
Network Models of Pathogen Evolution:
Reconciling Population Genetics and

Epidemiological Dynamics

Kawashima, Kent Diel

Doctor of Philosophy

Department of Genetics

School of Life Science

SOKENDAI (The Graduate University for

Advanced Studies)

Network Models of Pathogen Evolution:

Reconciling Population Genetics and Epidemiological Dynamics

Kawashima, Kent Diel

Doctor of Philosophy

Department of Genetics

School of Life Science

SOKENDAI

(The Graduate University for Advanced Studies)

2018

 ii

ACKNOWLEDGMENT

I would like to express my utmost appreciation to my advisor, Professor Hiroshi Akashi, for

being mentor that taught me how to think critically and work independently during my doctoral

studies. I would like to thank you for not only encouraging me my research, but also for challenging

me and allowing me to grow as a research scientist on my own terms. I am grateful for teaching me

how to write better reports, give better presentations, and helping me think like a scientist. Thank you

to Professor Akira Sasaki, Associate Professor Kazuho Ikeo, Professor Tetsuji Kakutani, Professor

Akatsuki Kimura, and Professor Yasukazu Nakamura for serving on my doctoral thesis examination

committee. Thank you for the time you spared and the patience you expended to read and understand

my work. I would like to acknowledge Ikeo-sensei, for serving as the chairperson for my examination

committee as well as my previous progress report committees. Thank you for sparing your time to

always come to my poster sessions and for providing candid comments that helped me better focus

my research. I would like to especially thank Professor Sasaki for providing his expertise to my

examination committee as the external member, as well as for his patience and understanding in

critiquing and thoroughly correcting my manuscript. It is difficult to imagine finishing this work

without his insight and support. It would be remiss not to thank my previous committee chairperson,

Professor Ituro Inoue, and Professor Jun Kitano for serving previously on my progress report

committee and sharing your insight which helped me grow as a researcher. I would also like to thank

previous and current lab members and staff of the Division of Evolutionary Genetics for your support

throughout these years. Thank you very much to Neha Mishra and Haruka Yamashita for your support

in good times and in bad, to Assistant Professors Naoki Osada and Tomotaka Matsumoto for your

time and understanding, to our lab secretaries Sei-san and Takeshima-san for always lending a

helping hand. I would like to thank the people at NIG, from the professors who have shared their

knowledge; the students for their friendship; and the staff for their hard work. I would like to extend a

special thank you to the people at the General Affairs and Education Team for their patience in

tirelessly reminding me of the deadlines and helping me file an innumerable amount of paperwork. I

would also like to mention my Japanese language teacher, Miyauchi-sensei not only for teaching me

 iii

Japanese, but also for her tireless support and always looking out for me. A special thanks to all my

friends who have always been there to listen to me gripe and help me keep on keeping on. Finally, a

special thanks to my mother for making me the person I am today. Thank you for your unwavering

support and your bottomless love.

 iv

TABLE OF CONTENTS

ACKNOWLEDGMENT .. II

TABLE OF CONTENTS ... IV

LIST OF FIGURES .. X

LIST OF TABLES ... XII

LIST OF EQUATIONS ... XIII

LIST OF SYMBOLS ... XIV

SUMMARY .. 1

CHAPTER 1 INTRODUCTION .. 3

OBJECTIVES ... 5
BACKGROUND ... 6

Infectious diseases .. 6
Epidemics ... 7
Epidemiological modeling .. 7
Viral evolution theory: standard population genetics v. quasispecies theory ... 13
Infections as a metapopulation .. 18
Evolutionary epidemiology .. 23
Genetic simulation .. 25

CHAPTER OVERVIEWS .. 27
Chapter 2. Contagion: A Stochastic Individual-based Model for Simulating Viral Evolution in Epidemics

 .. 27
Chapter 3. Host network topology affects the spread of new mutations .. 27
Chapter 4. Periodic infection and transmission parameters affects the fixation of mutations 28
Chapter 5. Virus Evolution in Alternating Hosts: Fixation Amidst Shifting Fitness Landscapes 28
Chapter 6. Conclusion .. 28

CHAPTER 2 CONTAGION: A STOCHASTIC INDIVIDUAL-BASED MODEL FOR SIMULATING

VIRAL EVOLUTION IN EPIDEMICS .. 30

INTRODUCTION ... 30
METHODS ... 33

Pathogen network evolution ... 33
IMPLEMENTATION ... 35

Epidemic simulators ... 36

 v

Simulating the spread of disease between hosts ... 37
Simulating genetic evolution of pathogens within hosts .. 41
Computational optimizations ... 48
Configuration and input formatting ... 50
Testing and debugging ... 54

RESULTS ... 58
The SIS individual-based network epidemiological model .. 58
The SIR-like individual-based network epidemiological model ... 60
Fixation probability of mutations within a single host .. 61
Pathogen sequence mutation rate .. 62

DISCUSSION ... 64

CHAPTER 3 HOST NETWORK TOPOLOGY AFFECTS THE SPREAD OF NEW MUTATIONS 65

INTRODUCTION ... 65
METHODS ... 67

The network SIS epidemiological model .. 67
Selection model for studying pathogen genetic evolution .. 70
Network generation .. 71
Fixation probability of a mutation spreading over a network ... 74
Site-frequency spectrum of pathogens spreading over a network .. 75

RESULTS ... 78
SIS epidemic spreading over a connected host population network .. 78
Site-frequency spectrum of pathogen sequences .. 81
Fixation probability in different network configurations ... 87

DISCUSSION ... 90

CHAPTER 4 PERIODIC INFECTION AND TRANSMISSION PARAMETERS AFFECTS THE

FIXATION OF MUTATIONS ... 93

INTRODUCTION ... 93
METHODS ... 94

Transmission chain model .. 94
Transmission tree model .. 95
Fixation probability of a mutation over successive transmissions .. 96
Proportion of successful fixations of a mutation in an expanding transmission tree 97

RESULTS ... 100
Transmission events and the fixation probability of a mutation .. 100
Recurrent transmissions and the amount of time to reach fixation .. 104
Shape of the pathogen transmission tree and the number of observed fixations 107

DISCUSSION ... 109

 vi

CHAPTER 5 VIRUS EVOLUTION IN ALTERNATING HOSTS: FIXATION AMIDST SHIFTING

FITNESS LANDSCAPES ... 112

INTRODUCTION ... 112
METHODS ... 114

Sequence alignment .. 114
Simulating periodic host alternation .. 114

RESULTS AND DISCUSSION .. 119

CHAPTER 6 CONCLUSION ... 127

REFERENCES ... 130

APPENDIX I CONTAGION CONFIGURATION FORMAT ... 144

INTRODUCTION ... 144
GLOBAL PARAMETERS ... 145

Simulation parameters ... 145
Logging parameters ... 150

HOST PARAMETERS ... 151
Intrahost model .. 152
Fitness model .. 156
Transmission model .. 158
Stop conditions ... 160

APPENDIX II CONTAGION API ... 161

INTRODUCTION ... 161
PACKAGE CONTAGION ... 161
CONSTANTS ... 162
FUNCTIONS .. 163

func AppendToFile ... 163
func ConnectionDoesNotExistError .. 163
func ConnectionExistsError ... 163
func DuplicateSitePositionError .. 164
func DurationTooLongError .. 164
func DurationTooShortError ... 164
func EmptyMatrixError .. 164
func EmptyModelError .. 164
func ExchangePathogens ... 165
func Exists .. 165
func ExposedDurationTooLongError .. 165
func ExposedDurationTooShortError .. 165

 vii

func FileDoesNotExistError .. 165
func FileExistsCheckError ... 166
func FileExistsError ... 166
func FileOpenError .. 166
func FileParsingError .. 166
func FileSyncError ... 166
func FileWriteError .. 167
func InfectedDurationTooLongError ... 167
func InfectedDurationTooShortError .. 167
func InfectiveDurationTooLongError .. 167
func InfectiveDurationTooShortError .. 167
func IntKeyExists .. 168
func IntKeyNotFoundError .. 168
func IntrinsicRateReplication ... 168
func InvalidCharError ... 168
func InvalidConnectionWeightError .. 168
func InvalidRowError .. 168
func InvalidStateCharError ... 169
func LoadFitnessMatrix ... 169
func LoadSequences ... 169
func ModelExistsError ... 169
func MotifExistsError ... 169
func MultinomialReplication .. 170
func MutateSequence .. 170
func MutateSite ... 170
func NewFile .. 170
func OpenSQLiteDB ... 170
func OpenSQLiteDBOptimized .. 171
func OverlappingMotifError .. 171
func RecombineAnySequence ... 171
func RecombineSequencePairs .. 171
func RemovedDurationTooLongError ... 172
func RemovedDurationTooShortError ... 172
func SQLBeginTransactionError ... 172
func SQLExecError .. 172
func SQLExecStatementError .. 172
func SQLOpenError ... 173
func SQLPrepareStatementError ... 173
func SelfLoopError ... 173
func SetFitnessModelExistsError ... 173

 viii

func SetIntrahostModelExistsError .. 174
func SetTransmissionModelExistsError ... 174
func TransmitPathogens ... 174
func UnequalNumStatesError .. 174
func ZeroItemsError ... 175
type BevertonHoltThresholdPopModel .. 175
type CSVLogger .. 177
type Config ... 179
type ConstantPopModel ... 180
type DataLogger ... 182
type EndTransSimulation ... 183
type Epidemic ... 184
type EpidemicSimulation .. 186
type EvoEpiConfig .. 187
type ExchangeEvent ... 189
type ExchangeSimulation ... 189
type FitnessDependentPopModel ... 191
type FitnessMatrix .. 193
type FitnessModel .. 194
type Genotype ... 195
type GenotypeFreqPackage ... 196
type GenotypeNode .. 196
type GenotypeSet .. 198
type GenotypeTree .. 198
type Host ... 199
type HostNetwork ... 201
type Infection .. 203
type InfectionSimulation ... 204
type IntrahostModel ... 205
type MotifModel ... 206
type MutationPackage .. 207
type SIRSimulation ... 207
type SISSimulation .. 208
type SISimulation .. 210
type SQLiteLogger .. 214
type SequenceNodeEpidemic .. 216
type StatusPackage ... 220
type StopCondition ... 221
type TransmissionEvent .. 222
type TransmissionModel .. 222

 ix

type TransmissionPackage ... 222

APPENDIX III SIMULATION PARAMETERS ... 224

FIXATION PROBABILITY OF A MUTATION SPREADING OVER A NETWORK 224
SITE-FREQUENCY SPECTRUM OF PATHOGENS SPREADING OVER A NETWORK 226
FIXATION PROBABILITY OF A MUTATION OVER SUCCESSIVE TRANSMISSIONS 228
PROPORTION OF SUCCESSFUL FIXATIONS OF A MUTATION IN AN EXPANDING

TRANSMISSION TREE .. 231

APPENDIX IV SUPPLEMENTAL TRANSMISSION CHAIN MODELS ... 233

APPENDIX V SUPPLEMENTAL TRANSMISSION TREE MODELS ... 239

 x

LIST OF FIGURES

Figure 1. Discrete and continuous population structures. .. 20

Figure 2. Diagram depicting the dynamics of the pathogen network evolution model over time. 34

Figure 3. Host population representation in the program. ... 38

Figure 4. Common compartmental models used in epidemiology that are available in Contagion. 40

Figure 5. Depicting the pathogen, pathogen genotype, and site data models in Contagion. 42

Figure 6. Simulating the mutational process using a conditioned transition rate matrix. 44

Figure 7. Software testing procedure diagram. .. 56

Figure 8. Frequency of susceptible and infected individuals over time in the Network SIS model. 58

Figure 9. Frequency of susceptible, infected, and removed individuals over time in the Network SIR* model. . 60

Figure 10. Networks used in this study. ... 74

Figure 11. Frequencies of infected hosts over in SIS simulation on regular and scale-free networks. 78

Figure 12. Effect of host network topology on the derived allele frequency spectrum of disease-causing

pathogens. ... 83

Figure 13. Effect of initially-infected host connectivity on the derived allele frequency spectrum of disease-

causing pathogens. ... 85

Figure 14. Effect of coinfection on the derived allele frequency spectrum of disease-causing pathogens

spreading over scale-free host network. ... 86

Figure 15. Effect of network topology on the fixation probability of a mutant starting from an initial frequency

p=0.5. .. 87

Figure 16. Effect of network topology on the time it takes for a mutation from an initial frequency of p=0.5 to

reach fixation, conditioned on fixation. ... 89

Figure 17. Diagram depicting the dynamics of the transmission chain model. ... 94

Figure 18. The transmission tree is the set of paths in the network where transmission is conditioned to occur. 96

Figure 19. Transmission trees used in the simulation study. ... 98

Figure 20. Fixation probability under different transmission and infection parameters. 101

Figure 21. Fixation probability of the infection-transmission process depends on the harmonic mean of the

sample sizes over time. ... 103

Figure 22. Time to fixation conditioned on fixation under different transmission and infection parameters. 105

Figure 23. Time to fixation conditioned on fixation of the infection-transmission process depends on the

harmonic mean of the sample sizes over time. ... 106

 xi

Figure 24. Probability of fixation on tree structures after 1000 pathogen generations. 107

Figure 25. Visual representations of selection regimes tested under the alternating host model. 117

Figure 26. Divergence in fixation rates of new mutations between the standard population genetics model and

the pathogen evolution network model. ... 124

Figure 27. Simulation parameters section format .. 145

Figure 28. Host network text file format ... 147

Figure 29. Host network text file extended format .. 148

Figure 30. Pathogen sequence file format. ... 149

Figure 31. Pathogen sequence file format with non-unique identifiers. .. 149

Figure 32. Logging parameters section format .. 150

Figure 33. Intrahost model section format. .. 152

Figure 34. Transition rate matrix for two characters (alleles) as a nested array. ... 153

Figure 35. Transition rate matrix for two characters (alleles) reformatted as a square matrix. 153

Figure 36. Fitness model section format. ... 156

Figure 37. Fitness model file format. ... 158

Figure 38. Effect of frequency of transmission bottlenecks on the fixation probability of an allele after 1000

pathogen generations. ... 233

Figure 39. Effect of the number of pathogens transmitted and selection coefficient on the fixation probability of

an allele after 1000 pathogen generations. ... 234

Figure 40. Transmission chain length frequency with or without selection on the transmissibility of the

pathogen. .. 235

Figure 41. Frequency of genotypes under neutral evolution, replicative selection, and transmission selection. 236

Figure 42. Frequency of genotypes under neutral evolution across the transmission chain. 237

Figure 43. Frequency of genotypes under transmission selection across the transmission chain. 238

Figure 44. Fixation probability after 1000 generations for regular, heterogenous, and superspreader transmission

trees. ... 239

Figure 45. Fixation probability after 1000 generations for regular, early-spreading, late-spreading, and

superspreader transmission trees. ... 240

Figure 46. Fixation probability after 1000 generations for linear and diverging transmission paths. 241

Figure 47. Fixation probability after 1000 generations for diverging transmission paths. 242

 xii

LIST OF TABLES

Table 1. Comparison between theoretical and empirically-calculated fixation probabilities 61

Table 2. Expected number of mutations after one generation. .. 62

Table 3. Fixation and polymorphism of new mutations under the alternating host model. 122

Table 4. Comparison of fixation and polymorphism of new mutations between the split and alternating host

models. ... 125

Table 5. Epidemic models implemented in Contagion. ... 146

Table 6. List of coinfection parameter values .. 147

Table 7. Proper floating-point value formatting. ... 154

Table 8. Available replication models. .. 155

Table 9. List of available fitness models ... 157

Table 10. List of available transmission modes ... 159

Table 11. Available stop conditions ... 160

Table 12. Parameters used to test the effect of network topology on fixation probability of mutations. 224

Table 13. Parameters used to simulate the well-mixed population null model for testing the effect of network

topology. ... 225

Table 14. Parameters used to test the effect of network topology on the genetic diversity of pathogen spreading

over a network. ... 226

Table 15. Parameters used to simulate the well-mixed population null model for testing the effect of network

topology on genetic diversity. .. 227

Table 16. Parameters used to test the effect of transmission bottlenecks on fixation probability of mutations. . 228

Table 17. Parameters used to simulate the well-mixed population null model for testing the effect of

transmission bottlenecks on fixation probability. .. 229

Table 18. Parameters used to simulate harmonic mean population model for testing the effect of transmission

bottlenecks on fixation probability. .. 230

Table 19. Parameters used to test the effect of transmission tree topology on fixation probability of mutations.

 .. 231

Table 20. Parameters used to test the effect of transmission path topology on fixation probability of mutations.

 .. 232

 xiii

LIST OF EQUATIONS

Equation 1. SIR model without vital dynamics ... 8

Equation 2. SIR model with vital dynamics (birth and death) ... 9

Equation 3. SIR model divided into immune and dead classes ... 9

Equation 4. SIRS model with explicit recovered and dead classes and loss of immunity 10

Equation 5. SIS model without vital dynamics .. 11

Equation 6. SEIS model without vital dynamics ... 12

Equation 7. Quasispecies matrix .. 14

Equation 8. Wright’s FST .. 22

Equation 9. SIS model ... 67

Equation 10. Discrete-time SIS model ... 67

Equation 11. Conditions to keep the discrete-time SIS model valid ... 68

Equation 12. Network density for undirected and directed graphs .. 69

Equation 13. Probability that at least one disease-causing pathogen is transmitted .. 69

Equation 14. Multiplicative fitness model ... 71

Equation 15. Clustering coefficient of a node ... 73

Equation 16. Fixation probability of a mutation given infinite time. .. 75

Equation 17. Effective contact rate of single host in the network ... 80

Equation 18. Harmonic mean of the pathogen population size at infinite time. .. 104

 xiv

LIST OF SYMBOLS

A number of triangles
c clustering coefficient of a node
D network density
𝑑 number of degrees/connections per node
𝑑" number of random edges to add for each new node during graph generation
𝑑̅ average number of degrees/connections per node
𝑑$ total number of undirected edges/connections in the network
𝑑$% total number of directed edges/connections in the network
e natural number
F pathogen fitness value
F’ normalized pathogen fitness value
FST fixation index
f site fitness value
E number of exposed host individuals in the population
I number of infected host individuals in the population
k number of pathogens transmitted (number of migrants)
m migration rate
N total number of host individuals in the population (population size)
Nd number of pathogens/individuals within a deme (subpopulation size)
Ne effective population size
n number of subpopulations (demes)
𝑃' transmission probability given a connection is present
Pc probability of creating an edge between two nodes during graph generation
𝑃(probability of adding a triangle after adding a random edge during graph generation
p allele/genotype frequency, also probability
R number of removed host individuals
S number of susceptible host individuals in the population
s selection coefficient
t number of pathogen generations
v birth rate
w death rate
β infection rate
𝛽′ effective contact rate
γ removal rate
∆tI duration of infection
δ proportion among all demes
𝜆% expected number of pathogens transmitted given a transmission occurs
ρ relapse rate
σ exposure rate

 1

SUMMARY

Unlike free-living organisms, pathogenic viruses, bacteria, and fungi need to infect a host

organism in order to reproduce and must continually transmit and colonize uninfected hosts to survive

in the long run. This mode of survival creates reticulated evolutionary histories dependent on the

network of hosts and incurs repeated population bottlenecks every time pathogens transmit from an

infected host. In order to capture the complexity of pathogen evolution, processes occurring within the

host and events happening between hosts in the population have to be considered. However, our

current understanding of pathogen evolution is limited to observing evolution within single infections,

or characterizing evolution over a host population. While these two views agree that pathogen

evolution is largely driven by purifying selection, within-host studies have found little evidence to

support the idea that positive selection of pathogens naturally occurs within hosts. Results from

within-host studies appear to be at odds with finding of positive selection using sequences sampled

from different individuals. If pathogens are rarely selected for their fitness advantage, how can we

explain the signature of positive selection detected from host population samples?

In this study, I attempted to reconcile these conflicting observations using network models of

pathogen evolution that integrate within-host processes of replication, mutation, and selection, with

the between-host processes of transmission and host-host interactions. In combining processes that

occur at different levels of biological organization, I was able to examine the effects of transmission

and host network structure on the genetic evolution of pathogens. Due to the periodic infection and

transmission pathogen lineages undergo, I found that these events dampen the effect of natural

selection even when pathogens possess large fitness differences. Two main factors impeded the effect

of positive selection in pathogen evolution. First, the time it takes for selection to significantly raise

the frequency of a new mutation is too long compared to the duration of acute infections. This means

that new mutations remain at low frequency throughout the infection unless the fitness advantage is

extremely high, or the duration of the infection is significantly long. The population bottleneck that

occurs every transmission is the second reason positive selection cannot operate efficiently.

 2

Experimental studies have shown that transmissions tend to impose a harsh bottleneck on pathogens.

Since pathogens transmit periodically, this means that bottlenecks occur frequently. My results

indicate pathogen evolution is not sensitive to fitness differences as the fixation probability of

mutations tends to be flat even at moderately high levels of selective advantage. This indicates that

the periodic expansion and reduction in population size in tandem with the short intervals between

bottlenecks inhibit the role of positive selection in pathogens. This suggests that transmission

parameters could play a bigger role in the evolution of pathogen than natural selection.

Placed in the context of a host network, both the density and the structure of the network

influences the observed evolution of pathogens across the host population. Results from simulations

on networks showed that diversity is significantly reduced when the host network is sparsely-

connected than when it is densely-connected. However, any type of network used to condition the

potential paths of transmission always showed lower levels of diversity compared to an unstructured

population. While the network model saw reduced diversity, fixation probability is also diminished

because the network structure promotes differentiation between pathogen lineages. Networks

therefore make it hard for an advantageous genotype to sweep the entire host population unless it is

related to host immunity. When the new mutation changes the pathogen’s immunological profile such

that is create a new serotype, then these kinds of changes are expected spread rapidly as the pathogen

is granted an effectively immunological naïve host population to infect.

 3

CHAPTER 1

INTRODUCTION

This project was undertaken to bridge the gap between epidemiology, which studies the

spread and control of disease, and population genetics, which examines change of allele frequencies

and genotypes over time within and between populations, to develop a unified understanding of the

evolution of pathogens.

The initial motivation for this study was to understand how virulence evolves across the span

of epidemics. While molecular evolution of infectious disease pathogens has been observed in

recurrent epidemics and pandemics including Influenza (Holland et al., 1982; Reid, Fanning, Hultin,

& Taubenberger, 1999; D. J. Smith et al., 2004), tracking the genotypic evolution of pathogens over

the course of outbreaks is a recent phenomenon facilitated by the development of new technologies

like deep next generation sequencing and advancement in probabilistic single nucleotide variant

calling (Jombart, Eggo, Dodd, & Balloux, 2011; Schreiber et al., 2009; G. J. D. Smith et al., 2009).

Previous outbreaks appear to show changing infectivity and viral virulence during the spread of the

disease, as if the pathogen was evolving as it was transmitting from person to person. This

phenomenon has been observed in the SARS outbreak of 2003 (Anderson et al., 2004; Chinese SARS

Molecular Epidemiology Consortium, 2004; Zhang, Wei, & He, 2006), the MERS outbreak of 2012

(Cotten, Watson, & Zumla, 2014; Lu & Liu, 2012), and the Ebola outbreak of 2014 (Ladner et al.,

2015). Three factors influence the rate of infection for transmissible diseases: (1) the intrinsic

virulence of the pathogen, (2) the susceptibility of the host, and (3) the host-host interactions that

regulate transmission of the disease. These relationships, together with the epidemiological

observations from previous epidemics, suggest that a feedback loop between processes occurring at

two distinct scales of reference: processes affecting pathogen evolution within infected individuals

and dynamics enhancing transmissibility and/or susceptibility to the infection as the disease spreads

through the population. Indeed studies have shown that a feedback mechanism exists such that

evolutionary processes can impact epidemiological dynamics (Antia, Regoes, Koella, & Bergstrom,

 4

2003; Cen, Feng, & Zhao, 2014). Much less studied is the role of epidemiological factors such as the

host network and transmission on the genetic evolution of pathogens.

I wanted to explore the relationship between epidemiological factors affecting the spread of

the disease and the genetic evolution of pathogens that cause the disease. It is well-established that

genetic changes can alter the pathogen phenotype and produce more or less virulent strains that affect

the presentation of the disease (Frank, 1996; Lo, Tang, & To, 2006; Messenger, Molineux, & Bull,

1999; Nasser et al., 2014; Thrall & Burdon, 2003), widen the range of hosts the pathogen can infect

(Bandín & Dopazo, 2011; Hall, Harrison, & Brockhurst, 2013; Lalić, Cuevas, & Elena, 2011;

Woolhouse & Gowtage-Sequeria, 2005), and create new immunologically-distinct mutants that are

can infect vaccinated individuals (Akira, Uematsu, & Takeuchi, 2006; Anderson & May, 1985; Pepin,

Volkov, Banavar, Wilke, & Grenfell, 2010; Querec et al., 2009). Thus, genetic changes in pathogens

invariably affect the size, range, and probability of spreading of diseases. However, much less is

known about the effect of host-host and host-pathogen interactions on pathogen evolution. For

instance, does host population structure affect genetic evolution of pathogens occurring within hosts?

Previous studies based on the metapopulation concept demonstrate a link between population

structure and genetic evolution (Gladstien, 1977; Maruyama & Yasuda, 1970). Metapopulation

models have shown that population subdivision can significantly affect the genetic diversity

(Maruyama, 1970; Nagylaki, 1985; Pannell & Charlesworth, 2000; Wakeley, 2003) and fixation of

existing and new mutations (Hartfield, 2012; Pollak, 1966; Slatkin, 1981; Vuilleumier, Yearsley, &

Perrin, 2008). However, I found that existing theory and computational models were lacking. Existing

population genetics models do not account for the cycle of infection and transmission unique to

pathogens. While metapopulation models such as the finite-island model (Slatkin, 1977) can account

for within- and between-host dynamics, some simplifying assumptions are incompatible with the

dynamics of pathogen infection and transmission. Most classical metapopulation models (Levins,

1968, 1969; Maruyama, 1969; Slatkin, 1977; Wakeley, 1998) consider a constant metapopulation size

which is inconsistent with the rapid increase and decrease of infections during an outbreak. Moreover,

metapopulation models tend to assume random sampling of colonizers and does not always consider

 5

the spatial configuration of subpopulations. One way to incorporate more realism into existing the

metapopulation framework is to use network theory. Network-based models have shown that the

density of connections (Newman, 2002), the configuration of the network (Albert, Jeong, & Barabási,

2000; Meyers, Pourbohloul, Newman, Skowronski, & Brunham, 2005; Moore & Newman, 2000), and

degree variance significantly affects the size and intensity of outbreaks (Eubank et al., 2004;

Leventhal, Hill, Nowak, & Bonhoeffer, 2015; Salathe & Jones, 2010). However, these

epidemiological models are blind to changes in the pathogen that could affect its phenotype and

change the course of the epidemic.

OBJECTIVES

In this study, I wanted to connect population genetics with epidemiology in order to expand

existing theory and to reveal the factors that affect the evolution of pathogens. To achieve these, I

begin from a population genetics point of view by considering the genetic processes that underlie

pathogen evolution within hosts during infections. Then, I develop a metapopulation model that

incorporates a network structure of nodes and edges such that nodes are hosts and edges indicate

routes of migration and colonization. To examine the dynamics of network metapopulation model, I

created a new class of genetic simulator that is capable of simulating evolution at multiple scales in a

flexible and efficient manner. Through numerical simulations, I determined how much within-host

and between-host forces affect the trajectory of (new) mutations. I tested the effect of transmission

size and infection length on the fixation probability of neutral, preferred and unpreferred genotypes. I

also investigated whether the shape of the transmission network affects the spreading and overall

fixation of mutations. I compared the fixation probability and site frequency spectrums when

mutations occur in the regular, binomial and scale-free network configurations. Finally, I use regular,

heterogenous, and superspreader transmission tree configurations to study the effect of irregular

spreading on the fixation probability of mutations. Through these numerical experiments, I showed

that both fitness differences and transmissions biased by network structure affect the frequencies of

pathogens genotypes in the next generation.

 6

BACKGROUND

Infectious diseases

An infectious disease is a communicable illness caused by the presence of a pathogen within

the host as well as the host’s response to the invading pathogen (Kawashima, Matsumoto, & Akashi,

2016). Upon entry into the host, the pathogen increases its numbers by redirecting resources to itself.

For example, viruses invade cells and hijack the cell’s enzymes to manufacture copies of itself. After

a certain time, its presence and the ensuing damage within the host raises an internal host response to

impede the spreading infection. It is during this stage of the infection that signs and symptoms of the

disease become apparent. The time interval between exposure to the causative pathogen and the first

symptoms of the disease is known as the incubation period. During this period, the infected individual

may or may not be contagious depending on the type of disease and the individual’s current state of

health. Although difficult to assess, this lag time between when the individual notices the disease and

the time the individual is contagious is an important aspect to consider in modeling the infection and

transmission dynamics of the disease.

Infectious diseases can be classified into two categories according to their horizontal

transmission pattern (Kawashima et al., 2016). Infectious diseases that spread without close contact of

infected individuals are long-range infections while those that require direct or close-range contact are

short-range infections. Cholera is a good example of a long-range infectious disease. Cholera is a

water-borne disease that spreads through water contaminated with the pathogen Vibrio cholerae. On

the other hand, short-range diseases have a limited range and may require close or direct physical

contact with an infectious individual. In general, pathogens that transmit via contaminated airborne

particles or expectorated droplets, and those that require contact to the skin or bodily fluids are short-

range diseases. Distinguishing between these two categories is important because certain models and

methods may be more applicable to one type and not the other.

 7

Epidemics

Epidemics occur when the number of cases of the disease increases, often suddenly, in a

community at a particular time (Centers for Disease Control and Prevention, 2012). Another term

used interchangeably with epidemic is outbreak While outbreak carries the same definition as

epidemic, it often describes an increase occurring in a smaller, more limited geographical area. Thus,

an outbreak can become an epidemic if the disease spreads from the initially affected area into

neighboring regions, broadening its reach.

Epidemics can be classified into one of four categories based on the manner of spread through

the population: common-source, propagated, mixed, and other (Centers for Disease Control and

Prevention, 2012). A common-source outbreak describes a scenario in which a group of individuals

are all exposed from the same source and the disease is not passed on. A propagated outbreak on the

other hand results from transmission of the disease from one individual to another. If the outbreak or

epidemic is a combination of these two, it is called a mixed outbreak. In this case, it begins similar to

a common-source outbreak but then spreads after to other individuals that were not exposed to the

initial source. Finally, some outbreaks and epidemics may not necessarily fit under the previous three

categories. For example, outbreaks of vector-borne diseases may result from a sudden increase of the

vector population or increase in the prevalence of infection in the vector population. Note that

epidemics and outbreaks are not limited to infectious diseases (Gregg, 2002). Exposure to toxins and

radioactive substances can also begin outbreaks. Even the rise in the incidence of non-communicable

diseases such as diabetes can be considered as an outbreak. However, in this study, outbreaks and

epidemics refer to the spread of infectious diseases.

Epidemiological modeling

Epidemiological theory studying the infection and transmission of pathogens are founded on

the compartmental model of Kermack and McKendrick (1927), the Reed-Frost stochastic chain

binomial models (Abbey, 1952), and the Galton-Watson branching process (Galton & Watson, 1875).

 8

These mathematical models attempt to describe the incidence and distribution of infections over time

in homogeneous systems.

The compartmental model of Kermack and McKendrick (1927) is the basis for modeling

dynamical epidemiological processes. Under this framework, a population infected by a

microparasite, such as a viral, bacterial, or fungal pathogen, or protist, is divided into at least two

groups – susceptible and infected – that track the number or density of hosts over continuous time

(Hethcote, 2000; Kermack & McKendrick, 1927). Central in the original Kermack and McKendrick

compartmental model is the transmission function 𝛽𝑆𝐼, where the transmission parameter 𝛽 > 0.

Note that the transmission function assumes that the rate at which susceptible individuals become

infected is proportional to the numbers or densities of the susceptible S and infected I populations.

This means that transmission is a “mass action process” in which the population is completely mixed,

and individuals are not constrained by spatial structure similar to how chemical reactions are

formulated. The original model classified individuals into three compartments – susceptible, infected,

and removed – which specifies what is known as the susceptible-infected-removed or SIR model.

Because the SIR model serves as the template for many other epidemiological models, it is important

to be familiar this basic model.

SIR Model

When susceptible individuals become infected, infections are treated as instantaneous and

infectious individuals enter the removed class R at a rate 𝛾. Equivalently, this means that the time

individuals stay infected is 1 𝛾⁄ . The original formulation of the model has the form:

Equation 1. SIR model without vital dynamics

	
𝑑𝑆
𝑑𝑡

=
−𝛽𝑆𝐼
𝑁

	 (1.1)

	
𝑑𝐼
𝑑𝑡
=
𝛽𝑆𝐼
𝑁

− 𝛾𝐼	 (1.2)

 9

	
𝑑𝑅
𝑑𝑡

= 𝛾𝐼	 (1.3)

where the total number or density of individuals in the population at a particular time 𝑡 given by 𝑁 =

𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). This SIR model does not consider any host turnover as a result of birth or natural

death, known as vital dynamics. As a result, this model assumes that the population is closed. To add

vital dynamics to the model, two rate parameters 𝑣 and 𝑤 that describe the birth and death rate

respectively can be added to the model as follow:

Equation 2. SIR model with vital dynamics (birth and death)

	
𝑑𝑆
𝑑𝑡

=
−𝛽𝑆𝐼
𝑁

+ 𝑣𝑁 − 	𝑤𝑆	 (2.1)

	
𝑑𝐼
𝑑𝑡
=
𝛽𝑆𝐼
𝑁

− 𝛾𝐼 − 𝑤𝐼	 (2.2)

	
𝑑𝑅
𝑑𝑡

= 𝛾𝐼 − 	𝑤𝑅	 (2.3)

where	𝑣 = 𝑤 such that the population size remains constant. When birth and death are taken into

account, the model assumes that births produce individuals that are susceptible to the disease. On the

other hand, the probability of dying from causes other than the disease is assumed to be random and

to happen at equal rates regardless of the host’s infection status.

Sometimes the removed class in the SIR model is also referred to as the recovered class, but

this is not an accurate label given the dynamics of the system. The compartment following infection

is called “removed” because individuals that enter are effectively detached from the dynamical system

as they no longer have any effect on the system. Confusion arises because the removed class consists

of individuals that may have recovered and now harbors complete immunity or individuals that have

died. One way to solve this dilemma is to simply split the removed class into immune class 𝑌, and

dead class 𝑍. The model now takes the form:

Equation 3. SIR model divided into immune and dead classes

 10

	
𝑑𝑆
𝑑𝑡

=
−𝛽𝑆𝐼
𝑁

+ 𝜌𝑌	 (3.1)

	
𝑑𝐼
𝑑𝑡
=
𝛽𝑆𝐼
𝑁

− (𝛾E + 𝛾F)𝐼	 (3.2)

	
𝑑𝑌
𝑑𝑡

= 𝛾E𝐼	 (3.3)

	
𝑑𝑍
𝑑𝑡

= 𝛾F𝐼	 (3.4)

where the total number or density of individuals in the population at a particular time 𝑡 is constant and

given by 𝑁 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑌(𝑡) + 𝑍(𝑡), but the number of living individuals is 𝑆(𝑡) + 𝐼(𝑡) + 𝑌(𝑡)

and varies over time. In this formulation, when complete and lifetime immunity is assumed, it is easy

to see that both the immune and dead classes are dead-ends and do not participate in the dynamical

process. Thus, the sum between the immune 𝑌 and dead 𝑍 classes in this divided model correspond to

the removed class 𝑅 in the standard SIR model such that	𝑅(𝑡) = 𝑌(𝑡) + 𝑍(𝑡) at all times.

One reason to explicitly differentiate between recovered and dead states is when the

recovered cases do not experience lifelong immunity and can revert back to being susceptible. By

splitting into separate recovered 𝑅 and dead 𝑍 classes, recovered individuals will still contribute to the

system by having waning immunity such that they lose at a rate r , after which they return to the

susceptible class 𝑆 (Equation 4). The rate of losing immunity r is known as the relapse rate. This

model is known as SIRS and takes the following form:

Equation 4. SIRS model with explicit recovered and dead classes and loss of immunity

	
𝑑𝑆
𝑑𝑡

=
−𝛽𝑆𝐼
𝑁

+ 𝜌𝑅	 (4.1)

	
𝑑𝐼
𝑑𝑡
=
−𝛽𝑆𝐼
𝑁

− (𝛾G + 𝛾F)𝐼	 (4.2)

	
𝑑𝑅
𝑑𝑡

= 𝛾G𝐼 − 𝜌𝑅	 (4.3)

 11

	
𝑑𝑍
𝑑𝑡

= 𝛾H𝐼; normally this class is explicitly included	 (4.4)

where the total number or density of individuals alive in the population at a particular time 𝑡 is given

by 𝑁 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). Normally, the last differential equation (4.3) is not explicitly modeled.

From these examples, it is straightforward to see the flexibility of the Kermack and

McKendrick model and why it underpins the study of epidemiological dynamics. New compartments

can be readily added to the model or existing compartments can removed, like in the SI model, or be

split up to reproduce a particular phenomenon more realistically. However, because of mass action

kinetics, this framework does not cope well with heterogeneity and cannot model stochastic processes

(Hethcote, 2000). To see the full variety of compartmental model, Anderson and May’s Infectious

Disease of Humans (1992) contains an exhaustive listing of epidemiological models and their

applications.

SIS Model

The susceptible-infected-susceptible or SIS model describes the spreading and maintenance of

the disease in the host population where the duration of immunity is extremely short, or immunization

does not happen. From the point of view of the SIR model, the SIS model is a simplification that

removes the removed class 𝑅 such that infected individuals become susceptible again by some

recovery rate 𝛾 (Equation 5). However, unlike the SIR model, the SIS model considers the possibility

of reinfection even after having the infection. This means that the SIS model does not undergo the

same “boom-bust” dynamics that characterizes the SIR model. The model follows the form:

Equation 5. SIS model without vital dynamics

	
𝑑𝑆
𝑑𝑡

=
−𝛽𝑆𝐼
𝑁

+ 𝛾𝐼	 (5.1)

	
𝑑𝐼
𝑑𝑡
=
𝛽𝑆𝐼
𝑁

− 𝛾𝐼	 (5.2)

 12

where the total number or density of individuals in the population at a particular time 𝑡 given by 𝑁 =

𝑆(𝑡) + 𝐼(𝑡). This set of differential equations indicate that the frequency of the number of susceptible

and infected cases could reach a stable non-zero equilibrium where the number of susceptible and

infected cases do not change over time. When a disease reaches a non-zero equilibrium in the

population, the disease is said to be endemic.

SEIS Model

The susceptible-exposed-infectious-susceptible or SEIS model is a more elaborate version of

the SIS model. The main difference between the SIS and the SEIS model is that SEIS distinguishing

between the state of being exposed to the disease-causing pathogen (Equation 6.2) and having the

ability to transmit the disease (Equation 6.3), as opposed to instantaneously being infectious upon

inoculation (Equation 5.2). Because of this additional compartment, the rate variable σ controls the

lag time between inoculation and infectiousness by 1 σ⁄ .

Equation 6. SEIS model without vital dynamics

	
𝑑𝑆
𝑑𝑡

=
−𝛽𝑆𝐼
𝑁

+ 𝛾𝐼	 (6.1)

	
𝑑𝐸
𝑑𝑡

=
𝛽𝑆
𝑁
− 𝜎𝐸	 (6.2)

	
𝑑𝐼
𝑑𝑡
= 𝜎𝐸 − 𝛾𝐼	 (6.3)

In some infectious diseases, the infection could first exist in a latent state such that the host

appears to be uninfected due to a lack of observable symptoms (Kawashima et al., 2016). During this

time, the latently-infected host may not be infectious but will become infectious at a later point in

time. One the other hand, hosts in the infectious compartment are infected and can transmit the

infection. Without distinguishing these two states, the rate of new infections will appear earlier and

faster than the actual because of an overestimation of infected hosts that can transmit the disease. This

 13

differentiated treatment between exposed and infected cases is not limited to SIS-type infections and

also occurs in SIR-type and other types of outbreaks.

Viral evolution theory: standard population genetics v. quasispecies theory

Viruses are thought to occupy a special niche in biology. Because they lack the requisite

machinery to metabolize and reproduce independently, viruses are passive assemblies of biomolecules

and are not considered living organisms that are often considered special entities. Because of this,

viruses may not necessarily operate under the same laws governing biological processes in living

organisms. However, in terms of population genetics, viruses can be treated just like any other

asexually-reproducing living organism. Viruses also carry genetic material, either in the form of DNA

or RNA, like living organisms. Viruses also have a set of genes that encode proteins to make a new

copy of the virus. Therefore, viruses are still subjected to the same processes of mutation, selection

and genetic drift. Although this much is true, viral populations appear to behave in ways that existing

population genetics theory cannot fully explain (Domingo, 2002). Research suggest that viral

evolution may be influenced by the amount of diversity present in the infection such that more diverse

populations tend to be more evolvable (Burch & Chao, 2000; Codoñer, Darós, Solé, & Elena, 2006;

Crotty, Cameron, & Andino, 2001). Concepts of group selection and the quasispecies theory have

been invoked to explain these observations. However, it has also been shown that viral evolution can

be explained under existing population genetics theory and some feel that the quasispecies theory is

simply a reformulation of existing concepts (Holmes & Moya, 2002a; Wilke, 2005).

The quasispecies theory explains the evolution of an infinite population of theoretical

organisms that replicate asexually and have extremely high mutation rates (Eigen & Schuster, 1977).

Mathematically, the quasispecies theory focuses on the sequence space of ℤ possible genotypes where

there are 𝑛N organisms with genotype 𝑖. Assuming asexually reproduction produces 𝐴N offspring for

each genotype 𝑖, and the mutation rate from genotype 𝑖 to 𝑗 is 𝑞NS, then the expected fraction of mutant

offspring 𝑗 is 𝑤NS = 𝐴N𝑞NS. Taking all genotype transitions into account, 𝑤NS becomes matrix W whose

eigenvector dictates the equilibrium distribution of genotypes. For example, consider for a sequence

 14

consisting of two biallelic sites whose value can be 0 or 1. In this configuration, the complete

sequence space ℤ is composed of 4 possible genotypes – 00, 01, 10, and 11. Assume that genotype 00

never mutates and always produces one copy of itself while 01, 10, and 11 on average generates 1 − 𝑥

copies of themselves and 𝑥 mutants for each of the other genotypes, where 0 ≤ 𝑥 ≤ 1. This scenario

creates the quasispecies matrix W:

Equation 7. Quasispecies matrix

	 𝑊 = W

1 0 0 0
0 1 − 𝑥 𝑥 𝑥
0 𝑥 1 − 𝑥 𝑥
0 𝑥 𝑥 1 − 𝑥

X	 (7.1)

which takes on the following diagonalized form:

	 𝑊′ = W

1 − 2𝑥 0 0 0
0 1 − 2𝑥 0 0
0 0 1 0
0 0 0 1 + 𝑥

X		 (7.2)

Among the eigenvalues in 7.2, only the eigenvalue 1 and 1 + x are valid because they produce

positive values. As long as the initial population was not solely composed of genotype 00, this means

that as the number of generations 𝑡 increases, the eigenvalue will become (1 + x)[. Since the

corresponding eigenvector for this eigenvalue is [0 1 1 1], the quasispecies model predicts that

the population will eventually consist of genotypes 01, 10, and 11 and genotype 00 will be lost at

equilibrium. The quasispecies aspect of the system emerges as a result of the limited transitions

between genotypes such that the distribution of genotypes as a whole, rather than the single

individuals, becomes the target of selection (Bull, Meyers, & Lachmann, 2005).

Quasispecies theory is often used to describe the evolution of viruses, particularly RNA

viruses because their high mutation rates and large population sizes is thought to enable the

population to cover a large portion of the sequence space, and endow it with special characteristics

(Domingo, 2000; Lázaro, Escarmís, Domingo, & Manrubia, 2002; Stern et al., 2014; Vignuzzi, Stone,

Arnold, Cameron, & Andino, 2006; Wilke, 2005; Wilke, Wang, Ofria, Lenski, & Adami, 2001). RNA

 15

viruses rely on a replicase called the RNA-dependent RNA polymerase that is known to have low

replication fidelity (Sanjuán & Domingo-Calap, 2016). Replication fidelity describes the error rate of

replication or the enzyme’s intrinsic ability to copy genetic sequences accurately and determines the

mutation rate. In fact, viral RNA-dependent RNA polymerase is very error-prone, with an error rate of

up to 10-4 mutations per nucleotide for a single replication (Crotty et al., 2001; Sanjuán & Domingo-

Calap, 2016; Sierra, Dávila, Lowenstein, & Domingo, 2000). This almost guarantees that at least one

mutation is introduced for each new viral particle produced during replication.

The large census population sizes of viruses during infection is another aspect that make RNA

viruses likely candidates for the quasispecies theory. During infection, the total number of viruses can

reach up to 1012 particles in the whole body (Domingo, Sheldon, & Perales, 2012). Proponents of the

quasispecies theory claim that this extremely large census population size in tandem with high

mutation rates allow viruses to cover a large portion of the sequence space (Domingo et al., 2012;

Lauring & Andino, 2010; Vignuzzi et al., 2006). This is an important point that underlies the

fundamental characteristic defining the quasispecies theory. By having the ability to cover the

sequence space, the population behaves like a connected set of genetic variants at the center of which

is a master sequence with the highest fitness. Thus, the quasispecies theory predicts that the

population exists as a “cloud” of genetic variants and posits that low fitness variants act to maintain

mutational robustness in changeable fitness landscapes (Burch & Chao, 2000; Eigen & Schuster,

1977; Wilke, 2005). Due to this mutational coupling among individuals in the population, entities are

dependent on each other and the population evolves as a single unit. As a consequence, selection no

longer acts towards the single fittest variant but instead is applied on the entire distribution of

variants. Recently, this has been referred to as “survival of the flattest” (Codoñer et al., 2006; Wilke et

al., 2001) as opposed to the usual “survival of the fittest” owing to the observation that quasispecies

that cover a larger range of the sequence space exhibits greater mutational robustness.

Through the lens of population genetics, the behaviors cited as evidence for the quasispecies

theory in virus populations can also be explained by existing population genetics theory by asserting

that the population is in mutation-selection balance (Goyal et al., 2012; Holmes & Moya, 2002a;

 16

Jenkins, Worobey, Woelk, & Holmes, 1998). Mutation–selection balance refers to the equilibrium

state where the rate at which new deleterious alleles created by mutation matches the rate at which

deleterious alleles are eliminated by selection (Crow & Kimura, 1970). Consider a biallelic single

locus in a haploid population with alleles A and B. Allele A is the wildtype allele with frequency p in

the population of viruses in the infection and allele B represents a deleterious mutant with frequency q

and has a fitness difference s relative to A. Suppose that A to B deleterious mutations arise in the

population at a rate µ and the reverse beneficial mutation B to A occurs at a negligible rate. At each

generation, purifying selection eliminates deleterious mutants reducing q by an amount spq, while

mutation introduces new deleterious mutants increasing q by an amount µp. Mutation-selection

balance occurs when these rates cancel each other out and q remains constant from generation to

generation such that 𝑠𝑝𝑞 = µ𝑝. Therefore 𝑞∗ = µ 𝑠⁄ is the equilibrium frequency between mutation

and selection. Based on this interaction, Holmes and Moya (2002a) pointed out when mutation rates

are high enough, mutation and selection acting in concert on individual viral genomes can sufficiently

explain the large genetic variability within current population genetics theory.

In a finite asexual populations, Muller’s ratchet predicts that mutation-free individuals

become increasing rare as they get lost to genetic drift over time (Muller, 1964). Muller’s ratchet

becomes a problem because purifying selection alone cannot completely prevent the accumulation of

deleterious mutations (Chao, 1990). As individuals carry more and more deleterious mutations, the

load of these mutations increases in a ratchet-like manner, decreasing population fitness and

eventually leading to extinction (Andersson & Hughes, 1996; Duarte, Clarke, Moya, Domingo, &

Holland, 1992; Felsenstein, 1974). Goyal et al. (2012) showed a way for viruses and other asexual

populations to mitigate Muller’s ratchet. Under their model, asexual populations require an influx of

beneficial mutations to constantly compensate against mutation load. As Muller’s ratchet intensifies,

the model posits that the probability that a random mutation is beneficial increase. This assumes that

compensatory mutations and back mutations that undo the original deleterious substitution become

more common as the population fitness declines (Charlesworth, 2012). On the other hand, the model

also predicts that the probability that a random mutation is beneficial decreases with increasing

 17

overall fitness. Thus a state exists such that a certain fraction of beneficial mutations maintains the

absolute fitness of the population, acting as an evolutionary attractor (Goyal et al., 2012). This

evolutionary attractor model shows that it is possible to explain the robustness of viral populations

against Muller’s ratchet without invoking quasispecies theory.

Another argument that skeptics raise is that the extremely large population size of viruses

may actually not be sufficiently cover a large enough region of the sequence space to act as a

quasispecies (Holmes, 2010; Holmes & Moya, 2002a). They argue that if neutral sites exist in viral

genomes, this exponentially increases the neutral sequence space by factor equal to the number of

neutral sites present. For instance, if 10 neutral sites exist in the genome, then the population has to be

larger than 106 because the area of maximum fitness alone can have 106 master sequence variants due

to random genetic drift. Thus, the population must be able to explore the surrounding lower fitness

landscape for mutational coupling to occur and natural selection to act on the entire distribution of

genetic variants. If neutral sites exist in viral genomes, even only 20 neutral sites would drive the

minimum population size to greater than 1012. If proven true, this directly questions one of the central

assumptions of the quasispecies model.

Unfortunately, to show that RNA viruses form a quasispecies requires either observing a

phenomenon that cannot be explained by population genetics alone or demonstrate that the observed

features indeed occur as a result of the viral population operating as a quasispecies. Several pieces of

evidence have been presented in support of viral quasispecies by showing mutational robustness as a

result of the shape of the distribution of mutants (Lauring, Acevedo, Cooper, & Andino, 2012;

Sanjuán, Cuevas, Furió, Holmes, & Moya, 2007; Stern et al., 2014; Vignuzzi et al., 2006) and

evolutionary memory (Ruiz-Jarabo, Arias, Baranowski, Escarmís, & Domingo, 2000; Ruiz-Jarabo,

Miller, Gómez-Mariano, & Domingo, 2003). However, this topic has remained contentious even as

the term “quasispecies” has become more widely and loosely used, especially on populations with

extensive genetic variation and high mutation rate (Domingo, 2002; Holmes, 2010; Holmes & Moya,

2002b).

 18

In this work, I assumed that existing population genetics theory is sufficient to explain virus

evolution and used population genetics concepts as the basis for simulating virus evolution within

hosts. To include factors that influence the migration and dispersal of viruses between hosts in the

population, I based my work on metapopulation models which will be discussed in detail in the next

section.

Infections as a metapopulation

The concept of a metapopulation was introduced to consider the reality that many species

tend to form persistent subpopulations or demes in actual habitats (Levins, 1968, 1969). Initially, the

metapopulation concept was used to describe the population turnover among different subpopulations:

the birth of new subpopulations – called demes – through colonization and their death through

extinction. While the meaning of a metapopulation has broadened to describe any type of

configuration where discrete populations exchange genes through spreading, it is this original

definition that is most closely related to pathogen evolution.

Unlike free-living organisms, pathogens need to constantly infect hosts in order to reproduce

and ultimately survive. This unique condition creates isolated pathogen populations within infected

hosts akin to the demic structure in a metapopulation (Thrall & Burdon, 1997). Considering each host

as a deme, mutation and selection of pathogens during infection affect only the pathogen population

within the host. Apart from within-host processes, causative pathogens can be spread to other

susceptible hosts during infection via symptomatic behavior such as coughing or sneezing for

example. The transmission of pathogens from an infected host to an uninfected susceptible host is

similar to a migration process where a selected set of individuals emigrate from an existing population

and colonize an empty deme. As an individual recovers from the infection, the number of infecting

pathogens drastically decreases and is comparable to a catastrophic extinction as defined in the

classical metapopulation model introduced by Levins (1968, 1969) and Slatkin (1977) and stochastic

metapopulation model of Whitlock and Barton (1997).

 19

Unlike a panmictic population, a metapopulation structures the population into discrete units

which localizes the action of genetic processes and adds migration to the list of processes that can

affect the patterns of neutral genetic variation. Thus, it would useful to study the effects brought about

by population subdivision as well as processes of colonization, migration, and extinction. Slatkin

(1977) indicated that these metapopulation processes produce two conflicting emergent properties.

First, there is an excess of genetic drift in demes colonized by a small number of individuals which

leads to increased differentiation among demes due to founder effects and population bottlenecks. As

a result, the same processes that increase genetic drift and can also significantly decrease the effective

population size of the metapopulation. In contrast, the movement of migrants and colonists across the

metapopulation reduces the genetic differentiation among demes. Thus, there exists an equilibrium

level of genetic diversity balanced by the introduction of new mutations and the rate of migration

between demes in the metapopulation. Pannell and Charlesworth (2000) also highlights three aspects

acutely affected by metapopulation processes. First, a metapopulation with extinction and

recolonization of demes creates age structure among the subpopulations such that within-deme

genetic diversity between demes is expected to be greater compared to a metapopulation without

recurrent extinction. Second, the birth and death of demes is expected to reduce the levels of species-

wide diversity according to several recurrent extinction models. Third, subdivided population in

general and metapopulation with recurrent extinction in particular affects genetic differentiation

among demes based on between-deme genetic variance estimated using FST (Wright, 1949). The effect

of recurrent extinctions on species-wide genetic diversity can also be shown, albeit indirectly, by

estimates of effective population size. However, as Pannell and Charlesworth (2000) point out, there

are several different “effective population size” estimates and it is important to distinguish how each

is affected by recurrent extinctions.

Population structure models can be classified into “discrete” and “continuum” models

depending on clustering and demarcation of individuals (Pannell & Charlesworth, 2000). Examples of

discrete population structures are “island” (Slatkin, 1977; Whitlock & Barton, 1997; Wright, 1931),

“stepping-stone” (Maruyama, 1969), and “island-mainland” (Slatkin, 1977) models that assume

 20

discrete subpopulations. On the other hand, continuums models assert that individuals are

continuously distributed in one- or two-dimensional space, which facilitates modeling of transitional

populations (Barton, Etheridge, & Véber, 2013; Wright, 1943). In the case of pathogen evolution, the

discrete models are more suitable depictions that represent evolution secluded within individual hosts.

Figure 1. Discrete and continuous population structures.

Three types of discrete population structures (a-c). (a) Island-mainland model: circular areas
indicate individual subpopulations with one large circular region depicting a continent. Movement is
depicted by arrows between subpopulations. The “continent” or the “mainland” is a net exporter of
migrants while islands are net importers. (b) Island model: each subdivision or patch is an island and
experiences both incoming and outgoing migration. (c) Example of a continuous population structure
model depicting population density over a geographical area, where red indicates high population
density, blue indicates low density, and green shows areas of intermediate density. The key difference
is that subpopulations are not isolated in demarcated regions and may overlap with one another.

In general, a discrete population structure assumes a finite number of demes linked by gene

flow via migration (Figure 1b). Within each deme, individuals randomly mate and reproduce such that

all individuals in the deme in the current generation are equally likely to be parents of the next

generation. Thus, reproduction within demes follow the Wright-Fisher model where in a constant

population size, each gene is expected to produce a single copy of itself in the following generation

with a variance of one (Crow & Kimura, 1970). In the seminal work of Slatkin (1977) considering

metapopulations with turnover, he presented two metapopulation models with extinction and

recolonization. The first model assumed a single large deme as a net source of migrants (mainland or

continental source) populating other demes that simply received migrants (islands). Under this model,

the gene frequencies in the continental source are unaffected by the dynamics of the metapopulation

of islands. The second metapopulation model he described is known as the finite-island model and is

based on the island model proposed by Wright (1931) and studied by Maruyama (1970). Wright’s

 21

island model defines a metapopulation of 𝑛 demes, each containing a constant number of 𝑁% diploid

monoecious individuals. At each generation, a proportion 𝑚 of genes are randomly selected to

become immigrants and are uniformly distributed over the metapopulation. The island model

definition serves as a template for a large number of classical metapopulation models of genetic

variation (Pannell & Charlesworth, 2000). On the other hand, the finite-island model is simply an

extension of the island model that describes a species composed of a set of 𝑛 identical demes, each

with a constant size 𝑁%, that undergoes random extinction and immediate recolonization with new

individuals at a rate 𝑒 per generation (Slatkin, 1977). However, these simplified dynamics are often

criticized as unrealistic and that the rate of extinction should depend on the size of individual demes

(Pannell & Charlesworth, 2000). If deme sizes are heterogenous, large demes are less likely to go

extinct and will be a net source of colonists while smaller demes will be constantly under the threat of

extinction and are buoyed only by the immigration of individuals (Gaggiotti & Smouse, 1996; Pannell

& Charlesworth, 2000). Given this scenario of recurrent extinction and recolonization, demes would

have geometrically-distributed age structure such that for 𝑛 demes and 𝑑 proportion of demes that 𝑛𝑒

demes are one generation old, 𝑛𝑑(1 − 𝑑) demes are two generations old, 𝑛𝑑(1 − 𝑑)c are three

generations old and so on. Because extinction biases the age distribution of demes towards younger

ages, metapopulation processes that affect the genetic composition of younger subpopulations will

have a greater effect relative to those that are older. A generalized form of the island model was

defined by Whitlock and Barton (1997) using backward migration matrix to indicate the probability

that a gene in deme 𝑖 came from deme 𝑗 in the previous generation. Briefly, given a backwards

migration matrix M; 𝑚NN is the proportion of resident genes – genes in deme 𝑖 that descended from

genes also in deme 𝑖 in the previous generation. In contrast, ∑ 𝑚NSSeN is the proportion of genes that

are immigrants from other demes. The process of extinction and recolonization can be modeled using

the using backward migration matrix. If deme 𝑖 goes to extinction and is immediately recolonized,

this can be represented by setting 𝑚NN = 0 such that all individuals in the deme are populated by

immigrants. Using this formulation, Barton and Whitlock (1997) (also Whitlock & Barton, 1997)

 22

found subdivision decreases the variance in reproductive success between individuals across the

whole population which reduces the effect of drift.

There is abundant evidence demonstrating the effect of population structure on genetic

differentiation based on estimates of genetic variance among subpopulations (FST) and indirectly,

using effective population size. The fixation index (Wright, 1949), FST, estimates the extent of genetic

differentiation between demes based on the correlation of two randomly-sampled genes from the

same population compared to the correlation of when randomly selected from the entire population.

Consider two alleles A and a are segregating at a single locus that have whole-population average

frequencies 𝑝̅ and 1 − 𝑝̅ respectively, and 𝑣𝑎𝑟(𝑝) represents the variance in frequency of A across

demes in the subdivided population, then FST is:

Equation 8. Wright’s FST

	 𝐹i' =
𝑣𝑎𝑟(𝑝)
𝑝̅(1 − 𝑝̅)

 (8)

 A generalized version of FST for more than two alleles is Nei’s GST (Nei, 1973). Both statistics range

from 0 to 1.0 where zero means that the population is completely mixed and freely interbreeding and

a value of 1.0 indicates completely differentiated populations. Statistically significant deviation from

0 indicates either divergence between demes caused by genetic drift, or as a function of selection due

to differentially favored alleles in different demes. In the case of the island model without recurrent

extinction, Wright (1949) showed that demes become significantly differentiated from one another

when the product of the deme population size 𝑁 and the migration rate 𝑚 is 𝑁𝑚 < 1. If 𝑁𝑚 > 1, the

chance that different alleles fix in different demes is low due to the effect of migration. Within

subpopulations, genetic diversity is expected to be an unbiased estimate of overall metapopulation

genetic diversity if all subpopulations are linked by migration, migrations do not change deme

population size, and each deme contribute equally to the next generation (Nagylaki, 1982, 1998).

Studies have also considered the effect of population subdivision on the effective population size in

 23

relation to an ideal panmictic population. Whitlock and Barton (1997) noted that there are many types

of “effective population size” such as “variance effective size”, “inbreeding effective size”,

“eigenvalue effective size”, and “mutation effective size”. Moreover, they showed that effective

population size 𝑁k may increase or decrease compared with the same unstructured population of the

same size 𝑁 such that 𝑁 = 𝑛𝑁%, 𝑛 is the number of demes and 𝑁% is the population within each

deme. In this scenario, there also showed population size 𝑁k depends simply on the variance in fitness

among subpopulations. That is, when subpopulations contribute equally to the next generation, the

reproductive success of individuals simply follows a Poisson distribution. However, when demes

contribute unequally to the next generation, they showed that subdivision may lead to a significant

decrease in effective population size estimates. In general, subdivision causes variance in the

reproductive success between individuals across the whole population to decrease.

Evolutionary epidemiology

It is interesting that the fields of population genetics and epidemiology have a lot in common

yet have remained separate entities, only converging recently with the advent of new technologies

facilitating the study of pathogen genetics and evolution (Pybus, Fraser, & Rambaut, 2013). For

example, both population genetics and epidemiology examine processes of transmission and loss over

time. In population genetics, we are concerned with the transmission of genetic information, in the

form of alleles and their change in frequency over time. On the other hand, epidemiology studies the

incidence and distribution of infectious diseases caused by pathogens and parasites. Moreover,

population genetics and epidemiology both share a fundamental basis in mathematics and statistics,

have established mathematical frameworks that describe their respective dynamical processes, and

extensively use dynamical models to simulate real-world phenomenon. In population genetics,

forward genetic simulations based on the Wright-Fisher or Moran model are used to study the process

of evolution in fine detail. Whereas in epidemiology, Markovian compartmental models are used to

model disease spreading and maintenance in a population. Thus, it is natural to wonder why these

disciplines did not converge earlier.

 24

One possible reason is the fact that the processes that population genetics are concerned with

operate at a different scale to the processes that epidemiology study. Spatially, genetic evolution of

infectious disease pathogens occurs during infection of individual hosts. In contrast, the incidence and

distribution of diseases happens at the level of the host populations. Dynamical processes occurring at

two levels of organization is not intuitive to imagine nor is it straightforward to construct a

computational model. It is also possible to think that marrying the two fields did not make sense

because the processes they study occur in vastly different timescales. Evolutionary timescales often

amount to thousands, if not millions of years while epidemiological timescales can be as short as a

few weeks. However, studies have shown that infectious disease pathogens, especially viruses, indeed

evolve at the timescale of epidemics (Fields, Knipe, & Howley, 2013). In fact, the study of viral

evolution during epidemics may have been the key driver that have brought these two fields closer

together (Pybus et al., 2013).

The main objective of evolutionary epidemiology is to study the feedback between

epidemiological and evolutionary processes. Epidemiological dynamics of disease spreading can

affect how natural selection promotes or diminishes advantageous and deleterious genotypes in the

pathogen population. At the same time, new mutations in the pathogen can result in better

transmission or alter the mortality of the ensuing disease, which affects the nature of epidemiological

dynamics. Several techniques have been developed to explore both the theoretical aspects and the

real-world aspects of evolutionary epidemiology using simulations as well as data gathered from

disease infections.

Evolutionary invasion analysis is a popular technique to study the feedback loop between

epidemiological and evolutionary processes. Rooted in evolutionary game theory, this method

attempts to find the best invasion fitness to survive. In evolutionary game theory, the goal is to find an

evolutionary stable strategy that survives against all other variants. Invasion analysis works in a

similar fashion. Given an invasion fitness, which quantifies the growth rate of a new mutation or

variant (Metz, Nisbet, & Geritz, 1992), the goal is to find an allele that makes the invasion fitness of

all other possible variants negative in a population dominated by the optimum allele (Maynard Smith

 25

& Price, 1973). However, this approach assumes that epidemiological and evolutionary timescales are

uncoupled such that epidemiological dynamics operates more rapidly relative to evolutionary change

(Frank, 1996).

Phylodynamics is a more recent method that combines models of evolution and epidemiology

to describe the phylogenetic history of pathogens in the context infectious disease dynamics. The term

“phylodynamics” was coined by Grenfell et al. (2004) to describe the “melding of immunodynamics,

epidemiology, and evolutionary biology” to understand “how pathogen genetic variation, modulated

by host immunity, transmission bottlenecks, and epidemic dynamics” under a molecular

phylogenetics framework. While applicable to any type of pathogen, RNA viruses best fit this method

because these viruses rapidly accumulate mutations over a short period of time owing to their short

generation time and high mutation rate. Since their generation time is shorter than the epidemiological

time scales, transmissions affect the patterns of viral genetic variation to reveal aspects of

epidemiological history (Volz, Kosakovsky Pond, Ward, Leigh Brown, & Frost, 2009). Viral genetic

variation can also be affected by natural selection and can be used to study the evolution of virulence

and shifting of antigenic phenotypes (Koelle, Cobey, Grenfell, & Pascual, 2006). Thus,

phylodynamics is applicable to any “measurably-evolving pathogen" that accumulates one or more

mutations every transmission.

Genetic simulation

Computational models are indispensable tools to examine dynamical processes in fine detail

under tractable conditions. Models try to capture the complex behavior of real-world phenomenon

through algorithms and equation that can be played and replayed in an infinite number of ways by

running computer simulations. In population genetics and molecular evolution, computational models

have been used to study the evolutionary processes of mutation, selection, recombination, and drift

especially when analytical solutions are intractable. There are two approaches to simulate evolution in

biological populations that differ in computational complexity and flexibility: a backward or

coalescent-based method, and a forward strategy.

 26

Backward or coalescent-based simulations are computationally efficient simulations that only

consider the evolutionary history of surviving lineages. Coalescent-based methods are called

backward simulations because they begin from the observed or extant population and then work

backwards, ignoring individuals that do not belong to the lineage of extant individuals. While the

basic coalescent model assumes the standard neutral model (Kingman, 1982), many types of

coalescent models have been created since to simulate specific scenarios such as structured

populations (Beerli & Felsenstein, 2001; Notohara, 1990) , variable population size (Griffiths &

Tavaré, 1994; Tajima, 1989), evolution with recombination (Hey & Wakeley, 1997; Hudson &

Kaplan, 1988), and selection (Kaplan, Darden, & Hudson, 1988; Neuhauser & Krone, 1997).

In contrast, forward simulations are less efficient as they simulate the entire population

forward in time from past to present, hence the name. Although forward simulations require more

computational power and is more complex than coalescent models, it offers greater modeling

flexibility and more straightforward intuition. Unlike coalescent-based models that include only

ancestors of observed individuals, forward simulations model all individuals regardless of whether

they survive or go extinct. If examining the evolutionary process itself is the main objective, forward

simulations should be preferred because it creates a complete picture of evolution of the population

instead of only simulating the outcomes. The key advantage of forward simulations over coalescent

models lies in the ability to model complex evolutionary scenarios. Forward simulations give the

freedom to model selection and recombination, as well as include specific mating schemes and

complex demographic scenarios (Carvajal-Rodríguez, 2008; Guillaume & Rougemont, 2006; Haller

& Messer, 2017; Hernandez, 2008; Sanford, Baumgardner, Brewer, Gibson, & Remine, 2007). While

some coalescent approaches can model specific types of recombination and selection, backward

simulation cannot be easily adjusted to cope with slight deviations from the standard model. Forward

models are also capable of simulating non-homogenous scenarios of selection and are not limited to

specific parameter ranges (Wakeley, 2005). Therefore, forwards simulations tend to be easier to work

with at the cost of higher computational time. This is clearly apparent from the abundance of forward

genetic simulators built for general use, as well as for more niche applications.

 27

CHAPTER OVERVIEWS

This dissertation is structured as a series of self-contained chapters each discussing its own set

of topics. The first chapter serves as a general introduction outlining the overall theme and goals of

this project, as well as a review of related literature that provides the necessary background to

appreciate this work. Succeeding chapters each have their own introduction and background that

features information specific that particular section. Likewise, each chapter after the introduction has

its own methods section for experiments, and implementation details for new methodologies. Each

chapter also includes its own set of results, discussion and conclusion sections. Finally, this

dissertation ends with a conclusion chapter that summarizes the information discussed in the previous

chapters and discusses the implications of this work. A short summary of each chapter follows.

 Chapter 2. Contagion: A Stochastic Individual-based Model for Simulating Viral Evolution in

Epidemics

In this chapter, I present a new method for simulating genetic information specifically

designed for pathogens and other symbionts that rely on hosts for survival and create a program called

Contagion that implements this algorithm. The novelty of this simulator lies in its concurrent

simulation of evolutionary processes occurring during infection, and the spreading of pathogens from

one host to another. To accomplish this, I developed a method that divides the genetic simulation into

discrete encapsulations that can be computed in parallel to speed up computation time and reduce

memory footprint. Prior to this work, existing programs can only model pathogen evolution within

single infections, or the number of infections in a host population. With Contagion, evolution of

pathogens spreading across a series of hosts in the population can now be simulated and examined. I

validated the program by running unit tests to check whether individual components were working

according to their expected behavior, as well as by running simulations and comparing the results to

theoretical predictions.

Chapter 3. Host network topology affects the spread of new mutations

 28

This chapter examines the evolutionary histories of pathogens and how it can violate

assumptions in standard population genetics models. The key difference between the life histories of

pathogens and free-living organisms lies in the reliance of pathogens for hosts to reproduce and

survive. As a consequence, pathogens are captive to their hosts and can only be transmitted to other

individuals that the host interacts with. I considered how this host-pathogen interaction regulates the

probability of pathogens spreading and the probability that advantageous, neutral, or deleterious

alleles fix. To understand how network effects changes fixation probability, I simulated different host

network scenarios and their unstructured counterparts and compared the average fixation

probabilities. I also examined whether the shape of the underlying host contact network affects

fixation probability.

Chapter 4. Periodic infection and transmission parameters affects the fixation of mutations

In this chapter, I show that pathogen transmission is a key factor that constrains the evolution

of pathogens. In cases of acute infection, I show that the length of time that pathogens are present

within the host is insufficient for mutations to significantly increase in frequency before the next

transmission event. Moreover, each transmission acts as a bottleneck to the existing pathogen

population which decreases genetic diversity and eliminates rare variants. I show that recurrent

bottlenecks with short intervening time intervals greatly diminishes the effect of intrahost selection.

Chapter 5. Virus Evolution in Alternating Hosts: Fixation Amidst Shifting Fitness Landscapes

This chapter examines the case of shifting fitness landscapes in the form of vector-borne

disease pathogens. Vector-borne diseases such Dengue and Malaria are caused by pathogens that

alternately live in two different host species. In the case of Dengue, the Dengue virus systematically

infects the Aedes aegyptii mosquito vector and is transmitted to humans by a bite from an infected

mosquito. However, the pathogen cannot be directly passed between humans and requires the

mosquito vector to mediate the transmission.

Chapter 6. Conclusion

 29

In this chapter, I summarize my findings and discuss its implications on our understanding of

population genetics and molecular evolution of pathogens, specifically focusing on viruses. Avenues

of future research are outlined.

 30

CHAPTER 2

CONTAGION: A STOCHASTIC INDIVIDUAL-BASED MODEL FOR

SIMULATING VIRAL EVOLUTION IN EPIDEMICS

INTRODUCTION

Unlike free-living organisms, pathogenic viruses, bacteria, and fungi need to infect a host

organism in order to reproduce and must continually transmit and colonize uninfected hosts to survive

in the long run. This mode of survival creates reticulated evolutionary histories dependent on the

network of hosts and incurs repeated population bottlenecks every time pathogens transmit from an

infected host (Turner & Elena, 2000). In order to capture the complexity of pathogen evolution,

processes occurring within the host and events happening between hosts in the population have to be

considered.

Forward population genetic simulations are often used to evaluate our understanding of

complex evolutionary processes and test the power and limits of statistical methods. Forward

simulations make it possible to program convoluted life cycles and create intricate demographic

scenarios that capture the complexity found in natural populations, while being able to precisely

examine evolution generation by generation. Although many simulation programs have been

developed to recapitulate the evolutionary processes operating in nature (Carvajal-Rodríguez, 2008;

Guillaume & Rougemont, 2006; Hernandez, 2008), most cannot model the host-dependent life cycle

of pathogens and other symbionts.

Within a single host, pathogen evolution can be modeled similar to free-living organisms. We

can assume that the population of pathogens within the host is a panmictic population. This is a

simplifying assumption because studies have shown that even within the host, population structure

exists due to cell, tissue, and organ specificities (Fields et al., 2013). To more closely replicate natural

intrahost dynamics, more complicated metapopulation models (Murillo, Murillo, & Perelson, 2013;

Thrall & Burdon, 1997; Vergu, Busson, & Ezanno, 2010) may be used to consider these subdivisions

 31

at the cost of increased complexity. Meanwhile, transmission events can be reflected in the model as

migration events between demes. From the within-host population’s perspective, new pathogens

infecting the host is akin to inbound migration that contributes to the existing gene pool. Conversely,

pathogens transmitted to other hosts become immigrants that will found new populations and create a

new infections, or establish gene flow with other existing infections. Thus, if the objective is limited

to examining pathogen evolution within a single infection, existing forward genetic simulators are

capable of modeling these processes.

Understanding pathogen evolution beyond single infections involves considering not only the

genetic evolution occurring during a single infection, but also examining the frequency and direction

of transmissions across hosts in the population. Horizontal pathogen transmission can be imagined as

a migration process that spreads radially and recurrently from an infected host that harbors a

population of pathogens to other susceptible hosts. The route of transmission depends on the disease

the pathogen produces and determines the set of susceptible hosts that can be directly infected.

Unfortunately, existing genetic simulation software were not built to take these dynamics into

account.

One way to track the transmission of disease is to use epidemiological simulators (Hethcote,

2000). This type of simulation software looks at a population of host individuals and simulates the

spread of disease, tracking the infection status of each individual in the population over time. While

epidemiological simulators offer a way to model the spread of the infection and track the transmission

paths taken by pathogens, these simulators do not model genetic evolution and cannot be used to

examine the frequencies of alleles or pathogen genotypes. Because of these limitations, studies that

simulated pathogen evolution over several transmissions had to create their own custom-built forward

genetic simulation software (Gordo, Gomes, Reis, & Campos, 2009; Murillo et al., 2013; Papaïx,

Burdon, Lannou, & Thrall, 2014).

Here I present Contagion, a forward genetic simulator specifically designed to simulate

pathogen evolution. Contagion is a hybrid simulator that explicitly models evolutionary processes at

 32

two scales of reference simultaneously. At the within-host level it acts like a regular forward genetic

simulator that simulates the processes of replication, mutation, selection and drift on pathogen

sequences. At the between-host level, it performs like an epidemiological simulator tracking the

infection status of individual hosts and simulates pathogen transmission between hosts conditioned on

the available routes present in the given host contact network. The novelty of this simulation method

and software lies in the concurrent joint simulation of within- and between-host scales. By connecting

these two scales, we can now examine how processes occurring at the within-host level can affect

processes at the between-host level and vice versa.

In this chapter, I outline the underlying architecture behind Contagion and explain the

computational tricks the software uses to handle massive amounts of simulated data. I also show

examples of the types of analyses made possible by this new algorithm.

 33

METHODS

Pathogen network evolution

The main idea behind this method is the concurrent treatment of processes occurring within

the host and processes happening between hosts. The processes and interactions involved are

illustrated in Figure 2. Within the infected host, a well-mixed population of pathogens is assumed, and

genetic evolution occurs assuming discrete non-overlapping generations. At every pathogen

generation, the processes of mutation, selection and genetic drift contribute to the evolutionary

process. Between hosts, k pathogens from an infected host can be transmitted randomly to any

susceptible neighbor provided an edge connects the two individuals. The total probability that

transmission occurs between an infected host and susceptible host is defined by the product of the per-

capita transmission rate 𝑃' and the probability that the two hosts share an edge in the network. When

a transmission event occurs, k pathogens from the within-host population (or 𝜆% expected number of

pathogen when the number of migrants is stochastically modeled) are randomly selected with uniform

probability to be transmitted. If these selected pathogens are inoculated into an uninfected host, the

pathogens establish an infection and become founders of a new intrahost population, such that the size

of the population increases from k to 𝑁% pathogens in a single pathogen generation. On the other

hand, it is also possible that the selected pathogens are transmitted to an individual with an existing

infection. If the selected pathogens are inoculated into infected hosts, the migrants do not affect the

pathogen population size of the recipient. This type of migration creates coinfection and gene flow,

which facilitates mixing of pathogen genotypes that have arisen in different host individuals. To treat

these processes concurrently, I assumed a discrete-time model where each unit time is a pathogen

generation and within- and between-host processes moves forward by this much amount of time. This

means that between-host stochastic processes are synchronized such that values indicate the

probability or rate in terms of a single pathogen generation (Figure 2b). In actual time, one pathogen

generation is estimated to be one 24-hour period .

 34

Figure 2. Diagram depicting the dynamics of the pathogen network evolution model over time.

(a-d) The pathogen network evolution model extends the existing population genetics models to
account for transmissions and other host-host interactions that affects the spreading of the disease.
(a) In this model, pathogens evolve as they replicate within infected hosts. At the same time, infected
hosts can transmit pathogens to directly connected neighbors. For example, transmission of
pathogens from an infected host w to a susceptible uninfected host x at t=10 founds a new pathogen
population within the individual in the next generation. Thus, each infected individual act like a deme
in a metapopulation model. (b) As a result, infected hosts have individual pathogen evolutionary
histories that can be monitored independently. (c) The evolution history of pathogens within infected
hosts are initiated and strongly affected by the number of pathogens transmitted and the genetic
make-up of the transmitting migrants. (d) Plotting the evolutionary history of pathogens by following

 35

the pathogen population as it transmits between hosts provides a way to view genotype frequency
changes within-hosts as the pathogens transmit from one host to another.

A key aspect of the pathogen network evolution model is the graphical framework used to

describe the relationships between hosts in the host population. A graph is a collection of nodes or

vertices and edges that connect them together. In the network pathogen evolution model, host

individuals are represented as nodes in the network while interactions between individuals that

facilitate transmission are represented as edges (Figure 2a). When an edge is present between two

nodes, this indicates a direct transmission path between the two individuals. When one individual is

infected with the pathogen and the other individual is susceptible to infection, the presence or absence

of an edge conditions the transmission of the disease, regardless of other factors such as the number of

migrating pathogens. This is an extension of the stochastic island model (Whitlock & Barton, 1997)

that explicitly specifies whether migration between demes is possible or not, and if possible, at what

rate.

IMPLEMENTATION

This section describes the technical details of the different parts of the program and explains

how epidemiological and genetic concepts are implemented. Generally, the software works as a

nested set of embedded data structures that may also contain still more embedded data structures. On

the outermost level is an epidemic simulator that governs how transmissions occur. Within an

epidemic simulator are (1) the set of data structures that model the host individual, (2) a network data

structure that sets potential interactions among hosts, and (3) a tree data structure to keeps track of

pathogen genotype frequencies and movement over the entire simulation time. And within each host

data structure are pathogens data structures that represent its genotype. Simulations occur by running

stochastic functions that modify the contents of these data structures according to a specified set of

rules, also known as the simulation model.

 36

Epidemic simulators

Different disease transmission and spreading behaviors can be simulated by using one of the

many epidemic simulators implemented in the software. In Contagion, a simulator houses all the

elements necessary to run a simulation and record its output. The simulator holds data structures that

store (1) host references, (2) host status, (3) host local neighborhood information, (4) pathogen

ancestry, and (5) models that list the rules for between- and within-host processes (Appendix II).

Aside from holding data, a simulator also has associated functions, known as methods, that perform

specific processes that can alter the state of the underlying data within the simulator, such as the

infection status of hosts and pathogen genetic information. A complete list of simulator properties and

methods can be found in the Appendix I, and the programming API in Appendix II.

Contagion was designed to be modular in order to facilitate a variety of ways to create new

behaviors. There are two reasons for this construction: to make the program extensible to add new

functionality, and to avoid redundancies in the codebase. For instance, the SI simulator is the most

basic type of simulator and forms the basis for all the other more complicated epidemic simulators in

the program (see Appendix II). New behaviors can be added or modified by simply writing new

methods, or overwriting existing methods responsible for the current behavior, while keeping all the

other extraneous parts intact. Moreover, the existing software can also be built on to create more

elaborate implementations for anyone interested. This “do-not-repeat-yourself” or DRY technique

lessens the amount of addition programming required to create new functionality and decreases

duplicated code. More importantly, this helps projects with large codebases deal with errors and bugs

in the program. For example, if a bug was found in a process shared across all simulators, then

debugging is simplified because there will only be single point to repair as all the other simulators in

the program inherit from a single implementation. An extensible design also helps other people to

contribute to the project. Because Contagion is a free and open source software project, anybody can

who can program in the Go programming language can implement new types of simulators by

inheriting from the current list and add their own custom methods to get a particular functionality.

The Contagion codebase can be downloaded from https://github.com/kentwait/contagion.

 37

Simulating the spread of disease between hosts

In standard epidemiological models, the population of hosts are regarded as a well-mixed

population where each host can transmit and be infected with the disease. Under this assumption,

infection and transmission processes follow the law of mass action – the rate of new infections is

directly proportional to the frequency or density of susceptible and infected hosts. When the

population under consideration is large and lacks conditions that produce population structure, such as

geographical barriers and social factors, then the law of mass action treats individual hosts like

homogenously-mixing particles (as in chemistry) and provides a good approximation of the overall

epidemic dynamics of the disease. However, in cases where hosts cannot be assumed to

homogeneously interact with other hosts in the population, the law of mass action cannot be applied,

and more sophisticated models are necessary.

Contagion can model outbreaks and epidemics under a wide array of population structures

using a graphical representation to capture the interactions between hosts in a population. Here I

explain the nested programming involved in detail (Figure 3). There are two data structures involved

to represent the population of hosts: an unordered map indexed by a unique host ID to refer to each

host individual (Figure 3b) and a network data structure that records the connection neighborhood for

each host (Figure 3c). Consider a host population as illustrated in Figure 3a. In the simulation, the

program refers to each host by a host ID as shown in Figure 3b. The host IDs for a population must

begin at 0 and increment by one until all hosts have a unique ID. The is the first representation and is

useful to randomly access any host in the program to retrieve information such as the host’s internal

state, or modify information given only the host’s ID. For the network configuration of the host

population, the program looks at a different representation. To illustrate this approach, take the group

of hosts a, u, v, w, x, y, z highlighted in Figure 3c. From the viewpoint of a host, the only other hosts

it needs to know are those in its immediate neighborhood because infections can only travel via

direction connections. These directly-connected hosts form its local neighborhood. In the network in

Figure 3, host a is directly connected to hosts u, v, w, x, y, and z and these form its local

neighborhood. Local neighborhoods are stored in another unordered map whose key is the host ID of

 38

the reference point, and the value is a list of host references (Figure 3c). This enables quick access to

any point in the network given a particular host as a focal point.

Figure 3. Host population representation in the program.

(a) A host population can be imagined as a network where individuals are nodes connected to each
other by edges. (b) To quickly examine hosts, a map of host IDs is used to refer to the concrete host
data by reference (pointer reference). (c) The network structure of the population is encoded using a
local mapping of directly-connected hosts for every host in the network. Because this map of local

 39

neighborhoods refers to the host data by reference, two or more local maps can refer to the same host
without each having an independent copy.

During the simulation, hosts are labeled according to their internal state of infection and can

only have one type of label at any given point in time, similar to compartmental models in

epidemiology (Figure 4). In compartmental models, there are a series of discrete compartments that

are sequentially related to each other and function as categorical labels that classify hosts based on

their infection history (Hethcote, 2000; Kermack & McKendrick, 1927). For example, in a SI model,

there are two compartments – susceptible and infected. In this model, a susceptible host remains in the

susceptible compartment until it is infected (Figure 4a). Once infected, the host transfers from the

susceptible compartment to the infected compartment and remains infected until the end of the

simulation. In the program, the type of epidemic simulator used to generate the simulation determines

the number and label of compartments (see Appendix I for more information about epidemic

simulators in Contagion). For example, an SI simulator depicts the SI model and has two

compartments – susceptible and infected – whereas an SIR simulator depicts the SIR model and has

three compartments – susceptible, infected, and removed. Currently, any of the compartmental models

illustrated in Figure 4 can be used in program, but users can create more complex compartmental

models by programming one from scratch or building on one of the existing models (see Appendix II

for the Contagion API).

 40

Figure 4. Common compartmental models used in epidemiology that are available in Contagion.

(a-f) Each box represents a discrete compartment used to classify the state of the host. Adjacent
compartments lead into each other in a linear configuration, but more complex scenarios are
possible. A host in one compartment moves into the next compartment given a particular rate over
time such that it satisfies a Markov process. Exceptions occur when the waiting time is set to a
constant instead of being sampled from an exponential distribution.

The current state of the host governs the processes the host can perform during each

generation in the simulation. A susceptible host is uninfected and no processes are simulated for it

except to wait for infecting pathogens. On the other hand, if a particular host is in the infected state,

this host performs these four processes sequentially: (1) list down susceptible hosts in its local

neighborhood, (2) for each susceptible host, perform a Bernoulli trial based for a given transmission

probability to determine whether a transmission occurs, (3) if a transmission will occur, sample from

a Poisson distribution using a given expected number of migrants to determine the number of

pathogens to be transmitted, and (4) if the number of migrants is greater than zero, select migrants by

uniformly sampling from the set of pathogens currently present within the infected host. In a full

 41

simulation, all these steps are performed. However, if only disease status of the host is being modeled,

internal pathogens do not need to be considered and steps 3 and 4 are skipped and instead return a

constant and a placeholder pathogen respectively. Depending on the epidemic simulator, an infected

host may return into the susceptible state. In this case, an additional step is added to test whether the

infected host will remain infected in the next generation. The number of simulation steps per host per

pathogen generation depends on the number of compartments as well rules for each compartment.

Contagion precisely models network effects by encoding the local neighborhood of each host,

the sum of which forms the network structure of the population. Moreover, this individual-based

approach facilitates the simulation of other heterogeneities at the level of individual hosts, as well

track the progress of the epidemic with knowledge of the exact transmission chain between patient

zero and all subsequent infections.

This key feature of the program is also its biggest weakness. By modeling hosts individually,

it takes a longer time and is more complicated to simulate epidemics compared to analytical methods

that use arithmetic progressions. Moreover, the amount of data captured by the simulation can make

populations in the order of tens of thousands with high network densities, the relationship between the

number of nodes and edges present, prohibitively expensive to simulate in terms of memory and

storage. However, population structure weakens at high network densities and makes network-based

methods become superfluous because the analytical techniques that assume mass action kinetics can

be used instead.

Simulating genetic evolution of pathogens within hosts

A key innovation of Contagion is the ability to concurrently simulate molecular evolution of

pathogen genetic information over time. During the simulation, the genetic information of infecting

pathogens can mutate and create new mutant strains that may have better, worse or equal replicative

fitness compared to the parental genotype. To achieve this, the program also contains a forward

 42

genetic simulator that simulates the processes of replication, mutation, selection, and recombination

that independently runs for every infected host in population.

State information

Pathogen genetic information is represented as a sequence of categorical states where each

site can only have one state at any point in time (Figure 5). Moreover, the set of possible states must

be consistent across all sites. This means that if the one site in the sequence has two possible states 0

and 1, the it is expected that all other sites in the sequence also only have the same two possible states

0 and 1. Apart from this constraint, categorical states are user-defined and can mean anything from

individual nucleotides, codons, amino acids, segments of linkage disequilibrium, to any kind of

genotypic state that can be represented as categorical variables. While the meaning of a site and the

states it accommodates can be arbitrarily assigned, the number of categories (alleles) per site is

technically limited to 256 states as each category is encoded as an unsigned 8-bit integer ranging from

0 to 255 in the simulation.

Figure 5. Depicting the pathogen, pathogen genotype, and site data models in Contagion.

 43

(A) The program stores sequence information as a list of unsigned integers in memory and converts
input into integers based on a given translation. (B) Each position in the list of states is called a
“site”, and the set of all sites in the list is the genotype and is encapsulated inside a “pathogen”. (C)
Each site in the genotype can take on any type of categorical value.

During the simulation, information may mutate due to random state transitions that occur in

one or more sites in the sequence. This type of mutation is as a Markov process where the probability

of transitioning from one state to another or to remain in the same state depends only on the current

state of the site. The instantaneous transition rate matrix 𝑄 describes these probabilities for all

possible state changes and stasis and can be used to determine the probability for one or more

generations into the future. Thus, matrix 𝑄 is a square matrix whose side is equal to the number of

categorical states a site can become. If each site can take on one of two possible alleles (binary states),

then matrix 𝑄 must be a 2 ´ 2 transition matrix to describe all possible transitions. For nucleotide

sequences, this means a 4 ´ 4 transition matrix is necessary because there are 4 possible bases per site.

For amino acid sequences, a 20 ´ 20 transition matrix is required. For codons, a 64 ´ 64 transition

matrix is required. Thus, if a site can take on one of n possible values, an n ´ n transition rate matrix

is necessary in order to account for all possible transitions between all states.

As Contagion simulates each generation step in the simulation, only the immediately

following state change needs to be considered. Given this approach, testing each site against matrix 𝑄

is computationally wasteful. To make this mutational process more efficient, the problem can be

reformulated as a combination of two subproblems: (1) what is the expected number of sites that

experience a state change in one generation, and (2) what is the transition probability to the new state

given a state change occurs. Through this technique, the number of trials is reduced from each site in

the sequence to a random subsample of sites that experience a mutation. To complete this

reformulation, the transition rate matrix 𝑄 has to be refactored to create a new transition rate matrix

𝑀 = −𝑑𝑄 + 𝐼 where 𝑀 is the conditional transition rate matrix given that a substitution occurs,

where 𝑑 = diag(𝑞Nrs) and I is the identity matrix. Instead of independently testing each site in the

sequence against matrix 𝑄 to determine if the state changes or remains the same, Contagion first

determines the number of sites that experiences mutation using a given mutation rate, randomly

 44

samples the sequence to select the sites to be mutated, and tests only those selected sites against the

conditional matrix 𝑀 to determine the new states. At low mutation rates, this method is significantly

more efficient, but its advantage decreases as the mutation rate increases which leads more to sites

experiencing mutation every generation.

Figure 6. Simulating the mutational process using a conditioned transition rate matrix.

Diagram illustrates the mutation algorithm used by the program. (a) The number of sites over the
entire pathogen subpopulation within the host is determined by sampling from a Poisson distribution
whose mean is the product of the mutation rate, number of sites per pathogen sequence, and the

 45

number of intrahost pathogens. Sites are then selected randomly for mutation. (b) The transition rate
matrix determines the new identity of each site to be mutated based on the identity of the allele in the
site and the transition probabilities to other states. (c) New states replace existing states in the
pathogen sequences.

Selection

Pathogens compete with each other using the concept of replicative fitness which defines the

amount of new offspring a pathogen can create. In Contagion, the replicative fitness of a pathogen

strain is based on the identity of its sequence and a fitness model. A fitness model is set of rules used

to interpret sequence identities in order to assign a fitness value for a particular genotype. Currently,

there are three fitness models implemented in Contagion: (1) multiplicative fitness matrix model, (2)

additive fitness matrix model, (3) motif model.

The multiplicative fitness matrix model uses a predefined list of fitness values for each state

at each site in the sequence and assumes that the contribution of each site to the pathogen’s overall

fitness is independent. In this model, the fitness 𝐹t of the pathogen can be calculated by taking the

product of all the fitness values 𝑓N	across all the sites from 𝑖 = 0,… , 𝐼 such that	𝐹t = ∏ 𝑓Ny
N 	.

Under the multiplicative fitness matrix model, the replicative fitness of a pathogen is relative

to the fitness of other pathogens in the population, and the amount of new offspring a pathogen has is

relative to a given population size. Therefore, the normalized replicative fitness of pathogens in the

population can treated as the list of probabilities of sampling the pathogen, and the frequencies in the

next generation with a population size 𝑁 can generated by 𝑁 independent trials each of which leads to

picking exactly one of the pathogens in the current generation. This process describes sampling from

a multinomial distribution. For example, the current pathogen population (𝑁 = 10) is composed of

pathogens A, B, and C, and their normalized fitness are 𝐹z(= 0.5, 𝐹z} = 0.4, and 𝐹z� = 0.1

respectively. To get the frequency of A, B, and C in the next generation with a population size of 10,

the multinomial distribution is repeated sampled 10 times such that 𝑋	~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙�10, 𝐹z�, where

𝑋 is the vector of new frequencies for A, B, and C and 𝐹z is the vector of normalized fitness values of

the pathogen population. Given the relative nature of this process, this means that apart from

 46

calculating the fitness values of pathogens, a separate mechanism is required to determine the current

population size.

The additive fitness matrix model is an alternative to the multiplicative model which uses

absolute fitness values instead of relative rates. The additive fitness matrix model also uses a

predefined list of fitness values for each state at each site in the sequence. However, unlike the

multiplicative model, the contribution of each site to the pathogen’s overall fitness is additive. In this

model, the fitness 𝐹� of the pathogen is equal to the sum of all the fitness values 𝑓N	across all the sites

from 𝑖 = 0,… , 𝐼 such that 𝐹� = ∑ 𝑓Ny
N . Replicative fitness 𝐹� is analogous to the absolute growth rate of

the pathogen.

Selection occurs based on the number of offspring given by the sum of the individual site

fitness values. Pathogens with larger absolute fitness produces more offspring than pathogens with

lower absolute fitness. This means that if the mean absolute fitness of the pathogen population is

large, then the population grows rapidly. As a side effect, the entire pathogen population can become

extinct if all pathogens have an absolute fitness of zero. Due to the dynamics of this model, the

population size does not have an intrinsic upper bound and can grow infinitely large. Two different

behaviors can be set by the user to handle this possibility. When the pathogen population size within

the host breaches a given threshold, the host can move from the infected state to the dead state

mimicking how systemic infection can lead to death. On the other hand, the same threshold value can

be used set an upper bound to the pathogen population size similar to the concept of ecological

carrying capacity. If the population size of the next generation is greater than or equal to the

threshold, the frequency of pathogens in the next generation can be computed through multinomial

sampling by transforming the absolute fitness values into probabilities.

The third fitness model available in Contagion is the motif model. The motif model assigns

fitness values based on the presence or absence of specific motifs in the sequence. The idea is to

specify only sequence motifs that produce a selective advantage or disadvantage for the pathogen. A

sequence motif is created by specifying a list of sites and target states, and the corresponding absolute

 47

fitness contribution if the motif is present. For each motif present, the model check for a match by

comparing the states of specific sites between the motif and sequence. A match is identified only if

the states in all sites are identical between the motif and the sequence. Thus, the probability of a

match decreases as length of the motif increases. If the sequence did not match any specified motif,

the fitness of the pathogen is set to a default value 𝑓% which is the default grow rate of the pathogen

without beneficial or deleterious mutations. If more than one motif was found, each of their effects on

fitness is additive. Under this model, epistatic interactions between sites are accounted for, albeit in a

limited manner.

Limitations

It is important to remember that the program considers a single site as the smallest unit of

information in the simulation. This limitation is relevant when a single site in the simulation is made

to represent codons or haplotype blocks which itself is composed of more than one mutable site. Take

the case of codons for example. Each codon is three nucleotides long, with each nucleotide having the

ability to independently mutate. Being three nucleotides long, recombination can occur at two sites

within the codon as well as between boundaries of codons. However, if codons are used as the

categorical variable in the simulation, mutations are treated as transitions between 3-character

identities instead of individual nucleotides, and recombination becomes limited to sites between

codons as individual sites are indivisible. Although it is possible to develop an implementation that

considers intra-site changes, Contagion is heavily optimized based on the concept that sites are

indivisible units of information. Given the amount of changes required to accommodate this feature,

there is no plan to consider this option in the immediate future.

Currently, the sequence is assumed to have a constant length throughout the simulation to

reduce computational complexity. This means the insertions or deletion mutations are not permitted in

the simulation. The reason for this limitation lies in the way pathogen fitness is computed in some

models. However, this may change in future release of the program.

 48

Computational optimizations

Native multithreaded support

Contagion is built using the Go programming language to take advantage of concurrent

computing features which enable several computations to be executed during overlapping time

periods. This facilitates running computations in parallel and efficient scaling when multiple cores

and multiple processors are available. To program with concurrency in mind, the simulation

algorithms have to be composed such that calculations can be done independently and therefore can

be performed in parallel. Mutating sites is one example of a type of computation in the simulation

amenable to parallelism. Once sites for mutation have been identified, the substitution process is

independent of each other. Therefore, it is possible to run the sampling process for each site in

parallel, and then gather the results. Another process suitable for parallel computation is the selection

process. The selection process takes a look at the normalized fitness value of each pathogen within the

host and picks the next generation based on these values. Therefore, the selection process is

concerned only with pathogens present within the host and is independent of selection occurring in

other hosts, making it a good candidate for parallel computation.

The concurrent computing paradigm not only allows parallel processing, but also asynchrony

– letting slower processes to run while the program does other kinds of work. This alleviates the

problem of scheduling processes with different computational complexities and execution times.

Concurrency in the Go language is derived from Hoare’s communicating sequential processes model

which describes a concurrent system as component processes that operate independently and interact

with each other solely through message-passing communication. In Go’s implementation of this

model, concurrent processes are lightweight threads meant to perform short-running calculations and

use channels to communicate and share data with each other. These lightweight threads are queued

first-in-first-out and are distributed to open processing slots at runtime. This means even if the

program creates 1000 threads for computing 1000 processes, if the computer only has 10 processing

cores, then the first 10 threads are popped from the queue for processing, and only 10 processes are

 49

active at any given time. Thus, the larger the number of processing units, the more threads the

computer can process simultaneously, and the faster the entire queue will be processed. If one thread

finishes early, then the first thread in the queue takes the slot of the finished process and runs

independently. Unlike in parallel computing, concurrency allows this kind of asynchronous event,

making it an efficient way to process different types of work that may have varying execution times.

In Contagion, the sampling processes in mutation, selection, and transmission are performed

concurrently.

Efficient pathogen data modeling

Contagion uses an innovative mechanism to store pathogens in memory that allows the

program to keep track of pathogen ancestry and reduce the memory footprint of the program

compared to a brute force implementation.

In a straightforward simulation of pathogens evolving within infected hosts, each host

infection can be considered as an independent forward genetic simulation that runs while the host

remains infected. When overall genetic diversity is low, there will be multiple copies of pathogens

with the same genotype within the same host and may also be found across different infected hosts. If

the program naively stores each pathogen sequences in memory without dereplication, multiple copies

of the same sequence will be stored and takes up large amounts of memory. At every generation, the

simulator has to calculate the replicative fitness of pathogens based on their sequence to determine

pathogen frequencies in the next generation. A naïve implementation will try to calculate the total

fitness value regardless of whether the same sequence has been encountered previously. When many

sequences are exact copies of each other, this brute force method wastes a significant amount of

processing time.

Contagion solves this problem by splitting the representation of a pathogen into two data

structures: a pathogen genotype and a pathogen node. The pathogen genotype is a data structure that

hold the sequence of the pathogen while the pathogen node is a virtual representation of a pathogen

 50

that refers back to its associated genotype. When a pathogen undergoes a mutation event, the

pathogen node creates a new child node to represent the new state and keep track of pathogen

ancestry. When the new child node is created, the program checks the set of pathogen genotypes

whether this sequence has been encountered before or is a new sequence. If it has been encountered

before, the new child node is associated to an existing pathogen genotype. But if the sequence is new,

a new pathogen genotype is created and is linked to the new child node. A pathogen can also

recombine with other pathogens to for a recombinant genotype. When this happens, new child node is

created but instead has two parents instead of one. From here, the process of evaluating whether or

not to create a new genotype is the same as the mutation scenario.

Through this method, the number of times the sequence is stored is reduced significantly

while also gaining the benefit of tracking pathogen lineage an ancestry. Since pathogen fitness is

dependent on genotype, fitness is only calculated once for every genotype and is stored within the

data structure after that. Thus, when the fitness value of the genotype is needed next time, the fitness

precomputed fitness is used and fitness is not recomputed again, which significantly reduces

processing time.

Contagion can fall back to a naïve implementation when simulating evolution at high rates of

mutation and/or recombination. When mutation and recombination rate is high, the amount of

duplicated sequences in the simulation is low and the advantage associated with this method becomes

insignificant. In fact, it may even result in increased computational load because of pathogen lineage

tracking. This shows that certain optimization schemes may be detrimental under certain parameter

ranges.

Configuration and input formatting

Condfiguration file

Contagion uses a configuration file to set the various parameters in the simulation, point to

the location of input files, and inform the program how to store data generated by the simulation. The

 51

configuration file is written in the TOML format for legibility and is divided into six different parts

based on their roles in setting up the simulation: simulation, logging, intrahost models, fitness models,

transmission models, and optional conditions. The comprehensive list of keywords, values, and

options are listed in Appendix I.

The simulation section of the configuration file contains settings that configure the global

behavior of the simulation such as the number of generations to run (num_generations), how many

repeated simulations to perform (num_instances), and what simulator to use (epidemic_model).

Note that the num_generations parameter indicates the number of pathogen generations to simulate,

not host generations. The simulation section also specifies the paths to the pathogen sequence file and

the adjacency list file to be read into the simulation. As previous discussed in Epidemic simulators,

Contagion has many built-in simulator options based on the concept of compartmental models. Each

simulator provides a different type of behavior which tries to mimic a particular type of infection and

recovery profile of diseases. For instance, the SI model can be used to simulate chronic infections that

lasts for a long time. For infections that do not produce long-lasting immunity, the SIS model can be

used to model the reinfection of individuals that have already been infected previously. On the other

hand, the SIR model can be used for infections that produces long-lasting immunity. In this model,

individuals that have recovered from infection are completely removed from the infectible population.

Thus, individuals can only be infected once during the span of the simulation. A detailed description

and examples of the pathogen sequence file format and the adjacency list file format can be found

below.

The logging section contains are the settings related to how the program writes data generated

by the simulation to disk. This includes the path where to save the data log (log_path) as well as the

frequency of logging in terms of simulation time (log_freq). By default, the program logs

simulation data every generation. However, for large or long-running simulations, logging every

generation may create enormous files in the order of hundreds of gigabytes for a single instance. In

these cases, per-generation resolution may be not be necessary and the interval between records can

be increased to decrease logging frequency.

 52

An intrahost model defines the properties related to genetic simulation of pathogen

populations within hosts during infection. Parameters include the mutation rate (mutation_rate),

recombination rate (recombination_rate), and the rules that govern how pathogen population size

changes between generations (replication_model). Currently, there are three replication models

implemented in Contagion: (1) constant population, (2) Beverton-Holt, and (3) fitness-based. The

constant population model sets a constant pathogen population throughout the duration of the

infection. The Beverton-Holt model is an ecological model that uses a geometric progression equation

to model the dynamics of population size changes based on the current population size, growth rate,

and a threshold carrying capacity (Beverton & Holt, 1957). Finally, the fitness-based model assumes

that the simulation uses an absolute fitness value-based (additive fitness matrix or motif model) and

that population size changes are controlled by the growth rates computed from those fitness models.

To prevent infinitely-large populations, the fitness-based model can set a cap to the population size.

When the pathogen population within the host hits this threshold, intrahost dynamics becomes similar

to the constant model. However, populations can still crash when the average growth rate fall below

1.0. Unlike the previous sections, the interhost model section can be declared multiple times to create

more than one type of intrahost model in order to model groups of hosts with different intrahost

dynamics, i.e. different host species. An intrahost model can be associated to a particular host using

the host_ids parameter.

A fitness model describes the rules to calculate the replicative fitness of pathogens based on

their sequence. As mentioned in Selection previously, Contagion has three fitness model options: (1)

multiplicative, (2) additive, and (3) motif. Together with the fitness model setting, the user also needs

to indicate the path to the fitness model file (fitness_model_path) in order for the program to

import it into the simulation. Like the intrahost model, multiple fitness models can be created by

declaring the section multiple times. A fitness model can be associated to a host by including the

host’s ID in list of ID’s in the host_ids parameter.

Setting the transmission model is the last requirement to creating a simulation in Contagion.

A transmission model indicates the transmission probability (transmission_prob) and transmission

 53

size (transmission_size) of hosts associated to this model. The transmission probability describes

the chance that disease-causing pathogens will transmit given sufficient contact between hosts,

represented by the presence/absence of a connection between two hosts. Transmission size specifies

how many pathogens are transmitted given that transmission occurs. By default, transmission size is a

constant value which may be an unrealistic condition. The mode parameter can make the number of

pathogen migrants a Poisson random variable instead by setting mode = “poisson”.

Host population network

To input the host connections into the program, Contagion reads an adjacency list text file,

and refactors it into a list of host neighbors for each host in the population. An adjacency list is a way

to represent a network as a list of directly-connected pair of hosts. The format for creating this file can

be found in Appendix I Figure 28 and Figure 29. In its current form, Contagion uses a static host

population network that does not change throughout simulation time. However, development is

currently ongoing to incorporate dynamic host connections that assemble probabilistically.

Pathogen sequences

The initial sequences and set of categorical states to be used in the simulation are given by the

user using a FASTA-like format with the additional Contagion-specific style conventions (Appendix

I, Figure 30). The format of the input sequence uses all the rules of the FASTA format such as using

the > character to define the identifier line. Contagion adds two formatting rules in order to encode the

sequence into the simulation and establish the relationship between available categorical states and

positions in the transition matrix. First, the encoding line, a line prefixed with the % character, must

declared prior to any sequence in order to identify to Contagion the list of categorical states to be

used. In the encoding line, key-value pairs are given to show the relationship between the current

character encoding and its unsigned integer representation during the simulation. The format for

creating this file can be found in Appendix I Figure 30.

 54

These integer values not only represent their respective categorical states, but also the

positions of their transition probabilities in the conditioned transition rate matrix. Given that A is

encoded as 0, to get the probability that A turns to T given that A will mutate, the program will refer

to the first row of the transition rate matrix to get the probabilities that A turns to T, C, or G. If instead

the site contains a C character, the program looks at the third row of matrix because C is encoded as 2.

As a consequence of this notation, the set of categorical states must be encoded into unsigned integers

starting from 0 (as the program counts from 0), incrementing by 1 without skipping. The last encoded

categorical state is expected to have a value 𝑙 − 1 if 𝑙 is the total number of states.

Fitness matrix

To incorporate selection into the genetic simulation, Contagion uses a fitness matrix to

compute the replicative fitness of pathogens based on their sequences. The fitness matrix is expected

to be in the shape 𝑀	 × 𝑁 where	𝑀 is the number of sites in the sequence and 𝑁 is the number of

possible categorical states per site. If most sites share the same fitness value vector, Contagion offers

a convenient way to declare a default fitness vector and only list down sites that have a different value

(Appendix I, Figure 37).

 The values listed in the fitness matrix file and the selected fitness model must be consistent to

prevent errors during initialization. If the fitness model was set to multiplicative, then the program

expects a fitness matrix with fitness values in log space. On the other hand, if the fitness model was

set to additive, Contagion expects positive values in standard base 10.

Testing and debugging

Two different testing protocols – unit tests and integration tests – were used to ensure that the

program is working as intended. In software engineering, unit testing is a method that independently

tests individual parts of the source code such as functions and control procedures to determine if they

execute without fault, and to check whether the computed output matches an expected value (Figure

7b). This type of test ensures that each part of the program is working as expected. However, this does

 55

not guarantee that these parts will work together properly. To test the functionality of combinations of

independently-working parts, integrations tests are performed. Integration tests also compares the

computed output with an expected value like unit tests. However, instead of testing limited-function

parts of the program, integrations testing examines whether multiple parts integrated together work as

expected, hence the name “integration test” (Figure 7c).

To perform a unit test on a specific function or part of the program, a test function is created

(pink box in Figure 7b) which runs the target to be tested (one of the white boxes in Figure 7a). If the

target accepts input parameters and provides some kind of output, the test function will test whether a

given set of inputs will result in an output equal to some expected value. If the generated output does

not match the expected output, the unit test function raises an error to alert the unexpected behavior.

Because a unit test checks if the function will break for some input value, the set of inputs and

expected outputs to be tested against determines the completeness of the test. It is recommended that a

target is tested against an array of inputs covering the domain of expected inputs. For example, if an

input parameter expects a signed integer, the target should be tested with very small value negative

integers, very large positive integers, integers close to zero, and zero itself. The unit test function also

catches any unexpected errors raise by the target. For example, if the mutation function suddenly

encounters an error while mutating a site, the unit test function halts testing and will immediately

raise an error to record that something unexpected occurred. Thus, unit testing helps test whether the

code is actually working, and if the programmed behavior matches expectation.

 56

Figure 7. Software testing procedure diagram.

The set of calculations necessary to perform intrahost pathogen evolution in (a) is used as an example
to show the similarities and differences between unit testing (b) and integration testing (c). In this
diagram, white boxes represent functions, statements, or any part of the program with limited or
singular functionality. Gray boxes indicate encapsulation or grouping together of functions with
related and interdependent functionality. Pink boxes represent test functions.

 57

If a module passes its unit test, then that part of the program is guaranteed to work as

expected for the given parameter range used to test it. However, this type of test does not guarantee

that the function will work for all types of parameter values, nor does it guarantee that the target when

working in combination with other parts of the program will also run as expected. Integration tests

address this issue and tests whether the aggregation of individual targets also work as expected

(Figure 7c).

To perform integration testing, another test function is created (pink box in Figure 7c) which

runs the target to be tested (the gray box which encapsulates the white boxes, Figure 7a). Unlike the

unit test, an integration test deals with more complex functionality that is often composed of multiple

interdependent parts. Because of this, integration tests are performed only after all parts have passed

their respective unit tests. This helps narrow down the problem to improper integration between parts

since each part has been shown to work properly on its own. Integration testing also uses a set of input

parameters and some corresponding expected output to compare against. Integration testing assumes

there is some way to reliably predict or analytically compute the true answer for a complex set of

actions. Thus, if the behavior of the integrated system is unknown or unpredictable, then integration

testing cannot be done.

For Contagion, I created test functions that check the major parts of the code such as the

random sampling functions for replication, mutation, and spreading of the pathogen; and fitness

computation that calculate the overall fitness value of each pathogen. To perform integration tests, I

applied a bottom-up approach given the hierarchical nature of the program’s design. A bottom-up

approach first tests the lowest level components using unit tests, then tests aggregations of these

components. This process if repeated until all lower-level components are integrated and testing

reaches the top of the hierarchy. The parameters and source code for unit test and integration test

functions can be found online at https://github.com/kentwait/contagion.

 58

RESULTS

The SIS individual-based network epidemiological model

I simulated the spreading of a disease that follows the SIS compartmental over a complete

network to determine if a network version of the SIS model reaches equilibrium or is prone to chaotic

behavior. A hallmark of the standard SIS model is its ability to reach equilibrium at 0 and a positive

number such that the number of infected individuals remains constant at equilibrium. In the discrete

version of the SIS model, this positive equilibrium is not guaranteed for all parameter values. While

Contagion runs simulations in discrete time, it also uses the concept of individual-based modeling and

networks. In this approach, each individual in the simulation is an autonomous agent that acts based

on inputs from the environment as well as its internal state. Moreover, actions involving other

individuals in the system is permitted only when a connection between individuals exists. Given these

constraints, it is unclear how the network model will behave.

Figure 8. Frequency of susceptible and infected individuals over time in the Network SIS model.

 59

Time-series plot of the number of susceptible (blue) and infected (green) individuals in a host
population of 1000 individuals connected via a complete network. The first time-series plot (top)
shows the frequency of individual statuses when per-connection transmission probability is 0.001
transmissions/connection/day. The second (middle) and third (bottom) time-series plots show the
change in frequencies over time for 0.0005 and 0.0001 transmissions/connection/day respectively.
The solid line indicates the mean frequency for at each time point while the highlight shows the 95%
CI.

Repeated simulations of an SIS-type disease showed that the network model initially show

chaotic behavior such that the frequency of infected individuals oscillates around a certain value.

However, the amplitude of the oscillation diminishes over time and the system can reach a stable

equilibrium. High transmission rates appear to create larger initial oscillations compared to smaller

values. Since the transmission rate in Contagion describes the probability of transmission for every

connection to a susceptible neighbor, the actual number of new infections at every time step is a

binomial random variable. This is a key distinction that makes the network SIS model in Contagion

stochastic, as opposed to the deterministic behavior of compartmental models.

In models that do not possess a feedback loop, such as the SIR model, chaotic behavior is not

expected to occur. In the SIR model, individuals traverse the susceptible, infected and removed

compartments at most once such that individuals can never become susceptible again. Therefore,

there is no reason to expect that the network version of the SIR model will show chaotic behavior.

Simulations of the network SIR model an interesting departure from both the continuous-time

and discrete-time SIR models (Figure 9). In standard SIR models, the shape of the infected curve is

usually skewed such that the right-hand side has a longer tail than the left-hand side. This pattern

occurs because the length of time an individual is infected is specified by a recovery rate parameter

instead of a time interval (Equation 1). Although the reciprocal of the recovery rate 𝛾 gives the

average duration of the infection, the rate indicates the probability that an infected individual will no

longer be infected at for every time unit such that infected individual can recover earlier or later than

the expected duration. Although the reciprocal of the recovery rate 𝛾 gives the average duration of the

infection, setting a constant value equal to the average gives a completely different dynamic because

there is no variance in the duration of infection. Setting the duration of infection means the waiting

 60

time until moving to the removed compartment now constant and the infectious duration is no longer

Markovian. Thus, the recovery times of infected individuals depends on the time they enter the

infected state. This explains why the infected curve in the simulation is symmetric whereas the

standard SIR models produce a right-skewed curve.

The SIR-like individual-based network epidemiological model

Figure 9. Frequency of susceptible, infected, and removed individuals over time in the Network
SIR* model.

Time-series plot of the number of susceptible (blue), infected (green), and removed (red) individuals
in a host population of 1000 individuals connected via a complete network. The first time-series plot
(top) shows the change in frequencies over time when per-connection transmission probability is
0.001 transmissions/connection/day. The second (middle) and third (bottom) time-series plots show
the change in frequencies over time for 0.0005 and 0.0001 transmissions/connection/day respectively.
The solid line indicates the mean frequency for at each time point while the highlight shows the 95%
CI.

It is arguable whether setting an infectious period instead of a recovery rate is incorrect or

not. There are merits to the a constant or normally-distributed infection time. Studies have shown that

 61

adopting a constant time interval, instead of an exponentially distributed waiting time, can lead to

derived from empirical observations more realistic prediction (Lloyd, 2001; Vergu et al., 2010). In

this case, a constant infection time is advantageous because Contagion uses the time a host is infected

to simulate pathogen molecular evolution within each infected hosts. Having an exponentially-

distributed infection time would mean that number of pathogen generations will also be

exponentially-distributed.

Fixation probability of mutations within a single host

To validate the genetic simulator that facilitates intrahost evolution during host infections, I

simulated the fixation of mutants starting from an initial frequency 𝑝 and determined the fixation

probability at different values of the scaled selection coefficient 𝑁s. I chose this method to validate

the program because the theoretical value can be easily calculated, and the fixation process tests the

replication and selection processes of the simulation. I calculated the fixation probability by

repeatedly running the program 10000 times and counting the number of instances the allele reached

fixation. I resampled the generated data 1000 times to get the mean and generate the 95%CI of the

sample.

Table 1. Comparison between theoretical and empirically-calculated fixation probabilities

Ns s p Theoretical u Mean 95%CI

0 0.000
0.1 0.0000 0.1026 (0.094, 0.111)

0.5 0.5000 0.5010 (0.472, 0.530)

1 0.002
0.1 0.2096 0.1986 (0.186, 0.210)

0.5 0.7311 0.7320 (0.704, 0.758)

2 0.004
0.1 0.3358 0.3422 (0.329, 0.354)

0.5 0.8808 0.8720 (0.850, 0.893)

4 0.008
0.1 0.5509 0.5358 (0.524, 0.551)

0.5 0.9820 0.9860 (0.979, 0.993)

10 0.020 0.1 0.8647 0.8712 (0.861, 0.881)

 62

0.5 1.0000 1.0000 (1.000, 1.000)

The program’s results did not significantly deviate from the theoretical predictions for the

range of scaled selection coefficients that I tested Table 1. The theoretical values were consistently

within the 95%CI for all parameter combinations used. These results show that the genetic simulator

aspect of the program is working as expected.

Pathogen sequence mutation rate

Table 2. Expected number of mutations after one generation.

Mutation rate µ
(site-1 gen-1) Population size N Number of sites l

Mean
(site-1 gen-1)

1 ´ 10-6 1000 10000 0.98´ 10-6

10000 1000 0.99 ´ 10-6

100000 100 1.02 ´ 10-6

1 ´ 10-4 100 10000 0.99 ´ 10-4

1000 1000 1.00 ´ 10-4

10000 100 1.01 ´ 10-4

1 ´ 10-2 100 10000 1.00 ´ 10-2

1000 1000 1.00 ´ 10-2

10000 100 1.00 ´ 10-2

Finally, I tested whether the program was producing the expected amount of mutations. To

test the program’s mutational process, I created a population of N pathogens with 10000 sites under a

2-allele model and gave all pathogens the same initial sequence. Given the per-site per-generation

mutation rate, I let the program perform one round of mutation on the entire population of pathogens

and counted the number of mutated sites after. This process was performed using different mutation

rate values and each set-up was repeated 100 times to get the expected mutation rate per site per

generation. Results showed that average mutation rate was close to the expected value and within the

95%CI.

 63

Although it is impossible to prove that program is without bugs or defect, I have shown

through these tests that the genetic simulator behaves according to theoretical predictions and the

epidemic simulator does not suffer from chaotic behavior and works in a predictable manner, with

slight deviations from the standard compartmental models. Aside from these tests, the functions and

methods in the programs are tested individually using unit tests to ensure that each function works as

intended.

 64

DISCUSSION

Contagion is a new simulation program that models the state and evolution of information

that is being transmitted across a network. To achieve this, the program concurrently performs two

processes – evolving information states present at each vertex in the network and choosing which

pieces of information to transmit and to which nodes to transmit it to. During the simulation, the

program tracks which host individuals have received information, are transmitting information, and

have yet to receive any information. Contagion also records the frequencies and types of information

present within each host and over all individuals at particular intervals. Whenever the content of the

information mutates, the program also stores the time and location of emergence, and records from

which piece of information it arose from.

Any type of information that can be encoded as a sequence of categorical states can be used

in Contagion. For example, biomolecules such as DNA, RNA, and proteins are polymeric sequences

composed of categorical states such as nucleotide bases adenine (A), thymine (T), cytosine (C),

guanine (G), and uracil (U) in nucleic acids, and the 20 amino acids in proteins. Contagion is not

limited to biological sequences. Language can also be modeled in Contagion by setting words as a

series of discrete categories and phrases as a sequence of these words. Therefore, any type of

information that can be treated as a categorical series can be simulated in the program.

The novelty of the program lies in the ability to combine processes occurring at two different

scales. In the case of pathogens, Contagion is a useful tool to study the effects and interactions

between within- and between host process processes. Although previous studies have constructed

software with similar goals as Contagion (Leventhal et al., 2015; Park, Loverdo, Schreiber, & Lloyd-

Smith, 2013; Read & Keeling, 2006), these programs were specifically designed for a particular

scenario. To my knowledge, Contagion is the first general purpose simulation software that delivers

this kind of functionality. I hope that this piece of software enables more studies in the field to better

understand pathogen evolution.

 65

CHAPTER 3

HOST NETWORK TOPOLOGY AFFECTS THE SPREAD OF NEW

MUTATIONS

INTRODUCTION

In epidemics, it is frequently observed that a few individuals appear to be responsible for

spreading the disease to a disproportionate number of people. This interesting observation has driven

epidemiological studies to examine the role of networks on the spread of infection. In cases where

“superspreading” events have been observed, this is often a key moment in the epidemic that

explosively increases the incidence of the disease (Fujie & Odagaki, 2007; Yu et al., 2007).

Unfortunately, these dynamics cannot be readily examined though standard epidemiological models

which assume a well-mixed population. To address the shortcomings of existing epidemic models,

epidemiological studies have incorporated network theory and individual-based models to include

more realism in their models (Meyers et al., 2005; Starnini, Machens, Cattuto, Barrat, & Pastor-

Satorras, 2013; Stolerman, Coombs, & Boatto, 2015). Simulation of epidemics on different networks

have showed that the uneven distribution of connections in the host population is a key factor

affecting the spread of infections (Leventhal et al., 2015; Lloyd-Smith, Schreiber, Kopp, & Getz,

2005).

The distinguishing characteristic of pathogen evolution lies in the necessity of pathogens such

as viruses, to infect host organisms in order to reproduce and avoid extinction. Yet this behavior is not

currently captured in existing population genetics models (Lloyd-Smith, Funk, McLean, Riley, &

Wood, 2015). During infection, new mutations may appear following replication and change in

frequency within the host either through random genetic drift or by conferring a competitive

advantage or disadvantage to the mutant. However, new genotypes that appear within the host are

confined within the host unless the mutant is transmitted and infects other hosts. Thus, the distribution

and frequency of mutations is affected not only by within-host factors such as mutation rate,

 66

population size, and strength of selection, but also by between-host factors like transmission rate,

connectivity, and network topology.

Traditional population genetics models do not account for this pathogen-specific demography

because of the simplifying assumption that populations are well-mixed and unstructured. While this

an appropriate null model for free-living organisms, its application as a null model for pathogens

seems unsuitable. Deviation of population genetics null models, such the standard neutral model, are

often cited as indication of the presence of selection (Andolfatto & Przeworski, 2000; Bhatt,

Katzourakis, & Pybus, 2010; McDonald & Kreitman, 1991), or demographic changes (Haipeng Li &

Stephan, 2006; Nielsen et al., 2009; Strimmer & Pybus, 2001). However, it is unclear whether unique

life history of pathogens and its network-like structure significantly deviate from unstructured models,

and if so by how much? Metapopulation models that explicitly consider subdivisions in the overall

population are candidates to better model pathogen evolution. In this study, I showed how networks

create population structure that can significantly change the behavior of the system compared to an

unstructured population and demonstrate that different network topologies can significantly affect the

pathogen genetic evolution by influencing the frequency spectrum of mutations, expected genetic

diversity, and the fixation of mutations.

 67

METHODS

The network SIS epidemiological model

The susceptible-infected-susceptible epidemic model is a type of compartmental model that

describes the dynamics of an epidemic in which long-lasting immunity does not occur upon recovery

from infection. As a consequence, previously infected individuals may be infected by the disease

multiple times. The standard SIS model is composed of three ordinary differential equations that

describe the number of susceptible (𝑆) and infected individuals (𝐼) in continuous time (Equation 9).

This model assumes that susceptible and infected individuals are homogenously-mixing such that the

law of mass action applies (Matthew James. Keeling & Rohani, 2007). Under this assumption, the

population is free of any condition that may produce population structure.

Equation 9. SIS model

	
𝑑𝑆
𝑑𝑡

=
−𝛽𝑆𝐼
𝑁

+ 𝛾𝐼	 (9.1)

	
𝑑𝐼
𝑑𝑡
=
𝛽𝑆𝐼
𝑁

− 𝛾𝐼	 (9.2)

In this model, 𝛽 is the rate of new infections and 𝛾 is recovery rate. The values of 𝑆 and 𝐼

indicate the number of susceptible and infected individuals are related to each other by the equation

𝑆 + 𝐼 = 𝑁, where 𝑁 is the total number of hosts in the population. The basic reproduction number is

given by 𝑅� = 𝛽 𝛾⁄ . When 𝑅� < 1, then 𝐼 = 0 and the epidemic dies out due to the lack of infectious

hosts. Whereas 𝑅� > 1, the epidemic achieves a stable endemic equilibrium at 𝐼 = 𝑁(1 − 𝛽 𝛾⁄) and

is expected to persist in the population.

To transform this model into discrete time, time can be divided into time intervals ∆𝑡, and the

ordinary differential equations can be reformulated into a set of difference equations (Equation 10) as

shown by Allen (1994).

Equation 10. Discrete-time SIS model

 68

	 𝑆��s = 𝑆� −
𝛽
𝑁
∆𝑡𝑆�𝐼� + 𝛾∆𝑡𝐼�	 (12.1)

	 𝐼��s = 𝐼� +
𝛽
𝑁
∆𝑡𝑆�𝐼� − 𝛾∆𝑡𝐼�	 (12.2)

	 	 (Allen, 1994)

In this discrete-time transformation, frequencies are separated by unit time ∆𝑡 and time 𝑛 is

equal to the time at 𝑛∆𝑡. The infection rate in the discrete-time transformation is defined by the

contact rate β, which is the expected number of individuals an infectious host has had sufficient

contact with in order to transmit the infection (Allen, 1994). To ensure that all solutions of these

equations are positive, the following inequalities must be satisfied (Equation 11).

Equation 11. Conditions to keep the discrete-time SIS model valid

	 𝑆� > 0	 (13.1)

	 𝐼� > 0	 (13.2)

	 𝑆� + 𝐼� = 𝑁	 (13.3)

	 𝛾∆𝑡 ≤ 1	 (13.4)

	 𝛽∆𝑡 < �1 + �𝛾∆𝑡�
c
	 (13.5)

	 	 (Allen, 1994)

The basic reproduction number defines the rate of secondary infections created in the

population. In the discrete-time model, the basic reproduction number is also given by 𝑅� = β 𝛾⁄

(Allen, 1994). Similar to the continuous-time SIS model, when 𝑅� < 1, the disease dies out and the

system reaches equilibrium at 𝐼 = 0. However, when 𝑅� > 1 the discrete-time model is not

guaranteed to reach an endemic equilibrium and is susceptible to chaotic behavior at certain parameter

values.

To test the effect of network topology, I considered the discrete-time SIS model as the null

model because it models the epidemic assuming an unstructured and homogenous population of hosts.

 69

On the other hand, networks implicitly create population structure unless it is a complete graph

(Newman, 2010). Population structure emerges from networks due to the limited number of

connections between nodes. As a result, population structure grows stronger as the network density –

the relationship between the number of nodes to the number of connections present in the network –

decreases and the network becomes more sparsely connected . Network density is calculated based on

the number of nodes	𝑁 present in the graph (host population size) and the total number of undirected

edges 𝑑$ present (Equation 12.1) or directed edges 𝑑$% (Equation 12.2). This quantity is a summary

statistic that describe the average connectedness of the network.

Equation 12. Network density for undirected and directed graphs

	 𝐷 =
2𝑑$	

𝑁(𝑁 − 1)
	 (12.1)

	 𝐷 =
𝑑$%

𝑁(𝑁 − 1)
	 (12.2)

	 (Hagberg, Schult, & Swart, 2008)

I used Contagion (Kawashima, 2017) to create an SIS model embedded in a network

structure. In this model, the nodes on the network represent the host population and the connections

represent contact between hosts that may transmit the infection. In the simulation, infected hosts

spread the disease by transmitting disease-causing pathogens to directly-connected susceptible

neighbors. The probability of disease transmission is given by the following equation (Equation 13),

where 𝑃' is the transmission probability given a connection, and 𝜆% is the expected number of

pathogens transmitted given a transmission event occurs, and 𝑘 is the actual number of pathogens

transmitted. This is equivalent to the probability that at least one disease-causing pathogen is

transmitted to a susceptible neighbor.

Equation 13. Probability that at least one disease-causing pathogen is transmitted

	 𝑃(𝑘 > 0) = 𝑃'�
𝜆t

�er��
𝑘!

�

��s

= 𝑃'�1 − er���	 (13)

 70

Thus, the contact rate β in the discrete-time SIS model is comparable to the transmission

probability when a connection between source and recipient exists. When a transmission event is

permitted to occur, the number of pathogens to be transmitted is determined stochastically by the

program and is a Poisson random variable with an expected value of 𝜆%. Given 𝜆% > 0 and the

within-host pathogen population size 𝑁% ≥ 𝜆%, pathogens are randomly sampled from the within-host

population.

In some cases, multiple infections or coinfections of different pathogen strains from different

infected sources can occur (Seabloom et al., 2015; Susi, Barrès, Vale, & Laine, 2015). Coinfection

describes the phenomenon where multiple strains or types of pathogens simultaneously infect a single

host. If coinfections are not allowed, infected neighbors of infected hosts block the transmission of the

infection and creates a similar dynamic to removed individuals in the SIR model. If coinfections are

allowed, infected individuals can transmit pathogens both to susceptible and infected neighbors. In

this case, susceptible hosts move into the infected compartment, but already infected hosts remain

infected and does not reset the interval of infection. A side-effect of coinfection is that it increases the

mixing of the overall pathogen population and may influence genetic diversity and fixation dynamics

(Susi et al., 2015).

In all network SIS simulations in this study, transmission probability per connection is 𝑃' =

1.0, the number of pathogens transmitted per connection is stochastically determined and is given by

the expected number of migrants 𝜆t = 5, and the duration of infection 1 	𝛾⁄ = 10, unless otherwise

stated. This simplifies the stochastic transmission simulations by regulating it with a single random

variable.

Selection model for studying pathogen genetic evolution

Natural selection of pathogens is based on the relative replicative fitness of each pathogen

computed from their genotype using a given multiplicative fitness matrix. In the multiplicative fitness

matrix model, each categorical state per site is assigned a fitness contribution 𝑓N and the product of all

 71

the fitness contributions becomes the relative replicative fitness of the pathogen 𝐹 (Equation 14.1). To

get the frequencies of pathogen genotypes in the next generation, the list of replicative fitness values

of the set of genotypes present in population is normalized such that they sum to 1.0 (Equation 14.2).

Once normalized, the elements of vector Fz� specify the probabilities of classes of a multinomial

distribution. Given a constant within-host population size 𝑁%, the frequencies of genotypes in the next

generation Xs …	X�, where k represents the genotype, are decided by repeatedly sampling the

multinomial distribution 𝑁% times such that the offspring picks its parental genotype. With a

multinomial distribution whose probability mass function is given by (Equation 14.3), the frequencies

of genotypes in the next generation Xs …	X� are non-negative integers xs … x� such that

Xs = xs …X� = x�.

Equation 14. Multiplicative fitness model

	 𝐹� =�𝑓N

y

N

	for	each	𝑘[£	genotype	 (14.1)

	 𝐹z� =
𝐹�

∑ 𝐹��
	 (14.2)

	 𝑃𝑟(𝑋s = 𝑥s …𝑋� = 𝑥�) =
𝑛!

𝑥s!…𝑥�!
𝐹�s × …× 𝐹��	 (14.3)

When selection is present, it affects the frequency of pathogen genotypes in the within-host

population but does not affect the probability of sampling pathogen for transmission. If the number of

pathogens to be transmitted 𝑘 > 0, pathogens are sampled randomly from the within-host population

such that the probability of sampling a particular pathogen genotype is frequency-dependent.

Network generation

I considered three different network topologies – regular, binomial, and scale-free – to

determine if network effects affect the evolution of pathogens. To construct these networks, I used the

random graph constructors in the NetworkX Python package (Hagberg et al., 2008).

 72

To create the regular network, I used the networkx.random_regular_graph(d, N)

constructor method where the number of degrees for each node is 𝑑 = 5 or 𝑑 = 10, and the number

of nodes in the network 𝑁 = 200. The random graph is constructed according to the Steger and

Wormald’s algorithm (1999). This graph constructor produces a d-regular graph with a random set of

connections to nodes and guarantees that all nodes have 𝑑 number of connections.

For the binomial network, I used the networkx.fast_gnp_random_graph(N, Pc)

constructor method (Batagelj & Brandes, 2005) where the number of nodes 𝑁 = 200, and the

probability of edge creation is 𝑃� = 0.025 or 𝑃� = 0.050. Note that for this kind of graph generator,

neither the number of edges per node nor the total number of edges in the graph can be specified

beforehand. Thus, in order to get an average degree matching 𝑑 = 5 and 𝑑 = 10, probabilities 𝑃� =

0.025 or 𝑃� = 0.050 were selected respectively. The Batagelj and Brandes algorithm is based on the

Erdos-Renyi “𝐺(𝑛, 𝑝)” model (1959) with optimizations to make graph construction more efficient. In

the Erdos-Renyi model, a binomial graph is constructed by starting with a disconnected network that

consists of 𝑁 nodes and no edges. Then, edges are added by testing all pairs of nodes one by one

independently with a probability of edge creation 𝑃� (Erdős & Rényi, 1959).

Finally, for the scale-free network, I generated the network using the networkx.powerlaw_

cluster_graph(N, dr, Pg) constructor method (Holme & Kim, 2002) such that the number of

nodes 𝑁 = 200, the number of random edges to add for every new node 𝑑" = 5 or 𝑑" = 10, and the

probability of creating a triangle subgraph after adding a random edge 𝑃(= 0.9. To construct the

scale-free network, the Holme and Kim algorithm starts with a network that consists of 𝑁 nodes and

no edges and iteratively adds new edges. At every iteration, one node is selected in lexicographic

order and 𝑑" edges are added. For each new 𝑑" edge, it is attached to one of the existing nodes at a

probability proportional to node’s number of existing connections. This creates a positive feedback

loop where nodes with a large number of connections are more likely to accrue even more new

connections during graph construction. After this preferential-attachment step, the Holme and Kim

algorithm randomly adds another edge between the current origin node to any one of the recipient

 73

node’s connected neighbors with probability 𝑃(to create a triad. If all neighbors of the recipient node

are already connected to the origin node, then preferential attachment is performed instead.

Since these graph constructors create random graphs, the number of edges, network density

and clustering cannot be determined a priori. Moreover, random generation can produce graphs with

singleton nodes and disjointed subgraphs. To address these concerns, I created a sample of 1000

randomly-generated networks per constructor type to determine the mean and variance of each

network’s density and average per-node clustering. Then, I generated the respective networks until it

closely matched the mean values of these network measurements. This process ensured that the

networks I used are close the expected graph for the given set of graph generator parameter values.

Apart from changes to the degree distribution, the clustering of nodes in the network may also

be affected by a particular topology. To measure the tendency of nodes to group together, I used the

networkx.clustering method to compute the distribution of clustering coefficients. Clustering

coefficient is a per-node quantity that describes the tendency of nodes to group together. Formally, for

unweighted or uniformly weighted graphs, the clustering coefficient of a node 𝑥 is the fraction of

triads or triangular connections that exist that passes through node 𝑥. In Equation 15, the clustering

coefficient 𝑐« of node 𝑥 is calculated using the number of triangles through node 𝑥 𝐴(𝑥) and the

node’s degree 𝑑(𝑥). Note that self-loops or connections originating and ending at the same node are

ignored.

Equation 15. Clustering coefficient of a node

	 𝑐« =
2𝐴(𝑥)

𝑑(𝑥)(𝑑(𝑥) − 1)
	 (15)

After constructing these networks, I generated their adjacency list representation and

imported it into Contagion. Below are the networks I used for to test the influence of networks on

fixation and genetic diversity (Figure 10).

 74

 Regular network Binomial network Scale-free network
𝑑
=
5

𝑑
=
10

D
eg

re
e

di

str
ib

ut
io

n

Cl
us

te
rin

g

co
ef

fic
ie

nt

Figure 10. Networks used in this study.

Regular, binomial and scale-free random networks were used to model the underlying contact
network in the host population with network densities 𝑫 = 𝟎. 𝟎𝟐𝟓 (top) and 𝑫 = 𝟎. 𝟎𝟓𝟎	(second row)
such that the average number of connections per host is equal to 𝒅± = 𝟓 and 𝒅± = 𝟏𝟎 respectively. The
distribution and configuration of the connections are illustrated by the density of edges in the circular
diagram and the degree distribution histogram (third row). The distribution of clustering coefficients
is also shown (bottom row).

Fixation probability of a mutation spreading over a network

To test the effect of different network topologies on the fixation of mutations, I repeatedly

simulated the spreading of pathogens over different network topologies and measured the number of

fixation events that occurred. I considered a scenario where pathogens have two genotypes, U and P.

Initially, the frequency of U and P were set to 𝑝 = 0.5 for all infected hosts at the start of the

 75

simulation. Then, I created two different initializations to control for the effect of the number of

initially-infected hosts – at equilibrium or from a single infected host. In both scenarios, initially-

infected infected hosts were randomly assigned for every realization of the simulation. However, for

the equilibrium scenario, the assignment is weighted to mimic true equilibrium where infected hosts

are more likely to be found in high-degree hosts than low-degree hosts. Mutation was not allowed

during the simulation in order to ensure that any change in genotype frequency was the result of

selection, drift, transmission, or network effects. For each combination of network and parameters, the

simulation was run until the one genotype reached fixation. If the simulation does not reach fixation

after 100,000 pathogen generations, the current realization is aborted and dropped. Each simulation

was repeated for 1,000 instances to determine the probability of fixation. The 95% confidence interval

for each dataset was generated by bootstrapping the simulated outcomes 1,000 times.

The fixation probability within a network was also compared to the theoretical value that

assumes a homogenously-mixing population of pathogens using the equation derived by Kimura and

Ohta (1969) adapted for haploid populations (Equation 16).

Equation 16. Fixation probability of a mutation given infinite time.

	 𝑢(𝑝) =
1 − erc³´µ

1 − erc³´
	 (16)

For all simulations, 𝑁 = 𝑁% = 500, 𝑝 = 0.5, and 𝑠 is the selection coefficient within individual hosts,

unless otherwise stated.

Site-frequency spectrum of pathogens spreading over a network

The site frequency spectrum, also known as the allele frequency spectrum, is the distribution

of allele or variant frequencies over a set of sites in a sample of sequences. The site frequency

spectrum summarizes the distribution of allele frequencies as a histogram depending on the number of

sampled sequences, or as binned values. To construct the site frequency spectrum, each site (column)

of a multiple sequence alignment is inspected and classified according to the derived allele frequency

 76

in the current locus. This corresponds to one entry in the frequency spectrum. As more sites along the

alignment are classified, the site frequency spectrum becomes a tally of how many times a particular

derived allele frequency was observed. By getting the total number of times each derived allele

frequency class is observed, the site frequency spectrum can describe evolutionary forces acting on

the population from which the samples were taken from. For example, if there is an overabundance

sites with high derived allele frequency, then these sites could be being driven to high frequencies by

positive selection.

There are two implicit assumptions in interpreting frequency spectrums. First, sites are

independent of each other such that changes in allele frequency of a particular site do not influence

the allele frequencies in other sites (Xie, 2011). When sites are linked, it becomes difficult to

determine whether the change in frequency is caused by this particular derived allele’s effect or due to

the changes occurring in other sites. In a complete-linked case, the probability of observing an allele

at any site becomes dependent on the total fitness of all the sites considered. Because all sites are

linked, a mutation at a particular site increases frequency when then the entire haplotype increases in

frequency, or by high mutation rates producing the same mutation at the same site but in a different

background. If all occurring mutations do not change the fitness of the pathogen, then the expected

frequency of sites from low to high derived allele frequency decreases geometrically as the chance of

observing high derived allele frequencies becomes dependent on the probability that the site

experiences multiple independent mutations. Another implicit assumption in the site frequency

spectrum is that there are exactly two alleles present for every site in the sequence such that one is

ancestral and the other is derived, but multiallelic methods have been developed as well (Long,

Williams, & Urbanek, 1995; Zeng, 2010).

Since pathogens such as RNA viruses have been shown to experience low recombination

(Chare & Holmes, 2006; Rico-hesse, 2003), their genetic sequence can be considered as a completely-

linked haplotype block. As a consequence, while the site frequency spectrum can be constructed, it

cannot be directly compared to the Poisson random field model that assumes free recombination

(Sawyer & Hartl, 1992) and the standard neutral model is an inappropriate null model. To overcome

 77

this problem, I considered a completely-linked sequence under constant population size (or

mimicking the population size changes of the alternative model) in an unstructured population as the

null hypothesis. If network structure does not significantly change the dynamics of evolution, then

frequency patterns should be consistent with the null model. Given that this is a completely-linked

case, I also consider the average pairwise difference between haplotypes as a measure of genetic

evolution.

To construct the site frequency spectrum, I randomly sampled 100 simulated viral pathogens

after 1000 generation. Pathogens in the network are regarded as a single pool such that sampling is

performed without regard for their host or position in the network. Then, a multiple sequence

alignment is constructed from the sample of 100 pathogen sequencing. Each pathogen has a genome

that is 1000 sites long, and at each site containing either a U or P character. Each site (column) in the

multiple sequence alignment is classified by comparing the current state of the site to the ancestral

state, counting the number of samples possessing the derived allele (state), and recording the

frequency of derived allele for the particular site. This process is repeated for each site in the sequence

until all sites have been classified according to the number of derived alleles present. From the list of

derived states frequencies, a histogram is constructed to count the number of sites belonging to each

derived state frequency class from 0 derived states (no sample has the derived allele) to 100 derived

states (all samples have the derived allele). The site frequency spectrum includes derived frequency

classes from 1 allele (singleton) to 100 alleles (fixed) and excludes the 0th frequency class.

 78

RESULTS

SIS epidemic spreading over a connected host population network

The susceptible-infected-susceptible (SIS) epidemic model is a compartmental model that

assigns hosts into one of two compartments or states – susceptible and infected. In this model,

infected individuals revert back to being susceptible to infection after a given period or at a particular

rate. The ability of the SIS model to reach a non-zero equilibrium was a key reason for choosing the

model to examine the effects of networks on pathogen evolution. Figure 11 shows the change in the

number of susceptible and infected hosts over time for different network topologies oscillates around

180 infected individuals in a network of 200-connected hosts.

Figure 11. Frequencies of infected hosts over in SIS simulation on regular and scale-free
networks.

Number of infected hosts at each time point in the simulation (1 𝛾⁄ =10) over generation time
(pathogen generations) for the entire simulation is shown (top). Magnified views for the first 10
(bottom) and 100 generations (middle) are also shown to observe the contrast between the different
network topologies and network densities.

 The speed of the initial outbreak distinguishes the underlying host population network. Here

I compared the effects of the density of connections and the distribution of connections in the

network. While all versions of the simulation reached equilibrium, results show that the more

connected networks (regular, dense and scale-free, dense) were slightly faster on average than

 79

networks with half their density (regular, sparse and scale-free, sparse) (Figure 11). Notice that the

speed of the outbreak was extremely rapid, which went from a single infected individual to infecting

close to, or even all hosts in the population.

The density of connections describes the number of connections per host 𝑑 in relation to the

total number of hosts present 𝑁 (Equation 12). Imagine a homogenously-mixed population where

each host has the ability to encounter and come into contact with every other host. This model

describes a host population connected through a “complete network” where each host is connected to

every other host and has a network density 𝐷 = 1. This network model is equivalent to the

unstructured population if and only if migration is unconstrained. As a result, interactions between

hosts in the complete network also follows mass action kinetics. Therefore, the complete network

serves as the upper limit in terms of the number of connection hosts can have such that all other

networks are more sparsely connected (𝐷 < 1) than the complete network. Since a connection

between infected and susceptible hosts defines any potential transmission path for infection, the

overall number of connections influences the speed that the epidemic takes a population. Therefore,

the total number of connections present in the network regulates the spreading speed of the disease

over the network. As the network becomes denser, the system appears more mixed, its behavior

approaches a well-mixed population, and spreading kinetics becomes more deterministic. The effects

of the network structure are expected to be more evident in sparser networks.

The simulated transmission process is regulated by three model parameters – network

structure, transmission probability, and the expected number of pathogens to be transmitted. The

disease is successfully transmitted if at least one pathogen migrates from the infected host to a

directly-connected susceptible neighbor. Since the contact rate in the discrete SIS model in Equation

10 indicates the number of individuals an infectious host had sufficient contact to transmit the

infection, then number of contacts is primarily determined by the number of connections that lead to

susceptible hosts 𝑑´ (Equation 17). Adding the number of connections to susceptible hosts 𝑑´ to

Equation 13, if 𝑑´ = 0, then the effective contact rate 𝛽′ is 0. On the other hand, if 𝑑´ > 0, only then

will the per-connection transmission probability 𝑃' and the Poisson expected number of pathogens

 80

transmitted 𝜆% matter since they are conditioned on a connection existing and that that connection

leads to an infected host.

Equation 17. Effective contact rate of single host in the network

	 𝛽′ = 𝑑´𝑃'�1 − er���		 (18)

In the program, successful transmission of pathogens when a connection exists relies on two

random events. First, transmission is permitted when the Bernoulli trial draws a 1 given a particular

transmission probability. Given a successful draw, another sampling from a Poisson distribution

determines the number of pathogens to be transmitted. In order to simplify the process, I set the

transmission probability to 1.0 such that the Bernoulli sampling process is skipped and transmission

every time the random draw from the Poisson distribution is greater than zero. Since the simulation

determines the number of migrants by randomly sampling a Poisson distribution with an expected

value 𝜆,	then the probability that transmission occurs over a particular connection is simply the

probability that at least one pathogen is transmitted over the connection (Equation 13, also Equation

17) given by 1 − er�� where 𝜆% is the expected number of migrants. The probability that at least one

migrant transmits increase as 𝜆% increases. In the simulations, I used values 𝜆% = 5 or 𝜆% = 50 which

makes the contact rate effectively equal to the number of connections to susceptible hosts as the

probability given by 1 − er�� approaches 1.0.

Another consequence of a complete network is that there is an equal probability for any two

hosts to be directly connected to each other such that each host has an equal probability of being

connected to another host. If the network topology has an unequal number of connections per host, the

contact rate changes with the number of connections. This occurs because in networks with less than a

complete set of connections, a transmission path involving a series of hosts cannot exist if there is no

connection connecting between an infected and a susceptible host with the series. As a result, hosts

with more connections will have a higher contact rates and will spread the infection faster than hosts

with fewer connections, given equal transmission probabilities and expected number of migrants.

 81

Previously, I reformulated the contact rate in terms of the number of connections per host.

Note that this is only valid under a complete network, or a regular network with randomly changing

connections. Moreover, it may not be always valid under a static network where the connections

between hosts are constant over time. One case where Equation 17 is not valid occurs when an

infected host is surrounded by other infected hosts. The discrete SIS model describe by Equation 10

does not necessarily allow infected individuals to be concurrently reinfected.

In epidemiological compartmental models, hosts located in a compartment move unto the

next compartment either due to an inoculation event, stochastic transition based on a transition rate, or

transition after spending a given waiting time. If infected individuals are allowed to be re-infected,

this creates a kind of “self-loop” relationship within the infected compartment. How this type of

relationship is handled depends on rules for transitioning into and out of the infected state. When

using transition rate to determine the waiting time within the infected compartment, then re-infection

does not change the dynamic if it does not change the transition probability. However, if the system

uses a set waiting time, then re-infection is akin to resetting the timer that counts down the time until

infection is over. While these simulations use the set duration approach, transmission of pathogens

between infected hosts were allowed but was configured such that the waiting time is calculated from

the initial inoculation alone.

Site-frequency spectrum of pathogen sequences

Epidemiological studies have shown that network topology and network properties such as

network density, degree distribution, and clustering coefficient affect the speed of the outbreak and

the proportion of the population affected (Barthélemy, Barrat, Pastor-Satorras, & Vespignani, 2005;

Ganesh, Massoulié, & Towsley, 2005; Matt J. Keeling, 2005; Meyers, Newman, Martin, & Schrag,

2003; Moore & Newman, 2000). Here I examine how pathogen molecular evolution can affected by

the underlying structure of host networks using the site frequency spectrum.

 82

A usual assumption of the site frequency spectrum is that the sites surveyed to construct the

frequency distribution of derived allele frequency classes are independent. By assuming independence

among sites, changes in the allele frequency would be solely attributable to state of the site and not

dependent on the frequency of the derived allele at another site. In this study, I use the site frequency

spectrum method in an unusual way because the sequences I examine are completely linked. Under

this scenario, the probability of observing derived alleles are also expected to decrease such that more

sites should have singletons or doubletons compared to sites with a high proportion of derived alleles.

Since sequences are completely-linked, a high number of sites with high derived allele frequency does

not necessarily indicate that the derived allele is advantageous. Sites with high derived allele

frequency may have experienced mutations early and have evaded extinction throughout the

generations. Thus, a skewed site frequency spectrum compared to the well-mixed null model indicates

that the population lacks the expected genetic diversity.

To study the effect of network structure on the pathogen evolution, I considered two different

network topologies – regular and scale-free topology and compared the resulting site frequency

patterns after 1000 pathogen generations (Figure 12). Like the complete network, the regular network

has an equal number of connections per host (𝑑 = 5, 10), although much less compared to the

complete network (𝑑 = 199). As a result, a 5-regular or 10-regular network will produce a more

sparsely-connected network than a complete graph. On the other hand, the scale-free network is

characterized by the high variance in the number of connections per host. This occurs because the

network is arranged such that a large number of hosts have a few connections while a small number of

hosts hold a large number of connections. I also examined if network density affects pathogen

evolution. Since high network density imposes less constraint on transmission paths, networks with

more overall connections should behave more like unstructured networks. I compared two network

densities, dense regular and power-law networks with 𝐷 = 0.05 and sparse regular and power-law

networks with half the density (𝐷 = 0.025).

For the null model, I considered an unstructured model such that the pathogen population

completely mixed. In contrast, the network models all use a metapopulation model where the total

 83

pathogen population is subdivided into within-host populations. Thus, the unstructured null is simply

a Wright-Fisher haploid population. Using this null model, I examined the effects of population

structure and network structure on the frequency of new mutations after 1000 generations using the

site-frequency spectrum.

Figure 12. Effect of host network topology on the derived allele frequency spectrum of disease-
causing pathogens.

Each site frequency spectrum compares the frequency of site patterns (height) observed when
pathogens evolve as an unstructured population (blue green), or when considering the host
population network as a sparse (orange) or dense (purple) scale-free network, or as a sparse (pink)
or dense (bright green) regular network. The horizontal axis (x-axis) indicates the number frequency
of the new mutation from 1 (singleton) to 100 (fixed). Frequency classes are listed individually for the
first 14 classes and binned to one class for variants segregating at 15% or greater. The first
frequency spectrum describes the frequency pattern when pathogens evolve neutrally (top), while the

 84

second, and third show the differences when fitness differences exist at scaled selection coefficients
𝑁𝑠 = 1 (middle) and 𝑁𝑠 = 4 (bottom).

A comparison between the unstructured null model and the regular network showed that

population subdivision brought about by within-host infection decreases the frequency of rare

mutations and elevates the frequency of sites with new variants segregating at higher frequency.

Moreover, deviation from the unstructured null model is greater in sparse networks than in dense

networks. Sparse networks appear to promote high derived allele frequency sites and reduce genetic

diversity regardless of the underlying topology (Figure 12, 𝑁𝑠 = 0). Note that both the unstructured

null model and the regular network showed extremely few sites with high frequency mutants. This is

an effect of clonal interference due to the complete linkage of the simulated genetic region. This may

also be one reason why differences between network types are less pronounced.

I also examined the interaction between within-host selection and between-host network

effects. While higher scaled selection coefficient increased the frequency of observing high derived

allele frequency sites in both network and unstructured populations, the rate at which the high

frequency patterns increased were most significant in the sparse networks.

Since genetic diversity tends to increase in expanding populations, I tested whether the initial

position of the host in the network significantly changes evolutionary dynamics. In a scale-free

network, the simulation was initialized in a random location on the network, in a high-degree host

whose number of connections belongs to the top 90th percentile, and in a low-degree host whose

number of connections belongs to the bottom 10th percentile. Results indicate that initiation bias does

not severely change evolutionary outcomes, except for the number of rare mutations which tended to

be more frequent in low-degree initializations (Figure 13).

 85

Figure 13. Effect of initially-infected host connectivity on the derived allele frequency spectrum of
disease-causing pathogens.

The site frequency spectrum compares the frequency of site patterns observed under neutral evolution
(𝑁𝑠 = 0) when the epidemic is created from a randomly initiated position in the scale-free network
(orange), or when the initial host’s number of connections belongs to the top 90th percentile (purple)
or the bottom 10th percentile (pink). The frequency spectrum of pathogens as an unstructured
population is also shown (blue green) for reference. The horizontal axis (x-axis) indicates the number
frequency of the new mutation from 1 (singleton) to 100 (fixed). Frequency classes are listed
individually for the first 14 classes and binned to one class for variants segregating at 15% or
greater.

Given the static nature of the networks I used, it is possible that infected hosts find

themselves surrounded by other infected hosts and become unable to further spread the infection. If

the simulation does not allow transmission of pathogens to already infected hosts, this creates

evolutionary dead-ends as some pathogen lineages are not transmitted. In this scenario, these

neighboring infected hosts behave similar to immune or vaccinated hosts in that they block further

transmission of the infection. Although this is not wrong, it is an unexpected side-effect of the no co-

infection version of the SIS model.

To study the effect that coinfection has on genetic diversity and pathogen evolution, I

simulated the spread of infection using the same model parameters and compared two possible

configurations: one where initial infection prevents any secondary inoculation of pathogens while the

individual is infected (single infection case), and where secondary inoculation of the pathogen is

allowed (coinfection case). For both cases, the infection was allowed to spread in a scale-free network

configuration under SIS epidemic dynamics.

 86

Figure 14. Effect of coinfection on the derived allele frequency spectrum of disease-causing
pathogens spreading over scale-free host network.

Each site frequency spectrum compares the frequency of site patterns observed when infected hosts
are allowed to transmit pathogens to other infected neighbors (blue green), or when the infected hosts
are restricted to transmitting pathogen only to susceptible neighbors (orange). The top frequency
spectrum shows the differences when the epidemic is initiated from a host whose number of
connections belongs to the top 90th percentile (high degree), while the bottom frequency spectrum
shows the differences when the epidemic is initiated from a host whose number of connections
belongs to the bottom 10th percentile (low degree). The horizontal axis (x-axis) indicates the number
frequency of the new mutation from 1 (singleton) to 100 (fixed). Frequency classes are listed
individually for the first 14 classes and binned to one class for variants segregating at 15% or
greater.

Allowing coinfection to occur significantly changes the distribution of genotypes compared to

single infections only (Figure 14). Coinfection increases the number of sites with low frequency

variants compared to the single infection system. Moreover, the presence of coinfections increases

genetic diversity regardless of the initial host’s connectivity to the population. This indicates that the

single infection scenario increases the effect of network structure in pathogen evolution.

 87

Fixation probability in different network configurations

The skewed patterns of the site frequency spectrum for networks compared to the

unstructured model suggests that some characteristic of the network may be influencing the fixation

of mutants. To test this hypothesis, I examined the fixation probability of a mutant pathogen

spreading over different types of network from a single host at an initial within-host frequency 𝑝 =

0.5 and within-host pathogen population size 𝑁% = 500 (Figure 15). Likewise, I compared the

network scenario to the fixation of a mutant in an unstructured population whose initial frequency was

also set to 𝑝 = 0.5 and initial pathogen population size of 𝑁% = 500 (Figure 15, light gray).

Figure 15. Effect of network topology on the fixation probability of a mutant starting from an
initial frequency p=0.5.

Fixation probabilities of the P-genotype pathogen spreading over a scale-free (orange) and regular
(purple) host network over a range of scaled selection coefficients (x-axis) are shown above. Fixation
probabilities of in a scale-free host network when transmission potential is low (pink) is also
included. The fixation probabilities of an unstructured population of pathogens for −2 ≤ 𝑁𝑠 ≤ 10
when 𝑁 is equal to the within-host population size (light gray) and equal to the product of the
equilibrium number of infected hosts and the number of pathogens transmitted (dark gray) are
included for reference.

Network models of pathogen evolution showed elevated fixation probabilities for positive

scaled selection coefficients (𝑁𝑠 = 𝑁%𝑠;𝑁𝑠	 > 0) and lower probabilities of deleterious mutants

 88

(𝑁𝑠 < 0) reaching fixation. However, under neutral evolution (𝑁𝑠 = 0), the average fixation

probability remained unchanged contrary to the patterns observed in the site frequency spectrum

analysis. When selection is present in the system, regular networks showed slightly higher probability

of fixation compared to scale-free networks, and both were significantly higher compared to the

unstructured null model (Figure 15).

In this simulation, pathogen sampling per generation is not constant. When pathogens are

within hosts, they maintain a constant within-host population size 𝑁%. However, when pathogens are

transmitted to susceptible hosts, the sampling size is reduced to mean of 5 pathogens per transmission.

Thus, this reduction may also be affecting the fixation probability in the network cases. To address

this possibility, I also simulated an unstructured population where the population size is equal to the

product of the transmission size 𝑘 = 5 and the number of infected hosts 𝑛 = 180 such that 𝑘 × 𝑛 =

𝑁 = 900. Results show that the network cases when transmission is high varies around this 𝑘 × 𝑛

unstructured population. This indicates that network structure elevates the fixation probability when

degree is regular but reduces the fixation probability when the degree is highly heterogeneous.

As an extreme case, I also included an approximation to model the low contact rate as a result

of the sparsity of connections in sparse network (Figure 15, pink line). Sparse networks cannot be

directly simulated for the set of parameters because the smaller host population size prevents the

network from being too sparse such that some hosts are unconnected from the rest of the population.

In order to approximate the effects of sparsity, I reduced the per-connection transmission probability

such that the effective contact rate is equivalent to the contact rate in sparse scale-free network in the

previous analysis. Fixation of this extreme case reinforces the observation that low contact rate makes

it less likely that a pathogen lineage survives, let alone spread throughout the host population network

and become fixed.

To explain the discrepancy between the skewed site frequency spectrum patterns under

neutral evolution and the consistent fixation probability of network and unstructured models when

𝑁𝑠 = 0, I considered whether evolution over networks changes the time until mutants become fixed.

 89

To find the time to first fixation conditioned on fixation, I examined all realizations where the

mutant successfully reached fixation (𝑝 = 1.0) and recorded the number of pathogen generations it

took until reaching fixation. I considered the time to fixation for the unstructured null model and both

regular and scale-free network models. I also included the approximate sparse network model to show

how an extremely limited supply of contacts affects fixation time.

Figure 16. Effect of network topology on the time it takes for a mutation from an initial frequency
of p=0.5 to reach fixation, conditioned on fixation.

The average time for a P-genotype pathogen to reach fixation given it reaches fixation is shown for
scale-free (orange) and regular (purple) host networks. The average time to reach fixation
conditioned on fixation for pathogens spreading over a scale-free host network when transmission
potential is low (pink) is also included. The average time to reach fixation conditioned on fixation in
an unstructured population of pathogens for −2 ≤ 𝑁𝑠 ≤ 10 when 𝑁 is equal to the within-host
population size (light gray) and equal to the product of the equilibrium number of infected hosts and
the number of pathogens transmitted (dark gray) are included for reference.

Time to fixation analysis revealed that network models took more than 1.5 times longer to

reach fixation compared to the unstructured population. This result seems to be in direct disagreement

with the frequency spectrum patterns. If mutants spreading over a population networks took a longer

time to fix than an unstructured population, then networks should have an excess number of

singletons even greater than the unstructured model. The network model took a longer time to fixation

 90

mutants because of the semi-isolated structure imposed by the infection of pathogens within hosts in

the population.

This semi-isolated structure could be one possible explanation that resolves the seemingly

conflicting results between the frequency spectrum and the fixation analysis. Hosts encapsulate

pathogens during infection and pathogen populations only mix when coinfection occurs, creating a

highly-structured population where lineages that arose in separate host infections rarely mix together.

At the same time, within-host isolation allows pathogen mutants to reach intermediate levels of

frequency as observed in the site frequency spectrum patterns.

DISCUSSION

The network model in pathogen evolution isolates pathogens populations within hosts which

creates pathogen lineages that rarely interact. This model structures the overall pathogen population

into discrete subpopulations of pathogens residing within infected hosts. As a result, the expansion of

pathogen lineages across different hosts are more likely to be determined by the transmission potential

of hosts rather than an intrahost fitness advantage of pathogen. A comparison between dense and

sparse networks showed that structure of the network had a larger impact on the frequency of alleles

compared to intrahost selection.

The route of transmission of a disease is a key determinant whether network models are

necessary, or an unstructured population can be assumed. For example, Influenza can be transmitted

directly from expectorated aerosol particles or through infected surfaces, and requires close contact in

order to transmit the infection (Kawashima et al., 2016). In cases of close contact, the probability that

any two random hosts in a population will come into contact such that the disease transmits is low and

the probability of contact between hosts is not even distributed in the population. Geographically, it is

more likely for hosts that live, work or go to school in the same area to come into contact. Social

behaviors also affect the probability of host contact. Moreover, social behaviors such as meeting

friends, going to big events such as concerts or sporting events will tend to segregate individuals by

 91

age and social groups. These factors promote heterogeneity in the population and in these instances,

the effect of network structure will become more pronounced.

In contrast, carrier-borne diseases such as cholera can be contracted without ever meeting a

sick individual because transmission is mediated by a vector, in this case, water. Because of the way

these diseases spread, pathogens that cause these infections are not always siloed within individual

hosts and have more opportunity to comingle in the environment. Results indicated that network

effects occur because pathogen lineages almost never interact except in rare instances of mixed

infection within a single host. When pathogens were allowed to freely mix within hosts, as in the case

of the coinfection experiment, the frequency distribution of alleles more closely resembles the

unstructured null model. Although it is tempting to consider that a complete network should

approximate the unstructured population, this is not entirely correct. It is correct to assume that a

completely-connected network more closely resembles the unstructured population. However, the

network model still encapsulates pathogens within hosts and restricts free movement between hosts

by imposing a transmission bottleneck. So while the capacity to transmit to every other hosts is

present in the complete network, there is still little free movement across hosts.

Allowing coinfection in the system creates more paths for transmission available to pathogens

compared to when coinfection is not allowed. Similar to the effect of higher network density on the

frequency spectrum, the coinfection makes the system behave closer to the unstructured model while

preventing coinfection increases the effects of isolation and population structure. Under this

coinfection model, an infected host can transmit pathogens to an infected neighbor, but the secondary

infection does not reset the infection time started by initial infection. This mean that the duration of

infection is set by the initial infection and is not affected by subsequent inoculations while infected.

Physiologically, this scenario assumes that pathogen strains are not immunological distinct such that

response mounted for the first infection also helps defeat secondary exposure and infection.

New technology has facilitated rapid and abundant sequencing of pathogen genomes.

Pathogen sequencing has been used to study the spread of virulence genes in E. coli, plot the

 92

geographical distribution of Dengue viruses using gene and genomic data, and track within-host

evolution of Hepatitis C virus during treatment. These studies focus either on the evolution of

pathogens across large landscapes for an extended period of time or examined evolution within-hosts.

 93

CHAPTER 4

PERIODIC INFECTION AND TRANSMISSION PARAMETERS

AFFECTS THE FIXATION OF MUTATIONS

INTRODUCTION

In viral pathogens, reports of positive selection have been based on a collection of sequences

sampled from different hosts. Given that selection, in the traditional sense, occurs within hosts, then

sites under positive selection must also be evident in within-host samples (Kennedy & Dwyer, 2018;

Luciani & Alizon, 2009; McCrone et al., 2018; Park et al., 2013). If present, natural selection should

rapidly elevate the frequency of new beneficial mutations during an infection such that particular

genotypes become overrepresented. However, deep-sequencing of intrahost viral pathogen

populations showed that intrahost single nucleotide polymorphisms are rarely observed (McCrone et

al., 2018; Murcia et al., 2010; Poon et al., 2016), indicating that viruses are under strong purifying

selection (Holmes, 2003). Moreover, experimental evidence of positive selection occurring within

hosts remains inconsistent. When positive selection is observed in within-host populations, it has been

limited to cases of drug resistance from ongoing treatment (Ghedin et al., 2011) or under exceptional

conditions (Xue et al., 2017).

If within-host natural selection is a rare event, can it sufficiently explain the signature of

positive selection observed at the host population level? On the other hand, it is possible that the

detected signal is not due to natural selection but is an artefact produced by the transmission process.

This study attempts to reconcile these conflicting results by connecting the within-host process of

selection and between-host process of transmission and measuring their influence on fixation

probability.

 94

METHODS

Transmission chain model

The transmission chain model is a specialized scenario based on susceptible-infected-

removed (SIR) epidemic model spreading on a linear network of hosts. The goal of this model is to

simplify the transmission process from an expanding random tree to a linear network by limiting the

potential paths of spreading and decreasing the randomness in the process (Figure 17).

Figure 17. Diagram depicting the dynamics of the transmission chain model.

The diagram illustrates the infection of the initial leftmost host at t=0 and the changes in genotype
frequencies within the infected host during the infection. During this time, no mutation occurs and the
number of pathogens within the host remains unchanged at Nd (constant population size). At t=10, the
infection is transmitted to the neighboring host to the right of the initially infected host. This

 95

transmission event randomly selects pathogens to be transmitted and inoculates the pathogens into
the susceptible uninfected host. At t=11, the initially infected host recovers, and the newly infected
host becomes instantaneously infected with the pathogen with a population size Nd. The infection and
transmission processes are repeated until one of the genotypes is fixed.

In the transmission chain model, a single initially-infected host is located at one end of the

linear network while the rest start from a susceptible state. Susceptible individuals become infected if

they have been inoculated by at least one disease-causing pathogen. When at least one pathogen is

present within the host, infection progresses for given time interval specified by the number of

pathogen generation since transmission, during which the pathogen population size 𝑁% stays constant.

During infection, pathogens replicate faithfully without mutation and may be under selection if fitness

differences exist among the pathogen genotypes in the within-host pathogen population. To determine

the next generation of pathogens, the fitness of each pathogen is computed based on the pathogen’s

genotype and a given multiplicative fitness matrix. During infection, disease-causing pathogens can

also be transmitted from an infected host to a susceptible neighbor. When transmission occurs, the

infected source adopts the removed state and the inoculated host becomes infected in the next

generation. Given the linear topology of the network, this means that pathogens transmit only to the

next adjacent susceptible host. Pathogens are sampled from the currently infected host randomly such

that the probability of sampling a particular genotype is frequency-dependent. The timing of the

transmission event can be decided stochastically by sampling from an exponential distribution or

occur after a specific time based on the model specification. After the infection time interval has

elapsed, the infection present in the infected individuals is removed by removing all pathogens

present within the host. As a rule of the SIR model, previously infected hosts become immune from

the infection and remain vaccinated until the end of the simulation.

Transmission tree model

 The transmission tree model focuses on the effects tree shape on the evolution of pathogens.

This is a more complicated version of the transmission chain model that models hosts embedded in a

tree structure instead of a linear network. In this model, spreading of the disease occurs

 96

deterministically and is conditioned on the provided tree topology. Compared to simulating over the

entire population network, the transmission tree model provides a way to control the shape and timing

of transmission in order to provide model consistency over independent realizations (Figure 18).

Figure 18. The transmission tree is the set of paths in the network where transmission is
conditioned to occur.

Given a set of connected hosts (gray dots connected by edges), an infected host (red dot) may transmit
the disease to others in the population (left). The transmission tree model takes from percolation
theory and conditions the network to include pre-selected the paths that the disease will transmit on
(center). Parts of the host population network that does not experience the disease are ignored,
leaving only the transmission tree (right).

One way to imagine the relationship between a transmission tree and the network is to think

about the set of paths pathogens will take. Normally, the direction of the spreading is determined

randomly given the set of connection in an infected host. However, another way to think of it is to

randomly pick the paths the infection will take all at once. Any host within in this path is guaranteed

to be infected. This is equivalent to having a network structure present and pre-selecting the path of

transmission all at once instead of one at a time (Figure 18). Because parts of the network that do not

experience the infection do not contribute to the dynamics of the epidemic, these hosts can be ignored.

Fixation probability of a mutation over successive transmissions

To test the effects of transmission size and the duration of an infection on fixation, I

repeatedly simulated successive transmissions under the transmission chain model and measured the

number of fixations events that occurred. I considered a system where pathogens have two possible

genotypes, U and P. Initially, the frequency of U and P in the initially-infected host was set to the

 97

equilibrium frequency 𝑝 = 0.5 and pathogen population size within the host was	𝑁% = 𝑁𝑠 = 500. A

total of four different simulations were created based on two transmission size of 𝑘 = 5, 50

representing 1% and 10% population size bottlenecks, and two duration lengths of infection 𝑡y =

10, 20 pathogen generations. The chosen lengths of time for infection were chosen given that the

acute viral infections in human typically last between one to two weeks (Fields et al., 2013). To

convert this into pathogen generations, I considered one lytic cycle, which is the time it takes for an

infected cell to lyse and disperse new viral particles, as one pathogen generation. In many human viral

infections, the lytic cycle in vivo and in vitro approximately takes one day to complete (Fields et al.,

2013). Therefore, simulation time is equivalent to one lytic cycle when considering viral pathogens,

and approximately equal to one 24-hour period in real time. Transmission from an infected host to its

susceptible neighbor was limited to occurs only at the end of the infection. Simulations were

repeatedly performed and the number of fixation events over 1000 independent realized were used to

get the probability of fixation.

The empirical fixation probability was also compared to the theoretical value that assumes a

homogenously-mixing haploid population of pathogens that does not experience population

bottlenecks using the equation derived by Kimura and Ohta (1969) adapted for haploid populations

(Equation 16).

Proportion of successful fixations of a mutation in an expanding transmission tree

To test the effects of transmission shape on the fixation of mutations, I repeatedly simulated

pathogen transmissions under the transmission tree model and measured the number of fixations

events that occurred after 1000 pathogen generations.

I considered three tree topologies that depict the different transmission trees that can be

formed when diseases spread over a host population network (Figure 19). The regular tree (Figure

19a) represents equal rates of spreading of the infection for every infected host, which is equivalent to

a network with a singular number of connections per host. Thus, this tree topology simulates a

 98

scenario where the contact rate between infected and susceptible hosts is uniform across hosts. The

second tree topology represents the scenario when spreading is not completely regular such that the

contact rate for each host depends on the number of connections (Figure 19b). The third tree

represents the rapid change in the prevalence of the disease caused by a superspreading event (Figure

19c). The superspreader tree is extreme case of heterogeneity in contact rates caused by differences in

the number of host connections.

Figure 19. Transmission trees used in the simulation study.

(a-c) Diagram of transmission tree topologies used. Nodes represent host individuals while edges
represent the transmission from on one host to another. Three transmission tree topologies were
considered: (a) regular, (b) heterogeneous, and (c) superspreader. (d-f) Box heights illustrate the
relative population sizes for each level of the corresponding transmission tree.

In this system, I initialized the simulation with a single infected host with a pathogen

population size 𝑁% = 500, and whose pathogen genotype frequencies were set to the equilibrium

frequency 𝑝 = 0.5. Similar to the simulations over linear networks, transmission from an infected

host to its susceptible neighbor was limited to occurs only at the end of the infection. The duration of

infection was set to 250 pathogen generations and transmitted five randomly-sampled pathogens (10%

population bottleneck) to each susceptible neighbor when a transmission event occurs. When the host

is infected, pathogens replicate at the rate of their replicative fitness based on their genotype while

keeping a constant within-host pathogen population size. No new mutations are introduced during the

 99

simulation such that present variation is a result of initial standing variation and the effect of

selection.

To isolate the influence of the tree structure on pathogen evolution, a null model for each tree

topology was constructed using an unstructured population that mimics the population size changes of

the system over time (Figure 19 d, e, and f). To simulate the unstructured population, pathogens were

modeled as a completely-mixed population with changing population sizes over time.

All cases were repeatedly performed for 1000 pathogen generations and the number of

fixation events over 1000 independent realizations were used to get the probability of fixation. The

95% confidence interval for each simulation experiment was constructed by bootstrapping the 1000

endpoints 1000 times and tallying fixation for each resampled set.

 100

RESULTS

Transmission events and the fixation probability of a mutation

Transmission events between infected and susceptible individuals can be imagined as a

migration of pathogens emigrating from the infected host and founding a new population in the

susceptible host (Figure 17, 𝑡 = 11). Although the typical number of pathogen particles involved in

transmission is unclear, studies in viruses have shown that even a single viral particle is capable of

successfully mounting an infection in the host and thereby founding a new population of viruses in

that host (Zwart et al., 2009).

Population bottlenecks have been shown to reduce genetic diversity and increase genetic drift

in the population (Bergstrom, McElhany, & Real, 1999; Hongye Li & Roossinck, 2004; Tajima,

1989). The reduction in genetic diversity after a bottleneck depends on the severity of the population

size reduction and the length of time the population experiences a reduced population size (Otto &

Whitlock, 1997). In the case of pathogen evolution, population bottlenecks do not only occur once or

twice in the pathogen’s history, but instead is a recurring event that happens every time the pathogen

is transmitted from an infected to a susceptible host.

Here, I measured the effect of recurrent population bottlenecks on the fixation probability of

mutants in the pathogen population (Figure 20). When pathogens are neutrally evolving, there was no

change in the fixation probability as expected. At scaled selection coefficients greater than zero (𝑁𝑠 >

0;𝑁 = 500), recurrent bottlenecks significantly decrease fixation probability when selection is weak

but recovers when selection is strong (𝑁𝑠 = 10). On the other hand, at scaled selection coefficients

less than zero, recurrent bottlenecks significantly increase the probability that deleterious mutations

reach fixation compared to a population that does not experience recurrent bottlenecks.

The number and proportion of migrants in relation to the within-host population size

determines their effect on fixation of mutants. At a within-host population size 𝑁% = 500,

transmitting 𝑘 = 5 or 𝑘 = 50 pathogens at every transmission event represents a 1% and 10%

 101

population bottleneck, respectively. With the same length of infection (Figure 20, same color across

charts), results show that a smaller transmission sizes more severely impact the probability that

mutants reach fixation compared to when there is a higher number of migrants.

Figure 20. Fixation probability under different transmission and infection parameters.

Fixation probability at different scaled selection coefficients when 5 pathogens – equivalent to 1% of
the within-host population – (left) or 50 pathogens – equivalent to 10% of the within-host population
– are transmitted between infections. Green and orange points indicate the fixation probability when
the infection lasts for 10 or 20 pathogen generations respectively. Light gray points indicate the
fixation probability when the population does not incur bottlenecks because the transmission size is
equal to within-host population size, while dark gray points show the fixation probability when the
within-host population size is reduced to match the indicated transmission size.

I also examined whether the length of time an infection persists in the host affects the fixation

probability of mutations. Disease infections have different mean durations of infection depending on

the type of infection, the condition of the individual and other physiological and immunological

factors (Antia, Ganusov, & Ahmed, 2005; Fields et al., 2013; Murillo et al., 2013). Since pathogen

evolution occurs during infections, the length of time an infection occurs regulates the number of

generations pathogens evolve and influences the eventual frequency of mutants within the host.

In this experiment, I considered two different time intervals based on the duration of acute

infections in humans and represents the time interval between population bottlenecks (Figure 20). At

∆𝑡y = 10 pathogen generations, the fixation probability is significantly lower compared to when

500

 102

∆𝑡y = 20, which is twice the length of time. Moreover, when the number of pathogens transmitted is

controlled (Figure 20, same panel), infections of longer duration tend to have a higher fixation

probability than infections of shorter duration. A comparison between the two intervals show that the

change in fixation probability depends on the scaled selection coefficient governing selection between

the two variants. When |𝑁𝑠| > 0 and as |𝑁𝑠| increases, the effect of infection duration becomes more

pronounced. At larger 𝑁𝑠, variants receive a greater fitness benefit which results in a higher

probability of the genotype continuing into the next generation. As a result, pathogen genotype with

higher replicative fitness are also more likely to be sampled during transmission events. This suggests

that both the transmission size and the infection length are important side effects of transmission

events that affect pathogen evolution. Pathogen transmission is a necessary process that creates

recurrent phases of inoculation, infection, and transmission resulting in unavoidable periodic extreme

changes in population size.

Given these results, I compared simulation data to analytical calculations based on Equation

16 in order to compare to populations with a constant population size that do not experience any

bottleneck. I considered two cases: transmission size is equal to the intrahost population size such that

𝑁 = 𝑁% = 500 (Figure 20, light gray), and population size is reduced to the transmission size such

that 𝑁 = 𝑘 where 𝑘 = 5 or 𝑘 = 50 depending on the transmission size used (Figure 20, dark gray). In

relation to the simulation results, these two cases appear to form an upper and lower bound for

fixation probability. The shorter infection duration approaches to the 𝑁 = 𝑘 case whereas the longer

duration is closer to the 𝑁 = 𝑁% case and is consistent for both transmission sizes tested.

To explain these results, let us consider the two variables independently. First, when infection

duration is longer, the pathogen lineage will undergo fewer transmissions and therefore fewer

population bottlenecks. Longer infection times also increases the chance that a genotype will fix

before the first bottleneck. In the case of transmission size, let us assume the is an equal probability of

picking any pathogen particle for transmission. This means that genotype does not bias the probability

of selecting a pathogen for transmission and can only affect its frequency in the population. Under

this assumption, the larger the number of pathogens transmitted, the more likely the sampled set will

 103

be representative of the infection population. On the other hand, if the number of transmitted

pathogens is small, then the random nature of selecting migrants will make it less likely to preserve

the existing distribution of genotypes. The extreme case of this is when only one pathogen is

transmitted.

The periodic increase and decrease of pathogen population sizes over several infections and

transmissions of different hosts is conceptually similar to a cyclical fluctuation in population size in a

single environment. Previously, Otto and Whitlock (1997) have shown that the harmonic mean of the

population size over time can be as an approximate effective population size. Using this method, I

compared the fixation probabilities from simulated data to the theoretical fixation probability using

the harmonic mean as the effective population size in Equation 16.

Figure 21. Fixation probability of the infection-transmission process depends on the harmonic
mean of the sample sizes over time.

Fixation probability at different scaled selection coefficients when 5 pathogens – equivalent to 1% of
the within-host population – (left) or 50 pathogens – equivalent to 10% of the within-host population
– are transmitted between infections. Green and orange points indicate the fixation probability when
the infection lasts for 10 or 20 pathogen generations respectively. Dark green and dark orange points
indicate the fixation probability using the harmonic mean of within-host population size and
respective transmission sizes in an infinite amount of time.

Interestingly, the theoretical fixation probabilities predict the simulated data quite closely

(Figure 21). In the simulations, the duration of the infection is a Poisson random variable with an

 104

expected value of either 10 or 20 pathogen generations. At the end of infection, the pathogen

population is transmitted to the next susceptible host. Thus, the average waiting time between

inoculation of the pathogen into the host and transmission to the next host equal to the mean duration

of infection and is also a Poisson variable. For an infection duration of ∆t¹ = 10, pathogens in the

current generation are sampled 9 times at a sample size equal to the within-host population size 𝑁%

and sampled once at a sample size equal to the transmission size. Given the periodic nature of this

pattern, at infinite time, the pathogen population will have a sample size equal to the within-host

population size 𝑁% at ∆t¹ − 1 out of ∆t¹ times, and a sample size equal to the transmission size one

out of ∆t¹ times. From here the harmonic mean can be calculated as:

Equation 18. Harmonic mean of the pathogen population size at infinite time.

	 𝑁º = »
𝑁'rs + ∑ 𝑁%rs

∆[¼rs
[�s
∆𝑡y

½
rs

	 (19)

This harmonic mean approximation works as long as the number of generations where the population

size is either increasing or decreases is significantly less than the time scale where selection occurs

(Otto & Whitlock, 1997). Given that the simulations take only one generation for every infection

cycle to transmit and found a new population, the fluctuations are instantaneous, and is well-suited for

this type of approximation.

Recurrent transmissions and the amount of time to reach fixation

I analyzed the effect of recurrent bottlenecks caused by repeated transmissions on the time it

takes for a mutation to reach fixation conditioned on fixation (Figure 22). This quantity describes the

length of time a site remains polymorphic from an initial frequency 𝑝 until the allele of interest

reaches a frequency 𝑝 = 1.0. Note that the average time to fixation conditioned on fixation describes

the average arrival time to 𝑝 = 1.0 for all successfully fixation events only. Because of this,

simulations under neutral evolution starting from an initial frequency of 𝑝 = 0.5 will produce only

around 50% successful fixation for any given number of trials, while strong selection cases will

 105

produce close to 100%. This can be observed in the elevated variances for cases of neutral evolution

and weak selection. Variance decreases as the number of successful fixations increases, which

increase proportional to the value of the scaled selection coefficient.

Figure 22. Time to fixation conditioned on fixation under different transmission and infection
parameters.

Time to fixation given fixation for different scaled selection coefficients when 5 pathogens –
equivalent to 1% of the within-host population – (left) or 50 pathogens – equivalent to 10% of the
within-host population – are transmitted between infections. Green and orange points indicate the
length of time until fixation when the infection lasts for 10 or 20 pathogen generations respectively.
Light gray points indicate the length of time when the population does not incur bottlenecks because
the transmission size is equal to within-host population size, while dark gray points show the length of
time when the within-host population size is reduced to match the indicated transmission size.

When transmission size is small (𝑘 = 5), the average time to fixation from an initial

frequency 𝑝 = 0.5 is not significantly affected by the selection (Figure 22). Results show for a

transmission size 𝑘 = 5 and −2 ≤ 𝑁𝑠 < 10, fixation appears to be facilitated by 5th transmission

event given that fixations predominantly occur at the 50th and 100th generation for 𝑡y = 10 and 𝑡y =

20 respectively. However, when the transmission size is large, the average time to fixation from 𝑝 =

0.5 becomes sensitive to within-host selection and is inversely proportional to the strength of

selection. In both cases, recurrent transmission hastens the fixation of mutations due to periodic

population bottlenecks.

500

 106

In the two scenarios where no population bottleneck takes place, the times to fixation over the

range of scaled selection coefficients appear to form upper and lower limits for possible values. When

transmission size is small, time to fixation values are closer to the case where the within-host

population size is reduced to match the number of pathogens transmitted (Figure 22, dark gray). As

the infection duration shortens, the number of generations the pathogen experiences a bottleneck

increases. As a result, the time to fixation is expected to approach this lower limit. On the other hand,

larger transmission sizes are much closer to the time to fixation when the transmission size is equal to

the current intrahost population size (Figure 22, light gray). Instead of reducing the severity of the

bottleneck, another way to diminish its effect is to reduce the frequency of bottlenecks. Longer

infection times will result in a smaller number of transmissions until fixation, thereby weakening the

effect of transmission bottlenecks.

Figure 23. Time to fixation conditioned on fixation of the infection-transmission process depends
on the harmonic mean of the sample sizes over time.

Time to fixation given fixation for different scaled selection coefficients when 5 pathogens –
equivalent to 1% of the within-host population – (left) or 50 pathogens – equivalent to 10% of the
within-host population – are transmitted between infections. Green and orange points indicate the
length of time until fixation when the infection lasts for 10 or 20 pathogen generations respectively.
Dark green and dark orange points indicate the time to fixation using the harmonic mean of within-
host population size and respective transmission sizes in an infinite amount of time.

 107

I also tested whether the harmonic mean of the fluctuating population sizes is a good

approximation to compute the time to fixation conditioned on fixation of the allele of interest. Here, I

compared the length of time to fixation between a fluctuating pathogen sample size due to recurrent

infection and transmission, and a constant pathogen sample size given by the harmonic mean of

within-host population size and transmission size (Figure 23).

Results from simulations using the harmonic mean show a good fit with the periodically

fluctuating case. This confirms that recurrent infection and transmission acts to reduce the effective

population size of the pathogen, and as a result, decreases the efficacy of selection.

Shape of the pathogen transmission tree and the number of observed fixations

In this experiment, I analyzed the role of that disease spreading plays in the fixation of

mutations. Specifically, I examined whether the shape of the transmission tree influences the

frequency of mutations. I wanted to know whether particular types of transmission trees promote, or

hinder fixation compared to others. I considered three tree topologies that all start from a single

infected host and expand to eight infected hosts after each transmission chain experiences three

transmission events; but differed in the number of new infections each infected host can produce.

After 1000 pathogen generations and 1000 independent realization, tree models consistently showed

higher levels of fixation compared to their unstructured counterparts (Figure 24).

Figure 24. Probability of fixation on tree structures after 1000 pathogen generations.

For every scaled selection coefficient (Ns), different tree topologies, as shown in Figure 19, were
compared with each other.

 108

Between tree topologies, the superspreader tree created the greatest divergence from the null

model. On the other hand, the binary tree closely resembled the unstructured model. Null models also

differed in fixation probabilities confirming that the rate of population expansion affects the

probability of observing fixation conditioned on time. However, the magnitude of the differences

observed between tree topologies do not match and is much greater compared to the differences

between null models. This indicates that the observed differences on fixation probability result from

network effects rather than the underlying increase in population size.

A comparison between tree topologies showed that the superspreader tree have significantly

higher fixation probabilities after 1000 generations compared to a regular binary tree and a

heterogenous tree. Though fixation probabilities are all higher across scaled selection coefficients,

fixation under neutral and weak selection appear more affected compared to stronger levels of

selection. Unfortunately, given that these observations are conditioned at a particular time, it cannot

be determined whether the heightened fixation probabilities are caused by (1) a faster time to fixation

or (2) a decrease in the ultimate fixation probability.

A side-effect of placing pathogens into a tree structure is the overall pathogen population

becomes structured. Each infected host in the transmission tree becomes an isolated population of

pathogens that have no opportunity to mix. This creates divergent lineages with independent

evolutionary outcomes. For any two hosts with an initial pathogen frequency 𝑝 at the beginning of

infection, isolated lineages mean that each host will most like have different frequencies by the end of

the infection. As a result, one genotype could reach fixation in one host and another genotype can

become fixed in the other host. This dynamic prevents the eventual fixation of a single genotype

throughout the entire pathogen population.

 109

DISCUSSION

The role of the duration of infection is an important parameter in epidemiological models of

outbreaks and epidemics. In these models, the duration of infection is given by the reciprocal of the

rate of recovery 𝛾, which indicates the rate at which the supply of infected individuals decreases in the

population. In this study, I showed that the duration of infection is also an important factor that affects

the population genetics of pathogens. As pathogens replicate only when it infects a host, pathogen

evolution only occurs during this time. Infectious diseases have vastly different infection times, some

viral infections occurring only for days, while other infections are chronic and last throughout the

lifetime of the host (Fields et al., 2013). Between acute and chronic infections, very different patterns

of evolution have been observed. In chronic infections, pathogen populations exist for a long time

within the host which results in significant within-host adaptation. Evolutionary changes of within-

host populations of pathogens are especially evident during drug treatments where pathogens have

been observed to develop drug resistance in a short period of time. In acute cases of infection, much

less is known about the effects of the duration of infection on the evolution of pathogens.

These results indicate that the duration of infection and transmission bottlenecks are key

factors that determines the evolution of pathogens within hosts. In acute infections, the short duration

of infection prevents significant changes to pathogen genotype frequencies before the infection is

cleared or transmitted. In my simulations, I assumed that transmission of pathogens occurs at the end

of the duration of infection which at first appears to be a very unrealistic assumption. Transmission of

pathogens tend to occur when viral titer is at its peak. At this time point, the population of pathogens

with the host is at its peak and coincides with the time the symptoms of the disease, which facilitate

transmission of pathogens, are strongest. Thus, the actual number of generations that acute infection

pathogens have is significantly shorter that the observed duration of the infection. Given that acute

viral infections last only for a few days and the number of lytic cycles that replicate the pathogen are

few, my model’s assumption represents the maximum opportunity to noticeably change the frequency

of genotypes present.

 110

Another hindrance to beneficial mutations is the presence of periodic bottlenecks resulting

from transmissions between hosts. While a rigorous approximation of the average number of

individual pathogen that typically creates an infection is unknown, the number is expected to vary

depending on the mode of transmission and inoculation. The independent action hypothesis of

infection states that each infectious pathogenic unit has a non-zero probability of infection and that

pathogen units act independently of other units. Tests of the independent action hypothesis on plant

and animals have largely supported these claims (Zwart et al., 2009; Zwart & Elena, 2014). This

means that the lower limit of transmission is a single infectious pathogen and represents an extreme

case of population bottleneck. Under this condition, transmission immediately causes fixation of a

genotype in the new host. My model considers two cases of transmission bottlenecks that represents a

1% and 10% reduction in population size. Population bottlenecks have been known to rapidly

decrease genetic variation in populations. Assuming that bottlenecks caused by transmissions sample

pathogens randomly, then the probability of sampling a genotype becomes frequency-dependent and

contingent on the its fitness. This reduces the chance of infrequent variants from being selected. Since

new mutations start at a frequency equal to the reciprocal of the pathogen population size, there is an

extremely low chance of being transmitted and spreading over the host population. Even given some

time to increase in frequency, simulations showed that a 1% bottleneck significantly reduced the

effect of selection on pathogen populations under recurrent bottlenecks. Moreover, when a mutant

does reach fixation, the number of generations it took to reach fixation was insensitive to the value of

the scale correlation coefficient. This strongly suggests that the presence of successive bottleneck

events facilitated fixation rather than being mediated by intrahost selection.

 The combination of short duration times and the effect of severe population bottlenecks

could explain why naturally-occurring positive selection is rarely observed within hosts, and positive

selection detected from non-intrahost samples may be an artifact of the transmission process. The

transmission tree model showed that within-host fixation is more like to occur than overall fixation

across all hosts. In this scenario, within-host evolution will rarely affect overall frequencies and the

shape of the transmission tree dictates the polymorphism in the host population. This suggests that the

 111

distribution of genotypes over a host population is more likely a result of the transmission process

than selection for a biological function. True positive selection in viral pathogens would only occur

when the effect of mutations are extremely large to overcome the short infection cycles, or possibly as

a result of a selected site experiencing independent mutations across different host infections.

 112

CHAPTER 5

VIRUS EVOLUTION IN ALTERNATING HOSTS: FIXATION AMIDST

SHIFTING FITNESS LANDSCAPES

INTRODUCTION

Compared to DNA viruses, RNA viruses have elevated mutation rates because of the high

error rate of RNA-dependent RNA polymerases that replicate RNA virus genomes. However, Dengue

virus and other vector-borne RNA viruses appear to evolve slower compared to RNA viruses that

exclusively infected one or a closely-related group of host species (Ciota & Kramer, 2010). One

explanation for this discrepancy implies that the large taxonomic difference between the host and

vector species (often vertebrate and arthropod, respectively) create very different environments that

prevent the pathogen from reaching the optimum fitness for either host species.

Called the trade-off hypothesis, this model predicts specialization by virtue of adaptation to

one host species results in maladaptation in the other due to the different host environments. To

remain viable in both host species, vector-borne pathogens have to find a compromise in the divergent

host fitness landscapes. As a result, pathogens alternately infecting two hosts have a reduced fitness

compared to pathogens that replicate only in a single host environment. If the alternating infection

cycle does impose a compromise, then breaking the alternating cycle and solely infecting one or the

other host should result in increased fitness for that particular host. Conversely, according to this

hypothesis, any change conferring a fitness increase in one host should be accompanied by a fitness

decrease in the bypassed host. Experimental evolution has indeed shown that continuously infecting

vector-borne pathogens in a single host species does increase its fitness compared to an alternating

cycle (Ciota & Kramer, 2010; Deardorff et al., 2011; Novella, Presloid, Smith, & Wilke, 2011;

Vasilakis et al., 2009). However, the evidence for a concomitant fitness decrease in the bypassed host

species has been inconsistent (Deardorff et al., 2011; Vasilakis et al., 2009). Instead, changes that

caused an increase in fitness in one host appeared to have no effect on fitness in the other host or was

 113

also beneficial. Based on these results, it is likely that the host fitness landscapes share at least some

peaks and valleys despite the large taxonomical distances separating natural hosts and vectors.

In this chapter I explore the role of alternating host cycles on the short-term evolution of viral

pathogens using computational simulations. Under this theoretical framework, I model the protein

evolution of the Dengue virus envelope protein under realistic parameter values as it evolves in

human and mosquito hosts. I consider scenarios where conflict does and does not exist, as well as

different magnitudes of selection antagonism. I show that alternation slows down evolution due to

clonal interference caused by linkage between sites. In this model, conserved sites could be caused by

strong purifying selection in either host and vector species, or by purifying selection in both hosts but

acting on different sets of sites.

 114

METHODS

Sequence alignment

Dengue virus envelope amino acid sequences were compiled and retrieved from the UniProt

database using the BLASTP search algorithm. Using the New Guinea C Dengue virus type 2 envelope

sequence as the reference (UniProtKB: P14320), I looked for the first 1000 closely-matching

sequences that matched the reference up to an E-value of 10.

To determine conserved and variable sites, I constructed a multiple sequence alignment using

MUSCLE (Edgar, 2004) (using parameters -maxiter 2 -diag). Using custom Python scripts, I cleaned

up the alignment by the removing flanking regions before and after the envelope sequence and

removing sites that contained gaps at any sample and from the filtered set of amino acid sites. This

process generated an alignment with 495 amino acid sites, of which 143 sites were variable.

Among the amino acid variants at each variable site, the top variant by frequency was

identified and designated as the major allele for the particular site. The identity of the major allele at

each site was later used to create the fitness matrix in the simulation.

Simulating periodic host alternation

Vector-borne pathogens alternately infect two different species of hosts. Here, I simulated the

transmission dynamics of Dengue viruses between humans and mosquitos to examine the effects of

host alternation on fixation and genetic variation. I simulated this periodic alternation using

Contagion, a forward genetic simulator I developed and previously discussed in detail in chapter 2.

Briefly, this simulation framework enables hosts to be grouped into distinct host types such that host-

specific properties can be assigned to each group and transmission can be restricted to occur between

different host species. In this case, I created a linear bipartite network containing two host types

representing humans and mosquitos. In a bipartite network, connections between host occur only if it

is between different host types. By this rule, it is impossible to directly transmit between hosts of the

 115

same type (either both human or both mosquito). This ensures that pathogen populations are always

alternately infect different host species and are subjected to alternating environments.

To simulate transmission, 10 pathogens or 1% of the pathogen population was randomly

sampled without replacement from the existing intrahost population and was transferred into the new

host to form the founder population. To simplify the epidemic simulation, I fixed the duration of

infection to 10 or 20 generations assuming that one lytic cycle to produce new viruses lasts one day

and that the average infection time is 2 weeks of 14 days. Moreover, I removed stochastic effects on

transmission of the pathogen by setting the transmission probability to 1.0 to ensure that the

transmission chain length is equal across simulation instances. Finally, all simulations were performed

for 1000 pathogen generations and replicated 100 times.

To construct the genetic simulation, I modeled the 495 amino acid sites in the envelope

protein of Dengue virus type 2 assuming that each site independently contributed to overall fitness

and all sites are completely linked. For the transition rate matrix, I used the BLOSUM62 substitution

matrix and conditioned it to reflect the transition probabilities of changing to another amino acid

given that a substitution occurs. To model selection, I used a fitness matrix method that specifies the

fitness contribution of each amino at each site. I tested several scenarios ranging from neutral

evolution to extreme preference for a particular allele. When simulating fitness differences, the most

frequently occurring amino acid present in the site (based on sequence alignment) was given a fitness

of 1.0 while all the other alleles were assigned a fitness of 1 – s, where s is the selection coefficient.

Initially, the simulation was created by seeding 10 pathogens that have the same genotype that

contained all preferred states across all sites in the sequence. The mutation rate was set to 1 × 10r¾

substitutions/site/generation and the pathogen population per host was set to 𝑁% = 1000.

I examined the different possible selection regimes operating during host-vector infections.

First, I considered the completely neutral case where no fitness differences existed among the 20

different amino acids in both humans and mosquito hosts. To construct human and mosquito fitness

matrices, each potential amino acid state at every site was given a fitness of 1.0 such that no fitness

 116

differences among all the possible amino acid combinations and no host-dependent conflict is present

(Figure 25). Under this model, amino acid changes are not penalized as they do not change the fitness

of the pathogen. Thus, this scenario represents evolution under completely random circumstances.

Next, I simulated the effect of purifying selection occurring in one of the two host species.

This model is a simplification that mimics the behavior of experimental evolution studies that showed

that one host imposed a slower evolutionary rate compared to the other host (Bedhomme, Lafforgue,

& Elena, 2012; Coffey et al., 2008; Deardorff et al., 2011). I considered three scenarios based on

where purifying selection is present: host only, vector only, and host and vector. In all these scenarios,

each site has one preferred amino acid variant with a fitness of 1.0 and 19 equally unpreferred variants

with a fitness of 1 – s. The most frequency variant in the alignment of Dengue virus envelope

sequences was considered as the preferred amino acid variant for that particular site. For each

scenario, I simulated a weak selection case where the scaled selection coefficient Ns = 1 and a strong

selection case where Ns = 10 (Figure 25). I also simulated cases where weak or strong selection was

present in both hosts.

a) Neutral-neutral scenario

b) Neutral-weak/Weak-neutral scenario

1 2 3 4 … n

1 2 3 4 … n

1 2 3 4 … n

1 2 3 4 … n

Human

Mosquito

Mosquito

Human

 117

c) Neutral-strong/Strong-neutral scenario

d) Weak-weak scenario

e) Strong-strong scenario

f) Split scenario

Figure 25. Visual representations of selection regimes tested under the alternating host model.

Each box represents a site. Intensity of shading indicates the strength of selection on the site, where
no shading means no fitness differences exists for alleles of that site.

I also look at the possibility that purifying selection observed in the evolution of vector-borne

pathogens resulted from selection present in both host and vector but acting on different sites. In this

model, one half of the sites are under selection in the human host while the other half is under

selection in the vector (Figure 1F). To create this “split” case, sites were split into two groups by odd

1 2 3 4 … n

1 2 3 4 … n

1 2 3 4 … n

1 2 3 4 … n

1 2 3 4 … n

1 2 3 4 … n

1 2 3 4 … n

1 2 3 4 … n

Mosquito

Human

Mosquito

Human

Mosquito

Human

Mosquito

Human

 118

or even positions. Odd-numbered sites were under selection during human infection but evolved

neutrally during mosquito infection. Conversely, even-numbered sites evolved neutrally during

human infection, but were purifying selection during mosquito infection. I simulated these

relationships under three different strengths of selection – weak (Ns = 1), strong (Ns = 10), and very

strong (Ns = 100).

To quantify the effect of shifting selection pressures, I measured the number of new

mutations that went to fixation of pathogens and traced the evolutionary history of fixed and

segregating mutations. In all simulations, the original genotype is the most fit genotype and new

mutations may decrease the pathogen’s fitness. Under neutral evolution, no fitness differences exist

between the different amino acids and new mutations do not adversely affect pathogen fitness. On the

other hand, when fitness differences exist between alleles, purifying selection acts to impede the

fixation of new mutations. A new mutation has been fixed when 1) only one type of amino acid is

observed in the particular site, and 2) the observed amino acid is different from the original genotype.

Intrahost fixations were counted by comparing the site-by-site identity of sequences found after 1000

generations with the original genotype.

 119

RESULTS AND DISCUSSION

Previous studies have examined the role of host alternation in the evolution of pathogens

using in vitro and in vivo approaches. To simulate pathogen evolution in vitro, pathogens are

inoculated into a cell culture derived from one of its host species and incubated to simulate replication

within the host. During this step, pathogens could be passaged into fresh cell cultures as long as it

remains of the same host type. After a certain time, viruses are harvested from cell culture fluid and

inoculated into a different cell line to simulate transmission between host species. This completes one

infection cycle in a single host. The process of inoculation, incubation, and transfer is repeated until

the desired number of infection cycles and transmissions has been reached. The process is similar for

in vivo approaches except that live animals are used instead of cell lines. Using in vivo models enables

capturing the dynamics of local and systemic viral infection, as well as cell tropisms and tissue-

specific infections at the cost of more complicated experimental design and less control of variables

that may affect pathogen evolution. Given the numerous variables that jointly affect pathogen

evolution, isolating the individual contribution of processes in live models is challenging because

extraneous variables must be tightly controlled, and jointly contributing parameters must be held

constant.

Probabilistic models and simulation offer an alternative method to examine pathogen

evolution with complete control over the environment and the contributing processes. There are three

key advantages of in silico models over live models of evolution: absolute control of parameters,

repeatability, and data resolution. However, computer simulations are limited by our ability to capture

evolutionary dynamics into mathematical equations and computer language. Thus, a certain amount of

realism is lost when computer models are used.

In this chapter, I am interested in the effect of host alternation on the evolution of pathogens.

Host alternation presents a unique evolutionary problem for vector-borne pathogens because

alternately reproducing between two different environments may constrain the evolution of the

pathogen. The host alternation problem can be rephrased as a problem of alternating fitness

 120

landscapes. Given these two environments, the fitness landscapes of these environments could be very

similar to each other such that the landscapes share fitness optima and minima. On the other hand, the

fitness landscapes could be vastly different the fitness optima in one environment is different from the

optima in the other environment. In the extreme case, the fitness optima of one landscape may even

coincide with the fitness minima in the other. Finally, the magnitude of changes in the fitness

landscapes may be very disproportionate such that the effect of one landscape dominates over the

other. This means that one host environment is more permissive to change because it has a less jagged

landscape while the other host environment is quite restrictive due to the high peaks and deep valleys

in its landscape.

Experiments have suggested that pathogen evolution may be most similar to the last case

where there is relaxed selection in one host and strong selection in the other host. Here, I modeled

three fitness landscape scenarios to examine the effect of shifting landscapes on the fixation of new

mutations. First, I considered the random scenario where fixation is completely driven by genetic drift

and random sampling during transmission to establish a null model of pathogen evolution in

alternating hosts. Then I simulated evolution where the fitness landscapes were consistent between

hosts, and where one landscape was dominant over the other. I implemented these landscape

configurations by simulating the infection cycle of Dengue viruses between humans and mosquitos

using the individual-based models implemented in Contagion. Under this model, humans and

mosquitos are represented as nodes in the network and connections between nodes indicates the

potential for transmission. To alternate infections between host species, connections only occur

between a human node and a mosquito node such that pathogens have to alternately infect hosts after

every infection cycle. This creates a special kind of network called a bipartite graph.

In the null model, also known as the neutral-neutral scenario, amino acid changes do not

affect the fitness of the pathogen whether it is replicating within humans or mosquitos. Thus, changes

to the frequency of an allele or a genotype happened due to random chance or due to or random

sampling during transmission. No allele or genotype has any fitness advantage. After 1000 pathogen

generations and 99 transmissions, an average of 4.37 new mutations were fixed in the simulation and

 121

an average of 19.10 sites remained polymorphic (Table 3). As previously discussed in chapter 3, the

fixation probability of pathogen mutations is a composite value dependent on the strength of

selection, infection duration and transmission frequency. This means that the fixation rate of new

mutations under this model is not only based on the rate of new mutations entering the population, but

also is affected the bottleneck size and frequency of transmissions. According to population genetics,

the fixation rate in a haploid population with a constant population size 𝑁 evolving under neutral

evolution is equal to product of the number of new mutations per generations 𝑁𝜇 and the fixation

probability of a new mutation s
³
× 𝑁𝜇 = 𝜇. Given a mutation rate of 1 × 10r¾

substitutions/site/generation and the simulation having modeled 495 sites for 1000 pathogen

generations, this equation predicts that there should be 4.95 fixations during the span of the

simulation. And yet, simulation results show an average of 4.37 new mutations were fixed at the end

of the simulation. Note that as I discussed in chapter 3, the recurrent demographic changes inherent to

the pathogen life cycle changes the fixation probability of a new mutation. In this case, the fixation

rate under neutral evolution is only proportional to simulation result by a factor a such that

𝑎 s
³
× 𝑁𝜇 = 𝑎𝜇.

Another key difference is the fact that the sites in this sequence are completely linked to each

other. When sites are completely linked, no recombination takes place between sequences and the

entire sequence acts as a linkage block. As a consequence, the fate of new mutations becomes tied to

the fate of other mutations present in the linkage block and the rate of fixations is less than the

expectation under free recombination.

Next, I considered the case where purifying selection occurs in one of the two hosts. Consider

the cases where weak purifying selection (Ns = 1) occurs in human hosts only, or in mosquito hosts

only (Table 3). Under these scenarios, mutations were free to accumulate and increase in frequency

without any effect on fitness while the pathogen is replicating in one host. However, when the

pathogen population is transmitted to the other host species, mutations that previously had no effect

on replicative fitness now are deleterious. Pathogens that harbor mutations now have lower replicative

 122

fitness and are less likely to be found in the next generation of pathogens. Thus, purifying selection

present in at least one of the hosts should decrease the rate of fixations compared to the null model.

This model tries to replicate the experimental evolution studies of Vasilakis et al. (2009) where they

observed vectors constrain the evolution of Dengue viruses in vitro and Deardorff et al. (2011) that

found that natural bird host slows the evolution of viral pathogens.

Table 3. Fixation and polymorphism of new mutations under the alternating host model.

Class Nshost Nsvector
Intrahost Fixation

(# sites)
Intrahost Polymorphism

(# sites)
Neutral-
neutral 0 0 4.37 19.10

Weak-
neutral 1 0 4.00 18.97

Neutral-
weak 0 1 4.00 18.38

Weak-
weak 1 1 4.20 17.70

Weak-
weak 0.5 0.5 4.03 18.67

Strong-
neutral 10 0 3.71 18.67

Neutral-
strong 0 10 3.58 18.18

Strong-
strong 10 10 3.16 18.03

Strong-
strong 5 5 3.71 18.38

Because pathogen genomes are completely linked, there is effectively no recombination

occurring between viral sequences, which decreases the efficiency of selection. The lack of

recombination in pathogen genomes make them susceptible to clonal interference and Muller’s

ratchet. Clonal interference occurs when a beneficial mutation become extinct due to competition with

a new beneficial mutation occurring at a different site in sequence. If recombination is present, the

two beneficial mutations could find themselves in the same sequence and both could go to fixation

more rapidly than if they were separated, assuming there is no negative epistasis between the two.

However, when recombination is not present, then the second mutation has to occur in a sequence

where the first mutation is already present for both to reach fixation. Otherwise, the two mutations

 123

would compete with each other and could result in one of the mutations going to extinction.

Conversely, if recombination was present, deleterious mutations could be more efficiently removed

from the population because its fate is not tied to other variants in the sequence. The lack of

recombination enables deleterious mutations to go into fixation at a high rate than expected especially

when advantageous mutations are present in the background. Linkage decreases the efficiency of

selection in pathogens and creates an interesting dynamic in the case of alternating environments.

When selection is present in one of the hosts, the number of fixations observed after 1000

pathogen generations decreased as expected compared to neutral evolution (Table 3). Since the

fixation probability is proportional to a factor of the fixation rate, then the lower fixation probability

of deleterious mutations decreases its fixation rate. However, in this scenario, selection is not constant

over time but is alternately present or absent as the pathogens consecutively replicate in permissive

and stringent host environments. In cases where selection fluctuates, the time scale of environmental

change is a critical factor in determining the fixation probability of new mutations. If the environment

changes rapidly relative to evolutionary time, then the fixation probability is determined by the

average effective fitness effect over time in some cases (Mustonen & Lässig, 2009). In general,

environmental changes have been found to reduce the efficiency of selection on a single locus

(Cvijović, Good, Jerison, & Desai, 2015). Under complete linkage, the number of fixations in the

alternating selection regime appears to behave similar to the time-averaged selection coefficient. In

both weak and strong cases, the number of fixations when selection is present only in one of the hosts

is similar to the observed number when selection is present in both hosts at half the value (Table 3).

Comparing the deleterious fixation rates between the standard population genetics model and

the simulation, results showed an increasing divergence as the scaled selection coefficient increased.

At Ns = 1, the fixation rate of deleterious mutations is comparable between the standard and the

pathogen evolution models. However, as the strength of purifying selection increased, the simulation

seemed to be largely unaffected by the parameter change (Figure 25). Simulation results were robust

to changes in selection coefficient because the effect of repeated population bottlenecks dominated

the evolution of pathogen at these parameter values. As discussed in chapter 3, the duration of

 124

infection time and the frequency of transmissions are key factors that affect the fixation probability of

an allele. As infection duration shortens or as frequency of transmissions increases, the overall

fixation probability approaches the neutral expectation. Thus, between Ns = 1 and Ns = 10, the force

of selection is subdued by the random effects brought by severe bottlenecks during transmission. If

true, this suggests that viral pathogen evolution is more a consequence of random events than

controlled by deterministic forces such as selection.

Figure 26. Divergence in fixation rates of new mutations between the standard population genetics
model and the pathogen evolution network model.

The close range of simulation results may also have been caused by the low supply of

mutations as a result of using realistic parameter values to simulate Dengue virus molecular evolution.

While this helps account for realism in the simulation, the drawback of this approach is the rate of

new mutations could be insufficient to produce the necessary number of fixations to create a powerful

enough statistical comparison. One way to increase the frequency of observed fixations is to increase

the number of generations simulated. However, as the number of generations increase the amount of

time the simulation runs, it is not always a viable solution. For instance, the current set-up simulates

1000 pathogen generations and takes approximately 600 seconds or 10 minutes to finish a single

instance of the simulation and replicating it 100 times takes 60,000 seconds or about 17 hours. To

increase the number of recorded fixations 10-fold would require on average a 10-fold increase in

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

0 2 4 6 8 10 12

Fi
xa

tio
n

ra
te

Scaled selection coefficient (Ns)

Predicted

Simulation

 125

simulation time as well, increasing the simulation time to 600,000 seconds or approximately 7 days.

The alternative is to increase the rate of mutation to increase the supply of mutations, and thereby

increase the probability of observing fixations. However, this means adopting an unrealistic parameter

value for the pathogen being modeled. Both approaches are currently being explored in order to

increase the power of statistical tests to compare these models.

I also investigated the possibility that purifying selection occurs cooperatively between hosts

to conserve different sites. Instead of all sites undergoing purifying selection in one host and freely

changing under neutral evolution in the other host, I consider the possibility of a “split” scenario

where one host species dictates the evolution for a particular set of sites while the other host species

predominates the evolution for another non-overlapping group of sites (Table 4). This scenario would

also result in effectively half the original fitness difference similar to the alternating scenario. For

example, there are two groups of sites A and B that are completely linked in a genotype (Figure 25f).

In host 1, site A is under purifying selection while site B evolves neutrally. On the other hand, in host

2, site A evolves neutrally while site B is under purifying selection. Within host 1, only changes to

site A affects it replicative fitness and site B is free to mutate without consequence. However, once

the pathogen infects host 2, site B variants that previously did not have an effect on fitness are now

subjected to selection. Site A, which was under selection in host 1, is now free to change without

having an effect on pathogen fitness. Under this scenario, the effective selection coefficient would be

the average of the two hosts and should have the same effect as cases that have the same effective

fitness effect value.

Table 4. Comparison of fixation and polymorphism of new mutations between the split and
alternating host models.

Class Nshost Nsvector
Intrahost Fixation

(# sites)
Intrahost Polymorphism

(# sites)
Neutral-
neutral 0 0 4.37 19.10

Complete 1 1 4.20 17.70
10 10 3.16 18.03

Alternating 1 0 4.00 18.68
10 0 3.64 18.43

Split 1* 1* 4.22 19.13

 126

10* 10* 3.41 18.70
100* 100* 1.98 16.72

* odd-numbered sites were subjected to purifying selection in human hosts while even-numbered sites

were under purifying selection in vector hosts. The intensity of selection is indicated by the respective

scaled selection coefficients listed in the table.

Overall, the results of the split scenario were not consistent with alternating host model. It

was expected that splitting the action of selection would not affect the evolution of new mutations as

the average fitness effects for alleles at each site remained constant. In the case of alternating

selection, the preferred allele at all sites is advantageous or neutral while the unpreferred alleles are

either disadvantageous (0.9) or neutral (1.0). Thus, in one host, all the sites are always under

selection, while in the other host, all the sites are neutrally evolving. On the other hand, in the split

scenario, the preference and fitness of alleles remained the same except that only half of the sites were

under selection in each host. This means selection was present in both hosts but acts on different sites.

Based on the simulation results, the split scenario lied in between the case where selection was

present in alternating infections, and when selection was consistently present in both hosts. Since

demographic factors known to affect fixation were held constant, this behavior suggested that the

linkage among sites in the pathogen sequence alters fixation dynamics of new mutations. This aspect

requires further investigation to explain this discrepancy. A future study could look at the differences

between the alternating “complete” and “split” scenarios with differing rates of recombination to

determine whether linkage is the cause of this unexpected result.

 127

CHAPTER 6

CONCLUSION

Pathogen evolution is a far from a settled topic because there are many variables that can

affect its outcome. The complexity of pathogen evolution derives from its unique life cycle

characterized by a never-ending series of infection and transmission which ties pathogens to their host

and are affected by the host’s behavior and interactions. One clear example of this is how hosts can

interact with each other to create favorable routes of transmission. For HIV and other sexually-

transmitted infections, this may be the choice of sexual partners and the frequency of sexual

interactions. For Influenza, this may be the person’s choice of insisting on going to school or work as

opposed to resting until the symptoms disappear. Although pathogens take advantage of hosts in order

to reproduce, if it cannot encounter a new host to infect, it faces a dead end, imprisoned within the

host. Thus, the host plays a significant role in determining the pathogens ultimate fate.

To understand how pathogens evolve requires an accurate depiction of the essential qualities

that creates this dynamical system. Although there are multitudes of epidemic models available to

study the spread of diseases that pathogens cause, there are few the genetic models that can

recapitulate the evolutionary history of pathogens without oversimplifying it. Through this project, I

developed a model for pathogen evolution by embedding the evolutionary process within a network.

Based on this model, I showed that the coupling of evolutionary processes and epidemiological

dynamics forms a feedback loop. While the effect of evolutionary changes on epidemiological

processes has been well documented already, there is little evidence to suggest that the converse

relationship – that epidemiological factors can tilt evolution – is true. However, it is intuitive to

consider these processes as affecting each other. From a population genetics perspective, evolution

occurs because of changes to the frequency of genetic information in the form of alleles. The great

mystery in population genetics is deriving the factors that drive the change, if any at all. Expanding

this perspective from the processes that occur within the host to include the overall population of

hosts, a simple explanation based on probability can be derived to prove that the structure of host

 128

populations affects the molecular and phenotypic evolution of pathogens. By imaging the host

population as a connected network, then connections between hosts create paths to traverse the

network. From the collection of all possible paths, some paths increase the probability of spreading

while other and paths lead to dead ends. Therefore, if a new mutation arises in a pathogen population

located in a well-connected part of the host network increases it chance of survival compared to a new

mutation that emerge in an infection found in a sparsely connected region even if the mutations share

the same fitness. Therefore, the eventual fate of new mutations is governed by forces within the host

and by interactions between hosts.

Within-host studies have found little evidence to support the idea that positive selection of

pathogens naturally occurs within hosts. However, the signature of positive selection has been

detected in viruses and other pathogens from samples taken from different individuals. Given these

conflicting claims, it is interesting how we can reconcile this problem. In this study, I attempted to

untangle these conflicting observations the network model of pathogen evolution I devised. Due to the

periodic infection and transmission pathogen lineages undergo, I found that these events dampen the

effect of natural selection even at pathogens possess a large fitness. Two main factors impeded the

effect of positive selection in pathogen evolution. First, the time it takes for selection to significantly

raise the frequency of a new mutation is too long compared to the duration of acute infections. This

means that new mutations remain at low frequency throughout an infection unless the fitness

advantage is extremely high, or the duration of the infection is significantly long. This explains why

most findings of positive selection within hosts have been from pathogens that cause chronic

infections. If beneficial mutations exist at low frequencies, the probability that these mutations are

transmitted is slim, especially when the number of infectious units transmitted is low. The population

bottleneck that occurs every transmission is the second reason positive selection cannot operate

efficiently. Experimental studies have shown that transmissions tend to impose a harsh bottleneck on

pathogens. Since pathogens transmits periodically, this means that bottlenecks recurrently occur over

a short period of time. My results indicate pathogen evolution is not sensitive to fitness differences as

the fixation probability of mutations tends to be flat up to moderate level of selective advantage. This

 129

indicates that the periodic expansion and reduction in population size in tandem with the short

intervals between bottlenecks inhibit the role of positive selection in pathogens. This suggests that

transmission parameters could play a bigger role in the evolution of pathogen than natural selection.

Placed in the context of a host network, both the density and the structure of the network

influences the observed evolution of pathogens across the host population. Results from simulations

on networks showed that diversity is significantly reduced when the host network is sparsely-

connected than when it is densely-connected. However, any type of network used to condition the

potential paths of transmission always showed lower levels of diversity compared to an unstructured

population. While the network model saw reduced diversity, fixation probability is also diminished

because the network structure promotes differentiation between pathogen lineages. Networks

therefore make it hard for an advantageous genotype to sweep the entire population unless it is related

to host immunity. When the new mutation changes the pathogen’s immunological profile such that is

create a new serotype, then these kinds of changes are expected spread rapidly as the pathogen is

granted an effectively immunological naïve host population to infect. It remains to be seen however,

how we can explain other findings of positive selection that appear adaptive but are not immune-

related.

 130

REFERENCES

Abbey, H. (1952). An examination of the Reed-Frost theory of epidemics. Human Biology,
24(3), 201–233. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12990130

Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity.
Cell, 124(4), 783–801. https://doi.org/10.1016/j.cell.2006.02.015

Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex
networks. Nature, 406(6794), 378–382. https://doi.org/10.1038/35019019

Allen, L. J. S. (1994). Some discrete-time SI, SIR, and SIS epidemic models. Mathematical
Biosciences, 124(1), 83–105. https://doi.org/10.1016/0025-5564(94)90025-6

Anderson, R. M., Fraser, C., Ghani, A. C., Donnelly, C. A., Riley, S., Ferguson, N. M., …
Hedley, A. J. (2004). Epidemiology, transmission dynamics and control of SARS: the
2002-2003 epidemic. Philosophical Transactions of the Royal Society B: Biological
Sciences, 359(1447), 1091–1105. https://doi.org/10.1098/rstb.2004.1490

Anderson, R. M., & May, R. M. (1985). Vaccination and herd immunity to infectious
diseases. Nature, 318(6044), 323–329. https://doi.org/10.1038/318323a0

Anderson, R. M., & May, R. M. (1992). Infectious Disease of Humans. Oxford University
Press.

Andersson, D. I., & Hughes, D. (1996). Muller’s ratchet decreases fitness of a DNA-based
microbe. Proceedings of the National Academy of Sciences of the United States of
America, 93(2), 906–907. https://doi.org/10.1073/pnas.93.2.906

Andolfatto, P., & Przeworski, M. (2000). A genome-wide departure from the standard neutral
model in natural populations of Drosophila. Genetics, 156(1), 257–268. Retrieved from
http://genomics.princeton.edu/AndolfattoLab/Publications_files/Andolfatto_Przeworski
2000.pdf

Antia, R., Ganusov, V. V., & Ahmed, R. (2005). The role of models in understanding CD8+
T-cell memory. Nature Reviews Immunology, 5(2), 101–111.
https://doi.org/10.1038/nri1550

Antia, R., Regoes, R. R., Koella, J. C., & Bergstrom, C. T. (2003). The role of evolution in
the emergence of infectious diseases, 426(December), 8–11.
https://doi.org/10.1038/nature02177.1.

Bandín, I., & Dopazo, C. P. (2011). Host range, host specificity and hypothesized host shift
events among viruses of lower vertebrates. Veterinary Research, 42(1), 67.
https://doi.org/10.1186/1297-9716-42-67

Barthélemy, M., Barrat, A., Pastor-Satorras, R., & Vespignani, A. (2005). Dynamical patterns
of epidemic outbreaks in complex heterogeneous networks. Journal of Theoretical
Biology, 235(2), 275–288. https://doi.org/10.1016/j.jtbi.2005.01.011

 131

Barton, N. H., Etheridge, A. M., & Véber, A. (2013). Modelling evolution in a spatial
continuum. Journal of Statistical Mechanics: Theory and Experiment, 2013(01),
P01002. https://doi.org/10.1088/1742-5468/2013/01/P01002

Barton, N. H., & Whitlock, M. C. (1997). The evolution of metapopulations. In
Metapopulation biology (pp. 183–210). Academic Press.

Batagelj, V., & Brandes, U. (2005). Efficient generation of large random networks. Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics, 71(3), 1–5.
https://doi.org/10.1103/PhysRevE.71.036113

Bedhomme, S., Lafforgue, G., & Elena, S. F. (2012). Multihost experimental evolution of a
plant RNA virus reveals local adaptation and host-specific mutations. Molecular Biology
and Evolution, 29(5), 1481–1492. https://doi.org/10.1093/molbev/msr314

Beerli, P., & Felsenstein, J. (2001). Maximum likelihood estimation of a migration matrix
and effective population sizes in n subpopulations by using a coalescent approach.
Proceedings of the National Academy of Sciences of the United States of America, 98(8),
4563–4568. https://doi.org/10.1073/pnas.081068098

Bergstrom, C. T., McElhany, P., & Real, L. A. (1999). Transmission bottlenecks as
determinants of virulence in rapidly evolving pathogens. Proceedings of the National
Academy of Sciences of the United States of America, 96(9), 5095–5100.
https://doi.org/10.1073/PNAS.96.9.5095

Beverton, R. J. H., & Holt, S. (1957). On the dynamics of exploited fish populations. U. K.
Min. Agric. Fish. food, Fish. Invest. (Ser. II).

Bhatt, S., Katzourakis, A., & Pybus, O. G. (2010). Detecting natural selection in RNA virus
populations using sequence summary statistics. Infection, Genetics and Evolution, 10(3),
421–430. https://doi.org/10.1016/j.meegid.2009.06.001

Bull, J. J., Meyers, L. A., & Lachmann, M. (2005). Quasispecies made simple. PLoS
Computational Biology, 1(6), 0450–0460. https://doi.org/10.1371/journal.pcbi.0010061

Burch, C. L., & Chao, L. (2000). Evolvability of an RNA virus is determined by its
mutational neighbourhood. Nature, 406(6796), 625–628.
https://doi.org/10.1038/35020564

Carvajal-Rodríguez, A. (2008). GENOMEPOP: a program to simulate genomes in
populations. BMC Bioinformatics, 9(1), 223. https://doi.org/10.1186/1471-2105-9-223

Cen, X., Feng, Z., & Zhao, Y. (2014). Emerging disease dynamics in a model coupling
within-host and between-host systems. Journal of Theoretical Biology, 361, 141–151.
https://doi.org/10.1016/j.jtbi.2014.07.030

Centers for Disease Control and Prevention. (2012). Principles of Epidemiology in Public
Health Practice (3rd ed.). U.S. Department of Health and Human Services.

Chao, L. (1990). Fitness of RNA virus decreased by Muller’s ratchet. Nature, 348(6300),
454–455. https://doi.org/10.1038/348454a0

 132

Chare, E. R., & Holmes, E. C. (2006). A phylogenetic survey of recombination frequency in
plant RNA viruses. Archives of Virology, 151(5), 933–946.
https://doi.org/10.1007/s00705-005-0675-x

Charlesworth, B. (2012). The effects of deleterious mutations on evolution at linked sites.
Genetics, 190(1), 5–22. https://doi.org/10.1534/genetics.111.134288

Chinese SARS Molecular Epidemiology Consortium. (2004). Molecular evolution of the
SARS coronavirus during the course of the SARS epidemic in China. Science (New
York, N.Y.), 303(5664), 1666–1669. https://doi.org/10.1126/science.1092002

Ciota, A. T., & Kramer, L. D. (2010). Insights into Arbovirus Evolution and Adaptation from
Experimental Studies. Viruses, 2(12), 2594–2617. https://doi.org/10.3390/v2122594

Codoñer, F. M., Darós, J.-A., Solé, R. V., & Elena, S. F. (2006). The fittest versus the flattest:
experimental confirmation of the quasispecies effect with subviral pathogens. PLoS
Pathogens, 2(12), e136. https://doi.org/10.1371/journal.ppat.0020136

Coffey, L. L., Vasilakis, N., Brault, A. C., Powers, A. M., Tripet, F., & Weaver, S. C. (2008).
Arbovirus evolution in vivo is constrained by host alternation. Proceedings of the
National Academy of Sciences of the United States of America, 105(19), 6970–6975.
https://doi.org/10.1073/pnas.0712130105

Cotten, M., Watson, S. J., & Zumla, A. I. (2014). Spread, Circulation, and Evolution of the
Middle East Respiratory Syndrome Coronavirus. MBio, 5(1), .
doi:10.1128/mBio.01062-13. https://doi.org/10.1128/mBio.01062-13.Editor

Crotty, S., Cameron, C. E., & Andino, R. (2001). RNA virus error catastrophe: direct
molecular test by using ribavirin. Proceedings of the National Academy of Sciences of
the United States of America, 98(12), 6895–6900.
https://doi.org/10.1073/pnas.111085598

Crow, J. F., & Kimura, M. (1970). An Introduction to Population Genetics Theory. Cours de
l’University of Oslo Department of Informatics. Blackburn Press. Retrieved from
http://www.amazon.de/Introduction-Population-Genetics-Theory-
James/dp/0060414383/ref=sr_1_3?ie=UTF8&qid=1321741251&sr=8-3

Cvijović, I., Good, B. H., Jerison, E. R., & Desai, M. M. (2015). Fate of a mutation in a
fluctuating environment. Proceedings of the National Academy of Sciences, 112(36),
E5021–E5028. https://doi.org/10.1073/pnas.1505406112

Deardorff, E. R., Fitzpatrick, K. A., Jerzak, G. V. S. S., Shi, P.-Y., Kramer, L. D., & Ebel, G.
D. (2011). West Nile virus experimental evolution in vivo and the trade-off hypothesis.
PLoS Pathogens, 7(11), e1002335. https://doi.org/10.1371/journal.ppat.1002335

Domingo, E. (2000). Viruses at the Edge of Adaptation. Virology, 270(2), 251–253.
https://doi.org/10.1006/viro.2000.0320

Domingo, E. (2002). Quasispecies theory in virology. Journal of Virology, 76(1), 463–465.
https://doi.org/10.1128/JVI.76.1.463-465.2002

Domingo, E., Sheldon, J., & Perales, C. (2012). Viral Quasispecies Evolution. Microbiology

 133

and Molecular Biology Reviews, 76(2), 159–216.
https://doi.org/10.1128/MMBR.05023-11

Duarte, E. A., Clarke, D., Moya, A., Domingo, E., & Holland, J. J. (1992). Rapid fitness
losses in mammalian RNA virus clones due to Muller’s ratchet. Proceedings of the
National Academy of Sciences of the United States of America, 89(13), 6015–6019.
https://doi.org/10.1073/pnas.89.13.6015

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acid Research, 32(5), 1792–1797.
https://doi.org/10.1093/nar/gkh340

Eigen, M., & Schuster, P. (1977). A principle of natural self-organization - Part A:
Emergence of the hypercycle. Naturwissenschaften, 64(11), 541–565.
https://doi.org/10.1007/BF00450633

Erdős, P., & Rényi, A. (1959). On Random Graphs. I. Publicationes Mathematicae, 6, 290–
297.

Eubank, S., Guclu, H., Kumar, V. S., Marathe, M. V, Srinivasan, A., Toroczkai, Z., & Wang,
N. (2004). Modelling disease outbreaks in realistic urban social networks. Nature,
429(6988), 180–184. https://doi.org/10.1038/nature02541nature02541 [pii]

Felsenstein, J. (1974). The evolution advantage of recombination. Genetics, 78(2), 737–756.

Fields, B. N., Knipe, D. M., & Howley, P. M. (2013). Fields Virology, 6th Edition. Fields
Virology. https://doi.org/10.1093/cid/ciu346

Frank, S. A. (1996). Models of parasite virulence. The Quarterly Review of Biology, 71(1),
37–78. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8919665

Fujie, R., & Odagaki, T. (2007). Effects of superspreaders in spread of epidemic. Physica A:
Statistical Mechanics and Its Applications, 374(2), 843–852.
https://doi.org/10.1016/j.physa.2006.08.050

Gaggiotti, O. E., & Smouse, P. E. (1996). Stochastic Migration and Maintenance of Genetic
Variation in Sink Populations. The American Naturalist, 147(6), 919–945.
https://doi.org/10.1086/285886

Galton, F., & Watson, H. W. (1875). On the probability of the extinction of families. Journal
of the Royal Anthropological Institute, 4, 138–144.

Ganesh, a., Massoulié, L., & Towsley, D. (2005). The effect of network topology on the
spread of epidemics. Proceedings - IEEE INFOCOM, 2(C), 1455–1466.
https://doi.org/10.1109/INFCOM.2005.1498374

Ghedin, E., Laplante, J., DePasse, J., Wentworth, D. E., Santos, R. P., Lepow, M. L., … St.
George, K. (2011). Deep sequencing reveals mixed infection with 2009 pandemic
influenza A (H1N1) virus strains and the emergence of oseltamivir resistance. The
Journal of Infectious Diseases, 203(2), 168–174. https://doi.org/10.1093/infdis/jiq040

Gladstien, K. (1977). Subdivided Populations: The Characteristic Values and Rate of Loss of

 134

Alleles. Journal Of Applied Probability, 14(2), 241–248. Retrieved from
papers3://publication/uuid/913AF56E-D6BF-48F9-9C0A-B80E95D96D49

Gordo, I., Gomes, M. G. M., Reis, D. G., & Campos, P. R. (2009). Genetic diversity in the
SIR model of pathogen evolution. PLoS ONE, 4(3), 1–8.
https://doi.org/10.1371/journal.pone.0004876

Goyal, S., Balick, D. J., Jerison, E. R., Neher, R. A., Shraiman, B. I., & Desai, M. M. (2012).
Dynamic Mutation-Selection Balance as an Evolutionary Attractor. Genetics, 191(4),
1309–1319. https://doi.org/10.1534/genetics.112.141291

Gregg, M. B. (2002). Field Epidemiology. Oxford University Press.

Grenfell, B. T., Pybus, O. G., Gog, J. R., Wood, J. L. N., Daly, J. M., Mumford, J. A., &
Holmes, E. C. (2004). Unifying the Epidemiological and Evolutionary Dynamics of
Pathogens. Science, 303(5656), 327–332. https://doi.org/10.1126/science.1090727

Griffiths, R. C., & Tavaré, S. (1994). Sampling theory for neutral alleles in a varying
environment. Philosophical Transactions of the Royal Society of London. Series B,
Biological Sciences, 344(1310), 403–410. https://doi.org/10.1098/rstb.1994.0079

Guillaume, F., & Rougemont, J. (2006). Nemo: an evolutionary and population genetics
programming framework. Bioinformatics, 22(20), 2556–2557.
https://doi.org/10.1093/bioinformatics/btl415

Hagberg, A., Schult, D. a., & Swart, P. J. (2008). Exploring network structure, dynamics, and
function using NetworkX. In Proceedings of the 7th Python in Science Conference
(SciPy2008).

Hall, J. P., Harrison, E., & Brockhurst, M. A. (2013). Viral host-adaptation: insights from
evolution experiments with phages. Current Opinion in Virology, 3(5), 572–577.
https://doi.org/10.1016/j.coviro.2013.07.001

Haller, B. C., & Messer, P. W. (2017). SLiM 2: Flexible, Interactive Forward Genetic
Simulations. Molecular Biology and Evolution, 34(1), 230–240.
https://doi.org/10.1093/molbev/msw211

Hartfield, M. (2012). A framework for estimating the fixation time of an advantageous allele
in stepping-stone models. Journal of Evolutionary Biology, 25(9), 1751–1764.
https://doi.org/10.1111/j.1420-9101.2012.02560.x

Hernandez, R. D. (2008). A flexible forward simulator for populations subject to selection
and demography. Bioinformatics, 24(23), 2786–2787.
https://doi.org/10.1093/bioinformatics/btn522

Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599–
653. https://doi.org/10.1137/S0036144500371907

Hey, J., & Wakeley, J. (1997). A coalescent estimator of the population recombination rate.
Genetics, 145(3), 833–846. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/9055092

 135

Holland, J. J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., & VandePol, S. (1982).
Rapid evolution of RNA genomes. Science, 215(4540), 1577–1585.
https://doi.org/10.1126/science.7041255

Holme, P., & Kim, B. J. (2002). Growing scale-free networks with tunable clustering.
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary
Topics, 65(2), 2–5. https://doi.org/10.1103/PhysRevE.65.026107

Holmes, E. C. (2003). Patterns of intra- and interhost nonsynonymous variation reveal strong
purifying selection in dengue virus. Journal of Virology, 77(20), 11296–11298.
https://doi.org/10.1128/JVI.77.20.11296-11298.2003

Holmes, E. C. (2010). The RNA Virus Quasispecies: Fact or Fiction? Journal of Molecular
Biology, 400(3), 271–273. https://doi.org/10.1016/j.jmb.2010.05.032

Holmes, E. C., & Moya, A. (2002a). Is the quasispecies concept relevant to RNA viruses?
Journal of Virology, 76(1), 460–465. https://doi.org/10.1128/JVI.76.1.460-462.2002

Holmes, E. C., & Moya, A. (2002b). Is the quasispecies qoncept relevant to RNA viruses?
Journal of Virology, 76(1), 460–462. https://doi.org/10.1128/JVI.76.1.460

Hudson, R. R., & Kaplan, N. L. (1988). The coalescent process in models with selection and
recombination. Genetics, 120(3), 831–840. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/3147214

Jenkins, G. M., Worobey, M., Woelk, C. H., & Holmes, E. C. (1998). Evidence for the Non-
quasispecies Evolution of RNA Viruses. Molecular Biology and Evolution, 18(6), 987–
994. https://doi.org/10.1093/oxfordjournals.molbev.a003900

Jombart, T., Eggo, R. M., Dodd, P. J., & Balloux, F. (2011). Reconstructing disease
outbreaks from genetic data: a graph approach. Heredity, 106(2), 383–390.
https://doi.org/10.1038/hdy.2010.78

Kaplan, N. L., Darden, T., & Hudson, R. R. (1988). The coalescent process in models with
selection. Genetics, 120(3), 819–829. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/3066685

Kawashima, K. D. (2017). Contagion. Retrieved from https://github.com/kentwait/contagion

Kawashima, K. D., Matsumoto, T., & Akashi, H. (2016). Disease Outbreaks: Critical
Biological Factors and Control Strategies (pp. 173–204). Springer, Cham.
https://doi.org/10.1007/978-3-319-39812-9_10

Keeling, M. J. (2005). The implications of network structure for epidemic dynamics.
Theoretical Population Biology, 67(1), 1–8. https://doi.org/10.1016/j.tpb.2004.08.002

Keeling, M. J., & Rohani, P. (2007). Modeling Infectious Diseases in Humans and Animals.
Public Health. Princeton University Press.
https://doi.org/10.1097/01.ede.0000254692.80550.60

Kennedy, D. A., & Dwyer, G. (2018). Effects of multiple sources of genetic drift on pathogen
variation within hosts. PLOS Biology, 16(3), e2004444.

 136

https://doi.org/10.1371/journal.pbio.2004444

Kermack, W. O., & McKendrick, A. G. (1927). A Contribution to the Mathematical Theory
of Epidemics. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 115(772), 700–721. https://doi.org/10.1098/rspa.1927.0118

Kingman, J. F. C. (1982). On the genealogy of large populations. Journal of Applied
Probability, 19(A), 27–43. https://doi.org/10.2307/3213548

Koelle, K., Cobey, S., Grenfell, B. T., & Pascual, M. (2006). Epochal evolution shapes the
phylodynamics of interpandemic influenza A (H3N2) in humans. Science (New York,
N.Y.), 314(5807), 1898–1903. https://doi.org/10.1126/science.1132745

Ladner, J. T. T., Wiley, M. R. R., Mate, S., Dudas, G., Prieto, K., Lovett, S., … Palacios, G.
(2015). Evolution and Spread of Ebola Virus in Liberia, 2014–2015. Cell Host &
Microbe, 18(6), 659–669. Retrieved from
https://www.sciencedirect.com/science/article/pii/S193131281500462X?via%3Dihub

Lalić, J., Cuevas, J. M., & Elena, S. F. (2011). Effect of host species on the distribution of
mutational fitness effects for an RNA virus. PLoS Genetics, 7(11), e1002378.
https://doi.org/10.1371/journal.pgen.1002378

Lauring, A. S., Acevedo, A., Cooper, S. B., & Andino, R. (2012). Codon usage determines
the mutational robustness, evolutionary capacity, and virulence of an RNA virus. Cell
Host and Microbe, 12(5), 623–632. https://doi.org/10.1016/j.chom.2012.10.008

Lauring, A. S., & Andino, R. (2010). Quasispecies Theory and the Behavior of RNA Viruses.
PLoS Pathogens, 6(7), e1001005. https://doi.org/10.1371/journal.ppat.1001005

Lázaro, E., Escarmís, C., Domingo, E., & Manrubia, S. C. (2002). Modeling viral genome
fitness evolution associated with serial bottleneck events: evidence of stationary states of
fitness. Journal of Virology, 76(17), 8675–8681.
https://doi.org/10.1128/JVI.76.17.8675-8681.2002

Leventhal, G. E., Hill, A. L., Nowak, M. A., & Bonhoeffer, S. (2015). Evolution and
emergence of infectious diseases in theoretical and real-world networks. Nature
Communications, 6, 6101. https://doi.org/10.1038/ncomms7101

Levins, R. (1968). Evolution in Changing Environments. Princeton University Press.

Levins, R. (1969). Some Demographic and Genetic Consequences of Environmental
Heterogeneity for Biological Control. Bulletin of the Entomological Society of America,
15(3), 237–240. https://doi.org/10.1093/besa/15.3.237

Li, H., & Roossinck, M. J. (2004). Genetic Bottlenecks Reduce Population Variation in an
Experimental RNA Virus Population Genetic Bottlenecks Reduce Population Variation
in an Experimental RNA Virus Population, 78(19).
https://doi.org/10.1128/JVI.78.19.10582

Li, H., & Stephan, W. (2006). Inferring the Demographic History and Rate of Adaptive
Substitution in Drosophila. PLoS Genetics, 2(10), e166.
https://doi.org/10.1371/journal.pgen.0020166

 137

Lloyd-Smith, J. O., Funk, S., McLean, A. R., Riley, S., & Wood, J. L. N. (2015). Nine
challenges in modelling the emergence of novel pathogens. Epidemics, 10, 35–39.
https://doi.org/10.1016/j.epidem.2014.09.002

Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E., & Getz, W. M. (2005). Superspreading and
the effect of individual variation on disease emergence. Nature, 438(7066), 355–359.
https://doi.org/10.1038/nature04153

Lloyd, A. L. (2001). Realistic Distributions of Infectious Periods in Epidemic Models:
Changing Patterns of Persistence and Dynamics. Theoretical Population Biology, 60(1),
59–71. https://doi.org/10.1006/TPBI.2001.1525

Lo, A. W., Tang, N. L., & To, K.-F. (2006). How the SARS coronavirus causes disease: host
or organism? The Journal of Pathology, 208(2), 142–151.
https://doi.org/10.1002/path.1897

Long, J. C., Williams, R. C., & Urbanek, M. (1995). An E-M algorithm and testing strategy
for multiple-locus haplotypes. American Journal of Human Genetics, 56(3), 799–810.
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7887436

Lu, G., & Liu, D. (2012). SARS-like virus in the Middle East: A truly bat-related coronavirus
causing human diseases. Protein and Cell, 3(11), 803–805.
https://doi.org/10.1007/s13238-012-2811-1

Luciani, F., & Alizon, S. (2009). The Evolutionary Dynamics of a Rapidly Mutating Virus
within and between Hosts: The Case of Hepatitis C Virus. PLoS Comput Biol, 5(11),
e1000565. https://doi.org/10.1371/journal.pcbi.1000565

Maruyama, T. (1969). Genetic correlation in the stepping stone model with non-symmetrical
migration rates. J. Appl. Probab., 6(3), 463–477.

Maruyama, T. (1970). Rate of decrease of genetic variability in a subdivided population.
Biometrika, 57(2), 299–311. https://doi.org/10.1093/biomet/57.2.299

Maruyama, T., & Yasuda, N. (1970). Use of Graph Theory in Computation of Inbreeding and
Kinship Coefficients. Biometrics, 26(2), 209–219. https://doi.org/10.2307/2529069

Maynard Smith, J., & Price, G. R. (1973). The logic of animal conflict. Nature, 246(5427),
15–18. https://doi.org/10.1038/246015a0

McCrone, J. T., Woods, R. J., Martin, E. T., Malosh, R. E., Monto, A. S., & Lauring, A. S.
(2018). Stochastic processes constrain the within and between host evolution of
influenza virus. ELife, 7, e35962. https://doi.org/10.7554/eLife.35962

McDonald, J. H., & Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in
Drosophila. Nature, 351(6328), 652–654. https://doi.org/10.1038/351652a0

Messenger, S. L., Molineux, I. J., & Bull, J. J. (1999). Virulence evolution in a virus obeys a
trade-off. Proceedings of the Royal Society B: Biological Sciences, 266(1417), 397–404.
https://doi.org/10.1098/rspb.1999.0651

Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define ‘fitness’ for

 138

general ecological scenarios? Trends in Ecology & Evolution, 7(6), 198–202.
https://doi.org/10.1016/0169-5347(92)90073-K

Meyers, L. A., Newman, M. E. J., Martin, M., & Schrag, S. J. (2003). Applying network
theory to epidemics: Control measures for Mycoplasma pneumoniae outbreaks.
Emerging Infectious Diseases, 9(2), 204–210. https://doi.org/10.3201/eid0902.020188

Meyers, L. A., Pourbohloul, B., Newman, M. E. J., Skowronski, D. M., & Brunham, R. C.
(2005). Network theory and SARS: predicting outbreak diversity. Journal of Theoretical
Biology, 232(1), 71–81. https://doi.org/10.1016/j.jtbi.2004.07.026

Moore, C., & Newman, M. E. J. (2000). Epidemics and percolation in small-world networks.
Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary
Topics, 61(5 Pt B), 5678–5682. https://doi.org/10.1103/PhysRevE.61.5678

Muller, H. J. (1964). The relation of recombination to mutational advance. Mutation
Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1(1), 2–9.
https://doi.org/10.1016/0027-5107(64)90047-8

Murcia, P. R., Baillie, G. J., Daly, J. M., Elton, D., Jervis, C., Mumford, J. A., … Wood, J. L.
N. (2010). Intra- and interhost evolutionary dynamics of equine influenza virus. Journal
of Virology, 84(14), 6943–6954. https://doi.org/10.1128/JVI.00112-10

Murillo, L. N., Murillo, M. S., & Perelson, A. S. (2013). Towards multiscale modeling of
influenza infection. Journal of Theoretical Biology, 332, 267–290.
https://doi.org/10.1016/j.jtbi.2013.03.024

Mustonen, V., & Lässig, M. (2009). From fitness landscapes to seascapes: non-equilibrium
dynamics of selection and adaptation. Trends in Genetics, 25(3), 111–119.
https://doi.org/10.1016/J.TIG.2009.01.002

Nagylaki, T. (1982). Geographical invariance in population genetics. Journal of Theoretical
Biology, 99(1), 159–172.

Nagylaki, T. (1985). Homozygosity, Effective Number of Alleles, and Interdeme
Differentiation in Subdivided Populations. Proceedings of the National Academy of
Sciences of the United States of America, 82(24), 8611–8613.

Nagylaki, T. (1998). Fixation indices in subdivided populations. Genetics, 148(3), 1325–
1332.

Nasser, W., Beres, S. B., Olsen, R. J., Dean, M. A., Rice, K. A., Long, S. W., … Musser, J.
M. (2014). Evolutionary pathway to increased virulence and epidemic group A
Streptococcus disease derived from 3,615 genome sequences. Proceedings of the
National Academy of Sciences, 111(17), E1768–E1776.
https://doi.org/10.1073/pnas.1403138111

Nei, M. (1973). Analysis of Gene Diversity in Subdivided Populations. Proc. Nat. Acad. Sci.
USA, 70(12), 3321–3323. https://doi.org/10.1073/pnas.70.12.3321

Neuhauser, C., & Krone, S. M. (1997). The genealogy of samples in models with selection.
Genetics, 145(2), 519–534. Retrieved from

 139

http://www.ncbi.nlm.nih.gov/pubmed/9071604

Newman, M. E. J. (2002). The spread of epidemic disease on networks, 12. Statistical
Mechanics; Disordered Systems and Neural Networks; Quantitative Biology.
https://doi.org/10.1103/PhysRevE.66.016128

Newman, M. E. J. (2010). Networks. Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

Nielsen, R., Hubisz, M. J., Hellmann, I., Torgerson, D., Andrés, A. M., Albrechtsen, A., …
Clark, A. G. (2009). Darwinian and demographic forces affecting human protein coding
genes. Genome Research, 19(5), 838–849. https://doi.org/10.1101/gr.088336.108

Notohara, M. (1990). The coalescent and the genealogical process in geographically
structured population. Journal of Mathematical Biology, 29(1), 59–75.
https://doi.org/10.1007/BF00173909

Novella, I. S., Presloid, J. B., Smith, S. D., & Wilke, C. O. (2011). Specific and nonspecific
host adaptation during arboviral experimental evolution. Journal of Molecular
Microbiology and Biotechnology, 21(1–2), 71–81. https://doi.org/10.1159/000332752

Otto, S. P., & Whitlock, M. C. (1997). The probability of fixation in populations of changing
size. Genetics, 146(2), 723–733. https://doi.org/10.1534/genetics.104.040089

Pannell, J. R., & Charlesworth, B. (2000). Effects of metapopulation processes on measures
of genetic diversity. Philosophical Transactions of the Royal Society B: Biological
Sciences, 355(1404), 1851–1864. https://doi.org/10.1098/rstb.2000.0740

Papaïx, J., Burdon, J. J., Lannou, C., & Thrall, P. H. (2014). Evolution of pathogen
specialisation in a host metapopulation: joint effects of host and pathogen dispersal.
PLoS Computational Biology, 10(5), e1003633.
https://doi.org/10.1371/journal.pcbi.1003633

Park, M., Loverdo, C., Schreiber, S. J., & Lloyd-Smith, J. O. (2013). Multiple scales of
selection influence the evolutionary emergence of novel pathogens. Philosophical
Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1614),
20120333. https://doi.org/10.1098/rstb.2012.0333

Pepin, K. M., Volkov, I., Banavar, J. R., Wilke, C. O., & Grenfell, B. T. (2010). Phenotypic
differences in viral immune escape explained by linking within-host dynamics to host-
population immunity. Journal of Theoretical Biology, 265(4), 501–510.
https://doi.org/10.1016/j.jtbi.2010.05.036

Pollak, E. (1966). On the Survival of a Gene in a Subdivided Population. Journal of Applied
Probability, 3(1), 142–155.

Poon, L. L. M., Song, T., Rosenfeld, R., Lin, X., Rogers, M. B., Zhou, B., … Ghedin, E.
(2016). Quantifying influenza virus diversity and transmission in humans. Nature
Genetics, 48(2), 195–200. https://doi.org/10.1038/ng.3479

Pybus, O. G., Fraser, C., & Rambaut, A. (2013). Evolutionary epidemiology: preparing for an
age of genomic plenty. Philosophical Transactions of the Royal Society of London.

 140

Series B, Biological Sciences, 368(1614), 20120193.
https://doi.org/10.1098/rstb.2012.0193

Querec, T. D., Akondy, R. S., Lee, E. K., Cao, W., Nakaya, H. I., Teuwen, D., … Pulendran,
B. (2009). Systems biology approach predicts immunogenicity of the yellow fever
vaccine in humans. Nature Immunology, 10(1), 116–125.
https://doi.org/10.1038/ni.1688

Read, J. M., & Keeling, M. J. (2006). Disease evolution across a range of spatio-temporal
scales. Theoretical Population Biology, 70(2), 201–213.
https://doi.org/10.1016/j.tpb.2006.04.006

Reid, A. H., Fanning, T. G., Hultin, J. V, & Taubenberger, J. K. (1999). Origin and evolution
of the 1918 "Spanish" influenza virus hemagglutinin gene. Proceedings of
the National Academy of Sciences of the United States of America, 96(4), 1651–1656.
https://doi.org/10.1073/PNAS.96.4.1651

Rico-hesse, R. (2003). Microevolution and virulence of dengue viruses. Adv Virus Res, 59,
315–341. https://doi.org/10.1016/S0065-3527(03)59009-1

Ruiz-Jarabo, C. M., Arias, A., Baranowski, E., Escarmís, C., & Domingo, E. (2000). Memory
in Viral Quasispecies. Journal of Virology, 74(8), 3543–3547.
https://doi.org/10.1128/JVI.74.8.3543-3547.2000

Ruiz-Jarabo, C. M., Miller, E., Gómez-Mariano, G., & Domingo, E. (2003). Synchronous
loss of quasispecies memory in parallel viral lineages: A deterministic feature of viral
quasispecies. Journal of Molecular Biology, 333(3), 553–563.
https://doi.org/10.1016/j.jmb.2003.08.054

Salathe, M., & Jones, J. H. (2010). Dynamics and Control of Diseases in Networks with
Community Structure. PLoS Computational Biology, 6(4), e1000736.
https://doi.org/10.1371/journal.pcbi.1000736

Sanford, J., Baumgardner, J., Brewer, W., Gibson, P., & Remine, W. (2007). Mendel’s
Accountant: a biologically realistic forward-time population genetics program. Scalable
Computing: Practice and Experience, 8(2), 147–165.

Sanjuán, R., Cuevas, J. M., Furió, V., Holmes, E. C., & Moya, A. (2007). Selection for
robustness in mutagenized RNA viruses. PLoS Genetics, 3(6), 0939–0946.
https://doi.org/10.1371/journal.pgen.0030093

Sanjuán, R., & Domingo-Calap, P. (2016). Mechanisms of viral mutation. Cellular and
Molecular Life Sciences : CMLS, 73(23), 4433–4448. https://doi.org/10.1007/s00018-
016-2299-6

Sawyer, S. A., & Hartl, D. L. (1992). Population genetics of polymorphism and divergence.
Genetics, 132(4).

Schreiber, M. J., Holmes, E. C., Ong, S. H., Soh, H. S. H., Liu, W., Tanner, L., … Hibberd,
M. L. (2009). Genomic epidemiology of a dengue virus epidemic in urban Singapore.
Journal of Virology, 83(9), 4163–4173. https://doi.org/10.1128/JVI.02445-08

 141

Seabloom, E. W., Borer, E. T., Gross, K., Kendig, A. E., Lacroix, C., Mitchell, C. E., …
Power, A. G. (2015). The community ecology of pathogens: coinfection, coexistence
and community composition. Ecology Letters, 18(4), 401–415.
https://doi.org/10.1111/ele.12418

Sierra, S., Dávila, M., Lowenstein, P. R., & Domingo, E. (2000). Response of foot-and-
mouth disease virus to increased mutagenesis: influence of viral load and fitness in loss
of infectivity. Journal of Virology, 74(18), 8316–8323.
https://doi.org/10.1128/JVI.74.18.8316-8323.2000

Slatkin, M. (1977). Gene flow and genetic drift in a species subject to frequent local
extinctions. Theoretical Population Biology, 12(3), 253–262.

Slatkin, M. (1981). Fixation probabilities and fixation times in a subdivided population.
Evolution, 35(3), 477–488. https://doi.org/10.2307/2408196

Smith, D. J., Lapedes, A. S., de Jong, J. C., Bestebroer, T. M., Rimmelzwaan, G. F.,
Osterhaus, A. D. M. E., & Fouchier, R. A. M. (2004). Mapping the antigenic and genetic
evolution of influenza virus. Science (New York, N.Y.), 305(5682), 371–376.
https://doi.org/10.1126/science.1097211

Smith, G. J. D., Vijaykrishna, D., Bahl, J., Lycett, S. J., Worobey, M., Pybus, O. G., …
Rambaut, A. (2009). Origins and evolutionary genomics of the 2009 swine-origin H1N1
influenza A epidemic. Nature, 459(7250), 1122–1125.
https://doi.org/10.1038/nature08182

Starnini, M., Machens, A., Cattuto, C., Barrat, A., & Pastor-Satorras, R. (2013).
Immunization strategies for epidemic processes in time-varying contact networks.
Journal of Theoretical Biology, 337, 89–100. https://doi.org/10.1016/j.jtbi.2013.07.004

Stern, A., Bianco, S., Yeh, M. Te, Wright, C., Butcher, K., Tang, C., … Andino, R. (2014).
Costs and benefits of mutational robustness in RNA viruses. Cell Reports, 8(4), 1026–
1036. https://doi.org/10.1016/j.celrep.2014.07.011

Stolerman, L., Coombs, D., & Boatto, S. (2015). SIR-Network Model and Its Application to
Dengue Fever. SIAM Journal on Applied Mathematics, 75(6), 2581–2609.
https://doi.org/10.1137/140996148

Strimmer, K., & Pybus, O. G. (2001). Exploring the Demographic History of DNA
Sequences Using the Generalized Skyline Plot. Molecular Biology and Evolution,
18(12), 2298–2305. https://doi.org/10.1093/oxfordjournals.molbev.a003776

Susi, H., Barrès, B., Vale, P. F., & Laine, A.-L. (2015). Co-infection alters population
dynamics of infectious disease. Nature Communications, 6(1), 5975.
https://doi.org/10.1038/ncomms6975

Tajima, F. (1989). The effect of change in population size on DNA polymorphism. Genetics,
123(3), 597–601. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2599369

Thrall, P. H., & Burdon, J. (1997). Host-pathogen dynamics in a metapopulation context: The
ecological and evolutionary consequences of being spatial. Journal of Ecology, 85(6),
743–753. https://doi.org/10.2307/2960598

 142

Thrall, P. H., & Burdon, J. J. (2003). Evolution of virulence in a plant host-pathogen
metapopulation. Science, 299(5613), 1735–1737.
https://doi.org/10.1126/science.1080070

Turner, P. E., & Elena, S. F. (2000). Cost of host radiation in an RNA virus. Genetics,
156(4), 1465–1470. Retrieved from
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1461356&tool=pmcentrez&
rendertype=abstract

Vasilakis, N., Deardorff, E. R., Kenney, J. L., Rossi, S. L., Hanley, K. A., & Weaver, S. C.
(2009). Mosquitoes Put the Brake on Arbovirus Evolution: Experimental Evolution
Reveals Slower Mutation Accumulation in Mosquito Than Vertebrate Cells. PLoS
Pathogens, 5(6), e1000467. https://doi.org/10.1371/journal.ppat.1000467

Vergu, E., Busson, H., & Ezanno, P. (2010). Impact of the Infection Period Distribution on
the Epidemic Spread in a Metapopulation Model. PLoS ONE, 5(2), e9371.
https://doi.org/10.1371/journal.pone.0009371

Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E., & Andino, R. (2006). Quasispecies
diversity determines pathogenesis through cooperative interactions in a viral population.
Nature, 439(7074), 344–348. https://doi.org/10.1038/nature04388

Volz, E. M., Kosakovsky Pond, S. L., Ward, M. J., Leigh Brown, A. J., & Frost, S. D. W.
(2009). Phylodynamics of Infectious Disease Epidemics. Genetics, 183(4), 1421–1430.
https://doi.org/10.1534/genetics.109.106021

Vuilleumier, S., Yearsley, J. M., & Perrin, N. (2008). The fixation of locally beneficial alleles
in a metapopulation. Genetics, 178(1), 467–475.
https://doi.org/10.1534/genetics.107.081166

Wakeley, J. (1998). Segregating sites in Wright’s island model. Theoretical Population
Biology, 53(2), 166–174. https://doi.org/10.1006/tpbi.1997.1355

Wakeley, J. (2003). Polymorphism and divergence for Island-Model species. Genetics,
163(1), 411–420.

Wakeley, J. (2005, January). The limits of theoretical population genetics. Genetics. Genetics
Society of America. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15677744

Whitlock, M. C., & Barton, N. H. (1997). The effective size of a subdivided population.
Genetics, 146(1), 427–441. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/9136031

Wilke, C. O. (2005). Quasispecies theory in the context of population genetics. BMC
Evolutionary Biology, 5(1), 44. https://doi.org/10.1186/1471-2148-5-44

Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E., & Adami, C. (2001). Evolution of digital
organisms at high mutation rates leads to survival of the flattest. Nature, 412(6844),
331–333. https://doi.org/10.1038/35085569

Woolhouse, M. E. J., & Gowtage-Sequeria, S. (2005). Host range and emerging and
reemerging pathogens. Emerging Infectious Diseases, 11(12), 1842–1847.

 143

https://doi.org/10.3201/eid1112.050997

Wright, S. (1931). Evolution in Mendelian Populations. Genetics, 16(2), 97–159.
https://doi.org/10.1007/BF02459575

Wright, S. (1943). Isolation by Distance. Genetics, 28(2), 114–138. https://doi.org/Article

Wright, S. (1949). The genetical structure of populations. Annals of Eugenics, 15(1), 323–
354. https://doi.org/10.1111/j.1469-1809.1949.tb02451.x

Xie, X. (2011). The Site-Frequency Spectrum of Linked Sites. Bulletin of Mathematical
Biology, 73(3), 459–494. https://doi.org/10.1007/s11538-010-9534-3

Xue, K. S., Stevens-Ayers, T., Campbell, A. P., Englund, J. A., Pergam, S. A., Boeckh, M.,
& Bloom, J. D. (2017). Parallel evolution of influenza across multiple spatiotemporal
scales. ELife, 6, e26875. https://doi.org/10.7554/eLife.26875

Yu, I. T., Xie, Z. H., Tsoi, K. K., Chiu, Y. L., Lok, S. W., Tang, X. P., … Sung, J. J. Y.
(2007). Why Did Outbreaks of Severe Acute Respiratory Syndrome Occur in Some
Hospital Wards but Not in Others? Clinical Infectious Diseases, 44(8), 1017–1025.
https://doi.org/10.1086/512819

Zeng, K. (2010). A Simple Multiallele Model and Its Application to Identifying Preferred-
Unpreferred Codons Using Polymorphism Data. Molecular Biology and Evolution,
27(6), 1327–1337. https://doi.org/10.1093/molbev/msq023

Zhang, C.-Y., Wei, J.-F., & He, S.-H. (2006). Adaptive evolution of the spike gene of SARS
coronavirus: changes in positively selected sites in different epidemic groups. BMC
Microbiology, 6, 88. https://doi.org/10.1186/1471-2180-6-88

Zwart, M. P., & Elena, S. F. (2014). Testing the Independent Action Hypothesis of Plant
Pathogen Mode of Action: A Simple and Powerful New Approach. Phytopathology, 1–
26. https://doi.org/10.1094/PHYTO-04-14-0111-R

Zwart, M. P., Hemerik, L., Cory, J. S., de Visser, J. A. G. M., Bianchi, F. J. J. A., Van Oers,
M. M., … Van der Werf, W. (2009). An experimental test of the independent action
hypothesis in virus-insect pathosystems. Proceedings. Biological Sciences, 276(1665),
2233–2242. https://doi.org/10.1098/rspb.2009.0064

 144

APPENDIX I

CONTAGION CONFIGURATION FORMAT

INTRODUCTION

The configuration file is the main method to set-up and control the behavior of a simulation.

The configuration file follows the TOML specification and is divided into different sections grouped

by the role of the parameters.

The TOML standard follows certain rules on how to declare and name sections and variables.

For instance, a title enclosed by square brackets [] marks the start of a new section and all parameters

declared after become part of that section until a new section title is encountered. To assign values to

parameters, simply use an equal sign = such that parameter_name = value. If the value is a string,

enclose the string in quotation marks "". If the parameter accepts a list of values, enclose the list of

values in square brackets [] and separate each value using a comma , .

There are two types of parameters in Contagion - global and local parameters. Global

parameters affect the entire simulation, such as the size and the duration of the simulation, and how

the data generated from the simulation is logged and stored. Global parameters can only be declared

once and have only one constant value for the entire simulation. Parameters in the `simulation` and

the `logging` sections of the configuration file are global parameters.

Parameters that would only affect a part of the simulation are called local parameters. For

example, you want to simulate the evolution of pathogens across two different host species where

viral mutation rate is higher in one compared to the other. Under this scenario, the population of hosts

in the simulation need to be divided into two groups and each group requires a distinct viral mutation

rate parameter. Thus, mutation rate is a local parameter that can be configured to have multiple

values, each affecting only a particular subset of the population. Parameters in the

intrahost_model, fitness_model, transmission_model, and stop_condition sections are

 145

local parameters. Note that while local parameters can be set to affect only a portion of the simulation,

these parameters can also be used to assign a global behavior to the simulation.

GLOBAL PARAMETERS

Simulation parameters

The simulation section sets the type of epidemic model to run, size and shape of the host

population network, the number of pathogen genetic sites to model, and the number of independent

realizes to run.

Figure 27. Simulation parameters section format

[simulation]

epidemic_model = "sir"
coinfection = false

host_popsize = 10
host_network_path = "network.txt"

num_sites = 10000
expected_characters = ["A", "T", "C", "G"]
pathogen_path = "pathogens.fa"

num_instances = 1

To mark the start of the simulation section, the section title is enclosed by square brackets []

and all parameters declared after become part of the section until a new section title is encountered.

This behavior is not only limited to the Contagion configuration file but is part of the TOML

specification.

 146

epidemic_model parameter

The epidemic_model parameter specifies the type of epidemic model to simulate. Contagion

uses the concept of a compartmental model to determine the status of each host individual in the

simulation. During the simulation, a host can have only one status (belong to only one compartment)

at every time step. The initial (default) state is the susceptible state. This indicates that the host is not

currently infected. When a pathogen infects a host, the host moves from susceptible and enters the

infected state. The duration of the infection can be determined using a transition probability, a set

length of time, or depend on the fitness of infecting pathogens within the host. In some models,

infection is chronic and persists throughout the simulation time, whereas others have acute infection.

Table 5. Epidemic models implemented in Contagion.

Keyword Epidemic model Description

si susceptible-infected Hosts infected with the pathogen remain infected
until the end of the simulation

sis susceptible-infected-
susceptible

Hosts recover from the infection and immediately
become susceptible again. After infection, all
pathogens within the host is removed. However,
recovered hosts can be reinfected.

sir susceptible-infected-removed
Hosts recover from the infection. After infection, all
pathogens within the host is removed. Hosts cannot
be reinfected after recovery.

sirs susceptible-infected-removed-
susceptible

Similar to `sir` except that hosts can become
susceptible again and may be reinfected.

sei susceptible-exposed-infectious

Hosts infected by the pathogen do not immediately
become infectious. This model introduces a lag
time between infection and the ability to spread the
infection.

seir susceptible-exposed-infected-
removed

Similar to `sir` except a lag time exists between
infection and the ability to spread the disease.

seirs susceptible-exposed-infected-
removed-susceptible

Similar to `sirs` except a lag time exists between
infection and the ability to spread the disease.

endtrans susceptible-infected-removed Based on `sir`, this model conditions transmission
of the infection at the last day of infection.

 147

coinfection parameter

The coinfection parameter indicates whether mixed infections are allowed. Originally,

pathogens can only infect hosts that are in the susceptible state. However, this behavior makes

infected individuals temporarily immune to inoculation while in the infected state. To address this

peculiar dynamic, coinfection allows pathogens to both infect susceptible hosts and currently infected

individuals.

Table 6. List of coinfection parameter values

Value Description

true Allows pathogens to infect susceptible and infected individuals.

false Pathogens can only be spread to susceptible individuals.
Note: Text values are care sensitive.

host_popsize parameter

The host_popsize parameter describes the number of hosts to be modeled in the simulation.

The value of this parameter must be an integer and should match the number of hosts in the host

network configuration file.

host_network_path parameter

The `host_network_path` indicates the location of the host network configuration file. This

path can be either an absolute path or the relative path. However, it is recommended to use the

absolute path for clarity.

Figure 28. Host network text file format

Ignores lines that begin with a hash
1 2
2 1
1 3
3 1
1 4

 148

4 1

Each line in the host network configuration file indicates a one-way connection between two

hosts by ID. To specify an undirected connection, declare the host pair twice in the forward and

reverse directions. Individual transmission probabilities can also be specified for each connection by

adding a third value.

Figure 29. Host network text file extended format

Ignores lines that begin with a hash
1 2 0.5
2 1 0.7
1 3 0.1
3 1 0.9
1 4 0.8
4 1 0.8

Note: Use absolute paths to indicate the location of the host network configuration file.

Currently, Contagion uses a static host network and does not use networks that can change

over time.

num_sites parameter

The `num_sites` parameter indicates the number of genetic sites to model during the

simulation. The value must be an integer greater than 0.

In Contagion, a site is the smallest evolvable unit of information. Each site holds a categorical

state that can be mutated based on a given transition matrix of probabilities. The sequence of sites and

their states make up the simulated genome of the pathogen.

The number of sites depends on the simulation objective. If the simulation intends to model

the molecular evolution at the nucleotide level, then each site should represent each nucleotide in the

sequence. On the other hand, if the simulation is concerned about codon or protein evolution, then

 149

each site should be modeled after a codon or an amino acid respectively. Another way to model

evolution is to consider a site as a locus that holds an allele. Under this view, one site may be

sufficient to model the dynamics of the system.

pathogen_path parameter

The pathogen_path parameter indicates the location of the pathogen sequence file. This

path can be either an absolute path or the relative path. However, it is recommended to use the

absolute path for clarity.

Figure 30. Pathogen sequence file format.

Ignores lines that begin with a hash
% U:0 P:1
>pathogen1 h:0
UUPUUPUPUUPPUUPUUPUPPPUU
>pathogen2 h:0
PUPUUPUPUPUPPUUUUPPPPPPP

The pathogen sequence file is based on the FASTA file format with some additional

formatting rules. The pathogen sequence file must have a line starting with a % character before any

sequence. This line lists the expected characters and its numerical conversion. Then, ID and sequence

lines follow using the standard FASTA formatting guidelines. Lines that begin with # are ignored.

One exception to the FASTA format that Contagion still accepts is the case of non-unique

identifiers. In Figure 31, the sequence IDs are not unique and is not considered valid FASTA

formatting, but is a valid pathogen sequence file.

Figure 31. Pathogen sequence file format with non-unique identifiers.

Ignores lines that begin with a hash
% U:0 P:1
>h:0
UUPUUPUPUUPPUUPUUPUPPPUU
>h:0

 150

PUPUUPUPUPUPPUUUUPPPPPPP

Note: Use absolute paths to indicate the location of the pathogen sequence file.

num_instances parameter

The num_instances parameter specifies the number of independent realizations of the

simulation to perform. This is similar to the concept of replication. If num_instances is greater than

1, then the simulation will be repeated performed using the same set of input parameters. Since the

processes in the simulation are stochastic, then each realized simulation may not necessarily

reproduce the results from previous trials.

Logging parameters

Figure 32. Logging parameters section format

[logging]

log_freq = 1
log_path = "examples/run.log"

log_freq parameter

The log_freq parameter indicates how often data generated by the simulation will be saved

to disk. Setting log_freq to 1 will save all the data generated for every step in the simulation. On the

other hand, setting it to a value greater than 1 means that data will be saved at periodic intervals only.

log_path parameter

The log_path parameter indicates where to save the data generated during the simulation.

This path can be either an absolute path or the relative path. However, it is recommended to use the

absolute path for clarity.

Note: Use absolute paths to indicate the location of the pathogen sequence file.

 151

HOST PARAMETERS

Contagion host-associated parameters are local parameters to facilitate parameter value

heterogeneities in the host population. These parameters are divided into three sections -

intrahost_model, fitness_model, and transmission_model. To associate each set of

parameters, each section has a host_ids parameter to specify which hosts in the simulation adopt

these parameter values. Thus, it is possible to make various configurations without having to redeclare

parameters with shared values.

Consider a simulation with three groups of hosts such that selection on infecting pathogens

acts differently among the three. This means that all groups share the same intrahost_model and

transmission_model parameters and differ only in parameters found in the fitness_model

section. To simplify the set-up, Contagion allows you to declare the intrahost_model and

transmission_model sections once and associate it to all hosts in the simulation using the

host_ids parameter. These two models are declared only once because every host, regardless of the

host group it belongs to share the same parameter configurations. On the other hand, the

fitness_model section should be different among the three groups to reflect their different

properties. To specify the differences in fitness, the fitness_model section can be declared three

times, once for each host group and associated to that group by listing the member host IDs in the

host_ids parameter.

Unlike the simulation and logging sections, intrahost_model, fitness_model, and

transmission_model (and also stop_condition) can be declared more than once in the

configuration. To reflect this difference, the section titles are enclosed in double square brackets [[]]

instead of single square brackets [].

 152

Intrahost model

The intrahost model specifies the parameters that affect the behavior of the pathogen within

the host it is infecting. Parameters associated with the intrahost model describe how to model

processes of replication and recombination.

Figure 33. Intrahost model section format.

[[intrahost_model]]

model_name = "no_mutation_no_selection"
host_ids = [0,1,2,3,4,5,6,7,8,9]

mutation_rate = 0.0
transition_matrix = [
 [0.0e+00, 0.0e+00],
 [0.0e+00, 0.0e+00],
]

recombination_rate = 0.0

replication_model = "constant"
max_pop_size = 1000000

infected_duration = 10

model_name parameter

The model_name parameter can be used to set a descriptive name to label the given intrahost

model.

host_ids parameter

The host_ids parameter specifies which hosts in the simulation will be associated to this

particular intrahost model. To specify the hosts, the host_ids parameter takes on a list of one or

more host IDs.

 153

mutation_rate parameter

The mutation_rate parameter defines the genetic mutation rate of the pathogen during

replication within the host. The value of the mutation_rate parameter refers to the average mutation

rate for each site and for each generation.

transition_matrix parameter

The transition_matrix parameter specifies the transition rate matrix that the program will

use to determine the identities of the new mutations.

To define a transition matrix, the program expects a nested list of lists where (1) each inner

list is a row in the matrix, and (2) the number of elements of the inner list is equal to the number of

inner lists such that it creates a square matrix.

Figure 34. Transition rate matrix for two characters (alleles) as a nested array.

transition_matrix = [[0.0e+00, 1.0e-05], [1.0e-05, 0.0e+00]]

Figure 35. Transition rate matrix for two characters (alleles) reformatted as a square matrix.

transition_matrix = [
 [0.0e+00, 1.0e-05],
 [1.0e-05, 0.0e+00],
]

For example, you are modeling a sequence where each site can take on one of two states. This

means that the transition matrix for this scheme should have two inner lists with each list having two

values.

The values within the inner lists must be floating-point numbers that contain a decimal point

(.) among the digits. Without the decimal, whole numbers are automatically interpreted as integers by

 154

the program and will likely result in an input error. To declare a whole number as a floating-point

type, a decimal must be appended at the end (for example `1.` or `1.0`).

Values can be specified using the normal decimal notation (for example 1000.0) or by

scientific notation (`1.0e3`). For values greater than the ones place value, the exponent of the value in

the scientific notation can be written as signed (`1.0e+3`) or unsigned integers (`1.0e3`). On the other

hand, for values less than one (0.001), the exponent is always negative, and the sign must be included

(`1.0e-3`).

Table 7. Proper floating-point value formatting.

Number Valid Description

0 False Decimal point is missing. Number will be interpreted as an integer.

10 False Decimal point is missing. Number will be interpreted as an integer.

0. True Trailing decimal point makes this number a floating-point type.

1. True Trailing decimal point makes this number a floating-point type.

0.0 True Decimal point before the trailing zero makes this number a floating-
point type.

10.2 True Decimal point before the digits makes this number a floating-point
type.

0.1 True Decimal point after the leading zero makes this number a floating-
point type.

.0 True Leading decimal point also makes this number a floating-point type.

.12 True Leading decimal point also makes this number a floating-point type.

1e1 False Written in scientific notation but decimal point is missing. Number will
be interpreted as an integer.

1.0e2 True Written in scientific notation with a decimal point present.
Note: Transition matrix values must have a decimal point to be correctly interpreted. Contagion will
return an error and not proceed if all values in the specified transition matrix are not floating-point
values.

 155

recombination_rate parameter

The recombination_rate parameter specifies the recombination rate between pathogen

genomes that present within the host. The value of the recombination_rate parameter refers to the

average number of recombination events per genome.

replication_model parameter

The replication_model parameter sets the demographics of the pathogen population

within the host.

Table 8. Available replication models.

Keyword
Constant

size Description

constant True Constant population size within the host.

bh False

Population size changes based on the Beverton-Holt population model.
At high growth rates, the population size may suffer from periodic
oscillations and may crash due to large fluctuations. If the
max_pop_size parameter is set, the max_pop_size becomes the
threshold population size such that the population size stays constant
upon reaching the threshold number.

fitness False Population size changes based on the growth rates computed from the
sequence of the pathogens.

max_pop_size parameter

The max_pop_size parameter is an optional parameter that refers to the threshold population

size or the population size under the constant replication model. If the replication model is set to “bh”

and the max_pop_size parameter is set, a threshold population size is overlaid and takes precedence

over the Beverton-Holt population model.

infected_duration parameter

The infected_duration parameter specifies the average length of an infection.

 156

Fitness model

The fitness model determines the way the pathogen's fitness value is calculated based on its

genotype. Contagion currently implements three kinds of fitness models, namely, multiplicative

fitness matrix, additive fitness matrix, and motif-based fitness. The first two fitness models use a site-

fitness matrix to determine the fitness value contributed by each site based on its identity. On the

other hand, the motif model also assigns fitness values based on the genotype, but it can consider the

identity of more than one site to determine the corresponding fitness. The motif model is meant to

simulate the effect of epistasis.

Figure 36. Fitness model section format.

[[fitness_model]]

model_name = "additive"
host_ids = [
 0
]
fitness_model = "additive"
fitness_model_path = "examples/fitpop/fm.txt"

model_name parameter

The model_name parameter can be used to set a descriptive name to label the given fitness

model.

host_ids parameter

The host_ids parameter specifies which hosts in the simulation will be associated to this

particular fitness model. To specify the hosts, the host_ids parameter takes on a list of one or more

host IDs.

 157

fitness_model parameter

The fitness_model parameter specifies the type of fitness model to determine the fitness of

pathogens. Contagion implements two kinds of fitness models that uses either a fitness matrix or a list

of motifs.

In the fitness matrix approach, each character at each site has an assigned fitness value. There

are two fitness models to choose from - multiplicative and additive. The main difference lies in how

the overall fitness of the pathogen is calculated. In a multiplicative fitness matrix, the overall fitness

of the pathogen is calculated by getting the product of fitness contributions of all sites. Under this

approach, the fitness contribution of one site does not cancel out the contribution of another site. On

the other hand, in an additive fitness matrix, the overall fitness is calculated by taking the sum of the

fitness contributions. This means that if one site has a positive fitness effect and another site has the

same magnitude, but negative fitness effect, then these cancel each other out when computing the

overall fitness of the pathogen.

Table 9. List of available fitness models

Keyword Description

multiplicative

Multiplicative fitness matrix model. Fitness values are between 0 and 1
inclusive. This model takes the product of each site fitness value to determine
the overall fitness of the pathogen. By taking the product, this model assumes
that each site is independent of every other site and epistatic effects do not exist.

additive

Additive fitness matrix model. Fitness values can be any positive or negative
rational number and zero. This model takes the sum of each site fitness value to
get the overall fitness of the pathogen. Because of this, the positive fitness effect
in one site can be canceled out by another site with negative fitness elsewhere.

additive_motif
(Additive) motif model. When a particular motif is present in the pathogen's
sequence, the corresponding fitness value is assigned. When two or more motifs
are involved, this model takes the sum of each motif's designated fitness value.

Note: Text values are care sensitive.

The other approach is called the motif model. In this case, overall fitness of a pathogen

depends on whether one or motifs specified in the model are present in the sequence. If more than one

motif is present, then the sum of the contributions is taken to determine the overall fitness. If no motif

is found, the pathogen takes on some default value.

 158

fitness_model_path parameter

The fitness_model_path parameter tells Contagion where to find the text file that contains

the fitness matrix or list of motifs to use. Note that the fitness model type specified in the

configuration file must match the contents of the file specified in the path. If a multiplicative fitness

matrix model was specified but the file describes a motif model, Contagion will return an invalid

input error.

Figure 37. Fitness model file format.

Any line with the # as the first character is ignored.
default->0.0000 0.0000 0.0000 0.0000
0: 0.0000 0.0000 0.0000 -0.0003
10: 0.0000 0.0000 -0.0100 0.0000
24: 0.0000 -0.0003 0.0000 0.0000
35: 0.0000 0.0000 0.0000 0.0000
40: 0.0000 0.0000 -0.0100 -0.0003
49: 0.0000 0.0000 0.0000 0.0000

For multiplicative matrices, values should be in log-space, while for additive and motif

models, values are expected to be in standard decimal format.

Transmission model

model_name parameter

The model_name parameter can be used to set a descriptive name to label the given fitness

model.

host_ids parameter

The host_ids parameter specifies which hosts in the simulation will be associated to this

particular fitness model. To specify the hosts, the host_ids parameter takes on a list of one or more

host IDs.

 159

transmission_prob parameter

The transmission_prob parameter sets the probability that a successful transmission event

occurs for connection in an undirected network, or each outgoing connection in a directed network.

transmission_mode parameter

The transmission_mode parameter specifies whether the number of transmitted pathogens

is constant or stochastic. There are two transmission modes currently implemented in Contagion -

"constant" and "Poisson".

Table 10. List of available transmission modes

Keyword Description

constant A set number of pathogens are transmitted everytime a transmission event
occurs.

poisson
The specified number of pathogens to be transmitted is the average number of
the Poisson distribution. Everytime a transmission event occurs, Contagions
picks from the Poisson distribution to determine the number of migrants.

Note: Text values are care sensitive.

transmission_size parameter

The transmission_size parameter specifies the number of pathogens to be transmitted

everytime a transmission event will occur. This parameter works in concert with the

transmission_mode parameter to determine the number of migrants.

When the transmission_mode parameter is set to “constant”, the transmission_size

value is the number of pathogens to be transmitted given a transmission event. On the other hand, if

the transmission_mode parameter is set to “poisson”, the transmission_size value indicates the

mean and variance of the Poisson distribution from which the number of pathogen migrants are

drawn.

 160

Stop conditions

This is a special section that instructs Contagion to halt the simulation once a particular

condition is reached.

condition parameter

The condition parameter tells Contagion under what kind condition will possibly stop the

simulation. There are three conditions to choose from - allele loss, allele fixation or loss, and

genotype loss.

Table 11. Available stop conditions

Keyword Condition Description

allele_loss allele loss Stops the simulation if a particular allele in a specified site
becomes extinct.

allele_fixloss allele fixation or
loss

Stops the simulation if a particular allele in a specified site
becomes fixed or becomes extinct.

genotype_loss genotype loss Stops the simulation if a particular genotype becomes extinct.
Note: Text values are care sensitive.

sequence parameter

The sequence parameter specifies what the character (for allele) or string (for genotype) to

match against. This parameter works in concert with the position parameter. For example, if

`allele_loss` is selected, the simulation will halt if the value of sequence is no longer found at a

particular site.

For “allele_loss” and “allele_fixloss”, Contagion expects a single character. For

“genotype_loss”, the program expects a string of at least one character.

position parameter

The position parameter specifies the position of the site to check at every generation. This

parameter applies only for “allele_loss” and “allele_fixloss” conditions.

 161

APPENDIX II

CONTAGION API

INTRODUCTION

This section contains Contagion’s application programming interface (API) to facilitate users

to create new functionality, edit existing processes, and customize the source code of the program to

their needs. However, editing the source code is not necessary to use the program. This section is

intended only for users who would like to edit or add functionality to the program. For more

information about how to use the program and how to make configuration file, refer to Appendix I

 instead.

Contagion is written in the Go programming language. In order to edit or add new

functionality, knowledge of programming in Go is necessary. For more information about the Go

programming language, please refer to the “Learning Go” section in the Go website at

https://golang.org/doc/.

This section is generated from comments and declarations found in the program’s source

code. The Contagion API is currently under development and the structure of types and structs, and

parameters in functions and methods, as well as their descriptions may change. Please refer to the

Contagion API webpage at https://godoc.org/github.com/kentwait/contagion for the latest API

information.

PACKAGE CONTAGION

import "github.com/kentwait/contagion"

To import Contagion as a Go package, use the following import statement.

 162

CONSTANTS

const (
 // GraphPathogenTypeAssertionError is the message printed when
 // a GraphPathogen cannot be asserted for an interface
 GraphPathogenTypeAssertionError = "error asserting PathogenNode interf
ace"

 InvalidFloatParameterError = "invalid %s %f, %s"
 InvalidIntParameterError = "invalid %s %d, %s"
 InvalidStringParameterError = "invalid %s %s, %s"
)
const (
 UnequalFloatParameterError = "expected %s %f, instead got %f"
 EqualFloatParameterError = "%s should not be equal: %f, %f"
 FloatNotBetweenError = "expected %s between %f and %f, instead g
ot %f"

 UnequalIntParameterError = "expected %s %d, instead got %d"
 EqualIntParameterError = "%s should not be equal: %d, %d"
 IntNotBetweenError = "expected %s between %d and %d, instead got
 %d"

 UnequalStringParameterError = "expected %s %s, instead got %s"
 EqualStringParameterError = "%s should not be idenitical: %s, %s"

 UnexpectedErrorWhileError = "encountered error while %s: %s"
 ExpectedErrorWhileError = "expected an error while %s, instead got n
one"
 UnrecognizedKeywordError = "%s is not a valid keyword for %s"
)
const (
 IdenticalPointerError = "memory address of %s (%p) and %s (%p) are
identical"
 NotIdenticalPointerError = "memory address of %s (%p) and %s (%p) are
not identical"
)
const (
 SusceptibleStatusCode = 1

 163

 ExposedStatusCode = 2
 InfectedStatusCode = 3
 InfectiveStatusCode = 4
 RemovedStatusCode = 5
 RecoveredStatusCode = 6
 DeadStatusCode = 7
 VaccinatedStatusCode = 8
)

These are status codes for different preset compartments that describe the current epidemiological

status of a host in the simulation.

FUNCTIONS

func AppendToFile

func AppendToFile(path string, b []byte) error

AppendToFile creates a new file on the given path if it does not exist, or appends to the end of the

existing file if the file exists.

func ConnectionDoesNotExistError

func ConnectionDoesNotExistError(a, b int) error

ConnectionDoesNotExistError indicates that a connection between hosts a and b (int) does not exist

but is expected to exist.

func ConnectionExistsError

func ConnectionExistsError(a, b int, value float64) error

 164

ConnectionExistsError indicates that a connection between the source host and the destination host

exists and has the following value in float64.

func DuplicateSitePositionError

func DuplicateSitePositionError(pos int, lineNum int) error

DuplicateSitePositionError indicates that the site in the file is not unique and has been included more

than once.

func DurationTooLongError

func DurationTooLongError(interval string, intervalDuration int, condition
 string, conditionValue int) error

DurationTooLongError indicates that the duration of a particular interval is longer than expected.

func DurationTooShortError

func DurationTooShortError(interval string, intervalDuration int, conditio
n string, conditionValue int) error

DurationTooShortError indicates that the duration of a particular interval is shorter than expected.

func EmptyMatrixError

func EmptyMatrixError() error

func EmptyModelError

func EmptyModelError() error

EmptyModelError indicates that a model should exist but instead is nil.

 165

func ExchangePathogens

func ExchangePathogens(i, t int, h1, h2 Host, h1Count, h2Count int, c chan
<- ExchangeEvent, d chan<- TransmissionPackage, wg *sync.WaitGroup)

ExchangePathogens exchanges pathogens between neighboring hosts.

func Exists

func Exists(path string) (bool, error)

Exists returns whether the given file or directory exists or not, and accompanying errors.

func ExposedDurationTooLongError

func ExposedDurationTooLongError(intervalDuration int, conditionValue int)
 error

ExposedDurationTooLongError indicates that the duration in the exposed state is too long.

func ExposedDurationTooShortError

func ExposedDurationTooShortError(intervalDuration int, conditionValue in
t) error

ExposedDurationTooShortError indicates that the duration in the exposed state is too short.

func FileDoesNotExistError

func FileDoesNotExistError(path string) error

FileDoesNotExistError indicates that a file does not exist at the given path when it is expected to.

 166

func FileExistsCheckError

func FileExistsCheckError(err error, path string) error

FileExistsCheckError indicates an error was encountered while checking if the files exists. This is not

the same with an error because a file exists.

func FileExistsError

func FileExistsError(path string) error

FileExistsError indicates that a file exists at the given path.

func FileOpenError

func FileOpenError(err error) error

FileOpenError indicates that an error was encountered while opening a file.

func FileParsingError

func FileParsingError(err error, lineNum int) error

FileParsingError indicates a parsing error was encountered at a particular line in the file. Most likely

the file was not properly formatted.

func FileSyncError

func FileSyncError(err error) error

FileSyncError indicates that an error was encountered while the file was being flushed from memory

and being written to disk.

 167

func FileWriteError

func FileWriteError(err error) error

FileWriteError indicates that an error was encountered while writing to the file in memory.

func InfectedDurationTooLongError

func InfectedDurationTooLongError(intervalDuration int, conditionValue in
t) error

InfectedDurationTooLongError indicates that the duration in the infected state is too long.

func InfectedDurationTooShortError

func InfectedDurationTooShortError(intervalDuration int, conditionValue in
t) error

InfectedDurationTooShortError indicates that the duration in the infected state is too short.

func InfectiveDurationTooLongError

func InfectiveDurationTooLongError(intervalDuration int, conditionValue in
t) error

InfectiveDurationTooLongError indicates that the duration in the infective state is too long.

func InfectiveDurationTooShortError

func InfectiveDurationTooShortError(intervalDuration int, conditionValue i
nt) error

InfectiveDurationTooShortError indicates that the duration in the infective state is too short.

 168

func IntKeyExists

func IntKeyExists(key int) error

IntKeyExists indicates that the given integer key already exists.

func IntKeyNotFoundError

func IntKeyNotFoundError(key int) error

IntKeyNotFoundError indicates that the given integer key does not exist.

func IntrinsicRateReplication

func IntrinsicRateReplication(pathogens []GenotypeNode, replFitness []floa
t64, immuneSystem interface{}) <-chan GenotypeNode

IntrinsicRateReplication replicates pathogens by considering their fitness value as the growth rate.

func InvalidCharError

func InvalidCharError(pos int, enc uint8) error

func InvalidConnectionWeightError

func InvalidConnectionWeightError(wt float64, lineNum int) error

InvalidConnectionWeightError indicates that the given connection weight is less than 0.

func InvalidRowError

func InvalidRowError() error

 169

func InvalidStateCharError

func InvalidStateCharError(char string, pos int) error

InvalidStateCharError indicates that a character encountered is not in the set of expected characters.

func LoadFitnessMatrix

func LoadFitnessMatrix(path string, valueType string) (map[int]map[uint8]f
loat64, error)

LoadFitnessMatrix parses and loads the fitness matrix encoded in the text file at the given path.

func LoadSequences

func LoadSequences(path string) (map[int][][]uint8, error)

LoadSequences parses a specially-formatted FASTA file to get the sequences, encode sequences into

integers, and distribute to assigned hosts. Returns a map where the key is the host ID and the values

are the pathogen sequences for the particular host.

func ModelExistsError

func ModelExistsError(modelName string, modelID int) error

ModelExistsError indicates that an existing model already exists a new model cannot be assigned to

replace it.

func MotifExistsError

func MotifExistsError(motifID string) error

 170

MotifExistsError indicates that a motif with the same sequence and positions already exists in the

model.

func MultinomialReplication

func MultinomialReplication(pathogens []GenotypeNode, normedFitnesses []fl
oat64, newPopSize int) <-chan GenotypeNode

MultinomialReplication replicates and selects sequences based on normalized fitness values used as

probabilities.

func MutateSequence

func MutateSequence(sequences <-chan GenotypeNode, tree GenotypeTree, mode
l IntrahostModel) (<-chan GenotypeNode, <-chan GenotypeNode)

MutateSequence adds substitution mutations to sequenceNode.

func MutateSite

func MutateSite(transitionProbs ...float64) uint8

MutateSite returns the new state of a site based on the given a set of transition probabilities.

func NewFile

func NewFile(path string, b []byte) error

NewFile creates a new file on the given path if it does not exist. Returns an error if the file exists.

func OpenSQLiteDB

func OpenSQLiteDB(path, connectionString string) (*sql.DB, error)

 171

OpenSQLiteDB establishes a database connection using the given connection string.

func OpenSQLiteDBOptimized

func OpenSQLiteDBOptimized(path string) (*sql.DB, error)

OpenSQLiteDBOptimized establishes a database connection using WAL and exclusive locking.

func OverlappingMotifError

func OverlappingMotifError(pos int) error

OverlappingMotifError indicates that a particular site cannot be used again because it is already being

considered by another motif in the model.

func RecombineAnySequence

func RecombineAnySequence(numSeqs, numRecSites int, sequences <-chan Genot
ypeNode, tree GenotypeTree, model IntrahostModel) (<-chan GenotypeNode, <-
chan GenotypeNode)

RecombineAnySequence recombines any two sequences at a random position similar to the behavior

of template switching.

func RecombineSequencePairs

func RecombineSequencePairs(numSeqs, numRecSites int, sequences <-chan Gen
otypeNode, tree GenotypeTree, model IntrahostModel) (<-chan GenotypeNode,
<-chan GenotypeNode)

RecombineSequencePairs recombines two sequences at random positions similar to the behavior of

diploid chromosomes.

 172

func RemovedDurationTooLongError

func RemovedDurationTooLongError(intervalDuration int, conditionValue int)
 error

RemovedDurationTooLongError indicates that the duration in the removed state is too long.

func RemovedDurationTooShortError

func RemovedDurationTooShortError(intervalDuration int, conditionValue in
t) error

RemovedDurationTooShortError indicates that the duration in the removed state is too short.

func SQLBeginTransactionError

func SQLBeginTransactionError(err error) error

SQLBeginTransactionError indicates that an error was encountered while a transaction was being

initialized.

func SQLExecError

func SQLExecError(err error, stmt string) error

SQLExecError indicates that an error was encountered while executing an SQL statement. Returns the

error raised by the database connection and the SQL statement that produced the error.

func SQLExecStatementError

func SQLExecStatementError(err error) error

 173

SQLExecStatementError indicates that an error was encountered while a template statement was

being substituted with actual values.

func SQLOpenError

func SQLOpenError(err error) error

SQLOpenError indicates that an error was encountered while open a database connection. Includes

the error returned by sql.Open.

func SQLPrepareStatementError

func SQLPrepareStatementError(err error, stmt string) error

SQLPrepareStatementError indicates that an error was encountered while a template SQL statement

was being initialized.

func SelfLoopError

func SelfLoopError(hostID int) error

SelfLoopError indicates that the start and end host are the same based on host ID, which results in a

self-loop.

func SetFitnessModelExistsError

func SetFitnessModelExistsError(modelName string, modelID int) error

SetFitnessModelExistsError indicates that a fitness model has already been assigned to a host.

 174

func SetIntrahostModelExistsError

func SetIntrahostModelExistsError(modelName string, modelID int) error

SetIntrahostModelExistsError indicates that an intrahost model has already been assigned to a host.

func SetTransmissionModelExistsError

func SetTransmissionModelExistsError(modelName string, modelID int) error

SetTransmissionModelExistsError indicates that a transmission model has already been assigned to a

host.

func TransmitPathogens

func TransmitPathogens(i, t int, src, dst Host, numMigrants int, transmiss
ionProb float64, count int, c chan<- TransmissionEvent, d chan<- Transmiss
ionPackage, wg *sync.WaitGroup)

TransmitPathogens transmits the pathogen to its neighboring host/s. If transmission occurs, sends

transmitted node over the channel to be added to the recepient. Also sends node information in order

to record the event.

func UnequalNumStatesError

func UnequalNumStatesError(numStates, prevNumStates int, site int, lineNum
 int) error

UnequalNumStatesError indicates that the number of states specified in a site does not match the

number of states in another site.

 175

func ZeroItemsError

func ZeroItemsError() error

ZeroItemsError indicates that the length of a list or set is empty but at least one item is required.

type BevertonHoltThresholdPopModel

type BevertonHoltThresholdPopModel struct {
 // contains filtered or unexported fields
}

BevertonHoltThresholdPopModel uses the Beverton-Holt population model modified to have a

constant threshold population size.

func (*BevertonHoltThresholdPopModel) GrowthRate

func (m *BevertonHoltThresholdPopModel) GrowthRate() float64

func (*BevertonHoltThresholdPopModel) MaxPathogenPopSize

func (m *BevertonHoltThresholdPopModel) MaxPathogenPopSize() int

func (*BevertonHoltThresholdPopModel) ModelID

func (meta *BevertonHoltThresholdPopModel) ModelID() int

func (*BevertonHoltThresholdPopModel) ModelName

func (meta *BevertonHoltThresholdPopModel) ModelName() string

 176

func (*BevertonHoltThresholdPopModel) MutationRate

func (params *BevertonHoltThresholdPopModel) MutationRate() float64

func (*BevertonHoltThresholdPopModel) NextPathogenPopSize

func (m *BevertonHoltThresholdPopModel) NextPathogenPopSize(n int) int

func (*BevertonHoltThresholdPopModel) ProbabilisticDuration

func (params *BevertonHoltThresholdPopModel) ProbabilisticDuration() bool

func (*BevertonHoltThresholdPopModel) RecombinationRate

func (params *BevertonHoltThresholdPopModel) RecombinationRate() float64

func (*BevertonHoltThresholdPopModel) ReplicationMethod

func (m *BevertonHoltThresholdPopModel) ReplicationMethod() string

func (*BevertonHoltThresholdPopModel) SetModelID

func (meta *BevertonHoltThresholdPopModel) SetModelID(id int)

func (*BevertonHoltThresholdPopModel) SetModelName

func (meta *BevertonHoltThresholdPopModel) SetModelName(name string)

 177

func (*BevertonHoltThresholdPopModel) StatusDuration

func (params *BevertonHoltThresholdPopModel) StatusDuration(status int) in
t

func (*BevertonHoltThresholdPopModel) TransitionMatrix

func (params *BevertonHoltThresholdPopModel) TransitionMatrix() [][]float6
4

func (*BevertonHoltThresholdPopModel) TransitionProbs

func (params *BevertonHoltThresholdPopModel) TransitionProbs(char int) []f
loat64

type CSVLogger

type CSVLogger struct {
 // contains filtered or unexported fields
}

CSVLogger is a DataLogger that writes simulation data as comma-delimited files.

func NewCSVLogger

func NewCSVLogger(basepath string, i int) *CSVLogger

NewCSVLogger creates a new logger that writes data into CSV files.

 178

func (*CSVLogger) Init

func (l *CSVLogger) Init() error

Init creates CSV files and writes header information for each file.

func (*CSVLogger) SetBasePath

func (l *CSVLogger) SetBasePath(basepath string, i int)

SetBasePath sets the base path of the logger.

func (*CSVLogger) WriteGenotypeFreq

func (l *CSVLogger) WriteGenotypeFreq(c <-chan GenotypeFreqPackage)

WriteGenotypeFreq records the count of unique genotype nodes present within the host in a given

time in the simulation.

func (*CSVLogger) WriteGenotypeNodes

func (l *CSVLogger) WriteGenotypeNodes(c <-chan GenotypeNode)

WriteGenotypeNodes records new genotype node's ID and associated genotype ID to file

func (*CSVLogger) WriteGenotypes

func (l *CSVLogger) WriteGenotypes(c <-chan Genotype)

WriteGenotypes records a new genotype's ID and sequence to file.

 179

func (*CSVLogger) WriteMutations

func (l *CSVLogger) WriteMutations(c <-chan MutationPackage)

WriteMutations records every time a new genotype node is created. It records the time and in what

host this new mutation arose.

func (*CSVLogger) WriteStatus

func (l *CSVLogger) WriteStatus(c <-chan StatusPackage)

WriteStatus records the status of each host every generation.

func (*CSVLogger) WriteTransmission

func (l *CSVLogger) WriteTransmission(c <-chan TransmissionPackage)

WriteTransmission records the ID's of genotype node that are transmitted between hosts.

type Config

type Config interface {

 Validate() error
 NewSimulation() (Epidemic, error)
 NumInstances() int
 NumGenerations() int
 LogFreq() int
 LogPath() string
 LogTransmission() bool

}

Config represents any top level TOML configuration that can create a new simulation.

 180

type ConstantPopModel

type ConstantPopModel struct {

 // contains filtered or unexported fields

}

ConstantPopModel models a constant pathogen population size within the host.

func (*ConstantPopModel) MaxPathogenPopSize

func (m *ConstantPopModel) MaxPathogenPopSize() int

func (*ConstantPopModel) ModelID

func (meta *ConstantPopModel) ModelID() int

func (*ConstantPopModel) ModelName

func (meta *ConstantPopModel) ModelName() string

func (*ConstantPopModel) MutationRate

func (params *ConstantPopModel) MutationRate() float64

func (*ConstantPopModel) NextPathogenPopSize

func (m *ConstantPopModel) NextPathogenPopSize(n int) int

func (*ConstantPopModel) ProbabilisticDuration

func (params *ConstantPopModel) ProbabilisticDuration() bool

 181

func (*ConstantPopModel) RecombinationRate

func (params *ConstantPopModel) RecombinationRate() float64

func (*ConstantPopModel) ReplicationMethod

func (m *ConstantPopModel) ReplicationMethod() string

func (*ConstantPopModel) SetModelID

func (meta *ConstantPopModel) SetModelID(id int)

func (*ConstantPopModel) SetModelName

func (meta *ConstantPopModel) SetModelName(name string)

func (*ConstantPopModel) StatusDuration

func (params *ConstantPopModel) StatusDuration(status int) int

func (*ConstantPopModel) TransitionMatrix

func (params *ConstantPopModel) TransitionMatrix() [][]float64

func (*ConstantPopModel) TransitionProbs

func (params *ConstantPopModel) TransitionProbs(char int) []float64

 182

type DataLogger

type DataLogger interface {

 // SetBasePath sets the base path of the logger.
 SetBasePath(path string, i int)
 // Init initializes the logger. For example, if the logger writes a

 // CSV file, Init can create a file and write header information
first.

 // Or if the logger writes to a database, Init can be used to

 // create a new table.
 Init() error
 // WriteGenotypes records a new genotype's ID and sequence to file.
 WriteGenotypes(c <-chan Genotype)
 // WriteGenotypeNodes records new genotype node's ID and
 // associated genotype ID to file
 WriteGenotypeNodes(c <-chan GenotypeNode)
 // WriteGenotypeFreq records the count of unique genotype nodes
 // present within the host in a given time in the simulation.
 WriteGenotypeFreq(c <-chan GenotypeFreqPackage)
 // WriteMutations records every time a new genotype node is created.
 // It records the time and in what host this new mutation arose.
 WriteMutations(c <-chan MutationPackage)
 // WriteStatus records the status of each host every generation.
 WriteStatus(c <-chan StatusPackage)
 // WriteTransmission records the ID's of genotype node that
 // are transmitted between hosts.
 WriteTransmission(c <-chan TransmissionPackage)

}

DataLogger is the general definition of a logger that records simulation data to file whether it writes a

text file or writes to a database.

 183

type EndTransSimulation

type EndTransSimulation struct {

 EpidemicSimulation

}

EndTransSimulation creates and runs a modified version of the SIR epidemiological simulation. In

the endtrans model, transmissions are allowed to occur only at the last generation before pathogens

are cleared from the host. To make transmission completely deterministic, set the transmission

probability to 1.0, use the constant mode and set it to a constant size. This means that all paths

connected to an infectable host gets infected at the end of the infection cycle of the current host.

Endtrans assumes that the InfectedDuration is not zero.

func NewEndTransSimulation

func NewEndTransSimulation(config Config, logger DataLogger) (*EndTransSim
ulation, error)

NewEndTransSimulation creates a new SI simulation.

func (*EndTransSimulation) Run

func (sim *EndTransSimulation) Run(i int)

Run instantiates, runs, and records the a new simulation.

func (*EndTransSimulation) Transmit

func (sim *EndTransSimulation) Transmit(t int)

Transmit facilitates the sampling and migration process of pathogens between hosts.

 184

func (*EndTransSimulation) Update

func (sim *EndTransSimulation) Update(t int)

type Epidemic

type Epidemic interface {

 // Host returns the selected host in the simulation.
 Host(id int) Host
 // HostStatus retrieves the current status of the selected host.
 HostStatus(id int) int
 // SetHostStatus sets the current status of the selected host
 // to a given status code.
 SetHostStatus(id, status int)
 // HostTimer returns the current number of generations remaining
 // before the host changes status.
 HostTimer(id int) int
 // SetHostTimer sets the number of generations for the host to
 // remain in its current status.
 SetHostTimer(id, interval int)
 // InfectableStatuses returns the list of statuses that infected
 // hosts can transmit to.
 InfectableStatuses() []int

 // HostMap returns the hosts in the simulation in the form of a map.
 // The key is the host's ID and the value is the pointer to the host.
 HostMap() map[int]Host
 // HostConnection returns the weight of a connection between two hosts
 // if it exists, returns 0 otherwise.
 HostConnection(a, b int) float64
 // HostNeighbors retrieves the directly connected hosts to the current
 // host based on the supplied adjacency matrix.
 HostNeighbors(id int) []Host

 185

 // NewInstance creates a new instance from the stored configuration
 NewInstance() (Epidemic, error)

 // GenotypeNodeMap returns the set of all GenotypeNodes seen since the
 // start of the simulation.
 GenotypeNodeMap() map[ksuid.KSUID]GenotypeNode

 // GenotypeSet returns the set of all Genotypes seen since the
 // start of the simulation.
 GenotypeSet() GenotypeSet

 // StopSimulation check whether the simulation has satisfied at least
one
 // of the conditions that will halt the simulation in the current inte
ration.
 StopSimulation() bool

 // SusceptibleProcess performs intrahost processes while the host is i
n
 // the susceptible status.
 SusceptibleProcess(i, t int, host Host, wg *sync.WaitGroup)
 // ExposedProcess performs intrahost processes while the host is in
 // the exposed status.
 ExposedProcess(i, t int, host Host, c chan<- MutationPackage, wg *syn
c.WaitGroup)
 // InfectedProcess performs intrahost processes while the host is in
 // the infected status.
 InfectedProcess(i, t int, host Host, c chan<- MutationPackage, wg *syn
c.WaitGroup)
 // InfectiveProcess performs intrahost processes while the host is in
 // the infective status.
 InfectiveProcess(i, t int, host Host, c chan<- MutationPackage, wg *sy
nc.WaitGroup)
 // RemovedProcess performs intrahost processes while the host is in
 // the removed status.
 RemovedProcess(i, t int, host Host, wg *sync.WaitGroup)
 // RecoveredProcess performs intrahost processes while the host is in

 186

 // the recovered status.
 RecoveredProcess(i, t int, host Host, wg *sync.WaitGroup)
 // DeadProcess performs intrahost processes while the host is in
 // the dead status.
 DeadProcess(i, t int, host Host, wg *sync.WaitGroup)
 // DeadProcess performs intrahost processes while the host is in
 // the dead status.
 VaccinatedProcess(i, t int, host Host, wg *sync.WaitGroup)

}

Epidemic encapsulates the set of hosts, its connections, the pathogen tree lineage and the host types

used to create a simulated epidemic.

type EpidemicSimulation

type EpidemicSimulation interface {

 Epidemic
 DataLogger

 // Run runs the whole simulation

 Initialize(params ...interface{})

 Run(i int)
 Update(t int)
 Process(t int)
 Transmit(t int)

 Finalize()

 // Metadata
 SetInstanceID(i int)
 InstanceID() int
 SetTime(t int)
 Time() int
 SetGenerations(n int)

 187

 NumGenerations() int
 LogTransmission() bool
 LogFrequency() int
 SetStopped(b bool)
 Stopped() bool

}

EpidemicSimulation is a simulation environment that simulates the spread of disease between hosts in

a connected host network.

type EvoEpiConfig

type EvoEpiConfig struct {

 SimParams *epidemicSimConfig `toml:"simulation"`

 LogParams *logConfig `toml:"logging"`

 IntrahostModels []*intrahostModelConfig `toml:"intrahost_model"`

 FitnessModels []*fitnessModelConfig `toml:"fitness_model"`

 TransmissionModels []*transModelConfig `toml:"transmission_model"`

 StopConditions []*stopConditionConfig `toml:"stop_condition"`

 // contains filtered or unexported fields

}

EvoEpiConfig contains parameters to create a simulated infection in a connected network of hosts.

func LoadEvoEpiConfig

func LoadEvoEpiConfig(path string) (*EvoEpiConfig, error)

LoadEvoEpiConfig creates an EvoEpiConfig struct from a TOML file.

 188

func (*EvoEpiConfig) LogFreq

func (c *EvoEpiConfig) LogFreq() int

LogFreq returns the number of pathogen generations in the simulation until data is recorded.

func (*EvoEpiConfig) LogPath

func (c *EvoEpiConfig) LogPath() string

LogPath returns the path where to write results. This can a path to a folder, or directory_path/prefix

format

func (*EvoEpiConfig) LogTransmission

func (c *EvoEpiConfig) LogTransmission() bool

LogTransmission indicates whether transmissions are logged or discarded.

func (*EvoEpiConfig) NewSimulation

func (c *EvoEpiConfig) NewSimulation() (Epidemic, error)

NewSimulation creates a new SingleHostSimulation simulation.

func (*EvoEpiConfig) NumGenerations

func (c *EvoEpiConfig) NumGenerations() int

NumGenerations returns the number of pathogen generation in a single simulation run.

 189

func (*EvoEpiConfig) NumInstances

func (c *EvoEpiConfig) NumInstances() int

NumInstances returns the number of independent realizations to run.

func (*EvoEpiConfig) Validate

func (c *EvoEpiConfig) Validate() error

Validate checks the validity of the configuration.

type ExchangeEvent

type ExchangeEvent struct {

 // contains filtered or unexported fields

}

ExchangeEvent is a struct for sending and receiving exchange event information.

type ExchangeSimulation

type ExchangeSimulation struct {

 SISimulation
 // contains filtered or unexported fields

}

ExchangeSimulation creates and runs a modified version of the SIR epidemiological simulation. In

ExchangeSimulation, all hosts are initially infected.

 190

func NewExchangeSimulation

func NewExchangeSimulation(config Config, logger DataLogger) (*ExchangeSim
ulation, error)

NewExchangeSimulation creates a new migration simulation.

func (*ExchangeSimulation) Process

func (sim *ExchangeSimulation) Process(t int)

Process runs the internal evolution simulation in each host. During intrahost evolution, if new

mutations appear, the new sequence and ancestry is recorded to file.

func (*ExchangeSimulation) Run

func (sim *ExchangeSimulation) Run(i int)

Run instantiates, runs, and records the a new simulation.

func (*ExchangeSimulation) Transmit

func (sim *ExchangeSimulation) Transmit(t int)

Transmit facilitates the sampling and migration process of pathogens between hosts.

func (*ExchangeSimulation) Update

func (sim *ExchangeSimulation) Update(t int)

Update looks at the timer or internal state to decide if the status of the host remains the same of will

change. After the status updates, each host's status is recorded to file.

 191

type FitnessDependentPopModel

type FitnessDependentPopModel struct {

 // contains filtered or unexported fields

}

FitnessDependentPopModel does not use a population model to determine the population of

pathogens. Instead population size is dependent on fitness which is implemented outside of this

model. The NextPathogenPopSize method for this model always returns -1 regardless of the input

value.

func (*FitnessDependentPopModel) MaxPathogenPopSize

func (m *FitnessDependentPopModel) MaxPathogenPopSize() int

func (*FitnessDependentPopModel) ModelID

func (meta *FitnessDependentPopModel) ModelID() int

func (*FitnessDependentPopModel) ModelName

func (meta *FitnessDependentPopModel) ModelName() string

func (*FitnessDependentPopModel) MutationRate

func (params *FitnessDependentPopModel) MutationRate() float64

func (*FitnessDependentPopModel) NextPathogenPopSize

func (m *FitnessDependentPopModel) NextPathogenPopSize(n int) int

 192

func (*FitnessDependentPopModel) ProbabilisticDuration

func (params *FitnessDependentPopModel) ProbabilisticDuration() bool

func (*FitnessDependentPopModel) RecombinationRate

func (params *FitnessDependentPopModel) RecombinationRate() float64

func (*FitnessDependentPopModel) ReplicationMethod

func (m *FitnessDependentPopModel) ReplicationMethod() string

func (*FitnessDependentPopModel) SetModelID

func (meta *FitnessDependentPopModel) SetModelID(id int)

func (*FitnessDependentPopModel) SetModelName

func (meta *FitnessDependentPopModel) SetModelName(name string)

func (*FitnessDependentPopModel) StatusDuration

func (params *FitnessDependentPopModel) StatusDuration(status int) int

func (*FitnessDependentPopModel) TransitionMatrix

func (params *FitnessDependentPopModel) TransitionMatrix() [][]float64

 193

func (*FitnessDependentPopModel) TransitionProbs

func (params *FitnessDependentPopModel) TransitionProbs(char int) []float6
4

type FitnessMatrix

type FitnessMatrix interface {

 // ID returns the ID for this fitness model.
 ModelID() int
 // Name returns the name for this fitness model.
 ModelName() string
 SetModelID(id int)
 SetModelName(name string)
 // ComputeFitness returns the corresponding fitness value given
 // a set of sequences as integers.
 ComputeFitness(chars ...uint8) (fitness float64, err error)
 // SiteFitness returns the fitness value associated for a particular
 // character at the given site.
 SiteCharFitness(position int, state uint8) (fitness float64, err erro
r)
 // Log tells whether the fitness values are decimal or log.
 // Usually fitness is in log.
 Log() bool

}

FitnessMatrix is a type of FitnessModel where the fitness of each individual character at every site is

specified.

func NeutralAdditiveFM

func NeutralAdditiveFM(id int, name string, sites, alleles, growthRate in
t) (FitnessMatrix, error)

 194

NeutralAdditiveFM returns a additive fitness matrix where the sum of all sites using any allele

combination is equal to the growth rate.

func NeutralMultiplicativeFM

func NeutralMultiplicativeFM(id int, name string, sites, alleles int) (Fit
nessMatrix, error)

NeutralMultiplicativeFM returns a multiplicative fitness matrix where all the values are 0 (ln 1) such

that all changes have no effect and are therefore neutral.

func NewAdditiveFM

func NewAdditiveFM(id int, name string, matrix map[int]map[uint8]float64)
(FitnessMatrix, error)

NewAdditiveFM create a new additive fitness matrix using a map of maps. Assumes that the values

are in decimal form.

func NewMultiplicativeFM

func NewMultiplicativeFM(id int, name string, matrix map[int]map[uint8]flo
at64) (FitnessMatrix, error)

NewMultiplicativeFM create a new multiplicative fitness matrix using a map of maps. Assumes that

the values are in log form.

type FitnessModel

type FitnessModel interface {

 // ID returns the ID for this fitness model.

 195

 ModelID() int
 // Name returns the name for this fitness model.
 ModelName() string
 SetModelID(id int)
 SetModelName(name string)
 // ComputeFitness returns the corresponding fitness value given
 // a set of sequences as integers.
 ComputeFitness(chars ...uint8) (fitness float64, err error)

}

FitnessModel represents a general method to determine the fitness value associated to a particular

genotype.

type Genotype

type Genotype interface {

 GenotypeUID() ksuid.KSUID
 // Sequence returns the sequence of the current node.
 Sequence() []uint8
 // SetSequence changes the sequence of genotype.
 SetSequence(sequence []uint8)
 // StringSequence returns the string representation of the
 // integer-coded sequence of the current node.
 StringSequence() string
 // Fitness returns the fitness value of this node based on its current

 // sequence and the given fitness model. If the fitness of the node
has

 // been computed before using the same fitness model, then the value
is

 // returned from memory and is not recomputed.
 Fitness(f FitnessModel) float64
 // NumSites returns the number of sites being modeled in this pathogen
 node.
 NumSites() int
 // StateCounts returns the number of sites by state.

 196

 StateCounts() map[uint8]int
 // StatePositions returns the indexes of sites in a particular state.
 StatePositions(state uint8) []int

}

Genotype represents a unique pathogen sequence.

func NewGenotype

func NewGenotype(s []uint8) Genotype

NewGenotype creates a new genotype from sequence.

type GenotypeFreqPackage

type GenotypeFreqPackage struct {

 // contains filtered or unexported fields

}

GenotypeFreqPackage encapsulates the data to be written everytime the frequency of genotypes have

to be recorded.

type GenotypeNode

type GenotypeNode interface {

 // UID returns the unique ID of the node. Uses KSUID to generate
 // random unique IDs with effectively no collision.
 UID() ksuid.KSUID
 GenotypeUID() ksuid.KSUID
 // Parents returns the parent of the node.
 Parents() []GenotypeNode

 197

 // Children returns the children of the node.
 Children() []GenotypeNode
 // AddChild appends a child to the list of children.
 AddChild(child GenotypeNode)
 // Sequence returns the sequence of the current node.
 Sequence() []uint8
 // SetSequence changes the sequence of genotype.
 SetSequence(sequence []uint8)
 // StringSequence returns the string representation of the
 // integer-coded sequence of the current node.
 StringSequence() string
 // CurrentGenotype returns the current genotype of the current node.
 CurrentGenotype() Genotype
 // History returns the list of sequences that resulted into the extant
 // sequence.
 History(h [][]uint8) [][]uint8
 // Fitness returns the fitness value of this node based on its current

 // sequence and the given fitness model. If the fitness of the node
has

 // been computed before using the same fitness model, then the value
is

 // returned from memory and is not recomputed.
 Fitness(f FitnessModel) float64
 // NumSites returns the number of sites being modeled in this pathogen
 node.
 NumSites() int
 // StateCounts returns the number of sites by state.
 StateCounts() map[uint8]int
 // StatePositions returns the indexes of sites in a particular state.
 StatePositions(state uint8) []int

}

GenotypeNode represents a genotype together with its relationship to its parents and children.

 198

type GenotypeSet

type GenotypeSet interface {

 // Add adds the genotype to the set if the sequence does not exist ye
t.
 Add(g Genotype)
 // AddSequence creates a new genotype from the sequence if it is not p
resent
 // in the set. Otherwise, returns the existing genotype in the set.
 AddSequence(s []uint8) Genotype
 // Remove removes genotype of a particular sequence from the set.
 Remove(s []uint8)
 // Size returns the size of the set.
 Size() int
 Map() map[string]Genotype

}

GenotypeSet is a collection of genotypes.

func EmptyGenotypeSet

func EmptyGenotypeSet() GenotypeSet

EmptyGenotypeSet creates a new empty set.

type GenotypeTree

type GenotypeTree interface {

 // Set returns the GenotypeSet associated with this tree.
 Set() GenotypeSet
 // NewNode creates a new genotype node from a given sequence.
 // Automatically adds sequence to the genotypeSet if it is not yet pre
sent.

 199

 NewNode(sequence []uint8, subs int, parents ...GenotypeNode) GenotypeN
ode
 NewRecombinantNode(sequence []uint8, recombs int, parents ...GenotypeN
ode) GenotypeNode
 // Nodes returns the map of genotype node ID found in the tree to its
 // corresponding genotype.
 NodeMap() map[ksuid.KSUID]GenotypeNode

}

GenotypeTree represents the genotypes as a series of differences from its ancestor.

func EmptyGenotypeTree

func EmptyGenotypeTree() GenotypeTree

EmptyGenotypeTree creates a new empty genotype tree.

type Host

type Host interface {

 // ID returns the unique ID of the host.
 ID() int
 // TypeID returns the ID representing the host's type in a multi-host

 // simulation. Generally, the host type ID is used to identify hosts

 // belonging to the same group that share the same properties.
 TypeID() int
 // PickPathogens returns a random list of pathogens from the

 // current host.

 // Returns nil if no pathogen exists.
 PickPathogens(n int) []GenotypeNode
 // Pathogens returns a list of all pathogens present in the host.
 // This elements of the list are pointers to GenotypeNodes.
 Pathogens() []GenotypeNode

 200

 // PathogenPopSize returns the number of pathogens inside the host.
 PathogenPopSize() int
 // AddPathogens appends a pathogen to the pathogen space of the host.
 // Returns the new pathogen population size.
 AddPathogens(p ...GenotypeNode) int
 // RemoveAllPathogens removes all the pathogens from the host.
 // Internally, this removes all the pointers that refer to GenotypeNod
es.

 RemoveAllPathogens()

 // SetIntrahostModel associates the current host to a given intrahost
model.

 // The intrahost model governs intrahost processes by specifying the

 // mutation, replication, recombination, and infection modes and
parameters

 // to be used.
 SetIntrahostModel(intrahostModel IntrahostModel) error
 // SetFitnessModel associates the current host to a given fitness mode
l.
 SetFitnessModel(fitnessModel FitnessModel) error
 // SetTransmissionModel associates the current host to a given

 // transmission model. This model sets the transmission probability

 // (if not set in the adjacency matrix) and the transmission size.
 SetTransmissionModel(transmissionModel TransmissionModel) error
 // GetIntrahostModel retrieves the associated intrahost model
 // for the current host.
 GetIntrahostModel() IntrahostModel
 // GetFitnessModel retrieves the associated fitness model
 // for the current host.
 GetFitnessModel() FitnessModel
 // GetTransmissionModel retrieves the associated transmission model
 // for the current host.
 GetTransmissionModel() TransmissionModel

}

Host encapsulates pathogens together and ties its evolution to a particular set of parameters given by

its assigned host type.

 201

func EmptySequenceHost

func EmptySequenceHost(ids ...int) Host

EmptySequenceHost creates a new host without an intrahost model and no pathogens.

type HostNetwork

type HostNetwork interface {

 // ConnectedPopSize returns the total number of hosts in the network.
 ConnectedPopSize() int
 // GetNeighbors retrieves the unordered list of neighbors from
 // the adjacency matrix.
 GetNeighbors(ID int) (neighbors []int)
 // ConnectionExists checks if a connection a-b exists in the adjacency
 matrix.
 ConnectionExists(a, b int) bool
 // AddConnection adds a one way connection a-b to the adjacency matrix
 if

 // the connection a-b does not exists. Returns an error if given
connection

 // already exists.
 AddConnection(a, b int) error
 // AddWeightedConnection adds a one way connection a-b to the adjacenc
y
 // matrix with a given weight w.
 AddWeightedConnection(a, b int, w float64) error
 // UpdateConnectionWeight changes the weight value of an existing

 // connection. If the given connection does not exist, nothing is

 // updated.
 UpdateConnectionWeight(a, b int, w float64) error
 // UpsertConnectionWeight changes the weight value of an existing

 // connection or creates a new connection with the given weight if the

 // connection does not exist.

 202

 UpsertConnectionWeight(a, b int, w float64)

 // AddWeightedBiConnection adds a two way reciprocal connection to the
 // adjacency matrix with a given weight.
 AddWeightedBiConnection(a, b int, w float64) error

 // DeleteConnection removes a one way connection a-b.
 DeleteConnection(a, b int) error

 // Copy returns a new copy of the adjacency matrix.

 // Changes made to the original copy will not affect the new copy

 // and changes made to the copy will likewise not affect the original.

 Copy() adjacencyMatrix

 // Dump serialized the adjacency matrix into a string stored as a byte
slice.
 Dump() []byte

 // Connection returns the weight of a connection is it exists,
 // returns 0 otherwise.
 Connection(a, b int) float64

}

HostNetwork interface describes a host population connected together as a network.

func EmptyAdjacencyMatrix

func EmptyAdjacencyMatrix() HostNetwork

EmptyAdjacencyMatrix creates a new 2D mapping with no contents.

 203

func LoadAdjacencyMatrix

func LoadAdjacencyMatrix(path string) (HostNetwork, error)

LoadAdjacencyMatrix creates a new 2D mapping based on a text file.

type Infection

type Infection interface {

 // Host returns the selected host in the simulation.
 Host() Host

 // HostStatus retrieves the current status of the selected host.
 HostStatus() int
 // SetHostStatus sets the current status of the selected host
 // to a given status code.
 SetHostStatus(status int)
 // HostStatusDuration returns the number of generations a host
 // remains in a given status.
 HostStatusDuration(status int) int
 // HostTime returns the current number of generations remaining
 // before the host changes status.
 HostTimer() int
 // SetHostTimer sets the number of generations for the host to
 // remain in its current status.
 SetHostTimer(interval int)

 // SusceptibleProcess performs intrahost processes while the host is i
n
 // the susceptible status.
 SusceptibleProcess(i, t int, host Host, wg *sync.WaitGroup)
 // ExposedProcess performs intrahost processes while the host is in
 // the exposed status.

 204

 ExposedProcess(i, t int, host Host, c chan<- MutationPackage, wg *syn
c.WaitGroup)
 // InfectedProcess performs intrahost processes while the host is in
 // the infected status.
 InfectedProcess(i, t int, host Host, c chan<- MutationPackage, wg *syn
c.WaitGroup)
 // InfectiveProcess performs intrahost processes while the host is in
 // the infective status.
 InfectiveProcess(i, t int, host Host, c chan<- MutationPackage, wg *sy
nc.WaitGroup)
 // RemovedProcess performs intrahost processes while the host is in
 // the removed status.
 RemovedProcess(i, t int, host Host, wg *sync.WaitGroup)
 // RecoveredProcess performs intrahost processes while the host is in
 // the recovered status.
 RecoveredProcess(i, t int, host Host, wg *sync.WaitGroup)
 // DeadProcess performs intrahost processes while the host is in
 // the dead status.
 DeadProcess(i, t int, host Host, wg *sync.WaitGroup)
 // DeadProcess performs intrahost processes while the host is in
 // the dead status.
 VaccinatedProcess(i, t int, host Host, wg *sync.WaitGroup)

}

Infection encapsulates a single host and the pathogen tree lineage to trace the evolution of pathogens

within one host. This is useful to strudy intrahost evolutionary dynamics especially in chronic

diseases.

type InfectionSimulation

type InfectionSimulation interface {

 Infection
 // Run runs the whole simulation

 Init(params ...interface{})

 205

 Run(i int)
 Update(t int)
 Process(t int)
 Transmit(t int)

}

InfectionSimulation is a simulation environment that simulates the infection within a single hosts or in

an evironment where a network configuration is not necessary.

type IntrahostModel

type IntrahostModel interface {

 ModelID() int
 ModelName() string
 SetModelID(id int)
 SetModelName(name string)

 // MutationRate returns the mutation rate for this model.
 MutationRate() float64
 // TransitionMatrix returns the conditioned mutation rate matrix
 // for this model.
 TransitionMatrix() [][]float64
 // TransitionProbs returns the conditioned transition probabilities
 // for the given state.
 TransitionProbs(char int) []float64

 // MaxPathogenPopSize returns the maximum number of pathogens allowed
within
 // a single host of this particular host type.
 MaxPathogenPopSize() int
 // NextPathogenPopSize returns the pathogen population size for the ne
xt

 // generation of pathogens given the current population size.

 206

 // This is used in conjunction with a population model under

 // relative fitness.
 NextPathogenPopSize(n int) int
 // ReplicationMethod returns whether relative, or absolute is used.
 ReplicationMethod() string

 // RecombinationRate returns the recombination rate for this model.
 RecombinationRate() float64

 // StatusDuration
 StatusDuration(status int) int
 ProbabilisticDuration() bool

}

IntrahostModel is an interface for any type of intrahost model.

type MotifModel

type MotifModel interface {

 // ID returns the ID for this fitness model.
 ModelID() int
 // Name returns the name for this fitness model.
 ModelName() string
 SetModelID(id int)
 SetModelName(name string)
 // ComputeFitness returns the corresponding fitness value given
 // a set of sequences as integers.
 ComputeFitness(chars ...uint8) (fitness float64, err error)

 AddMotif(sequence []uint8, pos []int, value float64) error

}

 207

MotifModel is a type of FitnessModel where the fitness of a sequence depends on the presence of the

particular motifs.

func EmptyMotifModel

func EmptyMotifModel(id int, name string) MotifModel

EmptyMotifModel returns a new motif model without any registered motifs.

type MutationPackage

type MutationPackage struct {

 // contains filtered or unexported fields

}

MutationPackage encapsulates information to be written to track when and where mutations occur in

the simulation.

type SIRSimulation

type SIRSimulation struct {

 EpidemicSimulation

}

SIRSimulation creates and runs an SIR epidemiological simulation. Within this simulation, hosts may

or may not run independent genetic evolution simulations.

 208

func NewSIRSimulation

func NewSIRSimulation(config Config, logger DataLogger) (*SIRSimulation, e
rror)

NewSIRSimulation creates a new SI simulation.

func (*SIRSimulation) Process

func (sim *SIRSimulation) Process(t int)

Process runs the internal evolution simulation in each host. During intrahost evolution, if new

mutations appear, the new sequence and ancestry is recorded to file.

func (*SIRSimulation) Run

func (sim *SIRSimulation) Run(i int)

Run instantiates, runs, and records the a new simulation.

func (*SIRSimulation) Update

func (sim *SIRSimulation) Update(t int)

Update looks at the timer or internal state to decide if the status of the host remains the same of will

change. After the status updates, each host's status is recorded to file.

type SISSimulation

type SISSimulation struct {

 EpidemicSimulation

 209

}

SISSimulation creates and runs an SIR epidemiological simulation. Within this simulation, hosts may

or may not run independent genetic evolution simulations.

func NewSISSimulation

func NewSISSimulation(config Config, logger DataLogger) (*SISSimulation, e
rror)

NewSISSimulation creates a new SIS simulation.

func (*SISSimulation) Process

func (sim *SISSimulation) Process(t int)

Process runs the internal evolution simulation in each host. During intrahost evolution, if new

mutations appear, the new sequence and ancestry is recorded to file.

func (*SISSimulation) Run

func (sim *SISSimulation) Run(i int)

Run instantiates, runs, and records the a new simulation.

func (*SISSimulation) Update

func (sim *SISSimulation) Update(t int)

Update looks at the timer or internal state to decide if the status of the host remains the same of will

change. After the status updates, each host's status is recorded to file.

 210

type SISimulation

type SISimulation struct {

 Epidemic
 DataLogger
 // contains filtered or unexported fields

}

SISimulation creates and runs an SI epidemiological simulation. Within this simulation, hosts may or

may not run independent genetic evolution simulations.

func NewSISimulation

func NewSISimulation(config Config, logger DataLogger) (*SISimulation, err
or)

NewSISimulation creates a new SI simulation.

func (*SISimulation) Finalize

func (sim *SISimulation) Finalize()

Finalize performs processes to finish and close the simulation.

func (*SISimulation) Initialize

func (sim *SISimulation) Initialize(params ...interface{})

Initialize initializes the simulation and accepts 0 or more parameters. For example, creating datbases

etc.

 211

func (*SISimulation) InstanceID

func (sim *SISimulation) InstanceID() int

InstanceID returns the ID of the current realized simulation.

func (*SISimulation) LogFrequency

func (sim *SISimulation) LogFrequency() int

LogFrequency returns the interval in number of pathogen generation between data recordings.

func (*SISimulation) LogTransmission

func (sim *SISimulation) LogTransmission() bool

LogTransmission returns true is transmission events are saved to disk. If false, transmssion events

occur but are not recorded.

func (*SISimulation) NumGenerations

func (sim *SISimulation) NumGenerations() int

NumGenerations returns the total number of pathogen generations the simulation will simulate. This

is equivalent to the total number of iterations of the simulation.

func (*SISimulation) Process

func (sim *SISimulation) Process(t int)

Process runs the internal evolution simulation in each host. During intrahost evolution, if new

mutations appear, the new sequence and ancestry is recorded to file.

 212

func (*SISimulation) Run

func (sim *SISimulation) Run(i int)

Run instantiates, runs, and records the a new simulation.

func (*SISimulation) SetGenerations

func (sim *SISimulation) SetGenerations(n int)

SetGenerations sets the total number of pathogen generations the simulation will simulate. This is

equivalent to the total number of iterations of the simulation.

func (*SISimulation) SetInstanceID

func (sim *SISimulation) SetInstanceID(i int)

SetInstanceID sets the instance ID of the current realized simulation.

func (*SISimulation) SetStopped

func (sim *SISimulation) SetStopped(b bool)

SetStopped sets the internal status of the current simulation. If set to true, this indicates that the

simulation has stopped. If set to false, the current simulation has not yet stopped. By default, the value

of internal status is false.

func (*SISimulation) SetTime

func (sim *SISimulation) SetTime(t int)

 213

SetTime sets the current internal time of the simulation. The simulation's internal time is based on the

number of iterations that has taken place. This is equivalent to the number of pathogen generations.

func (*SISimulation) Stopped

func (sim *SISimulation) Stopped() bool

Stopped returns true if the current simulation has stopped. If it returns false, the current simulation has

not yet stopped

func (*SISimulation) Time

func (sim *SISimulation) Time() int

Time returns the current internal time of the simulation. The simulation's internal time should be the

number of iterations that has taken place. This is equivalent to the number of pathogen generations.

func (*SISimulation) Transmit

func (sim *SISimulation) Transmit(t int)

Transmit facilitates the sampling and migration process of pathogens between hosts.

func (*SISimulation) Update

func (sim *SISimulation) Update(t int)

Update looks at the timer or internal state to decide if the status of the host remains the same of will

change. After the status updates, each host's status is recorded to file.

 214

type SQLiteLogger

type SQLiteLogger struct {

 // contains filtered or unexported fields

}

SQLiteLogger is a DataLogger that writes simulation data t0 SQLite databases. Each writer function

writes to an independent SQLite database and foreign keys are added to each database at the closing

phase after the simulation is completed.

func NewSQLiteLogger

func NewSQLiteLogger(basepath string, i int) *SQLiteLogger

NewSQLiteLogger creates a new logger that writes to a SQLite database.

func (*SQLiteLogger) Init

func (l *SQLiteLogger) Init() error

Init creates a new tables in the database. For example, each new realization of the simulation creates a

new table for transmissions, frequencies, statuses, nodes and genotypes.

func (*SQLiteLogger) SetBasePath

func (l *SQLiteLogger) SetBasePath(basepath string, i int)

SetBasePath sets the base path of the logger.

func (*SQLiteLogger) WriteGenotypeFreq

func (l *SQLiteLogger) WriteGenotypeFreq(c <-chan GenotypeFreqPackage)

 215

WriteGenotypeFreq records the count of unique genotype nodes present within the host in a given

time in the simulation.

func (*SQLiteLogger) WriteGenotypeNodes

func (l *SQLiteLogger) WriteGenotypeNodes(c <-chan GenotypeNode)

WriteGenotypeNodes records new genotype node's ID and associated genotype ID to file

func (*SQLiteLogger) WriteGenotypes

func (l *SQLiteLogger) WriteGenotypes(c <-chan Genotype)

WriteGenotypes records a new genotype's ID and sequence to file.

func (*SQLiteLogger) WriteMutations

func (l *SQLiteLogger) WriteMutations(c <-chan MutationPackage)

WriteMutations records every time a new genotype node is created. It records the time and in what

host this new mutation arose.

func (*SQLiteLogger) WriteStatus

func (l *SQLiteLogger) WriteStatus(c <-chan StatusPackage)

WriteStatus records the status of each host every generation.

func (*SQLiteLogger) WriteTransmission

func (l *SQLiteLogger) WriteTransmission(c <-chan TransmissionPackage)

WriteTransmission records the ID's of genotype node that are transmitted between hosts.

 216

type SequenceNodeEpidemic

type SequenceNodeEpidemic struct {

 sync.RWMutex
 // contains filtered or unexported fields

}

SequenceNodeEpidemic is a type of Epidemic that uses a SequenceNode to represent pathogens.

func (*SequenceNodeEpidemic) DeadProcess

func (sim *SequenceNodeEpidemic) DeadProcess(i, t int, host Host, wg *syn
c.WaitGroup)

DeadProcess executes within-host processes that occurs when a host is in the dead state state that is

perpetually uninfectable. This state is identically to Removed but is used to distinguish from a

recovered, but perpetually immune state.

func (*SequenceNodeEpidemic) ExposedProcess

func (sim *SequenceNodeEpidemic) ExposedProcess(i, t int, host Host, c cha
n<- MutationPackage, wg *sync.WaitGroup)

ExposedProcess executes within-host processes that occurs when a host is in the exposed state. By

default, it is same as InfectedProcess.

func (*SequenceNodeEpidemic) GenotypeNodeMap

func (sim *SequenceNodeEpidemic) GenotypeNodeMap() map[ksuid.KSUID]Genotyp
eNode

GenotypeNodeMap returns the set of all GenotypeNodes seen since the start of the simulation.

 217

func (*SequenceNodeEpidemic) GenotypeSet

func (sim *SequenceNodeEpidemic) GenotypeSet() GenotypeSet

GenotypeSet returns the set of all Genotypes seen since the start of the simulation.

func (*SequenceNodeEpidemic) Host

func (sim *SequenceNodeEpidemic) Host(id int) Host

Host returns the selected host in the simulation.

func (*SequenceNodeEpidemic) HostConnection

func (sim *SequenceNodeEpidemic) HostConnection(a, b int) float64

HostConnection returns the weight of a connection between two hosts if it exists, returns 0 otherwise.

func (*SequenceNodeEpidemic) HostMap

func (sim *SequenceNodeEpidemic) HostMap() map[int]Host

HostMap returns the hosts in the simulation in the form of a map. The key is the host's ID and the

value is the pointer to the host.

func (*SequenceNodeEpidemic) HostNeighbors

func (sim *SequenceNodeEpidemic) HostNeighbors(id int) []Host

HostNeighbors retrieves the directly connected hosts to the current host based on the supplied

adjacency matrix.

func (*SequenceNodeEpidemic) HostStatus

 218

func (sim *SequenceNodeEpidemic) HostStatus(id int) int

HostStatus retrieves the current status of the selected host.

func (*SequenceNodeEpidemic) HostTimer

func (sim *SequenceNodeEpidemic) HostTimer(id int) int

HostTimer returns the current number of generations remaining before the host changes status.

func (*SequenceNodeEpidemic) InfectableStatuses

func (sim *SequenceNodeEpidemic) InfectableStatuses() []int

InfectableStatuses returns the list of statuses that infected hosts can transmit to.

func (*SequenceNodeEpidemic) InfectedProcess

func (sim *SequenceNodeEpidemic) InfectedProcess(i, t int, host Host, c ch
an<- MutationPackage, wg *sync.WaitGroup)

InfectedProcess executes within-host processes that occurs when a host is in the infected state.

func (*SequenceNodeEpidemic) InfectiveProcess

func (sim *SequenceNodeEpidemic) InfectiveProcess(i, t int, host Host, c c
han<- MutationPackage, wg *sync.WaitGroup)

InfectiveProcess executes within-host processes that occurs when a host is in the infective state. By

default, it is same as InfectedProcess.

func (*SequenceNodeEpidemic) NewInstance

 219

func (sim *SequenceNodeEpidemic) NewInstance() (Epidemic, error)

NewInstance creates a new instance from the stored configuration

func (*SequenceNodeEpidemic) RecoveredProcess

func (sim *SequenceNodeEpidemic) RecoveredProcess(i, t int, host Host, wg
*sync.WaitGroup)

RecoveredProcess executes within-host processes that occurs when a host is in the recovered state that

is perpetually uninfectable. This state is identically to Removed but is used to distinguish from a dead

state.

func (*SequenceNodeEpidemic) RemovedProcess

func (sim *SequenceNodeEpidemic) RemovedProcess(i, t int, host Host, wg *s
ync.WaitGroup)

RemovedProcess executes within-host processes that occurs when a host is in the removed state that

is perpetually uninfectable.

func (*SequenceNodeEpidemic) SetHostStatus

func (sim *SequenceNodeEpidemic) SetHostStatus(id, status int)

SetHostStatus sets the current status of the selected host to a given status code.

func (*SequenceNodeEpidemic) SetHostTimer

func (sim *SequenceNodeEpidemic) SetHostTimer(id, interval int)

SetHostTimer sets the number of generations for the host to remain in its current status.

 220

func (*SequenceNodeEpidemic) StopSimulation

func (sim *SequenceNodeEpidemic) StopSimulation() bool

StopSimulation check whether the simulation has satisfied at least one of the conditions that will halt

the simulation in the current interation. Returns true is the simulation should stop, false otherwise.

func (*SequenceNodeEpidemic) SusceptibleProcess

func (sim *SequenceNodeEpidemic) SusceptibleProcess(i, t int, host Host, w
g *sync.WaitGroup)

SusceptibleProcess executes within-host processes that occurs when a host is in the susceptible state.

func (*SequenceNodeEpidemic) VaccinatedProcess

func (sim *SequenceNodeEpidemic) VaccinatedProcess(i, t int, host Host, wg
 *sync.WaitGroup)

VaccinatedProcess executes within-host processes that occurs when a host is in a globally immune

state with the chance to become globally susceptible again.

type StatusPackage

type StatusPackage struct {
 // contains filtered or unexported fields
}

StatusPackage encapsulates the data to be written everytime the status of a host has to be recorded.

 221

type StopCondition

type StopCondition interface {
 Reason() string
 Check(sim Epidemic) bool
}

StopCondition describes simulation conditions that must be satisfied in order for the simulation to

continue. The Check method checks if the simulation still satisfies the imposed condition.

func NewAlleleExistsCondition

func NewAlleleExistsCondition(char uint8, site int) StopCondition

NewAlleleExistsCondition creates a new StopCondition that stops the simulation once the given char

at a particular site becomes extinct.

func NewAlleleFixedLostCondition

func NewAlleleFixedLostCondition(char uint8, site int) StopCondition

NewAlleleFixedLostCondition creates a new StopCondition that stops the simulation once the

particular allele in a given site has either been fixed or been lost.

func NewGenotypeExistsCondition

func NewGenotypeExistsCondition(sequence []uint8) StopCondition

NewGenotypeExistsCondition creates a new StopCondition that stops the simulation once the given

sequence genotype becomes extinct.

 222

type TransmissionEvent

type TransmissionEvent struct {
 // contains filtered or unexported fields
}

TransmissionEvent is a struct for sending and receiving transmission event information.

type TransmissionModel

type TransmissionModel interface {
 // ID returns the ID for this transmission model.
 ModelID() int
 // Name returns the name for this transmission model.
 ModelName() string
 SetModelID(id int)
 SetModelName(name string)
 // TransmissionProb returns the probability that a transmission event
 // occurs between one host and one neighbor (per capita event) occurs.
 TransmissionProb() float64

 // TransmissionSize returns the number of pathogens transmitted given
 // a transmission event occurs.
 TransmissionSize() int
}

TransmissionModel describes the transmission probability and number of pathogens that transmits per

event. The model may be constant or probabilistic.

type TransmissionPackage

type TransmissionPackage struct {

 223

 // contains filtered or unexported fields
}

TransmissionPackage encapsulates information to be written to track the movement of genotype

nodes across the host population.

 224

APPENDIX III

SIMULATION PARAMETERS

FIXATION PROBABILITY OF A MUTATION SPREADING OVER A NETWORK

Table 12. Parameters used to test the effect of network topology on fixation probability of
mutations.

Parameter name Keyword Value/s used

Number of generations num_generations 10000

Number of independent
realizations num_instances 1000

Number of hosts host_popsize 20, 200

Epidemic model epidemic_model “sis”

Coinfection coinfection false

Number of sites num_sites 1

Expected characters expected_characters [“0”, “1”]

Logging frequency log_freq 1

Mutation rate mutation_rate 0.0

Recombination rate recombination_rate 0.0

Replication model replication_model “constant”

Constant population
size constant_pop_size 500

Duration of infection infected_duration 10

Fitness model fitness_model “multiplicative”

Transmission mode transmission_mode “poisson”

Transmission
probability transmission_prob 1.0

Transmission size transmission_size 5.0

Condition that halts the
simulation condition “allele_fixloss”

Target allele sequence “1”

Position of target allele position 0

 225

Table 13. Parameters used to simulate the well-mixed population null model for testing the effect of
network topology.

Parameter name Keyword Value/s used

Number of generations num_generations 10000

Number of independent
realizations num_instances 1000

Number of hosts host_popsize 1

Epidemic model epidemic_model “endtrans”

Coinfection coinfection false

Number of sites num_sites 1

Expected characters expected_characters [“0”, “1”]

Logging frequency log_freq 1

Mutation rate mutation_rate 0.0

Recombination rate recombination_rate 0.0

Replication model replication_model “constant”

Constant population
size constant_pop_size 500, 900

Duration of infection infected_duration 10

Fitness model fitness_model “multiplicative”

Transmission mode transmission_mode “constant”

Transmission
probability transmission_prob 0.0

Transmission size transmission_size 0.0

Condition that halts the
simulation condition “allele_fixloss”

Target allele sequence “1”

Position of target allele position 0

 226

SITE-FREQUENCY SPECTRUM OF PATHOGENS SPREADING OVER A NETWORK

Table 14. Parameters used to test the effect of network topology on the genetic diversity of pathogen
spreading over a network.

Parameter name Keyword Value/s used

Number of generations num_generations 1000

Number of independent
realizations num_instances 100

Number of hosts host_popsize 20, 200

Epidemic model epidemic_model “sis”

Coinfection coinfection true, false

Number of sites num_sites 1000

Expected characters expected_characters [“0”, “1”]

Logging frequency log_freq 1

Mutation rate mutation_rate 1e-05

Transition rate matrix transition_matrix [[0.0e+00, 1.0e+00],
 [1.0e+00, 0.0e+00]]

Recombination rate recombination_rate 0.0

Replication model replication_model “constant”

Constant population
size constant_pop_size 500

Duration of infection infected_duration 10

Fitness model fitness_model “multiplicative”

Transmission mode transmission_mode “poisson”

Transmission
probability transmission_prob 1.0

Transmission size transmission_size 5.0

 227

Table 15. Parameters used to simulate the well-mixed population null model for testing the effect of
network topology on genetic diversity.

Parameter name Keyword Value/s used

Number of generations num_generations 1000

Number of independent
realizations num_instances 100

Number of hosts host_popsize 1

Epidemic model epidemic_model “si”

Coinfection coinfection false

Number of sites num_sites 1000

Expected characters expected_characters [“0”, “1”]

Logging frequency log_freq 1

Mutation rate mutation_rate 1e-05

Recombination rate recombination_rate 0.0

Replication model replication_model “bht”

Growth rate growth_rate 10.0

Maximum population
size max_pop_size 90000

Duration of infection infected_duration 1001

Fitness model fitness_model “multiplicative”

Transmission mode transmission_mode “constant”

Transmission
probability transmission_prob 0.0

Transmission size transmission_size 0.0

 228

FIXATION PROBABILITY OF A MUTATION OVER SUCCESSIVE TRANSMISSIONS

Table 16. Parameters used to test the effect of transmission bottlenecks on fixation probability of
mutations.

Parameter name Keyword Value/s used

Number of generations num_generations 10000

Number of independent
realizations num_instances 1000, 2000, 5000

Number of hosts host_popsize 2001

Epidemic model epidemic_model “endtrans”

Coinfection coinfection false

Number of sites num_sites 1

Expected characters expected_characters [“0”, “1”]

Logging frequency log_freq 1

Mutation rate mutation_rate 0.0

Recombination rate recombination_rate 0.0

Replication model replication_model “constant”

Constant population
size constant_pop_size 500

Duration of infection infected_duration 10, 20

Fitness model fitness_model “multiplicative”

Transmission mode transmission_mode “constant”

Transmission
probability transmission_prob 1.0

Transmission size transmission_size 5.0

Condition that halts the
simulation condition “allele_fixloss”

Target allele sequence “1”

Position of target allele position 0

 229

Table 17. Parameters used to simulate the well-mixed population null model for testing the effect of
transmission bottlenecks on fixation probability.

Parameter name Keyword Value/s used

Number of generations num_generations 10000

Number of independent
realizations num_instances 1000, 2000, 5000

Number of hosts host_popsize 1

Epidemic model epidemic_model “endtrans”

Coinfection coinfection false

Number of sites num_sites 1

Expected characters expected_characters [“0”, “1”]

Logging frequency log_freq 1

Mutation rate mutation_rate 0.0

Recombination rate recombination_rate 0.0

Replication model replication_model “constant”

Constant population
size constant_pop_size 10, 50, 500

Duration of infection infected_duration 10, 20

Fitness model fitness_model “multiplicative”

Transmission mode transmission_mode “constant”

Transmission
probability transmission_prob 1.0

Transmission size transmission_size 10, 50, 500

Condition that halts the
simulation condition “allele_fixloss”

Target allele sequence “1”

Position of target allele position 0

 230

Table 18. Parameters used to simulate harmonic mean population model for testing the effect of
transmission bottlenecks on fixation probability.

Parameter name Keyword Value/s used

Number of generations num_generations 10000

Number of independent
realizations num_instances 1000, 2000, 5000

Number of hosts host_popsize 1

Epidemic model epidemic_model “endtrans”

Coinfection coinfection false

Number of sites num_sites 1

Expected characters expected_characters [“0”, “1”]

Logging frequency log_freq 1

Mutation rate mutation_rate 0.0

Recombination rate recombination_rate 0.0

Replication model replication_model “constant”

Constant population
size constant_pop_size 46, 84, 264, 344

Duration of infection infected_duration 10, 20

Fitness model fitness_model “multiplicative”

Transmission mode transmission_mode “constant”

Transmission
probability transmission_prob 1.0

Transmission size transmission_size 46, 84, 264, 344

Condition that halts the
simulation condition “allele_fixloss”

Target allele sequence “1”

Position of target allele position 0

 231

PROPORTION OF SUCCESSFUL FIXATIONS OF A MUTATION IN AN EXPANDING

TRANSMISSION TREE

Table 19. Parameters used to test the effect of transmission tree topology on fixation probability of
mutations.

Parameter name Keyword Value/s used

Number of generations num_generations 1000

Number of independent
realizations num_instances 100

Number of hosts host_popsize 11, 14, 15, 18, 25

Epidemic model epidemic_model “endtrans”

Coinfection coinfection false

Number of sites num_sites 1

Expected characters expected_characters [“0”, “1”]

Logging frequency log_freq 1

Mutation rate mutation_rate 0.0

Recombination rate recombination_rate 0.0

Replication model replication_model “constant”

Constant population
size constant_pop_size 1000

Duration of infection infected_duration 250

Fitness model fitness_model “multiplicative”

Transmission mode transmission_mode “constant”

Transmission
probability transmission_prob 1.0

Transmission size transmission_size 10

 232

Table 20. Parameters used to test the effect of transmission path topology on fixation probability of
mutations.

Parameter name Keyword Value/s used

Number of generations num_generations 750, 1000

Number of independent
realizations num_instances 100

Number of hosts host_popsize 3, 4, 5, 6

Epidemic model epidemic_model “endtrans”

Coinfection coinfection false

Number of sites num_sites 1

Expected characters expected_characters [“0”, “1”]

Logging frequency log_freq 1

Mutation rate mutation_rate 0.0

Recombination rate recombination_rate 0.0

Replication model replication_model “constant”

Constant population
size constant_pop_size 1000

Duration of infection infected_duration 250

Fitness model fitness_model “multiplicative”

Transmission mode transmission_mode “constant”

Transmission
probability transmission_prob 1.0

Transmission size transmission_size 10

 233

APPENDIX IV

SUPPLEMENTAL TRANSMISSION CHAIN MODELS

Figure 38. Effect of frequency of transmission bottlenecks on the fixation probability of an allele
after 1000 pathogen generations.

Graphs on the left indicate the frequency of population bottlenecks (blue line) and the change in
frequency of the preferred allele starting (black line). Graphs on the right indicate the conditional
fixation probability for a range of scaled selection coefficients 𝑁𝑠 after 1000 pathogen generations.

 234

Figure 39. Effect of the number of pathogens transmitted and selection coefficient on the fixation
probability of an allele after 1000 pathogen generations.

 235

Figure 40. Transmission chain length frequency with or without selection on the transmissibility of
the pathogen.

Height of the bar indicates the proportion of times the transmission chain achieves a certain length.
For example, a chain length of zero means that no transmission occurred while a chain length of one
means one transmission happened. The top figure shows the chain topology of the network being
simulated.

 236

Figure 41. Frequency of genotypes under neutral evolution, replicative selection, and transmission
selection.

Height of the bar indicates the proportion of times the transmission chain achieves a certain length.
For example, a chain length of zero means that no transmission occurred while a chain length of one
means one transmission happened.

 237

Figure 42. Frequency of genotypes under neutral evolution across the transmission chain.

Top graph: height of the bar indicates the proportion of times the transmission chain achieves a
certain length. For example, a chain length of zero means that no transmission occurred while a
chain length of one means one transmission happened. Bottom set of graphs indicate intrahost allele
frequency.

 238

Figure 43. Frequency of genotypes under transmission selection across the transmission chain.

Top graph: height of the bar indicates the proportion of times the transmission chain achieves a
certain length. For example, a chain length of zero means that no transmission occurred while a
chain length of one means one transmission happened. Bottom set of graphs indicate intrahost allele
frequency.

 239

APPENDIX V

SUPPLEMENTAL TRANSMISSION TREE MODELS

Figure 44. Fixation probability after 1000 generations for regular, heterogenous, and
superspreader transmission trees.

Top row shows the size of the total intrahost population and the network topology for each
transmission tree. Second and third rows show the fixation probability after 1000 pathogen
generation under the unstructured null model and the network model respectively. The fourth row
shows the difference in fixation probabilities per network type.

 240

Figure 45. Fixation probability after 1000 generations for regular, early-spreading, late-spreading,
and superspreader transmission trees.

Top row shows the size of the total intrahost population and the network topology for each
transmission tree. Second and third rows show the fixation probability after 1000 pathogen
generation under the unstructured null model and the network model respectively. The fourth row
shows the difference in fixation probabilities per network type.

 241

Figure 46. Fixation probability after 1000 generations for linear and diverging transmission paths.

 242

Figure 47. Fixation probability after 1000 generations for diverging transmission paths.

Top shows the average fixation probability after 1000 generations for different diverging network
structures under neutral evolution and different scaled selection coefficients. Bottom shows the
difference between fixation probabilities after 1000 generations of the unstructured null model and
the network model.

