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Abstract

It has been revealed by empirical and theoretical works that humans incorporate others’

opinions (social information) when they make their decision in many circumstances. Such

use of social information can yield an advantage of collective intelligence. For example, the

majority-rule voting based on independent opinions for a binary choice can result in higher

accuracy than when decided by a single individual or expert. However, it has also been shown

that the correlation between opinions can undermine collective intelligence. In addition, se-

quential decision-making, in which each individual makes decision using earlier opinions by

other individuals, is known to sometimes lead to situations in which most individuals fail

to give correct answers (incorrect information cascade). These facts suggest that, although

the use of social information would be advantageous to individuals’ decision making, once

some individuals start using it and their correlated opinions become a part of social informa-

tion, social information could progressively lose its independency and quality so that no one

eventually dares to use it. To my knowledge, the reference structure among people has been

given artificially in most of existing experimental and theoretical works for collective intelli-

gence and decision accuracy of humans. However, some studies showed that whom to follow

in the reference structure affects the decision accuracy of individuals. Therefore I ask how

the reference structure self-organizes, when each individual tries to use social information to

secure the accuracy of his/her decision-making. I also evaluate the decision accuracy in the

self-organized reference structure.

I try to answer these questions theoretically. To model the reference structure between in-

dividuals, I consider a directed network in which each node represents an individual and each

directed link represents reference. Individuals are assumed to make a decision sequentially

on a given problem with the majority-rule voting among its own and his or her neighbors’

opinions. Since each agent makes decision with majority vote, his or her probability to find

a correct answer by oneself, which I call his/her “ability”, is different from his or her actual
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probability of finding a correct answer by referring to others, which I call “performance”. I

also assume that individuals vary in their ability. It should be natural to assume that each

individual assesses the credibility of the referents and decides to either keep or stop following

them accordingly. Thus, I assumed the rewiring rule as follows; each individual monitors

his or her neighbors’ performance and breaks the link if the neighbor’s performance becomes

worse than a preset threshold. I therefore consider the mutually affecting changes of refer-

ence link structure and each agent’s opinion accuracy. Through this interaction the network

structure is self-organized. This idea is related to adaptive network models, in which feedback

loops between node dynamics and network topology are considered. I conducted extensive

computer simulations on this adaptive network model. I also developed an analytical theory

to explain the results obtained in the simulations.

My analysis shows the following results. (A) The distribution of the number of followers

in the self-organized network significantly differed from the initial Poisson distribution for

the random network. In fact, the distribution of the number of followers in the self-organized

network was close to exponential distribution. This suggested that there were a few nodes

that had much larger number of followers than the mean. (B) The mean number of fol-

lowers increased approximately exponentially, i.e., more than linearly, with agents’ ability.

Therefore small difference in ability can lead to large difference in the number of followers in

the self-organized network. (C) The mean performance of an agent increased linearly with

his/her own ability. I defined group performance as the proportion of agents who stated

correct answers in the population. The mean performance of each agent and the mean group

performance was the lowest when the agent made decisions independently of others, which

is improved by collective intelligence when agents can refer to randomly assigned referents in

the initial random network and further improved by adaptive rewiring in the self-organized

network. The group performance temporally fluctuates by stochasticity in the self-organized

network. The temporal standard deviation (SD) of group performance also increased in the
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same order as the mean group performance, i.e., the group performance temporally fluctuated

more when the mean group performance became higher. (D) The threshold for rewiring af-

fected the strength of heterogeneity in the number of followers in the self-organized network.

When I set the threshold lower, the heterogeneity in the number of followers became larger.

At the same time, the dependence of an agent’s mean number of followers on his/her ability

was more exaggerated, i.e., agents refer more to higher ability agents in the self-organized

network. This leads to a higher mean performance of each agent compared with when the

threshold was larger. However, the SD of the group performance, i.e., the fluctuation of the

group performance, was also higher for a lower threshold.

To understand the source of centralization of reference links, I decomposed the causal

relationship between mean number of followers of each agent and his/her ability into three

components: the relationship between the ability and the mean performance, the relationship

between the mean performance and the mean duration of keeping a follower, and the relation-

ship between the mean duration of keeping a follower and the mean number of followers. I

explained analytically the simulation result of each relationship of these three, by using a the-

ory of stochastic process and some approximation methods related to the network structure.

Among these three relationships, only the relationship between the mean performance and

the mean duration of keeping a follower is nonlinear and the other relationships are linear.

Therefore, I conclude that the nonlinear dependence of the number of followers on agent’s

ability originates from the non-linear dependence of the mean duration of keeping a follower

on the mean performance of that agent. This relationship between the mean performance

and the mean duration corresponds to the performance-monitoring process assumed in my

model.

To sum up, in the self-organized reference structure, I observed the strong centralization

of reference in which the number of one’s followers increases more than linearly with his/her

ability. The mean performance of each agent was higher compared with a random network or
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the case of independent decision-making. However, the group performance fluctuated more

in the self-organized network. There was a counter-intuitive relationship between the degree

of generosity to referents in a society and the mean performance of the society. When I set

the rewiring threshold lower (i.e. when individuals are more generous to their referents),

individuals refer to higher ability agents in the self-organized reference structure than when I

set it higher, leading to the higher mean performance of the society. To my knowledge, there

is no study on the decision accuracy in groups showing such a counter-intuitive phenomenon.

This result would be testable by empirical studies. In my study, I also found a trade-off

between accuracy and stability in the self-organized network. The higher mean performance

and more stability (suppression of fluctuation) of performance are incompatible. This trade-

off was observed when I compare the performance in the case of independent decision, random

references and the high-ability-agent-oriented self-organized networks. It was also observed

when I compare the performance in a high-threshold case with that in a low-threshold one.

As future perspectives, I suggest that the following two points are important to be con-

sidered in the study of the self-organization of humans’ reference structure. Firstly, it may

be possible to consider the situation in which humans choose not only reference partners

but also the extent to which they depend on social information. As I showed in my study,

there is a trade-off between accuracy and stability. If individuals depend more on social

information, they may be able to improve their performance on average, but they may be in-

volved in information cascades more frequently. Secondly, it may also be possible to consider

that humans conform to others not only to make their decision more accurately but also to

correspond to others’ expectation (normative social influence). Reflecting these features of

humans’ decision-making in the model of self-organization of reference structure should lead

to further understanding of humans’ collective decision making and its accuracy.
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Chapter 1

Introduction

1.1 General Introduction

Interdependence of individuals’ opinions in human society

In human society, interdependence of individuals’ opinions is inevitable in many circum-

stances. This is because a person is often influenced by others’ opinions in one’s decision-

making as I will introduce in the following.

Firstly, changes in opinions by humans according to others’ opinions have been actually

observed by experiments (Bahrami et al., 2010; Mahmoodi et al., 2015; Lorenz et al., 2011;

Clément et al., 2015; Kurvers et al., 2015; Mori et al., 2012; Deutsch and Gerard, 1955) and

empirical data analyses (Booth et al., 2014; Clement and Tse, 2005; Ramnath et al., 2008)

in ecology, sociology, psychology, economics, accounting and neuroscience. In experiments,

participants answered various types of tasks, such as a perceptual problem, quantity esti-
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mations, knowledge quiz and so on. As for the empirical data, a good example is the data

of reports made by financial analysts. Financial analysts are experts who provide reports

such as forecasts of a firm’s forthcoming for investors. They revise their personal earnings

forecasts at their own chosen time during the fiscal period. Their reports have been an-

alyzed by researchers in economics and accounting, and have improved our understanding

of how analysts revise their opinions. In these studies, opinions of people before and after

the interaction with others’ opinions were examined, and researchers concluded that many

people changed their opinions by purely imitating or taking into account others’ opinions.

In addition, some other persons changed their opinions intentionally to avoid others’, called

contrarian behavior (Galam, 2004; Ramnath et al., 2008). The changes in opinion occurred

not only after verbal communications with others (Bahrami et al., 2010; Mahmoodi et al.,

2015) but also after observations of others’ opinions (Lorenz et al., 2011; Clément et al.,

2015; Kurvers et al., 2015; Mori et al., 2012; Asch, 1956; Deutsch and Gerard, 1955; Booth

et al., 2014; Clement and Tse, 2005; Ramnath et al., 2008). On the observations of others’

opinions, people had chances to receive a various type of information in the experiments or

the empirical data. For example, people received a set of economic forecasts reported by each

analyst (Ramnath et al., 2008; Booth et al., 2014), a distribution or a list of options chosen

by other people (Lorenz et al., 2011; Clément et al., 2015; Kurvers et al., 2015; Mori et al.,

2012), and the average of choices by other people (Lorenz et al., 2011; Ramnath et al., 2008;

Clement and Tse, 2005).
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Secondly, the influence of others’ opinions on one’s decision-making is detected not only

by direct observation of opinion changes. If one frequently states one’s opinions soon after

a particular person makes a statement, or if one frequently states the same opinion as that

of a particular person, it is feasible that he/she is influenced by, or “follows”, that person.

Actually this idea has been used to estimate the underlying influential relationship among

people from actual time-series data of who-said-what, in news articles, blog posts, economic

forecasts and so on (Cooper et al., 2001; Gomez Rodriguez et al., 2010). On the other

hand, citations in academic papers are examples that clearly show us who influenced whom

through those papers (Newman, 2003; Ke et al., 2015). Such influence relationship is often

represented by a network, in many disciplines such as sociology and physics (Newman, 2003;

Albert and Barabási, 2002; Castellano et al., 2009). In many cases, a node in the network

represents an individual who makes one’s decision, and a link between nodes represents

influence relationship such as reference, following, persuasion, and friendship between them.

For example, Gomez Rodriguez et al. (2010), which I cited above, suggested the way of

reconstructing a network to show the underlying influence relationship among people from

the time-series data of who-said-what.

The literature of humans’ opinion formation has discussed who or what strongly affects

people’s decision-making. “Opinion leaders” (or leaders) are sometimes defined as people

who have strong influence on others’ decision-making by their outstanding knowledge or by

a large number of their connections to others. These leaders are present, for example, in

communities of experts, communities of people with the same interest and social networking
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sites (Ramnath et al., 2008; Cooper et al., 2001; Zhou et al., 2011; Kaiser et al., 2013; Watts

and Dodds, 2007; King et al., 2009). It is also known that humans tend to follow opinions

that are supported by relatively high proportion or relatively large number of people, e.g.

more than a half or a certain quorum of all members in the group (Asch, 1956; Granovetter,

1978; Deutsch and Gerard, 1955; Mori et al., 2012; Egúıluz et al., 2015; Bikhchandani et al.,

1992, 1998; Clément et al., 2015; Izuma, 2013; Raafat et al., 2009). This phenomenon is called

conformity. Interestingly, conformity to people who suggest an obviously wrong opinion can

occur, when the number of such people is enough (Asch, 1956; Deutsch and Gerard, 1955;

Raafat et al., 2009). Granovetter (1978) suggested, by showing some empirical examples

such as spreading of rumors and decision-making about migration, that each person has

one’s threshold for the number of other people who have already adopted a certain option, at

which he/she also adopts the option. This model is called a threshold model. The threshold

model suggests that some people adopt a certain choice quickly after observing a few people

supported it, while other people wait for the supports by more people before they choose it.

The later people can be regarded as those with high resistance to the peer pressure.

Furthermore, in some experiments, we can also observe independent decision-makers who

make their decision independently even after they observed others’ opinions or even if they

can wait for receiving others’ opinions (Madirolas and de Polavieja, 2015; Kurvers et al.,

2015; Mori et al., 2012). The studies also showed that people do not consistently make

decision independently from others (Kurvers et al., 2015; Mori et al., 2012). For example, a

participant makes one’s decision by oneself when he/she knows the correct answer of a given
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question, and follows others when he/she is not sure about it (Mori et al., 2012). There are

various models that explain how a person aggregates one’s own opinion and others’ opinions

or aggregations of others’ opinions, in the fields of ecology, computer science, neuroscience,

economics, psychology and physics (Mori et al., 2012; Madirolas and de Polavieja, 2015;

Egúıluz et al., 2015; Bahrami et al., 2010; Mahmoodi et al., 2015; Guttman, 2010; Trimmer

et al., 2011; Behrens et al., 2008; Sasaki et al., 2013). Most of these models suggest that

humans aggregate one’s own opinion and others’ opinions or aggregations of others’ opinions,

based on their confidence on their own opinion or the strength of their resistance to others’

opinions, and on the number of people who have supported a particular option. Many of

these models have been compared to empirical data and have shown the credibility. In this

dissertation, I will refer to others’ opinions or aggregations of others’ opinions as “social

information” and one’s own original opinion as “private information” hereafter.

Collective intelligence in human society and animal groups

With regard to the reason why humans incorporate others’ opinions in making a decision,

Deutsch and Gerard (1955) suggested two motivations of conformity, normative social influ-

ence and informational social influence, by their experiment in psychology. Normative social

influence stands for the influence of conformity that comes from one’s hope to respond to oth-

ers’ expectation. On the other hand, informational social influence stands for the influence

of conformity that comes from one’s hope to obtain the evidence for one’s decision.
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Informational social influence should be in part explained by the advantage of opinion

aggregations, called collective intelligence. Collective intelligence, also called swarm intel-

ligence, refers to the ability of a group to perform cognitive tasks and to make decision

correctly (Woolley et al., 2010; Krause et al., 2010). Woolley et al. (2010) showed by their

psychology experiments that a human group has its intelligence (collective intelligence) in

the same manner as an individual has. In many cases, the definition of collective intelligence

also includes the condition under which intelligence of the group outperforms that of an in-

dividual in the group (Krause et al., 2010; Wolf et al., 2013; Sasaki et al., 2013; Kurvers

et al., 2015).

Collective intelligence has been observed not only in groups of humans but also in swarms,

flocks or schools of other animals. For example, Argentine ants, Linepithema humilis, can

find the shortest foraging trail by following chemical pheromone of others and by leaving

one’s pheromone (Couzin, 2009). Ants Temnothorax albipennis and Temnothorax rugatulus,

and honey bees Apis mellifera, can find a preferable new nest in the following way (Conradt

and Roper, 2005; Couzin, 2009; Sasaki et al., 2013). Some individuals, called scouts, assess

candidates of the new home and each of them brings others to the candidate when she finds

that the candidate is good. Once the number of individuals who accept a candidate exceeds a

certain threshold, the other individuals move there (to the new nest). Such a decision system,

in which the remaining individuals also accept the choice when the number of individuals

who accept the choice exceeds a certain quorum, is called quorum rule.
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Quorum rule is used by many species from insects, fish, quadrupeds, primates to hu-

mans (Wolf et al., 2013; Conradt and Roper, 2003; Couzin, 2009; Sasaki et al., 2013; Con-

radt and Roper, 2005; Kurvers et al., 2014; Pratt and Sumpter, 2006; Clément et al.,

2015). The threshold in quorum rule is related to speed-accuracy trade-off of their decision-

making (Couzin, 2009). If the threshold is high, the quorum rule leads to more careful

assessment and higher accuracy of decision-making, while there is a risk that it is harder for

the group to adopt the correct answer. On the other hand, a low threshold leads to rapid

decision-making, while the accuracy decreases. It is known that groups in a various species

such as ants, fish and humans, can adjust the threshold according to the environment (Pratt

and Sumpter, 2006; Couzin, 2009; Conradt and Roper, 2005; Wolf et al., 2013; Kurvers et al.,

2014).

A special case of quorum rule is majority-rule, where the threshold is exactly a half.

Majority-rule is very popular in human society. For example, in modern societies, humans

frequently use the rule in politics such as leader elections and other referendums (Hastie and

Kameda, 2005; Conradt and Roper, 2003). It is known that the majority-rule voting based on

independent choices for a binary question can result in higher accuracy than when decided

by a single individual (Ladha, 1992; Nitzan, 2009; Kao and Couzin, 2014; Krause et al.,

2010; Wolf et al., 2013; Laan et al., 2017). A classic argument relating to this phenomenon

was shown by Marquis de Condorcet in 1785 (Kao and Couzin, 2014). The Condorcet jury

theorem states that, by the law of large numbers, the probability that the majority in a

group chooses the correct answer for a binary question approaches unity as the number of
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individuals in the group approaches infinity, if all individuals have the same probability to

choose the correct answer by themselves that is more than 0.5, and if individuals’ choices

are independent from each other before applying majority-rule voting. The extensions of the

theorem have been studied, including works that relax the assumption of independence of

individuals’ choices, and those which consider difference among individuals’ probability to

choose the correct answer by themselves (Ladha, 1992; Nitzan, 2009; Grofman et al., 1983;

Kao and Couzin, 2014). Some of these researches suggest that the accuracy of the result

of majority-rule voting by non-experts for a binary question can be better than that of a

highly expertized person, who has higher accuracy in solving the given problem than the

others in the group (Grofman et al., 1983; Ladha, 1992; Nitzan, 2009). Their results can

be illustrated by the following example. Consider a group with three individuals differing in

their probability of giving the correct answer for a binary question when they make a decision

alone. Suppose that their accuracy is given by p1 = 0.75, p2 = 0.7, and p3 = 0.65. Then,

the accuracy of the majority-rule voting of these three is 0.785 †. This means that even the

individual with the highest accuracy of the three, p1 = 0.75, can improve the accuracy by

following the result of the majority-rule voting among these three.

In quantity estimations, it is also known that a group can outperform an expert by taking

the average or the median of a large number of independent estimations (Galton, 1907; Lorenz

†p1p2p3 + (1− p1)p2p3 + p1(1− p2)p3 + p1p2(1− p3) = 0.785(> 0.75). The first term of the left-hand side
in this equation is the probability that all three persons chose the correct answer by themselves. The sum of
the second to the forth terms is the probability that two persons out of the three chose the correct answer
by themselves. Therefore, the left-hand side of the equation is the probability that the majority chose the
correct answer by themselves.
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et al., 2011; Krause et al., 2010; Madirolas and de Polavieja, 2015; Kao et al., 2018; King

et al., 2012). This is often called the wisdom of crowds. For example, in Galton (1907), data

of estimations by 787 farmers about the weight of a dressed ox was collected. The median

of these estimations was quite close to the true weight—the error was within 1% of the true

value. Similarly, in an experiment in which subjects estimated the number of marbles in a

jar, the mean of the estimations was within 1.5% of the true value (Krause et al., 2010).

These phenomena can be explained by using the laws in statistics such as the law of large

numbers. Which statistic, for example the mean or the median, is a good indicator that

contributes to the wisdom of crowds depends on the distribution of people’s estimations.

For example, if an estimation approximately follows the log-normal distribution so that a

logarithm of the estimation follows the normal distribution where the mean is the logarithm

of the true value, then the median of the people’s estimations becomes close to the true value,

as the number of estimations becomes large. Actually, when one has to estimate a relatively

large number, such as guessing the length of the border of two countries (Lorenz et al., 2011),

the distribution of an estimation is known to be close to a log-normal distribution (Lorenz

et al., 2011; Madirolas and de Polavieja, 2015). On the other hand, if an estimation follows

an almost symmetric distribution where its center is the true value, the mean of estimations

is close to the true value (Lorenz et al., 2011; Madirolas and de Polavieja, 2015; Kao et al.,

2018).
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Dilemmas in the use of social information

So far, I have introduced how humans incorporate others’ opinions into one’s decision-making,

and how collecting and aggregating opinions contribute to more accurate decision-making.

It seems that humans are always able to enjoy the advantage of collective intelligence when

they use social information. However, it has also been shown that the correlation between

opinions can undermine the effect of collective intelligence (Ladha, 1992; Lorenz et al., 2011;

Kao and Couzin, 2014; Madirolas and de Polavieja, 2015; Laan et al., 2017). For example,

recall the aforementioned case of three individuals, person#1–#3, with the probability of

choosing the correct answer being p1 = 0.75, p2 = 0.7, and p3 = 0.65, respectively. If person

#3 mimics the opinion of person #2 before the majority-rule voting, then the accuracy of

the result of the majority-rule voting among these three becomes 0.7 ‡ , which is now smaller

than the accuracy of the expert. In this example, actually, only the opinion by person #2 is

effective, because two or three persons (the majority of the three) choose the correct answer

when and only when person #2 chooses the correct answer by their influence relationship.

In such a way, opinion correlation between voters decreases the effective number of opinions

and undermines the effect of collective intelligence.

‡p1p2 + (1 − p1)p2 = p2 = 0.7. The first term of the left-hand side in this equation is the probability
that person #1 and person #2 chose the correct answer by themselves. Note that, in this case, person #3
also chose the correct answer, since person #3 mimics #2. The second term is the probability that person
#1 chose the wrong answer and person #2 chose the correct answer by themselves. Similarly to the first
term, person #3 chose the correct answer, in this case. Therefore, the left-hand side of the equation is the
probability that the majority (two out of the three) chose the correct answer by themselves. However, we
can know the accuracy of the result of the majority-rule voting in this case (p2 = 0.7) without calculation,
because only the opinion of person #2 is effective as I explain in the main text.
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In quantity estimations, social information can damage the advantage of wisdom of

crowds, too (Lorenz et al., 2011; Madirolas and de Polavieja, 2015; Laan et al., 2017).

In Lorenz et al. (2011), they showed that social information causes a convergence of esti-

mations in their experiment. They also showed that the true value shifts to a peripheral

position of the estimations through the convergence of estimations by social influence. In

this way, the wisdom of crowds was damaged by social influence (Lorenz et al., 2011).

Sequential decision-making, in which each individual can make decision by observing

earlier answers by other individuals, is known to sometimes lead to incorrect information

cascade. Once some individuals stated an answer, a following decision-maker may be in-

fluenced by that answer, as depicted in threshold model in Granovetter (1978). Through

this process, a particular answer that happened to be chosen by the first few individuals

becomes more likely to be chosen and eventually becomes the dominant opinion, to which it

is difficult for individuals to oppose. This phenomenon is called information cascade. Such a

propagated answer is not necessarily correct, and in such a case it is called incorrect informa-

tion cascade. Information cascades, including incorrect information cascade, can be actually

seen in human society (Bikhchandani et al., 1992, 1998; Raafat et al., 2009; Granovetter,

1978; Watts, 2002; Buchanan, 2008). Papers in economics such as Bikhchandani et al. (1992)

and Bikhchandani et al. (1998), reviewed examples of information cascade. These examples

include information cascade in medical practices, scientific theory and in behaviors or ideas

related to politics and finance. For example, they described the adoption of a medical prac-

tice, called tonsillectomy, by doctors (Bikhchandani et al., 1992). This surgical procedure
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was often performed routinely without a particular definitive reason. It is pointed out in the

review that the doctors did not have enough cutting edge information about the procedure

but merely imitated others.

These facts suggest that, although the use of social information would be advantageous

to individuals’ decision making, once some individuals start using it, their opinions become

correlated with the information that they used. When they state their opinions, their cor-

related opinions become a part of social information again. In this way, social information

could progressively lose its independency and quality so that no one eventually dares to use

it.

Research question (Self-organization of reference structure)

Following these arguments, some literature investigated how humans can overcome such

breakdown of social information by creating the new opinion aggregation rule, by finding the

way to extract subgroup that contributes to the wisdom of crowds, and so on (Madirolas and

de Polavieja, 2015; Kurvers et al., 2015; King et al., 2012; Prelec et al., 2017; Laan et al.,

2017; Kao et al., 2018). In these studies, the improvement of social information was confirmed

by experiments and data analyses. One of such studies suggests that humans can enjoy the

advantage of collective intelligence by controlling whom to follow, such as by following well-

performed individuals in quantity estimation problems (King et al., 2012). Hofstra et al.

(2015) showed that an individual’s performance depends on how one is connected to others

in individuals’ influence network, by simulations and an experiment, for the multi-armed
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bandit problem. In this multi-armed bandit problem, subjects have to choose an option

among some choices. The distribution of payoffs assigned to each choice was different from

those assigned to the other choices. The subjects did not know which choice corresponds to

which distribution. The network structure, such as how it is centralized to some individuals,

also affects the group performance. These studies suggest that the structure of reference

relationship affects the quality of decision accuracy in a population. However, in most of

experimental and theoretical works on social information use and decision accuracy, the

reference structure has been given artificially, such as a sequential decision-making by people

where the order to state their opinions is fixed. Here I ask how the reference structure

self-organizes, when each individual tries to use social information to secure the accuracy of

his/her decision-making. I also ask if social information use is still advantageous for each

individual in the self-organized reference structure. I try to answer these questions with a

mathematical model in my dissertation.

In Section 1.2 in Chapter 1, I will explain the network approach to understanding the

self-organization of reference structure. The network model that I constructed is introduced

in Chapter 2. In Chapter 3, I show the results about the emergence of the heterogeneous

reference structure. I also evaluate the decision accuracy of each individual in the self-

organized reference structure. I developed an analytical theory to explain the results obtained

in the simulation. The discussion is in Chapter 4. The contents in Chapter 2 and 3, and

Section 4.1 in Chapter 4 are published in Ito et al. (2018).
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1.2 An adaptive network approach to understanding

the self-organization of reference structure

One example of reference relationship in human society is found in the lead–follow relationship

between financial analysts as I mentioned in General Introduction (Cooper et al., 2001; Booth

et al., 2014; Ramnath et al., 2008; Clement and Tse, 2005; Hirshleifer and Hong Teoh, 2003;

Kim et al., 2011). Financial analysts synthesize much of information and provide reports

such as forecasts of a firm’s forthcoming earnings for investors. They revise their personal

earnings forecasts at their own chosen time during the fiscal period. It has been suggested in

the literature that less informative or less experienced analysts follow information developed

by analysts called lead analysts, who announced their forecasts earlier, in order to make

their decisions more accurately (Cooper et al., 2001; Ramnath et al., 2008; Kim et al., 2011;

Guttman, 2010; Zhao et al., 2014).

Such lead-follow behavior is not necessarily limited to financial analysts; we expect to see

it more generally in our society when each of us can refer to earlier opinions to make our

decisions. In this study, I consider the process of decision-making in a population in which

individuals are mutually connected by reference links. Individuals are assumed to base their

opinions on the majority of earlier opinions made by the referred individuals, i.e., I assume

a directed network in which each node represents an individual making his/her decision, and

each directed link refers to a reference relationship. Thus, the accuracy of an agent’s opinion

depends on who the agent refers to. Note that the majority-rule voting assumed here is an
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aggregation rule that is related to collective intelligence as I mentioned in General introduc-

tion; it is known that the majority-rule voting based on various (independent) opinions can

result in higher accuracy than the one decided by a single agent.

It should be natural to assume that each individual assesses the credibility of the referents

and decides to either keep or stop following them accordingly. Thus, a reference link is rewired

according to the accuracy of the referred agent, whose accuracy depends on who he/she refers

to. Therefore, we need to consider the interaction between the change in opinion caused by

network topology and the change of network topology induced by the opinion accuracy of

the nodes. This idea is related to adaptive or coevolutionary networks, in which feedback

loops between node dynamics and network topology are considered (Gross and Blasius, 2008;

Castellano et al., 2009). There are a number of adaptive network models under various

link-rewiring rules including ones that assume game interactions between nodes, such as the

prisoner’s dilemma game and the minority game, in which a link represents a game interaction

or reference. These links are discarded and rewired when the linked game partners are not

preferable or when the linked advisers are not reliable (Benczik et al., 2009; Gross and

Blasius, 2008; Castellano et al., 2009; Perc and Szolnoki, 2010; Li et al., 2007; Anghel et al.,

2004; Garlaschelli et al., 2007; Zhou et al., 2011; Colman and Rodgers, 2014; Holme and

Newman, 2006). Some of these models show the emergence of heterogeneous structure in the

self-organized network, such as the scale-free degree distribution, in which a small number of

individuals acquire a large number of degrees after repeated events of rewiring, even when

starting from a homogeneous initial state (Gross and Blasius, 2008; Perc and Szolnoki, 2010;
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Li et al., 2007; Anghel et al., 2004; Garlaschelli et al., 2007; Zhou et al., 2011). Some of

these models also highlight macroscopic quantities, such as the ratio of cooperators in the

population and the quality of propagated information (and “performance” in my model),

that change through adaptive rewiring (Gross and Blasius, 2008; Perc and Szolnoki, 2010; Li

et al., 2007; Zhou et al., 2011). They showed, in some cases, that the self-organized network

with heterogeneous structure has better performance than the initial homogeneous network.

In my model, I focus on the accuracy of decision-making of each individual, which I

call “performance”, in the self-organized network. It is not clear whether the self-organized

network shows good performance. If the self-organized network has high heterogeneity, so

that some individuals, called leaders, receive a far larger number of reference edges than the

others, then the opinions of agents in the network should be highly correlated. This enhanced

correlation between opinions may harm the population performance in the long run, as in the

examples of deteriorated social information that I discussed in General introduction. The

opposite may be the case because the network structure, which is biased toward referring

to more accurate agents, may improve the population performance. The performance in the

self-organized network should depend on the network structure.

Therefore, from the viewpoint of network theory, my research questions can be summa-

rized to these two: (1) what property is generated in the self-organized network, for example,

how strong is the heterogeneity in the self-organized network, and (2) whether the reference

relationship in the self-organized network leads to higher performance than the initial ran-
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dom network. To answer these questions, I conducted computer simulations and developed

an analytical theory to explain the results obtained in the simulations.
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Chapter 2

Methods

2.1 Model

I consider a directed network made up of N nodes, each of which represents an agent who

makes a decision. In this network, a directed link from node i to node j means that agent

i refers to agent j when he/she makes a decision. If there is a directed link from i to j, I

call agent i a follower of agent j, and agent j a referent of agent i. For each agent, the

number of reference links from him/her is fixed to M . Let aij be the number of reference

links from agent i to agent j—(aij) is the adjacency matrix of the network (Table 2.1). By

definition,
∑N

j=1 aij = M and
∑N

i=1

∑N
j=1 aij = NM . Here I allow for both self-loops and

the overlap of links, i.e., aii is not necessarily 0 and aij can be more than 1. Each agent

in my model repeatedly makes his/her decision while updating his/her referents by the rule

explained later (Fig 2.1).
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Table 2.1: Definition of symbols
Symbol Descriptions

N Number of agents
M Number of reference links from each agent
aij Number of reference links from agent i

to agent j
pi Ability of agent i
Πi Probability that agent i gives a correct answer
yijt Evaluated performance of agent j by agent i

at time t
y0 Initial value of yijt when agent i newly rewires

to agent j
I it The random variable whose value is 1 (0) if agent i

succeeded (failed) in giving a correct answer
θ Rewiring threshold
α The extent to which people attach importance to

the current result against the history so far in
the performance evaluation

Ti The mean duration that the agent i keeps
his/her follower

k̄(p) The mean in-degree of an agent with ability p

In the initial condition, each agent refers to randomly selected M referents. In other

words, a directed random regular graph with M out-degrees is used as the initial state of my

model.

In my model, the same binary choice question is given to all agents. One of the choices

is correct, and the other is wrong. I assume that agents vary in their probability of solving

a problem correctly by themselves (i.e., without referring to others’ opinions). I call the

probability ability. The ability of agent i is denoted by pi. For example, a question is given

to financial analysts, such as whether the earning of a company in the next quarter increases,

and all will know the correct answer at the end of the next quarter. After many trials, the

analyst’s (say agent i’s) ability is calculated as the probability that he/she forecasted the
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Figure 2.1: Procedure to update the network. The initial network is a random regular
network. Starting from this initial network, I iterate sequential decision-making and rewiring
of the reference links. Illustrated in the top-right part is a sample network, in which the
closed dot represents the focal agent, the gray dots represent the agents referred to by the
focal agents, and the arrows are reference links.

correct outcome, that is represented by pi. For each question, all agents state their answers

sequentially in a randomly determined order. Hereafter, I call specifically an actual stated

choice an answer. Now, I explain how agent i states his/her answer. When agent i’s turn

comes, he/she first sets his/her own choice for the given question without referring to those by

his/her referents. The probability that this choice is correct is given by the agent’s ability, pi.

In the next step, agent i puts his/her own choice together with the answers of referents that

have already been stated and makes a final choice among those choice/answers according to

the simple majority-rule. Agent i then states a final choice as his/her answer. For example,

if agent i refers to agents i1, i2, i3, i4 and i5, and agents i1 and i2 have already stated their
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answers, agent i collects the answer from i1 and i2’s along with his/her choice and states

the majority among these three. In the case of a tie in applying the majority-rule, agent i

tosses a coin to decide which choice he/she states. If aii ≥ 1 or aij ≥ 2, the majority voting

becomes weighted majority voting in my model. More specifically, in the case where aii ≥ 1,

I regard that agent i’s choice has a weight aii +1 in i’s majority-rule voting. Similarly, when

aij ≥ 2(i ̸= j), I regard that agent j’s answer has a weight aij in i’s majority-rule voting.

Since agent i incorporates other agents’ answers, it is clear that agent i’s ability pi is different

from the probability with which agent i actually states a correct answer, Πi. I denote Πi as

the performance of agent i.

After all the agents state their answers, the correct answer to the question is given.

I assume that each agent monitors and evaluates the performance of his/her referents, as

explained later. Each agent breaks the link to the referent if his/her evaluated performance

falls below a certain threshold and rewires it to a randomly selected agent excluding referents

that are kicked off in this step. The assumption that the newly selected agents are determined

randomly is based on the idea that we cannot know the performance of strangers a priori.

I iterate decision-making and rewiring as explained above. In each iteration step t, the

evaluated performance of referent j by agent i, denoted as yijt , is updated as follows. When

agent i newly acquires referent j at time ts, his/her initial level of estimated performance,

yijts , is set to y0 for any pair of i and j. Let Ijt be a variable whose value of 0 represents the

failure of agent j to give a correct answer, and a value of 1 represents the agent’s success

at the iteration time t. I assume that the evaluated performance of agent j by agent i at
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iteration time t, yijt , is updated recursively by

yijt = (1− α)yijt−1 + αIjt . (2.1)

Here, α describes the extent to which people in the society attach importance to the current

result as compared to the referent’s past. I also assume that all agents adopt the same

rewiring threshold to kick-off referents, θ. The threshold represents severity of assessment

in the society. For example, if the threshold is low, people in the society are generous when

they evaluate their referents.

2.2 Simulation conditions

I conducted agent-based simulations using parameters N = 100, M = 5, and α = 0.1. I

assume that the ability of agents, pi’s, are uniformly distributed in the range of 0.5 to 0.75

by setting pi = 0.5+0.25i/N for i = 0, 1, . . . , N − 1. Note that the ability of each agent does

not change throughout a simulation run. The initial evaluated performance y0 is set to 0.625,

which is nearly equivalent to the mean ability in the population. I limit the range of the

rewiring threshold θ in 0.5 ≤ θ < y0 = 0.625. The lower limit for θ, 0.5, is only the accuracy

of a coin-toss. The upper limit y0 is set for the following reason—if we set the threshold

greater than this upper limit, the initial performance of a new referent is always evaluated

lower than the threshold.
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At the initial state, the network is a directed random regular network with out-degreeM =

5, so the in-degree distribution of each agent is expected to obey the binomial distribution

with parameters NM (the total number of reference links in the population) and 1/N (the

probability that a particular individual is chosen as a referent) and is approximated by the

Poisson distribution with mean M , because N ≫ 1 (Fig 2.2).

Figure 2.2: The distribution of the number of followers (in-degree) in the initial
and self-organized networks. (a) The solid line is the initial Poisson distribution with
a mean of 5. The markers (the circle and +) denote the in-degree distributions of the self-
organized network with rewiring thresholds θ = 0.5 and 0.6, respectively, obtained over 500
independent runs of my simulation. The in-degree distributions in the self-organized networks
are significantly different from the initial condition, showing much higher heterogeneity in
in-degrees. (b) The same as (a) except that the vertical axis is logarithmically scaled. I can
observe the approximately exponential tails in the self-organized networks.

In my simulation, a set of sequential decision-makings of agents, followed by the rewiring

of reference links, constituted the events in a unit of time, which repeats itself until the

“self-organized network” at t = Tend = 20, 000 was reached. For each parameter set, the
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simulations were repeated 500 times. I calculated the frequency of agents having in-degree k

at each time step t and averaged them over 500 independent runs. Pt(k) denotes the averaged

frequency of agents having in-degree k at time t, which must depend on the rewiring threshold

θ. I regard PTend
(k) as the in-degree distribution in the self-organized network. I evaluated the

performance of each agent for each simulation run in the self-organized network by averaging

the number of correct answers stated in the last T = 100 time steps (i.e., the performance

of agent i is the average of I it over Tend − T + 1 ≤ t ≤ Tend), at which point I assumed

that the network has reached an equilibrium state. The average over 500 independent runs

was then calculated and regarded as the mean performance of agent i, Πi. Therefore, the

definition of Πi is Πi =
∑Tend

t=Tend−T+1 I
i
t/T , where the overline represents the average over 500

independent runs. I also calculated the mean group performance and its standard deviation.

For each single run, I regarded
∑N

i=1 I
i
t/N as the group performance at time t and calculated

the mean and the standard deviation (SD) of
{

∑N
i=1 I

i
t/N

}

Tend−T+1≤t≤Tend

, that is, for the

last T = 100 time steps. Then I took their average over 500 independent runs to evaluate

the group performance and its fluctuation.
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Chapter 3

Results

3.1 The heterogeneity in the in-degree distribution

The in-degree distribution PTend
(k) in the self-organized network significantly differed from

the initial Poisson distribution for the random network (Fig 2.2). As the in-degrees in the

self-organized network were distributed approximately exponentially, there were a few nodes

that had much larger in-degrees than the mean. In other words, high heterogeneity in the

number of followers evolved through the adaptive rewiring process. The agents attracting

many followers can be interpreted as “opinion leaders” in my model.

The mean in-degree k̄(pi) =
∑N

j=1 aij of agent i with ability pi, that is the mean number

of followers of agent i, increased exponentially with pi for each rewiring threshold θ (Fig 3.1).

I was able to obtain an approximation equation which k̄(pi) satisfies in the equilibrium state.

Its derivation, which I will describe in detail in Sections 3.2 to 3.5, is illustrated as follows
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(Fig 3.2). Suppose we know k̄(pi). In the equilibrium state, the probability that a randomly

sampled reference link from the population is referring to agent i should be proportional to

the mean number of followers of agent i and is expressed as

Pr.[agent i is being referred] =
k̄(pi)

∑N
j=1 k̄(pj)

=
k̄(pi)

NM
. (3.1)

Based on these probabilities, I can derive the approximation of the mean performance

Πi of agent i, who has ability pi (see Section 3.2). Given Πi, the mean duration Ti that the

agent is kept linked by a follower is calculated in Section 3.3. Finally, given Ti, the mean

number of followers k̄(pi) of agent i is derived in Section 3.4. Therefore, I obtained an implicit

equation of k̄(pi) in the self-organized network. This equation of k̄(pi) explains why agents

with higher ability have acceleratingly more followers. Since I cannot solve this equation for

k̄(pi), I performed an iterative approximation method to numerically obtain k̄(pi) against pi.

This procedure is explained in Section 3.5. The results obtained by this numerical calculation

agree well with the simulation results.
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Figure 3.1: Semi-log plot of the mean in-degree of an agent versus his/her ability
in the self-organized network obtained by simulations. Different symbols represent
the results for varying θ. The mean in-degree increases approximately exponentially with
ability, and slopes are steeper when I set the threshold lower. The vertical axis is scaled
logarithmically.
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Figure 3.2: The schematic diagram for the relationship between the ability of agent
i, pi, his/her mean performance Πi, the mean duration that he/she is kept linked
by a follower T̄i, and his/her mean in-degree k̄i in the equilibrium state. The mean
performance can be derived approximately by the ability pi and the mean in-degree function
k̄(·) through the function π(· | k̄). The mean duration that the agent is kept linked by a
follower is obtained by the mean performance (the function τ). Then, the mean in-degree is
obtained by the mean duration the agent is kept linked by a follower (the function κ).
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3.2 The relationship between the mean performance of

an agent and his/her ability

I calculated the mean performance of agent i in the self-organized network, Πi =

∑Tend

t=Tend−T+1 I
i
t/T , as explained in Section 2.2. For each threshold, the mean perfor-

mance of an agent increased linearly with his/her own ability (Fig 3.3(a)). This is because

the probability that agent i with ability pi gives a correct answer is given by the sum of two

terms,

Πi = (1− pi)Pr.[(the number of referents who gave correct answers) ≥ s/2 + 1]

+piPr.[(the number of referents who gave correct answers) ≥ s/2], (3.2)

when the number of referents of agent i who have stated their answers before agent i stated

his/her own, which I denote by s, is even. Note that here, I neglect self-loops or overlaps

in the reference links to simplify my approximation. Also note that the expression of Πi

becomes a slightly complicated when s is odd (Section A in Appendix) since there are s +

1 answers/choice including his/her own and I have to consider the tie of the number of

answers/choice when the majority-rule is applied. However, Πi can again be described as a

linear function of the ability pi in both cases where s is odd and where there are self-loops

or overlaps in the links (Section A in Appendix).
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Note that each term Pr.[ · ] in the equations above depends on the ability and the perfor-

mance of agents who the focal agent refers to; therefore, Pr.[ · ] depends on the distribution

of the ability of referents, which means the ability of those who are referred to by others, not

on the ability of random agents.

I can derive an approximate formula for the slope and the intercept of the linear depen-

dence of Πi on pi (Section A in Appendix), which agrees well with the simulation results

(Fig 3.3(a)). For later use, let me formally denote this relation as Πi = π(pi | k̄), where

π(· | k̄) maps pi to Πi, which itself depends on k̄. The approximated slope and intercept

depend on the mean ability of referents
∑N

i=1 pik̄(pi)/(NM), which is a value that represents

the distribution of referents’ ability.
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Figure 3.3: The mean performance Πi of an agent versus his/her ability p, the
mean duration T̄i that the agent is kept by a follower versus the agent’s mean
performance Πi, and the mean in-degree k̄i of an agent versus the mean duration
T̄i that the agent is kept by a follower in the self-organized network. (a) The mean
performance Πi of an agent versus his/her ability p in the self-organized network for each
threshold θ (the circle and + for thresholds 0.5 and 0.6). The solid lines show the analytical
results. The mean performance increases linearly with ability. (b) The semi-log plot of the
mean duration T̄i that the agent is kept by a follower versus the agent’s mean performance Πi

for each threshold in the self-organized network (the circle and + for thresholds 0.5 and 0.6).
The solid lines show the analytical results. The mean duration increases nearly exponentially
with the mean performance. (c) The mean in-degree k̄i of an agent versus the mean duration
T̄i that the agent is kept by a follower for each threshold in the self-organized network (the
circle and + for thresholds 0.5 and 0.6). The solid lines show the analytical results. The
mean in-degree is proportional to the mean duration.
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3.3 The relationship between the mean duration for

which a referent is kept linked by a follower and

his/her performance

In my model, each agent monitors the performance of his/her referents and stops referring

to them when the evaluated performance falls below a rewiring threshold. Thus, the higher

his/her referent’s performance is, the longer duration that he/she keeps his/her follower. I

herein examine how the duration that an agent is kept referred by a follower is related to the

agent’s performance.

The mean duration that an agent is kept referred by a follower in the self-organized

networks increased approximately exponentially with his/her performance (Fig 3.3(b)): Ti ∝

exp(βΠi), where Ti is the expected duration that agent i keeps his/her follower, Πi is the

performance of agent i, and β is a positive constant.

This relationship between a referent’s performance and the mean duration for which the

referent is kept linked by a follower is derived analytically. As explained in the Method

section, an agent’s evaluation Yt of the performance of his/her referent is updated depending

on whether the referent’s t-th answer was correct (It = 1) or not (It = 0), as follows:

Yt = (1− α)Yt−1 + αIt, t = 1, 2, . . . , (3.3)
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where the initial evaluation was set to Y0 ≡ y0. If the actual performance of the referent

is Π, which its follower does not know, It (t = 1, 2, . . . ) are mutually independent random

variables each of which takes a value of 1 with a probability of Π, and a value of 0 with a

probability of 1 − Π. The sequence {Yt | Y0 = y0} then forms a stochastic process. Given

Y0 = y, I defined the expected time duration to the time when the evaluated performance hit

θ for the first time, TΠ(y), as TΠ(y) ≡ E[min{t | Yt ≤ θ} | Y0 = y]. TΠ(y) is the expected first

hitting time to the threshold θ of the stochastic process {Yt | Y0 = y}. Then TΠ(y) satisfies

the recurrence equation:

TΠ(y) = 1 + ΠTΠ(α + (1− α)y)

+(1− Π)TΠ((1− α)y), y > θ, (3.4)

and

TΠ(y) ≡ 0, y ≤ θ. (3.5)

Equation (3.4) is derived as follows: if y > θ, the referent is kept linked to the next time step;

hence, the addition of 1 in the first term on the right-hand side of Eq (3.4). In the case where

the referent gave the correct answer with probability Π, the evaluated performance changes

from y to (1− α)y + α, and the expected duration after the transition is TΠ((1− α)y + α).

The last term is similarly derived for the case of failure. Eq (3.5) simply states that TΠ(y)

equals 0 if the evaluation y is already less than or equal to the threshold.
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The mean duration that agent i with performance Πi is linked from a follower, Ti, is then

defined by TΠ(y) as follows:

Ti = TΠi
(y0)(≡ τ(Πi)), (3.6)

The symbol τ in Eq (3.6) denotes the function that maps Πi to Ti (Fig 3.2). Note that

Ti is greater than 0 since θ < y0. I solved recurrence Eqs (3.4) and (3.5) numerically and

obtained the mean time TΠ(y) until which the evaluated performance of a referent with the

initial evaluated performance y and the actual performance Π hits the threshold θ for the

first time (see Section D in Appendix for the numerical procedure to obtain the mean hitting

time). This then led to the mean duration of reference Ti defined in Eq (3.6). The analytical

formulas (3.4)-(3.6) agree well with the simulation results (Fig 3.3(b)).
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3.4 The relationship between an agent’s mean number

of followers and his/her ability

Here, I derive the mean number of followers or the in-degree k̄(pi) of agent i as a function of

his/her ability pi.

The probability that an agent is chosen as a new referent for each rewiring event is the

same as those for all the others’, because each agent rewires its link to a randomly selected

agent after he/she kicks off a referent. Thus, the expected number of reference links that

agent i receives in the self-organized network is proportional to the mean lifetime of a link

to agent i, Ti. Therefore, the mean in-degree k̄(pi) of agent i can be expressed as a function

of Ti as follows:

k̄(pi) =
Ti

∑N
j=1 Tj

NM(≡ κ(Ti)). (3.7)

The symbol κ in equation (3.7) denotes the function that maps Ti to k̄(pi). This expression

of k̄(pi) agrees well with the simulation data (Fig 3.3(c)). The reason why k̄ depends (only)

on the ability pi of agent i is that τ(Πi) is a function of the agent’s performance, Πi, and

π(pi | k̄) is a function of pi. See Section C in Appendix for a more formal derivation of

k̄(pi) from a master equation for the probability distribution of the performance of a referred

agent.

As noted in the last section and shown in Figs 3.3(a) and 3.3(b), the mean duration

that the reference to agent i is kept linked by a follower increases roughly exponentially
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(but actually slightly faster than exponential) with his/her performance Πi, and Πi increases

linearly with his/her ability pi, resulting in an roughly exponential relationship between

Ti and pi: T i ∝ eβ
′pi . Therefore, the mean in-degree of agent i also increases roughly

exponentially with his/her ability:

k̄(pi) = κ ◦ τ ◦ π(· | k̄)(pi) ≈ (const.)× eβ
′pi , (3.8)

where ◦ in Eq (3.8) is the composition of functions.

As I discussed above, the mean duration of a link targeted to an agent versus his/her

performance is key to predicting how many followers an agent with a given ability can obtain.

I show the duration versus performance for various thresholds, which I derived analytically,

in Fig 3.4.
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Figure 3.4: Semi-log plot of the mean duration to be kept by a follower versus
performance for each threshold value. The mean duration is calculated analytically
as shown in Section 3.3.The color of the lines ranges from dark to light as the threshold
increases.
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3.5 Numerical calculation to obtain k̄(pi)

Since Eq (3.8) is implicit in k̄(pi), I solve it for k̄(pi) by an iterative approximation method

as follows. First, I set k̄(0)(pi) = M for all pi as an initial condition (0-th step) of the iterative

method. Its n-th iteration counterpart is k̄(n)(pi). Here is the procedure to obtain k̄(n+1)(pi)

from k̄(n)(pi). By assuming that a randomly chosen reference link from the population is

directed to agent i with a probability of k̄(n)(pi)/(NM), the mean performance Π(n)
i of agent

i is obtained as explained in Section 3.2. Given the mean performance Π(n)
i of agent i, the

mean duration Ti
(n)

that the agent is kept linked by a follower is calculated as explained in

Section 3.3. Then k̄(n+1)(pi) is calculated as

k̄(n+1)(pi) =
Ti

(n)

∑N
j=1 Tj

(n)
NM, (3.9)

as explained in equation (3.7) in Section 3.4. In other words, I derive k̄(n+1)(pi) from k̄(n)(pi),

by

k̄(n+1)(pi) = κ ◦ τ ◦ π(· | k̄(n))(pi). (3.10)

I repeated this recurrence evaluation until when
∑N

j=1(k̄
(n+1)(pi)− k̄(n)(pi))2 became smaller

than 10−5 (Fig 3.5(a)). This predicted relationship (solid curves in Fig 3.5(b)) agrees well

with the simulation results (markers in Fig 3.5(b)).
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Figure 3.5: The derivation of the mean in-degree by the iterative approximation
method. (a) The procedure of the iterative approximation method for obtaining the rela-
tionship between the mean in-degree and ability. (b) Curves obtained from (a) are shown
against plots of simulation data.
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3.6 Group performance in the self-organized network

Studying the group performance,
∑N

i=1 I
i
t/N , in the self-organized networks is another ob-

jective of my paper. I defined group performance as the proportion of agents who give the

correct answer in a sequential decision-making as explained in Section 2.2. The group perfor-

mance fluctuates temporally (Fig(3.6)). The temporal mean (Fig 3.7(a)) and the temporal

standard deviation, SD (Fig 3.7(b)) of the group performance in the self-organized networks

were decreasing functions of the rewiring threshold. It is interesting that the stricter the

agent’s evaluation threshold is for kicking off referents, the worse the long-term group per-

formance is. For comparison, I showed in Figs 3.7(a) and (b) the mean and the SD when

all agents choose referents randomly (random reference), as in the initial network state prior

to adaptive rewiring (dashed lines in Figs 3.7(a), (b)). I also added those measures in the

case where all agents make their decision independently without constructing a network (in-

dependent decision; thick horizontal lines in Figs 3.7(a), (b)). The difference between the

thick line and the dashed line represents the effect of collective intelligence (decision-making

through majority-rule). The difference between the dashed line (random reference network)

and the dots (self-organized network after adaptive rewiring) represents the effect of adaptive

rewiring of the reference network on group performance, i.e., adaptive rewiring generates a

centralized network with preferred connections towards high performance agents. The mean

group performance was lowest when agents made decisions by themselves, which is improved

by collective intelligence with randomly assigned referents and further improved by adaptive
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rewiring based on the performance evaluation. Among adaptively rewired networks, those

with lower kick-off performance thresholds (i.e., with more generous kick-offs) had higher

group performance. I see that the SD of group performance also increased in the same order

as the mean group performance in this comparison, i.e., the group performance fluctuated

more when the mean group performance became higher.

The mean performance of each agent,
∑Tend

t=Tend−T+1 I
i
t/T , against his/her ability in the

self-organized networks was compared to both those in the cases of independent decision and

of random reference (Fig 3.8). As in the group performance, for a fixed ability value of an

agent, the mean performance was the lowest when the agent made decisions independently

of others (solid line in Fig 3.8), which is improved by collective intelligence with randomly

assigned referents (squares in Fig 3.8) and further improved by adaptive rewiring (circles,

triangles and + in Fig 3.8). The effect of the rewiring threshold on the mean performance of

each agent was similar to the effect of the threshold on the mean group performance: a looser

kick-off threshold led to a higher performance. Fig 3.8 illustrates that the difference between

independent decisions and majority voting, either adaptive or not, was reflected in both the

slope and the intercept of the performance–ability relationship. However, the differences

between the random and adaptive networks and those among different rewiring thresholds

were reflected only in their intercepts. This leads to an interesting observation: agents with

a lower ability were merited the most in their performance by collective intelligence, and the

performance of all agents was improved fairly well by the adaptive rewiring irrespective of

their ability.
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To summarize, performance in the self-organized network improved compared with the

initial random network or the case of independent decision-making. However, the group

performance fluctuated more in the self-organized networks, and even more in those networks

with higher mean group performance. This implies that a highly “intelligent” population with

improved performance, though biased with reference to high-ability agents, can be at risk of

a temporal crash in group performance.

Figure 3.6: A sample path of group performance. A sample path of group performance
in a period Tend − T + 1 ≤ t ≤ Tend, i.e. in the self-organized network.
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Figure 3.7: Mean and SD of group performance. (a) Mean group performance in the self-
organized network for each threshold. The dashed line represents the group performance in
the initial random network, and the thick horizontal line representss the group performance in
the case of independent decision-making. The mean group performance in the self-organized
network is higher than that in the random network for all thresholds, and it declines with
increasing threshold. (b) The standard deviation SD of group performance versus threshold.
The dashed line represents the SD in the random network, and the thick horizontal line
represents the SD in the case of independent decision-making. The SD of group performance
in the self-organized network is also higher than that in the random network for all thresholds,
and it gradually declines with increasing threshold.
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Figure 3.8: Mean performance of each agent versus his/her ability. A circle, triangle,
and + mark the the mean performance versus ability for thresholds of θ = 0.5, 0.55 and 0.6
in the self-organized network. A black square represents the random network. The solid
diagonal line represents the case where performance is equal to ability. Even in the random
network, all agents improve their accuracy (the mean performance is higher than the ability
for each agent), and low-ability agents can particularly greatly improve it. The lower we set
the threshold, the higher the mean performance becomes for each agent.
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3.7 The effect of threshold on the unevenness in in-

degrees

The threshold θ used for rewiring, which stands for the severity of assessment, affected the

self-organized network in the following aspects. First, thresholds affected the strength of

heterogeneity in in-degrees among agents. I examined two heterogeneity measures of in-

degree distribution at time Tend, the Gini coefficient (G =
∑N

i,j=1 | ki − kj | /(2N2k̄), where

ki and kj are the in-degrees of agent i and j respectively, and k̄ is the mean in-degree of the

population (Cowell, 2011)), and the coefficient of variation of in-degrees (CV =
√

Var(k)/k̄).

They showed substantial dependence on the threshold θ (Fig 3.9). The Gini coefficient and

the CV are indices that are originally used to represent the inequality in the distribution of

wealth in a society. Here “the number of followers” (or “in-degree”) plays a role of “wealth”.

I measured the inequality in the number of followers by using these indices. Higher values of

these indices mean strong heterogeneity in in-degrees. In Fig 3.9, for both indices, the lower

is the threshold for rewiring, the higher are the values of these indices. Therefore, both of

these two indices show that a lower threshold for rewiring generates stronger inequality in

the self-organized in-degree distribution.

The threshold θ also affected the time needed for the system to reach the equilibrium

state (Fig 3.10). In Fig 3.10, the lighter colors represent a higher frequency of agents with

a given in-degree k (ordinate) against a threshold θ (abscissa) at time t. I can see that the

class of individuals with higher k grows faster for higher rewiring thresholds.
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The exponential increase of the mean in-degree k̄(p) against ability p is also affected

by the threshold θ (Fig 3.1). This nonlinearity in k̄(p) became stronger as the rewiring

threshold θ decreased. My analytical formula for the relationship between an agent’s mean

in-degree and ability (Eqs. (3.7), (3.8)) shows that the strongly biased links towards the

agents of high ability is due to the nonlinear dependence of the mean duration that an agent

keeps a follower on their performance. We have already seen that the extent to which the

mean duration increased with performance was stronger for lower thresholds (Figs 3.3(b)

and 3.4). These results can be also seen in Fig 3.11, which shows that the mean ability

of referents (averaged over those who are being referred), p∗ =
∑N

i=1 pik̄(pi)/(NM), was a

decreasing function of the rewiring threshold. This implies that the more the agents seek

better referents, the lower is the mean ability of referents. These apparently counterintuitive

results are discussed in Section 4.1.

The group performance and the performance of each agent also differed by the threshold.

The mean group performance and the performance of each agent became better as the thresh-

old θ decreased (Figs 3.7(a) and 3.8). The SD of the group performance, i.e., the fluctuation

of the group performance, also increased as the threshold θ decreased (Fig 3.7(b)).

Therefore, when we set the threshold lower, the heterogeneity in in-degrees became

stronger, and reference links were biased more toward higher ability agents. At the same

time, I also see that the group performance became better on average, though its tempo-

ral fluctuation became greater. I discuss the reason why these results hold in the following

Section 4.1.
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Figure 3.9: The Gini coefficient and the coefficient of variance (CV) of in-degree
distribution. The Gini coefficient (circle) and the coefficient of variance (triangle) (CV)
of in-degree distribution versus threshold. Both of these indices represent the strength of
heterogeneity in in-degrees, where higher values mean stronger heterogeneity. Both the Gini
coefficient and the CV decline with increasing threshold. Herein, the Gini coefficient G can
be calculated as G =

∑N
i,j=1 |ki − kj|/(2N2k̄), where ki is the in-degree of agent i and k̄ is

the mean in-degree (Cowell, 2011).
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Figure 3.10: The in-degree distributions for each threshold at the t = 0, 10, 1, 000
and 20, 000(Tend). The in-degree distributions for each threshold at the random network
(t = 0) and at times 10, 100, 1,000 and 20,000 (Tend) are shown in (a), (b), (c), (d), and
(e), respectively. For each panel, the horizontal axis corresponds to the threshold, and the
vertical axis represents the in-degree. The log10(frequency) is shown by the gray scale, so
when we see a vertical section at a threshold θ, we can see an in-degree distribution for the
threshold θ, such as the one shown in Fig 2.2(b).

48



Figure 3.11: The mean ability of referents in the self-organized network versus
threshold. The lower we set the threshold, the more the mean ability of referents increases.
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Chapter 4

Discussion

4.1 Discussion on the self-organized reference struc-

ture

In this thesis, I have shown that the reference structure of agents who try to make correct

answers by referring to credible agents self-organized into a heterogeneous structure with an

exponential in-degree distribution (Albert and Barabási, 2002). The mean in-degree increased

exponentially with ability. Therefore small difference in ability can lead to large difference

in the number of followers in the self-organized network. My analytical calculation shows

that it was the mean duration of an agent to be kept linked by a follower that increased

exponentially with his/her performance. The performance-monitoring process in my model

generated this nonlinear relationship between performance and mean duration.
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I also looked at the performance of each agent and that of the group in the self-organized

network and compared them to those in the random network. The mean performance of

each agent and the mean group performance improved in the self-organized network through

adaptive rewiring compared with the random network. However, the fluctuation of the group

performance in the self-organized network was larger than the one in the random network. I

discuss this trade-off later in this section.

In addition, I found that the threshold for rewiring, that is the extent of severity, affected

the strength of heterogeneity in the in-degrees in the self-organized network. When we set

the threshold lower, the heterogeneity in the in-degrees became larger, and at the same time,

the dependence of an agent’s mean in-degree on his/her ability was more exaggerated, i.e.,

agents refer more to higher ability agents in the self-organized network, and the mean ability

of referents increases. This leads to a higher mean performance of each agent compared with

when the threshold was larger, i.e., when the mean ability of referents was lower. Actually, in

my derivation of the mean performance explained in Section 3.2 and Section A in Appendix,

which predicts the simulation result well, I can show that the mean performance of each

agent is an increasing function of the mean ability of referents (Section B in Appendix).

However, it is a little against our intuition that agents result in referring to higher ability

agents when we set the threshold lower (i.e., when they were more generous to their referents)

than when we set it higher (when they were stricter regarding their referents). I interpret

this counterintuitive phenomenon as follows. A lower rewiring threshold makes each agent

more patient and lowers the desire to kick-off low-ability referents. However, at the same
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time, a lower threshold contributes to keeping high-ability referents more securely, because

a lower rewiring threshold leads to a longer duration for referent-monitoring, leading to a

better overall sorting of referent’s quality. From my computer simulations, I find that the

later effect is stronger. Therefore, in my model, a lower rewiring threshold contributes to

generating a more biased reference toward high-ability agents. This result can be tested by an

empirical study comparing the generosity of societies and their accuracy in decision-making.

For example, we can compare a group in which rewiring occurs easily (that may correspond

to a high threshold in my model) such as a group of individuals connected by a social network

service, with a group in which rewiring is difficult (that may correspond to a low threshold

in my model) such as a group of individuals in a company who are connected tightly, to

examine which group can predict the next political leader more accurately.

As I showed so far, how long one can keep a follower greatly affects the structure of

the self-organized network. The extent to which people in the society attach importance to

the current result as compared to the referent’s past is measured by the parameter α. Its

reciprocal, 1/α, gives the mean time an individual remembers a success or a failure of its

referent. Indeed, the change in the evaluated performance of the referent, yijt , per each time

step is proportional to α: ∆yijt = yijt+1 − yijt = α(Ijt+1 − yijt ). In the numerical simulations

of this thesis, I set α = 0.1. As α becomes larger, the agent’s evaluation becomes less

dependent on the past and more heavily dependent on the immediate success or failure. This

makes the evaluation of followers’ performance less reliable. Therefore, a larger α makes it

difficult to sort subtle difference in performance between the referents, resulting in weaker
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centralization of links toward high ability agents and low performance. The effect of the

kick-off threshold θ on group performance would also become less pronounced because of the

less reliable performance evaluation. Conversely, if α becomes smaller, the evaluation for the

performance of referents would become more reliable. However, this raises another problem

for a society, because the time required for the referent network to reach an equilibrium, in

other words, to acquire high centralization, would become too long. In fact, I confirmed those

predictions on the effect of α by computer simulations for several values of α. The results

are shown in Section F in Appendix.

There are several trade-offs in my model that affect the understanding of the quality of

decision-making by agents who are interacting with one another. First, when we set a lower

rewiring threshold, we have to wait longer until the network reaches the equilibrium state

where agents have higher mean performance. Thus, we can see a kind of speed–accuracy

trade-off here. Second, along with stepwise rises of the group performance from independent

decision, to random references in the initial state, and then to the high-ability-agent-oriented

self-organized networks, the SD of the group performance also increased, i.e., the fluctuation

became larger in this order. When we set the threshold lower, we saw again an increase in

both the mean and the SD of the group performance in the self-organized network. Therefore,

an increase in both the mean and the “stability” (suppression of fluctuation) are difficult to

be compatible. High-ability agents collect more followers in the self-organized network than

in the initial network; the same is true for the self-organized network of a low threshold

compared with that with a high threshold. Adaptive rewiring and a lower kick-off threshold
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level lead to higher mean performance. However, this is due to a more intense concentration

of reference links to high ability agents (Section B in Appendix). This centralization seems

to be the reason for the larger fluctuation of the group performance. The agents who attract

many followers tend to be the agents with high ability and high performance. However, there

are of course cases in which high-ability agents give wrong answers. In such an occasion of

failure by agents of high influence, the group performance results in a very low value, which

results in the group performance fluctuating wildly.

I have examined only a few types of distribution of agent’s ability in the population, which

gives the seeds for the generation of a heterogeneous in-degree distribution through adaptive

rewiring. Actually, I assumed two types of ability distributions—one is in the current study,

the uniform distribution, and the other is shown in Section E in Appendix. The density

distribution of ability shown in Section E in Appendix is a linear decreasing function on the

interval [0.5, 0.75]. Although both forms of ability distribution yielded exponential in-degree

distributions against varying ability, the robustness of the results for the other forms of ability

distributions should be tested in the future.

Lastly, I discuss possible modifications of my model. In my model, I assumed that a new

link comes randomly regardless of his/her ability value. This was based on the idea that one

cannot know the status of strangers —this may be true in some cases in our society. For

example, in a population of analysts where a lead-follow relationship (references) exists, a

financial analyst may not be able to evaluate the correctness of the analysts whom he/she

is not directly following. In such situations, the only thing that an agent can do to improve
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his/her own performance is to replace an already connected referent who did not give correct

answers, with a new referent randomly chosen from the population (Kossinets and Watts,

2006) as I assumed in my model. Actually, an empirical work on a social network in a

university (Kossinets and Watts, 2006) shows that such global rewiring is commonly found

in a group of individuals sharing the same interaction focus (in my case, making decisions

for the same problem). However, it may also be possible to introduce “reputation” into my

model; i.e., we may assume that the probability of being newly chosen as a referent depends

on one’s ability or performance, which is recognized by others in some way such as via

reputation. I predict that, under this assumption, we will obtain a scale-free network, which

represents strong heterogeneity. This prediction is supported by the following facts. There

are a number of studies that explain how scale-free networks are constructed. The “good get

richer” mechanism (or fitness model) is one such explanation (Garlaschelli et al., 2007; Zhou

et al., 2011; Caldarelli et al., 2002). In the models using the “good get richer” mechanism,

each agent is assigned a value, such as fitness, and the probability that one can obtain a link

is determined based on the fitness value. In these models, strong heterogeneity with a power-

law degree distribution emerges even if the fitness is not power-law distributed. The fitness

in such models corresponds to the ability component in my model. Thus, I can predict that

we will obtain a scale-free network if the probability of being newly chosen depends directly

on one’s ability or on one’s performance. It is not clear whether a population can achieve

high performance under a structure that self-organized in the presence of “reputation” and

whether it has high heterogeneity and/or a strong opinion correlation.
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In addition, I think that the following issue is worth considering in future. In my study,

I assumed that all agents follow the same strategy for decision-making and have the same

rewiring threshold. With these simple assumptions, I was able to reveal what the primarily

factor leading to the centralization of reference networks is, and to discuss the decision

accuracy in the self-organized reference structure. A possible next step would be to analyze

the model that allows ability-dependent strategy for each agent, as higher ability agents may

have less motivation for referring to others than lower ability agents. If so, the presence of

such independent decision makers would improve the efficiency of collective intelligence in

the population (Madirolas and de Polavieja, 2015).
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4.2 General Discussion

As I explained in General Introduction, the reference structure among people affects the qual-

ity of collective intelligence in a group (King et al., 2012; Hofstra et al., 2015). Nonetheless,

in many theoretical and experimental studies of collective intelligence, the reference structure

has been given artificially. My study has therefore focused on how the reference structure

emerges through the mutual interaction between agents who try to improve the accuracy of

their decisions. I investigated this problem theoretically by using an adaptive network model.

To my knowledge, there is no study that mathematically investigated the self-organization

of reference structure among people making use of collective intelligence.

The model revealed that highly centralized reference structure among agents emerges

when they try to make correct answers by referring to more accurate agents. In such a network

the mean performance is high by virtue of collective intelligence and centralized references

towards high ability agents. This means that the opinions of high ability agents are referred

more and contributed to the high group performance, but also means that the opinions of

agents can be highly correlated by sharing the same referents. The latter should deteriorate

the quality of collective intelligence, as its advantage relies on independence between referents’

opinions. The net effect of adaptive rewiring was still positive in my model: the agents

had high mean performance by the majority-rule voting among their referents than without

adaptive rewiring. Even the highest ability agent can improve one’s mean performance by

the majority-rule voting. However, this result is by no means general — the positive effect
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of adaptive rewiring on group performance is not always stronger than the negative effect

of losing independence between opinions. For example, the group performance in adaptively

rewired reference structure can be temporarily worse than under random references, if not

worse in the long-term mean. Furthermore, when I replaced the random recruitment of

a new referent assumed in previous chapters by the selective recruitment, I observed that

the number of followers are power-law distributed in the self-organized network. In this

selective recruitment, I assumed that the probability of an agent to be newly chosen as a

referent depends on his/her own ability or performance. On this network, the centralization

of reference towards high ability agents became much stronger than in the model that I

mainly discussed in this dissertation and that assumed the random rewiring, and the mean

performance in the self-organized network could be lower than that of the initial random

network (data not shown).

My study casts a theoretical light on the reason why we observe incorrect information

cascades in our society (Bikhchandani et al., 1992, 1998; Raafat et al., 2009). Humans are

strongly influenced by opinions that have already been chosen by many people (Deutsch

and Gerard, 1955; Raafat et al., 2009; Asch, 1956; Granovetter, 1978; Bikhchandani et al.,

1992, 1998; Mori et al., 2012; Egúıluz et al., 2015). There are many theoretical models of

information cascade considering this point (Granovetter, 1978; Watts, 2002; Bikhchandani

et al., 1992, 1998; Mori et al., 2012; Egúıluz et al., 2015). In these models, and in my model

too, one’s decision for a binary question is influenced by the number of individuals who have

already chosen each answer. In some of these models (Mori et al., 2012; Egúıluz et al., 2015),
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the extent to which each individual replaces one’s own opinion by that of majority of all

the previous statements depends on his/her confidence. Then, if the mean confidence is low,

the individual decisions are influenced more by the previous statements, and information

cascade occurs more frequently. In my model, whether an agent replaces one’s own decision

by his/her referents is determined by the majority-rule voting, where each vote by referents

is equally weighted. There I also observed that the group performance fluctuates larger when

each agent refers to his/her referents than when he/she does not refer anyone.

Information cascade would occurs more strongly when the society has high preference

towards a limited number of members. Financial analysts and participants in experiments

are also strongly influenced by the opinions stated by expertized people (Ramnath et al.,

2008; Cooper et al., 2001; Kaiser et al., 2013; King et al., 2009). I found that the adaptive

rewiring in my model brings initial random links without any preference to highly centralized

preferences towards credible people (the agents with high abilities) – the individuals are to be

strongly influenced by credible people in the evolved network. In this centralized reference

structure, the risk of information cascade became stronger than in homogeneous random

reference structure.

One may expect a better accuracy of an agent’s decision under a stricter monitoring of

their referents’ quality. However, my model revealed a counter-intuitive relationship between

the degree of generosity to referents in a society and the mean performance of the society.

When I lower a minimum allowable threshold for the referent’s performance before breaking

the link (i.e. when individuals are more generous to their referents), individuals have a
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stronger tendency to refer to high ability agents in the self-organized reference structure

than in the case of a higher threshold. Hence, the mean performance of the society is greater

when the society is more generous to the referents. To my knowledge, there is no study on

the decision accuracy in groups showing such a counter-intuitive phenomenon. To test this

result empirically, we may compare a group in which the links are easily rewired with another

group in which they are hardly rewired, and ask whether the latter group actually has a more

strongly centralized reference structure. We may also ask whether the latter group actually

makes more accurate predictions in the same binary questions. In my theoretical study,

the lower threshold led to longer and more secure monitoring of referents’ performance,

and this made the stronger centralization towards high ability agents. I expect that this

logical relationship will be tested by laboratory experiments where “accurate information on

relations (network structure) and behaviors (of individuals) can be recorded at every time-

point” (Corten and Buskens, 2010).

Majority-rule voting assumed in my model is only one of many possible decision-making

rules that take the collective intelligence into account. Majority-rule voting has been assumed

in my study because it has been well studied in the literature of collective intelligence for

binary questions (Ladha, 1992; Nitzan, 2009; Grofman et al., 1983; Kao and Couzin, 2014),

and assumed in many other models of opinion formation (Castellano et al., 2009; Ŝırbu et al.,

2017; Benczik et al., 2009). Majority-rule voting is indeed commonly seen in human society,

as is exemplified by its ubiquitous adoption in political decision making processes (Hastie and

Kameda, 2005). However, there are also other models to explain how humans incorporate
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others’ opinions into one’s decision-making for binary questions (Egúıluz et al., 2015; Behrens

et al., 2008; Mori et al., 2012; Kurvers et al., 2014; Granovetter, 1978; Trimmer et al., 2011).

These models employs a “soften” majority rule in the sense that the probability of adapting

a choice is given as a sigmoidally increasing response function of the differential number

of individuals who chose either of two answers. In these models, the more does a decision

maker depend on oneself, the flatter is the response function and the less is the sensitivity

to the majority of others on one’s decision. It is an open question that how the degree of

centralization and the tendency to cause information cascade will be changed if the model is

extended to incorporate such self-confidence of an agent defined, for example, by the accuracy

of his/her own answers in the past.

Another contribution of my study to the literature of collective intelligence is to have

revealed that there is a trade-off between accuracy and stability in the self- organized reference

networks. Which aspect is more preferable should depend on the objective of answering a

problem and the demands in the society. It may be possible to consider the situation in

which humans choose not only reference partners but also the extent to which they depend

on social information – the optimal choice should then depend on the preferred balance

between accuracy and stability. If individuals depend more on social information, they may

be able to improve their performance on average. However, if individuals want to avoid

getting involved in incorrect information cascade, they may have to inhibit too much use

of social information. For example, if the group performance determines the growth rate of

earnings of the group in a year, group members should have stronger motivation to avoid
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incorrect information cascade. This is because obtaining very low group performance in a

single year thorough incorrect information cascade badly damages the mean growth rate over

several years. The mean growth rate over several years is calculated as the geometric mean

(not the arithmetic mean) of growth rates of the years, and therefore large fluctuation in

the growth rates severely decreases their geometric mean, as has been shown in the classical

theories of life history evolution in changing environments (Seger and Brockmann, 1987). On

the other hand, restricted dependence on social information started as a fear for information

cascade may let the benefit of collective intelligence slip by, further demoting their use. It

therefore remains an interesting open question that how the self-organization of reference

structure of people evolves under different situations faced by the society.

I mentioned in General Introduction two motivations of conformity proposed so far: nor-

mative and informational social influence (Deutsch and Gerard, 1955). In my study, I as-

sumed that people use social information to make their opinions more accurate. I therefore

focused on informational social influence, the influence to conformity that stems from one’s

desire to obtain the evidence for one’s decision. On the other hand, normative social influence

comes from one’s hope to respond to others’ expectation, for example, “in order to avoid being

ridiculed, or being negatively evaluated, or even possibly out of a sense of obligation” (Deutsch

and Gerard, 1955). These two motivations are thought to be equally important in human

society. Therefore, humans do not always use social information to optimize one’s accuracy.

For example, Mahmoodi et al. (2015) suggested by their experiment that people weight

their own opinions against those of pair-partners nearly equally in their opinion aggregation.
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They observed the equality bias even when the equal weight is not optimal and even when

the subjects received the feedback about the difference of their own accuracy. The authors

pointed out that diffusing the responsibility and avoiding social exclusion can be considered

as a part of the reasons of the equality bias. I think it is important to also consider such

motivations for the use of social information when we study the self-organization of reference

structure and the decision accuracy of people in the structure.
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Appendix A

The derivation of the mean

performance

Derivation of mean performance

The mean performance of an agent can be described as a linear function of his/her ability as

I explained in Section 3.2 in the main text. Here I explain the derivation of the approximate

formula for the slope and the intercept of the linear function. In this derivation, I neglected

self-loops or overlaps in reference links to simplify my approximation.

In my model, agents make their decisions sequentially, so each agent actually incorporates

answers of only referents who have already stated the answer (let me call them “stated

referents”) among M agents to which he/she links (out-degree≡ M). Therefore, in sequential

decision-making, agents are divided into M+1 classes: class C0 of agents who make decisions
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independently by themselves, class C1 of agents who put the answer of a referent together

with his/her own choice, and so on. Let Cs be the class of agents who put the answers of s

referents together with their own choice. There are on average

cs =
N
∑

l=s+1

(

M

s

)(

l − 1

N

)s (

1−
l − 1

N

)M−s

(A.1)

agents in such class as shown below. Suppose that the agent is the l-th earliest to make the

decision (l can be chosen from s+1 to N with equal probability). Given that the agent is the

l-th earliest, there are l− 1 agents who have already stated their answers. Thus, the number

of stated referents of the l-th earliest agent follows the binomial distribution with parameters

M and (l − 1)/N , since agents state their answers in a randomly determined order. This

leads to the expression (A.1) for the mean number of agents who belong to class Cs.

To derive an approximation formula for the mean performance, I assumed that all the

agents who made their decisions the earliest to the c0-th earliest belong to class C0, i.e., they

had no stated referent in making their decision; hence, they decided relying only on their own

belief. Similarly, all the agents who made the (cs−1 + 1)-th earliest to the cs-th earliest are

assumed to belong to class Cs, (s = 1, 2, . . . ,M), i.e., put the answers of s referents together

with their own choices in making their decisions. Here, I further assume that s referents

of an agent of class Cs are randomly chosen from the agents of class C0, C1, . . . , Cs−1 in

proportion to c0 : c1 : · · · : cs−1.
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Let πs(p) be the mean performance of an agent who has ability p and belongs to class Cs.

Clearly, π0(p) = p. Let r∗s be a random variable that represents the performance of a referent

who is being referred by the agents in class Cs. Let me consider an agent who is randomly

sampled from the population, say agent i. I approximated the probability that a referent of

agent i has ability p as g(p) ≡ k̄(p)/(NM) regardless of the number of followers of the agent,

where k̄(p) is the mean in-degree of the agent with ability p, as explained in Section 3.1 in

the main text (Eq. (3.1)). Under this assumption, let p∗ be a random variable that represents

a referent’s ability. Thus, I assumed that the ability of a referent p∗ follows the distribution

g. Using the above simplifying assumptions, r∗1 can be approximated as r∗1 ≈ π0(p∗) = p∗

since r∗1 is the performance of an agent in class C0. Furthermore, I approximated the value

of r∗1 = p∗ by its mean, p∗ ≡ E[p∗] ≈
∑N

i=1 pig(pi) =
∑N

i=1 pik̄(pi)/(NM).

The performance of an agent in class C1 can be described as

π1(p) = pr∗1 +
1

2
[p(1− r∗1) + (1− p)r∗1] (A.2)

=
p+ r∗1

2
. (A.2′)

The first term on the right-hand side of (A.2) stands for the contribution to the mean perfor-

mance when both the referent and the agent him/herself gave correct answers. The second

term is the contribution when either the referent or the agent him/herself gave a correct

answer (the two different opinions tie in this case, and the actual decision is made by tossing
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a coin; hence, the factor 1/2). Similarly, π1(p) can be approximated as follows:

π1(p) =
p+ r∗1

2
≈

p+ p∗

2

≈
p+ p∗

2
. (A.3)

Now, I consider the mean performance of referents who are being referred by the agents

in class C2, r2 ≡ r∗2, as follows. Under my assumption, an agent in class C2 refers to an

agent in class C0 with a probability of c0/(c0 + c1) and refers to an agent in class C1 with a

probability of c1/(c0 + c1). Thus,

r∗2 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

π0(p
∗), with probability

c0
c0 + c1

,

π1(p
∗), with probability

c1
c0 + c1

.

(A.4)

Since π0(p) = p, and by equation (A.3), functions π0 and π1 can be assumed as linear

functions—I can see that π0(p) and π1(p) also increase nearly linearly with ability p in my

computer simulation (Fig.A.1). Therefore, the mean performance of referents who are being

referred by the agents in class C2, r2, can be approximated as

r2 ≈ E

[

c0
c0 + c1

π0(p
∗) +

c1
c0 + c1

π1(p
∗)

]

=
c0

c0 + c1
E[π0(p

∗)] +
c1

c0 + c1
E[π1(p

∗)]

≈
c0

c0 + c1
π0(p∗) +

c1
c0 + c1

π1(p∗), (A.5)
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where π0(p) = p and π1(p) = (p+ p∗)/2. Therefore,

r2 ≈
c0

c0 + c1
p∗ +

c1
c0 + c1

p∗ + p∗

2
= p∗. (A.6)

Similarly, π2(p), r3, π3(p), . . . , rM , and πM(p) can be derived sequentially as follows: Let

Q(s, j) be the probability that j out of s stated referents of an agent in class Cs give correct

answers, as

Q(s, j) =

(

s

j

)

rjs(1− rs)
s−j. (A.7)

When the number of stated referents of an agent is even, there are s + 1 answers/choice

including his/her own choice. The agent can give a correct answer by majority-rule when

more than s/2 answers/choice are correct. Therefore, the mean performance of an agent with

ability p in class Cs, πs(p), can be described as

πs(p) = p
∑

j+1≥s/2+1

Q(s, j) + (1− p)
∑

j≥s/2+1

Q(s, j)

= p
s

∑

j=s/2

Q(s, j) + (1− p)
s

∑

j=s/2+1

Q(s, j)

=
s

∑

j=s/2+1

Q(s, j) + pQ
(

s,
s

2

)

, (A.8)
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when s is even. Similarly, when s is odd,

πs(p) = p
∑

j+1≥(s+1)/2+1

Q(s, j) + (1− p)
∑

j≥(s+1)/2+1

Q(s, j)

+
1

2

[

pQ(s,
s− 1

2
) + (1− p)Q(s,

s+ 1

2
)

]

=
s

∑

j=(s+3)/2

Q(s, j) +
1

2
Q(s,

s+ 1

2
) +

1

2

[

Q(s,
s− 1

2
) +Q(s,

s+ 1

2
)

]

p. (A.9)

The mean performance of referents who are being referred by the agents in class Cs, rs,

can be derived as

rs =

∑s−2
j=1 cj

∑s−1
j=1 cj

rs−1 +
cs−1

∑s−1
j=1 cj

E[πs−1(p
∗)]

=

∑s−2
j=1 cj

∑s−1
j=1 cj

rs−1 +
cs−1

∑s−1
j=1 cj

πs−1(p∗). (A.10)

In equation (A.10), E[πs−1(p∗)] = πs−1(E[p∗]) = πs−1(p∗) holds because πs−1(p) can be induc-

tively assumed to be a linear function of p for any s according to Equations (A.7)–(A.10),

and from Fig. A.1—rs is not a function of p but a function of p∗ = E[p∗] ≈
∑N

i=1 pig(pi).

Therefore, the mean performance of agents in class Cs can be represented as

πs(p) = Ag,sp+Bg,s, (A.11)

where Ag,s and Bg,s do not depend on p.
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Figure A.1: The mean performance of an agent in class Cs, πs(p) versus his/her ability p
are shown for s = 0, 1, . . . , 5 and for rewiring thresholds θ = 0.5, 0.55 and 0.6. Figures in
the first, second, third, forth, fifth and sixth rows show the case where the number of stated
referents s are 0, 1, 2, 3, 4 and 5, respectively. Figures in the first, second and third columns
show the case where the threshold θ are 0.5, 0.55 and 0.6, respectively. In each panel, we can
see the linear increase of the mean performance with the ability.
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The mean performance depends linearly on the agent’s ability.

Finally, the mean performance π(p) of an agent with ability p can be approximated as

π(p) =

∑M
s=0 csπs(p)
∑M

s=0 cs
. (A.12)

Since πs−1(p) is a linear function of p for each s, π(p) is also a linear function of p and can

be represented as

π(p) = Agp+ Bg. (A.13)

The mean performance calculated by equation (A.13) agrees with the simulation results

shown in Fig. 5 (a).

The linearity of mean performance when self-loops and overlaps are

allowed

Here, I show that the mean performance can be described as a linear function of the ability

even if there are self-loops and overlaps in reference links. First, I consider the case where

there are aii(≥ 1) self-loops of an agent i, where I regard that agent i’s choice has a weight

of (aii + 1) to him/herself in i’s majority-rule voting. I can calculate the mean performance

of agent i as follows. Let s be aii plus the number of the agent i’s stated referents other

than agent i. Let {d0, d1, . . . , daii , . . . , ds} be a set of choices and answers, where d0 rep-

resents the choice of agent i him/herself and each of d1, . . . , daii represents the choice of
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agent i him/herself relating to the aii self-loops (d1 = d2 = · · · = daii = d0 by definition).

Each of daii+1, . . . , ds represents the answer of each stated referent of agent i. In this case,

(d0, d1, . . . , daii) = (1, 1, . . . , 1) with a probability of pi and (d0, d1, . . . , daii) = (0, 0, . . . , 0)

with a probability of 1 − pi. From equation (A.8), the probability that agent i makes a

correct answer, πs(pi), is,

πs(pi) = piPr.

[(

(s+ 1) + 1

2
− (aii + 1)

)

stated referents

other than agent i gave correct answers

]

+(1− pi)Pr.

[(

(s+ 1) + 1

2

)

stated referents

other than agent i gave correct answers

]

, (A.14)

when s is even. Note that πs(pi) shown above is a linear function of pi. Using the case that

s is odd in Equation (A.9), I can again describe πs(pi) as a linear function of pi when s is

odd. Similarly, I can confirm that the mean performance of an agent can be described as a

linear function of the ability even when there are overlaps in reference links.
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Appendix B

The relationship between the mean

performance and the mean ability of

referents

In Section A, I derived the approximation formula for the mean performance π(p) of an

agent with ability p, which is expressed in terms of the mean ability of referents p∗ =

∑N
i=1 pik̄(pi)/(NM).

As discussed in the main text, adaptive rewiring and a lower kick-off threshold lead to

both a high mean ability of referents p∗ (FIG. 12) and a high mean performance of each agent

(FIG. 9). In this section, I show that the mean performance of each agent increases with the

mean ability of referents according to the formula for the mean performance that I obtained
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in Section A. We can, therefore, say that adaptive rewiring and a lower kick-off increase the

mean ability of referents, and this leads to a high mean performance of each agent.

I will show that ∂π(p)/∂p∗ > 0 for all p and p∗ with 0 ≤ p ≤ 1 and 0 ≤ p∗ ≤ 1.

Proof. From the Equation (A.12) in Section A,

∂π(p)

∂p∗
=

∑M
i=0 cs∂πs(p)/∂p

∗

∑M
s=0 cs

. (B.1)

I show below that ∂π0(p)/∂p∗ = 0 and ∂πs(p)/∂p∗ > 0 for s ≥ 1. Clearly ∂π0(p)/∂p∗ = 0

as π0(p) = p, and ∂π1(p)/∂p∗ = 1/2 > 0 since π1(p) = (p∗ + p)/2. For s ≥ 2, I show both

∂rs/∂p∗ > 0 and ∂πs/∂rs > 0 since ∂πs(p)/∂p∗ = (∂rs/∂p∗)(∂πs/∂rs).

First, I show ∂πs/∂rs > 0. When s is even and s ≥ 2, by equations (A.8) and (B.1),

∂π(p)

∂p∗
=

s
∑

j=s/2+1

∂Q(s, j)

∂rs
+ p

∂Q (s, s/2)

∂rs
, (B.2)

where ∂Q(s, j)/∂rs =
(

s
j

)

[jrj−1
s (1 − rs)s−j − (s − j)rjs(1 − rs)s−j−1]. Using the fact that

(

m
n

)

(m− n)−
(

m
n+1

)

(n+ 1) = 0 for any integers m and n with m > n ≥ 0,

∂π(p)

∂p∗
= rs/2−1

s (1− rs)
s/2−1

×
[(

s

s/2− 1

)

(s

2
+ 1

)

rs + p

(

s

s/2

)

s

2
(1− rs)− p

(

s

s/2

)

s

2
rs

]

(B.3)

= rs/2−1
s (1− rs)

s/2−1 s!

(s/2− 1)!(s/2)!
[(1− rs)p+ rs(1− p)] > 0. (B.3′)
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Similarly, when s is odd and s ≥ 3,

∂πs(p)

∂rs
=

1

2

(

s

(s− 1)/2

)

s+ 1

2
r(s−1)/2
s (1− rs)

(s−1)/2

+
1

2

s!

[(s− 3)/2]![(s+ 1)/2]!
r(s−3)/2
s (1− rs)

(s−3)/2
[

(rs − p)2 + p(1− p)
]

> 0. (B.4)

Therefore, ∂πs/∂rs > 0 for s ≥ 2.

Secondly, I show ∂rs/∂p∗ > 0 for s ≥ 2. By equation (A.10) and (A.11),

∂rs
∂p∗

=

∑s−2
j=1 cj

∑s−1
j=1 cj

∂rs−1

∂p∗
+

cs−1
∑s−1

j=1 cj
Ag,s. (B.5)

Since r1 = r2 = p∗, as explained in Section A, ∂r1/∂p∗ = ∂r2/∂p∗ = 1 > 0. Thus, inductively,

∂rs/∂p∗ > 0 for s ≥ 2, according to Equation (B.5). !
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Appendix C

The formal derivation of the mean

in-degree

Here, I assume that the number of agents N is infinitely large, and p is a continuous value.

Let g̃(p) be the probability density function for the ability of an agent who is being referred to

in the self-organized network. In addition, I define f(Π) as the probability density function

of the performance of the agent who is being referred to in the self-organized network. ψ(p)

and φ(Π) respectively denote the unconditional probability density functions of the ability

and performance of the agents, who are either being referred to or not. Let TΠ be the mean

duration that the agent with performance Π is kept linked by a follower.

Let ft(Π) be the probability density function for the performance of the agent who is

being referred to at iteration time t. The function ft(Π) satisfies the following equation by

assuming that a link directing to an agent with performance Π is detached with a probability
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of 1/TΠ in a unit time interval:

ft+1(Π) =

(

1−
1

T̄Π

)

ft(Π) + φ(Π)

∫ 1

0

ft(Π
′)

1

T̄Π′

dΠ′. (C.1)

The first term on the right-hand side of equation (C.1) corresponds to the probability that

a reference link to an agent with performance Π remains without being rewired in a unit

time interval. The second term corresponds to the probability that a link is newly rewired

to an agent with performance Π after it is discarded. Therefore, in the equilibrium state, the

probability density function for the performance of the agent who is being referred to in the

self-organized network, f(Π), holds:

f(Π) =

(

1−
1

T̄Π

)

f(Π) + φ(Π)

∫ 1

0

f(Π′)
1

T̄Π′

dΠ′. (C.2)

Equation (C.2) can be calculated as follows.

0 = −
f(Π)

T̄Π
+ φ(Π)

∫ 1

0

f(Π′)

T̄Π′

dΠ′,

and hence,

f(Π) =
T̄Πφ(Π)

∫ 1

0 T̄Π′φ(Π′)dΠ′
. (C.3)
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Since Π(p) = Agp+Bg from Equation (A.13) in Section A, f(Π) = g̃((Π−Bg)/Ag)/Ag and

φ(Π) = ψ((Π− Bg)/Ag)/Ag are satisfied. Therefore,

g̃(p) =
T̄Ap+Bψ(p)

∫ 1

0 T̄Ap′+Bψ(p′)dp′
. (C.4)

In the main text, I set ψ(p) as

ψ(p) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

4, 0.5 ≤ p ≤ 0.75,

0, otherwise.

(C.5)

i.e., p follows the uniform distribution U(0.5, 0.75). For the finite number of agents N , I can

approximate the probability g(pi) that agent i with ability pi is being referred from an agent

as g(pi) ≈
∫ pi+1

pi
g̃(p′)dp′. Thus the solid lines in FIG. 7 (b) are calculated as

k̄(pi) =NMg(pi)

≈NM

∫ pi+1

pi

g̃(p′)dp′ = NM

∫ pi+1

pi

T̄Ap+B
∫ 1

0 T̄Ap′+Bdp′
dp

≈NM
T̄Api+B

∑N
j=1 T̄Apj+B

. (C.6)
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Appendix D

The numerical procedure to obtain

the mean duration that an agent

keeps a follower

In this section, I explain how I solve the recurrence equations (3.4) and (3.5) in Section 3.3

in the main text,

TΠ(y) = 1 + ΠTΠ(α + (1− α)y)+ (1− Π)TΠ((1− α)y), y > θ, (D.1)

and

TΠ(y) = 0, y ≤ θ, (D.2)
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for the recurrence of TΠ(y). Here TΠ(y) represents the mean time until the evaluated perfor-

mance Yt of a referent, whose actual performance is Π, hits the threshold θ first time in the

stochastic process {Yt | Y0 = y}, where t is the time since it is linked by a follower.

Note that the evaluated performance Yt is always less than 1, because the right side of (1)

in the main text represents the internally dividing point of It, which is either 0 or 1, and the

current value of Yt. Let b be (1−α)θ, which is the infimum of the realization of Yt because the

evaluated performance is updated to (1−α)θ when a referent with its evaluated performance

θ gives a wrong answer. I discretized the interval [b, 1](⊂ R) as B ≡ {b0, b1, . . . , bS}, where

bi = b+ iδ and S = [(1− b)/δ], and consider the recurrence equations (D.1) and (D.2) on B,

as follows. Here I set δ sufficiently small as δ = 0.0001 in my actual numerical calculation

and [ · ] represents the Gauss’ symbol.

I defined four maps, I, R, U and D as follows.

I(y) ≡ [(y − b)/δ], (D.3)

with which i = I(bi), representing the discretization of the interval [b, 1], and its inverse

R(j) ≡ b+ δj, (D.4)

with which bi = R(i),

U(y) ≡ (1− α)y + α, (D.5)
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and

D(y) ≡ (1− α)y. (D.6)

The map U (D) corresponds to the case that the referent gives a correct (wrong) answer

and the evaluated performance Yt changes better (worse). Therefore, the function I ◦ U ◦R

(I ◦ D ◦ R ) means the change in the discretized evaluated performance when the referent

gives a correct (wrong) answer, where ◦ means composition of functions.

Let x = (xi) be a (S + 1)-dimensional vector, where xi = TΠ(bi). With this definition, xi

gives the mean first hitting time when Y0 = y = b + iδ, to the threshold θ of the stochastic

process {Yt | Y0 = b + iδ}. The recurrence equations (D.1) and (D.2) for discretized state

space in the self-organized network are then expressed as

x = Ax+ 1, (D.7)

where A = (aij)i,j=0,...,S is an (S + 1)× (S + 1) matrix where the first I(θ) + 1 rows of A are

zero vectors,

aij = 0, i = 0, 1, ..., I(θ); j = 0, 1, . . . , S. (D.8)
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From the i = I(θ) + 1st to i = I(θ/(1−α))th rows of A are vectors in which only (i, I ◦U ◦

R(i))-element is non zero value, Π,

aij =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Π, i = I(θ) + 1, . . . , I(θ/(1− α)), j = I ◦ U ◦R(i),

0, i = I(θ) + 1, . . . , I(θ/(1− α)), j ̸= I ◦ U ◦R(i).

(D.9)

From the i = I(θ/(1−α))+1st to Sth rows of A are vectors in which only (i, I ◦D ◦R(i))-

element and (i, I ◦ U ◦R(i))-element are non zero values, 1− Π and Π, respectively,

aij =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1− Π, i = I(θ) + 1, . . . , S, j = I ◦D ◦R(i),

Π, i = I(θ) + 1, . . . , S, j = I ◦ U ◦R(i),

0, i = I(θ) + 1, . . . , S, j ̸= I ◦D ◦R(i), I ◦ U ◦R(i).

(D.10)

and 1 = (1i)i=0,...,S is an (S + 1)-dimensional vector with

1i =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, i = 0, 1, . . . , I(θ),

1, i = I(θ) + 1, . . . , S.

(D.11)

By equation (D.2), the first I(θ)+1 elements in the vector 1 are 0, and the first I(θ)+1 rows

in the matrix A are zero vectors. Since the third term (1−Π)TΠ((1−α)y)(= (1−Π)TΠ(D(y)))

in the right side of equation (D.1) does not vanish when the initial evaluated performance y

satisfies (1−α)y > θ (i.e. y > θ/(1−α)), the (i, I◦D◦R(i))-element of the matrix A is 1−Π
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for i > I(θ/(1−α)). The second term ΠTΠ(U(y)) in the right side of equation (D.1) does not

vanish when the initial evaluated performance y satisfies y > θ. Thus the (i, I ◦ U ◦R(i))-

element of the matrix A is Π for i > I(θ).

The equation (D.7) can be solved as

x = (E − A)−11, (D.12)

where E represents the identity matrix.

The I(y0)-th element in the vector x is the duration that an agent with the performance

Π is kept linked from a follower, T , for the initial evaluated performance Y0 = y0.
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Appendix E

Another distribution of ability

To check the validity of my way to derive g(p), I apply it to another probability density

function (p.d.f) of agent’s ability. The applied p.d.f. has a saw-toothed shape with the

vertical tip at p = 0.5, declining linearly with p towards zero at p = 0.75:

ψ̃(p) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

24− 32p, 0.5 ≤ p ≤ 0.75,

0, otherwise.

(E.1)

I calculated the p.d.f. of the ability of being referred agents

g̃(p) = ψ̃(p)T̄Ap+B/
∫ 1

0 ψ̃(p
′)T̄Ap′+Bdp′ as the same way for ψ(p). To compare with the cal-

culation results, I conducted simulation under parameters N = 100, M = 5, y0 = 0.625

and α = 0.1. I set the ability of agents as pi = (3 −
√

1− i/N)/4, i = 0, 1, 2, . . . , since

a = (3 −
√
1− u)/4 follows the equation (E.1), where u is a random variable which follows
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the uniform distribution in [0, 1]. The simulation data of the mean in-degree k̄(pi) of an

agent with the ability pi agrees with NM
∫ pi+1

pi
g̃(p′)dp′, see Fig. E.1. Note that I obtained

the exponential tailed in-degree distribution again with this p.d.f. ψ̃ (Fig. E.2). As shown in

Figure E.1, the mean in-degree also increases exponentially with the ability.

Figure E.1: The semi-log plot of the mean in-degree of an agent versus his/her ability in the
self-organized network. Different symbols represent results for 2 thresholds, θ = 0.5 and 0.6.
The distribution of the abilities is given by ψ̃(p). The mean in-degree increases approximately
exponentially with ability. The circle and plus are simulation data and the analytical results
are shown by solid lines.
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Figure E.2: (a) The solid line is the Poisson distribution with mean 5 representing the initial
in-degree distribution. The markers (circle and plus) show the in-degree distributions of the
self-organized network with rewiring threshold θ = 0.5 and 0.6, respectively, obtained by
500 independent runs of my simulation. (b) The same as (a) except that the vertical axis
is logarithmically scaled. We can see approximately exponential tails in the self-organized
networks. In both of these figures, the distribution of the abilities is given by ψ̃(p).
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Appendix F

The effect of the parameter α
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Figure F.1: The effect of the parameter α that represents the extent to which an
agent attaches importance to the immediate past result in evaluating the perfor-
mance of referents. Panels in the first to the third columns respectively show the results
for α = 0.08, 0.1 and 0.2. In all panels, the blue circles represent the results for the rewiring
threshold θ = 0.5, and the red crosses are for θ =0.6, in the self-organized networks.
(a)-(c): The in-degree distributions in the initial random network (dashed) and in the self-
organized networks with different rewiring thresholds θ =0.5 (blue circles) and θ =0.6 (red
crosses). The vertical axis is scaled logarithmically. The initial in-degree distribution fol-
lows the Poisson distribution with mean 5. The tails in the in-degree distributions in the
self-organized networks are approximately exponential for all cases. The tails of in-degree
distributions show steeper declines as α becomes larger.
(d)-(f): The mean duration that an agent is kept by a follower plotted against the agent’s
mean performance in the self-organized networks with different rewiring thresholds θ =0.5
(blue circles) and θ =0.6 (red crosses). The mean duration increases approximately exponen-
tially (but actually slightly faster than exponentially) with the mean performance for all α
values. As α becomes larger, the mean duration of keeping a follower declines. Consequently,
both the effects of the mean performance (the slopes of curves) and of the rewiring thresholds
(the difference between blue and red points) on the mean duration become less pronounced.
(g)-(i) The mean in-degree of an agent plotted against his/her ability in the self-organized
networks with rewiring thresholds 0.5 (blue circles) and 0.6 (red crosses). The vertical axis
is scaled logarithmically. The mean in-degree increases approximately exponentially (but
actually slightly faster than exponentially) with ability for all values of α. The effect of the
ability or the kick-off threshold on the mean in-degree becomes less pronounced as α becomes
larger.
(j)-(l): The mean performance of each agent plotted against his/her ability in the initial
random networks (the gray boxes) and in the self-organized networks with different rewiring
thresholds θ =0.5 (blue circles) and θ =0.6 (red crosses). The mean performance increases
linearly with ability for all values of α. As α increases, the effect of the adaptive rewiring (the
difference between gray and colored points) and that of rewiring thresholds (the difference
between blue and red points) on the mean performance become less pronounced.
The last two rows show the mean, (m)-(o), and the standard deviation (SD), (p)-(r), of
group performance in the self-organized networks plotted against the rewiring threshold.
The dashed lines represent those in the initial random network. Both mean and standard
deviation of group performance are higher than that in the initial random network, and
show monotonic decrease with the rewiring threshold for values of α. The effects of the
rewiring threshold on the mean and the SD of group performance become less pronounced
as α becomes larger.
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varying vertex intrinsic fitness. Phys. Rev. Lett., 89:258702, 2002.

C. Castellano, S. Fortunato, and V. Loreto. Statistical physics of social dynamics. Rev. Mod.
Phys., 81:591–646, 2009.

90



M. B. Clement and S. Y. Tse. Financial analyst characteristics and herding behavior in
forecasting. J. Finance, 60(1):307 – 341, 2005.

R. J. Clément, M. Wolf, L. Snijders, J. Krause, and R. H. Kurvers. Information transmission
via movement behaviour improves decision accuracy in human groups. Anim. behav., 105:
85–93, 2015.

E. Colman and G. Rodgers. Local rewiring rules for evolving complex networks. Phys. A,
416:80 – 89, 2014.

L. Conradt and T. J. Roper. Group decision-making in animals. Nature, 421(6919):155, 2003.

L. Conradt and T. J. Roper. Consensus decision making in animals. Trends. Ecol. Evol., 20
(8):449–456, 2005.

R. A. Cooper, T. E. Day, and C. M. Lewis. Following the leader:: a study of individual
analysts’ earnings forecasts. J. Financ. Econ., 61(3):383 – 416, 2001.

R. Corten and V. Buskens. Co-evolution of conventions and networks: An experimental
study. Soc. Networks, 32(1):4–15, 2010.

I. D. Couzin. Collective cognition in animal groups. Trends Cogn. Sci., 13(1):36–43, 2009.

F. Cowell. Measuring inequality. Oxford University Press, Oxford, 2011.

M. Deutsch and H. B. Gerard. A study of normative and informational social influences upon
individual judgment. J. Abnorm. Soc. Psych., 51(3):629, 1955.
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