
te
nt

co
de

sp
ac
e.

Le
ft
:
F0

co
nt
ou

rs
w
ith

th
e
lin

gu
ist

ic
un

it
bo

un
da

rie
s
(d
ot

lin
e)

an
d
co
de

in
di
ce
s
(c
ol
or
ed

nu
m
be

r)
.
R
ig
ht
:
co
lo
re
d
do

ts
ar
e
th
e
co
de
s
us
ed

in
th
e
le
ft

fig
ur
e;

gr
ey

do
ts

de
no

te
ot
he
r
co
de
s.

7.3 Experiments 137

Layer size

128
128

128
128

softmax

uni-LSTM
bi-LSTM

FF
FF

Lp1

highway
blocks128

linear256

softmax

uni-LSTM
bi-LSTM

FF
FF

Lp2

highway
blocks

linear
softmax

uni-LSTM
bi-LSTM

FF
FF

Lp3

highway
blocks

linear
softmax

uni-LSTM
bi-LSTM
bi-LSTM

FF

Lp4

highway
blocks

linear

softmax

uni-LSTM
bi-LSTM
bi-LSTM

FF

Lmp1

highway
blocks

linear

Lmp2

softmax

highway
blocks

linear
softmax

uni-LSTM
bi-LSTM
bi-LSTM

FF

highway
blocks

linear
softmax

highway
blocks

linear

mora-clock

Phone
one-hot-code

Phone
code prob.

Phone
code prob.

Phone
code prob.

x1:T x1:T x1:N(p) x1:N(p)

x1:N(p) x1:N(p)

Layer size

128
128

128
128

128

128

bl(p)
1:T bP (p)

1:T
bP (p)

1:N(p)
bP (p)

1:N(p)

bP (p)

1:N(p)
bP (p)

1:N(p)
bP (m)

1:N(p)
bP (m)

1:N(m)

Figure 7.8: Structure of linguistic linker listed in Table 7.3. Lmp3 is the same as
Lmp2 except using dropout (dropout rate = 5%) in every hidden layer. Other
models didn’t use dropout in hidden layers. l̂ and p̂ denote generated code index
and code probabilities, respectively. T , N (p), and N (m) denote the number of
frames, phones, and moras, respectively.

7.3.4 Part II: Text-to-code using linguistic linker

This section conducted experiments on the linguistic linker. Based on the VQVAEs
learned in the previous section, we extracted the latent codes from the F0 contours
and trained linguistic linkers using the same training and validation set as those
in the VQVAE experiment. After training the linguistic linkers, we test the

138 Chapter 7. Variational-auto-encoder-based F0 model

Table 7.3: Objective results on F0 generation given linguistic features

Model VQVAE Linker Linker training time RMSE CORR U/Vs/epoch ms/step
P1

Phone

Lp1 1300 0.036 34.33 0.839 7.96%
P2 Lp2 1300 0.036 32.79 0.856 7.61%
P3 Lp3 54 0.031 27.11 0.906 6.36%
P4 Lp4 61 0.035 26.74 0.908 6.36%
MP1

MP
Lmp1 59 0.034 27.35 0.907 6.22%

MP2 Lmp2 63 0.036 26.46 0.912 6.24%
MP3 Lmp3 65 0.037 25.55 0.916 4.87%
WMP1 WMP - 70 0.040 26.72 0.909 5.04%
HWMP1 HWMP - 76 0.044 26.18 0.909 4.81%
Note: the ‘step’ means ‘frame’ for Lp1 and Lp2 while ‘phone’ for the other
linkers. ’HWMP’, ’WMP’, and ’MP’ denote phrase+word+mora+phone,
word+mora+phone, and mora+phone encoders (Table 7.2), respectively. These
encoders used i-qF0 for the phrase, word, and mora levels. Linkers for WMP1 and
HWMP1 were similar to lMp3 except additional branches and clocks were added to
predict the word and phrase level codes.

performance by concatenating the linkers with the VQVAE decoder and generating
F0 contours from linguistic features on the test set. Therefore, objective results in
this section denote the performance of full-fledged VAE-based F0 models for TTS.

Phone-level models

We first compared four linguistic linkers Lp1, Lp2, Lp3, and Lp4 in Figure 7.8
for the phone-level VQVAE. These linkers only modeled the phone-level codes.
Notice that Lp1 and Lp2 converted the linguistic features to the target in a similar
frame-by-frame manner to a normal neural F0 model. The only difference was the
generation method: while Lp1 predicted the best code indices l̂(p)

1:T , Lp2 generated
the index probabilities P̂ (p)

1:T for soft code vector generation (Section 7.2.2). To
train Lp1 and Lp2, the code indices in the training set were duplicated to the
frame-level. From Lp2 to Lp3, the linker switched from frame-level modeling to
phone-level modeling, i.e., generating the probability vectors phone-by-phone. Lp4
further replaced one feedforward layer of Lp3 into a bi-directional LSTM.

After model training, the linkers were combined with the VQVAE decoder and

7.3 Experiments 139

190

390

F0
(H

z)

Natural P1

190

390

F0
(H

z)

Natural P3

190

390

F0
(H

z)

Natural MP1

190

390

F0
(H

z)

Natural MP3

190

390

F0
(H

z)

Natural WMP1

100 200 300 400 500 600
Frame index (ATR Ximera F009 AOZORAR 03372 T01)

190

390

F0
(H

z)

Natural HWMP1

Figure 7.9: Generated F0 from VAE-based F0 model given linguistic features.
Definition of each model is listed in Table 7.3.

the codebook (from Phone(qF0) in Table 7.2) in order to generate F0 contours
given linguistic features on the test set. The objective results are listed in the
first four rows of Table 7.3. Notice that Lp1 and Lp1 shared the same set of
network weights. They only differed in the way of generating the latent code for
the decoder. The comparison between Lp1 and Lp2 suggests that using the soft
code vector generation improved the performance.

Compared with Lp2, the performance of Lp3 improved a lot. In the case of
Lp2, processing the linguistic features frame by frame is inefficient because the

140 Chapter 7. Variational-auto-encoder-based F0 model

same linguistic feature vector is duplicated to all the frames in the phone and then
processed. Another reason specific to this task may be that the same phone code
index is also duplicated for all the frames in the phone. Therefore, the target
sequence for the linker Lp2 is stepwise and may not be well modeled. Furthermore,
there is no guarantee that Lp2 would predict the same code index for all the
frames inside the phone.

In addition to the improved objective results, Lp3 cost less training time.
Although both Lp3 and Lp2 require around 0.03 ms to process one step, the total
number of steps is reduced in the case of Lp3. Specifically, the total number of
steps for Lp2 is equal to the frame number while it is the number of phones for Lp3.

Since the length of the data sequence is reduced, adding an additional recurrent
layer would not increase training or generation time too much. For example, Lp4
replaced a feedforward layer with a recurrent layer, but the training speed was
still fast4. With a slight increase in computation load, Lp4 further improved the
objective performance.

Multi-linguistic-levels models

This experiment focuses on the linkers generating the mora- and phone-level
latent codes. The VQVAE model was the one trained at the mora and phone
levels (MP in Table 7.2). Based on this VQVAE model, three linkers Lmp1, Lmp2,
and Lmp3 were compared. Both Lmp1 and Lmp2 operated phone-by-phone and
learned to generate the code index probabilities for the phone and mora levels.
However, Lmp2 used the multi-time-resolution architecture based on the mora-clock
in Figure 7.5 while Lmp1 used the naive implementation. Lmp3 was the same to
Lmp2 except using dropout with a probability of 5% in all the hidden layers.

The results are listed in the middle of Table 7.3. First, Lmp2 achieved better
performance than Lmp1 in terms of RMSE and CORR. Note that the improvement
brought by the multi-time-resolution may be small because one mora in Japanese
usually contains 1 or 2 phones. Compared with Lmp2, Lmp3 further improved the
performance, especially the U/V. This result shows the importance of network
regularization when the training data amount is limited. This is reasonable because

4The listed training time may be influenced by the load of the GPU server.

7.3 Experiments 141

the number of data samples in the training set is equal to the number of phones
rather than frames.

In addition to the mora-phone-level linkers, we also evaluated the linkers
with more linguistic levels. These linkers were similar to Lmp3 except that they
included additional network branches to predict the word and phrase level codes.
However, the results listed in the last two rows of Table 7.3 suggest that using
more linguistic levels for F0 modeling was worse than the mora-phone-level case.
One possible reason was that the VQVAE at the high linguistic levels did not learn
useful abstract F0 representations, which has been indicated by the unsatisfied
results from manifold interpretation (Figure 7.7 (c)).

7.3.5 Compare VAE-based F0 model with DAR

Based on the above results, let us briefly compare the best VAE-based F0 model
(MP3 in Table 7.3) and DAR in the previous chapter. As Table 7.4 suggests, MP3
achieved better RMSE and CORR scores even though the U/V error is increased.
The worse U/V performance is reasonable because the latent code per phone may
be insufficient to encode the U/V of all the frames in one phone.

Figure 7.10 shows the results of the subjective MOS test. The test configuration
was identical to the second MOS test in Section 6.4.5. The results demonstrated
that MP3 slightly outperformed DAR, even though the difference is not statistically
significant. However, MP3 achieved this performance more efficiently than DAR.
Specifically, MP3 had a smaller number of model parameters (1.11 = VQVAE 0.44
+ linker 0.67) and used less training time (1565 = VQVAE 1500 + linker 65) than
DAR. Furthremore, since the VQVAE encoder is unnecessary during F0 generation,
the size of MP3 can be smaller when it is used for F0 generation (0.93 = VQVAE
decoder 0.26 + linker 0.67).

Although the linker for MP3 can be trained very fast, the mora-phone-level
VQVAE part requires more training time because of the top-down training
approach and the frame-by-frame operation manner. In the generation time,
iterating and searching the codebook also increases additional time cost.

142 Chapter 7. Variational-auto-encoder-based F0 model

Table 7.4: Objective results on the Japanese data. GV of natural F0 is around 61.

Time consumption
RMSE CORR U/V GV#. Para. Train. Gen.

(million) (s/epoch) (ms/frame)
DAR 1.48 2000 0.205 28.30 0.903 3.46% 61.5

VAE(MP3) 1.11 1565 0.147 25.55 0.916 4.87% 57.9

Natural DAR SAR eSAR WaveNet-F0 VAE(MP3)
Natural <1e-10 <1e-10 <1e-10 <1e-10 <1e-10
DAR <1e-10 <1e-10 9.062e-08 0.000102 0.392125
SAR <1e-10 <1e-10 0.007186 0.000176 <1e-10
eSAR <1e-10 9.062e-08 0.007186 0.219733 5.946e-10
WaveNet-F0 <1e-10 0.000102 0.000176 0.219733 2.635e-06
VAE(MP3) <1e-10 0.392125 <1e-10 5.946e-10 2.635e-06

3.00

3.25

3.50

3.75

4.00

4.25

M
O

S

4.199

3.971

3.732
3.813 3.803

3.993

Figure 7.10: MOS score (mean-based generation, Japanese corpus) and p-value of
Mann-Whitney U test between each pair of experimental models

7.4 Summary

This chapter looks into Issue 3: Can linguistic features be processed more
efficiently? The answer is yes, and one more efficient model is the VAE-based
neural F0 model proposed in this chapter.

The basic idea of this model is to separate F0 contour modeling from the
linguistic feature processing. The F0 contour modeling part can be implemented
based on a VQVAE model, which learns a compact code space in an unsupervised

7.4 Summary 143

manner. The second part uses a linker to learn the mapping from linguistic feature
to the latent code. This VAE-based F0 model is more efficient mainly because the
linker processes the linguistic features at the phone or higher linguistic level rather
than transforming the highly redundant linguistic features frame by frame.

Experiments demonstrated that the VQVAE part was able to encode the
F0 contour of a linguistic unit, e.g., phone or mora, into a single vector and
learn meaningful code spaces. Meanwhile, the linkers predicted latent codes
from linguistic features quite well. By using a mora-phone-level VQVAE and a
corresponding linguistic linker, the combined VAE-based F0 model performed no
worse than the DAR. Meanwhile, the VAE-based F0 model was smaller and faster.

The VAE-based F0 model resembles the classical two-step F0 modeling
approaches [71, 72, 73], where the first step uses an F0 parametric model such as
Fujisaki model to extract F0 parameters for each linguistic unit, and the second
step learns the mapping from linguistic features to the F0 parameters of each
linguistic unit. However, those classical approaches rely on deterministic and
expert-designed F0 parametric models. In contrast, the proposed VAE-based
model uses trainable neural networks and avoids any assumption about the F0
shape. Thus, the proposed model is hopefully applicable to other languages.

Recently, there are new works using the VAE [169] or auto-encoder [170] for
F0 modeling. However, that VAE-based work still relies on the contraints of
Fujisaki-model. Additionally, how it performs for TTS is not yet reported. The F0
auto-encoder only handles fixed-length F0 contours and requires F0 interpolation
before modeling. What’s more, its performance for TTS tasks is not reported
either. Compared with these related works, the VAE-based model proposed in this
chapter is more flexible and has shown good performance for TTS tasks.

145

8
Conclusion

In the previous chapters, we have explored the three issues for neural-network-based
F0 modeling. In this chapter, we summarize our answers to the three issues in
Section 8.1. We then use the proposed F0 model in our TTS system with other
advanced modules and evaluate its performance in Section 8.2. In 8.3, we discuss
remaining issues for neural F0 modeling. Finally, we summarize with a final
remark in Section 8.4.

8.1 Replies to the three issues of neural F0 mod-
eling

Issue 1: Is it appropriate to model F0 together with other acoustic
features in a neural network? Probably not.

We investigated the validity of the default strategy in common neural-network-based
SPSS framework, where the F0 and other acoustic features are jointly modeled.

146 Chapter 8. Conclusion

By conducting experiments on single- and multi-stream highway networks, we
found that a single-stream highway network prioritized the modeling of spectral
features rather than the F0. Specifically, a single-stream network that jointly
modeled the F0 and spectral features must be sufficiently wide or deep before it
reached the F0 modeling performance similar to that of a multi-stream network
that separated the F0 and spectral features. Similar results were observed on both
the English and Japanese data.

More interestingly, results based on the histogram and sensitivity analyses
on the multi-stream highway network further suggested that a network would
use different input linguistic features and derive different hidden features for
modeling the F0 and spectral features. This is against the belief that F0 and
spectral features can share hidden features and benefit from multi-task learning.
In all, the experimental results suggest that it is worthy of a trial to separate the
F0 from the spectral features for at least a better result of F0 modeling.

Issue 2: Do the common neural models describe the temporal correla-
tion in F0 contours? No. But better models can be defined.

Based on the probabilistic interpretation of neural networks, we found that a
normal neural network cannot model the temporal correlation of the target feature
sequence (e.g., the F0 contour). We further used a random sampling method to
reveal the noisy output samples caused by the missing temporal correlation.

To better model the temporal correlation, we first proposed the SAR that
used a linear transformation to model the AR temporal dependency of the F0
contour. It turned out the SAR can be further interpreted as the combination of
filters and a normal RMDN, which allowed us to use sufficient but unnecessary
techniques to ensure the stability of the SAR. Experiments showed that the SAR
remained stable and alleviated the over-smoothing problem, which was partially
caused by the missing temporal correlation. We further interpreted the SAR
from the perspective of feature transformation and proposed the extended SAR
using non-linear yet invertible normalizing flow. This extended SAR improved the
performance of the original SAR.

Although the SAR is theoretically appealing, it didn’t pass the test of random

8.1 Replies to the three issues of neural F0 modeling 147

sampling. Therefore, we proposed the DAR to leverage non-linear and non-
invertible AR transformation. This idea is to feed the data of the previous time
step back into a recurrent layer for the current time step. Although the idea is
simple, we used toy examples to show the flexibility and generality of the DAR.
Based on additional techniques such as quantized F0 representation and dropout,
the DAR outperformed other neural F0 models in terms of perceptual quality.
What’s more, the DAR generated good samples by random sampling, which has
never been achieved by other F0 models.

In all, to better model the temporal correlation of the F0 contours, the proposed
DAR model is a good choice for neural F0 modeling.

Issue 3: Frame-by-frame processing even for linguistic features? Not
recommended. The model can be more efficient.

Based on the DAR, we further explored whether the frame-by-frame F0 modeling
architecture can be more efficient, especially in the part that processes linguistic
features. For this purpose, we introduced the idea of VAE, based on which the
F0 modeling task can be decomposed as an F0 contour modeling part and a
linguistic linking part. This strategy allows us to encode the F0 contour and extract
meaningful F0 representation for linguistic units with varied length. It further
allows the mapping from the linguistic features to the latent F0 representation
above the frame level, which is more efficient.

Experiments showed that this VAE-based framework worked quite well on
the phone and mora levels. On the F0 encoding-decoding part, the VQVAE
learned to encode the F0 contour at the phone and mora levels and reconstruct it
with near-perfect accuracy. On the other part, it was justified that a linguistic
linker could map the linguistic features to the F0 codes phone-by-phone. More
importantly, even with fewer model parameters and less processing time, the
VAE-based F0 model based on the VQVAE decoder and the linguistic linker
achieved a slightly better performance than the DAR.

It is unnecessary to process the linguistic features as we would do in a normal
neural F0 model. To reduce the processing time and improve the performance, the
VAE-based F0 model with multiple linguistic levels is recommended.

148 Chapter 8. Conclusion

Linguistic features

SARDAR

TTS A

F0

OpenJTalk

Text

WaveNet-vocoder

MGC/BAP

Linguistic features

RNNDAR
F0

OpenJTalk

WORLD

MGC/BAP

Speech Speech
TTS B

Figure 8.1: Use DAR and SAR for TTS systems

Natural Copy-synthesis TTS A TTS B

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
O

S
sc

or
e

Speech quality

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
O

S
sc

or
e

Speaker similarity

Figure 8.2: Results of subjective evaluation

8.2 Apply proposed F0 model in TTS systems

Given the results obtained so far, we think it is interesting to see whether the
proposed F0 model could help the TTS system to reach the performance of natural
speech. For this purpose, we conducted experiments on the Japanese corpus using
the DAR and other acoustic models. The configuration of the data corpus and
acoustic features were the same as the previous chapters (see Appendix A.2 for
reference). The experimental TTS systems were plotted in Figure 8.1. To achieve
the best performance, we used the WaveNet-based vocoder [149] for waveform
generation, the SAR for MGC and BAP modeling, and the DAR for F0 modeling.
As the reference system, we used one system with the RNN for MGC and BAP
modeling and the WORLD vocoder for waveform generation. These two TTS
systems used the OpenJTalk [171] front-end. Configurations of the SAR and the
WaveNet can be found in [149].

8.3 Remaining issues 149

For the system using the WaveNet, the speech sampling rate was equal to 16kHz.
For other systems, the synthetic speech was originally 48kHz but downsampled to
16kHz. The evaluation was crowdsourced online. Each evaluator must answer two
questions on each screen. First, they listened to a sample of the system under
evaluation and rated the naturalness on a 1-to-5 mean-opinion-score (MOS). They
then rated the similarity of that test sample to the natural 48 kHz sample on a
1-to-5 MOS scale. We collected a total of 1500 evaluation sets from 235 native
Japanese listeners. The statistical analysis was based on unpaired t-tests with a
95% confidence margin and Holm-Bonferroni compensation.

The results are plotted in Figure 8.2. Interestingly, the system using the
WaveNet-vocoder, the SAR, and the DAR could achieve a quality roughly similar
to that of the vocoded speech. However, the similarity score is quite limited. This
may be due to the varied quality of the natural speech, which was recorded over
1 year. Of course, each component should be further improved, especially the
front-end and the vocoder that extracted the acoustic features on the training
set. Nevertheless, the result shows that the SPSS-based TTS framework is quite
promising if good acoustic models can be used. Note that the SAR was quite
effective when it was used for MGC modeling.

8.3 Remaining issues

Both results from the previous section and Chapter 6 showed that there is still a
gap between the synthetic and natural speech. Although recent work on Tactron
2 [4] has demonstrated synthetic speech with a natural quality, its framework
and feature design are different from the SPSS-based framework discussed in
this thesis. Certain aspects of the conventional SPSS framework may be further
improved. Here, we mainly consider the issue related to F0 modeling.

Remaining Issue I: incorrect linguistic features

The first factor may be the noise in the linguistic features used for the experiment.
In this thesis, all the linguistic features were derived using a TTS front-end for
both training and test data. It is well known that not every prosodic tag can be

150 Chapter 8. Conclusion

Table 8.1: Impact of noisy linguistic features on the DAR.

Linguistic features RMSE CORR V/U
OpenJTalk 28.30 0.903 3.46%

Manual annotation 23.31 0.940 3.25%

accurately predicted from the text [43]. In addition, incorrect word pronunciation,
stress, phrase boundary, and other linguistic features may have a huge impact on
F0 modeling. On the Japanese data, the mismatch between the characters in text
and the automatically derived phonemes is more serious.

In fact, we did experiments using the DAR and manually corrected linguistic
features, and the results are listed in Table 8.1. Note that the training and test sets
are slightly smaller than those used in previous chapters because of the missing
annotation on some utterances. Obviously, using correct linguistic features in the
training and test set could improve the performance by a large margin.

However, linguistic features cannot be perfectly predicted from a text. As
Halliday pointed out [3], a text is a lossy media to convey sufficient information for
speaking. Another pessimistic view is the famous one: accent is predictable (if
you’re a mind-reader)] [172]1. It is difficult to predict linguistic features perfectly.
Note that noise in the input data may act as a regularizer for a statistical model
[173][174]. However, the ‘noise’ caused by incorrect linguistic features may be too
large.

Remaining Issue II: incomplete linguistic features

It is not only the noise in the existing linguistic features but also missing linguistic
features that influence F0 modeling. Intonation is a half-tamed savage [22]. It has
not only the half side with a linguistic structure but also the other side that is
more close to animal communication. For the untamed-half, it is really difficult
to figure what triggers the change of F0 contour. It may be the current health
condition of the speaker, psychological status, or other factors that cannot be
easily described by categorical tags. In a word, we lack the necessary information.

More importantly, we even lack the complete linguistic features to fully explain

1The accent here means the prosodic tag

8.4 Final remark 151

the F0 movement. For example, the ToBI protocol does not try to explain all
the detailed F0 contours [175]. Although perceptually it may be unnecessary to
describe the detailed F0 contour, we agree with the opinion that any detail should
not be ignored by assuming they are not important [176]. Some researchers have
designed alternative linguistic features for SPSS-based TTS [177], which may be
worthy of trial.

Remaining Issue III: evaluation strategy

The last point is about the evaluation strategy, both objective and subjective.
First, if we could have a perfect objective metric that measures the perceptual
quality of a synthetic F0 contour, it would save the effort of subjective evaluation.
Although there is research work towards this direction [178], it is too early to
claim that such an objective metric could be accurate enough, F0-oriented, and
feasible for off-line evaluation. To approximate the perceptual quality of the F0,
there has been some work proposing different metrics [179]. However, it seems to
be difficult to define a proper metric.

If we want to evaluate the synthetic F0 model subjectively, the strategy of
evaluation also matters. Currently, all the subjective tests were conducted by
measuring the quality of isolated utterances. However, evaluating F0 contours in a
certain context would be more beneficial. This was not conducted in this thesis
because the corpora used are not suitable for dialogue-style test evaluation. A new
evaluation strategy may also be interesting to test the randomly sampled F0
contours from the DAR.

8.4 Final remark

• This thesis has used experiments to show the inappropriateness of joint F0
and spectral feature modeling in neural-network-based SPSS. This is the
first trial of the use of the highway network for investigation in the speech
synthesis community.

The reader should be careful: the conclusion we claimed may not apply to
every scenario. The decently uttered neural style reading speech used in this

152 Chapter 8. Conclusion

thesis may be well handled by the vocoders so that the F0 and spectral
features are well separated from the waveform. Indeed, this is the goal of
high-quality vocoders. However, for other speech data such as singing voice
or spontaneous speech, the extracted F0 and spectral features may not be
well separated. In such a case, joint modeling may be tried.

• This thesis proposed the SAR and DAR. Although the idea of AR dependency
is not new, the interpretation and analysis of the SAR and the DAR are
novel. Quantized F0 is also used in F0 generation for the first time. The
DAR is also the first model to support random sampling at the frame level.

The idea of DAR and SAR are general. As the toy network examples have
shown, DAR and SAR are theoretically better than the normal RNN. They
can be used for other data and different types of F0 sequential features.
Especially, our result in this chapter has shown that the SAR worked better
than RNN on spectral feature modeling.

• This thesis proposed the VAE-based F0 model. It achieved a high objective
performance (F0 correlation over 0.91) and is more efficient. Although the
VAE-based F0 model resembles many conventional F0 approaches that use
expert-knowledge based models, it does not assume any linguistic theory on
F0 but just uses a data-driven method. This may allow the VAE-based F0
model to be used for other data types or even different languages.

F0 modeling can be approached from various perspectives This thesis displayed
our trials on interpreting and improving the statistical models of the F0. Although
we are still the followers of pragmatism that tries to find engineering solutions to a
linguistic/speech-processing task, we hope we are not the ’Pendulum Swung Too
Far’ [180].

153

A
Appendix

A.1 Linguistic features for neural-network-based
SPSS

Linguistic features are automatically derived using the TTS front-ends listed
in Table A.1. Tables A.2 and A.3 show the linguistic features used for the
neural-network-based SPSS. These features are encoded as features vectors xt and
used as the input of neural networks.

Table A.1: Configuration of linguistic features

Feature name Dimension Front-end
Japanese linguistic feature vector 389 OpenJTalk [171]
English linguistic feature vector 382 Flite [181]

154 Chapter A. Appendix

Table A.2: Japanese linguistic features

Level Linguistic feature class

Phoneme

previous previous phoneme identity
previous phoneme identity
current phoneme identity
next phoneme identity
next-next phoneme identity

Mora difference between accent location and position of current mora
position of current mora in AP (forward and backward)

Word
part-of-speech (POS) of previous, current, and next word
inflected forms of previous, current, and next word
conjugation type of previous, current, and next word

Accent
phrase
(AP)

number of moras in previous, current, and next AP
accent type previous, current, and next AP
is previous AP interrogative or not
is current AP interrogative or not
is next AP interrogative or not
is there pause between previous and current AP
is there pause between next and current AP
position of current AP in BG by AP (forward and backward)
position of current AP in BG by mora (forward and backward)

Breath
group
(BG)

number of APs in previous, current, and next BG
number of moras in previous, current, and next BG
position of current BG by BG (forward and backward)
position of current BG by AP (forward and backward)
position of current BG by mora (forward and backward)

Utterance
number of BGs in this utterance
number of APs in this utterance
number of moras in this utterance

Frame position of current frame (forward and backward)
number of frames

Note: a mora is a phonological unit that consists of phones and determines
the timing of Japanese. For example, the word ‘Japan’ in Japanese has two
pronunciations: Ni-ho-n (3 moras) and Ni-p-po-n (4 moras).

The ‘accent type’ denotes the location where the pitch falls from high to low,
i.e., accent nucleus. For example, ha-shi (chopsticks, accent-type=1), a-na-ta (you,
accent-type=2). Default low-high accent-type is 0, e.g., ha-shi (bridge).

A.1 Linguistic features for neural-network-based SPSS 155

Table A.3: English linguistic features

Level Linguistic feature class

Phoneme

previous previous phoneme identity
previous phoneme identity
current phoneme identity
next phoneme identity
next-next phoneme identity
position of current phoneme in syllable (forward and backward)

Syllable

number of phonemes in previous, current, and next syllable
is previous syllable bearing lexical stress (stressed)?
is previous syllable bearing an English pitch-accent (accented)?
is current syllable bearing lexical stress (stressed)?
is current syllable bearing an English pitch-accent (accented)?
is next syllable bearing lexical stress (stressed)?
is next syllable bearing an English pitch-accent (accented)?
position of current syllable in word (forward and backward)
position of current syllable in phrase (forward and backward)
number of stressed syllables preceding current syllable in phrase
number of stressed syllables following current syllable in phrase
number of accented syllables preceding current syllable in phrase
number of accented syllables following current syllable in phrase
distance from previous stressed syllable, accented syllable
distance to next stressed syllable, accented syllable

Word

POS of previous, current, and next word
number of syllables in previous, current, and next word
position of current word in phrase (forward and backward)
how many content words follow current word in phrase
how many content words precede current word in phrase
distance from previous content word
distance to next content word

Phrase

number of syllables in previous, current, and next phrase
number of words in previous, current, and next phrase
position of current phrase in utterance (forward and backward)
ToBI boundary tone

Utterance number of syllables, words, phrases

Frame
position of current frame (forward)
position of current frame (backward)
number of frames

156 Chapter A. Appendix

A.2 Data corpora and acoustic features

This section lists the speech data corpora and the acoustic features used in this
thesis. Note that delta components are not used unless specified in the experiment.

Table A.4: Speech corpora used in this thesis

Blizzard Challenge
2011 Nancy voice
[182] (English)

Size: 12019 utterances, 16 hours
Format: 48kHz, 16bit, mono-channel waveform
Style: Neural reading style, female

training 11019 utterances
Division: validation 500 utterances

test 500 utterances

ATR Ximera corpora
F009 voice [183]

(Japanese)

Size: 30016 utterances, 48 hours
Format: 48kHz, 16bit, mono-channel waveform
Style: Neural reading style, female

training 29016 utterances
Division: validation 500 utterances

test 500 utterances

Table A.5: Configuration of acoustic features

Feature name Dimension Extractor
Mel-generalized cepstral (MGC) 60 STRAIGHT [15]

Band-aperiodicity (BAP) 25 STRAIGHT
F0 1 Multiple pitch trackers [184]

Note that the raw F0 is converted to the Mel-scale by 1127 log(1 + F0/700)
[185].

157

Bibliography

[1] Steve Young and Fallside Frank. Speech synthesis from concept: A method
for speech output from information systems. The Journal of the Acoustical
Society of America, 66(3):685–695, 1979.

[2] Paul Taylor. Text-to-Speech Synthesis. Cambridge University Press, 2009.

[3] Michael Alexander Kirkwood Halliday, Christian Matthiessen, and Michael
Halliday. An introduction to functional grammar. Routledge, 2014.

[4] Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly,
Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, RJ Skerry-Ryan,
et al. Natural TTS synthesis by conditioning WaveNet on Mel spectrogram
predictions. In Proc. ICASSP, pages 4779–4783, 2017.

[5] Julia Hirschberg. Using discourse context to guide pitch accent decisions
in synthetic speech. In Proc. ESCA Workshop on Speech Synthesis, pages
367–376, 1991.

[6] Manuel Sam Ribeiro. Suprasegmental representations for the modeling of
fundamental frequency in statistical parametric speech synthesis. PhD thesis,
The University of Edinburgh, 2018.

[7] Paul Taylor. Analysis and synthesis of intonation using the Tilt model.
JASA, 107(3):1697–1714, 2000.

[8] Santitham Prom-On, Yi Xu, and Bundit Thipakorn. Modeling tone and
intonation in Mandarin and English as a process of target approximation.
JASA, 125(1):405–424, 2009.

[9] Xin Wang, Shinji Takaki, and Junichi Yamagishi. A comparative study of
the performance of HMM, DNN, and RNN based speech synthesis systems
trained on very large speaker-dependent corpora. In Proc. SSW9, pages
125–128, 2016.

158 Bibliography

[10] Michael S. Scordilis and John N. Gowdy. Neural network based generation
of fundamental frequency contours. In Proc. ICASSP, pages 219–222 vol.1,
1989.

[11] Yoshinori Sagisaka. On the prediction of global F0 shape for Japanese
text-to-speech. In Proc. ICASSP, pages 325–328, 1990.

[12] Christof Traber. F0 generation with a data base of natural F0 patterns and
with a neural network. In Proc. ESCA Workshop on Speech Synthesis, pages
141–144, 1991.

[13] Henning Reetz and Allard Jongman. Phonetics: Transcription, production,
acoustics, and perception, volume 34. John Wiley & Sons, 2011.

[14] David Talkin. A robust algorithm for pitch tracking (RAPT). Speech coding
and synthesis, 495:518, 1995.

[15] Hideki Kawahara, Ikuyo Masuda-Katsuse, and Alain de Cheveigne. Re-
structuring speech representations using a pitch-adaptive time-frequency
smoothing and an instantaneous-frequency-based F0 extraction: Possible
role of a repetitive structure in sounds. Speech Communication, 27:187–207,
1999.

[16] Alain De Cheveigné and Hideki Kawahara. Yin, a fundamental frequency
estimator for speech and music. The Journal of the Acoustical Society of
America, 111(4):1917–1930, 2002.

[17] Arturo Camacho. SWIPE: A sawtooth waveform inspired pitch estimator for
speech and music. PhD thesis, University of Florida Gainesville, 2007.

[18] Masanori Morise, Fumiya Yokomori, and Kenji Ozawa. WORLD: A vocoder-
based high-quality speech synthesis system for real-time applications. IEICE
Trans. on Information and Systems, 99(7):1877–1884, 2016.

[19] Ingo R. Titze. Principles of Voice Production. Prentice Hall, 1994.

[20] Philip Lieberman and Sheila E Blumstein. Speech physiology, speech
perception, and acoustic phonetics. Cambridge University Press, 1988.

[21] Brian C J Moore. An Introduction to the Psychology of Hearing. Brill, 6th
edition, 2012.

[22] Carlos Gussenhoven. The phonology of tone and intonation. Cambridge
University Press, 2004.

Bibliography 159

[23] Jennifer J Venditti. The J_ToBI model of Japanese intonation. Prosodic
typology: The phonology of intonation and phrasing, pages 172–200, 2005.

[24] Alejna Brugos, Stefanie Shattuck-Hufnagel, and Nanette Veilleux. Transcrib-
ing prosodic structure of spoken utterances with ToBI. MIT Open Course
Ware, 2006.

[25] Jennifer Cole. Prosody in context: a review. Language, Cognition and
Neuroscience, 30(1-2):1–31, 2015.

[26] Janet Breckenridge Pierrehumbert. The phonology and phonetics of English
intonation. PhD thesis, Massachusetts Institute of Technology, 1980.

[27] Janet Pierrehumbert and Julia Bell Hirschberg. The meaning of intonational
contours in the interpretation of discourse. Intentions in communication,
pages 271–311, 1990.

[28] Julia Hirschberg. Studies of intonation and discourse. In Proc. ESCA
Workshop on Prosody, pages 90–95, 1993.

[29] Mara Breen, Evelina Fedorenko, Michael Wagner, and Edward Gibson.
Acoustic correlates of information structure. Language and cognitive processes,
25(7-9):1044–1098, 2010.

[30] Mattias Heldner, Jens Edlund, and Julia Hirschberg. Pitch similarity in the
vicinity of backchannels. In Proc. Interspeech, pages 3054–3057, 2010.

[31] Geoffrey N Leech. The pragmatics of politeness. Oxford Studies in Sociolinguis,
2014.

[32] Jonathan Culpeper. It’s not what you said, it’s how you said it!”: Prosody
and impoliteness. Discursive approaches to politeness, pages 57–83, 2011.

[33] David Crystal. Prosodic and paralinguistic correlates of social categories.
Social anthropology and language, pages 185–206, 1971.

[34] Haver C Cuerie. A projection of socio-linguistics: The relationship of speech
to social status. Southern Journal of Communication, 18(1):28–37, 1952.

[35] Robert W Frick. Communicating emotion: The role of prosodic features.
Psychological Bulletin, 97(3):412, 1985.

[36] Kim E. A. Silverman, Mary E. Beckman, John F. Pitrelli, Mari Ostendorf,
Colin W. Wightman, Patti Price, Janet B. Pierrehumbert, and Julia
Hirschberg. ToBI: a standard for labeling English prosody. In Proc. ICSLP,
pages 867–870, 1992.

160 Bibliography

[37] Thierry Dutoit. An Introduction to Text-to-speech Synthesis. Kluwer
Academic Publishers, Norwell, MA, USA, 1997.

[38] Mark Y Liberman and Kenneth W Church. Text analysis and word
pronunciation in text-to-speech synthesis. Advances in speech signal processing,
pages 791–831, 1992.

[39] Richard Sproat, Alan W Black, Stanley Chen, Shankar Kumar, Mari
Ostendorf, and Christopher Richards. Normalization of non-standard words.
Computer speech & language, 15(3):287–333, 2001.

[40] Alan W Black, Kevin Lenzo, and Vincent Pagel. Issues in building general
letter to sound rules. In Proc. SSW3, 1998.

[41] Christopher D Manning. Part-of-speech tagging from 97% to 100%: is it
time for some linguistics? In International Conference on Intelligent Text
Processing and Computational Linguistics, pages 171–189. Springer, 2011.

[42] Julia Hirschberg and Pilar Prieto. Training intonational phrasing rules
automatically for English and Spanish text-to-speech. Speech Communication,
18(3):281–290, 1996.

[43] Julia Hirschberg. Pitch accent in context predicting intonational prominence
from text. Artificial Intelligence, 63(1):305–340, 1993.

[44] Jan P.H. Van Santen. Assignment of segmental duration in text-to-speech
synthesis. Computer Speech & Language, 8(2):95–128, 1994.

[45] Andrew J Hunt and Alan W Black. Unit selection in a concatenative speech
synthesis system using a large speech database. In Proc. ICASSP, pages
373–376, 1996.

[46] Dennis H Klatt. Review of text-to-speech conversion for English. The
Journal of the Acoustical Society of America, 82(3):737–793, 1987.

[47] Keiichi Tokuda, Yoshihiko Nankaku, Tomoki Toda, Heiga Zen, Junichi
Yamagishi, and Keiichiro Oura. Speech synthesis based on hidden Markov
models. Proceedings of the IEEE, 101(5):1234–1252, 2013.

[48] Heiga Zen, Keiichi Tokuda, and Alan W Black. Statistical parametric speech
synthesis. Speech Communication, 51:1039–1064, 2009.

[49] Keiichi Tokuda, Takao Kobayashi, Takashi Masuko, and Satoshi Imai.
Mel-generalized cepstral analysis a unified approach. In Proc. ICSLP, pages
1043–1046, 1994.

Bibliography 161

[50] Fumitada Itakura. Line spectrum representation of linear predictor coefficients
of speech signals. The Journal of the Acoustical Society of America, 57(S1):S35–
S35, 1975.

[51] Gilles Degottex, Pierre Lanchantin, and Mark Gales. A log domain pulse
model for parametric speech synthesis. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2017.

[52] Tuomo Raitio, Antti Suni, Junichi Yamagishi, Hannu Pulakka, Jani Nurminen,
Martti Vainio, and Paavo Alku. HMM-based speech synthesis utilizing
glottal inverse filtering. IEEE Transactions on Audio, Speech, and Language
Processing, 19(1):153–165, 2011.

[53] Lauri Juvela, Bajibabu Bollepalli, Manu Airaksinen, and Paavo Alku. High-
pitched excitation generation for glottal vocoding in statistical parametric
speech synthesis using a deep neural network. In Proc. ICASSP, pages
5120–5124, 2016.

[54] Thomas Drugman and Tuomo Raitio. Excitation modeling for HMM-based
speech synthesis: breaking down the impact of periodic and aperiodic
components. In Proc. ICASSP, pages 260–264, 2014.

[55] Takayoshi Yoshimura, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi,
and Tadashi Kitamura. Mixed excitation for HMM-based speech synthesis.
In Proc. Eurospeech, pages 2263–2266, 2001.

[56] Ranniery Maia, Tomoki Toda, Heiga Zen, Yoshihiko Nankaku, and Keiichi
Tokuda. An excitation model for HMM-based speech synthesis based on
residual modeling. In Proc. SSW6, pages 131–136, 2007.

[57] Daniel Erro, Inaki Sainz, Eva Navas, and Inma Hernaez. Harmonics plus
noise model based vocoder for statistical parametric speech synthesis. IEEE
Journal of Selected Topics in Signal Processing, 8(2):184–194, 2014.

[58] Qiong Hu, Korin Richmond, Junichi Yamagishi, and Javier Latorre. An
experimental comparison of multiple vocoder types. In Proc. SSW8, pages
135–140, 2013.

[59] Akira Tamamori, Tomoki Hayashi, Kazuhiro Kobayashi, Kazuya Takeda, and
Tomoki Toda. Speaker-dependent WaveNet vocoder. In Proc. Interspeech,
pages 1118–1122, 2017.

[60] Zhen Hua Ling, Shi Yin Kang, Heiga Zen, Andrew Senior, Mike Schuster,
Xiao Jun Qian, Helen M Meng, and Li Deng. Deep learning for acoustic

162 Bibliography

modeling in parametric speech generation: A systematic review of existing
techniques and future trends. IEEE Signal Processing Magazine, 32(3):35–52,
2015.

[61] Heiga Zen, Alan Senior, and Martin Schuster. Statistical parametric speech
synthesis using deep neural networks. In Proc. ICASSP, pages 7962–7966,
2013.

[62] Yuchen Fan, Yap Qian, Feilong Xie, and Frank K. Soong. TTS synthesis with
bidirectional LSTM based recurrent neural networks. In Proc. Interspeech,
pages 1964–1968, 2014.

[63] Oliver Watts, Gustav Eje Henter, Thomas Merritt, Zhizheng Wu, and Simon
King. From HMMs to DNNs: where do the improvements come from? In
Proc. ICASSP, pages 5505–5509, 2016.

[64] Yuxuan Wang, R.J. Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J.
Weiss, Navdeep Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy
Bengio, Quoc Le, Yannis Agiomyrgiannakis, Rob Clark, and Rif A. Saurous.
Tacotron: Towards end-to-end speech synthesis. In Proc. Interspeech, pages
4006–4010, 2017.

[65] Hiroya Fujisaki and Keikichi Hirose. Analysis of voice fundamental frequency
contours for declarative sentences of Japanese. Journal of the Acoustical
Society of Japan (E), 5(4):233–242, 1984.

[66] Hansjörg Mixdorff. Intonation patterns of German-model-based quantitative
analysis and synthesis of F0 contours. PhD thesis, TU Dresden, 1998.

[67] Alan Black and Andnzw Hunt. Generating F0 contours from ToBI labels
using linear regression. In Proc. ICSLP, volume 3, pages 1385–1388, 1996.

[68] Manuel Sam Ribeiro, Junichi Yamagishi, and Robert AJ Clark. A perceptual
investigation of wavelet-based decomposition of f0 for text-to-speech synthesis.
In Proc. Interspeech, 2015.

[69] Manuel Sam Ribeiro and Robert A J Clark. A multi-level representation of
F0 using the continuous wavelet transform and the discrete cosine transform.
In Proc. ICASSP, pages 4909–4913, 2015.

[70] Christophe d’Alessandro and Piet Mertens. Automatic pitch contour
stylization using a model of tonal perception. Computer Speech & Language,
9(3):257 – 288, 1995.

Bibliography 163

[71] Kurt E Dusterhoff, Alan W Black, and Paul A Taylor. Using decision trees
within the Tilt intonation model to predict F0 contours. Proc. Eurospeech,
pages 1627–1630, 1999.

[72] Keikichi Hirose, Kentaro Sato, Yasufumi Asano, and Nobuaki Minematsu.
Synthesis of F0 contours using generation process model parameters predicted
from unlabeled corpora: Application to emotional speech synthesis. Speech
communication, 46(3):385–404, 2005.

[73] Hao Liu. Fundamental frequency modelling: an articulatory perspective
with target approximation and deep learning. PhD thesis, UCL (University
College London), 2017.

[74] Janet Pierrehumbert. Synthesizing intonation. The Journal of the Acoustical
Society of America, 70(4):985–995, 1981.

[75] Keiichi Tokuda, Takashi Masuko, Noboru Miyazaki, and Takao Kobayashi.
Multi-space probability distribution HMM. IEICE Trans. on Information
and Systems, 85(3):455–464, 2002.

[76] Kai Yu and Steve Young. Continuous F0 modeling for HMM based statistical
parametric speech synthesis. IEEE Transactions on Audio, Speech, and
Language Processing, 19(5):1071–1079, 2011.

[77] Takayoshi Yoshimura, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi,
and Tadasgu Kitamura. Simultaneous modeling of spectrum, pitch and
duration in HMM-based speech synthesis. In Proc. Eurospeech, pages
2347–2350, 1999.

[78] Keiichi Tokuda, Takayoshi Yoshimura, Takashi Masuko, Takao Kobayashi,
and Tadashi Kitamura. Speech parameter generation algorithms for HMM-
based speech synthesis. In Proc. ICASSP, pages 936–939, 2000.

[79] Xin Wang, Minghui Dong, and Zhenhua Ling. A full training framework of
cross-stream dependence modelling for HMM-based singing voice synthesis.
In Proc. ICASSP, pages 5165–5169, March 2016.

[80] Chengcheng Wang, Zhenhua Ling, Bufan Zhang, and Lirong Dai. Multi-layer
F0 modeling for HMM-based speech synthesis. In Proc. ISCSLP, pages 1–4.
IEEE, 2008.

[81] Yao Qian, Zhizheng Wu, Boyang Gao, and Frank K Soong. Improved prosody
generation by maximizing joint probability of state and longer units. IEEE
Trans. on Audio, Speech, and Language Processing, 19(6):1702–1710, 2011.

164 Bibliography

[82] Ming Lei, Yijian Wu, Frank K Soong, Zhen Hua Ling, and Lirong Dai. A
hierarchical F0 modeling method for HMM-based speech synthesis. In Proc.
Interspeech, pages 2170–2173, 2010.

[83] Xiaojun Zou, Xiao Bao, and Lidong Luo. Integration of intonation in F0
trajectory prediction using MSD-HMMs. In Proc. Speech Prosody, page 952,
2010.

[84] Shinji Takaki, SangJin Kim, Junichi Yamagishi, and Jongjin Kim. Multiple
feed-forward deep neural networks for statistical parametric speech synthesis.
Proc. Interspeech, pages 2242–2246, 2015.

[85] Heiga Zen and Haşim Sak. Unidirectional long short-term memory recurrent
neural network with recurrent output layer for low-latency speech synthesis.
In Proc. ICASSP, pages 4470–4474, 2015.

[86] Heiga Zen and Andrew Senior. Deep mixture density networks for acoustic
modeling in statistical parametric speech synthesis. In Proc. ICASSP, pages
3844–3848, 2014.

[87] Raul Fernandez, Asaf Rendel, Bhuvana Ramabhadran, and Ron Hoory.
Prosody contour prediction with long short-term memory, bi-directional,
deep recurrent neural networks. In Proc. Interspeech, pages 2268–2272, 2014.

[88] Sin Horng Chen, Shaw Hwa Hwang, and Yih Ru Wang. An RNN-based
prosodic information synthesizer for Mandarin text-to-speech. IEEE Trans-
actions on Speech and Audio Processing, 6(3):226–239, 1998.

[89] ITU-T. Methods for objective and subjective assessment of quality, 1996.

[90] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[91] Christopher M Bishop. Neural networks for pattern recognition. Oxford
university press, 1995.

[92] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85 – 117, 2015.

[93] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

Bibliography 165

[94] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. In David E. Rumelhart, James L.
McClelland, and CORPORATE PDP Research Group, editors, Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Vol.
1, pages 318–362. The MIT Press, 1986.

[95] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533, 1986.

[96] Terrence J Sejnowski and Charles R Rosenberg. Parallel networks that learn
to pronounce English text. Complex systems, 1(1):145–168, 1987.

[97] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

[98] Paul J Werbos. Backpropagation through time: what it does and how to do
it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[99] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh.
Clustering with bregman divergences. Journal of machine learning research,
6(Oct):1705–1749, 2005.

[100] Hiroshi Sawada, Hirokazu Kameoka, Shoko Araki, and Naonori Ueda.
Multichannel extensions of non-negative matrix factorization with complex-
valued data. IEEE Transactions on Audio, Speech, and Language Processing,
21(5):971–982, 2013.

[101] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the
evaluation of generative models. In Proc. ICLR, Apr 2016.

[102] Christopher M. Bishop. Mixture Density Networks. Technical report, Aston
University, 2004.

[103] Mike Schuster. Better generative models for sequential data problems:
Bidirectional recurrent mixture density networks. In Proc. NIPS, pages
589–595, 1999.

[104] John S Bridle. Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition. In
Neurocomputing, pages 227–236. Springer, 1990.

[105] Eric B Baum and Frank Wilczek. Supervised learning of probability
distributions by neural networks. In Neural information processing systems,
pages 52–61, 1988.

166 Bibliography

[106] Michael D Richard and Richard P Lippmann. Neural network classifiers
estimate Bayesian a posteriori probabilities. Neural computation, 3(4):461–
483, 1991.

[107] Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramon Fermandez,
Silvio Amir, Luis Marujo, and Tiago Luis. Finding function in form:
Compositional character models for open vocabulary word representation. In
Proc. EMNLP, pages 1520–1530, 2015.

[108] Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional
LSTM-CNNs-CRF. In Proc. ACL (Volume 1: Long Papers), volume 1, pages
1064–1074, 2016.

[109] Zhizheng Wu, Cassia Valentini-Botinhao, Oliver Watts, and Simon King.
Deep neural networks employing multi-task learning and stacked bottleneck
features for speech synthesis. In Proc. ICASSP, pages 4460–4464, 2015.

[110] Zhizheng Wu and Simon King. Investigating gated recurrent networks for
speech synthesis. In Proc. ICASSP, pages 5140–5144. IEEE, 2016.

[111] Srikanth Ronanki, Oliver Watts, and Simon King. A hierarchical encoder-
decoder model for statistical parametric speech synthesis. In Proc. Interspeech,
pages 1133–1137, 2017.

[112] Shiyin Kang and Helen Meng. Statistical parametric speech synthesis using
weighted multi-distribution deep belief network. In Proc. Interspeech, pages
1959–1963, 2014.

[113] Manuel Sam Ribeiro, Oliver Watts, Junichi Yamagishi, and Robert AJ Clark.
Wavelet-based decomposition of f0 as a secondary task for DNN-based speech
synthesis with multi-task learning. In Proc. ICASSP, pages 5525–5529.
IEEE, 2016.

[114] Xiang Yin, Ming Lei, Yao Qian, Frank K Soong, Lei He, Zhen-Hua Ling,
and Li-Rong Dai. Modeling F0 trajectories in hierarchically structured deep
neural networks. Speech Communication, 76:82–92, 2016.

[115] Srikanth Ronanki, Gustav Eje Henter, Zhizheng Wu, and Simon King. A
template-based approach for speech synthesis intonation generation using
LSTMs. In Proc. Interspeech, pages 2463–2467, 2016.

[116] Geoffrey E Hinton and Ruslan Salakhutdinov. Reducing the dimensionality
of data with neural networks. Science, 313(5786):504–507, 2006.

Bibliography 167

[117] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using RNN encoder–decoder for statistical machine
translation. In Proc. EMNLP, pages 1724–1734, 2014.

[118] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[119] Felix Gers. Long Short-Term Memory in Recurrent Neural Networks. PhD
thesis, Universität Hannover, 2001.

[120] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[121] Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A
Clockwork RNN. In Proc. ICML, pages 1863–1871, 2014.

[122] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway
networks. In Proc. Deep Learning Workshop, 2015.

[123] Bo Chen, Zhehuai Chen, Jiachen Xu, and Kai Yu. An investigation of
context clustering for statistical speech synthesis with deep neural network.
In Proc. Interspeech, pages 2212–2216, 2015.

[124] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma,
and Brian McWilliams. The shattered gradients problem: If ResNets are the
answer, then what is the question? In Proc. ICML, pages 342–350, 2017.

[125] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proc. CVPR, pages 770–778, 2016.

[126] Khe Chai Sim. On constructing and analysing an interpretable brain model
for the DNN based on hidden activity patterns. In Proc. ASRU, pages 22–29,
2015.

[127] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proc. AISTATS, pages 249–256, 2010.

[128] Oliver Watts, Junichi Yamagishi, and Simon King. The role of higher-level
linguistic features in HMM-based speech synthesis. In Proc. Interspeech,
pages 841–844, 2010.

[129] Gustav E. Henter, Thomas Merritt, Matt Shannon, Catherine Mayo, and
Simon King. Measuring the perceptual effects of modelling assumptions in
speech synthesis using stimuli constructed from repeated natural speech. In
Proc. Interspeech, pages 1504–1508, 2014.

168 Bibliography

[130] M Shannon. Probabilistic acoustic modelling for parametric speech synthesis.
PhD thesis, University of Cambridge, 2014.

[131] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

[132] Heiga Zen, Mark JF Gales, Yoshihiko Nankaku, and Keiichi Tokuda. Product
of experts for statistical parametric speech synthesis. IEEE Trans. on Audio,
Speech, and Language Processing, 20(3):794–805, 2012.

[133] Heiga Zen, Keiichi Tokuda, and Tadashi Kitamura. Reformulating the
HMM as a trajectory model by imposing explicit relationships between
static and dynamic feature vector sequences. Computer Speech & Language,
21(1):153–173, 2007.

[134] Kei Hashimoto, Keiichiro Oura, Yoshihiko Nankaku, and Keiichi Tokuda.
Trajectory training considering global variance for speech synthesis based on
neural networks. In Proc. ICASSP, pages 5600–5604, 2016.

[135] Brendan J. Frey. Graphical Models for Machine Learning and Digital
Communication. A Bradford book. Bradford book, 1998.

[136] Sanjit Kumar Mitra and Yonghong Kuo. Digital signal processing: a
computer-based approach, volume 2. McGraw-Hill Higher Education New
York, 2006.

[137] R Viswanathan and John Makhoul. Quantization properties of transmission
parameters in linear predictive systems. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 23(3):309–321, 1975.

[138] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,
2006.

[139] John G Proakis and Dimitris G Manolakis. Digital signal processing:
principles, algorithms, and applications. Upper Saddle River, NJ: Prentice
Hall, 1996.

[140] Sophocles J. Orfanidis. Optimum Signal Processing: An Introduction.
Macmillan publishing company, 1988.

[141] Frank K. Soong and Bling-Hwang Juang. Line spectrum pair (LSP) and
speech data compression. In Proc. ICASSP, volume 9, pages 37–40. IEEE,
1984.

Bibliography 169

[142] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing
flows. In Proc. ICML, pages 1530–1538, 2015.

[143] Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,
and Max Welling. Improved variational inference with inverse autoregressive
flow. In Proc. NIPS, pages 4743–4751, 2016.

[144] Mark J.F. Gales. Maximum likelihood linear transformations for HMM-based
speech recognition. Computer speech & language, 12(2):75–98, 1998.

[145] Junichi Yamagishi, Takao Kobayashi, Yuji Nakano, Katsumi Ogata, and
Juri Isogai. Analysis of speaker adaptation algorithms for HMM-based
speech synthesis and a constrained SMAPLR adaptation algorithm. IEEE
Transactions on Audio, Speech, and Language Processing, 17(1):66–83, 2009.

[146] Jakub M Tomczak and Max Welling. Improving variational auto-encoders
using householder flow. arXiv preprint arXiv:1611.09630, 2016.

[147] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[148] Xin Wang, Shinji Takaki, and Junichi Yamagishi. An autoregressive recurrent
mixture density network for parametric speech synthesis. In Proc. ICASSP,
pages 4895–4899, 2017.

[149] Xin Wang, Jaime Lorenzo-Trueba, Shinji Takaki, Lauri Juvela, and Junichi
Yamagishi. A comparison of recent waveform generation and acoustic
modeling methods for neural-network-based speech synthesis. In Proc.
ICASSP, pages 4804–4808, 2018.

[150] Neville J Ford, Dmitry V Savostyanov, and Nickolai L Zamarashkin. On the
decay of the elements of inverse triangular toeplitz matrices. SIAM Journal
on Matrix Analysis and Applications, 35(4):1288–1302, 2014.

[151] Michael I Jordan. Serial order: A parallel distributed processing approach.
In Advances in psychology, volume 121, pages 471–495. Elsevier, 1997.

[152] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Proc. NIPS, pages 3104–3112, 2014.

[153] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show
and tell: A neural image caption generator. In Computer Vision and Pattern
Recognition (CVPR), 2015 IEEE Conference on, pages 3156–3164. IEEE,
2015.

170 Bibliography

[154] Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther.
Sequential neural models with stochastic layers. In Proc. NIPS, pages
2199–2207, 2016.

[155] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal
Jozefowicz, and Samy Bengio. Generating sentences from a continuous space.
In Proc. CoNLL, pages 10–21, 2016.

[156] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network
language model. In Proc. AISTATS, volume 5, pages 246–252, 2005.

[157] Ronald J Williams and David Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural computation, 1(2):270–280,
1989.

[158] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba.
Sequence level training with recurrent neural networks. Proc. ICLR, 2016.

[159] Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal,
John Schulman, Ilya Sutskever, and Pieter Abbeel. Variational lossy
autoencoder. In Proc. ICLR, pages –, 2017.

[160] Ferenc Huszár. How (not) to train your generative model: Scheduled
sampling, likelihood, adversary? arXiv preprint arXiv:1511.05101, 2015.

[161] Nobuaki Minematsu, Ryo Kuroiwa, Keikichi Hirose, and Michiko Watanabe.
CRF-based statistical learning of Japanese accent sandhi for developing
Japanese text-to-speech synthesis systems. In Proc. SSW6, 2007.

[162] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete
representation learning. In Proc. NIPS, page to appear, 2017.

[163] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output
representation using deep conditional generative models. In Proc. NIPS,
pages 3483–3491, 2015.

[164] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[165] Klaus Greff, Rupesh K Srivastava, and Jürgen Schmidhuber. Highway and
residual networks learn unrolled iterative estimation. In Proc. ICLR, 2017.

[166] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning Research, 15(1):1929–1958,
2014.

Bibliography 171

[167] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Proc. ICLR, page unknown, 2014.

[168] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[169] Kou Tanaka, Hirokazu Kameoka, and Kazuho Morikawa. VAE-SPACE:
Deep generative model for voice fundamental frequency contours. In Proc.
ICASSP, pages 5779–5793, 2018.

[170] Nicolas Obin and Julie Beliao. Sparse coding of pitch contours with deep
auto-encoders. In Proc. Speech Prosody, page To appear, 2018.

[171] HTS Working Group. The Japanese TTS System ‘Open JTalk’, 2015.

[172] Dwight Bolinger. Accent is predictable (if you’re a mind-reader). Language,
pages 633–644, 1972.

[173] Chris M Bishop. Training with noise is equivalent to tikhonov regularization.
Neural computation, 7(1):108–116, 1995.

[174] Christopher M Bishop. Regularization and complexity control in feed-forward
networks. Technical Report NCRG/95/22, Aston University, 1995.

[175] Mary E. Beckman and Gayle Ayers. Guidelines for ToBI labelling. The OSU
Research Foundation, 3, 1997.

[176] Jan van Santen and Bernd Möbius. Modeling pitch accent curves. In
Intonation: Theory, Models and Applications, 1997.

[177] Rasmus Dall, Kei Hashimoto, Keiichiro Oura, Yoshihiko Nankaku, and
Keiichi Tokuda. Redefining the linguistic context feature set for HMM
and DNN TTS through position and parsing. In Proc. Interspeech, pages
2851–2855, 2016.

[178] Brian Patton, Yannis Agiomyrgiannakis, Michael Terry, Kevin Wilson, Rif A
Saurous, and D Sculley. Automos: Learning a non-intrusive assessor of
naturalness-of-speech. arXiv preprint arXiv:1611.09207, 2016.

[179] Robert AJ Clark and Kurt E Dusterhoff. Objective methods for evaluating
synthetic intonation. In Proc. Eurospeech, 1999.

[180] Kenneth Church. A pendulum swung too far. Linguistic Issues in Language
Technology, 6(5):1–27, 2011.

172 Bibliography

[181] HTS Working Group. The English TTS system Flite+HTS_engine, 2014.

[182] Simon King and Vasilis Karaiskos. The Blizzard Challenge 2011. In Proc.
Blizzard Challenge Workshop, pages 1–10, 2011.

[183] Hisashi Kawai, Tomoki Toda, Jinfu Ni, Minoru Tsuzaki, and Keiichi Tokuda.
XIMERA: A new TTS from ATR based on corpus-based technologies. In
Proc. SSW5, pages 179–184, 2004.

[184] Lauri Juvela, Xin Wang, Shinji Takaki, SangJin Kim, Manu Airaksinen, and
Junichi Yamagishi. The NII speech synthesis entry for Blizzard Challenge
2016. In Proc. Blizzard Challenge Workshop, 2016.

[185] Douglas O’Shaughnessy. Speech Communications: Human and Machine.
Institute of Electrical and Electronics Engineers, 2000.

	1 Introduction
	1.1 Background
	1.2 Thesis overview
	1.2.1 Motivation
	1.2.2 Topic and scope
	1.2.3 Issues to be addressed
	1.2.4 Contribution

	1.3 Outline of thesis

	2 F0 Modeling for TTS
	2.1 Introduction to F0
	2.1.1 F0 in signal processing
	2.1.2 F0 in speech production
	2.1.3 F0 in speech perception
	2.1.4 Terminology

	2.2 TTS systems
	2.2.1 TTS front-end
	2.2.2 TTS back-end using SPSS

	2.3 F0 modeling for TTS
	2.3.1 Deterministic F0 representation
	2.3.2 F0 modeling based on compact F0 representation
	2.3.3 Frame-level statistical F0 modeling
	2.3.4 Evaluation metrics

	3 Neural Networks
	3.1 Neural networks as deterministic functions
	3.1.1 A simple network for the XOR problem
	3.1.2 Feedforward neural network
	3.1.3 Recurrent neural network

	3.2 Neural networks as probabilistic models
	3.3 Mixture density network
	3.4 Neural classifier models for classification
	3.5 Baseline neural F0 modeling method
	3.6 Limitations of baseline neural F0 models

	4 Investigating F0 Modeling Using Highway Networks
	4.1 Joint modeling of F0 and spectral features?
	4.2 Definition of highway network
	4.2.1 Computation flow
	4.2.2 Multi- and single-stream highway network for SPSS

	4.3 Evaluation methodology and analysis tools
	4.3.1 Evaluation methodology
	4.3.2 Analysis tools

	4.4 Results and analyses on the English corpus
	4.4.1 Results of objective evaluation
	4.4.2 Analyses of hidden representations
	4.4.3 Analyzing sensitivity to input features

	4.5 Results and analyses on the Japanese corpus
	4.6 Summary

	5 Shallow Autoregressive Neural F0 model
	5.1 Conditional independence in baseline models
	5.2 Definition of shallow AR model
	5.3 SAR as neural network plus digital filters
	5.3.1 Interpretation based on signal and filter
	5.3.2 Stability of SAR

	5.4 SAR as neural network plus normalizing flow
	5.4.1 Rule of changing random variable
	5.4.2 SAR as neural network plus normalizing flow
	5.4.3 Extended SAR with time-variant transformation

	5.5 Evaluating SAR
	5.5.1 Data and configuration
	5.5.2 Pilot test I: effectiveness of SAR stability constraints
	5.5.3 Pilot test II: Selection of AR dependency order
	5.5.4 Evaluating SAR against baseline models

	5.6 Summary

	6 Deep Autoregressive Neural F0 model
	6.1 Weakness of SAR
	6.1.1 Random sampling on SAR
	6.1.2 Weakness of linear AR dependency in SAR

	6.2 From SAR to DAR
	6.2.1 Model definition
	6.2.2 Comparison between DAR and SAR

	6.3 DAR for F0 modeling
	6.3.1 Quantized F0 modeling
	6.3.2 Hierarchical softmax for F0 modeling
	6.3.3 Exposure bias and data dropout

	6.4 Experiments
	6.4.1 Data and configuration
	6.4.2 Pilot test I: continuous versus quantized F0
	6.4.3 Pilot test II: hierarchical versus normal softmax
	6.4.4 Pilot test III: effectiveness of data dropout
	6.4.5 Evaluation of DAR against other F0 models

	6.5 Random sampling from DAR
	6.6 Summary

	7 Variational-auto-encoder-based F0 model
	7.1 Motivation
	7.2 VAE-based F0 model
	7.2.1 VQVAE-based F0 encoder and decoder
	7.2.2 Linguistic linker

	7.3 Experiments
	7.3.1 Data and configuration
	7.3.2 Part I: F0 encoding and decoding using VQVAE
	7.3.3 Visualization of code space
	7.3.4 Part II: Text-to-code using linguistic linker
	7.3.5 Compare VAE-based F0 model with DAR

	7.4 Summary

	8 Conclusion
	8.1 Replies to the three issues of neural F0 modeling
	8.2 Apply proposed F0 model in TTS systems
	8.3 Remaining issues
	8.4 Final remark

	A Appendix
	A.1 Linguistic features for neural-network-based SPSS
	A.2 Data corpora and acoustic features

	Bibliography

