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Abstract

The direct detection of gravitational waves by Advanced Laser Interferometer Gravita-

tional wave Observatory (LIGO) has triggered the birth of a new window in astronomy. The

number of events detected with sufficient confidence amounts to ten for binary black hole

mergers and one for a binary neutron star merger. As for the binary neutron star merger

GW170817, starting with the early alert of gravitational wave detection by LIGO and Virgo,

follow-up observations of the source with multiband electromagnetic telescopes were per-

formed, and they yielded novel information about astrophysics and cosmology. Now, we are

quite sure that gravitational wave observations will play an important role in revealing a

hidden side of the universe in the future.

KAGRA is a 3-km interferometric gravitational wave telescope that was constructed in

Japan. The KAGRA interferometer has two features that distinguish it from the current

2nd-generation advanced detectors: it is located at an underground site with lower seismic

disturbance and it uses cryogenic sapphire mirrors in order to reduce thermal noise. As

the KAGRA is located far from both LIGO and Virgo, the participation of KAGRA in the

global observatory network can offer benefits of not only accurate false positive rejection but

also better source localization, better sky coverage, and more precise parameter estimation.

Presently, KAGRA is in the process of completing full configuration of the interferometer

toward the joint observation with the LIGO and Virgo detectors scheduled in 2019.

Vibration isolation systems are the main instruments for suppressing mirror fluctuations

introduced by continuous and random seismic motion. Even in a quiet underground environ-

ment, as gravitational wave observation with the KAGRA interferometer requires spectral

displacement fluctuation of the mirror to be less than 10−19m/Hz1/2 in its observational band

above 10 Hz, one needs to attenuate the vibration transmission from the ground to the mirror

by 8–10 orders of magnitude. This level of seismic attenuation can be achieved by suspending

the mirror at the bottom of a multi-stage pendulum called a suspension system, which pro-

vides vibration filtering at high frequencies above its mechanical resonances. The suspension

system also serves as an interface of the interferometer control. The position and attitude of

the mirror can be monitored and controlled with local sensors and actuators mounted on the

suspension stages so that the optical cavities in the interferometer are kept in the resonant

condition. Although the suspension system will enhance the amplitude of the mirror fluctua-
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tion at the mechanical resonant frequencies outside of the observation band (< 1Hz), it can

also be suppressed by active feedback control with the electric instruments.

The study in this thesis develops a vibration isolation system called type-A suspension

for the main mirrors (test masses) in KAGRA. The Type-A suspension is a large pendulum

with a total of nine stages and is 13.5-meter tall. It consists of two primary compositions,

i.e., the tower part representing the top five stages at room temperatures and the cryogenic

payload representing the bottom four stages at cryogenic temperatures (∼ 20K). This study

focuses on the tower part as the vibration isolation performance of the entire suspension

system is determined by the installation and adjustments of the low-frequency oscillators

such as inverted pendulums and geometric anti-springs (GASs) implemented at the top five

stages.

The performance tests demonstrate that the installed type-A tower system basically has

dynamic characteristics that satisfy the requirements. The frequency responses of the type-

A tower are measured and compared to the predictions of the nominal model. Although

there is some amount of deviation, the obtained frequency responses can be regarded as

acceptable for achieving the required vibration isolation performances except for the vertical

direction. As for the vertical direction, the dynamics of the type-A tower shows discrepancies

between the measurement results and the model predictions, particularly the mode shapes of

its higher order resonances. It is suspected that the higher order oscillatory behavior has a

stronger dependence on the divergence of the mechanical parameters from the nominal values.

However, as the higher order modes have a smaller impact on the root mean square (RMS)

residual motion and that the measured mode frequencies are roughly distributed as expected,

the discrepancies in the vertical mode dynamics seem to be within the permissible range. This

tolerance is also plausible from the measured displacement spectrum at the dummy payload,

which is suspended, instead of the actual cryogenic payload. One problem still remains: is

the effect of couplings from non-straightforwardly-controllable degrees of freedom such as a

tilt of the middle GAS filter stages. The impact of the couplings on the test mass or the

interferometer should be confirmed after integration with the cryogenic payload.

In two kinds of damping control implemented in performance tests, torsion mode damping

is first engaged at the bottom stage of the type-A tower. As a major fraction of the height of

the type-A suspension is accounted for a series of single suspension wires, the system behaves

like a torsion pendulum with extremely low stiffness and torsional modes with long durations,

which creates challenges in stabilizing the alignment of the mirror. The type-A tower address

this issue by providing a function of active damping control at the tower’s bottom stage. The

torsion mode damping test proves that the long exponential decay time of the resonances can

be successfully reduced to less than 1 min by the active feedback control. In addition, the

in-loop sensor indicates that the RMS residual angular fluctuation in torsion is suppressed

sufficiently to a level of acquiring an arm cavity lock. Therefore, it is concluded that the
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type-A tower has satisfactory torsion mode damping.

This study also presents an advanced control scheme called modal damping. Modal

damping processes feedback signals in a decoupled modal basis instead of a conventional

Cartesian basis, allowing us to simplify the servo design optimization and to access efficient

actuation for a coupled oscillatory system. The control test demonstrates feasibility of modal

damping for the coupled vertical modes of the type-A suspension. By deriving a conversion

law between the Cartesian basis and the modal basis from the mathematical model, coupled

signals of the vertical modes can be decomposed intothose of each orthogonal eigenmode.

Moreover, the modal damping results show that the eigenmodes can be damped independently

of other modes. Although the availability of modal controllers is validated only for the vertical

modes in this test, one can expect to apply this technique to other stages having less-powerful

actuators such as the cryogenic payload.

After the sequence of tower tests, the installed type-A tower was integrated with the

cryogenic payload and incorporated into the global system of the KAGRA interferometer.

This thesis includes measurement of the vibration isolation ratio from the ground to the test

mass. During the first cryogenic test operation of the simplified 3-km Michelson interfer-

ometer, we measured the vibration transmissivity from the top stage to the error signals of

the inteferometer output. By combining the measured result with a model prediction of the

transmissibity from the ground to the top stage derived from the tuned mathematical model,

the total vibration isolation ratio of the type-A suspension was estimated as 9×10−22 for the

pure longitudinal contribution at 10 Hz. Although the estimated result and nominal model

prediction have mismatches, the seismic attenuation performance of the real system seems to

be reasonable enough to achieve the design sensitivity of KAGRA.
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Chapter 1

Introduction

1.1 Nature of gravitational waves

1.1.1 Derivation in linearized general relativity

The concept of gravitational wave first appeared in Einstein’s letter as an wave solution of

the linearized equation of the gravitational field [1, 2]. In other words, gravitational waves are

a variation of spacetime whose structure is determined as a metric tensor gµν . The structure

of spacetime is expressed as the world interval ds between two neighboring points via the

following equation:

ds2 = gµν dx
µdxν . (1.1)

The symbols with Greek index dxµ (µ = 0, 1, 2, 3) denote the difference between two sepa-

rated points in a four-dimensional coordinate system (x0, x1, x2, x3) ≡ (ct, x, y, z) 1. A flat

spacetime without any gravity is called a Minkowski spacetime. Its structure is described

with the metric η = diag(−1, 1, 1, 1).

The existence of mass or energy forms curved structure in the spacetime. The Einstein

equation associates the curved spacetime with the distribution of the mass and energy,

Rµν −
1

2
gµνR =

8πG

c4
Tµν . (1.2)

Here, Rµν and R on the left hand side are respectively the Ricci tensor and the Ricci scalar,

which are associated with the curvature of spacetime through the Riemann tensor Rλ
µρν as

1 On the other hand, the symbols with Roman indices such as dxi denote the difference between the

spacial components i = 1, 2, 3 of two points.

13
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follows2.

Rλ
µρν = ∂ρΓ

λ
µν − ∂νΓ

λ
µρ + Γλ

αρΓ
α
µν − Γλ

ανΓ
α
µρ (1.3)

Rµν ≡ Rα
µαν (1.4)

R ≡ Rµµ (1.5)

On the right hand side of eq. (1.2), Tµν is the energy-momentum tensor, G is Newton’s

gravitational constant, and c is the speed of light. Therefore, Einstein equation indicates

that the mass-energy distribution on the right hand side creates the curvature of spacetime

described on the left hand side in 1.2.

The derivation of the gravitational wave is achieved in the weak-field approximation

where tiny perturbation exists in the flat spacetime. In terms of the metric, it can be expressed

as the sum of the linear perturbation hµν and the Minkowski metric,

gµν = ηµν + hµν . (1.6)

Imposing conditions of a vacuum, Tµν = 0, and the Lorentz gauge,

∂hµ
ν

∂xµ

= 0 , (1.7)

and disregarding the higher order terms O(h2
µν), substitution of eq. (1.6) into the Einstein

equation eq. (1.2) yields a wave equation(
− 1

c2
∂2

∂t2
+

∂2

∂x2
i

)
hµν = 0 . (1.8)

This equation indicates that the perturbation hµν propagates through the spacetime at the

speed of light as a wave.

When we choose a spatial coordinate such that a gravitational wave travels along the z-

or x3-direciton, the plain wave solution can be derived as the following expression:

hµν = Aµν exp
[
iω
(
t− z

c

)]

Aµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 (1.9)

Here ω is the angular frequency, h+ and h× are the independent constants denoting the

amplitude of the gravitational wave. This reveals the transverse and polarized natures of

gravitational waves. The two polarizations known as the plus mode and the cross mode are

symmetric through a 45-degree rotation, as shown in fig. 1.1.

2 Following Einstein’s summation convention, we shall take the summation of all the degrees of freedom

about the Greek indices that appear both in superscripts and subscripts.
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plus mode

cross mode

3π/2π/2 π0

phase

Fig. 1.1. Two polarizations of gravitational waves; +-mode and ×-mode. Each mode pro-

duces different deformation shapes in the free-falling point masses with circular configuration.

1.1.2 Observable effect of gravitational waves

Consider the situation whereby two free-falling point masses are positioned separately

along the x- or x1-axis with a distance of ϵ. The effect of gravitational waves passing along

the z-axis (described in eq. (1.9)) appears when writing the proper distance of the particles.

If the particles are initially at rest, the proper distance δl is written as,

δl ≡
∫

|ds2|1/2 =
∫

|gµνdxµrdxν |1/2

=

∫ ϵ

0

|g11|1/2 dx1

≃ |g11|1/2 ≃
(
1 +

1

2
h11

)
ϵ . (1.10)

From eq. (1.10), it turns out that gravitational waves change the proper distance of the free-

falling masses. This is a physical quantity observable for our laser interferometric telescopes.

The absolute change in distance is proportional to both the initial separation ϵ and the

amplitude h11.

There are two polarizations in gravitational waves as shown in eq. (1.9). To understand

interaction of the two modes with masses, consider a thought experiment in which the test

masses are placed in a circular configuration at xi = (ϵ cos θ, ϵ sin θ, 0). The proper distance
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of the masses under the influence of gravitational waves is described as(
δlx

δly

)
=

(
ϵx

ϵy

)
+

1

2
eiω(t−z/c)

(
h+ h×

h× −h+

)(
ϵx

ϵy

)
(1.11)

=

(
ϵx

ϵy

)
+

1

2
eiω(t−z/c)

(
ϵx

−ϵy

)
h+ +

1

2
eiω(t−z/c)

(
ϵx

ϵy

)
h× . (1.12)

The second term indicates the variation in the proper distance caused by the plus mode, while

the third term indicates that by the cross mode. Figure 1.1 illustrates the interaction of the

two modes of the gravitational waves with the free-falling masses. The plus mode distorts

the circular arrangement into a ”plus” shape, while the cross mode distorts it into a ”cross”

shape. As mentioned above, the plus mode and the cross mode have symmetry through a

45-degree rotation.

1.1.3 Gravitational wave radiation

A gravitatonal wave is generated by accelerated masses analogous to the radiation of

electro-magnetic waves that are induced by acceleration of charged particles. However, the

gravitational wave radiation requires quadrupole (or higher-order multipole) moments rather

than a dipole moment, which is electromagnetic radiation requires.

Starting from the wave equation eq. (1.8) in the presence of the energy-momentum tensor

on the right-hand side, (
− 1

c2
∂2

∂t2
+

∂2

∂x2
i

)
hµν = −16πG

c4
Tµν . (1.13)

By introducing the retarded Green’s function G(x− x′) written as

G(x− x′) =
1

4π|x− x′|
δ(x0

ret − x′0) , (1.14)

x0
ret ≡ ctret , tret = t− |x− x′|

c
,

just as in electromagnetism, one can obtain a solution of eq. (1.13) in the form of the retarded

potential

hµν(x
0,x) =

4G

c4

∫ Tµν

(
x0 − |x−x′|

c
,x′
)

|x− x′|
dx′ . (1.15)

If we suppose that the region of Tµν ̸= 0 is small enough and the observer is far from the source,

eq. (1.15) can be approximated to the lowest-order terms of the mass multipole expansion as

hij(t,x) =
1

r

2G

c4
Q̈ij(t

′) , (1.16)
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where r ≡ |x− x′|, t′ ≡ t− r/c and Qij is the mass quadropole moment determined as

Qij(t
′) =

∫
ρ(t′,x′)

(
x′
ix

′
j −

1

3
δijx

i′xj ′
)
dx′ . (1.17)

In eq. (1.16), the mass quadrupole, rather than a monopole or dipole, moment appears as the

leading term of the multipole expansion. It can be intuitively understood that the mass (=

monopole) and the kinetic momentum (= dipole) are conservative quantities in an isolated

system and thus do not contribute to the radiation process.

Radiated energy

Here, the energy of gravitational wave radiation is briefly discussed. Using eq. (1.16),

one can derive the total radiated energy over the solid angle per unit time, or gravitational

luminosity L, as follows:

Lgw =
G

5c5
⟨...
Qij

...
Qij

⟩
. (1.18)

Here the angle bracket ⟨...⟩ indicates the spatial average of many wavelengths of emitted grav-

itational waves. This equation is equivalent to Larmor’s fomula in elecrtomagnetic radiation.

To estimate the magnitude of energy radiated as gravitational waves, we scale the
...
Qij

with a combination of physical parameters with basic units as

...
Qij ∼ MR2T−3 ∼ Mv3R−1 , (1.19)

where M , R, T , and v are the typical mass, spatial size, time scale, and velocity of the source,

respectively. First, we consider the generattion of gravitational waves in a laboratory-scale

experiment in which a dumbbell-like system that consists of two iron balls weighing 100 kg

each connected with a 2-meter bar is rotating at a frequency of 100 Hz. By plugging eq. (1.19)

into eq. (1.18), one can obtain

Lgw ∼ G

5c5
M2v6

R2

∼ 2.4× 10−23

(
M

100 kg

)2(
v

4πm× 100Hz

)6(
R

15 cm

)
[erg/s] . (1.20)

This energy emission rate is extremely small such that it takes about a thousand years to

generate energy equivalent to one photon of the cosmic microwave background. Therefore, it

is hopeless sto construct an available source of gravitational waves on Earth and people pin

their hope on the celestial sources.

For an astrophysical source usually bounded by its own gravity, we can assume that the

kinetic energy and the potential energy of the system are comparable so that

Mv2 ∼ GM2

R
. (1.21)
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Using this relation, the gravitational luminosity eq. (1.18) becomes

Lgw ∼ 2.3× 1057
(

R

Rsch

)−5

[erg/s] . (1.22)

Here the spatial size is scaled with the Schwarzschild radius defined by Rsch ≡ 2GM/c2. This

estimation indicates that the size of the object is the key property for gravitational wave

radiation.

Amplitude

To discuss the amplitude of the radiated gravitational waves, the Newtonian source

approximation is applied to eq. (1.16) such that

h ∼ 1

r

2G

c4
∂2

∂t2
(MR2) ∼ 1

r

2GMv2

c4

∼ Rsch

r

(v
c

)2
. (1.23)

one can parameterize the emission efficiency of gravitational waves with ϵ written as

ϵ ∼
(
Rsch

R

)
. (1.24)

Thus, by rewriting eq. (1.23) with the parameter ϵ, an estimation of the gravitational-wave

amplitude can be obtained.

h ∼ ϵ2/7
Rsch

2r
(1.25)

∼ 1.5× 10−21
( ϵ

0.1

)2/7( M

M⊙

)(
r

17Mpc

)
. (1.26)

Here the mass M and distance r are scaled by the solar mass M⊙ = 1.989×1030 [kg] and that

from the Earth to the Virgo cluster of about 17 Mpc. Even if an optimistic radiation efficiency

of ϵ = 10% is assumed, the amplitude of gravitational waves from a system as heavy as the

Sun is extremely small. For instance, when such a gravitational wave changes the proper

distance between two free-falling masses separated by 3 km, the geometrical displacement is

about 4.5× 10−18 m.

1.2 Detected gravitational-wave sources

Since the Advanced LIGO detected the first gravitational wave (GW) event [3, 4], the

number of detected gravitational waves has increased even after a few years’ observation.

Now the sources of all the detected events are the coalescences of compact star binaries
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such as black holes and neutron stars [5, 6]. Recently the LIGO Scientific Collaboration

and Virgo Collaboration opened a catalog of confident and marginal events of gravitational

wave detection [7]. It implies that the accumulation of the detected GW events expands our

understanding of scope of the universe. Here, the astrophysical picture of the compact binary

coalescence is presented.

1.2.1 Compact binary coalescence

Compact binary coalescences have been regarded as the most promising GW sources for

a long time, and thus have become the first GW events directly detected by human beings.

A binary system formed by compact stars such as neutron stars, black holes, or white dwarfs,

loses its orbital energy by gravitational radiation as the two stars approach each other. The

first evidence of this orbital energy loss was discovered by Hulse and Taylor in their long-

period radio observation of the pulsar binary PSR B1913+16 [8]. The orbital decay of the

pulsar binary shows precise agreement with the energy that gravitational waves carry away

from a system. As radiated energy grows as the two stars get closer to their center of gravity,

the brightest gravitational wave emission is expected at the moment of collision of the two

stars.

The typical compact binary coalescence scenario has three stages. The first stage is

called inspiral, where the two stars revolve in a quasi-stable circular or elliptic orbit while

approaching each other. After experiencing the last hundreds of revolution, the two stars

fall into the region where the point mass approximation is no longer valid and then move

to the second stage called merger. During the merger, the two objects are mixed to form a

single compact object. Then, in the last stage, which is ringdown, the newborn single object

settles to a stationary state through gravitational wave emission. The transitions occur over

a period of subseconds to minutes depending on the total mass of the system, although the

lifetime of the binary before merging can be in the order of tens of millions of years.

Inspiral phase

A waveform of GWs in the inspiral phase, known as the chirp signal, is predictable, and

for this reason, the compact binary merger became the first event of direct GW detection.

To support a binary system with a circular orbit (= sufficiently small eccentricity), for such

a two-body problem, it is convenient to use the relative coordinate x0 and the center-of-mass

coordinate xCM, which are determined as

x0 = x1 − x2 , (1.27)

xCM =
m1x1 +m2x2

m1 +m2

, (1.28)
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where (m1, m2) and (x1, x2) are the mass and the position of the corresponding star labeled

as the subscription, respectively. We also denote the total mass by m = m1 + m2 and the

reduced mass by µ = m1m2/m. If we choose a frame such that xCM = 0, what remains

of interest is the single effective particle of mass µ and its coordinate x0. This procedure

helps us to simplify the mass quadrupole moment in eq. (1.17) ρ(t,x) = µδ3(x− x0), as the

following expression:

Qij(t) = µ

(
(x0)i(x0)j −

1

3
r20 δij

)
. (1.29)

For the moment, we restrict the trajectory of the binary system in the xy-plane, which is

given by

x0(t) = r0 cos(ωst+ π/2) ,

y0(t) = r0 sin(ωst+ π/2) ,

z0(t) = 0 .

(1.30)

Here, the initial phase π/2 is chosen just for convenience’ sake. Then, substituting eq. (1.30)

into eq. (1.29) and taking the second derivative with respect to time, we can obtain

Q̈11 = 2µ r20 ω
2
s cos 2ωst , (1.31)

Q̈12 = 2µ r20 ω
2
s sin 2ωst , (1.32)

and Q̈22 = −Q̈11. As the equation of mass quadrupole radiation eq. (1.16) is given by

h+ =
1

r

G

c4
(Q̈11 − Q̈22) , (1.33)

h× =
2

r

G

c4
Q̈12 , (1.34)

the amplitude of the two polarizations of the GW is described with the source parameters µ,

r0, and ω as

h+(t) =
1

r

4Gµω2
s r

2
0

c4
cos 2ωstret , (1.35)

h×(t) =
1

r

4Gµω2
s r

2
0

c4
sin 2ωstret . (1.36)

Now, we release the trajectory of the binary system from the xy-plane to an orbit facing an

arbitrary direction. In such a situation, if we assume that the observer is sufficiently far from

the source, the observation of inclined plain waves can be regarded as that of axis-aligned

plain waves with an inclined line of sight as illustrated in fig. 1.2. From the observational

point of view, we can access information about the inclination of the source ι as the fainted

amplitude which can be written as

h+(t) =
1

r

4Gµω2
s r

2
0

c4

(
1 + cos2 ι

2

)
cos 2ωstret , (1.37)

h×(t) =
1

r

4Gµω2
s r

2
0

c4
cos ι sin 2ωstret . (1.38)
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Fig. 1.2. Observation of plain GWs from the inclined binary system with a line of sight

aligned to the z-axis (left) and the face-on binary system with a line of sight oriented to the

(θ, ϕ) direction (right).

To eliminate degeneracy of the source frequency ωs with the separation distance of the two

stars r0 as it gradually decreases while holding the Kepler’s harmonic law of ω2
s = Gm/r30,

we introduce the charp mass Mc, which is defined as

Mc ≡ µ3/5m2/5 =
(m1m2)

3/5

(m1 +m2)1/5
. (1.39)

Using this chirp mass, we finally obtain the expression of the chirp signal as

h+(t) =
4

r

(
GMc

c4

)5/3(
πfgw
c

)2/3(
1 + cos2 ι

2

)
cos(2πfgwtret) , (1.40)

h×(t) =
4

r

(
GMc

c4

)5/3(
πfgw
c

)2/3

cos ι sin(2πfgwtret) , (1.41)

where fgw is the frequency of the GWs associated with the source frequency such that fgw =

ωs/π. These expressions highlight the importance of the chirp mass Mc, which summarizes

the information of the source mass through the chirp signal.

The primary feature of the chirp signal is that its frequency fgw increases as the binary

system evolves to coalescence, as the separation of the two stars must decrease for the system

to compensate for the energy loss to GWs. Recalling the Kepler’s harmonic law, the orbital

energy of the binary system can be written as

Eorbit = −Gm1m2

2r20
= −

(
G2M5

c ωgw

32

)1/3

. (1.42)
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On the other hand, the luminosity of GW radiation can be obtained by substituting eq. (1.31)

and eq. (1.32) into eq. (1.18).

Lgw =
32

5

c5

G

(
GMcωgw

2c3

)10/3

(1.43)

By equating eq. (1.43) to −dEorbit/dt given in eq. (1.42), one can obtain

ḟgw =
96

5
π8/3

(
GMc

c3

)5/3

f 11/3
gw (1.44)

The integration of this equation tells us that the frequency fgw diverges at a finite value of

time t0. Here, the time to coalescence is denoted as τ ≡ t0 − t; furthermore, the evolution of

the chirp frequency follows the equation below.

fgw =

(
5

256

)3/8
1

π

(
GMc

c3

)−5/8

τ−3/8 (1.45)

As shown in fig. 1.3, the frequency as well as the amplitude of the chirp signal increases by

the end of the inspiral phase. For instance, the chirp signal from a 1.4M⊙-1.4M⊙ neutron

star binary has a frequency and amplitude of,

fgw ≈ 134 Hz

(
Mc

1.21 M⊙

)−5/8 ( τ

1 sec

)−3/8

, (1.46)

h ≈ 2.5× 10−22

(
Mc

1.21 M⊙

)5/3 ( τ

1 sec

)−1/4
(

r

17 Mpc

)−1

, (1.47)

The GW radiation in the chirp waveform ends when the radial distance of the binary

decreases beyond the innermost stable circular orbit (ISCO), where stable circular orbits are

no longer allowed. In Schwarzschild spacetime, the orbital radius corresponding to ISCO is

located at rISCO, which is given by

rISCO =
6Gm

c2
= 3Rsch . (1.48)

Therefore, the increase in the source frequency reaches its peak when r0 ≃ rISCO. Using

Kepler’s law again, the source frequency at the ISCO is calculated as

fISCO =
1

2π

1

6
√
6

c3

Gm

≃ 2.2 kHz

(
M⊙

m

)
. (1.49)

Seeing eq. (1.49), fISCO turns out to depend on the source mass. For instance, a 1.4M⊙-

1.4M⊙ neutron star binary has fISCO ∼ 800 Hz and a 30M⊙-30M⊙ black hole binary has

fISCO ∼ 36 Hz. Note that its GW frequency is twice that of the source frequency.
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Fig. 1.3. Calculated chirp signal from a 1.4M⊙-1.4M⊙ neutron star binary from 17 Mpc as

distant as the Virgo cluster.

A more precise prediction of the chirp waveform is a subject for the post-Newtonian

expansion, which treats the background spacetime curvature with the velocity of the source

as if they are correlated to each other. In the framework of the post-Newtonian expansion,

even though it is still assumed to be a low velocity and weak field, a slightly deviated chirp

signal can be reproduced with O(v/c), the higher-order perturbations of relativistic terms.

Thus, the source parameters such as individual mass and spin of the binary can be extracted

through the coefficients of the post-Newtonian terms. Moreover, precise estimation of the

post-Newtonian terms enables us to distinguish the modified theories of gravity as successors

of the general relativity.

To distinguich these signals from the detector noise, data analysts use the matched filter

algorithm that compares the detector output to the library of the waveform templates that

scan the parameter space of binary coalescences.

Merger and ringdown phase

Although the waveform of GWs in the inspiral phase is predictable with sufficient preci-

sion, in the merger phase the dynamics of the binary system can no longer be approximated to

point-mass-like or low-velocity ones. Therefore, numerical simulations, a field called numeri-

cal relativity, are one of the few powerful tools for demonstrating the coalescence, including

the effects of fluid dynamics, relativistic motions, and evolutions of background curvature.
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The waveform in the ringdown phase is dominated by a characteristic oscillation called

the quasinormal mode (QNM), assuming the remnant object is a black hole. As the black

hole just after the coalescence perturbs the spacetime, it will decay to a stationary state

through damped pulsation associated with gravitational wave radiation. This indicates that

the gravitational waves from the quasinormal mode include information about the spacetime

structure beyond the event horizon. Thus, the gravitational waves can be used as a probe

for properties of the black hole. Black holes and neutron stars have quasinormal modes for

which gravitational waves can provide information about their equations of state to exclude

inconsistent theoretical models.

1.3 Gravitational wave detection with laser interferom-

eter

To detect gravitational waves, one wants to measure the proper distance between two

separated points of the coordinate. We saw in section 1.1.2 that the gravitational waves make

tidal displacements on the points of the coordinate marked by the free-falling masses. One

way to reveal this variation of the space-time structure is to measure the round-trip travel

time of light beams sent over the distance.

The mainstream of building gravitational wave detectors in this several decades is in the

methodology of laser interferometer. After the famous J. Weber’s resonant bar experiment

in 1960’s [9], people started developing the laser interferometer to detect gravitational waves

in 1970’s [10]. The significant advantage in the use of the laser interferometer is that the

observational bandwidth can be much greater than that of the resonant bar detector, which

enables us to track the frequency evolution of the signals or to access the waveform of the

incident gravitational waves.

The current interferometers in operation of observing gravitational waves typically con-

sists of a Michelson inteferometer with sensitivity enhancement by the addition of Fabry-Perot

optical cavities.

1.3.1 Michelson interferometer

The Michelson interferometer is an extraordinarily accurate instrument for measuring

difference in the travel time of light in its arms. The instrument is known to many physicists

for the experiment of A. Michelson and E. Morley in 1887 which showed the non-existence

of the luminiferous æther [11]. Interferometry of the light beams transmitted through each

perpendicular but equated-length path shows the perturbation of the space-time as a change

in detected power. When gravitational wave with a certain frequency pass through the

inteferometer, it modulates the microscopic optical length of the arms at the same frequency.



1.3. GRAVITATIONAL WAVE DETECTION WITH LASER INTERFEROMETER 25

Mirror 1

Mirror 2

Beam
Splitter

L1

L2

Laser

Photo-
detectorx

y

z

Fig. 1.4. Michelson interferometer

As a result, the gravitational wave changes the interference condition of the output beam.

Letting the macroscopic arm length be L and the microscopic variation of the optical length

be ∆L, the amount of the change in the arm The amount of the microscopic optical-length

variation ∆L is approximately proportional to the macroscopic baseline length of the arm L,

so that,

∆L ∼ hL , (1.50)

where h is the amplitude of the gravitational wave. Therefore, we can get straightforward

implication that a Michelson interferometer with longer baseline acquires larger displacement

in its arm length.

The simplest configuration of the Michelson interferometer consists of a monochromatic

light source, 50%-50% beam splitter (BS), two end mirrors, and some photosensitive devices

such as photodetector (PD), which are illustrated in fig. 1.4. he electromagnetic field of the

induced laser with the laser angular frequency of Ω is written as

Ein = E0 e
iΩt . (1.51)

This laser beam is divided into two paths respectively in x-direction and y-direction at the BS.

Both beams are reflected at the end mirrors and then recombined at the BS again. Assuming
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that the phase shift in each arm is ϕ1 and ϕ2, one can write the electromagnetic field of the

recombined beam as

E = E1 e
i(Ωt−ϕ1) − E2 e

i(Ωt−ϕ2) . (1.52)

Here E1 and E2 denote the amplitude of the field that comes from each arm respectively. In

the ideal case with completely symmetric mirrors, we have E1 = E2 = E0/2. However, in

realistic case where the reflectivity of the end mirrors differ from each other, the two beams

are no longer symmetric and their amplitude means E1 ̸= E2. The power of the light incident

to the photodetector (PD) is

P = |E|2 = E2
1 + E2

2 + 2E1E2 cos(ϕ1 − ϕ2) (1.53)

The power has a cosinusoidal from with respect to the phase difference ϕ1 − ϕ2. Therefore,

one can regard the Michelson interferometer as an instrument that detects the phase shift

between two beams with different paths.

Response of Michelson interferometer to GWs

Suppose that +-mode gravitational waves meet the Michelson interferometer in the z-

direction. Then the world interval of the perturbated space-time can be written as

ds2 = −c2dt2 + (1 + h)dx2 + (1− h)dy2 + dz2 . (1.54)

As the laser beam travels along the null vector which satisfies ds2 = 0, The beam along the

x-axis is expressed as

dx

dt
= ± c√

1 + h
≃ ±

(
1− 1

2
h

)
c . (1.55)

Here, we determine that the positive sign indicates the light going toward +x-direction.

Integrating the dx along a round trip path between the BS and the x-end mirror gives∫
dx = 2L1 = c

∫ t

t−∆t1

(
1− 1

2
h(t′)

)
dt′ . (1.56)

The round trip time of the beam is

∆t1 =
2L1

c
+

1

2

∫ t

t−2L1/c

h(t′)dt′ . (1.57)

Consequently, we can obtain the phase shift by the gravitational waves in the x-arm light.

ϕ1 = Ω∆t1 =
2L1Ω

c
+

Ω

2

∫ t

t−2L1/c

h(t′)dt′ (1.58)
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Applying the same approach, the phase shift in the y-arm is

ϕ2 = Ω∆t2 =
2L1Ω

c
− Ω

2

∫ t

t−2L2/c

h(t′)dt′ . (1.59)

Therefore, the phase difference between the two beams ϕ1 − ϕ2 is

ϕ1 − ϕ2 =
2L−Ω

c
+ δϕGW (1.60)

δϕGW = Ω

∫ t

t−2L/c

h(t′)dt′ (1.61)

where it is assumed L1 ≃ L2 ≃ L、L− ≡ L1 − L2. Equation (1.60) shows the change in the

phase difference induced by the gravitational waves.

Frequency response of Michelson interferometer to GWs

Fourier transformation of the h(t) is written as follows.

h(t) =

∫ ∞

−∞
h(ω)eiωtdω (1.62)

Using (1.62), we can rewrite the equation of the phase shift by GWs (1.60) as

δϕGW = Ω

∫ t

t−2L/c

∫ ∞

−∞
h(ω)eiωt

′
dωdt′

=

∫ ∞

−∞

2Ω

ω
sin

(
Lω

c

)
e−iLω/ch(ω)eiωtdω

=

∫ ∞

−∞
HMI(ω)h(ω)e

iωtdω (1.63)

HMI(ω) =
2Ω

ω
sin

(
Lω

c

)
e−iLω/c , (1.64)

TheHMI(ω) in this equation represents the frequency response of the Michelson interferometer

to GWs.

The magnitude of the response |HMI(ω)| is visualized in fig. 1.5. When the arm length

is much shorter than the wavelength of the gravitational wave, the frequency response of the

Michelson inteferometer can be approximated as HMI ∼ 2ΩL/c, indicating that a detector

with longer arm length has greater sensitivity to gravitational waves. However, longer arms

beyond a certain length doesn’t make improvement on the sensitivity since cancellation of

the phase shift induced by the gravitational waves occurs during the round trip of the laser

beam. The sensitivity starts the roll-off at the frequency where the following condition is

satisfied:

ω =
πc

2L
. (1.65)



28 CHAPTER 1. INTRODUCTION

100 101 102 103 104 105

Frequency [Hz]
108

109

1010

1011

1012

1013

1014

Se
ns

itiv
ity

 to
 G

W
s Michelson: L = 75 km

Michelson: L = 3 km

Fabry-Perot: L = 3 km

Fig. 1.5. Frequency response of the Michelson interferometer and the Fabry-Perot inteferom-

eter to gravitational waves. It is assumed that the mirrors of the Fabry-Perot interferometer

have the power transmissivity; t21 = 0.004 and t22 = 10 ppm.

For a gravitational wave of 1 kHz, the optimal arm length is about 75 km.

On the other hand, constructing the laser interfometer with such a large baseline length

is impractical for geographical or technical reasons. To circumvent thi issue, we use Fabry-

Perot cavities in the Michelson interferometer. In this configuration called the ”Fabry-Perot

Michelson interferometer”, the effective arm length can be elongated beyond the physical

separation of the mirrors.

1.3.2 Fabry-Perot interferometer

A Fabry-Perot interferometer (or cavity) is composed of two mirrors facing each other as

shown in Fig.1.6. The light incident on the front mirror is reflected back and forth between

the two mirrors repeatedly. A fraction of the light stored in the cavity is reflected back along

the incident direction and a fraction is transmitted through the end mirror. Now, if the

electric field of the input beam is denoted as Ei, the amplitude of the reflected light Er is

Er = Ei

(
r1 −

t21r2e
−iΦ

1− r1r2e−iΦ

)
. (1.66)

Here, Φ = 2LΩ/c is the phase shift through a round trip of the cavity, r1 and r2 are the

amplitude reflectivities, and t1 and t2 are the amplitude transmissivities. The amplitude of
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Fig. 1.6. Fabry-Perot interferometer

the transmitted light Et is

Et = Ei
t1t2e

−iΦ/2

1− r1r2e−iΦ
. (1.67)

With these expressions, we can obtain the amplitude reflectivity and amplitude transmissivity

of the FP cavity, rcav and tcav, respectively, as

rcav = r1 −
t21r2e

−iΦ

1− r1r2e−iΦ
, (1.68)

tcav =
t1t2e

−iΦ/2

1− r1r2e−iΦ
. (1.69)

Then the power of the reflected and transmitted light Pr and Pt, respectively, are

Pr = |Er|2 =
[(t21 + r21)r2 − r1]

2 + 4r1r2(r
2
1 + t21) sin

2(Φ/2)

(1− r1r2)2[1 + F sin2(Φ/2)]
|Ei|2 , (1.70)

Pt = |Et|2 =
(

t1t2
1− r1r2

)2
1

1 + F sin2(Φ/2)
|Ei|2 , (1.71)

where

F ≡ 4r1r2
(1− r1r2)2

. (1.72)

From the equation above, resonant condition can be determined as

Φ = 2πn (n: natural number) , (1.73)

in which state the transmitted light and intracavity light have maximum intensities. By

rewriting the condition with the wavelength of the light, we obtain

2L = nλ (n: natural number) . (1.74)
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Therefore, in other words, the resonant condition is that the round trip distance of the FP

cavity is a whole-integer multiple of the wavelength.

Using Eq. (1.71), the transmittance with respect to the the laser frequency can be plotted

as shown in Fig. fig. 1.7. It can be seen that the transmittance has periodic peaks as the laser

frequency shifts. The frequency range corresponding to the period is called the free spectral

range (FSR), which is written as

νFSR =
ωFSR

2π
=

2L

c
. (1.75)

Then, recalling that eq. (1.71), we can derive the full width at half maximum (FWHM) of
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Fig. 1.7. Normalized transmittance of a Fabry-Perot interferometer with r1 = 0.75, r2 =

0.99 and F ≃ 10

the peak νFWHM from the following equation:

1

1 + F sin2(πL νFWHM/c)
=

1

2
. (1.76)

Under the approximation that πL νFWHM/c = π νFWHM/2νFSR ≪ 1 3, one can perform a

Taylor expansion for the sine.

νFWHM =
c(1− r1r2)

2πL
√
r1r2

(1.77)

Here, the fraction of νFWHM and νFSR is called finesse, a value which represents the sharpness

of the resonant peaks described as

F ≡ νFSR
νFWHM

=
π
√
r1r2

1− r1r2
. (1.78)

3 Because the FP interferometer has in general a finesse (described in later eq. (1.78)) much larger than

unity, this approximation is valid enough.
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From eq. (1.78), it turns that the finesse is determined only through the reflectivity of the

mirrors. With a reflectivity closer to unity, the resonant peaks plotted in fig. 1.7 become

sharp.

Frequency response of Fabry-Perot interferometer to GWs

One can calculate the n times round trip time of the light in the FP cavity ∆tn in the

same manner as from eq. (1.54) to eq. (1.57).

∆tn ≃ 2L1

c
n+

1

2

∫ t

t−2L1n/c

h(t′)dt′ (1.79)

Through a Fourier transformation of eq. (1.62), ∆tn becomes

∆tn ≃ 2L1

c
n+

1

2

∫ ∞

−∞
h(ω)

1− e−2iLωn/c

iω
eiωtdω . (1.80)

Now recalling that eq. (1.66), the reflected beam is

Er = Ei

(
r1 − t21r2

∞∑
n=1

rn−1
1 rn−1

2

)
e−iΦn . (1.81)

Substituting Φn = Ω∆tn into the equation above and linearizing h under the assumption

that |h| ≪ 1, we can get

Er

Ei

≃ r1 −
t21r2e

−iΦ

1− r1r2e−iΦ
+

t21r2e
−iΦ

1− r1r2e−iΦ

∫ ∞

−∞

Ω

2ω
h(ω)

1− eiLω/c

1− r1r2e−Φe−iLω/c
eiωtdω . (1.82)

Assuming the resonance that satisfies ϕ = 2πn, the following equation is obtained:

Er

Ei

≃ r1 − (r21 + t21)r2
1− r1r2

[
1− i

∫ ∞

−∞
HFP(ω)h(ω)e

iωtdω

]
(1.83)

HFP(ω) =
αcΩ

ω

sin(ωL/c)

1− r1r2e−2iωL/c
e−iωL/c (1.84)

αc ≡
t21r2

r1 − (r21 + t21)r2
(1.85)

The HFP(ω) indicates the frequency response of the FP interferometer to gravitational waves.

For clarity, taking the magnitude of HFP(ω), we get

|HFP(ω)| =
αcΩ

ω(1− r1r2)

| sin(ωL/c)|√
1 + F sin2(ωL/c)

. (1.86)

In the case of ωL/c ≪ 1,

|HFP(ω)| ≃
αcΩ

ω(1− r1r2)

ωL

c
√

1 + (
√
FLω/c)2

=
αcΩ

ω(1− r1r2)

1√
1 + (τω)2

, (1.87)

τ =

√
FL

c
=

2L

πc
F . (1.88)
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From this equation, we can find that the FP interferometer has a 1st-order low pass response

to gravitational waves, as illustrated in fig. 1.5. The time constant τ determined by eq. (1.88)

is the average of storage time of light inside the cavity. Hence, the roll-off frequency of the

low pass response is written as

νc =
ωc

2π
=

1

2πτ
. (1.89)

1.3.3 Noise sources

Owing to the tiny interaction of gravitational waves with matter, the GW detectors are

susceptible to disturbances from any kinds of noise sources. Here, typical noise sources are

briefly summarized.

Quantum noise

Interferometric GW detection has some fundamental noise sources that are often called

quantum noise; they are caused by the use of laser power. The main sources of the quantum

noise is shot noise and radiation pressure noise. Shot noise is a noise caused by the quantum

fluctuation of the number of photons in the laser beam. Radiation pressure noise is a noise

induced by fluctuation of the radiation pressure acting on the mirror surface. These quan-

tum fluctuations are the conjugate quantities tied with the uncertainty principle, and they

therefore influence the inteferometer sensitivity.

Thermal noise

The thermal vibrations of atoms with finite temperature cause fluctuations in the surface

axial position and elastic shapes of the mirror, resulting in a fluctuation in the optical path

length of the interferometer. This noise is generally called thermal noise. Thermal noise can

be categorized into two forms of noise: the one that originates from the substrate or the

coating layers of the mirror is called mirror thermal noise, the one caused by the suspension

wires is called suspension thermal noise.

The impact of thermal noise is related to the mechanical loss of the materials via the

fluctuation-dissipation theorem. To reduce the impact of thermal noise, one should choose

a material with a high quality factor for the mirrors and the suspension components. Some

of advanced gravitational wave detectors employ fused silica as the material of the mirror

substrate and the suspension fibers owing to its high mechanical Q-factor (∼ 107) at room

temperature. Thermal noise may also be mitigated by lowering the temperature, which is

the strategy the KAGRA employs. Owing to dependence of the mechanical quality factor on

temperature, fused silica does not exhibit a superior performance in cryogenic situations. On
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the other hand, sapphire and silicon show high mechanical qualities in cryogenic temperatures

and thus have become candidate materials for the mirror substrate.

Seismic noise

Seismic noise is an inevitable disturbance experienced by gravitational wave detectors

constructed on the Earth. Continuous and random motion of the ground shakes the mirror,

which results in uncertainty regarding the optical cavity length. This noise is the main target

for the vibration isolation system, which aims to attenuate its impact on the gravitational

wave detector. Hence, a more detailed description will be presented in the next chapter.

1.4 Targets and outline of this thesis

The goal of this research was to build vibration isolation systems for KAGRA and to

achieve the required performances for the design sensitivity of the interferometer. In particu-

lar, this research focused on the 13.5-meter-tall vibration isolation system, the largest of the

main mirrors forming the 3 km arm cavities. This study was carried out when the KAGRA

was being upgraded. At that time, the primary components of the optics, mechanics, and

electonics were installed and tested to achieve fully configurated operation. The vibration

isolation system for the main mirrors was first assembled, installed, and tested in this study

at the underground site as it is difficult to perform a prototype experiment owing to its large

dimension. Although the mechanical components had been individually tested, the perfor-

mance of the entire assembly was determined by installations and adjustments at the practical

site. Moreover, the electric devices for the control of the vibration isolation system should be

tuned according to the infrastructure of the digital system adopted in KAGRA. Therefore,

the installation and performance test of the vibration isolation systems are indispensable to

realizing the gravitational wave observation of KAGRA with its design sensitivity.

The outline of this thesis is as follows. Chapter 2 describes the basics of the vibration

isolation and suspension systems. Some mechanisms of low-frequency oscillators used in

the KAGRA suspension systems are also presented. Chapter 3 provides details about the

vibration isolation system for the main mirrors called Type-A suspension. In this chapter, an

overview of the global system of the KAGRA interferometer is provided first, and then the

conceptual design of the suspensions and the required performances are mentioned. Then a

detailed setup of the instruments, such as the mechanical components and elecrotic devices,

are described. Chapter 4 discusses the control design of the vibration isolation systems. As

explained in this chapter, the vibration isolation systems need to have controllability of the

suspended stages to allow the interferometer to secure stable operation. As the dynamics

of the vibration isolation systems can be represented with a mathematical model with good
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accuracy, it is helpful to predict the behavior of the nominal system in order to compare it

with the measurement results. In addition, the feasibility and expected performance of an

advanced damping control technique called modal damping is also discussed in this chapter.

Chapter 5 is the main achievement of this study describing the experimental results of the

performance test of the Type-A suspension. As mentioned later, the Type-A suspension can

be divided into two sections, namely tower and payload. This study focuses on the former,

which represents the top five stages and has the key components important for the vibration

isolation performance. This chapter presents the measured performance of the Type-A tower

and discusses its agreement with the requirements. Finally, in chapter 6, the results of

the performance test are summarized and then the conclusion and further prospects of this

research are mentioned.



Chapter 2

Vibration isolation system

Vibration isolation is an essential technique for terrestrial gravitational wave telescopes.

Mirrors in a laser interferometer on the Earth always suffer from seismic disturbances. The

simple ideas to reduce the mirror’s fluctuation caused by the ground motion are:

1. To place the mirrors at a quiet site.

2. To isolate the mirrors mechanically from the ground.

This chapter describes the basic concepts how to reduce the impact of seismic disturbance

on interferometric gravitational wave observation. Section 2.1 mentions the nature of seismic

background noise, the source of vibrations.

2.1 Seismic noise

The nature of seismic background noise is studied by J. Peterson [12]. He made a catalog

of seismic background noise spectra obtained from a world wide network of the seismograph

stations. From the data, one model of the ground spectra called New High/Low Noise Model

(NHNM/NLNM) is established which provides the upper and lower bounds of the measured

seismic motion. Figure 2.1 shows the power spectral density of the NHNM/NLNM together

with the seismic spectra measured at all over the world.

At low frequency below 1 mHz, the spectra of seismic motion grows rapidly owing to tidal

deformation of the Earth. Such low-frequency seismic motion does not disturb gravitational

wave observation as the test masses of terrestrial detectors move with the ground.

There is a protrusion around 0.1–1 Hz in the spectrum which is known as microseismic

peak. The microseism is caused by ocean waves beating land shores; hence it is observed

strongly at locations close to the coasts and weakly in the middle of continents. As the mi-

croseismic motion around 0.1–1 Hz is not coherent between the test masses located kilometers

apart, it can impede stable operation of the interferometer.

35
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Fig. 2.1. The New High/Low Noise Model (red curves) with the seismic spectra measured

in the world wide network of seismometers [12].

Seismic motions at high frequencies above 1 Hz are of interest for those in the field of

gravitational wave detection, as terrestrial GW telescopes have the best sensitivity in the

frequency band. Figure 2.2 shows typical seismic noise spectra at places where gravitational

wave detectors are located. In this frequency region, the magnitude of seismic motion is

isotopic, and can be approximated to a simple power law model written as

x̃seis(f) = A×
(

f

1 Hz

)−2

[m/Hz1/2] . (2.1)

Here, the amplitude factor A, which depends on the site, is typically in the range 10−8–10−6.

The seismic spectra at the underground site in Kamioka are 1–3 orders of magnitude

smaller than those at the other sites. This is because the impact of seismic waves on the

Earth’s surface, which originate from atmospheric and human activities, significantly de-

creases in the underground environment owing to the hard bedrock. Thus, an underground

site benefits from the basic vibration level of the ground in the observational frequency re-

gion. On the other hand, the microseism around ∼ 0.2 Hz is not attenuated so much as it

propagates through the continents.

The seismic motion in the KAGRA site is typically around 10−12–10−10 in 10–100 Hz.

Assuming the magnitude of displacement induced by gravitational waves in the kilometer-
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Fig. 2.2. Typical power spectrum density of seismic motions at the sites of the GW detectors

[13].

scale interferometer is in the order of 10−20 m, the required seismic attenuation factor is about

10−8–10−10.

2.2 Passive vibration isolation

Vibrations propagate via mechanical waves over connected masses, and solid mechanical

connections conduct vibrations more efficiently. Passive vibration isolation makes use of soft

materials or flexible connections to attenuate the mechanical waves in their transmission

path.

Passive vibration isolators can be modeled as a system that contains a mass, spring, and

damping elements, and behaves like a harmonic oscillator. Now, we consider a simple one-

dimensional harmonic oscillator with a spring and a mass, forgetting the damping elements

for now, as depicted in the left panel of fig. 2.3. In the absence of any external force applied

to the suspended mass, the equation of motion of this system is written as

Mẍ(t) + k (x(t)− x0(t)) = 0 , (2.2)

where M is the mass of the payload, k is the spring constant or stiffness, and x and x0 are

the displacements of the payload and the ground, respectively. When this equation is solved
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in the frequency domain by taking the Fourier transform, it becomes

H(ω) ≡ x̃(ω)

x̃0(ω)
=

1

1− (ω/ω0)2
. (2.3)

Here we introduced the resonant angular frequency ω0 of the harmonic oscillation, defined as

ω0 ≡ 2πf0 =
√

k/M . In eq. (2.3), the H(ω) is the frequency response of the payload to the

motion of the ground and is called vibration isolation ratio. It indicates how large vibrations

of the supporting point are transmitted to the suspended payload in the frequency region.
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Fig. 2.3. A simple harmonic oscillator composed of a spring and a payload (left), and its

vibration isolation ratio or frequency response to the ground motion with various resonant

frequencies (right). For practical reasons, it assumes the quality factor of the resonances as

Q ∼ 30.

The right panel of fig. 2.3 shows the vibration isolation ratio of the harmonic oscillator

with changing resonant frequency. At higher frequencies such that f ≫ f0, the amplitude

of the vibration isolation ratio rolls off proportionally to f−2. This means that the higher

the frequency of vibration above the resonance, the higher the filtering effect the harmonic

oscillator realizes. Hence, considering a given frequency region of interest such as 10–100 Hz

for terrestrial GW observation, a mechanical oscillator with lower resonant frequencies can

realize better seismic attenuation performance, as shown by the several curves in fig. 2.3.

In other words, the mechanical oscillator does not perform the function of vibration

filtering for the entire frequency region. At lower frequencies of f ≪ f0 the ground motion

is transferred directly to the payload without being attenuated. It can be assumed that, for

non-oscillatory variation, the position of the payload follows that of the suspension point.

This behavior is exhibited as the plateau in the magnitude plot of the response in fig. 2.3.
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Fig. 2.4. An illustration of N -stage pendulum (left), and its vibration isolation ratio with

various number of stages (right).

The most significant feature of the mechanical oscillator is the resonance, around which

frequency of f0 the ground motion gets rather amplified through the system. This behavior

appears as the peak in the magnitude plot and the −180◦ delay in the phase plot. In the case

of an ideal harmonic oscillator with no dissipation, the magnitude of the peak goes infinity at

the resonant frequency. However, in a practical system the oscillation cannot diverge owing

to the existence of finite dissipation.

Multistage pendulum

n

A kilometer-scale interferometric gravitational wave telescope requires a seismic atten-

uation factor of ∼ 10−8–10−10 around 10–100 Hz. To achieve this attenuation performance

with a single pendulum, for instance, the length of the pendulum must be of the order of 106

m, which is unreasonable in practice. The required attenuation performance can be obtained

by cascading mechanical oscillators whose resonant frequencies are sufficiently lower than

the frequency region of interest (≳ 10 Hz). In an N -stage chain of pendula, the vibration

isolation ratio is proportional to f−2N at a higher frequency than the resonant frequencies of

the chain. Figure 2.4 illustrates the seismic attenuation performance for various numbers of

multistage pendulum chains.
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Fig. 2.5. Definition of the degrees of freedom of the suspension’s motion. The ”HR-side”

indicates the surface with high-reflectivity coating. In this thesis, these six degrees of freedom

(DoFs) are sometimes abbreviated as L, T, V, R, P, and Y.

2.3 Suspension’s degrees of freedom

In the previous section, we considered only one-dimensional motions. However, when we

extend objects to 3-dimensional rigid bodies with or without internal motions such as elastic

vibration, we must consider the motions in six degrees of freedom (DoFs) for each body.

Conventionally, we determine these six DoFs, namely longitudinal, transverse, vertical, roll,

pitch, and yaw, as illustrated in fig. 2.5. Three translational axes are the right-handed

basis for center-of-mass motions, while three rotational axes are defined so that right-handed

screw rotations around the translational axes are positive. In this thesis, the six DoFs, i.e.,

longitudinal, transverse, vertical, roll, pitch, and yaw, are sometimes abbreviated as L, T, V,

R, P, and Y.

To construct optical cavities and an interferometer, the mirror’s motions in all the six

DoFs are of considerable importance. If the mirror is considered as an optical component,

one can easily imagine that the longitudinal translation couples directly to the change in the

optical path length, and the pitch and yaw rotation affects beam alignment. However, in

the case of gravitational wave detectors, which are required to achieve ultimate sensitivity,

further effects of coupled DoFs need to be taken into account.

One of the inevitable coupled DoFs on the Earth is vertical-to-longitudinal coupling. For

gravitational wave detectors with long arm lengths constructed on the Earth, because of the

finite curvature of the Earth’s surface, the direction of the local gravity at places that are far

apart from each other results in imperfect parallelism of verticality. It causes the coupling
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Fig. 2.6. Vertical-to-longitudinal coupling of the mirror motion due to the Earth’s curvature.

from local vertical motion of the mirror to global longitudinal variation of the optical cavity,

as depicted in fig. 2.6. The impact of coupling, ∆x = α∆z, is related by the factor α, which

is associated with the separation distance of the mirrors L and the local radius of the Earth

R⊕, through the relation α = L/2R⊕. In the case of a 3 km separation, one can estimate the

typical vertical-to-longitudinal coupling as α ∼ 2.4×10−4. To achieve a displacement noise of

about 10−20 m in the observational frequency band under the isotropic seismic disturbance,

we must also recognize the necessity of the vibration isolation in the vertical direction.

2.4 Anti-spring mechanisms

As mentioned in section 2.2, seismic attenuation performance in a given frequency region

(e.g., 10–100 Hz for a terrestrial gravitational wave detector) can be improved by lowering the

resonant frequencies of the mechanical oscillators. While using multiplied stages of pendu-

lum, implementation of mechanical oscillators with lower-frequency resonance in a practical

dimension is also needed to construct a gravitational wave detector.

This section describes two types of harmonic oscillators implemented in the KAGRA

suspension systems, an inverted pendulum and a geometric anti-spring filter. Their design in-

corporates an anti-spring effect that can reduce the effective spring constant of the oscillators,

resulting low resonant frequencies while maintaining compact dimensions. An anti-spring is a

system that incorporates a force that pushes it away from its equilibrium point once it expe-

riences a displacement. If an anti-spring system is combined with a positive spring constant

inherent to most of the mechanical oscillator, the overall stiffness of the system can be tuned

to nearly zero.
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2.4.1 Inverted pendulum (IP)

An inverted pendulum (IP) is a system in which the center of mass of its oscillator is

positioned higher than the supporting point on the ground. Unlike an inverted pendulum

on a cart in the context of stabilization problems of control theory, we fixed the foot of the

IP with a flexure joint onto the ground to obtain a positive angular stiffness kθ so that the

system acquired quasi-stability. By tuning the amount of weight loaded on the top of the

IP, it was possible to realize an ultimate low resonant frequency of ≲ 100 mHz in horizontal

motion.

θ

Mg

sin    θ

Flexure: 

Mg

kθ

M

l

(x, y)

m, I (x , y )l l

Fig. 2.7. Working principle of an inverted pendulum

Working principle

The dynamics shows how the anti-spring effect acts on the intrinsic stiffness of the IP.

Given an IP depicted in fig. 2.7 with physical properties that are summarized in table 2.1,

the Lagrangian L of the system is determined as

L = K − U, (2.4)

K =
1

2
M
(
ẋ2 + ż2

)
+

1

2
m
(
ẋ2
l + ż2l

)
+

1

2
Iθ̈, (2.5)

U = Mgz +mgzl +
1

2
kθθ

2, (2.6)
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Table 2.1. Denotations of the inverted pendulum model

M mass of the payload

l length of the IP leg

m mass of the IP leg

I moment of inertia about the center of mass of the IP leg

(x, z) position of the payload

(xl, zl) position of the IP leg

(x0, z0) position of the fixed point of the flexure on the ground

θ angle of the IP leg with respect to the vertical axis

kθ rotational spring constant of the flexure

where K and U represent the kinetic and the potential energy, respectively. Under the

geometrical constraints,

xl =
1

2
(x+ x0)

zl =
1

2
z

x = l sin θ + x0

z = l cos θ

(2.7)

the kinetic energy and the potential energy can be simplified as

K =
1

2
Mẋ2 +

1

8
(ẋ+ ẋ0)

2 +
1

2
I

(
ẋ− ẋ0

l

)2

, (2.8)

U = Mgl cos

(
x− x0

l

)
+

mgl

2
cos

(
x− x0

l

)
+

1

2
kθ

(
x− x0

l

)2

. (2.9)

The Euler-Lagrange equation of motion is therefore, with the 1st-order approximation,

d

dt

∂K

∂ẋ
=

∂U

∂x
, (2.10)(

M +
m

4
+

I

l2

)
ẍ+

(
m

4
− I

l2

)
ẍ0 = −

[
kθ
l2

−
(
M +

m

2

) g

l

]
(x− x0) . (2.11)

One can regard (2.11) as the equation of motion of a harmonic oscillator with an effective

spring constant keff ,

keff =
kθ
l2

−
(
M +

m

2

) g

l
. (2.12)

The first term of keff represents the elastic restoring force of the flexure. In contrast, the

repulsive force appears in the second term and acts to reduce the effective stiffness of the

harmonic oscillation. This force is therefore called the gravitational anti-spring force. As the
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Fig. 2.8. Potential energy of the IP with different loads

gravitational anti-spring force is proportional to the mass of the payload and the IP leg, the

effective spring constant can be tuned by changing the load on the IP.

However, if the restoring force and repulsive force are perfectly cancelled, the system is

no longer oscillatory with a single equilibrium point. The potential energy of the IP with

various loads is plotted in Fig 2.8. When the IP is not sufficiently loaded, its potential energy

can be approximated to a parabolic curve dominated by the third term of (2.9). As the

weight on the IP increases, the potential curve gets flattened around its equilibrium point of

x = x0. Beyond the critical loading, the first term of (2.9) increases and the system shows

bistability, i.e., it has two equilibrium points. For stable operation of the vertically-standing

IP, the load must be small enough to keep the effective spring constant positive.

In a stable condition where the IP has only one equilibrium point, from (2.12), the

resonant frequency of the IP is determined as

f0 =
1

2π

√
keff

M + m
4
+ I

l2

. (2.13)

With the set of parameters shown in the table, the dependence of the resonant frequency

on the mass of the load is presented in Fig. 2.9. When increasing the load on the IP, the

resonant frequency gradually decreases and then drastically drops, which makes the system

unstable.
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Fig. 2.9. Change in the resonant frequency of the IP with respect to the mass of the load.

Attenuation performance

The transfer function from the ground motion to the payload is obtained by solving

eq. (2.11) in the frequency domain.

HIP(ω) =
x̃

x̃0

=
keff + (m

4
− I

l2
)ω2

keff − (M + m
4
+ I

l2
)ω2

=
A+Bω2

A− ω2
, (2.14)

where

A =
keff

M + m
4
+ I

l2

, B =
m
4
− I

l2

M + m
4
+ I

l2

. (2.15)

Seeing the plotted curve of this transfer function in Figure 2.10, the IP behaves similarly to

an ideal harmonic oscillator up to a certain frequency above the resonance. However, the

attenuation performance of the IP saturates at a certain level owing to the coefficient B that

appears in eq. (2.14).

This saturation is due to a residual momentum transfer from the leg to the payload caused

by the so-called center of percussion effect [14, 15]. When an impulsive force is applied onto

a rigid body, the blow accelerates the body both in translation of its center of mass and in

rotation around its center of mass, as illustrated in fig. 2.11. At this moment there exists a

point where the translation and rotation cancel each other out and the net initial velocity
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Fig. 2.10. Transfer function from the ground motion to the payload of the IP. That of an

ideal harmonic oscillator is also plotted for comparison.

becomes zero. This point is called the pivot point or in other fields, the sweet spot, which we

can regard as the momentary center of rotation for the impulse. The location of the pivot

point is determined by the mass distribution of the body and is not necessarily within the

boundary of the body.

The pivot point has a complementary point on the opposite side of the center of mass,

the center of percussion (CoP). As mentioned before, a perpendicular impulse applied at a

CoP will produce no reactive force at its corresponding pivot point. The position of the CoP

and pivot point from a body’s center of mass is tied with the following equation.

rf rp =
Ibody
Mbody

(2.16)

Here, rf and rp are the radii of the CoP and that of the pivot point (see fig. 2.11), and Mbody

and Ibody are the mass and moment of inertia of the body, respectively. This relationship

indicates that the CoP and pivot point will swap positions when the impulse is applied on

the other side of the center of mass.

In the case of the IP legs, they have mechanical constraints, as one end is connected to the

payload and the other is fixed to the ground via the flexure; thus, they cannot rotate freely.

This constraint is substantial at low frequencies so that the IP behaves as expected, i.e., like a

harmonic oscillator with a low-frequency resonance. However, the constraint becomes fainter

at higher frequencies which allows the IP leg to perform free rotation around its pivot point.
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Fig. 2.11. Illustration of the center of percussion. When a rigid body receives an impulsive

force that is not aligned to its center of mass, the body is subject to momentary acceleration

both in translation of its center of mass and in rotation around its center of mass. There

exists a point pivot point, where the translation and rotation cancel each other out and the

net initial velocity becomes zero. The center of percussion is a complementary point for the

pivot point located at the other side of the center of mass. In other words, the center of

percussion is the point where a perpendicular impulse does not produce any reactive force at

the given pivot point.

In order to reduce the residual momentum transfer from the leg to the payload, one needs to

let the position of the center of percussion corresponding to the top end of the IP leg coincide

with the foot of the flexure where the external force (ground motion) is applied. This allows

the IP leg to rotate around its top end as the pivot point without exerting a force on the

payload.

To adjust the position of the CoP, a counterweight may be added to the bottom of

the IP leg as its position depends on the mass distribution of the body. Figure 2.13 shows

that a counterweight improves the saturation level of the vibration isolation ratio. Typically,

adjusted counterweights can mitigate the saturation level by 1–2 orders of magnitude in

practice. For instance, the IP of the HAM-SAS developed for advanced LIGO achieved

∼ 10−3 attenuation without counterweights and ∼ 10−5 − 10−4 with them with an aluminum

hollow leg of about 0.2 kg. The presence of a notch followed by the plateau depends on which

direction (upper or lower) the position of the pivot point is offset from the target point.



48 CHAPTER 2. VIBRATION ISOLATION SYSTEM

Force applied
at CoP

Pivot point

Force on
payload

Counter-
weight

M

Force applied
at CoP

Pivot point

M

Fig. 2.12. Illustration of the effect of a counterweight on the pivot point. In general, the

pivot point complementary to the center of percussion located at the bottom flexure does

not coincide with the connecting part of the payload. Adding a counterweight at the bottom

of the leg can move the pivot point to the top connecting part so that the IP leg can rotate

without exerting a force on the payload, thereby improving its isolation performance from

the ground.

2.4.2 Geometric Anti-Spring (GAS) filter

A getometric anti-spring (GAS) filter is a mechanical oscillator that uses of radially con-

verging cantilever blades to obtain a low resonant frequency in the vertical direction under

a heavy load [16, 17]. The quasi-triangular cantilever blades are connected at their vertices,

which compresses them. The compression produces a repulsive force following vertical dis-

placement that results in the formation of stiffness that counters the intrinsic stiffness of the

cantilever blades. In the situation where the load and compression are tuned appropriately,

the GAS filter adequates the low-frequency vertical resonance with typically ∼ 0.3 Hz

Working principle

Here, brief dynamics of the GAS filter are presented to understand implementation of

its anti-spring mechanism. The behavior of a GAS filter is modeled as a system in which

a payload is supported by a normal vertical spring and a set of horizontal springs that are

compressed against each other, as illustrated in fig. 2.14. Owing to the radially symmetric

configuration of the cantilever blades, the horizontal components of the reaction forces that

counter the compression vanish, and thereby, the keystone is constrained to move only in the
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Fig. 2.13. Vibration isolation ratio of the IP with different loads of the counterweight (CW).

The saturation level can be improved by 1–2 orders of magnitude with the counterweights.

The presence of a notch at the frequency of ∼ 12Hz depends on which direction (upper or

lower) the pivot point is offset from the target position.

vertical direction.

The keystone of the GAS filter stays at a working point z = zeq, where the constant load

Mg and the static force of the vertical spring are balanced, and the conceptual horizontal

springs become orthogonal to the z-axis (θ = 0) and experience maximum compression. Here

g denotes gravitational acceleration and M the mass of the payload. When the keystone is

displaced from the equilibrium position, its equation of motion is described as

Mz̈ = −kz(z − zeq)− kx(lx − lx0) sin θ , (2.17)

where kz and kx are the spring constant of the vertical and horizontal spring, lx and lx0 are

the actual length and the natural length of the horizontal spring, respectively. In addition,

the working point can be written as zeq = Mg/kz owing to the balance condition. If we

assumed that only the small motions around the working point, eq. (2.17) can be linearized

as

Mz̈ = −
[
kz −

(
lx0
x0

− 1

)
kx

]
(z − zeq) , (2.18)

where x0 denotes the length of the horizontal spring at the equilibrium. From this equation,
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Fig. 2.14. Conceptual representation of a geometric anti-spring (GAS) filter. A set of

cantilever blades are compressed supporting the keystone subject to the payload. The system

can be modeled with a normal vertical spring (light blue) and a combination of compressed

horizontal springs (pink). When the keystone is displaced, the horizontal components of the

reaction forces against the compression cancel each other out (faint dotted pink arrow) and

the net repulsive force along the z-axis (red arrow) remains. The resultant stiffness of the

keystone is the sum of contributions from the intrinsic vertical spring and the net horizontal

springs.

we can obtain the effective spring constant of the GAS filter as

keff ∼ kz −
(
lx0
x0

− 1

)
kx . (2.19)

This formula indicates that the effective spring constant decreases when the horizontal springs

are under compression (x0 < lx0). The second term proportional to kx corresponds to the

repulsive force along the z-axis, which mitigates the intrinsic stiffness kz. The geometric

constraint on the keystone or the tip of the cantilever blades enables stiffness cancellation in

vertical motions and therefore the mechanism is called geometric anti-spring effect. As this

anti-spring mechanism is a local effect around the working point, the capability of the system

to support a heavy payload is maintained.

Attenuation performance

The transfer function from the reference frame to the keystone can be written in the

same form as that of the IP in eq. (2.14). Owing to the CoP effect, the seismic attenuation

performance of the GAS filter saturates at high frequencies, which is typically limited to

∼ 10−3 [18]. It can be improved by mounting a compensation wand in parallel to the blades
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with a couterweight. With a sufficient counterweight adjusting the position of the CoP so

that it corresponds to the fixing radius of the blades, the saturation level can be mitigated

to about 10−4.

Thermal stability

Soft support of the GAS in the vertical direction is provided by the compressed blade

springs with their elastic deformation. Thus, the strength of its repulsive force is sensitive to

the change in the physical properties of the blade. In particular, the temperature dependency

of the Young modulus can cause the working points of the keystone to drift. The amount of

the change in the keystone’s working point becomes larger when the resonant frequency of

the GAS is tuned to be lower, which relationship can be typically evaluated as [19],

∆z

∆T
=

g

Eω2
0

∂E

∂T

= 0.69 [mm/K]

(
0.33 Hz

ω0/2π

)2
(

1
E

∂E
∂T

3.0× 10−4 K−1

)
, (2.20)

where ∆T is the temperature change, E is the Young modulus of the blade material, ω0 is

the angular resonant frequency of the GAS. This indicates that a non-negligible change in

the height (in the order of millimeters) of the optics will take place at the bottom when the

suspension has plural stages of the GAS filter. For this reason, the environmental temperature

of the instruments has to be kept sufficiently stable.

2.5 Damping

Mechanical filters can isolate suspended masses from the seismic motion in a high fre-

quency region. Furthermore, they carry the vibration directly to the masses at low frequencies

or rather amplify the magnitude of the masses’ fluctuation at the resonant frequencies. The

amplification at these mechanical resonances often takes place out of the observational band,

and thus does no immediate harm to the sensitivity of the interferometer. However, as the

interferometer has to keep its interfered light in a specific condition with a narrow-ranged

control, it cannot be operated with the largely-swinging mirrors with which the control can

no longer survive. Therefore, the effective fluctuation of the mirrors needs to be reduced

regardless of the frequency region.

The effective amplitude of the mirror fluctuation can be evaluated as the root-mean-

square (RMS) amplitude. The RMS amplitude of a time-varying physical value x(t) is defined

as

xRMS ≡

√∫ b

a

Sx(ω) dω , (2.21)
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where Sx(ω) is the power spectral density of x. The interval of the integral is commonly set

to 0 ∼ ∞ or is sometimes set to a frequency region of interest. The RMS amplitude of the

seismic motion is typically in the order of microns at the ground surface and submicrons for

underground regions. In the case of suspension systems that often have mechanical resonances

below 1 Hz, the main contribution to the RMS amplitude comes from the peaks in the low

frequency band (≲ 1 Hz) where driving disturbances at the resonant peaks are not sufficiently

attenuated.

For the reasons above, implementation of a damping mechanism is necessary for the

suspension systems in gravitational wave telescopes. Damping in a physical system means

intentionally introducing dissipation processes into the system to produce resistive forces on

the oscillating object. We install the damping mechanism on the suspension system not

only to reduce the RMS amplitude but also to increase the robustness of the system against

unwanted sudden disturbances such as earthquakes and falsely-injected actuation forces. If

mechanical resonances with large amplitudes due to immediate disturbance remain for a long

time, the interferometer cannot resume its operation, which indicates that the duty cycle or

duration of its observation will be lost. Thus, it is essential to reduce the decay time of the

mechanical resonances for the operationability of the interferometer.

A damping effect can be implemented on the suspension system in two ways: passive

damping and active damping. In the following subsections, the brief explanations of these

damping techniques are presented.

2.5.1 Passive damping

Passive damping introduces a viscous element into the system which generates a breaking

force proportional to the velocity of the oscillator. If we consider a mass-spring-damper

system, like the one illustrated in the left panel of fig. 2.15, the equation of motion of the

oscillator is

Mẍ+ γ(ẋ− ẋ0) + k(x− x0) = 0 , (2.22)

where γ is the damping coefficient. Bt interpreting this equation in the frequency domain

through Fourier transformation, we can derive the transfer function from the ground dis-

placement to the mass displacement:

H(ω) ≡ x̃(ω)

x̃0(ω)
=

1 + 2iζ
ω

ω0

1 + 2iζ
ω

ω0

−
(

ω

ω0

)2 , (2.23)

where the parameter ζ is called the damping ratio, which is determined by ζ = γ/2Mω0. The

strength of the damping is also sometimes referred to as the quality factor of the resonance;

it is defined as Q ≡ 1/2ζ.
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Fig. 2.15. An illustration of the mass-spring-damper system (left), and its vibration isolation

ratio with various damping strength parameterized by the quality factor Q (right). The

component of the viscous damping is represented as a dashpot.

The vibration isolation ratios of the mass-spring-damper system obtained by varying

the strength of the viscous damping denoted as the quality factors Q is plotted in the right

panel of fig. 2.15. As a stronger damping is applied to the suspended mass, the height of the

resonant peak reduces, which is approximately equivalent to Q in the case of Q ≫ 1. On the

other hand, the magnitude of the attenuation factor rolls off with the proportionality of f−1

in high frequency regions above Qf0, unlike that of the undamped system with a f−2 roll off.

Therefore, the vibration isolation performance of the viscously-damped system degrades in

the high frequency region.

The effect of the damping can be seen also in the impulse responses of the mass displace-

ment. Figure 2.16 shows the responses of the viscously-damped system when an external

impulsive force is applied to the mass, varying and the strength of the damping effect is var-

ied. The system with small damping exhibits a sinusoidal waveform with slightly decaying

amplitude. As the damping effect becomes prominent, the decay of the amplitude quickly

comes into effect. The speed of the decay is characterized by the exponential decay time τe

in which the oscillation amplitude decreases by a factor of 1/e, which is written as,

τe ≡
1

ζω0

=
2Q

ω0

. (2.24)

The condition with a damping ratio ζ of one is called critical damping, where the oscillatory

behavior of the impulse response turns into a non-oscillatory transient showing the shortest

decay time. Then, if the damping ratio is larger than one, the system is robust to the external
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force but has a longer decay time since the excess of viscosity resists restoration of the system

to its original position.
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Fig. 2.16. Responses of the viscously damped system with various damping ratios driven

by an impulsive force applied to the suspended mass.

The degradation of the vibration isolation performance in the viscously damped system

can be mitigated by isolating the damper with some mechanical filters, as illustrated in

fig. 2.17. This technique is called flexible damping. Although, in a system with flexible

damping, the transfer function from the ground motion to the mass displacement has an

additional resonant peak owing to the spring for the damper, the roll off in the high frequency

region maintains a f−2 proportionality, like a system with no damping mechanism.

One simple way to implement the passive damping mechanism is by using an eddy current

damper [20]. One unit of the eddy current damper consists of a set of permanent magnets and

a conductive object that are placed so that they face each other. When the conductive object

moves in the magnetic field formed by the permanent magnets, eddy currents are generated

inside the conductive object resisting the change in the magnetic field, and thus they produce

a breaking force of the moving object. The strength of the eddy current damping is formulated

as the following relationship,

γeddy = AσB
∂B

∂x
, (2.25)

where B is the magnetic field of the permanent magnets, σ is the electrical conductivity of

the facing object, and A is a geometrical factor determined by the area of the conductor.

In qualitative words, stronger magnets and higher conductivity surface can achieve larger
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Fig. 2.17. An illustration of the suspended-mass system with flexible damping mechanism

(left), and its vibration isolation ratio compared with those in the cases of no damper and

rigid damping (right).

damping effect with an eddy current damper. The eddy current damper is often used in the

suspension system because of its vacuum compatibility and the absence of hysteretic noise

owing to its noncontacting functionality. Nevertheless, the disadvantage of the eddy current

damper is there is a risk of introducing additional magnetic noise onto the test masses, which

also have permanent magnets for control actuation. This disadvantages can be mitigated by

separating the damper from the test mass, for example, by placing the damper on one of the

upper stages.

2.6 Active vibration isolation

While the passive vibration isolation utilizes intrinsic low-pass characteristics of mechan-

ical oscillators, the seismic attenuation is valid only at high frequencies above its resonant

frequency. If one aims to isolate objects in a low frequency region, such as the microseismic

disturbance around 0.2–0.5 Hz, the passive isolation scheme feels awkward if negative-stiffness

components are not used. On the other hand, active vibration isolation which implements

sensors, actuators, and controllers can effectively reduce the seismic transmissivity to the

target object in an arbitrary frequency band in principle.

The basic concept of the active vibration isolation is a feedback control with an inertial

sensor mounted on the target object supported with spring-like elements. The inertial sensor

monitors the absolute motion of the object with respect to the inertial frame. The signal from
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the inertial sensor is processed via the servo controller and then sent to the actuator in order

to generate a motion-canceling force on the suspended body. This method can be effective

as long as the inertial sensor has enough sensitivity to detect the motion of the target object

without being limited by the sensor noise in the frequency region of interest. However, in

practice, because of the AC-coupled feature of the general inertial sensors, the active isolation

requires supplementary sensors and control loops such as relative displacement sensors for

low-frequency stabilization and witness sensors placed on the ground for feedforward control

and sensor correction.

The active vibration isolation is implemented on the inertial seismic isolators in advanced

LIGO suspensions. A detailed discussion on the active isolation strategy and instrumentation

is available in [21].



Chapter 3

KAGRA Type-A Suspension

In this chapter, we describe the design and setup of Type-A suspension system, the

suspension system for KAGRA test masses that is characterized in this study. Section 3.1

briefly mentions the overall configuration of the KAGRA interferometer. In section 3.2, we

review the suspension systems used for vibration isolation in KAGRA. From section 3.3 the

detailed design of the Type-A suspension, which contains mechanical components, electric

devices such as sensors and actuators, and control systems, is described. Although this

chapter focuses on describing the Type-A suspension, most of the components enumerated

above are shared with other types of suspension systems. Thus, the Type-A suspension and

all other suspension systems in KAGRA are the topics of this chapter.

3.1 Overview of KAGRA interferometer

KAGRA is a power- and signal-recycling (also reffered to as dual recycling) Fabry-Perot

Michelson interferometer with an arm length of 3 km. At the time of writing this thesis,

KAGRA was undergoing a major upgrade campaign where suspension systems for core optics

were being installed.In April–May 2018, KAGRA underwent a test operation with simplified

Michelson interferometer formed by a cryogenic test mass. After the major upgrade in 2019,

KAGRA will participate in joint observation with Advanced LIGO and Advanced Virgo called

observation run 3 or O3 in short, with incomplete sensitivity corresponding to a few (tens

of) megaparsec of the inspiral range. KAGRA will start observations with its full sensitivity

in the 2020s.

3.1.1 Conceptual design

The sensitivity of KAGRA is shown in fig. 3.1, which is generated from the design

parameters summarized in table 3.1. There are two types of operational modes in KAGRA,

broadband resonant sideband extraction (BRSE) and detuned resonant sideband extraction

57
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Fig. 3.1. Sensitivity curves and breakdowns of noise contributions in two operational modes

of the KAGRA interferometer. The left panel shows the broadband RSE (BRSE) configura-

tion, while the right panel shows the detuned RSE (DRSE) configuration.

(DRSE). In the BRSE operation, there is additionally an option of homodyne detection. We

can switch the operational mode of the interferometer depending on which purpose we give

priority to.

The sensitivity curve is designed to be dominated by the fundamental quantum noises,

the shot noise at high frequencies, and the radiation pressure noise at low frequencies[22]. Al-

though some peaks from suspension thermal noise exceed the quantum noises, they are not an

issue. In the most sensitive frequency region, the mirror thermal noise which originates from

the thermal dissipation of reflective coating layers, shows predominance even with cryogenic

temperature. The sensitivity below 10 Hz is dominated by seismic noise and gravity-gradient

noise.

In the design of KAGRA, we introduced two unique features to improve its sensitivity:

the use of an underground environment and cryogenic test masses. These are some of the

advanced options to be implemented in the next generation gravitational wave telescopes.

Therefore, KAGRA has an aspect of a laboratory to demonstrate the feasibility and usefulness

of these techniques.

Underground environment

The underground environment of the Kamioka mine is one of the unique features among

the 2nd-generation gravitational wave observatories. The central station of KAGRA is situ-

ated at 36.41◦N and 137.31◦E inside the 1300-meter-high mountain Ikenoyama, where other

observatories of high-energy physics such as Super-Kamiokande and XMASS are also con-

structed. Even though the KAGRA tunnel occupies an L-shaped space 3 km on a side, the

ends of the arms are close to the foot of the mountain, and the end test masses are at least
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Table 3.1. Main design parameters for KAGRA interferometer.

Parameter Design value

Baseline length 3 km

Laser wavelength 1064 nm

Laser power at BS 674 W

Material of test mass substrate Sapphire

Material of test mass coating Silica/Tantala

Test mass diameter 22 cm

Test mass thickness 15 cm

Test mass weight 22.8 kg

Temperature of test mass 22 K

Suspension wire for test mass Sapphire

Inspiral range (BRSE) 128 Mpc

Inspiral range (DRSE) 153 Mpc

200 m below the ground surface [23].

The first explicit advantage of the underground environment is tranquility of the seismic

vibration as described in sec. 2.1. This low seismic vibration helps us to achieve the required

displacement noise in the observation band and stable operation of the interferometer.

Before the location of KAGRA was selected, a joint research project of the Disaster

Prevention Research Institute and Cryogenic Laser Interferometer Observatory (CLIO) per-

formed a long period observation of the seismic vibration in the Kamioka mine [24]. T.

Sekiguchi’s analysis of 1.5-year data (2009.09–2011.02) from the measurement formulated

the seismic noise models plotted in fig. 3.2. The red, green, and blue curves represent seismic

noise spectra at the 90th (high), 50th (mean), and 10th (low) percentile levels respectively.

The spectra below 1 Hz are the measured data in the 1.5-year observation, while those above

1 Hz are the extrapolations of the measurement results assuming proportionality to f−2. As

the seismometer CMG-T3 used in the measurement has a worse noise level above 1 Hz, the

f−2-proportionality at higher frequencies is confirmed through another measurement by M.

Beker who uses a different seismometer, Trillium 240, at the CLIO site [25]. Note that the

spectra below 50 mHz are also contaminated by the sensor noise of the CMG-T3.

The microseismic peak around 0.2 Hz shows a large variation in magnitude as the ampli-

tude depends on the oceanic activity and thus on the weather condition. The RMS displace-

ment of the seismic motion (cumulatively integrated down to 10−2 Hz) varies in the range of

0.08–0.5 µm with the 10–90 percentile range. In the following discussions, we take the high

noise model in fig. 3.2 as the seismic vibration spectrum for a conservative estimate.

Figure 3.2 indicates that the spontaneous displacement noise in the Kamioka mine is
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Fig. 3.2. Seismic noise spectra of the Kamioka mine. The three curves represent the

seismic noise spectum of 90th (high, red), 50th (mean, green), and 10th (low, blue) percentile

levels. The spectra below 1 Hz are the measurement results, while those above 1 Hz are the

extrapolation of the measured data assuming proportional to f−2.

∼ 10−11 m/Hz1/2 at 10 Hz. Therefore, the required attenuation ratio at that frequency is

about 10−8 for the test masses.

The second advantage of the underground environment is low gravity-gradient noise that

can potentially limit the sensitivity at the lower end of the observation band. Gravity-gradient

noise originates from both atmospheric and seismic density fluctuation, producing a varying

gravitational force on the test mass. The main sources of this noise can be surface waves of

human-induced activity, a bulk motion of the ground, or atmospheric phenomena. Unlike

the direct transmission of the seismic noise, the gravity-gradient noise cannot be attenuated

with any shields or filters in the path of gravitational coupling. Hence, the situation of the

interferometer determines the available noise limit.

The underground situation can improve the gravity-gradient noise from both surface

waves of the ground and atmospheric fluctuation. J. Harms estimated the gravity-gradient

noise from these sources at the Kamioka mine as ∼ 10−20 m/Hz1/2 at 10 Hz, based on a seismic

vibration measurement at the CLIO site [26]. This value is about 2–3 orders of magnitude

smaller than the requirement and ∼ 10−2–10−1 times as large as that of the site of Advanced

LIGO. Meanwhile, the contribution from water flow near the interferometer may generate

gravitational potential perturbation in considerable magnitude since a substantial amount of

water can well anywhere in the tunnel. The impact of gravity-gradient noise from this water

flow is estimated to be negligible unless either the water velocity is very high (≳ 10 m/s) or
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Table 3.2. Material properties of the candidates for mirror components

Material Sapphire Silicon Fused silica

Density [g/cm3] 3.98

Young modulus [GPa] 398

Poisson ratio 0.22

Thermal contuctivity [Wm−1K−1] 4300 2330 @ 10 K 0.7

Q-factor (20K) 108 108 103

Q-factor (300K) 3× 106 106 107

Absorption @ 1064 nm

the water flow exists so close to a test mass (≲ 1 m) [27].

Cryogenic sapphire test masses

The use of cryogenic mirrors is a simple solution to improve the noise contamination due

to thermal fluctuations, as the energy of the thermal noise is proportional to the product of

temperature and mechanical dissipation. Therefore, it is effective to cool the mirrors down

to the cryogenic temperatures and to select a high-Q material as the substrate. In the setup

of a laser interferometer, two thermal processes violate the gravitational wave detection: the

suspension thermal noise, which is a fluctuation of the suspension point, causes translation of

the center of mass of the mirror, and the mirror thermal noise, which is the sum of mechanical

dissipations in the substrate and coating of the mirror.

In KAGRA, sapphire is chosen as a material for the substrate and suspension wire of the

test masses. The properties of the candidate materials for mirror components of gravitational

wave detectors are summarized in table 3.2. Among the candidate materials, sapphire has a

high Q-factor, high thermal conductivity, and low optical absorption of 1064 nm wavelength

laser at cryogenic temperatures. The high density feature of sapphire also helps to make the

mirror heavier with a given volume, resulting in a high inertia. However, fused silica used for

mirrors in Advanced LIGO shows characteristics suitable for the laser interferometer, cooling

down to cryogenic temperatures deteriorates its Q-factor by roughly 4 orders of magnitude,

from 107 to 103.

3.1.2 Optical layout

The KAGRA interferometer is composed of a number of optical components including

not only the main parts of the dual-recycled Fabry-Perot Michelson interferometer but also

input, output and auxiliary optics. A schematics of the optical layout of the KAGRA is

shown in fig. 3.3.
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Fig. 3.3. A schematics of the optical layout of the KAGRA interferometer.

The laser source is a Nd:YAG non-planar ring oscillator (NPRO) that has very low inten-

sity noise. Passing through the solid-state amplifier with increasing power of about ∼ 200 W,

the laser beam goes to the pre-stabilization stage, which applies further intensity stabilization

with a pre-mode cleaner, a bow-tie shaped rigid cavity, and frequency stabilizaiton with a

rigid reference cavity with high finesse. These pre-stabilization processes are implemented

on an in-air breadboard, while following an optical path, and components are placed under

vacuum environment.

The pre-stabilized laser beam is sent to the input mode cleaner (IMC), a triangular cavity

with suspended mirrors for the purpose of spatial mode shaping and further frequency stabi-

lization. The transmitted beam from the IMC goes through a Faraday isolator (FI), which

blocks back-streaming light through a combination of a Faraday rotator and two polarizers to
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force the passing beam to follow one path. Then the outcoming beam is magnified through

the input mode matching telescope (IMMT) which has spatial mode shaping to match the

beam to the following optical cavities. Thus, after these preprocessing steps, the dressed

beam is sent to the main part of the interferometer.

The main part of the interferometer is a dual-recycled Fabry-Perot Michelson interfer-

ometer with an arm length of 3 km. The arm cavities are conventionally called X-arm and

Y-arm, and are formed by the input test masses (ITMs) and the end test masses (ETMs).

The incoming beam is divided into two perpendicular directions at the beam splitter (BS)

and sent to the arm cavities. The reflected beams from the arm cavities are recombined at

the BS. Their interference condition on the BS is retained such that all the power goes back

to the incoming direction called the symmetric port.

There are two folded recycling cavities at the input and output of the main interferometer.

At the input (symmetric port), the power recycling mirror (PRM) reflects the back-coming

beam again to the arm cavities. The power recycling cavity, formed by the PRM and equiv-

alent ITM (a virtual ITM located at the averaged distance of the ITMX and ITMY from

the BS) stores the reflected power from the arm cavities, amplifying the effective intracavity

power of the arms. Similarly, a signal recycling cavity is implemented at the output (anti-

symmetric port) of the Michelson interferometer. Although the interfered light is kept dark

during observation, a tiny amount of power leaks out at the anti-symmetric port when gravi-

tational waves pass through the interferometer. The signal recycling mirror (SRM) sends the

leaked photons (signal of the GWs) back to the arm cavities so that the interaction between

the photons and the gravitational waves can be increased.

Finally, the leaked beam from the signal recycling cavity is detected at the photo-detector

(PD), with post-processing through the output mode matching telescope (OMMT) and the

output mode cleaner (OMC). The OMMT diminishes the beam radius by shaping its spatial

mode so that it can match the following OMC cavity. The OMC is a bow-tie shaped cavity

mounted on a monolithic breadboard with less thermal expansion.

3.2 Overview of KAGRA suspension systems

The main interferometer of KAGRA consists of a number of optics, whose fluctuations

have different levels of impact on gravitational wave detection depending on its position.

Hence, we employ three types of suspension systems for the optics of the main interferometer,

namely type-A, type-B, and type-Bp suspension. The overview and configuration of these

three types of suspensions are shown in fig. 3.4 and fig. 3.5, respectively. Basic information

about the suspension types is also listed in table 3.3.

The type-A suspension is the largest vibration isolation system for the cryogenic test

masses in the 3 km arm cavity. As the local motion of the test masses directly couples to
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Table 3.3. Basic specification of the three types of the KAGRA suspension systems

Type-A Type-B Type-Bp

Assigned optics ITMX BS PRM

ITMY SRM PR2

ETMX SR2 PR3

ETMY SR3

Horizontal stages 9 (IP included) 5 (IP included) 3

Vertical stages 5 3 2

payload type cryogenic room temperature room temperature

parallel branch branch

the change in differential arm length, we apply the highest vibration isolation on them. The

Type-A suspension has 9 suspended stages including an IP pre-isolation stage and 5 GAS

filter with a height of 13.5 m. Owing to the height of the system, the base of the type-A

suspension sits on the upper floor of the tunnel, which is separately excavated at a higher

elevation. The bottom four stages are called cryogenic payload, containing a sapphire test

mass and being operated under ∼ 20 K. The cryogenic payload is a parallel chain of the

main masses and the reaction masses. The reaction is connected to a cooling bar inside a

double-shielded cryostat for conductive cooling via heat links. The detailed design of the

type-A suspension will be described in the following sections.

The type-B suspension is the second largest vibration isolation system used for the BS

and signal recycling mirrors. It has a total of five suspended stages and contains IP pre-

isolation stage as well as the type-A suspension. The base of the Type-B suspension sits on

an external support frame bedded on the ground floor of the tunnel. The payload of the

Type-B suspension is a branched chain of the main masses and the reaction masses, which

is operated at room temperatures. In the setup of a branched chain, a main mass and its

recoil mass are suspended from the next main mass of the upper stage. On the other hand,

in the parallel chain such as the Type-A suspension, the main mass and its recoil mass are

separately suspended from their own next upper masses.

The Type-Bp suspension is the reduced version of the Type-B suspension and is used

for the power recycling mirrors. It has three suspended stages and two GAS filters with the

height of 2 m, while the IP pre-isolation stage and the number of GAS filters are omitted due

to budgetary constraints. The base of the Type-Bp suspension sits on an inner frame of the

vacuum chamber. The absence of the IP stage makes it impossible to adjust the position of

the suspension point and control the fundamental mode of the whole translation. The first

problem, the position adjustment of the suspension point, is solved by using a motorized base

called a traverser. The second problem, the control of the translational modes of the entire
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Table 3.4. Longitudinal displacement noise requirements at 10 Hz of the core optics of the

KAGRA main interferometer. The stricter value in two operational mode of the interferom-

eter is chosen.

Optics Displacement noise [m/Hz1/2] @ 10 Hz

TM 8× 10−20

BS 6× 10−18

PRM 1× 10−15

PR2, PR3 5× 10−16

SRM 5× 10−18

SR2, SR3 2× 10−18

chain, can be overcome with an additional recoil mass applied on the bottom GAS filter.

Thus the Type-Bp suspension becomes a branched suspension from the top to the bottom.

The design of the payload is shared with that of the Type-B suspension and is operated also

at room temperatures.

The basic specification of these suspension systems are determined by the required seismic

attenuation performance, or the required displacement noise under the seismic excitation of

the Kamioka underground site. The sensitivity of the KAGRA main interferometer in the

observational band is limited by the suspension thermal noise and quantum noise. The goal

of the vibration isolation system is to attenuate other noise source contributions so that

they are low enough compared to these fundamental noises. The requirements of the mirror

displacement noise are set as small as 1/10 of the sensitivity curve above 10 Hz. The spectral

requirements for the suspensions in each operational mode of the interferometer are plotted

in fig. 3.6, and the their values at 10 Hz are summarized in table 3.4. In table 3.4, the

stricter requirement of the two operational modes of the interferometer is listed. Comparing

to the Type-A suspension, the allowed displacement noise for the Type-B optics is roughly

101–102 larger and for the Type-Bp optics is 104–105 larger. The requirements of the folding

mirrors in the power/signal recycling cavities are 0.5 times lower than PRM/SRM, as their

longitudinal displacement alters the cavity length by two times.

The discussion of the requirements above is the subject of longitudinal seismic attenu-

ation and couplings from other DoFs or other noise sources. We need vibration isolation in

the vertical direction owing to the vertical-to-longitudinal (V-to-L) coupling, as described in

the previous chapter. In the case of a 3 km separation, the V-to-L coupling caused by the

curvature of the Earth is estimated as at most 1%. In addition, there is another path of

the V-to-L coupling that comes from the inclination of the KAGRA tunnel. KAGRA is not

constructed on an exactly horizontal plane for a practical reason: as there are many ground-

water springs inside the Kamioka mine, the L-shaped tunnel has been excavated with a tilt of
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1/300 for drainage. Owing to this inclination, the local vertical motion of the mirrors alters

the longitudinal cavity variation at least by 0.3% even without other mechanical couplings.

Taking these considerations into account, we assume the V-to-L coupling in the suspension

system as 1% in the following discussions.
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Type-A Type-B Type-Bp

Fig. 3.4. Overview of the suspen-

sion systems in KAGRA, rendered

in a reduced scale. Three types of

suspensions, namely Type-A, Type-

B, and Type-Bp suspension, are em-

ployed for vibration isolation of the

core optics.
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Fig. 3.5. Configuration of the suspension systems in the KAGRA main interferometer.
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Fig. 3.6. Longitudinal displacement noise requirements of the core optics of the KAGRA

main interferometer in two operational modes.
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3.2.1 Control phases

The KAGRA main interferometer is formed by optics individually suspended from their

vibration isolation systems. While the optics need to be controlled globally to realize the

interferometer operation as the whole, each optic is subject to incoherent disturbance caused

by the seismic noise. Although the suspension systems achieve sufficient seismic attenuation

in the frequency band of gravitational wave observation, they also have to suppress the

out-of-band mirror fluctuation so that a global interferometer system can be achieved. The

suspension systems enhance mirror vibration at their mechanical resonances as they stand,

which typically have high quality factors, or long decay times, in other words.

We govern the suspension systems with active control in order to suppress these low

frequency motions of the optics. The active control is based on linear feedback control making

use of several kinds of vibration sensors, contactless actuators, and digital servo systems. The

mechanical resonances can be damped also by passive dampers such as eddy current dampers,

which have better stability of working once they are installed. Active control requires careful

dedication to the servo design for stable operation, thus at this point, it has troublesome

complexity. On the other hand, the flexibility of active control, which can easily switch the

control strategy depending on the states of the interferometer even after the mechanics of the

suspension system is installed, outweighs the difficulties of handling.

The states of the interferometer control can be categorized into three phases, namely

calm-down phase, lock acquisition phase, and observation phase. The transition strategy

between these phases is visualized in fig. 3.7. The calm-down phase is the state where the

optics are swinging with large amplitudes and the interferometer is no longer kept aligned

to produce any meaningful signals. In this phase, the suspension systems need to suppress

the vibration of the optics to restore their nominal positions so that the interferometer can

start lock acquisition. Here the control gives priority to robustness against large disturbances

than quiescence of the control noise. Hence, the actual topic in the calm-down phase turns to

mode damping of its mechanical resonances. Second, the lock acquisition phase is the state

where the interferometer recovers the Fabry-Perot cavities so that they are locked in their

resonant conditions. As the linear region of the interferometer (PDH) signals is considerably

small, the control has to reduce the velocity of the suspended optics so that it is small enough

to allow the limited actuation power to have an effect. The local control is also required to

suppress the angular fluctuation so that the control loop with more sensitive sensors of the

interferometer, such as the wave front sensors, can be engaged. Finally, all the cavities of the

interferometer are locked and the control moves to the observation phase where gravitational

wave detection is in operation. The most important point in this phase is less control noise to

perform the observation with a better interferometer sensitivity, as well as to keep the mirror

displacements and orientations in a certain range for stable operation.
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Fig. 3.7. Phases of the interferometer control in KAGRA. Information about each control

phase is also summarized.

3.2.2 Requirements

The suspension systems need to provide sufficiently stabilized mirrors so that the residual

motion is at a level suitable for the phase of the interferometer control. Thus, the requirements

of the Type-A suspension are set in each control phase, as summarized in table 3.5. The

derivations of each type of requirement are described in the following subsections.

1/e modal decay time

The calm-down phase places importance on quick recovery of the interferometer signals.

However, a large amplitude of the mirror’s residual motion, which is usually driven by the

mechanical resonances of the suspension system, makes the signals unavailable. Thus, the

requirement has been set that the 1/e decay time of the mechanical resonances involving in

the interferometer operation has to be less than 1 min. This value is empirically determined

so as not to prevent the interferometer from trying a lock acquisition for a long time [19].

RMS residual motions for calm down

Other requirements in the calm-down phase are basically intended to settle the excited

vibrations to their usual stationary state so that smooth transition to the next lock acquisition

phase can occur. Thus the requirements on the RMS displacement (L) and the RMS angles

(P, Y) are set as 50µm and 50µrad, respectively [19]. The RMS displacement for the other

translational DoFs (T, V) are required for another reason that is mentioned shortly later.
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Table 3.5. Requirements on the vibration isolation and active control of the Type-A sus-

pension. The abbreviations of the suspension’s DoFs are as mentioned in section 2.3.

Calm-down phase

Item Requirement For/Determined by

1/e modal decay time < 1 min Quick recovery

RMS displacement (L) < 50 µm Smooth transition to next phase

RMS displacement (T, V) < 0.1 mm Miscentering

RMS angle (P, Y) < 50 µm Smooth transition to next phase

Lock acquisition phase

Item Requirement For/Determined by

RMS velocity (L) < 240 µm/s Auxiliary laser locking

RMS displacement (T, V) < 0.1 mm Miscentering

RMS angle (P, Y) < 880 nrad Optical gain degradation < 5%

Observation phase

Item Requirement For/Determined by

Displacement noise (L) @ 10 Hz < 8× 10−20 m/Hz1/2 Sensitivity

Displacement noise (V) @ 10 Hz < 8× 10−18 m/Hz1/2 Sensitivity (1% coupling to L)

RMS displacement (T, V) < 0.1 mm Miscentering

RMS angle (P, Y) < 200 nrad Beam spot fluctuation < 1 mm

DC drift (P, Y) < 400 nrad/h Sustainable lock for 1 day left

RMS velocity for lock acquisition

The arm length stabilization of the Fabry-Perot interferometer is accomplished by using

modulated laser beams; this technique is called the Pound-Drever-Hall (PDH) technique or

frontal modulation technique [28]. The amplitude or phase of the laser is modulated at radio

frequencies before entering the main interferometer. By demodulating laser power detected

at the photo-detector in the proper phase, one can obtain an error signal proportional to

the displacement from the working point. Instead of yielding the small linear region of the

proportionality of the error signal, the control locked with this scheme can stabilize the laser

frequency or the position of the optics in an extreme precision. The width of the linear region

is determined by the finesse of the cavity F and wavelength of the laser λ with the following

equation,

∆Llin =
λ

2F
. (3.1)

According to the finesse of 1550 for the arm cavities and the wavelength of 1064 nm for the

main laser in the KAGRA interferometer, the width of the linear region can be interpreted
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as the geometrical displacement of the cavity of 3.4× 10−10 m.

Acquiring the lock of the optical cavity means that the velocity of the cavity length

variation has to be zero with respect to the resonant peaks aligned with the interval of the free

spectral range. Hence the feedback force needs to stop the suspended mirror while the mirror

is passing across the small linear region. However, the test mass actuators will often lack

sufficient authority to gain control for nulling the mirror velocity since their design follows

the policy of mitigating force noise. To support the lock acquisition of the arm cavities,

the KAGRA interferometer adopts a so-called green lock scheme [29], which introduces a

frequency-doubled auxiliary laser with lower finesse for the arm cavities.

The requirement of the RMS velocity in the longitudinal direction has been derived from

the condition that the time scale where the mirror goes across the linear region of the PDH

signal is sufficiently longer than the duration of the control bandwidth. Thus the incident

velocity of the mirror needed to acquire the cavity lock should satisfy the following inequality,

vin ≲ ωb∆Llin =
ωbλ

2F
. (3.2)

Here ωb denotes the control bandwidth. In the case of Type-A suspension, the green lock

can be equivalent to the lock acquisition in the scope of local control. Therefore, the incident

velocity required for the green lock is calculated as 334 µm/s for ωb/2π = 10 Hz, λ = 532 nm,

and F = 50.

The actual incident velocity of the mirror shows a stochastic behavior because the mirror

is driven by random disturbances. Assuming that the velocity of the mirror follows Gaussian

distribution, the incident velocity of the optical cavity will have the following probability

distribution [30],

f(v) =
v

vRMS

exp

(
v2

2v2RMS

)
, (3.3)

where vRMS denotes the RMS velocity of the cavity length variation. By imposing a proba-

bility of the lock acquisition higher than 50% in this model, the RMS velocity of the length

variation should be suppressed lower than 0.72 vmax, where vmax is the maximum acceptable

velocity. From the discussions above, the requirement on the RMS velocity has been set as

240 µm/s for the Type-A suspension [19].

RMS alignment angles (P, Y)

The mirror rotation in the alignment angles, namely pitch and yaw, causes beam spot

fluctuation and spatial mode mismatch in the interferometer. As the test masses are sepa-

rated by kilometers, even small fluctuations of the mirror angles result in large beam spot

displacements. The requirement in the lock acquisition phase comes from the requirement

that the intracavity power should not degrade with a loss more than 5% [31], while the one
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in the observation phase comes from the fact that the beam spot fluctuation at the 3 km

distance should be less than 1 mm.
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3.3 Mechanical design

The Type-A suspension is a nine-stage pendulum consisting of an IP pre-isolation stage,

a chain of GAS filters, and a parallelized payload. The 3D drawing of the overall Type-A

suspension is shown in fig. 3.8. The pre-isolation stage consists of the base ring, inverted

pendulum legs, and a top GAS filter that sits on the base frame fixed on the ground. The

first top stage is supported by three inverted pendulum (IP) legs. The chain of GAS filters

starts from the top filter (F0) mounted on the top stage, includes the filters on succeeding

stages named filter 1, 2, and 3, (F1, F2 and F3 in short, respectively,) and then ends with

the fifth stage called the bottom filter (BF). The stages suspended from the BF are called

the cryogenic payload (also called payload or CRYp in short), which begins with the platform

(PF). From the PF, two chains of three-stage pendulums, namely test-mass (TM) chain and

recoil-mass (RM) chain, are suspended in parallel. The three stages in the TM chain are

named the marionette (MN), intermediate mass (IM), and the test mass (TM), which is

a sapphire mirror that reacts to GWs. The RM chain has mass stages that surround the

corresponding mass in the TM chain to apply an actuation force isolated from the ground

disturbance.

The suspension wires above the PF are made of maraging steel with heat treatment

to increase their tensile strength. In the payload, the sapphire fibers are designed for the

suspension wire for the TM, paying special attention to the thermal conductivity. Other wires

in the payload are made of maraging steel or copper beryllium depending on the location to

be used.

Some auxiliary mechanical parts are connected to the suspension chain. One is the

magnetic damper (MD), which applies viscous-damping force on the neighboring F1 stage.

The magnetic damper is suspended from the top stage with three maraging wires. Another

one is the heat link connected from the cooling bar to the marionette-recoil mass for the

purpose of quick cooling via conductive heat transfer.
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Fig. 3.8. An overview of the Type-A suspension from the top to the bottom.
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3.3.1 IP pre-isolation stage

The IP pre-isolation stage, called pre-isolator, consists of IP legs, a base ring, and the

top GAS filter. The function of this stage is to provide the first mechanical resonance below

0.1 Hz for horizontal motion. Since the position of the suspension point for the following

chain is determined by the translation of this stage, it also provides controllability of the

static position and yaw orientation of the mirror.

An overview drawing of the pre-isolator is shown in fig. 3.9. The top stage is supported

by three IP legs in each 120◦ rotation. Three pillars placed at the mid point of the IP legs

rigidly connect the base ring to the reference frame where units of the sensor-actuator device

and the lock pillar are mounted to mechanically fix the top stages for safety reasons. On

the top stage, the thinner tip of the cantilever blades is connected to the keystone enclosed

by the central structure of the top filter. The velocity sensors, commercial products named

geophone L-4C, packaged in the vacuum canister are mounted on the top stage so that the

inertial sensor is independent of the ground disturbance. One of the suspension wires for the

main chain is set at the keystone of the top GAS filter, while the other three wires for the

magnetic damper are directly set on the ceiling of the top stage.

The detailed dimensions of the IP leg are shown in fig. 3.10. The total height of the IP

leg is 520 mm, which is much smaller than that of the Virgo Superattenuator, which is of 6 m.

This IP has the flexure joints at both ends of the hollow cylinder of the leg. The flexure joints

are made of maraging steel, a special arroy known for its superior strength and toughness

after aging treatment, that allows robust elastic bending beside the top stage displacement.

The hollow legs of ∼ 0.3 kg each mitigate the saturation of the attenuation performance at

higher frequencies. A skirt around the bottom flexure where the counter weights are mounted

enables the center of percussion to coincide with the fixing point of the flexure. The saturated

attenuation factor, which is usually ∼ 10−3, can be improved to ≲ 10−4 by introducing the

counter weights. Each IP stands on the cone bellows supported by in-air screw jacks that

enable us to adjust the height of the IP’s feet so that the ground plane to be horizontal.

The details of the top GAS filter will be presented in the next subsection, as its structure

and functions are similar to those of the standard GAS filter. The sensors and actuators are

also explained later.
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Fig. 3.9. An overview of the pre-isolator (top) and its cross-section view (bottom). The

numbered components are the 1) cantilever blade, 2) geophone capsulated in a vacuum can-

ister, 3) table of the top stage, 4) reference frame rigidly connected to the base ring, 5) base

ring, 6) unit of the LVDT and the coil-magnet actuator, 7) suspension wires, 8) IP leg, 9)

keystone and the surrounding structure of the top filter, 10) lock pillar for the top stage, 11)

motorized blade spring for static position control of the top stage and 12) cup of the cone

bellows.
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Fig. 3.10. A cross-section view of the IP leg.
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3.3.2 GAS filter chain

The type-A suspension has 5-stage of GAS filter chain cascading from the IP pre-isolation

stage in order to meet the required seismic attenuation in the horizontal and vertical direc-

tions. The first GAS stage, called top GAS filter, is implemented directly on the top stage. In

the following three stages, we use a GAS filter called a standard GAS filter , as it has a more

compact design. which is called The last stage of the tower part, called bottom GAS filter,

has basically the same mechanical design as the standard GAS filters. However, the bottom

filter is distinguished from the other standard filters because of some important functions

that allows it to act as an interface between the tower and the payload.

1
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Fig. 3.11. An overview of the standard GAS filter without the cap (top) and its cross-section

view with the cap (bottom). The numbered components are the 1) cantilever blade, 2) blade

clamp, 3) ballast mass, 4) fishing rod, 5) keystone, 6) magic wand, 7) lock screws and nuts,

8) upper suspension wire, 9) filter cap, 10) lower suspension wire, 11) wire receptacle for the

upper wire, 12) wire receptacle for the lower wire, 13) coils for LVDT displacement sensor,

14) actuator coil, 15) magnets and 16) iron yoke.
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Fig. 3.12. Dimension of a cantilever blade for the standard GAS filter in Type-A suspension.

The basic structure of a standard GAS filter is implemented on a disk-shaped base plate

as shown in fig. 3.11. As described in section 2.4.2, quasi-triangular cantilever blades are

radially mounted on a base plate. The tips of the bent blades are fixed to the keystone where

a suspension wire for the lower stages is hooked. Owing to this axisymmetric constraint,

the keystone can oscillate only in a vertical direction. The wire from the upper stage will

be hooked at the center of the cap which is shaped like a trancated cone and clamped on

the base plate with screws at its radial edge. The wire receptacles on both the cap and the

keystone are positioned such that the suspension points become closer to its center of mass.

In addition, a magic wand is attached on the keystone to compensate the center of percussion

effect.

Each cantilever blade is designed to be subject to uniform stress distribution in the

compressed situation. All the GAS blades in the KAGRA suspension systems have cosine

profiles similar to the standard one, as drawn in fig. 3.12. Note that the surface stress is

proportional to the thickness and inverse of the length of the blade, indicating this ratio is

kept constant in usual design procedure.

The width, thickness, and number of the GAS blades are adjusted so that their optimal

load is equal to the suspended weight from the stage. Intuitively speaking, a stage that

supports a heavier load requires a larger anti-spring effect to achieve the given resonant

frequency. Therefore, the top GAS filter has thicker blades and the upper standard GAS

filters has a greater number of blades. The blade parameters for each GAS filter are listed in

table 3.6.

The vertical oscillation of the keystone is monitored with a LVDT displacement sensor,

and is controlled with a coil-magnet actuator. These apparatuses are implemented coaxially

at the bottom of the base plate. For static position adjustment, a motorized blade spring,

called a fishing rod, is attached on the upper part of the keystone. Although the total stiffness

of the keystone increases by adding the blade spring of the fishing rod, we confirmed that
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Table 3.6. Blade parameters of the GAS filter in Type-A suspension.

Stage Thickness [mm] Base width [mm] # of blades

Filter 0 (top) 5.0 125 6

Filter 1 (standard) 2.4 80 12

Filter 2 (standard) 2.4 80 10

Filter 3 (standard) 2.4 80 8

Bottom filter 2.4 80 5
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Fig. 3.13. Design of the maraging wire.

deterioration of its resonant frequency is less than 10 % for all GAS filters.

3.3.3 Maraging wire

The main chain from the top stage to the platform in the cryogenic payload is connected

with single maraging wires. The maraging wire is capable of suspending a heavy payload

with enough mechanical stability.

Maraging steel, the material used for not only the suspension wires but also the blades

in the GAS filters and flexure joints in the IP legs, is a low carbon containing (≲ 0.03%)

iron alloy with nickel, cobalt, and molybdenum. Through martensitic transformation and

age hardening 1, maraging steel acquires an ultimate tensile strength of ≳ 1600 MPa. It

is widely used in suspension systems in gravitational wave detectors, as its low mechanical

shot noise induced by microscopic creeps under stress, which is an accumulation of quantized

yielding process, such as the movement of dislocations and diffusion of vacancies in crystalline

structure, results in long-term plastic deformation even below the yield stress of the material.

The dimension of the wire is not uniform; it has thicker heads at both ends, which will

be hooked on the wire receptacle at the keystone or the cap. It also has a thinner neck with

a length of a few centimeters, as shown in fig. 3.13.

The neck part with a smaller diameter is machined in order to reduce the effective

1 Actually, the name of ”maraging steel” is a compound of martensitic and aging.
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bending offset from the suspension point. In an ideal rigid body model with massless wire

connections, the wire bends exactly at the clamping point on the body. However, in reality,

the wire has bending elasticity and thus bends at an offset point from the clamping point

with a finite radius of curvature. This effect, sometimes referred to as the bending point

effect, will deteriorate the seismic attenuation performance because the effective length of the

pendulum reduces and the, resonant frequency increases. The offset of the bending point ∆

is calculated through the following relationship.

∆ =

√
EI

T
(3.4)

Here E is the Young modulus (modulus of longitudinal elasticity), I is the second moment

of area, and T is the tension on the wire. The wire with diameter of d has a second moment

of area of I = πd4/64. In the case of the suspension systems in KAGRA, the offset of the

bending point stays in the mm-cm scale, much smaller than that of the wire length L ∼ of a

few meters; therefore, the bending point effect can be assumed to be negligible.

The diameter of the neck is designed such that the maximum Mises stress under loading

is below the yield stress of the maraging steel with a safety factor of 2 [32]. The fillet part

between the head and neck is machined to be an elliptic dimension, which is optimized to

mitigate stress concentration.

The chain of single-wire suspensions behaves also as a torsion pendulum with very low

resonant frequency in general. The torsional oscillation is driven by the stiffness of the wire

independently of the gravitational restoring force. The spring constant of the torsional motion

is written as,

ktor = G
πd4

32L
, (3.5)

where G is the shear modulus; the factor πd4/32 originates from the polar moment of inertia

of area. The torsional stiffness is calculated as an integration over the wire length, while the

bending point offset described above is determined by the diameters in a few centimeters just

from its clamping point. Thus, the maraging wire has a smaller thickness at the both ends and

larger thickness in the middle. However, even with the thickness treatment, the single-wire

suspension chain still possesses low-frequency torsional modes (< 0.1 Hz) that leads to large

angular fluctuation of the mirror in yaw and misaligns the interferometer configuration. The

Type-A suspension overcomes this torsional-mode problem by passive and active dampers,

which will be explained in the following subsections.

3.3.4 Magnetic damper

As discussed in the previous subsection, a single-wire suspension chain behaves as a

torsion pendulum with a very low resonant frequency (≲ 0.1 Hz). This torsional oscillation,
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when once excited, lasts for a long time owing to its high quality factor originating from

the intrinsic mechanical loss of the wire. For quick recovery of the interferometer operation,

we have to decrease the torsional motions corresponding to the horizontal alignment of the

mirror.

The magnetic damper is a passive damping mechanism that uses eddy currents. An eddy

current damper consists of permanent magnets fixed on the reference side and conductive

plates attached on the oscillator side to be damped. When a conductive object feels an

alternation of nearby magnetic fields, it generates eddy currents on its surface so as to oppose

the time-varying magnetic fields. A breaking force is therefore produced on the oscillator (or

breaking torque for rotational oscillation).

The conceptual design of the magnetic damper in the KAGRA suspensions is a ring with

arrayed permanent magnets suspended from the pre-isolation stage by three wires and placed

just above the first standard GAS filter (F1). The magnets are arranged such that the overall

magnetic dipole moment cancels out. The damper ring faces copper plates attached on the

top of the F1 stage, with a gap of ∼ 5 mm.

The single magnetic damper is not adequate to damp the torsion mode of the long chain

of the Type-A suspension, since the magnetic damper can apply a breaking torque only

onto the F1 stage, which is close to the node of the open-ended fundamental torsion mode.

To damp a specific natural mode whose mode shape is known, it is effective to implement

a damper at the position of its antinode where the mode has large amplitude. Thus, the

second torsion-mode-damping mechanism is implemented on the bottom filter in the Type-A

suspension, as described in the next subsection.

3.3.5 Bottom filter

The bottom filter is the last GAS stage in the tower part of the Type-A suspension.

Although the basic mechanical design is same as that of the standard GAS filter, the bottom

filter is distinguishable from them owing to some additional functions that allows it to inter-

face the upper stages with the payload assembly, not only in Type-A suspension systems but

also in other types of the suspension systems.

One of the important roles of the bottom filter is to provide controllability at the lower

point of the suspension with comparably large actuation range. The bottom filter is equipped

with sensor-actuator-unified devices named BF LVDT (sometimes also referred to as BF

damper) for six DoFs measurability and controllability of the bottom filter motion with

respect to the ground (exactly speaking, the ground means the security structure or the

vacuum chamber that surrounds the suspension chain and is fixed onto the ground). We can

implement a larger actuation range on the bottom filter than the payload stages because the

force noise introduced by the actuator has less impact on the test mass.
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The BF LVDT allows us to actively damp the torsional motion of the single-wire suspen-

sion. In most cases, the torsional oscillation is driven by the translational seismic motions

coupled through some paths such as imperfect centering of the suspension point due to in-

accurate assemblings. Thereby, as its low-frequency mechanical resonances provide sufficient

attenuation in the yaw direction, the torsional motions are less problematic in terms of dis-

placement noise, which affects the interferometer’s sensitivity. However, when the yaw motion

is excited by kicks, it takes a long time (typically > 1000 seconds) to decay, leading to mis-

alignment of the mirror and a decrease in the duty cycle of the interferometer. As the position

of the bottom filter is far from the node of the fundamental yaw mode (the suspension point

on the top GAS filter), the actuation on the bottom filter can apply effective damping. One

remaining concern is that the bottom filter is in close contact with the node of the second yaw

mode and thus less controllable in the Type-A suspension. We should address this problem

creatively.

Other than the BF LVDT, the bottom filter has some additional functions. In Type-B

and Type-Bp suspension, the next stages, namely intermediate mass (IM) and intermediate

recoil mass (IRM), are suspended divergently from the bottom filter. The 6-DoFs relative

position of the IM with respect to the IRM is monitored and actuated in order to provide a

further controllability of the mirror’s displacement and alignment. As the IM is connected

with a single wire while the IRM is connected with three wires, a tilt of the bottom filter

turns into a relative translation of the IM and IRM. To adjust the tilt, the bottom filter

is equipped with a motorized weight on the cap. In addition, the static yaw position can

be adjusted with a picomotor implemented on the keystone of the bottom filter. Thus, the

bottom filter is not only one of the GAS filters but also an interface providing functions that

adjust the payload conditions.

3.3.6 Cryogenic payload

The suspension systems in KAGRA have a part of the bottom stages called a payload

that includes the core optics. The one in the Type-A suspension is called the cryogenic

payload, as it is cooled down to operate at cryogenic temperatures. As the detailed design

and characteristics (both vibratory and thermal) will be presented in a future dissertation,

here we only provide a brief description of the cryogenic payload.

The cryogenic payload consists of four stages with a parallelized pair of chains. A

computed-aided drawing of the cryogenic payload is shown in fig. 3.14. A disc-shaped stage

called the platform (PF) is suspended from the bottom filter with a single maraging wire that

is 3.3 m long. There are two chains suspended from the PF in parallel, namely the TM-chain

and RM-chain. The first stage of the TM-chain is marionette (MN), a cross-shaped mass

supported at a point close to its center of mass with a single maraging wire in order to have
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Fig. 3.14. An overview of the cryogenic payload.

low stiffnesses in its rotational DoFs. The next intermediate mass (IM) is the penultimate

stage suspended from the four wires made of beryllium copper. Finally, the sapphire test

mass (TM) is suspended with four sapphire fibers (35 cm long and 1.6 mm in diameter), each

of which is hooked on a sapphire blade spring attached on the IM. The use of same mate-

rial in the TM substrate and the fiber improves the thermal conductivity of the assembled

system. These bottom three stages are accompanied with their reaction masses, providing

controllability of relative position and alignment of the test mass independent of the seis-

mic disturbances. There are permanent magnets on the TM-chain masses and coils on the

RM-chain masses functioning as coil-magnet actuators to control each six differential DoFs

of the MN-MNR and IM-IMR position, and three differential DoFs (namely longitudinal,

pitch, and yaw) of the TM-RM position. Beside that, cryogenic photo-reflective sensors are

additionally implemented in the configuration coincident with the coil-magnet actuators to

produce local displacement of the TM-chain masses with respect to the RM-chain frames.

In addition, static alignment control with respect to the ground structure can be performed

with local angular sensors called optical levers.

The cooling of the cryogenic payload is based on the two paths of heat transfer, radiation

cooling and conduction cooling. The whole of the cryogenic payload is housed in a double-

layered cryostat, which is formed by a 8 K inner shield and 80 K outer shield. The surfaces

of the cryostat, payload, and the security frame are treated with black coating for efficient
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Fig. 3.15. Schematic diagram of the cooling system around the cryogenic payload.

radiation cooling. In addition, the stages of the cryogenic payload are connected to each other

with high purity aluminum cables called heat links for conduction cooling. The absorbed heat

on the test mass flows to the upper stages and is finally extracted to the cryostat structure

through the heat links and cooling bars. As this mechanical conduction path could reintroduce

additional vibrational disturbances to the isolated stages, a three-stage vibration isolation

system is implemented on the cryostat to relay the heat links attached on the MNR. These

cryogenic instruments are put under refrigeration with four units of pulse-tube cryocoolers.

The cryocoolers have doubled vibration reduction stages whose first stage is connected to the

80 K outer shield and whose second stage is connected to the payload-cooling system and

the 8 K inner shield. Although the shields of the cryostat have bore holes in front of the

test mass so that the laser beam goes through, the holes can threaten the cooling time and

attainable lowest temperature of the test mass by allowing intrusion of 300 K radiation from

the room-temperature vacuum ducts. Therefore, 80 K duct shields are implemented inside

the neighboring vacuum ducts to reduce the solid angle of the incoming 300 K radiation.
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Fig. 3.16. Scheme of the LVDT position sensor

3.4 Sensors and actuators

3.4.1 Linear Variable Differential Transducer (LVDT)

The linear variable differential transducer (LVDT) is a relative displacement sensor us-

ing modulated magnetic field between inductively coupled coils [33]. Figure 3.16 shows the

schematics of LVDT position sensing. The two kinds of coils, the primary coil and the sec-

ondary coils, are set coaxially aligned. One sends sinusoidal modulation signals of ∼ 10 kHz

to the primary coil, which produces an oscillating magnetic field around it. Then the sec-

ondary coils in the vicinity sense the variation in the magnetic field and generate induced

voltages. As the two secondary coils are identical but counter-wound to each other, the

induced voltage is canceled when the primary coil is placed at the center of the secondary

coils. Thus, when the primary coil shifts from the center, the mutual inductance changes,

and the differential induced voltages appear as net voltages at the subsequent readout. The

net differential voltage is amplified and sent to the mixer which demodulates the oscillating

voltage to obtain low-frequency (≲ 100 Hz) signals of the displacement of the primary coil.

One feature of the LVDT is good linear response to the displacement over large working

range in axial direction. Our implementation has centimeters of its working range with

resolution of sub-micrometers, specific values which depend on the applications. The KAGRA

suspension systems have two types of LVDTs: a standard one used in the IP and GAS filters

and a dedicated one used in the BF. As for the latter, it is designed so that the secondary

coils of the LVDT is shared by actuator coil.
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Fig. 3.17. Cross section of the unit of the LVDT and coil-magnet actuator mounted on the

Pre-isolator.

3.4.2 Geophone

A geophone L-4C is a commercial high-sensitivity seismometer manufactured by Sercel.

The geophone outputs voltages proportional to the velocity of its proof mass with respect

to the housing. A proof mass with a weight of 1 kg is softly suspended with a spring and

a damper with a resonant frequency of ∼ 1 Hz. A coil wound on the proof mass generates

voltages induced by a permanent magnet attached on the housing. The geophone is a passive

instrument that has a simple installation and can be easily maintained; it does not need any

controls for the internal oscillator unlike the accelerometers used in TAMA-SAS.

The geophone has a 2nd-order high-pass frequency response below its resonant frequency.

The frequency response of the geophone is

Hgeo(ω) =
Ge ω

2

ω2
0 + 2iηω0ω − ω2

, (3.6)

where Ge is the generator constant, η is the damping coefficient, ω and ω0 are the angular

frequency and angular resonant frequency, respectively. The conversion efficiency of the frame

velocity to the output voltage is also plotted in fig. 3.18. Although the geophone has a flat

response above the resonant frequency of 1 Hz, it shows frequency dependence proportional

to f 2 at lower frequencies. The nominal parameters of the geophone are specified in table 3.7.

The output voltage from the geophone is amplified by a pre-amplifier circuit for better

S/N ratio before being sent to the control system. The pre-amplifier circuit used in KAGRA

suspension systems is designed in NIKHEF for the advanced Virgo. The first amplification
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Fig. 3.18. Nominal frequency response of the L-4C geophone to ground velocity

Table 3.7. Nominal parameters of the geophone L-4C

Item Value

Generator constant 276.8 V/(m/s)

Proof mass weight 1 kg

Resonant frequency 1 Hz

Damping coefficient 0.28

Coil resistance 5,500 Ω

stage with an operational amplifier CS3002, chosen owing to its low voltage noise feature,

magnifies the signals by a factor of 374.5, then the second amplification stage gains the

amplitude by 2.5 times while converting the signals into differential outputs. Thus, the

pre-amplifier applies a 53.5 dB amplification to the equivalent differential signals.

On the other hand, the pre-amplifier also generates voltage fluctuation that limits the

sensitivity of the geophone. A measured voltage noise spectrum with a breakdown into several

noise sources’ contributions is presented in [19]. The measurement indicates that the pre-

amplifier noise is determined by Johnson noise at high frequencies (> 0.3 Hz), which is the

thermal noise due to the resistance, and current noise at low frequencies (< 0.3 Hz) which

comes from the operational amplifier.

Although the nominal parameters are given as summarized in table 3.7, the individual

values of those parameters are calibrated by a simultaneous seismic vibration measurement

with multiple types of seismometers. Additionally, we uses two units of Trillium Compact

and one unit of Trillium 120QA seismometers produced by Nanometrics Inc., which are em-

ployed in KAGRA as environmental seismic monitors of the underground site. The Trillium
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seismometer series have a flat response in the broadband region (0.01–10 Hz) and therefore

exceed in simplicity of the calibration procedure.

The geophone and the pre-amplifier require in-air operation, while the suspension system

is put in a vacuum environment. To secure the vacuum compatibility for the apparatus, we

sealed them in vacuum pods made of stainless steel and kept the insides at atmospheric

pressure. Air leakage from the vacuum pods was confirmed as negligible at least for several

months in the prototype test of the Type-B suspension in NAOJ [19]. The relative position

of the geophone inside the vacuum pod is fixed with rubber rings in order to prevent rattling

on the internal surface, which will produce unwanted impulses in the readout signals. The

damping effect of these rubber rings have been checked as negligible, indicating that the

housing of the geophone and the vacuum pod can be regarded as a body.

3.4.3 Coil-magnet actuator

Suspension control in gravitational wave detectors requires vacuum-compatible and non-

contacting actuators to apply force on the suspended bodies. A coil-magnet actuator is

an instrument that meets such demands. One unit of the coil-magnet actuator consists of

permanent dipole magnets and solenoid coils. It utilizes an electromagnetic force generated

by the interaction between the static field of the permanent magnets and current sent to the

coils.

The coil-magnet actuators used in the suspension systems can be classified into two types

according to their working principle; voice-coil type and coaxial moving-magnet type. The

voice-coil type actuator is a common implementation in audio speakers where the current in

the coils generates a Lorentz force in a static magnetic field [34]. The lead wires of the coil

are placed in a uniform magnetic field from the magnets shaped by high permeability iron

yokes. As the permanent magnets are fixed on the reference frame, the Lorentz force received

by the current becomes an actuation of the coil itself, or the suspended body which the coil is

attached to. On the other hand, the coaxial moving-magnet type actuator has the permanent

magnets and solenoid coils coaxially aligned to each other. The induced magnetic field of

the coil attached to the reference frame applies an electromagnetic force on the permanent

magnets glued on the suspended body. To mitigate dependence of the actuation force on the

magnets’ position, the magnets should be placed in a sufficiently uniform region of the induced

magnetic field of the coil. All types of actuators implemented in the KAGRA suspensions

are designed so that they have a sufficient linear region and large actuation capability. In the

case of Type-A suspension, the actuators on the IP and GAS are the voice-coil type and the

ones on the BF and payload are the coaxial type.

The design of actuators always involves a trade off between maximum actuation power

and force noise. An actuator with a large actuation force will generate unwanted force noise
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Table 3.8. Specification of the KAGRA coil drivers and assignment in the Type-A suspension

[35]. The output resistances do not include the coil’s impedance. The maximum current with

the low power coil driver is 1.3 mA for the TM and 1.7 mA for the IM.

OpAmp Output resistance Max current Implemented on

Low power AD8671 7.8 kΩ 1.3 mA or 1.7 mA TM, IM

Modified low power AD8671 1.4 kΩ 9.5 mA MN

High power OPA548 80 Ω 0.12 A IP, GAS, BF

even in the presence of a small amount of electric fluctuation. In the case of suspension

systems, the actuators located closer to the optics have a larger impact on the sensitivity of

the interferometer. We therefore use three types of coil drivers to meet the available actuation

range and force noise requirements, as specified in table 3.8. These coil drivers have different

operational amplifiers for the current source and output resistance. As described in the

following section, the actuation current sent to the coil is controlled with a digital system.

The digital system has digital-to-analog converters (DACs) with an output range of ±10 V

which limits the maximum actuation current to the coils and the coil driver does not determine

the available current.

3.5 Digital signal processing

There are hundreds of thousands of channels that need to be managed during operation

of KAGRA, even though the signals essential to GW detection correspond to a few channels.

Moreover, achieving the outstanding sensitivity needed to observe GW signals needs system-

atic noise hunting where the people must survey an enormous number of channels to localize

the sensitivity-limiting noise source. Even if we narrow our scope to a single suspension sys-

tem, it has tens of signals to be processed, some of which are closed locally while some are

interconnected with other suspension or control subsystems. These situations are complicated

enough to motivate us to govern the entire observatory with computational instrumentation.

Digital control with computational machines provides easy accessibility and operability

of the large system of the gravitational wave telescope. Use of a digital control system enables

us to acquire the following features.

• Real-time remote control of the instruments

• Easy management of the multiple degrees-of-freedom control

• Low noise control by quantization

• Data acquisition infrastructure
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Table 3.9. Specification of the KAGRA digital system.

Item Value

Sampling rate 2048 Hz (decimated from 65536 Hz)

Through delay 80 µs

ADC/DAC resolution 16 bit (216 = 65536 digital counts)

ADC voltage range ±20 V (1 count = 6.104× 10−4 V)

DAC voltage range ±10 V (1 count = 3.052× 10−4 V)

ADC noise level 3 µV/Hz1/2 (> 10Hz)

DAC noise level 2 µV/Hz1/2 (> 10Hz)

Number of ADC channels 32 ch. differential inputs / 1 ADC board

Number of DAC channels 16 ch. differential outputs / 1 DAC board

• Automated operation of the interferometer

The detailed specification of the KAGRA digital control system is summarized in [19].



Chapter 4

Control design

In this chapter, we present a concept of suspension control used in KAGRA. Design of

the control system utilizes system modeling

4.1 System modeling

Modeling of the suspension system is an important part of understanding its dynamic

characteristics and also a powerful tool to design the control strategies. Here we start with

3-dimensional rigid-body modeling, whereby the internal dynamics of the suspended mass

are ignored and focus is placed on the modes only associated with the coupled multi-degrees-

of-freedom vibration of the rigid components. This assumption is generally accurate when

studying the low-frequency (≲ 10 Hz) dynamics of such a mechanical system. Moreover, it is

also combined with the frequency region of interest where the control will be applied. This

simple model can be used to solve the problem of the control design.

Control problems of the suspension systems are addressed by the framework of linear

control theory. Although the full dynamics of the mechanical oscillator includes non-linearity

in general, the linear approximation stays valid as the suspension system will be operated

in a small region around its equilibrium point. We have another naive reason to restrict the

system to be linear that is to utilize well-studied tools of linear control theory developed in

the long history of the control engineering. Modeling and control problems of a non-linear

system make things much complicated, despite the fact that we are hardly interested in such

non-linear behavior.

4.1.1 Formulation of 3D rigid-body dynamics

In this study, a 3D rigid-body modeling toolkit coded in MathematicaR⃝ is used. It was

initially developed by M. Barton for the LIGO suspensions and packaged into GUI software

by T. Sekiguchi [36, 37]. Here the concept of 3D rigid-body modeling is briefly described.

93
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The formulation of the dynamic characteristics of multi-DoFs mechanical oscillators is

based on the linearized equation of motion. By expressing a set of positions and velocities

of the system (= component masses) respectively as x and ẋ, the equation of motion can be

derived through the following steps.

1. Calculate the potential energy U(x), dissipation function R(x, ẋ), and kinetic energy

K(x, ẋ) of the system.

2. Minimize the potential energy to find the equilibrium point xeq.

3. Differentiate the potential energy with respect to the pairs of coordinates of the equi-

librium point to derive the stiffness matrix K,

Kij =
∂2U(x)

∂xi∂xj

∣∣∣∣
x=xeq

(4.1)

4. In the same manner, differentiate the dissipation function and the kinetic energy with

respect to pairs of the coordinate velocity at equilibrium to derive the damping matrix

G and the mass matrix M ,

Gij =
∂2R(x, ẋ)

∂xi∂xj

∣∣∣∣
x=xeq

(4.2)

Mij =
∂2T (x, ẋ)

∂xi∂xj

∣∣∣∣
x=xeq

(4.3)

5. Finally the linearized equation of motion is written with the derived matrices as

Mẍ+Gẋ+K(x− xeq) = 0 . (4.4)

In this formulation, each suspended body has motions in 6 DoFs except for the IP stage,

which has only three horizontal DoFs, namely longitudinal, transverse, and yaw directions.

The GAS is treated as a 1-dimensional vertical spring, taking into account the saturation

of attenuation performance caused by the imperfect cancellation of the center-of-percussion

effect. We regard the suspension wires as massless springs with torsional elasticity and load

elongation, neglecting their violin modes. To treat dissipation due to the internal friction of

the elastic material, the spring constants of the vertical springs and wires have imaginary parts

representing finite loss angles, which are assumed to be constant over the entire frequency

region (equivalent to the structural damping process).
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4.1.2 State-space representation

The techniques referred to in the control theory can be applied to systems whose time

evolution can be described by a series of linear, time-invariant 1, first-order ordinary differ-

ential equations. When the state of the system can be determined by a set of variables x,

called state variables, its time evolution will follow the equation,

ẋ(t) = Ax(t) , (4.5)

where the matrix A, which is called system matrix, characterizes the dynamics of the state

with dimension of n × n where n is the number of states corresponding the length of the

vector x. In this case, the system is said to be of order n. To incorporate the system with

the available control input, one can extend the equation of state so as to include the response

to a set of inputs u via a matrix B called input matrix. Then the equation of state of the

system becomes

ẋ(t) = Ax(t) +Bu(t) , (4.6)

which associates the state of the system with the given input. When the input vector u has

a dimension of m, the input matrix B must have a dimension of n×m, the same number of

rows as those of the state variables, and same number of columns as that of the input.

On the other hand, the output from the system y will be a superposition of the system’s

state projected via the output matrixC and direct couplings from the input via the feedthrough

matrix D, such that

y(t) = Cx(t) +Du(t) . (4.7)

The combination of these equations that can uniquely determine the dynamics of the system

(often also referred to as plant) is known as state-space representation. It is summarized as

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
. (4.8)

To derive the suspension’s equation of motion for the state-space representation one more

step needs to be performed. While the equation of motion for the suspension system is a

second-order differential equation, one should introduce an additional first-order differential

equation, v = ẋ, so that the equation of motion can be written in the form of a state-space

model. Hence, by setting the state variables as (x, v), we can obtain the state-space model

1 Here ”time-invariant” implies that the outputs of the system given arbitrary inputs do not depend on

the absolute time. In other words, the time-invariant system must produce the same outputs with respect to

the given inputs.
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of the suspension system from eq. (4.4), which is written as

d

dt

[
x(t)

v(t)

]
=

[
O I

−M−1K −M−1G

][
x(t)

v(t)

]
+Bu(t) (4.9)

The equation of motion determines only the components of the system matrix A. The other

matrices will be designed depending on the configuration of the sensors and actuators.

State-space representations allow researchers to describe the dynamics of the system as

a time evolution of the state variables even if the system has multi-inputs and multi-outputs

(MIMO). In conventional frequency domain analysis, the system is described by means of

transfer functions that project the input onto the output. The transfer function is a useful

tool for expressing a single-input-single-output (SISO) system.

4.2 Control topology

The KAGRA control system is composed of a set of parallelized single-input-single-output

(SISO) feedback loops. The policy of the suspension control in KAGRA is to process the

displacement signals on the Cartesian basis defined in section 2.3. The Cartesian signals can

be obtained from the sensor readouts in their disposed bases through the matrix operation,

after which the generated feedback signals in Cartesian coordinates are distributed to the

real actuators to produce feedback forces in a proper direction.

The control topology for the Type-A suspension is illustrated in fig. 4.1. There are

mainly four loops in the local control of the Type-A suspension. The IP control provides

mode damping of the horizontal motions and DC positioning of the whole suspension chain.

The GAS control deals with resonant mode damping and stabilization of the DC drift of the

keystone’s height. The BF control allows us to apply torsion mode damping on the single-wire

chain, which is unfeasible in the IP control. Finally, the payload control addresses damping

of the internal mode inside the payload and alignment control of the mirror. As the actuators

in the payload have been designed so that the lower stage actuators, compared to the higher

stage actuators, have a lower ability to mitigate force noise coupling, the payload control

adopts a scheme of handing over the feedback signals to the upper stages with more powerful

actuator; this process is called hierarchical control [38].

In the control simulation, the dynamics of the suspension system with multi-inputs and

multi-outputs are represented as a state-space model. The inputs and outputs of the model

are reshaped so as to correspond to a practical setup, such as the differential I/O, for the

GAS sensors and actuators.
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x = Ax + Bu
y = Cx + Du

Payload servo

BF servo

GAS servo

IP servo

State-space model

Fig. 4.1. Block diagram of the local

control of the Type-A suspension. In

the model calculations in this chap-

ter, the dynamics of the suspension

system are represented as a state-

space model with properly-arranged

inputs and outputs. Here the global

and hierarchical paths are omitted.

4.3 1/e decay time reduction

The most important topic in tower control is mode damping of the mechanical resonances.

As the low-frequency oscillators are implemented at the tower stages, the eigenmodes with

large amplitude in the tower stages’ DoFs tend to have relatively low resonant frequencies

and thus a large impact on the RMS residual motion of the mirror.

The performance of mode damping is evaluated as the exponential decay time for each

eigenmode, as required in the calm-down phase. The simulated exponential decay time for

the mechanical eigenmodes of the Type-A suspension is shown in fig. 4.2. While the Type-

A suspension has 75 eigenmodes in total, the number of modes whose shapes are mainly

distributed over the tower stages is 36 and that whose shapes are primarily contributed by

the payload stages are 39. In absence of any control, the eigenmodes from the tower stages

are distributed in the lower-left region below ∼ 1Hz with low Q-factors. In contrast, the

eigenmodes from the payload stages have higher resonant frequencies with higher Q-factors

that are mapped in the upper-right region in fig. 4.2. In practice, the quality of the mechanical

resonances in the real suspension is generally limited by the actual installed setup such as

the clamping of the suspension wires. Hence the model predictions of the quality factor or

the 1/e decay time often lack the precision to demonstrate the real system. Nevertheless,

the following simulation of the damping control helps us to estimate achievable exponential

decay times as the servo design results in suppression of the modal amplitude that relies on
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Fig. 4.2. Predicted 1/e decay time versus the mode frequencies of the mechanical resonances

in the Type-A suspension. In the case which the tower damping control is engaged, the

principal low-frequency modes are successfully damped so that their decay times are less

than 60 s.

the intrinsic high-Q peak of the mechanical resonances.

We can see the reduction performance of the 1/e decay times with tower damping control

in fig. 4.2. In this type of damping control, servo filters are engaged in the IP loops for all

3 DoFs, one GAS loop at F0, and BF loops in three rotational DoFs. The servo filters are

designed as differential filters at the peak frequencies (≲ 1Hz) generating feedback signals

proportional to the velocity of the suspended stage that act as low-pass filters with a couple

of poles in the 1–5 Hz range to reject the sensor noise reintroduction at high frequencies.

Note that the damping control in the payload’s DoFs is not discussed here because it will be

addressed in a thesis on the cryogenic payload development2. According to the simulation,

most of the eigenmodes coming from the tower stages can be successfully damped, and their

exponential decay times are reduced to less than 1 min. Meanwhile, the decay time of

the eigenmodes originating from the payload almost remain unaffected by the tower control

loops. This fact illustrates the significance of the performance test of the Type-A tower alone

independently of the cryogenic payload. However, some of the tower modes that are plotted

2 This thesis will be published in the near future.
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in the range of 0.5–1 Hz seem unrealistic for achieving a decay time shorter than 1 min.

Although these modes are identified as the DoFs corresponding to the tilts of the standard

GAS filters, the Type-A suspension is unfortunately not equipped with sensing or actuating

devices for these DoFs. Nonetheless, as it is expected that the modes in these rotational DoFs

will not have substantial impact on the mirror’s residual motions, the exponential decay time

can be left as they are if it can be confirmed that their couplings to the mirror motion are

negligibly small.

4.4 Modal damping control

Modal damping is a convenient way to decouple vibration into the normal modes of

the system so that they can be damped independently. The control problems of a high di-

mensional system with many coupled DoFs can be simplified as a set of single DoF control

problems, thereby minimizing the complexity of the compensator design. As a result, it is

relatively easy to find an optimal trade-off between damping performance and noise contam-

ination in the damping control for each mode [39, 40].

In this work, modal damping is applied to the vertical modes of the Type-A suspension

that originate from the chain of GAS filters. The advantage of these vertical DoFs is avail-

ability of many sensors and actuators distributed over most stages associated with the mode

shapes. As the resonant frequencies of the coupled GAS modes are localized in the range of

about 0.1–1 Hz due to the softness of GAS, one should place importance on the damping of

those soft modes.

4.4.1 Modal decomposition

Modal damping handles vibration as displacement signals in modal coordinates and feed-

backs them via controllers designed for each mode. The matrix that transforms Cartesian

to modal coordinates can be obtained using the mass matrix M and the stiffness matrix

K. Assuming the system has no damping, the linearized equation of motion in eq. (4.4) is

written in the Fourier domain as follows.

(−ω2M +K)X̃(ω) = 0 (4.10)

This equation has the form of an eigenvalue problem. By replacing the angular frequency as

λ = ω2 and the displacement vector as ϕ = X̃, the equation becomes

(K − λM )ϕ = 0 . (4.11)

Thus a set of eigenvalues λ and eigenvectors ϕ of the system is obtained. As M is positive-

definite andK is non-negative definite, these eigenvectors are orthogonal and thus can become
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Fig. 4.3. Calculated transfer functions of the GAS stages in the vertical direction. Every

stage-based (LVDT- and actuator-wise) response in (a) has a fraction of all normal modes as

a series of resonant peaks, while on the modal basis in (b), the normal modes are separated

into responses of a single second-order system.

the basis of coordinates called modal coordinate. The modal coordinate and the conventional

Cartesian coordinates are related by the following equation:

x(t) = Φη(t) , (4.12)

Φ ≡ [ϕ1 ϕ2 · · · ϕN ] . (4.13)

Here η(t) is a vector that represents the position of the system in modal coordinates. The

matrix Φ is the transformation matrix whose elements are the column-wise eigenvectors

arranged along a row from low to high order modes. Using the matrix Φ, the sensor signals

can be converted to displacements in modal coordinates (called modal displacement) that

indicate the amplitude of a specific mode in the system. Conversely, the feedback signals

that damp the specific mode are distributed to the actuators via the matrix Φ suited for the

mode shape.

The calculated diagonal transfer functions of the GAS vertical DoFs are shown in fig. 4.3,

where they are compared with those in unit-wise (LVDT- and actuator-wise) and modal bases.

Every unit-wise response is a mixture of all the normal modes that are shown as a series of

resonant peaks in fig. 4.3a. On the other hand, the decoupled modal responses behave as a

single second-order low-pass system like a simple harmonic oscillator, as shown in fig. 4.3b.

Note that the norms of the eigenmode vectors used in the transformation matrix Φ are
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(b) 1st modal loop

Fig. 4.4. Examples of the filter design and its open-loop transfer function for the damping

control of the GAS vertical modes.

normalized by their modal mass mr so that ϕT
r M ϕr = mr is satisfied for the r-th order

mode. The large resonance that appears at 4.17 Hz comes from the internal mode of the

cryogenic payload that was ignored in the modal decomposition. Although there remains a

small amount of deviation from an ideal second-order response in the modal responses due to

the accuracy of the mode shape calculation, it is unlikely to be an issue in terms of controller

design because its phase distortion above the mode frequency less than 3 deg. In practice,

the accuracy of modal decomposition can be improved by diagonalization of the sensing and

driving matrices.

4.4.2 Damping control performance

To see the damping performance of the modal control, we simulated the exponential

decay time reduction of the vertical modes of the Type-A suspension with a simply-minded

filter design. As the damping control aims to suppress the vibration amplification at the

mechanical resonances, one should design the servo filter so that the resulting open-loop

transfer function has a gain of more than unity at the resonant peaks. The basic strategy

of the filter design here is placing one zero at a low frequency and several poles at a high

frequency to cover the frequency region of the resonances. Such a zero-pole placement forms a

differential controller at the peak frequencies, whereas it cuts off the high-frequency signals to

prevent noise injection into the control loop. In this study, only the single-input-single-output

(SISO) controllers are taken into account.

The examples of the filter design and their open-loop transfer functions are shown in

fig. 4.4. In the stages-based control design, as almost all the mechanical resonances appear
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Fig. 4.5. Simulated exponential decay time for the vertical modes in the Type-A suspension.

Only the lowest five modes that originate from the GAS structure are plotted.

within a decade of the frequency region, it is difficult to remove the higher order modes from

the control and to lower the control bandwidth. On the other hand, the controller design in

the modal basis is much less complicated owing to the absence of the following higher order

modes. Although some modes that originate from the payload remain visible in the modal

response, they can be easily rejected with notch filters due to their high quality factors and

large differences in frequency from the lower-order modes of interest. In the examples of the

filter design, the bandwidth of the damping control is 1.1 Hz in the F0 stage-based loop and

0.23 Hz in the 1st modal loop. The ignored higher-order mode at 4.17 Hz in fig. 4.4b, which

is due to the blade spring at the platform stage, is rejected by a notch filter with a Q-factor

of 3.

The results of exponential decay time reduction with various damping controls is shown

in fig. 4.5. Here we simulated five setups of the control loop: two stage-based loops, two modal

loops, and one combined modal loop. The F0 GAS and BF GAS loops are conventionally

used to control the vertical modes using the sensor signal from a specific stage, which is fed

back to the actuator at the same stage. These F0 and BF loops are chosen as benchmarks

of the conventional scheme because they are the top and bottom stages, respectively, in the

tower part. The 1st modal and 2nd modal loops are the novel schemes proposed in this study.

To check the selectivity of modal feedback to damp the specific mode, a setup with two closed
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modal loops is also investigated. All the controllers simulated here have been designed in a

manner similar to those described in the previous paragraph.

In a natural state without any control, it is predicted that only the 1st mode has a long

decay time in excess of the requirement of 60 s. When a stage-based loop is closed, as its open-

loop gain is more than unity at every resonant peak, the decay times for all the eigenmodes

are reduced, and the markers are replaced in fig. 4.5. However, the reduced decay time for

each mode depends on the mode’s shape, and thus one must design the control topology to

achieve a higher damping performance on a specific mode. On the other hand, the modal

damping loops exhibit large decay time reduction in each specific mode, slightly interfering

with the other modes’ properties. The performance in the setup of two closed modal loops

seems consistent with the setups of each single modal loop closed. In addition, the simplified

system response allows us to easily design a controller achieving damping performance close

to the critical damping. It can be shown that the information about a specific mode contained

in the sensor signals is effectively used to suppress the vibration in the mode. Thus the modal

control scheme can maximize the effective sensor range and actuator range. As the control of

the suspension system deals with vibrations in many coupled DoFs, modal damping is useful

not only for the vertical modes but also other complicated DoFs, such as in payload control

with longitudinal-pitch couplings.





Chapter 5

Performance test of Type-A tower

In this chapter, the experimental performance test of the type-A suspension is pre-

sented. Even before the payload is integrated, it is worthwhile to test the performance of

the tower part of the Type-A suspension as the tower part contains important features of

the low-frequency oscillator, which determines a major fraction of the vibration isolation

performance. Therefore, a description of the experimental setup is described in section 5.1.

In the following section 5.2, the measurement results for the system characterization in the

frequency domain are presented. Although all of the characteristics of interest could not be

tested, the functionality of torsion mode damping in the yaw direction and modal damping

for the GAS vertical modes were performed and are reported in section 5.3 and section 5.4,

respectively. In addition, we performed a vibration isolation ratio measurement in the period

of the test operation of the cryogenic Michelson interferometer, where the installed Type-A

tower is integrated with the actual cryogenic payload. The result of the vibration isolation

ratio measurement is finally presented in section 5.5.

5.1 Experimental setup

The performance test described in this chapter includes the results yielded from two

different setups, the Type-A tower and full Type-A suspension. Owing to the schedule of the

KAGRA, the data for the performance test were taken when the KAGRA was undergoing

an upgrade and the hardware installation of the Type-A suspension was ongoing yet to be

incorporated into the interferometer. This study focused on the performances of the vibration

isolation and controllability possessed by the tower part of the Type-A suspension.

The two different setups for the performance test of the Type-A suspension are depicted

in fig. 5.1. The clear difference in these setups is the existence of the cryogenic payload, the

bottom four stages. In the setup of the Type-A tower, a dummy payload is suspended instead

of the cryogenic payload from the bottom filter. As described in chapter 5, the weight of the

105
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Table 5.1. Difference between the Type-A tower and full Type-A setup.

Tower Full

Stages 6 9

Height [m] 9.8 13.5

Eigenmodes 39 75

Dummy payload Cryogenic payload

Sensors geophone L-4C photoreflective sensor

optical lever

optical length sensor

Actuator none coil-magnet actuator

dummy payload is adjusted to approximately coincide with that of the actual payload, while

the length of the suspension wire for the dummy payload is 15 cm, which is much shorter

than the actual maraging wire of 3.3 m because of the spatial constraint inside the vacuum

chamber. Therefore, the Type-A tower is more than a little different from the full suspension

geometrically.

Most of the tests described in this chapter were performed with the setup of the Type-A

tower before integration with the cryogenic payload. Even without the actual payload, the

Type-A tower can demonstrate the performance of vibration isolation and functionality of

control. Although the dynamic characteristics of the system differ from those of the full

configuration owing to the difference in mechanical geometry. The similarity and differences

between these setups can be visualized in the eigenmode property shown in fig. 5.2. While

the full Type-A suspension has a total of 75 eigenmodes, the tower has 39 eigenmodes, some

of which are peculiar to the tower setup, such as ones associated with the tilt of the DP. We

can see that the tower part includes most of the low-frequency eigenmodes common to both

setups. As

• the lowness of the eigenmode frequencies determines the seismic attenuation perfor-

mance in a given frequency region,

• the low-frequency eigenmodes have a large impact on the residual RMS of the mirror

fluctuation,

the characterization of the mechanical dynamics and demonstration of the damping control

for the Type-A tower can be regarded as equivalent to those of the full Type-A suspension.

Moreover, as the tower or payload part is still a complicated multi-stage pendulum, it is

necessary to examine each part alone from the view point of fault localization.
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Fig. 5.1. An illustration of two setups for the performance test of Type-A suspension.

5.2 System characterization

The characteristics of the installed Type-A tower are determined by the accuracy of the

mechanical assembling, which contains adjustments of the load or balance, geometrical posi-

tioning, and so many other factors. In this section, the oscillatory behavior of the installed

system was identified by measuring the mechanical transfer functions and spectra in a sta-

tionary state for the controllable and observable DoFs. The measured results were compared

with predictions of the 3D rigid-body model having the same design parameters, and their

agreement with the predictions was determined.

5.2.1 Diagonal transfer functions

The mechanical responses of the suspension system are described in terms of force-

displacement transfer functions of the suspended masses in the frequency domain. For this

purpose, virtual sensors and actuators based on the Cartesian coordinate system were con-

structed in the digital system with linear combinations of real sensors and actuators.

The measurement was performed by injecting excitation from a virtual actuator in a

certain DoF and taking the resulting displacements measured with the virtual sensors. We
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Fig. 5.2. Comparison of modal frequencies of the full configuration and the tower part of

the Type-A suspension. The mode index of the tower is arranged so that the shapes of its

modes are similar to those of the full suspension.

used two types of excitation signals: broadband Gaussian injection, which can excite the

system in a wide frequency range, and monochromatic sinusoidal injection, which sweeps over

the frequency range of interest. The former has a short measurement time, allows results for

the entire frequency region to be obtained quickly, and has comparatively higher resolution

of the sampled frequency points. The latter is superior in the S/N ratio of the measurement

as it takes sampled data points one by one but instead needs a long measurement time. We

used the Gaussian injection in most measurements where vibration in the DoF is sufficiently

excited due to the softness of the spring or the strength of the actuation power. Only some

DoFs, especially those at the bottom filter, are measured with the swept-sine excitation.

Note that all the DoFs of the stages and all the eigenmodes are not sufficiently control-

lable and observable owing to the configurations of the sensors and actuators.

Horizontal DoFs at inverted pendulum

The inverted-pendulum (IP) stage can move in three horizontal DoFs, namely the lon-

gitudinal, transverse, and yaw directions. The measured diagonal transfer functions in the

horizontal DoFs of the IP are shown in fig. 5.3. The gross features of the transfer functions

are consistent with the model prediction for all three DoFs. Nevertheless, several discrep-

ancies between the measurement and model are recognized. The discrepancies and possible
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explanations are detailed below.

• In the longitudinal and transverse directions, the measured resonant frequency of the

first mode deviates from the model’s value. The model predicts that the resonant

frequency is 67.3 mHz, while in the measurement, it is 58.6 mHz in the longitudinal

direction and 65.7 mHz in the transverse direction. These values are fall within 13% of

the model’s value. The deviation can be explained by assuming asymmetry in stiffness

of the IP legs. If we consider a nominal value of 67 mHz for the resonant frequency of

the IP stage, the installed system possesses sufficient low-frequency resonance for the

first eigenmode. Note that the model does not take the asymmetry into account.

• A small bump appears at 0.4 Hz in the longitudinal and transverse transfer functions.

This bump can be considered as a coupling from a resonance in the yaw direction.

• In the longitudinal and transverse transfer functions, the mismatch between the mea-

surement and model in the frequency range from 0.7 Hz to 1.1 Hz reflects unmodeled

dispersion of the suspension points on the GAS filters, which affects mode frequencies

in their rotational DoFs. Owing to the change in mass distribution by load adjustment,

the position of the center of mass is different for every GAS stage. In addition, the

height of the GAS keystone is not constant; it drifts by a large amount with temper-

ature changes. Hence the distance of the suspension points from their center of mass

changes over time, which behavior is difficult to be modeled. However, the discrepan-

cies can be acceptable as these not-well-modeled features coming from the tilt of the

intermediate GAS stages have less impact on the residual motions of the mirror.

Vertical DoFs in GAS filter chain

With the exception of the bottom filter, in the chain of the GAS filter stages, vertical

motions are the only DoFs that are measurable and controllable. As LVDT sensors and co-

axial coil-magnet actuators are implemented on the keystones with respect to their filter’s

body, we can only measure the relative transfer functions between the suspended stages. As

all the mode frequencies for the GAS vertical modes are expected to be above 0.1 Hz, the

frequency responses above 0.03 Hz were measured with the Gaussian injection.

The measured diagonal transfer functions of the GAS vertical are shown in fig. 5.4.

There are large deviations in the frequency responses between the measured results and model

predictions. As the GAS filter chain can be regarded as a 5-stage-coupled mass-spring system,

one expects to observe five mechanical resonances in its response. In fact, the model predicted

five peaks in the frequency responses, the appearance of which (namely, height distribution of

the peaks) in each stage depends on the shape of the mode. However, the measurement results
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Fig. 5.3. Diagonal transfer functions about the IP stage. The measured data are plotted

as colored curves and are compared with results of the rigid-body model, which are plotted

as black curves.

show remarkable mismatches in their peak appearance for the higher order modes, although

the modal frequencies for the lowest 1st, 2nd, and 3rd modes agree between the measurements

and model predictions. These discrepancies seem to be caused by the uncertainty of the

model and using incorrect sets of parameters such as mass, damping factor, and stiffness

distribution. The uncorrelated deviation of the parameters in each individual stage affects

the characteristics of higher order modes having finer mode shapes. The result indicates that

the installed Type-A tower has many small deviations in physical parameters in the vertical

direction.

In addition, small peaks not originating from the pure GAS vertical modes are visible

in the measured frequency responses above ∼ 0.8 Hz. These structures can be explained as
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contributions of coupling from the tilt of the GAS filters. Given the horizontality of the GAS

stages assembled by human hands, the tilt modes in pitch and roll rotation can cross-couple

to the vertical translation. The resonant frequencies of such rotational modes are expected to

be in the range of 0.8–2 Hz, depending on the static position of the keystone. Therefore, the

unmodeled peaks being observed around 1 Hz in the measurement results are conceivable.

To summarize the discussions above, although the behaviors of the lower order modes are

realized as expected, the constructed Type-A tower has some level of discrepancy from the

design or the expected model. As the low-frequency behavior has an impact on the vibration

isolation performance, it seems the total operationability of the vertical seismic attenuation

is still valid. To investigate the performance further, the residual motion of the suspended

dummy payload is discussed in the next section. Moreover, to construct a model of the

existing system, another approach known as system identification may be employed to build

a model based on the measured response. This method of measurement-based modeling may

be applied to the Type-A suspension in the future.
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(e) BF GAS

Fig. 5.4. Diagonal transfer functions of the GAS stages. The measured data are plotted as

colored curves and compared with results of the rigid-body model, which are plotted as black

curves.
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Six DoFs at bottom filter

The bottom filter has a total of six LVDT-actuator units that enable us to measure

transfer functions in all the six DoFs around the BF. As these actuators on the BF were weak

and broadband Gaussian injection could not excite the mechanical oscillation sufficiently, we

performed the measurements with swept-sine excitation sampling 25 points per decade. Thus,

the resulting transfer functions have relatively worse frequency resolutions.

The measured transfer functions about six DoFs of the bottom filter is shown in fig. 5.5.

Similarly to the results of IP and GAS, the model predictions are also plotted as black curves.

The explanations and discussions for each panel are listed below.

• The frequency responses in the longitudinal and transverse directions show good con-

sistency up to the resonant peak of the 2nd mode at 0.241 Hz. However, the model

predicts that the 3rd mode at 0.636 Hz is less visible in the measured longitudinal

response and almost invisible in the measured transverse response. It might not have

been accurately measured due to the worse frequency resolution or deterioration of co-

herence at the resonant peaks over averages of the measurements. As the peak structure

up to the 2nd mode is observed and sufficiently explained withthe model, it is unlikely

of malfunctioning owing to making mechanical contact on the surrounding instrument.

In the frequency range of 0.8–1.4 Hz, there are several small peaks that seem to come

from the tilt of the GAS filters coupled to the translational DoFs. These couplings are

difficult to model and are below the problematic level in the results.

• The result in the vertical direction has, as discussed in the results of the GAS transfer

functions, large deviation from the model, especially in the behavior of higher order

modes. The possible explanations are similar to the ones described in the GAS results.

• In roll and pitch, the bottom filter shows expected frequency responses consistent with

the model prediction. Some small structures other than the main peak of 0.907 Hz can

be seen.

• The frequency response in yaw shows good consistency for both the measurements

and model predictions in the broadband region. Although the quality factors of the

three resonant modes are not sufficiently predicted, they are within the expected values

because the quality factors in a real-world system are determined by practical situations

and therefore difficult to model. The appearance of the 2nd mode at 60 mHz does not

match the predictions of model. It seems to have been caused by the incorrect stiffness

distribution of the model. As the 2nd mode has a mode shape that is less observable

and controllable at the BF, a small deviation from the nominal parameters could result

in comparatively large changes in the behavior of that mode.
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• At high frequencies above ∼ 2 Hz, all the transfer functions show f 2 dependency. This

is known as a sprious coupling in the BF LVDT, where the excitation signals sent to

the actuator are directly transmitted to the sensor coil owing to implementation of the

shared coil.

According to the discussion above, we can summarize that the bottom part of the in-

stalled Type-A tower shows roughly expected performance as it being designed. In this test,

the diagonalization of the sensor and actuator were not completed yet owing to the limita-

tion of the experiment period. As the yaw rotation of the BF is extremely soft, the coupling

between the yaw rotation and other DoFs may become an obstruction of the control design.

The diagonalization of the sensor and actuator, which reduces the cross couplings in the

DoFs, is necessary in the further steps.
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(f) Yaw

Fig. 5.5. Diagonal transfer functions about the bottom filter. The measured data are plotted

as colored curves comparing with results of the rigid-body model plotted as black curves.
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5.2.2 Residual vibration in a stationary state

We measured residual motions of the stages in the installed Type-A suspension in a

steady state. The amplitude spectral density of the residual motions in Cartesian DoFs are

plotted in fig. 5.6, fig. 5.7, and fig. 5.8. Most of the peaks in the spectra correspond to

the mechanical resonances of the suspension, while the inclined floors are indicative of the

presence of background noises.
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Fig. 5.6. Amplitude spectral density of the IP in a stationary state without any control.

IP pre-isolation stage

The residual motion of the IP stage is monitored with two kinds of sensors: LVDT

and geophone sensors. The measured spectra in fig. 5.6 show that clear differences exist in

the characteristics of these sensors. As the LVDT monitors displacement of the IP stage
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with respect to the ground, its amplitude is dominated by a microseism in the range of

0.1–0.9 Hz, except for some excesses in the mechanical resonances, in the spectra of the

translational DoFs. By contrast, the geophone is less sensitive to the motion of the ground

because it measures velocity with respect to the inertial frame. Therefore, at the microseismic

frequencies the geophone spectra have a floor level that is smaller than that of the LVDT by 1–

2 orders of magnitude. To damp some high-Q eigenmodes independently of the microseismic

disturbance, one should use the geophone signals, instead of the LVDT signals, for feedback

control.

On the other hand, the LVDT exhibits superiority in position stabilization at lower

frequencies below ∼ 0.1 Hz. In terms of displacement, the inherent noise of the geophone is

amplified as the frequency decreases owing to its frequency response. As the LVDT reads

out displacement signals with a less frequency-dependent noise floor, it is more appropriate

to use the LVDT to maintain the static position of the IP stage with respect to the reference

frame.

GAS filter chain

The measurement results of the vertical residual motion in the GAS stage are shown in

fig. 5.7. The first mode (0.18 Hz) and the second mode (0.46 Hz) appear as significant peaks;

moreover the third mode peak is slightly visible at 0.77 Hz. However, the higher order modes,

namely the 4th and 5th modes, cannot be observed in a stationary state. This indicates that

the system of the Type-A GAS chain stores oscillatory energy in the higher order modes that

is not large enough to be observed with the LVDT sensors. Note that the sensor noise in

each GAS stage has a different floor level as the LVDT noise has a DC position dependency

of the keystone.

Bottom filter

As the local sensors at the BF monitor the relative displacement of the BF body with

respect to the ground, the residual motions of both the suspended stage and the ground itself

can be observed. In fig. 5.8a, whereas the many resonant peaks are standing with high quality

factors, a broad bump of the microseismic motion appears in the range of about 0.1–0.8 Hz

for all the translational DoFs. If local control including this band is engaged, it will introduce

seismic noise into the suspended BF and can be problematic.

One potential problem at the BF is the large cross couplings between the DoFs. In

this test, the diagonalization of the sensing matrix and driving matrix had not been applied

yet due to the limitations of the experiment period. As one of the important role of the

BF LVDT is to damp the torsion mode of the single-wire suspension chain, a cross coupling

from the translations in the microseismic band can cause unexpected excitations into the



118 CHAPTER 5. PERFORMANCE TEST OF TYPE-A TOWER

10 3 10 2 10 1 100 101

Frequency [Hz]

10 8

10 7

10 6

Di
sp

lac
em

en
t [

m
/H

z1/
2 ]

F0 GAS
F1 GAS
F2 GAS
F3 GAS
BF GAS

Fig. 5.7. Amplitude spectral density of the GAS LVDT in a stationary state without any

control.

yaw control. Actually, some peaks of the yaw modes, located at 21 mHz and 63 mHz, are

coupled to the translation DoFs and observed in their spectrum. Similarly, the spectrum in

the rotational direction also shows some influence of coupling from the translations leading

some peaks such as the ones at 73 mHz and 0.18 Hz. To confirm the small enough magnitude

of DoF-couplings, further handling of sensing and driving matrix will be necessary.

Residual motion at dummy payload

During the performance test of the Type-A tower, we have additional sensors at the

dummy payload. Two geophones, the same type as those mounted on the IP stage, are

implemented on the DP for the horizontal and vertical motion sensing. The geophone is

chosen as it can measure the residual motion of the attached object with respect to the inertial

frame, independently of fluctuation of the reference frame such as the ground. However, owing

to the limited capacity of the dummy payload, we have implemented the two translational

DoFs, one horizontal and another one vertical, geophones, and no angular sensing is available.

The measured residual vertical motion of the DP is shown in fig. 5.9. For comparison,

the spectrum calculated with the model and the measured seismic noise is also plotted. Note

that, as this measurement was held in a stormy day, the magnitude of the seismic noise in

this measurement is roughly as large as the Kamioka High Noise Model (KHNM), which is

mentioned in section 3.1.1. Although the measured transfer functions of the GAS stages
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Fig. 5.8. Amplitude spectral density of the BF in a stationary state without any control.

are not sufficiently consistent with the responses predicted in the model, as discussed in

section 5.2.1, the spectra of the measurement and the model show good coincidence below 1

Hz except for the quality factors at the resonant peaks. This result is evidence that one can

guarantee the total operationability of the vertical seismic attenuation for the constructed

Type-A system and compensate for the small consistency in the results of the transfer function

measurements. However, unmodeled structure above 1 Hz that looks like a series of small

resonant peaks can be observed. This is a common feature also observable in the measured

frequency responses and seems to originate from the tilt couplings of the GAS stages. As

the geophone is not sensitive enough to detect the residual motions above 2 Hz, we cannot

conclude that the impact of these cross couplings is acceptable even in the observational band

starting from 10 Hz. That should be tested after integration into the full configuration of the

Type-A suspension.

In a natural state under even the noisy seismic disturbance, the RMS residual motion of

the DP is measured as 4.0 µm. Considering the requirement of the vertical RMS displacement

is less than 100 µm, we can conclude that the resonant modes in the vertical direction will

not amplify the residual motion of the payload more than the required level.

The measured residual motion of the DP in the horizontal direction is shown in fig. 5.10.

Note that, due to the geometrical symmetry, the horizontal motions of the DP can be replaced

by both the longitudinal and transverse motions. The spectrum of the measured residual

motion of the DP has an unnaturally small magnitude compared to the model prediction

due to malfunction. Therefore, evaluation with the DP geophone can misread the resulting

residual motion.

An alternative measure of the residual motion is one measured with the BF LVDT. As

the BF LVDT read the relative displacement between the BF and the ground, the measured
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Fig. 5.9. Amplitude spectral density of the vertical motion of the DP in a stationary state

measured by a geophone (red). The curve labeled as ”model prediction” (blue) is calculated

from the measured seismic spectrum (green) multiplied by the transfer function model from

the ground to the DP.

spectrum is a sum of BF’s motion and the seismic noise. Thus, the measured spectrum at

the BF can offer the upper limit of the residual motion at the bottom stage of the Type-A

tower. The result of the measurement at the BF is shown in fig. 5.11. Assuming that all the

amplitude of displacement comes from the BF’s residual motion, The RMS amplitudes are

1.1 µm in the longitudinal direction and 1.4 µm in the transverse direction. These values are

sufficiently smaller than the requirement of the RMS residual motion in the longitudinal and

transverse direction in the calm-down phase.

Another requirement in the horizontal direction is the longitudinal RMS velocity required

for the smooth lock acquisition. Although the Type-A tower setup does not have the actual

payload, it can give a reference value of an achievable RMS velocity for the whole center-of-

mass motion of the suspended payload. However, as discussed above, the horizontal geophone

attached on the DP is no longer useful for evaluating the residual motion of the DP. Thus,

instead, the RMS residual velocity was evaluated with the spectrum measured at the BF,

which is plotted in fig. 5.12. The RMS velocity is obtained as a cumulative integration from

3 Hz down to 0.03 Hz in order to take only the mechanical motion into account and not to

include the sensor noise contribution at high frequency. Even assuming that the pure BF

contributes to the resulting RMS velocity, the measured RMS velocity is 0.73 µm/s, which is

much less than the requirement of 240 µm/s. Thus, although the horizontal geophone at the



5.2. SYSTEM CHARACTERIZATION 121

DP could not give a meaningful result, it is indicated that the sufficiently small RMS velocity

is achieved with the constructed Type-A tower instrument.
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Fig. 5.10. Amplitude spectral density of the horizontal motion of the DP in a stationary

state measured by a geophone (red). The curve labeled as ”model prediction” (pink) is

calculated from the measured seismic spectrum (green) multiplied by the transfer function

model from the ground to the DP. To confirm the plausibility of the spectrum at the DP, the

coupling from the DP’s vertical motion (blue) is also plotted for comparison.
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model from the ground to the BF.
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Fig. 5.12. Velocity spectral density of the longitudinal motion of the DP and BF in a

stationary state. The RMS is integrated from 3 Hz down to the low frequencies in order to

exclude the sensor noise contribution.
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5.3 Torsion mode damping

The torsion mode of the Type-A suspension is one of the considerable DoF oscillation.

As mentioned in the previous chapters, the Type-A suspension has long single-wire chain that

can also behave as a torsion pendulum with a high quality factor. Nevertheless, the torsional

motion of the suspended mirror leads misalignment of the interferometer that results in a

large amount of beam spot fluctuation at the 3-kilometer distance. Therefore, we need to

implement an appropriate damping function onto the oscillation in the yaw direction of the

Type-A chain.

The setup of the Type-A tower, in the absence of a cryogenic payload, is still suitable for

testing the torsion mode damping as the dynamics of the yaw motion are almost subject to

the mechanical properties of the tower part, which accounts for a major fraction of the total

wire length. In the two angular DoFs for the mirror alignment, namely pitch and yaw, the

single-wire components with low torsional stiffness distributed over the entire chain contribute

to the yaw motion, while the pitch motion is dominated by the multi-wire suspension design

inside the cryogenic payload. A single-wire connection has small torsional stiffness, whereas

it has less coupling in the tilt of the masses when the suspension points are close enough to

their center of mass. On the other hand, a multi-wire connection with some horizontal offsets

from their center of mass has a larger stiffness during pitching and yawing, causing a strong

mechanical coupling between the connected masses. Thus, although pitching of the test mass

is strongly coupled to the marionette, which is less affected by the tower stages, yawing will

be substantially correlated to the torsion of the tower stages.

The only stage in the Type-A tower where we can apply the yaw control is the bottom

filter. As described in section 3.4.1, the bottom filter is equipped with the sensor-actuator-

integrated device BF LVDT for all six DoFs of the BF body with respect to the ground.

Although the cryogenic payload in the full configuration has additional angular sensors such

as optical levers and photo-reflective sensors, besides the sensors and actuators at the BF, no

other sensors and actuators are available in the tower stages. The LVDT at the IP also does

not play a role during the yawing of the suspended stages with single-wires. Thus, torsion

mode damping here is related to the single-input-single-output (SISO) control problem at the

BF.

In this study, torsion mode damping of the Type-A tower is performed in order to

satisfy two types of requirements: 1/e decay time for the mechanical resonances and RMS

residual motion in the frequency region above 10 mHz. The 1/e decay time is a requirement

in the calm-down phase for quick recovery of operation of the interferometer when a large

disturbance excites the instruments. The RMS residual motion is one in the lock-acquisition

phase so that the control can be switched to another that uses more sensitive but smaller-

ranged sensors and actuators.
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Fig. 5.13. The open-loop transfer function of the BF yaw damping control.

5.3.1 Controller design

The aim of damping control is to suppress the mechanical resonances in the yaw direction.

As the lower resonant modes will often dominate the magnitude of RMS fluctuation, we

focused on the three resonant modes from the lowest. This strategy is also natural as the

lowest three resonances are visible in the measured frequency response of the yaw DoF at the

BF.

The open-loop transfer function of the BF yaw damping control is shown in fig. 5.13.

The frequency response of the BF yaw is constructed as a SISO model based on the measured

transfer function in fig. 5.5f and then normalized at the DC. The modeled BF yaw response

has three mechanical resonances with the mode frequencies of 21.5 mHz, 63.5 mHz, and 214

mHz that are identified in the spectrum in a stationary state. In fig. 5.13, the peak of the

2nd mode looks relatively small owing to its mode shape, indicating this mode has poor

controllability and observability for the input/output point of the BF.

The controller of the damping servo has a 1st-order high-pass feature at and below 1 Hz

and a 3rd-order low-pass feature above 3 Hz. The controller is designed so that the resulting

open-loop transfer function has a gain of more than unity at and around the mechanical

resonant peaks. The 1st-order high-pass characteristics at the peak frequencies guarantee

the stability of the feedback loop, while the low-pass characteristics at the high frequencies

reduce sensor noise reinjection through the sprious coupling in the BF LVDT. The bandwidth
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of damping control extends up to the 3rd resonant mode, which is interpreted as a unity-gain

frequency of 0.24 Hz. The stability of this control loop is parameterized as the minimum

phase margin of 74.5◦ and the gain margin of more than 10.

5.3.2 Decay time measurement

To evaluate the damping performance required in the calm-down phase, the exponential

decay time was measured for each resonant mode during yaw motion. The procedure is as

follows; first the target mechanical resonance was excited by sending the monochromatic

sinusoidal-wave injection using the virtual yaw actuator. After the resonance was sufficiently

excited and the amplitude reached a steady state under excitation, we stopped the injection

and monitored the time series of the decaying amplitude. The measured decay signal was

fitted by a sine wave function with an exponential decay, which can be written as

f(t) = Ae−t/τe sin(2πf0t+ ϕ0) + x0 , (5.1)

where τe denotes the 1/e decay time when the amplitude decreases by 1/e from a given time,

f0 is the mode frequency, A is the initial amplitude, ϕ0 is the initial phase, and x0 is the

DC offset. Sometimes it is difficult to excite a single higher-order mode alone owing to the

softness of the fundamental mode, and resulting waveform becomes a superposition of some

sinusoidal waves with different frequencies. In such a case, we assumed that the decay signal

was a sum of two different decaying sine waves and fitted by a double-mode waveform written

as

f(t) = A1e
−t/τe1 sin(2πf1t+ ϕ1) + A2e

−t/τe2 sin(2πf2t+ ϕ2) + x0 . (5.2)

The measured decay signals of the yaw resonant modes are shown in fig. 5.14. As expected

by intuition, in a natural state without damping control, the yaw modes have very long decay

times of more than 100 s. Although, in the 1st mode and 3rd mode, the measured signals are

clearly observed and sufficiently fitted to the theoretical expression, the undamped 2nd mode

in fig. 5.14c seems less visible and buried in the 1st-mode signal owing to its poor observability

at the BF. These yaw modes with their intrinsic damping will continue for a long time when

they are kicked once and can be an issue disturbing the interferometer operation.

As we can see in the right panels of fig. 5.14, with the damping control engaged, every

yaw mode looks significantly damped in a sufficiently short period of time. The fitting results

of the decay time with/without damping control are summarized in table 5.2. It indicates

that damping control at the BF can reduce the exponential decay time of the mechanical

resonances in yaw motion and satisfy the requirement of less than 1 min. Although some

mismatches between the measurement and fitting can be seen in the damped oscillation in

fig. 5.14, the inaccuracy of the fitting does not seem to have an impact on the result of the

decay time requirements.
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Table 5.2. Fitted decay time of the yaw modes.

Undamped Damped

Mode f0 [mHz] τe [s] Q-factor f0 [mHz] τe [s] Q-factor

#1 21.3 961.4± 4.6 64.9 19.3 24.8± 0.8 1.5

#2 63.5 158.6± 4.6 31.6 62.9 43.9± 0.5 8.7

#3 213.3 1155.5± 1.9 774.3 215.2 9.5± 0.1 6.4

5.3.3 Reduction of RMS residual motion

The amplitude spectral density of the BF yaw with and without damping control is

measured. The result of the spectral measurement is shown in fig. 5.15. Although the RMS

residual motion in a natural state is dominated by the yaw-mode peaks, these resonant peaks

are successfully suppressed by damping control. When damping is turned on, the RMS is

dominated by the remaining structure around 60–70 mHz, which seems to be the residual

of the 2nd yaw peak and couplings from the 1st mode of the IP in the longitudinal and

transverse directions. Suppose that only the sensor noise contributes to the spectrum below

0.01 Hz, the RMS residual motion in yaw is evaluated as 1530 nrad for the undamped state

and 227 nrad for the damped state. This RMS level under the local damping control satisfies

the requirement of less than 880 nrad for the lock-acquisition phase, indicating that it is

sufficiently small to hand over angular control to the interferometer loop using the wave front

sensor. Note that the higher accumulated RMS of the damped state above 0.2 Hz can be

affected by the DC position dependency of the sensor noise floor.
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Fig. 5.14. Decay signals of the yaw modes at the BF. The left figures, (a), (c), and (e), are

the decay signals without control, while the right figures, (b), (d), and (f), are ones with

the damping loop closed. The fitted frequencies of the sine wave are also annotated in each

figure.
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Fig. 5.15. Comparison of the amplitude spectral density of the BF yaw with/without the

damping control.
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5.4 Modal damping for GAS vertical modes

We tested the modal damping mechanism in the vertical control of the Type-A tower.

The vertical modes in the full configuration of the Type-A suspension can be divided into

two groups, the GAS modes and the payload’s internal modes. The GAS modes have mode

frequencies in the range of 0.1–1.5 Hz owing to the support with soft springs, while the

payload’s vertical modes are distributed above 4 Hz owing to the stiff-spring suspensions. As

we only consider the lower order modes that often have a large impact on the RMS residual

motion, the Type-A tower containing all the GAS stages is an adequate setup to demonstrate

the lower-order vertical mode control.

The eigenmode matrix necessary to obtain the modal signals was generated by the

vertical-DoF submodel extracted from the 3D rigid-body model of the Type-A tower, which

is also used in the fig. 5.4 for comparison. As discussed in section 5.2, this model exhibits

large deviations in the mode shape of the GAS vertical modes from the measured responses.

Nevertheless, we used this imperfect model because it would be able to decouple the lowest-

order modes at which frequencies the model prediction and the measurement result show

reasonable consistency.

5.4.1 Diagonalization of the sensing and driving matrix

Even if we focus on only the lower order modes, one can predict that the nominal eigen-

mode matrix derived from the model is not accurate enough to be used in real-world systems.

Therefore, we performed diagonalization onto the sensing and driving matrix of the modal

sensors and actuators. The diagonalization aligns the mode shape included in the sensing

and driving matrix with the one in an actual system.

Suppose that, in an ideal case, the modal displacement signals η and the GAS LVDT

signals VLVDT are connected by the following relationship:

η(t) = Φ−1S VLVDT(t) , (5.3)

where Φ is the eigenmode matrix and S is the conversion matrix from the LVDT signals to

the Cartesian displacement signals of the stages. Now the multiplied matrix Φ−1S is called

the sensing matrix. It converts the raw sensor signals into modal displacements. However,

this is not the case in most systems in the real world, which have unwanted cross couplings

in the DoFs, such as

η(t) = CsΦ
−1S VLVDT(t) , (5.4)

where Cs denotes the coupling matrix; ideally Cs = I. Similarly, we can write the incomplete

driving matrix for the modal actuators as

A(t) = DΦCdVη(t) (5.5)
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where A is a set of feedback signals sent to the real actuators and D is the conversion matrix

from the Cartesian feedback signal to the GAS differential actuations. The coupling matrix

Cd affects, in this case, the right of the driving matrix DΦ.

Diagonalization is a procedure that allows the coupling matrices, Cs and Cd to become

identity matrices I. For this purpose, one should obtain the coupling matrices with some

measurements and update the existing sensing or driving matrix by multiplying the inverse

of the derived coupling matrices so that the non-diagonal elements of the coupling matrices

are zero. In the case of the sensing matrix, the procedure is as follows:

1. Send a sinusoidal signal with a modal frequency and excite the suspension using the

incomplete modal actuator.

2. As the system can store the total energy as a form of its natural vibration, all the modal

signals at the excited modal frequency will be dominated by the contribution from the

excited mode even by the incomplete modal actuator.

3. After the suspension reaches steady state under the excitation, measure the amplitude

spectrum.

4. Calculate the coupling ratio of the non-diagonal modes to the excited diagonal mode

from the transfer function at the frequency you excited.

5. Build a coupling matrix by normalizing every column so that the diagonal elements

become unity.

6. Update the existing sensing matrix by multiplying the inverse of the derived coupling

matrix from the left.

In the case of the driving matrix, the procedure is as follows:

1. Send a broadband Gaussian injection using the incomplete modal actuator and measure

the transfer functions from the modal actuator to all the modal sensors.

2. Select a frequency that is sufficiently below all the modal frequencies and calculate the

coupling ratio of the non-diagonal modes to the excited diagonal mode from the transfer

functions.

3. Build a coupling matrix with normalizing every row so that the diagonal elements

become unity.

4. Update the existing driving matrix by multiplying the inverse of the derived coupling

matrix from the right.
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By repeating the procedure several times, the coupling matrices become asymptotically close

to identity matrices.

Strictly speaking, the diagonalization of the driving matrix should take the frequency

dependence into account as the couplings in the actuator include the mechanical response of

the system. Therefore, it is desirable replace the driving matrix with a SISO-filter-elemented

matrix or a state-space model to implement a multi-input-multi-output (MIMO) operation.

Nevertheless, a scalar-elemented driving matrix is chosen in this experiment owing to the

difficulty of the implementation of frequency dependence. Thus, the driving matrix was

diagonalized at a low frequency of 0.03 Hz, which is sufficiently below the modal frequencies

where the phase of the frequency responses for every mode is aligned to zero.

5.4.2 Vibration in modal basis

After repeating the diagonalization procedure a few times, the transfer functions of the

GAS vertical mode in the decoupled modal basis were measured, as shown in fig. 5.16. As

predicted from the modeling accuracy, the modal transfer functions of the lowest two modes,

namely 0.155 Hz and 0.421 Hz, can be approximated by the response of a single-DoF oscil-

lation system, and hence the modal decomposition was successfully operated. Although the

3rd mode of 0.727 Hz seems to be decoupled just like the 1st and 2nd mode, its response has

a non-trivial structure, with a parasitic resonance at 1.2 Hz. The response of the following

4th and 5th modes are no longer sufficiently decoupled to single-DoF systems owing to the

inaccurate guess of the mode frequency and its shape. The DC gain of the modal responses

correspond to the inverse of the modal mass in theory as the norms of the eigenvectors are

normalized as unity for every mode. However, in a real system, the ratios of the DC gain are

contaminated with the calibration errors of the sensors and the individual differences of the

actuator efficiency. The uncertainty of the DC gain of the modal responses does not matter

in the design of the damping controller as the overall loop gain can be obtained with the

measured frequency response.

The modal spectrum of the GAS vertical modes in a stationary state is shown in fig. 5.17.

For the 1st and 2nd modes, which are sufficiently decoupled, their peaks are significant,

whereas the higher modes do not show any meaningful structure in their spectrum. This can

also be explained as the inaccurate modal decomposition of the higher order modes. From

this figure, it can be seen that the 1st mode has the largest amplitude in a stationary state,

which is expected. Although the 3rd mode does not seem to be even a little decoupled in

the frequency response, a considerable peak at the corresponding frequency in the spectrum

is not apparent. It implies that, in a natural state, the higher order modes may store little

energy in this vertical system.

The result in this experiment suggests that, even if the model includes a measurable



5.4. MODAL DAMPING FOR GAS VERTICAL MODES 133

10 5

10 4

10 3

10 2

10 1

100
M

ag
nit

ud
e

0.155 Hz
0.421 Hz
0.727 Hz
1.018 Hz
1.428 Hz

10 2 10 1 100 101

Frequency [Hz]
180
90

0
90

180

Ph
as

e 
[d

eg
]

Fig. 5.16. Diagonal transfer functions in the modal coordinate for the GAS vertical modes.

amount of deviations from the real system, the modal decomposition can work on the lower

order eigenmodes with the help of diagonalization of the sensing and driving matrices. In the

control design of the suspension, we often focus on the lower-frequency mechanical resonances

which have a large impact on the fluctuation of the suspended optics. Therefore, in the cases

where the higher order modes are of less importance for the damping control, a model as

inaccurate as that used in this experiment can achieve a sufficient modal decomposition.

5.4.3 Damping with modal controllers

We applied the modal damping scheme to the 1st and 2nd mode of the GAS chain, which

are not only decoupled well with the diagonalized matrices but also need to be damped as

they have large peaks in their natural states. The controllers of modal damping are the

simple SISO filters engaged on the decoupled modal displacement signals. As simulated in

section 4.4, the simplified system responses allowed us to easily design damping filters that

are shown in fig. 5.18. The controller has one zero at the 0 Hz and several poles above 1

Hz, resulting in a feedback force that is proportional to the modal velocity at the resonant

peak and that cuts off the high frequency signals. Initially, the gains of the control are set

so that the peak in the open-loop gain overlaps that in the modal response to realize an

almost critical damping. However, through a few times test of engaging the loop, it seemed
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Fig. 5.17. Amplitude spectral density of the vertical motions of the Type-A tower in modal

coordinates in a stationary state.

the initial gain leads to an overdamping condition and thus we adjusted the loop gain to be

reduced to the plotted ones in fig. 5.18. Finally, the unity-gain frequencies are 0.22 Hz for

the 1st modal loop and 0.49 Hz for the 2nd loop, while their corresponding phase margins

are 63.3◦ and 32.8◦, respectively.

The result of closing these modal loops can be seen as a spectrum in fig. 5.19. The peaks

in a natural state are successfully supressed to a comparable level with the contribution of

the sensor noise. However, instead, some peaks at around 1 Hz appeared in the spectrum

of the higher order modes that cannot be seen in a stationary state, as shown in fig. 5.17.

This indicates that the modal control for the lower order modes contaminated the state

of the higher order modes that are not controlled. Incomplete modal decomposition may

cause couplings between the different modes and thus introduce excess of vibration in an

uncontrolled mode.

To evaluate the performance of modal damping, the spectra of the GAS stages and the

DP with/without modal control for the 1st and 2nd vertical modes are shown in fig. 5.20.

The peaks at 0.155 Hz and 0.421 Hz disappeared by the damping control in all the panels in

fig. 5.20. Then, in fact, the resonant peaks of the higher order modes are excited in exchange

for the suppression of the lower order modes’ oscillation, that can be seen significantly in the

spectrum of the F3 GAS. However, the RMS amplitudes are certainly suppressed because of
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(b) 2nd modal loop

Fig. 5.18. Open-loop transfer functions of the modal damping control for the GAS vertical

modes.

the absence of the 1st and 2nd modes owing to the modal damping. The result of the RMS

amplitude with the modal damping at the DP is 0.11 µm, whereas that without the control

is 0.26 µm. Thus, the modal damping successfully reduced the RMS residual motion of the

Type-A tower in the vertical direction.

Another side effect of the modal damping is sensor noise transmission at high frequencies.

The spectrum of the DP above 0.6 Hz seems to be dominated by the sensor noise from the

BF GAS LVDT because the spectrum shows proportionality of about f−2, that indicates one

stage mechanical isolation. As the modal control scheme in this test utilizes vertical actuators

in all the GAS stages, the sensor noise is not filtered enough by the mechanical isolation even

at the lowest stage. The sensor noise transmission due to modal control can be mitigated by

using limited actuators in the upper stages which less affect the payload owing to the chain

of mechanical filters.

There are still some points that were not tested in this experiment. One is confirmation

of the decay time reduction. As predicted in section 4.4, the controller design of the modal

damping should have an advantage of easily achieving almost critical damping. This attribute

can be confirmed by comparing the exponential decay time between the stage-based control

and the modal control. This measurement could not be performed in the limited period of

the Type-A tower test. Moreover, the impact of sensor noise transmission can be optimized

by weighting the use of actuators. One can make all the actuators participate in the modal
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Fig. 5.19. Amplitude spectral density of the vertical motions of the Type-A tower in modal

coordinate when modal control loops for the 1st and 2nd modes are closed.

damping to achieve maximum damping and also use a limited number of actuators to reduce

noise contamination. Therefore, although the basic effectiveness of the modal damping control

was validated, its application to the entire suspension control requires further experiments

and verifications.
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Fig. 5.20. Amplitude spectral densities of the GAS stages and the DP. The red curves show

the residual motions when modal damping for the 1st and 2nd vertical modes is engaged,

that are compared with the blue curves representing those without damping control.
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5.5 Vibration isolation ratio measurement

A measurement of the vibration isolation ratio of the Type-A suspension was performed

in a test run of KAGRA. As the attenuation performance of the Type-A suspension nominally

reaches ∼ 10−21 at 10 Hz, there is little hope that the vibration isolation performance can be

measured directly owing to the poorer noise limitations of the local sensors. At the time of

writing this thesis, KAGRA was undergoing upgrades in which fully-equipped apparatuses

are installed and tested to achieve the baseline sensitivity.

The KAGRA test run was held in the configuration of simplified 3-km Michelson in-

terferometer with no arm cavities nor recycling cavities, as illustrated in Fig. The two end

mirrors were suspended with the Type-A suspension: one was at room temperature and the

other was cooled down to a cryogenic temperature. Similarly, the optics in the center area

were also suspended with their dedicated suspensions. The differential length of the Michel-

son interferometer was controlled by using the light reflected at the Faraday isolator. The

signals of this reflected power were fed back to the TM and IM of the beam splitter (BS) with

the crossover frequency of ∼ 0.1 Hz and the overall unity gain frequency of ∼ 50 Hz. For

alignment control, the ETMY mirror was stabilized by local feedback with an optical lever,

while the ETMX mirror was controlled with global feedback so that the reflected light from

the ETMX follows that from the ETMY projected on the BS.

The strain sensitivity of the interferometer during the engineering run is shown in

fig. 5.21. Through the noise study, we found that the sensitivity was limited by angular

control noise below 50 Hz and by the dark noise of the photodiodes receiving the error signal

for the Michelson interferometer length control. Further discussions about the interferometer

sensitivity and stability can be found in [41].

The method used to obtain the vibration isolation ratio was a combination of direct

transfer function measurements and an estimation with the tuned suspension model. We

resolved the vibration isolation ratio into two factors: the transfer function from the ground to

the top stage and that from the top stage to the mirror at the bottom. The first transmission

factor was identified by measuring transfer functions from the force exerted on the IP stage

to the displacement of the longitudinal sensors at the IP and the BF. The measured transfer

functions, which are shown in fig. 5.22, were properly matched with the model predictions

derived from the 3D rigid-body model of the full Type-A suspension. Owing to limited

actuation power, the measurement to the BF got deviated at frequencies above 1.5 Hz.

Nevertheless, we can see a great consistency between the measurement and the model even

in the peak distribution over the frequencies, although a tiny offset of the peak frequency for

some higher order modes can be recognized.

Based on the consistency between the characteristics of the real system and the model

predictions, we assumed that the model could generate a confident estimation of the vibration
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Fig. 5.21. Calibrated strain sensitivity of the KAGRA in the first engineering run.

isolation ratio for the installed Type-A suspension. Thus, as it is difficult to measure the

transfer function from the seismic displacement to the IP stage, we derived it from the model

with sufficient confidence, which is shown in fig. 5.23.

The vibration transmission from the IP stage to the test mass was measured by sending

a monochromatic sinusoidal injection to the IP and then monitoring the error signal of the

Michelson interferometer length control. The sampled frequency of the excitation is chosen so

as not to excite the mechanical resonance of the Type-A suspension as a large disturbance may

break the lock of the interferometer. Although the error signal of the Michelson interferometer

can include the information about the other end mirror or the BS, the output is correlated

with the excited IP displacement, which is confirmed by measuring the coherence of the local

sensor of the IP and the interferometer output.

Finally, the vibration isolation ratio of the Type-A suspension was estimated by combin-

ing the derived model and the measured vibration transmission, which is shown in fig. 5.24.

Despite the careful selection of the excitation frequency and amplitude, the extreme attenu-

ation performance of the Type-A suspension did not allow us to measure the well-correlated

transfer function above 1.8 Hz. In addition, the calibration procedure was guaranteed for

frequencies as low as ∼ 0.5 Hz owing to the response of the BS payload where the error signal

of the Michelson interferometer was fed back. For these reasons, only the frequency points

in the 0.8–1.7 Hz range could be measured with a coherence of more than 0.6.



140 CHAPTER 5. PERFORMANCE TEST OF TYPE-A TOWER

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

M
ag

nit
ud

e

Measured xIP/FIP
Measured xBF/FIP
Model xIP/FIP
Model xBF/FIP

10 2 10 1 100 101

Frequency [Hz]
180

90

0

90

180

Ph
as

e 
[d

eg
]

Fig. 5.22. Transfer functions of the full Type-A suspension from the force on the IP to the

local sensor at the IP and BF in the longitudinal direction of the full Type-A suspension.

The total tendency of the vibration isolation ratio appeared as expected. However,

although the measured transfer functions were sufficiently matched with the model in fig. 5.22,

the vibration isolation ratio exhibited deviations from the model at the frequencies below 1.4

Hz in fig. 5.24. The zoomed in subfigure in fig. 5.24 shows that the maximum difference

between the measurement and the model is at most an order of magnitude at 1.065 Hz.

These discrepancies may be due to the inaccurate modeling of the cryogenic payload. The

resonant peaks around 1 Hz will originate from the internal modes of the payload, such as the

pure longitudinal modes and coupled pitch modes, which have resonances in this frequency

region. Although characterization of the payload was beyond the scope of this study, an

improvement in the model based on the transfer function measurements in the DoFs of the

payload can resolve the observed mismatches. Another possible cause of the mismatch is the

error in the calibration procedure of the Michelson interferometer. The calibration assumed

a simple f−2-response in the actuator including the BS response, whereas it is known that

the BS has a resonant peak at 0.5 Hz in its longitudinal response. It can contribute to

the deviation of the measured vibration isolation ratio from the model prediction at low

frequencies.

The mismatches mentioned above notwithstanding, the model has a reasonable consis-

tency with the real system of the Type-A suspension. Thus, by extrapolating the estimated
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Fig. 5.23. Estimated vibration isolation ratio from the ground to the IP stage.

vibration isolation ratio to the high frequencies, we can obtain an indication of the vibration

isolation performance of the constructed Type-A suspension. Taking the saturation effect

of the IP into account, the seismic attenuation factor of the Type-A suspension at 10 Hz

is estimated as 9 × 10−22 and is plotted as a blue curve in fig. 5.24. Assuming the seismic

noise model of the KHNM is applicable, the requirement of the vibration isolation ratio cor-

responding to the required longitudinal displacement noise can be also derived. Comparing

the estimated vibration isolation ratio to the requirement of 5× 10−9 at 10 Hz, the Type-A

suspension possesses sufficient capability to attenuate the seismic noise coupling in the pure

longitudinal direction.

It would be seen that the Type-A suspension with the estimated performance is over en-

gineered against the requirement. Although this attenuation performance in the longitudinal

direction is the result of a number of stages that cascade from the top, this design aims to

secure the vibration isolation in the vertical direction. The five stages of the GAS filter chain

are a reasonable design for reducing the displacement noise through vertical-to-longitudinal

coupling. Thus, it is necessary to confirm the vibration isolation performance in the vertical

direction, which we put off as a subject of forthcoming tests.

In the future, the direct measurement of the in-band seismic attenuation performance

using the interferometer with arm cavities will be explored. It can be argued that the mea-

surement reported in this section goes no further than the in-band vibration isolation ratio
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Fig. 5.24. Estimated vibration isolation ratio from the ground to the mirror (TM).

with the model estimation as the measured data covers only a limited frequency region. It can

be overcome by using the cavity-implemented interferometer with an outstanding sensitivity.

In addition, unlike in this experiment, the performance should be tested with the payload in

a cryogenic environment, which is the actual operational condition.



Chapter 6

Conclusion

In this study, we developed a Type-A suspension, a vibration isolation system for the

test masses in KAGRA. We have constructed a so-called Type-A tower, which is the key part

for vibration isolation. Through the experiments summarized below, we concluded that the

installed Type-A tower can provide sufficient seismic attenuation and control performance

in order to achieve the design sensitivity of the KAGRA interferometer. There is still a

need to test the Type-A suspension after integration with the cryogenic payload. Through

commissioning of the global system in many aspects, this study has contributed to making

gravitational wave observation possible with KAGRA.

System characterization

The system characterization validated that the installed Type-A tower system basically

has the designed dynamic characteristics that satisfy the requirements for gravitational wave

observation. The frequency responses of the Type-A tower were measured and compared

to the predictions of the nominal model. Although there is some amount of deviation, the

obtained frequency responses can be regarded as acceptable to achieve the required vibra-

tion isolation performances except in the vertical direction. As for the vertical direction, the

dynamics of the Type-A tower show discrepancies between the measurement results and the

model predictions, particularly in the mode shapes of its higher order resonances. It is sus-

pected that the higher order oscillatory behavior has stronger dependence on the divergence

of the mechanical parameters from the nominal values. However, as the higher order modes

have a smaller impact on the RMS residual motion and the measured mode frequencies are

roughly distributed as expected, the discrepancies in the vertical mode dynamics seem to be

within the permissible range. This tolerance is also plausible from the measured displace-

ment spectrum at the dummy payload, which is suspended, instead of the actual cryogenic

payload. One problem that still remains is the effect of couplings from non-straightforwardly-

controllable degrees of freedom, such as a tilt of the middle GAS filter stages. The impact
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of the couplings on the test mass or the interferometer should be confirmed after integration

with the cryogenic payload.

Torsion mode damping

Torsion mode damping of the Type-A tower is tested. As a major fraction of the height

of the Type-A suspension is accounted for a series of single suspension wires, the system

behaves like a torsion pendulum with extremely low stiffness and a long duration of the

torsional modes, which makes stabilizing the alignment of the mirror an issue. The Type-A

tower is responsible for addressing this issue by providing a function of active damping control

at the tower’s bottom stage. The torsion mode damping test proves that the long exponential

decay time of the resonances can be successfully reduced to less than 1 min by active feedback

control. In addition, the in-loop sensor indicates that the RMS residual angular fluctuation

in torsion is suppressed sufficiently to a level required to acquire arm cavity lock. Therefore,

it is concluded that the Type-A tower has satisfactory torsion mode damping.

Implementation of modal damping

This study presented an advanced control scheme called modal damping. Modal damping

processes feedback signals in a decoupled modal basis instead of a conventional Cartesian

basis, allowing us to simplify the servo design optimization and to access efficient actuation for

a coupled oscillatory system. The control test demonstrates feasibility of modal damping for

the coupled vertical modes of the Type-A suspension. By deriving a conversion law between

the Cartesian basis and the modal basis from the mathematical model, coupled signals of

the vertical modes can be decomposed into those of each orthogonal eigenmode. Moreover,

the result of the modal damping shows that the eigenmodes can be damped independently of

other modes. Although the availability of modal controllers is validated only for the vertical

modes in this test, one can expect to apply this technique to other stages having less-powerful

actuators such as the cryogenic payload.

Measurement of vibration isolation ratio

The installed Type-A tower was integrated with the cryogenic payload and incorporated

into the global system of the KAGRA interferometer. This thesis includes the measurement

of the vibration isolation ratio from the ground to the test mass. During the first cryogenic

test operation of the simplified 3-km Michelson interferometer, we measured the vibration

transmissivity from the top stage to the error signals of the inteferometer output. Combining

the measured result with a model prediction of the transmissibity from the ground to the top

stage derived from the tuned mathematical model, the total vibration isolation ratio of the

Type-A suspension was estimated as 9 × 10−22 for the pure longitudinal contribution at 10
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Hz. Although the estimated result contains some amount of mismatch with respect to the

nominal model prediction, the seismic attenuation performance of the real system seems to

be a reasonable enough to achieve the design sensitivity of KAGRA.

Achievement of the requirements

Table 6.1 summarizes the achievement of requirements by the Type-A suspension. Here

the measures evaluated in the performance test of the Type-A tower are only listed. Among

the DoFs of interest, the setup of the Type-A tower cannot yield meaningful performance

results in pitch direction as it strongly depends on the multi-wired suspension structure inside

the cryogenic payload. In addition, the requirements in the observation phase have to be out

of the scope in this experiments owing to similar reasons.

The requirements in the calm-down phase have been satisfied as far as the tower test can

permit except for the 1/e modal decay time. Owing to the number of eigenmodes the Type-A

suspension has and the limitation of the experimental period, the decay time measurement

of only the lowest-order eigenmodes is completed. However, the eigenmodes measured in this

experiment are the most important ones in terms of the interferometer operation. Although

other principal eigenmodes are not evaluated in the measurement, the control simulation

presented in chap. 4 predicted that they can be damped sufficiently to achieve a decay time

less than 1 min. The RMS amplitudes required for the calm-down phase are successfully

satisfied in the tower stages. Therefore, it is expected that the mirror in the cryogenic

payload suspended from the constructed tower can achieve a reasonable magnitude.

The performances required in the lock-acquisition phase were measured and showed

sufficiently small RMS values. Note that the ongoing commissioning of the KAGRA inter-

ferometer after these experiments has actually succeeded to lock the arm cavity using the

installed Type-A suspension.
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Table 6.1. Experimental results of the performance test of the Type-A tower. Only the

meausred items that can be used to evaluate whether requirements have been met are listed.

Calm-down phase

Item Measurement Requirement Notes

1/e modal decay time < 44 sec. < 60 sec. Yaw 1st–3rd modes

RMS displacement (L) < 1.1 µm < 50 µm Measured at BF

RMS displacement (T) < 1.4 µm < 100 µm Measured at BF

RMS displacement (V) < 0.11 µm < 100 µm Measured at DP

RMS angle (Y) ∼ 0.23 µrad < 50 µrad In-loop evaluation at BF

Lock-acquisition phase

Item Measurement Requirement Notes

RMS velocity (L) < 0.73µm/s < 240 µm/s Measured at BF

RMS angle (Y) ∼ 0.23 µrad < 0.88 µrad In-loop evaluation at BF
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