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ABSTARCT 1 

The brain function is mediated by complex and highly ordered neural circuits. Proper 2 

neuronal circuit wiring relies on precise dendritic projection, which is established 3 

through activity-dependent refinement during early postnatal development. Here I 4 

revealed a dynamic mechanism of dendritic refinement in the mammalian brain by 5 

conducting long-term imaging of the neonatal mouse barrel cortex, where layer 4 (L4) 6 

spiny stellate (SS) neurons extend basal dendrites (BDs) predominantly toward 7 

thalamocortical axons (TCAs) corresponding to single whiskers. By retrospective 8 

analysis, I identified prospective barrel-edge SS neurons in early neonates, which had an 9 

apical dendrite and primitive BDs. These neurons underwent gradual apical dendrite 10 

retraction and continuous BD tree turnover in all directions. Meanwhile, some, but not 11 

all, BD trees oriented toward appropriate TCAs became winners, exhibiting longevity 12 

and extensive elaboration. When the spatial bias of TCA inputs to SS neurons was 13 

absent, BD tree turnover was suppressed, and most BD trees became stable and 14 

elaborated mildly. Thus, barrel-edge SS neurons could establish the characteristic BD 15 

projection pattern through differential dynamics of dendritic trees induced by spatially 16 

biased inputs.  17 
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INTRODUCTION 18 

A central question in neuroscience is how cortical circuits are established during 19 

postnatal development, wherein initial primitive circuits are refined by periphery-20 

derived neural activity (Goodman and Shatz, 1993; Katz and Shatz, 1996; Sur and 21 

Rubenstein, 2005). Dendritic projection patterns of neurons define types of information 22 

each neuron receives and processes; thus, it is critical to understand how specific 23 

dendritic projection patterns are established during development (Emoto, 2011; Wong 24 

and Ghosh, 2002). While some molecules involved in dendritic refinement, in which 25 

cortical neurons extend their dendrites toward appropriate presynaptic axons, have been 26 

identified (Emoto, 2011; Whitford et al., 2002; Wong and Ghosh, 2002; Wu et al., 27 

2011), how cortical neurons dynamically refine their dendrites and how neural activity 28 

regulates these dynamics have remained largely unexplored. 29 

To analyze dendritic refinement of cortical neurons, we have used layer 4 (L4) 30 

spiny stellate (SS) neurons in the mouse primary somatosensory cortex (barrel cortex) 31 

as a model (Datwani et al., 2002; Iwasato et al., 2000; Iwasato et al., 1997; Iwasato et 32 

al., 2008). This area contains “barrels”, which are morphological and functional 33 

modules arranged to correspond with facial whiskers (Woolsey and Van der Loos, 1970) 34 

(Figure 1a). SS neurons located around the barrel edge (edge-SS or eSS neurons) extend 35 
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their basal dendrites (BDs) asymmetrically toward the barrel center, where termini of 36 

thalamocortical axons (TCAs) transmitting information from a single whisker form a 37 

cluster (Fox, 2008; Woolsey et al., 1975). These characteristic barrel morphologies are 38 

formed during the first postnatal week in a periphery-derived input-dependent manner 39 

(Harris and Woolsey, 1981; Li et al., 2013; Narboux-Nême et al., 2012), making them a 40 

key model of the developmental refinement of cortical circuits. In particular, BD 41 

refinement of eSS neurons is an excellent model because in the mouse barrel cortex, an 42 

eSS neuron has appropriate presynaptic TCAs only at the side of the barrel center. 43 

Therefore, it is possible to quantitatively analyze dendritic projection specificity as BD 44 

orientation bias toward the barrel center.  45 

Two-photon microscopy has been widely applied for in vivo imaging of 46 

structural plasticity in adult neuronal circuits, such as spine formation/elimination 47 

associated with learning and memory (Holtmaat and Svoboda, 2009; Yang et al., 2009). 48 

For studies of structural plasticity in the developing mammalian brain, two-photon in 49 

vivo imaging has been used to monitor morphological dynamics of dendritic spines and 50 

filopodia of cortical pyramidal neurons (Lendvai et al., 2000; Zuo et al., 2005), climbing 51 

fiber axons in the cerebellum (Carrillo et al., 2013), thalamocortical and Cajal-Retzius 52 

axons in cortical layer 1 (Portera-Cailliau et al., 2005), and so on. In contrast, technical 53 
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difficulties have hindered the use of in vivo time-lapse imaging in studies on the 54 

dynamics of dendritic development in mammals, which occurs during early postnatal 55 

development. Major difficulties include (1) sparse yet intense in vivo labeling of 56 

neurons, which is necessary for visualization of detailed dendritic morphology, (2) in 57 

vivo labeling of specific axons that are presynaptic to dendrites of an identified neuron, 58 

and (3) use and maintenance of fragile newborn mice during in vivo imaging sessions. 59 

For these reasons, instead of in vivo imaging, acute or chronic slice culture has been 60 

predominantly used for two-photon or confocal time-lapse imaging of dendritic 61 

development (e.g., dendritic arborization) in the mammalian cortex (Portera-Cailliau et 62 

al., 2003), hippocampus (Lohmann et al., 2005; Wayman et al., 2006) and cerebellum 63 

(Fujishima et al., 2012). Alternatively, transparent vertebrates such as Xenopus tadpoles 64 

(Haas et al., 2006; Sin et al., 2002) and zebrafish larvae (Niell et al., 2004), have been 65 

used for in vivo time-lapse imaging of dendritic development in the brain and/or retina. 66 

As the first step toward in vivo imaging of dendritic refinement in the 67 

mammalian brain, our laboratory recently developed two methods: (1) the “Supernova” 68 

system, which allows sparse and bright in vivo labeling of cortical L4 neurons when 69 

used in combination with in utero electroporation-based gene transfer (Luo et al., 2016; 70 

Mizuno et al., 2014), and (2) TCA-GFP transgenic (Tg) mice, which allows in vivo 71 
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labeling of TCAs (Mizuno et al., 2014). These innovations have allowed us to conduct 72 

short-term (18-h) in vivo imaging of SS neuron BDs starting at postnatal day 5 (P5) 73 

(Mizuno et al., 2014). This study provided the first in vivo observation of dendritic 74 

dynamics in the neonatal mammalian brain, in which small-scale dynamics (i.e., 75 

elongation/retraction of dendritic branches) were analyzed. However, this study is 76 

insufficient, because dendritic refinement is already nearly completed at P5 (See 77 

Mizuno et al., 2014). Therefore, to fully understand dynamic mechanisms of BD 78 

refinement of SS neurons, long-term (over days) imaging starting at earlier neonatal 79 

stages was awaited. 80 

In the current study, I have succeeded in in vivo visualization of SS neuron 81 

dendrites in mouse pups as early as P3, developing a system by which neonatal mice 82 

grow up with adequate maternal care during intervals of imaging sessions over days. 83 

Based on these preparations, long-term (3-d-long) imaging of the SS neuron dendrites 84 

was achieved and large-scale dendritic dynamics (e.g., emergence/elimination of 85 

“dendritic trees”) was analyzed. The analysis revealed only a fraction of inner BD trees 86 

become “winners”, exhibiting high stability and extensive elaboration. Also, I revealed 87 

the role of spatial patterns of periphery-derived inputs in the selection dynamics of BD 88 

refinement. 89 
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In addition, it is important that my long-term imaging of the same neurons over 90 

time allowed for “retrospective” identification of prospective SS neurons during early 91 

neonatal stages, such as P3. In these stages, most SS neurons show morphological 92 

features similar to another type of L4 excitatory neurons, star pyramid (SP) (Callaway 93 

and Borrell, 2011). Time-lapse imaging enabled characterization of features of 94 

prospective SS neurons at early neonatal stages by using information obtained at later 95 

developmental stages (e.g., P6). The retrospective analysis also revealed the presence of 96 

two phases in eSS neuron BD refinement during neonatal stages. Thus, the novel in vivo 97 

imaging system contributes to the understanding of developmental mechanisms of 98 

cortical maturation in neonates. 99 

 100 

RESULTS 101 

Time-lapse imaging of the same L4 neurons in neonates over 3 days 102 

In L4 of the developing mouse barrel cortex, whisker-specific TCA clusters emerge in 103 

the barrel center around P3 (Mizuno et al., 2014), and eSS neurons acquire their 104 

characteristic BDs, which are asymmetrically extended within single barrels, primarily 105 

by P6 (Espinosa et al., 2009; Mizuno et al., 2014). Therefore, in the present study, to 106 

characterize the detailed time course of L4 SS neuron BD refinement, I sought to 107 
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perform long-term in vivo time-lapse imaging starting at P3 or earlier and ending at P6 108 

(Figure 1b). To visualize the detailed dendritic morphology of individual L4 neurons, 109 

L4 neurons were sparsely labeled with RFP using our in utero electroporation-based 110 

Supernova method (Luo et al., 2016; Mizuno et al., 2014). To visualize the barrel map in 111 

vivo, TCA-GFP Tg mice expressing EGFP in TCAs (Mizuno et al., 2014) were used 112 

(Figures 1c and 1d). 113 

To achieve long-term neonatal imaging over 3 d, it is necessary for pups to 114 

have maternal care between imaging sessions. Maternal care is important not only to 115 

give pups sufficient nutrition but also to supply them with natural whisker inputs 116 

(Akhmetshina et al., 2016) and reduce separation stress that could affect brain 117 

development (Krugers and Joels, 2014). However, in initial trials most pups (63%; 5/8 118 

pups) were neglected, killed, and/or injured by mothers within a day after surgery. To 119 

solve this problem, I first designed an extremely small titanium bar to help minimize 120 

discomfort of mothers during breast-feeding (Figure 1e). Second, I selected foster 121 

mothers that showed good results in nursing neonatal mice that had a cranial 122 

window/titanium bar. These improvements increased the probability of pups that 123 

underwent surgery at P3 (90%; 19/21 pups) or P2 (73%; 8/11 pups) were nursed 124 

normally until P6, at which time, the observation was terminated (Figures 1b and 1f). 125 
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Imaging of L4 neurons was performed repeatedly every 8 h from late P3 (P3L; 126 

around 8 PM) to late P5 (P5L) and at late P6 (P6L) (Figures 1b, 1g–1l). In a few cases, 127 

imaging was started at late P2 (P2L). Because L4 neurons were sparsely labeled and the 128 

relative positions of neurons were roughly conserved, it was easy to identify the same 129 

neurons in images taken at different time points (imaging sessions) (Figures 1g and 1j). 130 

All neurons (70 neurons from 5 mice) observed at P3Lwere present at P6L, indicating 131 

that there was no cell death during imaging sessions. 132 

Time-lapse-imaged (TL) pups significantly increased in body weight from P3L 133 

to P6L, as did control pups, and there was no significant difference between TL and 134 

control pups even at P6L (Figure 1m). The barrel field size of P6L TL pups was larger 135 

than that of P3L controls and similar to that of P6L controls (Figure 1n), in which 136 

cortical tangential sections prepared from TL pups immediately after the P6L imaging or 137 

sections prepared from normal pups at P3L and P6L were used. The total BD length and 138 

BD tip number of L4 neurons in TL pups increased 3.0-fold and 2.7-fold, respectively, 139 

between P3L and P6L (Figures 1o and 1q), and both were similar between TL and 140 

control pups at P6L (Figures 1p and 1r). The control analyses were done by in vivo 141 

imaging of non-TL pups (control), to which a cranial window/titanium bar was attached 142 

at P6, and TL pups at P6L. Taken together, these results demonstrate that long-term 143 
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imaging over 3–4 d starting at P3 or P2 causes no obvious abnormalities in brain 144 

development through P6L. 145 

 146 

Two types of L4 neurons distinguished by apical dendrite dynamics 147 

When I compared dendritic morphologies of the same L4 neurons at P3L and P6L, a 148 

striking difference was observed in apical dendrite (AD) (Figure 2a). Most (97%, 36/37) 149 

L4 neurons had AD (29.03 to 228.29 µm-long) at P3L, and majority of them lost their 150 

AD during later development; at P6L, 54% (20/37) had no AD. Analysis of daily 151 

changes in AD length by comparing images of the same L4 neurons taken at P3L, P4L, 152 

P5L, and P6L (also at P2L in some cases) allowed us to classify individual L4 neurons 153 

into two groups (Groups 1 and 2). Neurons which shortened AD during imaging 154 

sessions were classified as Group 1 (Figure 2b and Supplementary Figure 1, red lines). 155 

In some neurons of Group 1, AD was extended prior to initiation of retraction. One 156 

neuron had no AD at P3L (Supplementary Figure 1), which was also classified as Group 157 

1. On the other hand, neurons that continuously extended AD throughout imaging 158 

sessions were classified as Group 2 (Figure 2b and Supplementary Figure 1, blue lines). 159 

Based on this criterion, neurons shown in Figures 1h–1i and Figures 1k–1l were 160 

classified as Group 1 and Group 2 neurons, respectively. Figures 2c and 2d also show 161 
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representative Group 1 and Group 2 neurons, respectively. Among fifty-one L4 neurons 162 

analyzed, 76% (39 neurons) and 24% (12 neurons) were categorized as Group 1 and 163 

Group 2 neurons, respectively (Table 1). 164 

Morphological aspects of BDs were compared between Group 1 and Group 2 165 

neurons. Increases in the total BD length were not different between the two groups 166 

(approximately 3-fold increase in both groups) (Figure 2e). BD orientation bias toward 167 

the barrel center of these neurons was analyzed using an orientation bias index (OBI) 168 

(See Methods for details).Only the neurons located at the barrel edge were selected for 169 

the analysis (Figure 2i and Table 1). I found that at P6L, the OBI of Group 1 neurons 170 

was quite high (Figure 2j), indicating that their BDs showed strong orientation bias 171 

toward the barrel side, while the OBI of Group 2 neurons was close to 0.5 (Figure 2j), 172 

indicating their BDs did not show orientation bias. 173 

In the adult mouse barrel cortex, the majority (65–80%) of L4 neurons are SS 174 

neurons with no AD and multiple BDs projecting specifically within a single barrel. The 175 

other 20–35% are SP neurons with an AD and multiple BDs showing no orientation bias 176 

(Fox, 2008; Lübke and Feldmeyer, 2007; Staiger et al., 2004). In my observation, 76% 177 

of L4 neurons were Group 1 and 24% were Group 2. Group 1 neurons possessed no (or 178 

short) AD and their BDs exhibited strong orientation bias at P6L, while Group 2 neurons 179 
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possessed a long AD and their BDs exhibited no orientation bias. These characteristics 180 

of Group 1 and Group 2 neurons were consistent with those of SS and SP neurons, 181 

respectively. Therefore, hereafter, Group 1 neurons are referred to as SS neurons and 182 

Group 2 neurons as SP neurons, although the possibility cannot be excluded that Group 183 

2 may contain a few SS neurons whose maturation was slower than others. 184 

A recent histological study primarily using the ferret visual cortex 185 

demonstrated that virtually all L4 excitatory neurons in early postnatal stages have 186 

pyramidal shapes with a long AD and primitive BDs (Callaway and Borrell, 2011). This 187 

was confirmed in the current study in the mouse barrel cortex. I also found that 188 

prospective SS neurons that exhibit a pyramidal shape lose their AD during 189 

development, providing direct evidence for developmental sculpting of SS neuron AD, 190 

as proposed by Callaway and Borrell. In addition, I report three new findings. First, the 191 

AD was lost from SS neurons by gradual retraction (Figures 2b, 2c). Second, the 192 

initiation timing and velocity of AD retraction varied among neurons even in the same 193 

animals (Supplementary Figure 1). Third, once ADs started to retract, they did not 194 

extend again at least in my observation (Supplementary Figure 1). 195 

 196 

Retrospective characterization of prospective eSS neurons 197 
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Since SS neurons initially had an AD similar to that of SP neurons, it is possible that 198 

initiation of AD retraction in SS neurons may precede and/or trigger morphological 199 

differentiation. This possibility was examined by the “retrospective” analysis.  200 

To elucidate whether SS and SP neurons exhibit morphological differences in 201 

early neonatal stages, it is useful to compare the BD orientation bias of SS and SP 202 

neurons at P3L. However, at this age, the TCA-GFP signal was too weak to clearly 203 

visualize the barrel boundary in vivo. In addition, relative positions of SS neurons could 204 

shift slightly between P3L and P6L due to brain enlargement (Figure 1n) and possibly 205 

from SS neuron tangential migration. These issues hindered determination of the precise 206 

barrel boundary at P3L. Therefore, the simple version of OBI, which divides BD 207 

segment length in the barrel-center half (inside) by total BD length (See Methods for 208 

details), was adopted in the current study. The relative positions of individual L4 209 

neurons were roughly conserved between P3L and P6L (e.g., Figures 1g and 1j), 210 

therefore I assumed that the barrel-center direction from each L4 neuron was also 211 

conserved. Approximate barrel-center direction was determined by barrel map 212 

visualized at later developmental stages (e.g., P6L). In this analysis, only neurons 213 

located at the barrel edge at P6L (eSS and barrel-edge SP (eSP) neurons) were included.  214 

Intriguingly, the OBI of eSP neurons was close to 0.5, and that of eSS neurons was 215 
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significantly larger than that of eSP neuron BDs at P3L (Figure 2g), suggesting that eSS 216 

neurons already had BD orientation bias toward the barrel center as early as P3, when 217 

TCA termini start to form clusters in the barrel center (See Figure 3D of Mizuno et al., 218 

2014). Then, OBI quantification was repeated using only eSS neurons that had an intact 219 

AD at P3L (See Methods for details). Again, the OBI of these neurons was significantly 220 

larger than that of eSP neurons at P3L (Figure 2h), although AD lengths were similar 221 

between these two groups of neurons at this age (eSS neurons with intact AD, 165.0 ± 222 

7.6 µm; eSP, 166.0 ± 12.2 µm). Thus, SS neurons have the morphological feature 223 

distinct from SP neurons, even before initiation of AD retraction. In other words, 224 

initiation of AD retraction is not the cause or trigger of SS neuron differentiation. 225 

 I then examined which aspects of BD morphology contribute to the initial 226 

orientation bias of prospective eSS neurons at P3 through detailed analysis of BD 227 

morphologies (Figure 3). In the current study, my analyses were focused mostly on “BD 228 

trees” rather than BD branches, because it appeared to be more informative for the 229 

reason described later. BD tree indicate the primary dendrite and its branches (e.g., 230 

Figure 3e, scheme of P6L neuron, orange colored segments compose one tree). BD trees 231 

were categorized into 2 groups: “inner trees” with origins located in the barrel center-232 

side half (inside) and “outer trees” with origins on the opposite side (outside). At P3L, 233 
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the number of inner trees of eSS neurons was significantly larger than that of outer trees 234 

(Figure 3c, P3L). On the other hand, lengths and tip numbers of individual trees were 235 

similar inside and outside in both eSS (Figures 3e and 3f, P3L). These results suggest 236 

that BD orientation bias of eSS neurons at P3L is not accomplished by differential 237 

elaboration of individual inner and outer trees, but rather by the difference in the 238 

numbers of trees inside and outside the barrel. 239 

 240 

Two phases in eSS neuron BD refinement in neonates 241 

Although prospective eSS neurons already showed some BD orientation bias at P3L, BD 242 

morphology was still primitive at this stage, precluding more extensive directionality. 243 

However, BDs elaborated dramatically between P3L and P6L (Figures 2e and 3a) and 244 

this was accompanied by a significant increase in OBI (Figure 3b). I next examined 245 

which aspects of BD morphological changes influenced the OBI increment of eSS 246 

neurons between P3L and P6L. The ratio of inner tree numbers to total ones did not 247 

increase between P3 and P6 (Figure 3d). In contrast, the length of individual inner trees 248 

was significantly larger at P6L than at P3L (Figure 3e, inside). In addition, individual 249 

inner trees had more tips at P6L than at P3L (Figure 3f, inside). On the other hand, the 250 

lengths and tip numbers of individual outer trees were similar between P3L and P6L 251 
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(Figures 3e and 3f, outside). These results suggest that OBI enhancement of eSS 252 

neurons between P3L and P6L primarily relies on inner BD tree-selective elaboration 253 

rather than outer BD tree-selective retraction or an increased ratio of inner to total BD 254 

tree. 255 

 These results also suggest that eSS neurons acquire BD orientation bias at least 256 

in two phases  during the first postnatal week (Figure 3g). By P3 (Phase I), eSS 257 

neurons produced more inner BD trees than outer BD trees, although both inner and 258 

outer BD trees are morphologically simple at this stage. After P3 (Phase II), the ratio of 259 

inner/outer trees from eSS neurons does not change, but inner BD trees become more 260 

elaborate. 261 

 262 

Differential turnover and elaboration of BD trees in eSS neurons  263 

Next question is how eSS neuron BDs are refined during Phase II. In the initial trial, 264 

“dendritic branch” dynamics (e.g., elongation/retraction) was analyzed as shown in our 265 

previous work(Mizuno et al., 2014). However, this approach was not appropriate for the 266 

current work. Morphological changes of BDs in 3 days were enormous (e.g., Figure 1g), 267 

and therefore dendritic branch analyses were too complicated to yield a meaningful 268 

outcome. After a trial-and-error, I found that focusing on “dendritic trees” rather than 269 



Nakazawa, Shingo 

17 

 

“dendritic branches” was more informative in understanding how the eSS neurons 270 

acquire their characteristic BD orientation bias. 271 

The spatiotemporal dynamics of individual trees was investigated between P3L 272 

and P5L over 8-h intervals (Figure 4). Strikingly, BD trees emerged and disappeared 273 

extensively throughout the imaging period (Figures 4a–4c). Emergence of new trees 274 

was not restricted to inside but observed both inside and outside (Figure 4d). Similarly, 275 

tree elimination was not restricted to outside, but observed both outside and inside 276 

(Figure 4e). Of outer trees newly emerged between P3L and P5M (around P5 noon), 82% 277 

(18/22) disappeared by the next imaging session (one time-frame), and only a small 278 

portion of outer trees survived longer than one imaging interval (Figures 4f). In contrast, 279 

only 31% (5/16) of newly emerged inner trees disappeared within one time-frame, and a 280 

substantial portion survived longer (Figures 4g). Thus, the survival efficiency was 281 

significantly higher for inner trees than outer trees (Figure 4h). 282 

Then the relationship between survival time and length of individual trees was 283 

examined by focusing on trees newly emerged during imaging sessions. These trees 284 

were categorized into 4 groups: “surviving inside,” “surviving outside,” “eliminated 285 

inside,” and “eliminated outside.” Surviving trees were those present at P5L (the final 286 

imaging session), and eliminated trees were those that disappeared during imaging 287 



Nakazawa, Shingo 

18 

 

sessions. The lengths of surviving inner trees increased in proportion to survival time-288 

frames (Figure 4i), while outer trees remained short. Although a few outer trees 289 

survived for a long time and elaborated, most of them extended their arbors toward the 290 

inside of the barrel (e.g., Figure 4j). These results suggest that long survival is 291 

preferentially conferred to some (but not all) trees that extend toward TCAs and that 292 

only these trees (mostly inner) become “winners,” which subsequently elaborate over 293 

time. Importantly, the winner trees were not necessarily early-emerging. In other words, 294 

trees that were born later also had the chance to survive and elaborate (e.g., Figure 4k). 295 

Taken together, I found that eSS neuron BD trees in the neonatal barrel cortex 296 

exhibit extensive turnover in all directions. During this dendritic tree turnover, a fraction 297 

of inner trees survived, and these surviving inner trees were extensively elaborated, 298 

which contributed to reinforcement of BD orientation bias between P3 and P6. 299 

 300 

BD tree dynamics in eSP neurons 301 

I next analyzed the BD tree characteristics of eSP neurons. The numbers of inner and 302 

outer trees were similar both at P3L and P6L (Supplementary Figure 2a). The lengths and 303 

numbers of tips of individual BD trees were also similar between inside and outside 304 

both at P3L and P6L (Supplementary Figures 2b and 2c). These results indicate that BD 305 
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tree outgrowth of eSP neurons is not influenced by the existence of TCAs. The BD tree 306 

turnover of eSP neurons was also measured. The results show that eSP neurons 307 

exhibited BD tree turnover as eSS neurons did (Supplementary Figures 2d and 2e), 308 

although the samples size was limited. Note that, in my classification, if an SS neuron 309 

starts to retract its apical dendrite after P6, this neuron is categorized as SP neuron. 310 

Therefore, we cannot exclude the possibility that a few neurons which were classified as 311 

SP neurons are SS neurons whose development was slow. 312 

 313 

BD tree dynamics in barrel-center SS (cSS) neurons 314 

Each eSS neuron receives appropriate TCA inputs using mostly inner BD trees. To 315 

understand whether this spatial bias of TCA inputs is involved in the differential 316 

dynamics of BD trees described above, dendritic dynamics of SS neurons located in the 317 

barrel center (cSS neurons) was examined (Figure 5a). The cSS neurons could receive 318 

TCA inputs by all BD trees, and therefore have little or no spatial bias in TCA inputs. 319 

Several parameters of BD (and BD tree) growth were similar between eSS and 320 

cSS neurons, in which the data of inner and outer BD trees from eSS neurons were 321 

pooled (Supplementary Figures 3e–h). Intriguingly, however, the variance in length of 322 

individual BD trees of cSS neurons was smaller than that of eSS neurons at P6L 323 
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(Supplementary Figure 3h). To visualize the difference more clearly, the histograms 324 

(Figures 5c and 5d) and cumulative curves (Supplementary Figure 3i and 3j) were 325 

constructed. In these analyses, inner and outer trees of eSS neurons were distinguished. 326 

In eSS neurons at P3L, lengths of most inner and outer BD trees were close to the mean 327 

value (inside, 64.1 µm; outside, 67.1 µm) (Figure 5c and Supplementary Figure 3i), 328 

while at P6, the ratio of trees which have lengths close to the mean (inside, 170.1 µm; 329 

outside, 96.0 µm) was decreased both inside and outside (Figure 5d and Supplementary 330 

Figure 3j). Instead, short trees were drastically increased both inside and outside, and 331 

long trees were increased only inside (Figure 5d and Supplementary Figure 3j). On the 332 

other hand, most BD trees of cSS neurons had lengths close to mean values (P3L, 60.8 333 

µm; P6L, 152.7 µm), and shorter and longer trees were rare at both ages (Figures 5c and 334 

5d and Supplementary Figures 3i and 3j). It is important that the growth characteristics 335 

of cSS neuron BD trees differed from those of eSS neuron inner BD trees, although both 336 

could receive TCA inputs, suggesting the possible significance of spatial bias of TCA 337 

inputs, not just the presence of TCA inputs, in dendritic refinement dynamics. 338 

 Analyses of BD tree turnover also revealed intriguing differences between eSS 339 

and cSS neurons. The BD trees of cSS neurons tended to live longer than those of eSS 340 

neurons (Figure 5e). The numbers of eliminated trees per neuron were significantly 341 



Nakazawa, Shingo 

21 

 

smaller in cSS neurons than eSS neurons between P3L and P5L (Figure 5h). cSS neurons 342 

tended to have fewer newly formed BD trees than eSS neurons, although the difference 343 

was not significant (Figure 5g). These results demonstrate that BD trees from cSS 344 

neurons exhibit little turnover and most live long and grow mildly, suggesting that 345 

dynamics of BD trees can be affected by the spatial distribution of TCA inputs. 346 

 347 

BD tree dynamics in pups with early infraorbital nerve cut  348 

Infraorbital nerve (ION) cut is a commonly used method to block the neural activity in 349 

the mouse somatosensory system (Supplementary Figure 3a). When ION is severed in 350 

early neonates such as at P0, barrel map formation is completely impaired (Erzurumlu 351 

and Gaspar, 2012; Waite and Cragg, 1982) as shown in Supplementary Figure 3b. On 352 

the other hand, the ratio of AD-possessing neurons was not different from that of normal 353 

mice at P16 (Supplementary Figure 3c). 354 

To understand the effects of early ION-cut on BD and BD tree growth, the ION 355 

was severed at P0 mice, and time-lapse imaging of SS neurons was performed in these 356 

pups (Early-ION-cut mice) (Figure 5b and Supplementary Figure 3d). At P3L, BD (and 357 

BD tree) morphology of SS neurons in ION-cut mice (iSS neurons) was similar to that 358 

of eSS and cSS neurons (Figure 5c and Supplementary Figures 3e–i). At P6L, however, 359 
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the variance in length of individual BD trees from iSS neurons was similar to that from 360 

cSS neurons but significantly smaller than that from eSS neurons (Supplementary 361 

Figure 3h). In iSS neurons, most BD trees had lengths close to mean values (137.8 µm), 362 

while substantially shorter and longer trees were rare (Figure 5d and Supplementary 363 

Figure 3j). Analyses of BD tree turnover also showed that most trees of iSS neurons 364 

lived as long as those of cSS neurons (Figure 5f). The numbers of newly formed and 365 

eliminated trees per neuron between P3L and P5L were also similar between iSS neurons 366 

and cSS neurons but significantly smaller than those in eSS neurons (Figures 5g and 367 

5h). These results suggest that BD tree dynamics of iSS neurons are similar to cSS 368 

neurons. 369 

 370 

Early ION cut alters spatial patterns of spontaneous activity 371 

We recently report unique features of spontaneous activity in neonatal barrel cortex L4, 372 

which shows a “patchwork”-type pattern corresponding to the barrel map. This 373 

patchwork activity is delivered to L4 via TCAs. We conducted ION cut at P4 or P5 374 

(Late-ION-cut) and found that the patchwork activity was not affected (Mizuno et al., 375 

2018). Importantly, Late ION cut did not affect the gross formation of barrel map. On 376 

the other hand, when IONs were cut at P0 (Early-ION-cut), barrel map formation was 377 



Nakazawa, Shingo 

23 

 

impaired (Supplementary Figure 3a and 3b). I examined if Early ION cut could affect 378 

the patchwork activity by using TCA-GCaMP Tg mice (Mizuno et al., 2018) in 379 

cooperation with Dr. Mizuno. Calcium signals of TCA terminals in large-barrel field 380 

between control and Early-ION-cut mice (Figure 6) were compared. Spontaneous 381 

activity occurred in both groups, but their features were different between the groups. In 382 

control mice, the boundaries of activated zones were invariable and corresponded to the 383 

boundaries of individual barrels (Figures 6a and 6b). In contrast, they were variable in 384 

Early-ION-cut mice (Figures 6f and 6g). In addition, the mean area of single activated 385 

zones was more than 4.5 times larger than that of control mice (Figure 6k). To further 386 

examine the effects of early ION cut on spontaneous activities, the regions of interest 387 

(ROIs) were placed on the large-barrel field of the somatosensory cortex of control and 388 

ION-cut mice (Figures 6c and 6h). Color-coded correlation matrices constructed from 389 

the fluorescence changes (Figures 6d and 6i) clearly showed that there are high-390 

synchrony zones, which corresponded to barrels, in control mice (Figure 6e). In 391 

contrast, such zones were not detected in the Early-ION-cut mice (Figure 6j). The 392 

frequencies of activated events were not much different between Early-ION-cut and 393 

control mice (Figures 6d, 6i and 6l), although it should be noted that precise comparison 394 

of frequencies is difficult because spatial patters and sizes of activated zones were very 395 
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different between the two groups. These results suggest that the Early-ION-cut mouse 396 

barrel cortex still receives spontaneous activity via TCAs, but this activity no longer 397 

exhibits the patchwork pattern.  398 

In contrast, Late ION cut does not affect the spatial pattern of spontaneous 399 

activity (Mizuno et al., 2018). These results indicate that whisker-derived inputs in early 400 

neonatal stages such as P0, but not in later stages such as P4 or P5, are essential to 401 

patchwork patterning of spontaneous activity. 402 

In normal mice, SS neurons located at the barrel edge (i.e., eSS neurons) 403 

receive spatially biased TCA inputs only from one direction (i.e., toward the barrel 404 

center). On the contrary, like cSS neurons in normal mice, SS neurons of ION-cut mice 405 

(i.e., iSS neurons) should not have any specific direction for proper TCA inputs. It is 406 

likely that this disruption of polarized TCA-inputs results in altered dynamics of iSS 407 

neurons.  408 
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DISCUSSION 409 

To my knowledge, the present study is the first to report long-term (days) in vivo 410 

imaging analysis of dendritic dynamics in developing mammals. Herein, I have 411 

successfully accomplished in vivo imaging of the mouse barrel cortex starting at P3 and 412 

ending at P6. The present result reveals dynamics of SS neuron BD trees associated 413 

with circuit refinement in the neonatal barrel cortex, as well as possible involvement of 414 

spatial patterns of periphery-derived inputs in these dendritic tree dynamics as 415 

summarized in Figure 7 (see legends). Furthermore, long-term imaging of the same 416 

neurons enabled to retrospectively identify prospective SS neurons and characterize 417 

their features in early neonatal stages (e.g., P3) when SS neurons are indistinguishable 418 

from SP neurons by conventional methods.  419 

 420 

Dynamic mechanism of dendritic refinement in the neonatal barrel cortex 421 

ION cutting blocks sensory inputs from whiskers but not spontaneous activity, which is 422 

most likely derived from the trigeminal ganglion or further downstream (Lo and 423 

Erzurumlu, 2016; Minnery and Simons, 2002; Mizuno et al., 2018; Shoykhet et al., 424 

2003). The result showed that the spatial pattern of the spontaneous activity was 425 

disrupted by ION-cut at P0 (Figure 6, Supplementary Figure 3a and 3b). In ION-cut 426 
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mouse cortex, the ratio of AD-possessing L4 neurons did not decrease (Supplementary 427 

Fig. 3c), supporting the notion that L4 neurons receive TCA inputs in ION-cut mice, 428 

because in the absence of TCA inputs most L4 neurons fail to eliminate the AD 429 

(Callaway and Borrell, 2011; Li et al., 2013). In the normal mouse cortex, each eSS 430 

neuron receives TCA inputs (both sensory-evoked and spontaneous) from specific BD 431 

trees, which are oriented toward the barrel center. In contrast, in the cortex of ION-cut 432 

mice, SS neurons (i.e., iSS neurons) should not have any dominant BD trees to receive 433 

TCA inputs because spontaneous activity no longer exhibits a patchwork pattern (Figure 434 

6). It is intriguing that BD tree dynamics of iSS neurons are similar to those of cSS 435 

neurons (Figures 5g and 5h). In both cases, TCA inputs should not have specific spatial 436 

bias to SS neurons. 437 

 It appears that spatially biased TCA inputs to SS neurons facilitate cell-wide 438 

BD tree turnover, because turnover rate is higher in eSS neurons than in cSS and iSS 439 

neurons. Another scenario is that biased distributions of physical structures of TCA 440 

clusters and/or unidentified molecules derived from TCAs could induce high levels of 441 

BD dynamics in eSS neurons. Although these possibilities cannot be excluded, previous 442 

studies oppose them. For example, mice in which the gene encoding the NMDA 443 

receptor NR1 subunit is knocked out in single SS neurons showed normal TCA clusters 444 
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but impaired BD refinement (Mizuno et al., 2014). The RIM1/RIM2 double knockout 445 

mice, which lack thalamocortical synaptic transmission, also show overtly normal TCA 446 

clustering but impaired BD refinement (Narboux-Nême et al., 2012). These results 447 

clearly demonstrate that the presence of physical TCA clusters are not sufficient and 448 

synaptic inputs from TCAs to SS neurons are necessary for BD refinement. 449 

 Previous in vivo imaging studies using the tectum of Xenopus tadpole or 450 

zebrafish larvae suggested that dendritic branches are stabilized and elaborated by 451 

forming synapses with axons, and that glutamate receptor (NMDA and AMPA 452 

receptor)-mediated synaptic transmission is important for this stabilization process 453 

(Haas et al., 2006; Niell et al., 2004; Sin et al., 2002). The previous study of short-term 454 

(hours) in vivo imaging of mouse barrel cortex eSS neurons in our laboratory also 455 

revealed an important role for NMDA receptors in stabilization of BD branches 456 

(Mizuno et al., 2014). It is likely that postsynaptic signaling induced by NMDA and/or 457 

AMPA receptors stabilizes those BD branches that make synaptic contact with 458 

appropriate TCAs, which in turn stabilizes the tree (and makes it a “winner” in the 459 

competition for thalamic inputs). 460 

Gene knockout and knockdown approaches have identified many molecules 461 

involved in SS neuron BD refinement, including the NMDA receptor, metabotropic 462 
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glutamate receptor 5, adenylyl cyclase 1, protein kinase A, BTBD3, and Lhx2 463 

(Ballester-Rosado et al., 2010; Datwani et al., 2002; Inan et al., 2006; Iwasato et al., 464 

2000; Iwasato et al., 1997; Iwasato et al., 2008; Matsui et al., 2013; Mizuno et al., 2014; 465 

Wang et al., 2017). In future, it will be important to examine how each of these 466 

molecules is involved in BD refinement dynamics of barrel cortex SS neurons. Our 467 

Supernova system, which enables single-cell labeling and labeled cell-specific gene 468 

manipulation, could facilitate further understanding of molecular mechanisms operating 469 

in individual SS neurons (Luo et al., 2016). It is also important to understand 470 

developmental changes of spontaneous activity in individual neurons and populations, 471 

using long-term calcium imaging (and simultaneous imaging of dendritic morphology). 472 

In the mammalian brain, developmental dendritic refinement is found not only in barrel 473 

cortex SS neurons, but also in various types of neurons in other brain areas, such as SS 474 

neurons in L4 of the visual cortex (in some animals) (Katz and Shatz, 1996; Kossel et 475 

al., 1995), Purkinje cells in the cerebellum (Fujishima et al., 2012; Takeo et al., 2015), 476 

and mitral cells in the olfactory bulb (Lin et al., 2000). Long-term in vivo imaging will 477 

be a powerful method for uncovering dynamic mechanisms of dendritic refinement in 478 

these neurons and the cellular and molecular mechanisms regulating these dynamics. 479 

 480 
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Two phases in BD refinement of SS neurons during neonatal stages 481 

As described above, at P3, eSS neurons already have orientation bias, which is ascribed 482 

by the difference in number of inner and outer BD trees (Figures 2g and 3c). On the 483 

other hand, at P6, the ratio of inner BD trees to the total was similar to that at P3 (Figure 484 

3d), but the complexity of the inner BDs was much higher than that at P3 (Figure 3e and 485 

3f). These results suggest that there are at least two distinct phases in the formation of 486 

BD orientation bias in neonates (Figure 3g). Phase I is approximately between P0 and 487 

P3. Around P0, L4 neurons radially migrate to their final positions and start to elaborate 488 

BDs (Callaway and Borrell, 2011). Then by P3, L4 eSS neurons create nascent 489 

orientation bias by forming more BD trees inside than outside. At this stage, both inner 490 

and outer BDs are similarly primitive. It is possible that TCAs secrete molecules that 491 

produce more BD trees on the side of the barrel center, where TCA termini form a 492 

cluster by P3 (Mizuno et al., 2014), although neural activity transmitted through TCAs 493 

could also be involved. In contrast, Phase II starts approximately at P3 and ends at P6 or 494 

later. In this phase, the ratio of inner to total BD trees does not change. Instead, stability 495 

and elaboration are primarily conferred upon a fraction of inner BD trees (Figures 4h 496 

and 4i), which results in reinforcement of orientation bias toward the barrel side.  497 

Spiny stellate neurons may have homeostatic mechanisms to maintain BD tree 498 
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numbers, because these numbers did not change substantially between P3 and P6 499 

(Figure 3c). If so, rapid elimination of unselected trees could be useful for producing 500 

more new trees (“challengers” for inputs). New winner trees continue to emerge from 501 

challenger trees predominantly near the barrel center, where TCAs are clustered. By this 502 

mechanism, the highly asymmetric pattern of eSS neuron BD projections toward the 503 

barrel center could be established. 504 

My detailed analyses of dynamic mechanisms of Phase II provided an 505 

important future perspective is to characterize aspects of BD formation in Phase I, 506 

which was newly found in the current study. 507 

 508 

 In the current study, I successfully conducted long-term in vivo imaging of 509 

cortical neuron dendrites in early neonatal stages. This novel approach revealed a 510 

dynamic mechanism of dendritic refinement of barrel cortex SS neurons. In addition, 511 

my retrospective analysis based on long-term in vivo time-lapse imaging highlights the 512 

novel features of L4 neurons in early neonatal stages.  513 
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METHODS 514 

Animals 515 

All experiments were performed according to the guidelines for animal experimentation 516 

of the National Institute of Genetics (NIG) and were approved by the animal 517 

experimentation committee of the NIG. To obtain pups, ICR female mice were mated 518 

with male TCA-GFP Tg mice (Mizuno et al., 2014) which were backcrossed from B6 to 519 

ICR more than four times or male TCA-GCaMP Tg mice (Mizuno et al., 2018) which 520 

were backcrossed from B6 to ICR more than 1 time. The day at which the vaginal plug 521 

was detected was designated as embryonic day 0 (E0) and E19 was defined as postnatal 522 

day 0 (P0). For histological analysis of infraorbital nerve (ION)-cut mice 523 

(Supplementary Figure 3c), timed-pregnant ICR mice were obtained from CLEA Japan. 524 

Sex of newborn mice was not determined. 525 

 526 

Surgery 527 

In utero electroporation was conducted as described (Mizuno et al., 2007). Briefly, 528 

pregnant mice at 14 postcoitus days were anesthetized with an intraperitoneal injection 529 

of sodium pentobarbital (50 mg/kg) in saline. Isoflurane was used to control anesthesia 530 

level. A midline laparotomy was performed to expose the uterus. DNA solution mixed 531 

with trypan blue (< 5%, Sigma) was injected into the right lateral ventricle of embryos 532 

via a pulled glass capillary (Drummond), and square electric pulses (40 V; 50 ms) were 533 

delivered five times at the rate of one pulse per second by a CUY21SC electroporator 534 

(NepaGene). After electroporation, the uterus was repositioned, and the abdominal wall 535 

and skin were sutured. After surgery, pregnant mice were kept on a 37°C heater until 536 

they recovered from anesthesia. 537 
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Infraorbital nerve (ION) cutting (Erzurumlu and Gaspar, 2012; Waite and 538 

Cragg, 1982) was performed as follows (Supplementary Figure 3a): Pups at P0 were 539 

anesthetized with isoflurane, and a vertical incision was made on the posterior edge of 540 

the left whisker pad and the IONs were cut. After the operation, pups were kept on a 541 

warm plate and revived, after which they were returned to mothers. 542 

 Craniotomy for time-lapse in vivo imaging was performed as described 543 

(Mizuno et al., 2014) with some critical modifications. For in vivo time-lapse imaging 544 

of P2 and P3 mice, which are much smaller and more fragile than P5 mice, I newly 545 

designed the titanium bar that was very light (~20 mg) and small (7 × 2 × 0.5 mm) (T 546 

and I) and used the round cover glass whose diameter is 2.5 mm (Matsunami). In the 547 

morning of P2 or P3, mice were anesthetized with isoflurane. Skin covering the right 548 

hemisphere was removed using scissors to expose skull followed by applying of 549 

Vetbond (3M) to fix the margin and to stop bleeding. Barrel area was detected by TCA-550 

GFP signal and a small piece of bone covering the Supernova-labeled barrel area was 551 

removed with a sterilized razor blade, keeping the dura intact. Gelfoam (Pfizer) was 552 

used to stop bleeding, as necessity. To keep the brain moist, cortex buffer (Holtmaat et 553 

al., 2009) (125 mM NaCl, 5 mM KCl, 10 mM glucose, 10 mM Hepes, 2 mM CaCl2, and 554 

2 mM MgSO4; pH 7.4) was applied during surgery. After that, the window was covered 555 

with 1% low melting point agarose (Sigma) in cortex buffer and 2.5 mm diameter round 556 

cover glass. The custom-made titanium bar was glued to the skull near the window to 557 

attach mouse to two-photon microscope stage (Figure 1e). The dental cement was 558 

applied to secure the exposed region. For analgesic and anti-inflammation, carprofen (5 559 

mg/kg, Zoetis) was subcutaneously injected. After recovery, pups were returned to real 560 

or foster mothers. 561 
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 Craniotomy for in vivo calcium imaging was performed as described (Mizuno 562 

et al., 2018). Briefly, P5 or P6 pups were anesthetized by isoflurane and the skull over 563 

the barrel field was removed. 1% low melting point agarose in cortex buffer (Holtmaat 564 

et al., 2009) was applied to cover the exposed dura and the window was sealed with 3 565 

mm diameter round cover glass (Matsunami) that secured with dental cement. A 566 

titanium bar (Mizuno et al., 2014) (~30 mg) was attached to the area adjacent to the 567 

cranial window. After surgery, pups were kept on a heater for recovery. 568 

 569 

Long-term in vivo imaging of L4 in neonatal mice 570 

For long-term time-lapse imaging of L4 neurons in the large-barrel field of the primary 571 

somatosensory cortex, TCA-GFP (Mizuno et al., 2014) pups, in which L4 neurons were 572 

sparsely labeled by in utero electroporation-based Supernova-RFP (Luo et al., 2016) 573 

[pK036.TRE-flpe-WPRE (10–15 ng/µl) and pK037.CAG-FRT-STOP-FRT-RFP-ires-574 

tTA-WPRE (1,000 ng/µl)], were anesthetized with 0.8%–1.2% isoflurane and fixed to 575 

the microscope stage using the titanium bar. Heating pad was used to keep pups warm. 576 

Images were acquired using an LSM 7MP two-photon microscope (Zeiss) with a W 577 

Plan-Apochromat 20x/1.0 DIC objective lens (Zeiss) and an LSM BiG detector (Zeiss). 578 

HighQ-2 laser (Spectra-Physics) at 1,045 nm was used in most experiments. GFP and 579 

RFP were simultaneously excited and emitted fluorescence was filtered (500−550 nm 580 

for GFP and 575−620 nm for RFP). In an experiment (mouse ID #227, See Table 1), 581 

Mai Tai eHP DeepSee titanium-sapphire laser (Spectra-Physics) running at 1,000 nm 582 

was used. 583 

Images were taken at P3L, P4E, P4M, P4L, P5E, P5M, P5L, and P6L (mouse ID 584 

#231, #239, #269, #270, #356); at P2L, P3E, P3M, P3L, P4E, P4M, P4L, P5L, and P6L 585 
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(#260, #315); at P3L, P4L, P5L, and P6L (#205); at P3L, P4E, P4M, P4L, P5L, and P6L 586 

(#227); at P2L, P3E, P3M, P3L, P4E, P4M, P4L, P5E, P5M and P5L (#313); at P2L, P3E, P4L, 587 

P5L, and P6L (#314). PXE, PXM, and PXM indicate around 4 am, noon, and 8 pm at 588 

postnatal day X (PX) as shown in Figure 1b. Body weight was measured before or after 589 

each imaging session. Pups were returned to mothers during the interval between 590 

imaging sessions. Low body temperature, bleeding, chemical smell and human smell of 591 

pups could result in neglect by mothers. Therefore, pups were kept on a warm heater 592 

and with mother’s bedding before returning to the mother. It was confirmed that time-593 

lapse imaged pups received proper maternal care and drunk enough breast milk (Figure 594 

1f). 595 

Histological analyses after the end of in vivo imaging confirmed that all 596 

analyzed neurons of both normal and ION-cut mice were located within the large-barrel 597 

field of the primary somatosensory cortex (See also Table 1). Brain samples were 598 

prepared immediately after the P6L imaging session. Mice were decapitated, and brains 599 

were fixed with 4% paraformaldehyde (PFA) in 0.1 M PB at 4°C for 1–3 d. For 600 

tangential sectioning, right hemispheres were flattened and transferred to 2% PFA/30% 601 

sucrose in 0.1 M PB. Flattened cortex was kept at 4°C for 1–2 d and tangential slices 602 

(100 µm-thick) were obtained with a ROM-380 freezing microtome (YAMATO). Slices 603 

were mounted with Anti-fade Mounting Medium (Longin et al., 1993). Images were 604 

acquired by a TCS SP5 confocal microscope (Leica). The layout of the barrel map was 605 

identified by TCA-GFP signals. 606 

 607 

Barrel field size measurements 608 

Barrel field size (Figure 1n) was measured from confocal images by using Fiji/ImageJ 609 
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1.51p (Schindelin et al., 2012). The area of the large-barrel area visualized by GFP 610 

signal of TCA-GFP mice was measured. 611 

 612 

Quantification of 3-dimentional dendritic morphology 613 

Autoaligner 6.0.1 (Bitplane) was used to reduce the noise from respiratory movements. 614 

For tracing and quantification, Imaris Filament Tracer 7.0 and 8.3 (Bitplane) were used. 615 

Only neurons of which all BD and AD terminals were clearly visible were used for BD 616 

and AD analyses, respectively. Dendrite traces were generated semi-automatically and 617 

validated manually. Any dendritic processes greater than 5 µm in length was designated 618 

as a dendritic segment. Dendritic trees of which origins were in the same position 619 

between time-sequential images were considered as the same tree. Apical dendrite (AD) 620 

and basal dendrites (BDs) were distinguished by their shape at the initial imaging 621 

session. Dendrites that had the same orientation as neighboring neuron ADs were 622 

judged as ADs. At early neonatal stages, neurons usually had single long thick AD 623 

toward pial surface. Axon was distinguished from BDs by the following features; 1) 624 

Axon was thinner than BD. 2) Axon emerged from the bottom of the soma. 3) Axon 625 

projected toward deep brain regions. All imaged neurons were categorized either Group 626 

1 (SS) or Group 2 (SP) neurons as follows: Group 1 neuron was the neuron that 627 

shortened AD during imaging sessions or the neuron which had no AD at P3L (Figure 2b 628 

and Supplementary Figure 1, red lines); Group 2 neuron was the neuron that 629 

continuously extended AD throughout imaging sessions (Figure 2b and Supplementary 630 

Figure 1, blue lines). SS neurons with intact AD (Figure 2h) was Group 1 neurons 631 

whose AD started to retract after P3L. 632 

 633 
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Quantification of BD orientation  634 

Because mice were detached from the two-photon microscope stage after each imaging 635 

session, orientations of acquired images were slightly different among imaging sessions. 636 

Prior to dendritic orientation analyses, these orientation artifacts among images were 637 

adjusted as follows: For each z-stack two-photon image, neuronal coordinates were 638 

measured by Fiji/ImageJ as centroids of binary images. The central point of each image 639 

was determined by the centroid of neuronal coordinates. The central points of images 640 

were laid over and images were rotated around the central point. Angle difference 641 

between two images was calculated to minimize the error (determined by the least 642 

squares method) between coordinates of same neurons in two images. The orientation 643 

artifact was corrected by applying this angle difference to the image (e.g., white 644 

rectangles in Figures 1g and 1j). 645 

The layout of the barrel map was identified by TCA-GFP signals of in vivo 646 

images and/or tangential section images taken at P6L (and one case at P5L due to 647 

accidental animal death). The barrel edge was determined by the contrasting difference 648 

of TCA signal intensities in the area lying between barrel center and septa. Neurons 649 

whose cell-body center was located within 12.5 µm from the barrel edge were classified 650 

as barrel-edge neurons. Other neurons located within the barrel were classified as 651 

barrel-center neurons. The simple version of orientation bias index (OBI), which was 652 

used in the current study, was defined as the ratio of BD segment length in the barrel-653 

side half to the total BD length. Inside-Outside boundary, which separates barrel-side 654 

half and the other half, was determined as follows. First, a 100 µm-diameter circle that 655 

had its center on the cell body was drawn. Second, a line passing through the 656 

intersections of the 100 µm-diameter circle and TCA cluster boundary was drawn. Then, 657 
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the Inside-Outside boundary which passes through the cell body was drawn parallel to 658 

the line. Barrel-side half and the opposite-side half of the boundary were defined as 659 

“Inside” and “Outside”, respectively. Each BD segment length is the length between 660 

two branch points or length between a branch point and the branch tip (or origin of the 661 

dendritic tree). An inner BD segment is the segment all or majority of whose length 662 

belongs to the barrel-side half. 663 

 664 

In vivo calcium imaging 665 

In vivo calcium imaging was performed for the large-barrel field of the primary 666 

somatosensory cortex L4 of TCA-GCaMP pups (Mizuno et al., 2018) at P5 or P6 under 667 

an unanesthetized condition. In these mice, L4 neurons were sparsely labeled by in 668 

utero electroporation-based Supernova-nlsRFP [pK031.TRE-Cre (Mizuno et al., 2014) 669 

(10 ng/µl) and pK263.CAG-loxP-STOP-loxP-nlsRFP-ires-tTA-WPRE (Mizuno et al., 670 

2018) (1,000 ng/µl)] as markers of the in vivo imaged areas. Images were acquired at 1 671 

Hz (512 × 512 pixels) using an LSM 7MP two-photon microscope (Zeiss) with a W 672 

Plan-Apochromat 20x/1.0 DIC objective lens (Zeiss) and an LSM BiG detector (Zeiss). 673 

Mai Tai eHP DeepSee titanium–sapphire laser at 940 nm was used. Emitted 674 

fluorescence was filtered 500−550 nm for GCaMP6s and 575−620 nm for nlsRFP. 675 

During imaging, the body temperature of the pup was maintained using a heating pad. 676 

When the pup head moved during imaging, these frames were excluded from the 677 

analyses. 678 

The boundaries of activated zones (Figures 6a, 6b, 6f, 6g and 6k) were 679 

determined as follows. Each image was spatially smoothed with a Gaussian filter 680 

(Sigma = 10 px). ΔF/F = (F − F0)/F0 was calculated in each pixel at each time. F0 of 681 
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each pixel was obtained by averaging more than 50 images in which calcium transients 682 

were obviously absent such as under anesthesia. ΔF/F > 100% were considered as 683 

activated pixels. With these criteria, boundaries of activated zones were best matched 684 

with the barrel edges in control mice. The zones that were less than 2,500 µm2 were 685 

excluded as noise. 686 

The fluorescence intensity traces (Figures 6d and 6i), which were used for 687 

raster plots (Figures 6d and 6i) and correlation matrices (Figure 6e and 6j), were 688 

generated from sequential 3-minutes images as follows. Forty (5 × 8) regions of interest 689 

(ROIs: 20 μm diameter) were positioned on large-barrel field of the somatosensory 690 

cortex L4 with 50 μm intervals (Figure 6c and 6h). F of ROI was obtained by averaging 691 

intensities of pixels inside the ROI. F0 of each ROI was obtained by averaging more 692 

than 50 images in which calcium transients were obviously absent. For the raster plots, 693 

the threshold ΔF/F > 50% was used, because with this condition calcium transients in 694 

the control mice were most accurately detected. With the threshold ΔF/F > 100%, 695 

although the barrel boundaries in control mice were most sharply visible, some apparent 696 

calcium transients (typical patchwork-activity (Mizuno et al., 2018)) were failed to be 697 

detected (high false-negative ratio). Correlation matrices were sorted by principal 698 

component analysis with a few exceptions (See Figure 6e legend). Calcium imaging 699 

data were analyzed by custom-written scripts in Python and ImageJ/Fiji. 700 

Histological analyses after the in vivo calcium imaging confirmed that all 701 

analyzed neurons of both normal and ION-cut mice were located within the large-barrel 702 

field of the primary somatosensory cortex. Tangential sections were permeabilized and 703 

blocked in 0.2% Triton X-100/5% normal goat serum (Sigma) in 0.1 M PB. Rabbit anti-704 

VGluT2 (1:1000; Synaptic systems #135403) and Alexa 488-conjugated goat anti-rabbit 705 
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IgG (1:1000; Invitrogen #A11034) antibodies were used. Although, in the ION-cut 706 

mouse cortex, barrel map is impaired, still identification of the large-barrel field was 707 

possible. 708 

 709 

Measurement of ratio of neurons with apical dendrite 710 

L4 neurons were labeled by in utero electroporation-based Supernova (Luo et al., 2016) 711 

[pK036.TRE-flpe-WPRE (10–15 ng/µl) and pK037.CAG-FRT-STOP-FRT-RFP-ires-712 

tTA-WPRE (1,000 ng/µl)]. P16 mice in which IONs were cut at P0 (or uncut as control) 713 

were perfused by saline and 4% PFA in 0.1 M PB before decapitated. Brains were fixed 714 

with 4% PFA in 0.1 M PB at 4°C for 3 d. Then, brains were transferred to 30% sucrose 715 

in 0.1 M PB and kept at 4°C for 1–2 d. Coronal slices (100 µm-thick for most 716 

experiments and 50 µm-thick for cytochrome oxidase (CO) staining) were obtained with 717 

a ROM-380 freezing microtome. DAPI staining (2 µg/mL; Roche) was used to 718 

determine L4 barrel field and to confirm whether IONs were cut properly. After DAPI 719 

staining, slices were mounted with Anti-fade Mounting Medium (Longin et al., 1993), 720 

and fluorescent images were acquired by a TCS SP5 confocal microscope. Cytochrome 721 

oxidase (CO) staining was also used to confirm whether IONs were cut properly (data 722 

not shown). Coronal sections were incubated with CO stain solution (0.05% 723 

Cytochrome C (Sigma)/0.08% 3-3’ diaminobenzidine tetrahydrochloride (Nacalai 724 

tesque)/30% sucrose in 0.1 M PB) for 4 h at 37°C. After visual detection of stain, 725 

sections were washed 3 times with 0.1 M PB and mounted with EUKITT (Kindler). 726 

 727 

Statistics and computing 728 

Two-tailed parametric and nonparametric tests were used to show the differences among 729 
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means and medians, respectively (See Figure legends). The asterisks in the figures 730 

indicate the following: *p < 0.05, **p < 0.01, and ***p < 0.001. p < 0.05 was 731 

considered statistically significant. g and r indicate the effect size for parametric and for 732 

nonparametric tests, respectively (Field, 2009; Kline, 2004). Error bars in bar graphs 733 

and line graphs represent SEM. In box plots, upper and lower limits of box represent 734 

75th and 25th percentile, crosses represent mean, horizontal lines represent median, 735 

upper and lower whiskers represent maximum and minimum within 1.5 interquartile 736 

range, and observations beyond the whisker range were marked with open circles as 737 

outliers. Brunner-Munzel test was performed by R 3.2.5 and its additional package 738 

lawstat 3.0. All other analyses and visualizations were performed using Fiji/ImageJ 739 

1.51p (Schindelin et al., 2012) and custom-written scripts in Python 3.5.2 with its 740 

additional packages Numpy 1.11.3, Scipy 0.18.1, Matplotlib 1.5.1, Pandas 0.19.2, 741 

Lifelines 0.9.3.2, PIL 4.2.1, OpenCV 3.3.1, Scikit-learn 0.19.1, Glob 0.6.and their later 742 

versions. 743 

Detailed information about samples used in each analysis was summarized in 744 

Table 1. Briefly, sample sizes were as follows. 745 

Figure 2b: Group 1 (SS) (n = 35, 39, 38 and 33 neurons from 7, 8, 8 and 6 mice 746 

for P3, P4, P5, P6, respectively); Group 2 (SP) (n = 12, 12, 12 and 8 neurons from 5, 5, 747 

5 and 3 mice for P3, P4, P5, P6, respectively). Figure 2e: Group 1 (SS) (n = 30, 38, 36 748 

and 29 from 7, 8, 8 and 6 mice for P3, P4, P5, P6, respectively); Group 2 (SP) (n = 11, 749 

12, 11 and 7 neurons from 5, 5, 5 and 3 mice for P3, P4, P5, P6, respectively). 750 

Figures 3e and 3f: n = 28, 12, 36 and 18 BDs for P3L inside, P3L outside, P6L 751 

inside and P6L outside, respectively. Data were collected from 8 eSS neurons of 4 mice. 752 

Figures 4d–4i: Data were collected from 8 eSS neurons of 4 mice. Four 753 



Nakazawa, Shingo 

41 

 

neurons (n = 2 mice) were analyzed every 8 h between P3L and P5L, and the other 4 754 

neurons (n = 2 mice) were analyzed between P4E and P5L because at P3L cell 755 

morphology was not very clear due to clouding of the window. Figure 4i: Surviving 756 

inner BD trees (n = 9, 9, 7, 6, 4 and 1 trees for 1, 2, 3, 4, 5 and 6 surviving time-frames, 757 

respectively); Surviving outer BD trees (n = 3, 3, 3, 2 and 1 trees for 1, 2, 3, 4 and 5 758 

surviving time-frames, respectively); Eliminated inner BD trees (n = 7, 2 and 1 trees for 759 

1, 2 and 3 surviving time-frames, respectively); Eliminated outer BD trees (n = 19 and 1 760 

trees for 1 and 2 surviving time-frames, respectively). 761 

Supplementary Figures 3e and 3f: n = 15 eSS neurons from 7 mice, 15 cSS 762 

neurons from 5 mice and 7 iSS neurons from 2 mice at P3L. n = 13 eSS neurons from 5 763 

mice, 13 cSS neurons from 4 mice and 9 iSS neurons from 3 mice at P6L. 764 

Supplementary Figure 3g: n = 8 eSS neurons from 4 mice, 7 cSS neurons from 2 mice 765 

and 7 iSS neurons from 2 mice at P3L. n = 8 eSS neurons from 4 mice, 7 cSS neurons 766 

from 2 mice, 9 iSS neurons from 3 mice at P6L. 767 

Sample sizes were often different among time-points for following reasons. 768 

Some neurons at some time-points were excluded from the analyses because cranial 769 

windows were cloudy, and terminals of AD and/or BDs were not clearly visible. One 770 

neuron (neuron ID #231-9) was excluded from AD length analysis because its AD 771 

terminals were out of imaging range. Two neurons (neuron ID #313-1 and 2) were 772 

excluded from P6L analyses because the mouse died during the imaging session at P5L 773 

by an anesthesia problem. One neuron (neuron ID #314-1) was excluded from P3L 774 

analyses because the P3L imaging of the mouse was skipped.  775 
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FIGURE LEGENDS 952 

Figure 1. Long-term in vivo imaging of cortical L4 neurons in neonates. 953 

(a) (Left) A schematic of the barrel map in the mouse somatosensory cortex (barrel 954 

cortex), which represents arrangement of whiskers on the face. (Right) The barrel map 955 

is visualized by EGFP signals derived from the TCA-GFP Tg mouse. A confocal image 956 

of tangential section (100 µm-thick) of barrel cortex L4 of P8 mouse is shown. 957 

(b) Schematic drawing of the in vivo time-lapse imaging between P3 and P6. IUE: in 958 

utero electroporation. 959 

(c) The barrel map visualized in the whole brain of P8 TCA-GFP Tg mouse (Mizuno et 960 

al., 2014). 961 

(d) (Left) A 2-photon image of the barrel cortex L4 of P6L TCA-GFP mouse transfected 962 

with Flpe-based Supernova RFP vector set (Luo et al., 2016) by in utero electroporation 963 

at E14. TCA termini were visualized by EGFP (green) and a sparse population of L4 964 

neurons were brightly labeled by RFP (magenta). (Right) Green signal was 965 

computationally enhanced from the left panel to better show the barrel map. 966 

(e) A very light (~20 mg) and small (7 × 2 × 0.5 mm) titanium bar was used. 967 
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(f) Representative image of pups (at P6) used for 3-d-long imaging [time-lapsed (TL) 968 

pups] (arrows). During imaging intervals, TL pups received maternal care with other 969 

littermates. 970 

(g) Representative Z-stack images of Supernova-RFP-labeled L4 neurons (magenta) 971 

and EGFP signals in TCA-GFP Tg mice. The same image as that of (d) is shown. 972 

(h) Higher-magnification images of the neuron shown in (g) (square). A, anterior; M, 973 

medial. 974 

(i) Basal dendrites (BDs: black), apical dendrite (AD: red), and axon (blue) of the 975 

neuron were traced and reconstructed in 3-dimensions. Barrel map (green) was 976 

determined by EGFP signal. 977 

(j–l) Another set of representative case corresponding to (g–i). 978 

(m) Body weight change of TL (n = 6) and control (n = 29) pups [mean ± SEM (dense) 979 

and individual (faint)]. P3L-TL vs P6L-TL: p < 0.001, g = 4.369, Paired t-test. P6L-TL vs 980 

P6L-control: p = 0.312, g = 0.348, Welch’s t-test. 981 

(n) Barrel field areas were measured in tangential sections prepared from TL pups (n = 982 

7) immediately after P6L imaging. As controls, normal pups at P3L (n = 5) and P6L (n = 983 

5) were used. P3L-control vs P6L-control: p < 0.001, g = 6.131; P3L-control vs P6L-TL: 984 
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p = 0.001, g = 2.913; P6L-control vs P6L-TL: p = 0.995, g = 0.003; Welch’s t-test with 985 

Holm’s correction.  986 

(o, q) Increase of total BD length (o) and tip number (q) of TL pup L4 neurons during 987 

3-d-long imaging (n = 51 neurons from 8 mice). Mean ± SEM (dense) and values of 988 

individual neurons (faint) were shown.  989 

(p, r) Total BD length (p) and tin number (r) of L4 neurons of TL (n = 36 neurons from 990 

6 mice) and control (n = 9 neurons from 2 mice) pups at P6L (Length: p = 0.795, g = 991 

0.078, Tip number: p = 0.288, g = 0.295, Welch’s t-test). This analysis was done by in 992 

vivo imaging. For control pups, a cranial window/titanium bar was attached at P6L.  993 

Error bars: SEM. Scale bars: 500 µm (a), 2 mm (c), 150 µm (d, g, j) and 50 µm (h, k). 994 

 995 

Figure 2. AD dynamics and morphological features of L4 neurons in early 996 

neonates 997 

(a) Most L4 neurons possessed an AD at P3L, while the majority of these neurons had 998 

shortened ADs by P6L. The same neurons are colored the same. Arrows, AD tips; filled 999 

arrowheads, axons; open arrowheads, BD tips. M, medial; D, dorsal. 1000 

(b) Plots of the mean ± SEM (dense) and individual (faint) of AD length of Group 1 1001 

(red) and Group 2 (blue) neurons. See also Supplementary Figure 1. 1002 
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(c, d) Examples of AD dynamics in Group 1 (c) and Group 2 (d) neurons. D, dorsal. 1003 

(e) The mean ± SEM (dense) and individual (faint) plots of total BD length of Group 1 1004 

(red) and Group 2 (blue) neurons. 1005 

Sample sizes for (b and e) are shown in the Methods. 1006 

(f) Representative BD traces of two Group 1 (SS) and two Group 2 (SP) neurons at P3L. 1007 

The boundaries of inside (barrel-center side) and outside (opposite side) were 1008 

determined as described in Methods. 1009 

(g) The orientation bias index (OBI) of barrel-edge SS (eSS) neurons was significantly 1010 

larger than that of barrel-edge SP (eSP) neurons at P3L (p = 0.001, g = 2.135, Welch’s t-1011 

test: n = 15 eSS neurons from 7 mice and 7 eSP neurons from 4 mice). 1012 

(h) Even before the initiation of AD retraction, eSS neurons already exhibited a larger 1013 

OBI than eSP neurons (p = 0.007, g = 1.710, Welch’s t-test: n = 8 eSS neurons with 1014 

intact AD from 6 mice and 7 eSP neurons from 4 mice). 1015 

(i) BD traces at P6L of the same neurons as Figure 2f. Green shades represent individual 1016 

barrels (TCA clusters).  1017 

(j) The OBI of eSS neurons was significantly larger than that of eSP neurons at P6L (p = 1018 

0.012, g = 2.604, Welch’s t-test: n = 13 eSS neurons from 5 mice and 4 eSP neurons 1019 

from 2 mice).  1020 
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Box plot interpretation is described in the Methods. Scale bars: 50 µm (a, c, d) and 1021 

25 µm (f). 1022 

 1023 

Figure 3. eSS neurons increased BD orientation bias by inner BD tree-1024 

specific elaboration. 1025 

(a) (Top) Z-stack images of the same eSS neuron at P3L and P6L. (Bottom) BDs are 1026 

traced. Green shade represents the TCA cluster. Dashed lines represent the border of 1027 

inside/outside. Black, BDs; Blue, axons. Scale bar: 50 µm. 1028 

(b) eSS neurons increased OBI of BD between P3L and P6L (p = 0.028, g = 1.244, n = 8 1029 

eSS neurons of 4 mice, Paired t-test). 1030 

(c) (Top) At P3L, the number of inner BD trees was significantly larger than that of 1031 

outer ones (p < 0.001, r = 1.974, Brunner-Munzel test). From P3L to P6L, there were no 1032 

significant increases in BD tree number both inside (p = 0.160, r = 0.317) and outside (p 1033 

= 0.137, r = 0.404, Wilcoxon signed-rank test). n = 8 eSS neurons of 4 mice. (Bottom) 1034 

Schematics showing origins of inner (orange dots) and outer (blue dots) BD trees. 1035 

Dashed line: inside/outside border. 1036 

(d) The ratio of number of inner to total BD trees did not change between P3L and P6L 1037 

(p = 0.401, r = 0.198, Wilcoxon signed-rank test. n = 8 eSS neurons of 4 mice). 1038 
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(e) (Top) The length of individual BD trees was similar between inside and outside at 1039 

P3L (p = 0.809, g = 0.085, Welch’s t-test). The length of individual inner trees at P6L 1040 

was significantly larger than that at P3L (p < 0.001, g = 1.019, Welch’s t-test). On the 1041 

other hand, there was no significant difference between the length of the individual 1042 

outer trees at P3L and that at P6L (p = 0.451, g = 0.401, Welch’s t-test). (Bottom) 1043 

Schematics showing an inner tree (orange) and an outer tree (blue). Inner and outer trees 1044 

are those whose origins are located inside and outside, respectively. Sample sizes are 1045 

shown in Methods.  1046 

(f) (Top) The tip number of individual BD trees was similar between inner and outer 1047 

trees at P3L (p = 0.967, g = 0.013, Welch’s t-test). The tip number of individual inner 1048 

trees at P6L was significantly larger than that at P3L (p < 0.001, g = 0.939, Welch’s t-1049 

test). There was no significant difference between the tip number of individual outer 1050 

trees at P3L and that at P6L (p = 0.260, g = 0.498, Welch’s t-test). (Bottom) Orange dots 1051 

represent tips of an individual inner tree, and blue dots represent tips of an individual 1052 

outer tree. 1053 

p-values of (c–f) were corrected by Holm’s correction. Box plot interpretation is 1054 

described in Methods. 1055 
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(g) eSS neurons establish BD orientation bias in neonatal stages through at least two 1056 

distinct phases. During Phase I (approximately between P0 and P3), eSS neurons 1057 

acquire the initial orientation bias, which is ascribed to the difference of BD tree 1058 

number between inside and outside. In Phase II, starting approximately at P3, the 1059 

number of BD trees is not much changed but BD orientation bias is reinforced by the 1060 

differential elaboration of individual inner and outer BD trees. 1061 

 1062 

Figure 4. BD tree dynamics of SS neurons with 8-hour intervals. 1063 

(a) (Top) Z-stack images of a representative eSS neuron from P3L to P5L with 8-hour 1064 

interval. Gray asterisk, AD; green asterisk, axon. (Bottom) Traces of the neuron in upper 1065 

panels. Arrows indicate newly formed inner (orange) and outer (blue) BD trees. 1066 

Arrowheads indicate origin positions of eliminated inner (orange) and outer (blue) trees.  1067 

(b, c) Formation (b) and elimination (c) of BD trees were observed continuously from 1068 

P4E to P5L. Data were collected from the same 8 neurons (4 mice). 1069 

(d, e) Angles of origins of trees that were newly formed (d) and eliminated (e) between 1070 

P3L and P5L. Vertical line and center indicate inside/outside border and cell body 1071 

position, respectively. 1072 
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(f, g) Matrix of presence/absence of individual outer (f) and inner (g) trees. Each row 1073 

represents an individual tree. Circles indicate time points at which the tree was present. 1074 

Dots indicate time points at which the tree image was not acquired due to technical 1075 

problems. Trees are sorted in order of the formation time and life span length. 1076 

(h) The surviving efficiency was significantly higher for inner trees than for outer trees 1077 

(p = 0.004, χ2 = 8.282, Log-rank test). In these analyses, only BD trees that were newly 1078 

formed during P3L to P5L are used. Shaded areas represent log-log transformed 95% 1079 

confidence intervals. Sample sizes are shown in Table 2. 1080 

(i) Relationship between survival time-frames and mean length ± SEM of individual 1081 

trees that were newly emerged during imaging sessions. “Surviving In” and “Surviving 1082 

Out” indicate newly emerged inner and outer trees, respectively, that remained at P5L. 1083 

“Eliminated In” and “Eliminated Out” indicate newly emerged inner and outer trees, 1084 

respectively, that disappeared by P5L. 1085 

Sample sizes for (d–g and i) are shown in Methods. 1086 

(j) An example of outer tree that survived long and was elaborated over time (red). The 1087 

same neuron as that of Figure 3a is shown. It should be noted that this outer tree 1088 

extended its arbors toward the barrel side. 1089 

(k) An example of late born winner trees (red). The same neuron as that of Figure 4a is 1090 



Nakazawa, Shingo 

56 

 

shown. The winner tree that was first detected at P4L. 1091 

Scale bars: 50 µm (a) and 25 µm (j, k). 1092 

 1093 

Figure 5. BD tree dynamics in the absence of spatial bias of TCA inputs 1094 

(a, b) (Top) Z-stack images of a representative barrel-center SS (cSS) neuron (a) and 1095 

ION-cut mouse SS (iSS) neuron (b). Gray asterisk, AD; green asterisk, axon. (Bottom) 1096 

BD morphologies of the neuron shown in the upper panel. Arrows, newly formed BD 1097 

trees; arrowheads, origin positions of eliminated trees. Scale bars: 50 µm. 1098 

(c, d) Histograms of length of individual BD trees of eSS (40 trees, 8 neurons, 4 mice; 1099 

Mean ± SD = 64.98 ± 36.10 μm), cSS (35, 7, 2; 60.81 ± 36.35 μm) neurons and iSS 1100 

(30, 7, 2; 62.92 ± 32.78 μm) neurons at P3L (c) and eSS (54 trees, 8 neurons, 4 mice; 1101 

145.37 ± 125.26 μm), cSS (43, 7, 2; 152.68 ± 92.53 μm) and iSS (47, 9, 3; 137.82 ± 1102 

78.24 μm) neurons at P6L (d). Orange: inner BD trees. Blue: outer BD trees. At P3L 1103 

(eSS vs cSS: p = 0.480, F = 1.014; eSS vs iSS: p = 0.595, F = 1.213; cSS vs iSS: p = 1104 

0.860, F = 1.230, F-test with Holm’s correction). At P6L (eSS vs cSS: p = 0.044, F = 1105 

1.832; eSS vs iSS: p = 0.002, F = 2.563; cSS vs iSS: p =0.134, F = 1.399, F-test with 1106 

Holm’s correction). See also Supplementary Figures 3i and 3j.  1107 
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(e, f) Matrix of presence/absence of individual trees of 7 cSS (2 mice) (e) and 9 iSS 1108 

neurons (3 mice) (f). 1109 

(g)  Number per cell of BD trees that were newly formed between P4E and P5L in eSS 1110 

(8 neurons, 2 mice), cSS (7 neurons, 2 mice) and iSS neurons (9 neurons, 3 mice). eSS 1111 

vs cSS: p = 0.310, r = 0.403; eSS vs iSS: p = 0.008, r = 0.873, cSS vs iSS: p = 0.464, r = 1112 

0.188, Brunner-Munzel test with Holm’s correction. 1113 

(h)  Number per cell of BD trees that were eliminated between P3L and P5L in eSS, 1114 

cSS and iSS neurons. (eSS vs cSS: p = 0.022, r = 0.793; eSS vs iSS: p < 0.001, r = 1115 

4.430; cSS vs iSS: p = 0.129, r = 0.417, Brunner-Munzel test with Holm’s correction). 1116 

Box plot interpretation is described in the Methods. 1117 

 1118 

Figure 6. Early ION cutting disrupts patterns of spontaneous activity. 1119 

(a) In vivo calcium imaging of the large-barrel field of the somatosensory cortex L4 of a 1120 

normal TCA-GCaMP Tg mouse at P5, which expresses GCaMP6s in TCAs. TCA 1121 

termini demonstrated “patchwork”-type spontaneous activity (Mizuno et al., 2018), in 1122 

which each “activated zone” corresponds to a single barrel. Representative images of 1123 

activated zones at 3 time-points and the merged image with pseudo color (top) and 1124 

traces of boundaries for activated zones (bottom) are shown. 1125 
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(b) A heat map of activated zone boundaries in all activated events observed in 15 1126 

minutes in the mouse. 1127 

(c) Positions of circular regions of interests (ROIs). In most cases, ROIs were numbered 1128 

according to the principal component analysis (PCA) scores of the correlations of the 1129 

fluorescence changes. In a few ROIs (ROIs 9–18), the original orders based on the PCA 1130 

scores were manually rearranged to show B1, β and γ barrels clearly in correlation 1131 

matrix (e). Color shades represent the positions of individual activated zones (i.e., 1132 

barrels).  1133 

(d) (Left) Representative fluorescence signals taken from the ROIs. (Right) ΔF/F > 50% 1134 

were plotted to construct the raster plots. Orange vertical lines in the raster plots 1135 

demonstrate synchronized activities among ROIs, which were confined to individual 1136 

barrels. 1137 

(e) Correlation matrix constructed from the fluorescence changes of all ROI pairs. 1138 

(f) In vivo calcium imaging of the large-barrel field of the somatosensory cortex L4 of a 1139 

TCA-GCaMP Tg mouse at P5, in which ION was cut at P0 (Early-ION-cut mouse). 1140 

TCA termini demonstrated spontaneous activity that lacked the patchwork pattern. 1141 

Individual activated zones are largely overlapped. Representative images of activated 1142 
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zones at 3 time-points and the merged image with pseudo color (top) and traces of 1143 

boundaries for activated zones (bottom) are shown. 1144 

(g) Heat maps of activated zone boundaries in all firing events observed in 15 minutes. 1145 

(h) Positions of ROIs in the Early-ION-cut mouse. All ROIs were numbered according 1146 

to the PCA scores of the correlations of the fluorescence changes.  1147 

(i) Representative fluorescence signals and raster plots (ΔF/F > 50%) taken from the 1148 

ROIs in the Early-ION-cut mouse. Orange vertical lines in the raster plots demonstrate 1149 

synchronized activities among ROIs. Note that there were no specific clusters of ROIs.  1150 

(j) Correlation matrices constructed from the fluorescence changes of all ROI pairs in 1151 

the Early-ION-cut mouse. 1152 

Scale bars: 150 µm. 1153 

(k) Sizes of individual activated zone of normal mice (336 zones in two P5 and one P6 1154 

mice) and ION-cut mice (304 zones in three P5 mice) are compared (p < 0.001, g = 1155 

0.928, Welch’s t-test). 1156 

(l) The total counts of activated events in sequential 3 minutes in each ROI/each mouse. 1157 

Orange circles: ROIs located on hollows, blue circles: ROIs on septa, gray circles: ROIs 1158 

on ION-cut mice, black line: average of all ROIs of each mouse, red line: average of 1159 
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ROIs on hollow of each mouse. Hollows and septa were determined manually. Data of 1160 

(a–j) are from Mouse #1 and #5. 1161 

(m) Schematic depicting the experimental schedule. 1162 

 1163 

Figure 7. Differential BD tree dynamics in neonatal barrel cortex SS 1164 

neurons. 1165 

(a) In the normal neonatal mouse barrel cortex, eSS neurons receive spatially biased 1166 

TCA inputs, predominantly from the barrel-center side (yellow); while on the other side 1167 

(white), they receive no inputs or inputs from inappropriate TCAs. At P3, eSS neurons 1168 

already have BD orientation bias, albeit weak, toward the barrel-center side (Figure 2g). 1169 

However, at this age, individual BD trees are still primitive (Figures 2f, 3e and 3f) and 1170 

the BD orientation bias is ascribed primarily to the larger number of BD trees on the 1171 

barrel side versus the other side (Figure 3c). BD orientation bias increases drastically 1172 

between P3 and P6 (Figure 3b), while the ratio of inner tree number to total tree number 1173 

does not change (Figure 3d). BD trees are highly dynamic and emerge (orange) and 1174 

disappear (dashed grey BDs) frequently both inside and outside the barrel center-side 1175 

half (Figures 4a–e). Meanwhile, only a fraction of trees (mostly inner) are stabilized 1176 

(Figures 4f–h) and these become extensively elaborated over time to become “winners” 1177 
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(red) (Figure 4i). BD trees born later also have a chance to become winners (Figures 4j 1178 

and 4k).  1179 

(b) cSS and iSS neurons receive TCA inputs (yellow) from all directions (no biased 1180 

inputs). In this situation, BD tree turnover is suppressed (Figures 5g and 5h), few 1181 

winners and losers are found, and most trees elaborate moderately (Figure 5d and 1182 

Supplementary Figure 3j). 1183 

 1184 

Supplementary Figure 1. Initiation timing and velocity of AD retraction 1185 

vary among neurons even in the same animal. 1186 

(a) Plots of changes of AD length of Group 1 (SS) and Group 2 (SP) neurons between 1187 

P2L and P6L (n = 8 mice). The mean ± SEM (dense) and individual (faint) values are 1188 

shown. The data between P3L and P6L are the same as those of Fig. 2b. 1189 

(b–i) The plots of changes of AD length of individual neurons in each mouse. It is 1190 

intriguingly that the initiation timing and velocity of AD retraction vary among neurons 1191 

even in the same animals. 1192 

 1193 

Supplementary Figure 2. Characteristics of BD trees of eSP neurons. 1194 
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(a) The numbers of BD trees per cell. P3L inside vs P3L outside (p = 0.856, r = 0.049) 1195 

and P6L inside vs P6L outside (p = 0.809, r = 0.092). n = 7, 7, 4, 4 neurons. Brunner-1196 

Munzel test. 1197 

(b) The lengths of individual BD trees. P3L inside vs P3L outside (p = 0.641, g = 0.147) 1198 

and P6L inside vs P6L outside (p = 0.617, g = 0.227). n = 19, 21, 10, 11 trees. Welch’s t-1199 

test. 1200 

(c) The tip numbers of individual BD trees. P3L inside vs P3L outside (p = 0.572, g = 1201 

0.177) and P6L inside vs P6L outside (p = 0.846, g = 0.087). n = 19, 21, 10, 11 trees. 1202 

Welch’s t-test. 1203 

Box plot interpretation is described in the Methods. 1204 

(d) Number per cell of BD trees that were newly formed between P4E and P5L in eSS 1205 

(red: 8 neurons, 2 mice) and eSP (blue: 3 neurons, 1 mouse). 1206 

(e) Number per cell of BD trees that were eliminated between P4E and P5L in eSS (red: 1207 

8 neurons, 2 mice) and eSP (blue: 3 neurons, 1 mouse). 1208 

 1209 

Supplementary Figure 3. Supplementary information for Figure 5. 1210 

(a) IONs were severed at P0 afternoon (Early-ION-cut mice). 1211 

(b) Confocal images of tangential slices after in vivo imaging at P6L. Barrel maps 1212 



Nakazawa, Shingo 

63 

 

visualized by EGFP signals of TCA-GFP Tg mouse were impaired in Early-ION-cut 1213 

mice. Scale bar: 400 µm. 1214 

(c) Early-ION-cut (75.3%: 55/73 neurons) and normal (67.8%: 40/59 neurons) mice had 1215 

similar ratios of neurons without AD (red) at P16 (p = 0.337, χ2 = 0.921, χ2 test). 1216 

(d) Schematic depicting the imaging schedule. 1217 

(e) Total BD length of eSS, cSS and iSS neurons at P3L (eSS vs cSS: p =0.894, g = 1218 

0.049; eSS vs iSS: p = 0.914, g = 0.291; cSS vs iSS: p = 1.071, g = 0.375, Welch’s t-test 1219 

with Holm’s correction) and P6L (eSS vs cSS: p = 0.735, g = 0.135; eSS vs iSS: p < 1220 

0.001, g = 1.767; cSS vs iSS: p = 0.020, g = 1.100, Welch’s t-test with Holm’s 1221 

correction). 1222 

(f)  Total BD tip number at P3L (eSS vs cSS: p = 1.000, g = 0.000; eSS vs iSS: p = 1223 

1.004, g = 0.414; cSS vs iSS: p = 0.700, g = 0.389, Welch’s t-test with Holm’s 1224 

correction) and P6L (eSS vs cSS: p = 0.305, g = 0.411; eSS vs iSS: p = 0.015, g = 1.249; 1225 

cSS vs iSS: p = 0.185, g = 0.691, Welch’s t-test with Holm’s correction). 1226 

(g)  Number per cell of BD trees at P3L (eSS vs cSS: p = 1.000, r = 0.000; eSS vs iSS: 1227 

p = 0.761, r = 0.235; cSS vs iSS: p = 0.992, r = 0.271, Brunner-Munzel test with Holm’s 1228 

correction) and P6L (eSS vs cSS: p = 0.327, r = 0.263; eSS vs iSS: p = 0.248, r = 0.482; 1229 

cSS vs iSS: p = 0.385, r = 0.343, Brunner-Munzel test with Holm’s correction). 1230 
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(h)  Length of individual BD trees of eSS, cSS and iSS neurons at P3L, and P6L. At 1231 

P3L: eSS vs cSS: p = 1.861, g = 0.115; eSS vs iSS: p =1.607, g = 0.059; cSS vs iSS: p = 1232 

0.807, g = 0.061, Welch’s t-test with Holm’s correction. At P6L: eSS vs cSS: p = 0.742, 1233 

g = 0.065; eSS vs iSS: p = 1.427, g = 0.071; cSS vs iSS: 1.246, g = 0.174, Welch’s t-test 1234 

with Holm’s correction. See legends of Figures 5c and 5d for further information, 1235 

including values of F-test.  1236 

(i, j) Cumulative curves of length of individual eSS-Inside, eSS-Outside, cSS and iSS 1237 

BD trees at P3L (n = 28, 12, 35 and 30 trees) and P6 L (n = 36, 18, 43 and 47 trees), 1238 

respectively. 1239 

Sample sizes for (e–g) and box plot interpretation are shown in Methods. Error bars: 1240 

SEM. 1241 
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Figure 4
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Figure 5
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Figure 6

Early-ION-cut mouse at P5 (in vivo calcium imaging)
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Supplementary Figure 2
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Supplementary Figure 3
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Table 1. Summary of neurons which were used in each figure panel. 

Neuron Figure 

ID 

(#) 

Typea) Barrelb) 

2b 2e 

2gc) 2hc),d) 2jc) 3b-f c) 4b-i c) 

S2c) 5c, d, 

S3g-j 

5e-h 

S3e, f 

P3L P4L P5L P6L P3L P4L P5L P6L P3L P6L P3L P6L 

205-1 SS C1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓    ✓  ✓ ✓ 

205-3 SS γ ✓ ✓ ✓ g) ✓ ✓ ✓ g)          ✓ g) 

227-1 SS C3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓    ✓  ✓ ✓ 

227-2 SS B2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓    ✓  ✓ ✓ 

227-3 SS B1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓    ✓  ✓ ✓ 

227-4 SS C2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓          ✓ ✓ 

231-1 SS D2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓ ✓ ✓ 

231-2 SS C2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓ ✓ ✓ 

231-3 SS C3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓        ✓ ✓ ✓ ✓ 

231-7 SS D4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓        ✓ ✓ ✓ ✓ 

231-8 SS C4 ✓ ✓ ✓ ✓ g) ✓ ✓ ✓ g)  ✓  ✓ j)    ✓ j) g) ✓ 

231-9 SS B4 f) ✓ ✓ ✓ ✓ ✓ ✓ ✓          ✓ ✓ 

231-10 SS D5 ✓ ✓ ✓ ✓ g) ✓ ✓ ✓ g)  ✓  ✓ j)    ✓ j) g) ✓ 

231-11 SS D6 ✓ ✓ ✓ ✓ g) ✓ ✓ ✓ g) g) ✓  ✓ j)    ✓ j) g) ✓ 

231-12 SS D6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓          ✓ ✓ 

231-13 SS D6 ✓ ✓ ✓ ✓ g) ✓ ✓ ✓ g)  ✓  ✓ j)    ✓ j) g) ✓ 

231-15 SS D5 g) ✓ ✓ ✓ g) ✓ ✓ ✓          g) ✓ 

231-16 SS E7 ✓ ✓ ✓ ✓ g) ✓ ✓ ✓            

231-17 SS D7 g) ✓ ✓ ✓ g) ✓ ✓ ✓            

239-1 SS C2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓          ✓ ✓ 

239-2 SS C2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓   ✓ ✓ ✓ ✓ 

239-3 SS C3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓        ✓ ✓ ✓ ✓ 

239-4 SS D3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓        ✓ ✓ ✓ ✓ 

239-6 SS C4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓ ✓ ✓ 

239-7 SS C4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓        ✓ ✓ ✓ ✓ 

239-8 SS D3 ✓ ✓ ✓ ✓ g) g) ✓ ✓            

239-9 SS D4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓        ✓ ✓ ✓ ✓ 

239-10 SS D4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓        ✓ ✓ ✓ ✓ 

260-1 SS B4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓          ✓ ✓ 

260-3 SS B4 ✓ ✓ ✓ ✓ ✓ ✓ g) g) ✓  g)       ✓ g) 

260-5 SS C3 ✓ ✓ g) g) ✓ ✓ g) g) ✓  g)       ✓ g) 

260-6 SS C4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ g)          ✓ g) 

260-7 SS B3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ g) ✓ ✓ g)       ✓ g) 

260-9 SS B2 ✓ ✓ ✓ ✓ ✓ ✓ g) g)          ✓ g) 

260-10 SS B3 ✓ ✓ ✓ g) ✓ ✓ ✓ g) ✓  g)       ✓ g) 

313-1 SS C3 ✓ ✓ ✓ h) ✓ ✓ ✓ h) ✓ ✓ h)       ✓ h) 



 

313-2 SS B2 ✓ ✓ ✓ h) ✓ ✓ ✓ h) ✓  h)       ✓ h) 

314-1 SS C2 i) ✓ ✓ ✓ i) ✓ ✓ ✓ i) i) ✓       i) ✓ 

315-2 SS C4 ✓ ✓ ✓ g) ✓ ✓ ✓ g) ✓  g)       ✓ g) 

205-2 SP γ ✓ ✓ ✓ g) ✓ ✓ ✓ g)            

227-5 SP C4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓     

231-4 SP D3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓            

231-5 SP D3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓     

231-6 SP D3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓     

231-14 SP D5 ✓ ✓ ✓ ✓ g) ✓ ✓ ✓ g) g) ✓   g) ✓     

260-2 SP B4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓            

260-8 SP B3 ✓ ✓ ✓ ✓ ✓ ✓ g) g) ✓ ✓ g)   ✓ g)     

260-11 SP C4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓            

315-1 SP C4 ✓ ✓ ✓ g) ✓ ✓ ✓ g) ✓ ✓ g)   ✓ g)     

315-3 SP C3 ✓ ✓ ✓ g) ✓ ✓ ✓ g) ✓ ✓ g)   ✓ g)     

315-4 SP C3 ✓ ✓ ✓ g) ✓ ✓ ✓ g) ✓ ✓ g)   ✓ g)     

269-2e) SS N/A                ✓ j) ✓ j) g) ✓ 

269-5 e) SS N/A                ✓ j) ✓j) g) ✓ 

270-1 e) SS N/A                ✓ ✓ ✓ ✓ 

270-2 e) SS N/A                ✓ ✓ ✓ ✓ 

270-3 e) SS N/A                ✓ ✓ ✓ ✓ 

270-4 e) SS N/A                ✓ ✓ ✓ ✓ 

270-6 e) SS N/A                ✓ ✓ ✓ ✓ 

356-1 e) SS N/A                ✓ ✓ ✓ ✓ 

356-3 e) SS N/A                ✓ ✓ ✓ ✓ 

Note:  

a) SS: spiny stellate neuron, SP: star pyramid neuron. 

b) Barrel column to which the neuron belongs. 

c) Neurons located at barrel edge were used (eSS and eSP). 

d) eSS with intact AD and eSP were used. 

e) ION cut mice. 

f) Unanalyzable because AD terminal was out of imaging range. 

g) Unanalyzable due to clouded window. 

h) Unanalyzable due to death of pup. 

i) Imaging was skipped. 

j) P3L was not analyzed due to clouded window. 

  



 

Table 2. Survival-table of newly formed BDs in Figure 4h. 

 

Surviving 

time-frame 

Eliminated 

outer BDs 

n of surviving 

outer BDs 

Eliminated 

inner BDs 

n of survived 

inner BDs 

1 - 22 - 16 

2 18 4 5 9 

3 1 2 1 7 

4 0 1 1 4 

5 0 0 0 1 

6 - - 0 1 




