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Abstract

In this Ph.D thesis, I review a current status of multi-field inflation models
and introduce theoretical predictions based on those models. Then, I discuss
how to discriminate a true model from the others including our original mod-
els by using current and future cosmological observations. From a top-down
viewpoint, it is natural to assume that multiple scalar fields can participate
in primordial inflaton(s) because a lot of light scalar fields are predicted in
theoretical models beyond the standard model in particle physics such as
supergravity or superstring theory. However, an analysis of the multi-field
inflation models is not as simple as that of single-field ones. In particular,
computations of curvature perturbation in the multi-field models are quite
different from those in the single-field ones due to the “multi-field effects.”
That is simply because the multi-scalar fields can have their own indepen-
dent quantum fluctuations which should have been complexly mixed up each
other during their evolutions in the cosmic history. In this thesis, I introduce
so-called the δN formalism and the transport method to compute curvature
perturbation and concretely analyze two multi-field models fully consider-
ing the multi-field effects. In Chapter 6, I introduce our own new inflation
model based on superstring theory where the multi-field effects are impor-
tant. Then, I discuss its theoretical predictions and how to verify this model
by using new observational data in future.
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Chapter 1

Introduction

In the standard Big Bang cosmology, it is well-known that a domination of

energy in the Universe by radiation and/or matter can induce the cosmic

expansion. However, there are serious problems which can not be solved by

assuming that only radiation and/or matter contributed to the cosmic ex-

pansion. They are known as the Horizon Problem and the Flatness Problem.

These two problems are attributed to the fact that “The cosmic expansion

caused by radiation or matter is decelerated”. In fact, the above two problems

can be solved by introducing an accelerated phase of the cosmic expansion

in the earlier stage of the Universe. It is called inflation. The solution by

assuming inflation was proposed by A. Starobinsky, K. Sato, A. Guth and

D. Kazanas in the early 1980s [1, 2, 3, 4, 5]. In inflationary cosmology,

a scalar field called inflaton field is introduced. When the energy density

of the nearly-constant potential energy of this inflaton field dominated the

energy of the Universe, the accelerated expansion was realized. As will be

explained in details later, this accelerated expansion in the early Universe can

solve the above two problems caused in the standard Big Bang cosmology.

So far, a lot of models which can realize inflation have been proposed

with satisfying all of current observational constraints (for review, see e.g.,

Refs. [6, 7] and references therein). Thus, we have a strong motivation to

discriminate a true model from the others by using future observations. It

is informative to use observational data of temperature fluctuations and po-
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larization of the Cosmic Microwave Background (CMB) radiation for this

verification. Inflation generates density fluctuation (or curvature perturba-

tion) on the spacetime. If curvatures are slightly different each other at

points in the spacetime after inflation, these curvature perturbation affects

the spatial distribution of the temperature fluctuations of CMB at a late

time. Therefore, it is possible to verify a inflation model by comparing var-

ious theoretical quantities related with the temperature fluctuation and the

polarization predicted in the model with the ones measured in the CMB ob-

servation. In this thesis, especially I focus the power spectrum calculated

from two-point correlation function of the curvature perturbation and the

so-called non-Gaussianity calculated from three-point correlation function.

These are the most important quantities to test inflation models. Recently

by using the CMB observations reported by the Planck satellite experiment,

we can put severe bounds on these quantities. For the latest observational

constraints on inflation, see Ref. [8].

Inflation models can be trivially classified into two classes: One is the

single-field model where only a single inflaton contributes to inflation for

simplicity. And the other is the multi-field model. From a top-down view-

point, a construction of the multi-field model is much more natural. That

is because it is known that in theories of new physics beyond the standard

model such as superstring theory or supergravity, a lot of scalar fields appear

(for the review of model-building based on these theories, see Ref. [9]). So far

we have not verified these models only by using any terrestrial experiments

such as collider experiments. However, if we can test the inflation models

based on those models by using cosmological observations such as CMB in

future, we should obtain unique insights into these theories. This is why

the building of multi-field inflation models is an interesting and an exciting

subject.

What is the difference between single-field and multi-field inflation mod-

els? In single-field cases, the superhorizon-scale mode of the curvature per-

turbation is almost constant during inflation [10]. Therefore, we just need

to compute a perturbation when it exits the horizon during the inflation.

On the other hand, in multi-field cases, we must have two modes of the
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perturbation 1) adiabatic perturbation which is along to the inflaton trajec-

tory and 2) isocurvature perturbation which is perpendicular to the inflaton

trajectory [11]. Since isocurvature perturbation is transferred to adiabatic

perturbation, it is time-evolving during inflation, and we need to trace its full

time-evolution from the beginning to the end of inflation. This is a typical

feature in the multi-field inflation model. In addition, almost all single-field

inflation models predict a scale invariant power spectrum. Because of this

invariance, there is a relation between a spectral tilt and non-Gaussianity

of curvature perturbation. This is called the Maldacena’s consistency rela-

tion [12]. In fact, in multi-field models, there are possibilities to break this

relation. The current observational data are not so tight to test this relation.

In future however, if we find a deviation from this relation, it should be a

strong support of a multi-field inflation model.

In analyses of the multi-field models discussed in this thesis, we adapt the

δN formalism [13, 14] and the transport method [15, 16, 17, 18]. Relying on

these methods in calculations, we can compute curvature perturbation by just

determining the classical dynamics of inflaton fields, and it is possible to trace

time-evolutions of all observable quantities during inflation. Moreover, by

using the transport method which is an extended version of the δN formalism,

we can calculate curvature perturbation more efficiently by simply finding

a gauge transformation between the constant-time slice and the uniform-

density slice.

This thesis is organized as follows : In chapter 2, I briefly review the

standard Big-Bang cosmology and what the problems of this theory are. In

addition, I discuss how to solve these problems with introducing inflation.

In chapter 3, I introduce a framework to compute curvature perturbation

generated by inflation. chapter 4 is dedicated to an introduction of the δN

formalism and the transport method. In chapter 5, I discuss a R2 + χ2

model, namely the Starobinsky model with a mass term of another scalar

field. A multi-field inflation model which is based on string inflation, named

Multi-Moduli inflation, is discussed in chapter 6. Chapter 7 is devoted to the

summary of this thesis.
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Part I

Inflation and Primordial

Curvature Perturbation

8



Chapter 2

Quick overview of inflation

This chapter is dedicated to the overview of inflationary cosmology. First, we

will introduce the Friedmann cosmology and see serious problems of this the-

ory, which are so-called the horizon problem and the flatness problem. After

that, we introduce inflation and confirm how we can avoid these problems.

Moreover, we show what conditions are required for successful inflation.

2.1 Friedmann cosmology

In this section we introduce so-called Friedmann cosmology, which describes

the expanding universe based on general relativity. After that, we will point

out problems of this theory.

2.1.1 Expanding universe

First we derive the Friedmann equation, which is a basic equation for de-

scribing expanding universe. The starting point is the Einstein equation,

Rµν −
1

2
gµνR = 8πGTµν . (2.1.1)

From the requirement of cosmic principle which claims that the universe is

almost homogeneous and isotropic, Friedmann-Lemâıtre-Robertson-Walker

metric (FLRW metric for short) is derived as
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ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

)
. (2.1.2)

Here K is a constant determined from the spacetime topology. Using this

FLRW metric, we obtain following equations from diagonal components of

the Einstein equation.

00 H2 =

(
ȧ

a

)2

=
8πG

3
ρ− K

a2
,

ii 3H2 + 2Ḣ = −8πGp.

(2.1.3)

H = ȧ/a defined here is representing the expansion rate of the universe and

called Hubble parameter. In the natural units, Hubble parameter has the

dimension of [T−1] = [L−1]. H−1 is interpreted as typical size of universe.

For this reason H−1 is also called Hubble horizon or Hubble radius. On

the other hand, ρ, p are the 00 component (energy density), ii component

(pressure) of the energy momentum tensor. Once we determine how the scale

factor a(t) evolves based on these equations, we can describe the expansion

of the universe. Here, we take K = 0 just for simplicity,

H2 =

(
ȧ

a

)2

=
8πG

3
ρ. (2.1.4)

In the case of K ̸= 0, it is important to consider the Flatness Problem which

will be explained in the next section.

Now we can check the relationship between the scale factor a(t) and the

energy density ρ in order to solve the Friedmann equation (2.1.3). Differen-

tiating both sides of the equation (2.1.3) with respect to time,

2HḢ =
8πG

3
ρ̇, (2.1.5)

By using this expression and (2.1.3), we get

ρ̇+ 3H(ρ+ p) = 0. (2.1.6)
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On the other hand, ρ is related to p by the equation of state,

p = wρ. (2.1.7)

Here w is a constant associated with each energy contents of interest such as

radiation or matter.

By substituting (2.1.7) into (2.1.6), we have

ρ̇ = −3H(1 + w)ρ =
−3ȧ

a
(1 + w)ρ. (2.1.8)

However, this can be integrated immediately and after all we obtain

ρ ∝ a−3(1+w). (2.1.9)

This is the relation between the scale factor a(t) and energy density ρ which

we wanted and we can determine the time evolution of the scale factor a(t)

with this equation.

We can see some concrete examples. Here we consider matter-dominant

universe. In this case we take w = 0 in (2.1.9). Therefore, using ρm ∝ a−3,

we get

H2 =

(
ȧ

a

)2

∝ 8πG

3
a−3. (2.1.10)

From this expression, time evolution of a is given by,

a(t) ∝ t2/3. (2.1.11)

Next we consider the case where the energy density is dominated by

radiation. In this case, since w = 1/3 and ρ ∝ a−4, solving the Friedmann

equation, time evolution of a is given by

a(t) ∝ t1/2. (2.1.12)

From (2.1.11) and (2.1.12), if the energy density of matter or radiation domi-

nantly contributes to cosmic expansion, we find ä < 0. This means expansion

of universe is decelerated.
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What about in the case of w = −1? In this case, in fact it corresponds

to the case where vacuum energy ρv is dominant. However, it seems strange

situation because their pressure is negative in this case. From the expression

(2.1.9), the energy density does not depend on the scale factor a, and it

becomes ρ ∝ Const. In such a case,

H2 =

(
ȧ

a

)2

∝ Const. (2.1.13)

Thus, after all, time evolution of a becomes

a(t) ∝ eHt (2.1.14)

In this situation, the universe expands exponentially and one can easily find

that expansion is accelerated (ä > 0).

Scale factor dependence of energy density ρ and time evolution of scale

factor a are summarized for each cases (matter, radiation and vacuum energy)

in Fig.2.1.1.

Matter 0

Radiation 1/3

Vacuum 
energy -1 eHt

a�3

a�4

a(t)

a0

t1/2

t2/3

⇢w

Figure 2.1.1: Relationship between ρ and a in each energy component and
time evolution of a

In the epoch of Inflation which is the main theme of this thesis, we as-

sume that the universe experienced accelerated expansion in the extremely

12



early epoch. In the following sections, We will discuss why such accelerated

expansion is required and also how to realize the situation where vacuum

energy becomes dominant, namely w = −1.

2.1.2 Problems of Friedmann cosmology

Horizon Problem

In the previous section we have learned the description of the expanding

universe based on Friedmann cosmology. In this section, we will see Horizon

Problem which is one of the serious problem of Friedmann cosmology.

First of all, let’s consider observing a point far away from an observer by

l =
√
x20 + y20 + z20 . This l is not a physical distance in Friedmann cosmology.

Since FLRW metric is given by (2.1.2), the physical distance should be ex-

pressed as L = al. As we saw in the previous section, this a grows with time.

Therefore, when we take large L, we must be careful to time dependence of

a.

On the other hand, the Hubble horizon, which represents the typical size

of the universe, is represented byH−1. Here we compare the time evolution of

a and H−1 in the case of radiation-dominant universe. H−1 has a dimension

of length and a is dimensionless. However, in this comparison we can tune

the dimension of a to that of length with multiplying a proper quantity.

According to the previous section a(t) ∝ t1/2, H−1 is calculated as

H−1 = a/ȧ ∝ t. (2.1.15)

According to this result, we can see the problem of Friedmann cosmology

as shown in Figure 1.2. When we trace back a and H−1 to the epoch of the

CMB recombination, as shown in Figure 1.2, the scale factor a is larger than

the Hubble horizon in the epoch of the CMB recombination. Because the

Hubble horizon represents the typical size of causal contact in the universe,

particles (such as photons) can not have a causal relationship over a scale that

exceeds H−1. Hubble horizon with scale of interest are in the relationship as
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⇡
⇡

ln tCMB 
Recombination

a(t)

H�1

Figure 2.1.2: The scale factor and time evolution of the Hubble horizon. The
Hubble horizon becomes smaller than the scale factor in the CMB recom-
bination time. This means the observational scale of CMB becomes larger
than the Hubble horizon at the time of the CMB recombination.

shown in Figure 2.2. It means that there were a lot of causally-disconnected

regions in the early universe. This is completely contradict to homogeneity

and isotropy of observed CMB temperature fluctuations. It is not acceptable

to assume that lots of regions which do not have a causal contacts have the

almost exactly same temperature by chance. This problem is called Horizon

problem. The above discussion also holds in the case of a ∝ t2/3 which the

matter dominated universe.

Horizon Problem can also be discussed in another coordinate system

called comoving frame. Comoving frame is interpreted as “coordinates ex-

panding with the universe”. In comoving frame, we can reduce a dependence

from quantities which have a dimension of length by dividing by the scale

factor a.

First, FLRW metric in polar coordinates is given by,

ds2 = −dt2 + a2(t)(dr2 + r2dθ2 + r2 sin2 θdϕ2) (2.1.16)

Considering the geodesic of the photon, ds = 0, and focusing only on the

radial component, the Particle horizon is defied as
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xph ≡
∫ t

ti

dt′

a(t′)
. (2.1.17)

This can be interpreted as the distance which photon can propagate during a

certain time interval and represents the size of the region where photons can

interact with each other (in the following discussion we take ti = 0 just for

simplicity). On the other hand, the quantity called comoving Hubble horizon

is defined as (aH)−1. If we calculate xph and (aH)−1 in matter/radiation

dominant universe, we straightforwardly obtain

Matter xph ∝ t1/3, (aH)−1 ∝ t1/3,

Radiation xph ∝ t1/2, (aH)−1 ∝ t1/2.
(2.1.18)

From now on, we will treat the Particle horizon equivalent to comoving Hub-

ble horizon. In addition, from (2.1.18), we find that (aH)−1 is an increasing

function of time in the dust or radiation -dominant universe.

On the other hand, since H is a constant in the case where the vacuum

energy is dominant, then (aH)−1 ∝ a−1 ∝ e−Ht and (aH)−1 is a decreasing

function of time. In fact, Whether (aH)−1 is an increasing or a decreasing

function is one of the most important point in later discussions.

Since we can drop a from L = al in the comoving frame, simply take

this as the scale of CMB observation as l = Const and illustrate it with

(aH)−1. It is as shown in Figure 2.3. Here again we realize the same problem

as before. That is, currently observed Particle horizon is smaller than the

CMB observational scale where there is a region where photons can not

interact causally. Again this contradicts the homogeneity and isotropy of

CMB temperature fluctuation.

As mentioned above, looking at the time evolution of the scale factor a,

the Hubble horizon and the Particle horizon, if we assume that only mat-

ter and radiation dominantly contributed to the expansion of the universe,

the present CMB homogeneity. The problem that we can not explain the

directionality is the Horizon problem.
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⇡
⇡

ln t

(aH)�1, xph

CMB scale

CMB 
Recombination

Figure 2.1.3: Comparison between comoving Hubble (aH)−1 and CMB ob-
servation scale. (aH)−1 becomes smaller than CMB’s observation scale.

Flatness Problem

Next we will address so-called Flatness Problem. Calculating the Ricci scalar

R from the FLRW metric, we get

R =
K

a2
(2.1.19)

We find found that this corresponds to the second term of the right-hand

side of (2.1.3). We call this term curvature term. Whether or not this

curvature term contributes to cosmic expansion is strictly constrained by

observation and it is known that this contribution is very small. Therefore,

it this curvature term is very small in the present universe.

On the other hand, we can rewrite the Friedmann equation (2.1.3) as

follows.

1 =
8πGρ

3H2
− K

(aH)2
. (2.1.20)

As mentioned in the previous section, the comoving Hubble radius (aH)−1

is an increasing function in the decelerated and expanding universe. That

means the curvature term K/(aH)2 was extremely small in the early epoch
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of the universe even though it is very small in the current universe.

By tracing the time evolution of the scale factor to the beginning of the

universe, its size can be estimated. For example, at the time of Big Bang

Nucleosynthesis or at the time of Grand Unified Theory (GUT) where it is

considered that three gauge interactions are unified, the magnitude of the

curvature term is

(
K

(aH)2

)
BBN

< O(10−16),

(
K

(aH)2

)
GUT

< O(10−55). (2.1.21)

From this result, in order to explain the flatness of the present universe, we

have to assume that the universe began with a fine-tuned state such that the

curvature is extremely small. The above fine-tuning problem concerning the

curvature of the universe is called the Flatness Problem.

The cause of the Horizon Problem and the Flatness Problem are same. In

the decelerated universe contributed by matter or radiation comoving Hubble

(aH)−1 is a monotonically increasing function with respect to time and the

fact that (aH)−1 gets very small when we going back to that early epoch of

the universe.

In the Horizon problem, Particle Horizon xph is represented by comoving

Hubble and when we go back to the time of recombination of the universe

this xph becomes smaller than the CMB scale. Therefore, there are lots of

regions where photons can not interact causally in this period and there is

no reason why different regions have the almost same temperature in such a

phase.

In other words, if we assume that only matter or radiation contributed

to the expansion of the universe, we can not explain observational fact that

CMB temperature fluctuation is extremely small.

Similarly in the Flatness Problem, (aH)−1 becomes small at the beginning

of the universe. Thus the curvature term K/(aH)2 becomes very small. As a

result, to explain the flatness of the current universe, the universe must have
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begun with extremely small curvature. This is a kind of fine tuning problem.

In fact, it is known that these two problems can be solved by introducing

an idea that “In the early universe there was a phase when the comoving

Hubble (aH)−1 became a decreasing function with respect to time (i.e. there

was a time when the universe experienced accelerated expansion)”. At the

beginning of the next section we will review this point and introduce inflation

to cause such acceleration.

2.2 Inflation

This section explains how accelerated expansion of the universe solves the

problems of Friedmann cosmology described in the previous section. After

that, We will learn how to realize such an accelerated phase.

2.2.1 A first look at inflation

As mentioned at the end of the previous section, in order to solve the prob-

lems of Friedmann cosmology, there should be a phase in which comoving

Hubble (aH)−1 decreases with time at the early epoch of universe. The

condition that (aH)−1 becomes a decreasing function is

d

dt

(
1

aH

)
= −1

a

(
Ḣ

H2
− 1

)
< 0 ⇒ ϵ ≡ − Ḣ

H2
= −d lnH

dN
< 1. (2.2.1)

The ϵ defined here is called the slow-roll parameter. When the condition

(2.2.1) is satisfied, (aH)−1 becomes a decreasing function. Especially when

ϵ gets a sufficiently small ϵ≪ 1 , it turns to be Ḣ ∼ 0 then we solve this for

a(t),

a(t) ∝ eHt (2.2.2)
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The limit of ϵ→ 0 is called de Sitter limit. Considering such a limit, we can

obtain a solution in which the universe expands exponentially.

Then let’s see how the problems of Friedmann cosmology are solved by

adding the phase when (aH)−1 is decreasing function.

As shown in the figure (2.2.1), when we add the phase (aH)−1 is decreas-

ing, comoving Hubble (or Particle Horizon) becomes larger as going back to

the past.

Even if Particle Horizon becomes small at the early epoch, then it becomes

sufficiently large at the time of the added accelerated expansion, inflation.

And as a result, homogeneity and isotropy of CMB can be explained .

ln t

⇡
⇡

Inflation

CMB scale

(aH)�1, xph

CMB 
Recombination

Figure 2.2.1: Comparison between time variation of comoving Hubble and
observation scale of CMB when Inflation is introduced. While Inflation is
occurring, (aH)−1 decreases and it turns out that it can become bigger than
the CMB scale when going back to the past. This can explain the uniform
isotropy of the universe.

Let us estimate how long inflation should continue to solve the Horizon

Problem. We set the scale factors at the beginning and end of inflation as
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ai, af and define

N ≡ ln

(
af
ai

)
=

∫ f

i

da

a
=

∫
ȧ

a
dt =

∫
Hdt (2.2.3)

N is called e -folding and is an important quantity that frequently appears

in discussions of inflation. In addition, for the sake of explanation here, we

introduce new parameters.

Ω0 ≡
8πG

3H0

ρ0 (2.2.4)

Here, H0 and ρ0 represent the current universe Hubble and energy density,

respectively.

In order to explain homogeneous and isotropic universe, we need the

following condition we are interested in the scale which is more interesting

than the comoving Hubble (aiHi)
−1a0H0)

−1 = H−1
0 .

H−1
0 < (aiHi)

−1 (2.2.5)

This means the size of comoving Hubble at the epoch of inflation should

be larger than that of the current universe (for simplicity here we set the

current universe scale factor to a0 = 1). In such a situation, every region of

the universe have causal contact. As we will see in the later section, since H

is almost constant during Inflation,

af
ai
>
afHf

H0

. (2.2.6)

Here we just assume that radiation became dominant immediately after in-

flation, but when radiation is dominant, scale factor grows as a ∝ t1/2 and

H ∝ a−2. Thus, we define boundary conditions to be consistent with the

current value H0,

H =
H2

0

√
Ω0

a2
(2.2.7)
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This gives Hf = H2
0

√
Ω0/a

2
f and (2.2.6) can be rewritten as

af
ai
>

√
Ω0

af
∼ 1027H−1

0

ρinf
1015GeV

∼ 1026. (2.2.8)

Therefore, if the scale factor at the end inflation is larger than initial size by

1026, then required e -folding N is

N = ln

(
af
ai

)
= ln 1026 ∼ 60. (2.2.9)

If we have an expansion of N > 60 or more, we can solve the Horizon

Problem. In this thesis, if we need N to calculate some physical quantities,

we basically take N = 50−−60.

In the above discussion, we focused on the relationship between comoving

Hubble (aH)−1 and the CMB scale, but we can also confirm the relationship

between the scale factor a and the Hubble horizon H−1. If the universe is

under accelerated expansion, H−1 is almost a constant. On the other hand,

a is a ∝ eHt. Therefore it gets smaller as going back to the past. This

is shown in Figure 2.2.2. Also in this case, a becomes smaller than H−1

during accelerated expansion. In the meantime, the photons have a causal

relationship, and so it is possible to explain the homogeneity and isotropy of

the CMB.

What about the Flatness Problem? When we go back to the universe

to the early epoch with decelerated expansion, (aH)−1 becomes smaller and

smaller, and along with this, the curvature termK/(aH)2 becomes extremely

small. However, if the accelerated expansion phase is added, (aH)−1 increases

at that phase. As we checked in previous discussion, in order to explain the

homogeneity and isotropy of CMB, we need the expansion af/ai ∼ e60 ∼ 1026.

This implies the enough expansion by inflation can significantly relax the fine-

tuning problem. If there was inflation, we do not need to assume fine-tuned

flatness of the universe in the beginning. In this way the Flatness Problem

is also solved.
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Figure 2.2.2: The time growth of the scale factor and the Hubble horizon
when inflation is introduced. While inflation is occurring, H−1 is a con-
stant while decreasing a flip the magnitude relation. This can explain the
homogeneity and isotropy of the universe.

As described above, two problems of Friedmann cosmology are solved by

adding the phase when the universe goes under accelerated expansion before

decelerated expansion.

2.2.2 Slow-roll conditions

As we saw in the previous section, assuming that the universe experienced

accelerated expansion in the very early epoch, the problems of Friedmann

cosmology, Horizon Problem and Flatness Problem, can be solved. In this

section we will see how to realize such accelerated expansion. From this

section , we will use the notation M2
pl = (8πG)−1 (Mpl is called the reduced

Planck mass).

First we Introduce ϕ as a scalar field and whose action is given by∫ √
−g
(
M2

pl

2
R− 1

2
(∂ϕ)2 − V (ϕ)

)
. (2.2.10)

This scalar field ϕ is called an inflaton and V (ϕ) is the potential of the
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inflaton. Adapting FLRW metric, we can derive following equation from the

00 component of the Einstein equation

3M2
plH

2 =
1

2
ϕ̇2 + V (2.2.11)

On the other hand, when we vary the action with the inflaton field ϕ, the

equation of motion of ϕ follows

ϕ̈+ 3Hϕ̇+ V ′ = 0. (2.2.12)

Here, prime represents the differentiation with respect to inflaton ϕ.

Now, how is the acceleration expansion condition −Ḣ/H2 < 1 expressed

using these two equations? Taking the time derivative of both sides of

(2.2.11),

6M2
plḢH = ϕ̇ϕ̈. (2.2.13)

Using the expression (2.2.12) to right hand side,

6M2
plHḢ = −3Hϕ̇2. (2.2.14)

Here we used the fact that the potential V does not depend on time explicitly,

and so the condition −Ḣ/H2 < 1 can be rewritten as

− Ḣ

H2
=

ϕ̇2

2M2
plH

2
=

3ϕ̇2

2(1
2
ϕ̇2 + V )

< 1. (2.2.15)

Thus, the condition (2.2.15) is satisfied if 1
2
ϕ̇2 ≪ V , that means, the potential

is dominant in the energy density compared with the kinetic energy.

On the other hand, if ϵ grows with time and becomes larger than unity

immediately, it will not get enough expansion. Therefore we need another

condition on the growth rate of ϵ. We define,

η ≡ 1

2

d

dN
ln ϵ =

ϵ̇

2ϵH
(2.2.16)
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The condition for decreasing the time change of ϵ is |η| < 1. However, this

condition can also be rewritten as a condition for the dynamics of ϕ using

the field equation and the Friedmann equation (2.2.16),

η =
1

2

d

dN
ln ϵ =

1

2H

d

dt
ln ϵ =

1

2H

d

dt

[
ln(−Ḣ)− 2 lnH

]
=

Ḧ

2HḢ
− Ḣ

H2
.

(2.2.17)

Using this expression and (2.2.14),

M2
plḦ = −ϕ̈ϕ̇. (2.2.18)

and this is calculated from (2.2.14),

η =
ϕ̈

Hϕ̇
− ϵ (2.2.19)

Since ϵ < 1, the condition for |η| < 1 is corresponding to |ϕ̈| ≪ H|ϕ̇|.

From the above, the condition for accelerated expansion ϵ < 1 is 1
2
ϕ2 ≪ V ,

the condition for acceleration expansion is |η| < 1 Is rewritten as |ϕ̈| ≪ H|ϕ̇|.
These two conditions are called slow-roll conditions. Under these conditions,

the expression (2.2.11) (2.2.12) are given as

3M2
plH

2 = V, 3Hϕ̇ = −V ′. (2.2.20)

Now we can determine how the scale factor a(t) evolves under the condi-

tions (2.2.20). We impose the slow-roll conditions, and so the time evolution

of the inflaton is very slow. Therefore, the growth of the potential is small

and V can be regarded as almost constant. That means H ∼ Const. and in

this situation the time evolution of the scale factor a follows

ȧ

a
= H(∼ Const) ⇒ ȧ = Ha ⇒ a(t) = eHt. (2.2.21)

When we introduce the action of inflaton and realize accelerated expansion by
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imposing slow-roll conditions then the universe expands exponentially. This

class of inflation is called slow-roll inflation and a lot of models have been

proposed in last decades. Therefore, we have to discriminate each model and

to confirm what kinds of models can fit to observational results in some way.

In next chapter, we focus such method, namely cosmological perturbation.
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Chapter 3

Primordial curvature

perturbation

In this chapter, we will review cosmological perturbation theory and learn

how to compute primordial curvature perturbation generated by inflation. In

inflationary cosmology, it is one of the most powerful and informative way to

discriminate each inflation model by comparing theoretically predicted pri-

mordial curvature perturbation and observed CMB temperature fluctuation.

3.1 Quantum Fluctuations during Inflation

We introduced slow-roll inflation in the previous chapter, but we did not

see any specific inflation model. In the past few decades, huge numbers of

inflation models which could realize the accelerated expansion have been pro-

posed. Therefore, we have to verify these models in some way and determine

models that can explain the observational results. In this chapter, first we

will review cosmological perturbation in which we add a tiny perturbation to

homogeneous and isotropic background. We can see how this perturbation

variables and inflation models are related. The goal of this chapter is to

find how to verify each inflation models by comparing the primordial density

fluctuation with the temperature fluctuation of the CMB.
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Cosmological Perturbation

In this section we introduce small perturbations to the homogeneous and

isotropic background which we have worked on so far. After that, we will

learn how each perturbation variables are transformed with respect to coor-

dinate transformation.

The basic concept of cosmological perturbation is as follows. We divide

arbitral quantities X(t,x) into a homogeneous and isotropic part X̄(t) that

does not depend on space coordinate and a part which depends on all of

spacetime coordinates,

δX(t,x) ≡ X(t,x)− X̄(t). (3.1.1)

This class of perturbation is called linear perturbation. In the first order of

this perturbation, the Einstein equation is schematically written as

δGµν = (Mpl)
−2δTµν . (3.1.2)

We will discuss the perturbation to the Einstein tensor which corresponds to

Metric Perturbation and Matter Perturbation which is related to the energy

momentum tensor.

Metric Perturbation

In the ideal homogeneous and isotropic universe, inflaton ϕ and metric gµν

depend only on the time coordinate t. We can decompose ϕ and gµν into

background part and small deviation part from background like following.

ϕ(t,x) = ϕ̄(t) + δϕ(t,x), gµν(t,x) = ḡµν(t) + δgµν(t,x). (3.1.3)

On the other hand, the perturbed metric gµν(t,x) can be expressed by each

components with introducing arbitral functions.
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ds2 = gµνdx
µdxν (3.1.4)

= −(1 + 2Φ)dt2 + 2aBidx
idt+ a2[(1− 2Ψ)δij + Eij]dx

idxj.(3.1.5)

Here, Φ,Ψ are called scalar perturbation. Bi and Eij are also decomposed

into scalar, vector, and tensor type perturbations,

Bi ≡ ∂iB − Si, where ∂iSi = 0. (3.1.6)

Eij ≡ 2∂ijE+2∂(iFj)+hij, where ∂iFi = 0, , hii = ∂ihij = 0. (3.1.7)

From this decomposition, B, S is also called scalar perturbation, and Si, Fi

are called vector type perturbation and hij is called tensor type perturbation.

Regarding vector perturbation, we can easily derive its evolution equation but

we only obtain decaying solution of vector perturbation unless we consider

special cases. Thus, in this thesis, we focus on scalar and tensor perturbation

only.

Now we can see the transformation laws of each scalar perturbation

Φ, B,E,Ψ with respect to the coordinate transformation t and xi. Using

arbitral functions α(x), β(x), they are given by,

t→ t+ α,

xi → xi + δijβ,j.
(3.1.8)

then, each perturbed quantities are transformed as

Φ → Φ− α̇,

B → B + a−1α− aβ̇,

E → E − β,

Ψ → Ψ+Hα.
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These are the transformation laws of each component of the perturbation to

the metric.

Matter Perturbation

Next, we see the perturbation to the energy momentum tensor. Let each of

the components of the energy momentum tensor be the unperturbed part of

energy density ρ̄, the unperturbed part of pressure p̄ and the quantities with

δ be the corresponding perturbation of each components.

T 0
0 = −(ρ̄+ δρ),

T 0
i = (ρ̄+ p̄)avi,

T i0 = −(ρ̄+ p̄)(vi −Bi)/a,

T ij = δij(p̄+ δp) + Σi
j.

Here, vi is defined as the spatial velocity vi ≡ ui/u0 with the unit vector

normalized as uµuν = −1. Σi
j represents the anisotropic component of the

stress tensor. ρ is energy density, p is pressure and q is defined as (δq),i =

(ρ̄+ p̄). For each quantities, we get the following.

δρ → δρ− ˙̄ρα,

δp → δp− ˙̄pα,

δq → δq + (ρ̄+ p̄)α.

These are the transformation laws of each perturbed components of the en-

ergy momentum tensor.
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Gauge Choice

So far we have considered transformation laws like (3.1.8) with respect to

coordinate transformation. In general relativity, it is required that the theory

is invariant under general coordinate transformation, and so the functions

α, β can be any function. That is why, we need to pay much attention to

“what kind of gauge do we take?” To see this problem, as an example, let

us consider a completely homogeneous and isotropic universe that is not

perturbed at all. Perfectly homogeneous and isotropic universe the energy

density is free from spatial coordinates ρ(t,x) = ρ(t). Here we consider

the coordinates transformations (3.1.8) t̃ = t + α(t,x), then it gives a new

coordinate system. ρ(t)+δρ(t(t̃,x)) (t̃,x), the homogeneity and isotropy are

lost and it looks like a perturbed universe. In fact, however, since we assumed

that the universe is completely homogeneous and isotropic, we realize that

this perturbed universe is not a physical one but simply due to coordinate

transformation.

As described above, in cosmological perturbation, “apparent” perturba-

tion caused by coordinate transformation (it is local transformations, and

sometimes it is called gauge transformations) and true perturbation with ac-

tual fluctuation of energy density are can be mixed up. Therefore, we need

to be careful not to be confused with them.

There are two well-established solutions to this problem. One is a gauge

fixing method. In this method, we impose some conditions on each transfor-

mation function of gauge transformation and adopts only those which satisfy

the conditions. This is Although it is a familiar method also in electromag-

netism and the like, in the perturbation cosmology the relationship between a

variable obtained by fixing a certain gauge and another variable obtained by

another gauge fixing becomes very complicated, It will be difficult to guide

many. The other is a method of gauge invariant perturbation theory that

defines gauge invariant variables by taking appropriate linear combination

of the perturbation variables defined above. In this method, once a gauge

invariant variable is defined, no matter how coordinate transformation is

performed
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Since their expressions do not change, concerning this variable, it becomes

unnecessary to worry about “apparent perturbation” or “true perturbation”

as mentioned above. Because of this usefulness, we will adopt the gauge

invariant perturbation theory in this thesis. We will see details of this method

below.

Gauge-invarinat Variables

As we saw in the previous subsection, if we can define quantities which do

not change its expression by coordinate transformation, the Gauge Choice

problem is solved. We define such quantities by taking the appropriate com-

bination of perturbation variables we have seen so far. First, we introduce

so-called comoving curvature perturbation which is defined as,

R ≡ Ψ− H

ρ̄+ p̄
δq. (3.1.9)

The transformation ofR follows from the transformation laws of Ψ, δρ, δp, δq,

R → R̃ = Ψ+Hα− H

ρ̄+ p̄
(δq + (ρ̄+ p̄)α)

= Ψ +Hα− H

ρ̄+ p̄
δq −Hα

= Ψ− H

ρ̄+ p̄
δq.

(3.1.10)

From above computation, it turns out that R is gauge invariant. ∆q is also

related to T 0
i component of the energy momentum tensor and T 0

i = ∂iδq.

On the other hand, in inflation, T 0
i can be expressed in terms of inflaton ϕ.

Since it is T 0
i = − ˙̄ϕ∂iδϕ, we can rewrite q with respect to ϕ,

R = Ψ+
H
˙̄ϕ
δϕ. (3.1.11)

In the frame which observers move together with the inflaton ϕ (comoving

coordinate of the inflaton), we find δϕ = 0 and R = Ψ. On the other hand,

calculating the three-dimensional spational scalar curvature (3)R in perturbed
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FLRW metric, we yield (3)R = 4∇2Ψ/a2.

Therefore, R is directly related to three-dimensional space curvature in

the comoving coordinate of the inflaton. This is why R is called comoving

curvature perturbation.

Next we introduce uniform-density curvature perturbation as yet another

important gauge invariant variable. This is defined as follows.

− ζ ≡ Ψ+
H
˙̄ρ
δρ. (3.1.12)

As with the case of R, we can also confirm that it is invariant to coordinate

transformation by using the transformation laws of Ψ, ρ.

−ζ → −ζ̃ = Ψ+Hα +
H
˙̄ρ
(δρ− ˙̄ρα)

= Ψ +
H
˙̄ρ
δρ+Hα−Hα

= Ψ+
H
˙̄ρ
δρ.

(3.1.13)

The reason why this ζ is called uniform-densisty curvature perturbation is

almost the same as comoving curvature perturbation. In a constant time

hypersurface of uniform-density (δρ = 0), we obtain −ζ = Ψ and again this

Ψ is directly related to the three-dimensional space curvature R.

By using the first order perturbed equation, we obtain the relationship

between the Fourier components of R and ζ,

− ζk = Rk +
k2

(aH)2
2ρ̄

3(ρ̄+ p̄)
ΨB. (3.1.14)

It is understood that there is a relation that. k2 is the wave number in Fourier

space, which corresponds to the scale (mode) of interest in real space. In

addition, ΨB introduced here is called Bardeen potential and is defined as

follows: [27].
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ΨB ≡ Ψ+ a2H(Ė −B/a) (3.1.15)

When k−1 ≫ (aH)−1 in the second term of the expression (3.1.14), that

is, when the mode of interest is sufficiently larger than comoving hubble

This is called superhorizon mode or superhorizon scale), the second term

can be ignored, The result is −ζ ∼ R. In superhorizon scale, ζ and R
match. Therefore, for the correlation function to be computed later (eg 2

point correlation function) ⟨ζζ⟩ and ⟨RR⟩ matches.

3.1.1 Quantum Fluctuations in Inflationary Universe

In this section we quantize the gauge-invariant perturbation R (or ζ) con-

sidered in the previous section. We trace the procedure used in the quantum

field theory and calculate the power spectrum of the fluctuation generated

during inflation. Since curvature perturbation is almost constant outside

of Horizon, this power spectrum is often evaluated at the timing just when

fluctuation crosses Horizon (called Horizon crossing or Horizon exit). The

outline to calculate power spectrum is following.

1. Consider the case of perturbed action (2.2.10), and expand action up

to the second order. In particular, we need to pay attention to terms

up to the second order of R.

2. We derive the equation of motion of R.

3. Performing the Fourier transform. The equations of each mode of R
are complicated. In order to solve these equations approximately, we

rely on the slow-roll conditions.

4. Quantizing R with the canonical commutation relation. This is one of

the boundary condition (normalization condition) for determining the

solution.
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5. Define the vacuum to be consistent with UV side (i.e. the vacuum well

inside the Horizon). This makes it possible to completely determine

the mode function.

6. From the calculation of the two-point function of v, find the power

spectrum of curvature fluctuation.

The outline of this calculation is similar for tensor perturbation hij.

Scalar Perturbations

We start with calculation of scalar perturbation. The starting action is the

same as (2.2.10), ∫ √
−g
(
1

2
R− 1

2
(∂ϕ)2 − V (ϕ)

)
. (3.1.16)

(In this calculation, we adopt the unit system Mpl = 1). In this action

(2.2.10) we consider perturbation on FLRW metric. Especially since we are

interested in R,we will adopt the following gauge.

δϕ = 0, gij = a2 [(1− 2R)δij + hij] , ∂ihij = hii = 0. (3.1.17)

This is the comoving gauge of the inflaton mentioned before. By adopting

this gauge, we do not need to think about the fluctuation of the inflaton,

and there is an advantage that the scalar perturbation Ψ is identical to R.

Other scalar perturbations such as Φ, B are related to R by the Einstein

equation but we can prove that they do not have any kinetic terms and just

give constraint equations. Thus we concentrate on R only.

After a long but straightforward calculation (see Appendix A for details

of this calculation), The actions up to the second order of R are given by

S(2) =
1

2

∫
d4xa3

ϕ̇2

H2

[
Ṙ2 − a−2(∂iR)2

]
. (3.1.18)
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Here we introduce a variable called Mukhanov-Sasaki variable for simplifica-

tion of the symbol. This is defined as follows.

v ≡ zR, , where z2 ≡ a2
ϕ̇2

H2
= 2a2ϵ. (3.1.19)

Rewriting (3.1.18) using this variable, we get

S(2) =
1

2

∫
dτd3x

[
(v′)2 + (∂iv)

2 +
z′′

z
v2
]
, (...)′ ≡ ∂τ (...). (3.1.20)

Here, we replaced the time variable t with the conformal time τ defined by

dτ = dt/a.

Since action (3.1.20) is now obtained, we can derive the equation of mo-

tion of v.

v′′ −
(
∂i∂i +

z′′

z

)
v = 0. (3.1.21)

Performing Fourier transformation and rewriting (3.1.21) into the expression

of each mode.

v′′k +

(
k2 − z′′

z

)
vk = 0. (3.1.22)

Here, vk is defined by the following Fourier transformation.

v(τ,x) =

∫
d3k

(2π)3
vk(τ)e

ik·x (3.1.23)

It is difficult to solve this equation (3.1.22) analytically. However, when the

background spacetime is under de Sitter expansion, like inflation, it is possible

to obtain an approximated analytical solution with the slow-roll conditions.

We will see it later sections.
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Quantization

Here we consider quantization v with the same procedure as when we quantize

a scalar field. First, performing plane-wave expansion of v,

v → v̂ =

∫
dk3

(2π)3

[
vk(τ)âke

ik·x + v∗k(τ)â
†
ke

−ik·x
]
. (3.1.24)

As we do in the scalar field quantization, the Fourier component vk of v is

decomposed as follows.

vk → v̂k = vk(τ)âk + v∗−k(τ)â
†
−k, (3.1.25)

Creation and annihilation operators âk, â
†
k

[âk, â
†
k′ ] = (2π)3δ(k− k′). (3.1.26)

It satisfies the exchange relationship that vk is

⟨vk, vk⟩ ≡ i(v∗kv
′
k − v∗k

′vk) = 1. (3.1.27)

This is equivalent to imposing a canonical commutation relation on v and

its canonical conjugate variable v′. In order to solve (3.1.22), two boundary

conditions of vk are required. However, the normalization condition (3.1.27)

gives one of the conditions. Another boundary condition is obtained from a

vacuum choice. In the next section we will discuss this point.

Boundary Conditions and Bunch-Davies Vac-

uum

Using the annihilation operator âk as defined in the previous section, a vac-

uum state is defined as,

âk|0⟩ = 0. (3.1.28)
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It seems one of a natural choice. However, the story is not so simple. For

example, just replace (∂i∂i + z′′/z) in the expression (3.1.21) as ω2(τ)

v′′ − ω2(τ)v = 0. (3.1.29)

This can be interpreted as the case in which the frequency of the harmonic

oscillator is not constant and it is a function of τ . When the frequency is

constant, we can define a proper variable and its canonical conjugate to do

with quantum mechanics âk, â
†
k is expressed in a linear combination is the

only one. However, when the frequency is not constant and it is a certain

function as it is now, ambiguity corresponding to that remains, and as a

result, the above expression is not determined uniquely. Since this situation

actually occurs in (3.1.21) (3.1.22), we have to choose a vacuum considering

this situation [24].

The simplest way to make it easier for subsequent discussions is to place

τ → −∞ and âk|0⟩ = 0. In τ → −∞ any scale is inside enough of the

comoving hubble and in this limit it is k−1 ll(aH)−1, and so the expression

(3.1.22)

v′′k + k2vk = 0. (3.1.30)

This is a simple plane wave equation and its solution is given by vk ∝ e−ikτ .

From the discussion on how to choose a vacuum like this one more boundary

condition was obtained for vk.

lim
τ→−∞

vk =
e−ikτ√
2k

(3.1.31)

However, the factor (
√
2k)−1 was attached for the convenience of later stan-

dardization.

Now we have two boundary conditions (3.1.27) (3.1.31) for the expression

(3.1.22), and so in principle vk can be completely determined.
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Solutions in de Sitter limit

Even though the boundary conditions are obtained, it is not easy to find a

general analytical solution of (3.1.22). Next we address approximate analyt-

ical solutions here by taking de Sitter limit (ϵ→ 0).

First we focus the term z′′/z in (3.1.22). This term becomes (H = Const.)

in de Sitter limit.

z′′ =
1

H

(
a′′ϕ̇+ aϕ̇′ + a′ϕ̇′ + aϕ̇′′

)
. (3.1.32)

On the other hand, as we saw in Chapter 2, in order to get accelerated

expansion, the motion of inflaton must satisfy the slow-roll conditions. Thus

all the second, third and forth terms in the parenthesis of the right hand side

of (3.1.32) can be ignored. Therefore we get,

z′′

z
=
a′′

a
. (3.1.33)

Since in de Sitter limit H ∼ Const.,

a′′ =a
d

dt

(
a
da

dt

)
= a

d

dt
(a2H) = 2a2ȧH

⇒ a′′

a
= 2a2H2

(3.1.34)

Furthermore, in de Sitter limit a ∝ eHt. Thus by integrating dτ = dt/a,

τ =

∫
dt

a
=

∫
e−Htdt = − 1

aH
(3.1.35)

after all, we can derive

z′′

z
=
a′′

a
=

2

τ 2
. (3.1.36)

Substituting this for (3.1.22),

v′′k +

(
k2 − 2

τ 2

)
vk = 0 (3.1.37)
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However, the general solution of this equation is following.

vk = α
e−ikτ√
2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 +

i

kτ

)
. (3.1.38)

Here,α, β are arbitral constants. ((3.1.38)) is directly assigned to (3.1.37), it

is confirmed that it is a solution). We determine this indefinite constant α, β

by two boundary conditions (3.1.27) (3.1.31). The result is α = 1, β = 0.

Based on the above discussion, the form of the mode function vk in de

Sitter limit was completely determined.

vk =
e−ikτ√
2k

(
1− i

kτ

)
(3.1.39)

3.1.2 Power Spectrum of curvature perturbation

Now we can calculate the Power Spectrum with the concrete form of the

mode function at de Sitter limit. For convenience of calculation we introduce

ψ̂k ≡ a−1v̂k. Using the expansion with the creation/annihilation operator of

v̂k,

⟨ψ̂k(τ)ψ̂k′(τ)⟩ = (2π)3δ(k+ k′)
|vk(τ)|2

a2

= (2π)3δ(k+ k′)
H2

2k3
(1 + k2τ 2).

(3.1.40)

On the superhorizon scale |kτ | = |k/aH| ≪ 1, it reduces to

⟨ψ̂k(τ)ψ̂k′(τ)⟩ → (2π)3δ(k+ k′)
H2

2k3
. (3.1.41)

⟨ψ̂k(τ)ψ̂k′(τ)⟩ = (2π)3δ(k+ k′)Pψ(k), ∆2
ψ(k) ≡

k3

2π2
Pψ(k) (3.1.42)

Here we introduce Pψ,∆
2
ψ above and the dimension less power spectrum ∆2

ψ

is expressed as
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∆2
ψ =

(
H

2π

)2

(3.1.43)

the relationship between v and R is (3.1.19). Therefore the two-point

function of the mode function of calR is finally given by the following equa-

tion.

⟨RkRk′⟩ = (2π)3δ(k+ k′)
H2

∗
2k3

H2
∗

ϕ̇2
∗

(3.1.44)

Here, ∗ means the values evaluated at the Horizon crossing point. Besides,

introducing ∆R, PR as follows,

⟨RkRk′⟩ = (2π)3δ(k+ k′)PR(k), ∆2
R(k) ≡

k3

2π2
PR(k) (3.1.45)

we can again define dimension less power spectrum ∆2
R(k) as

∆2
R(k) =

H2
∗

(2π)2
H2

∗

ϕ̇2
∗
. (3.1.46)

This is the way of calculating the power spectrum of the curvature fluctuation

for the scalar perturbation. The point is that we assumed slow-roll inflation

to get this result. When calculating Power Spectrum for inflation model other

than slow-roll, we have to follow the time evolution of Mukhanov variable

v more precisely but in many cases we can not calculate it analytically. In

such a case it is necessary to numerically calculate the time evolution of v

but we will not go into the details here.

Tensor Perturbations

Next, we address the calculation of the tensor perturbation. The procedure

of calculation is almost same with the case of scalar perturbation. First as

well as in scalar perturbation, expand action (3.1.16) to second order of hij

(3.1.17).
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S(2) =
1

8

∫
dτdx3a2

[
(h′ij)

2 − (∂lhij)
2
]
. (3.1.47)

but this is almost same as the action of the massless scalar field in the FLRW

spacetime.

Expanding hij as follows,

hij =

∫
d3k

(2π)3

∑
s=+,×

ϵsij(k)h
s
k(τ)e

ik·x. (3.1.48)

Here, ϵij satisfies ϵii = kiϵij = 0 and ϵsij(k)ϵ
s′
ij) = 2δss′ . s = +,× correspond

to two modes of gravitational wave, + is called E mode, × is called B mode.

Substituting the expansion of hij to (3.1.47) and performing x integration,

we get

S(2) =
∑
s

∫
dτdk

a2

4

[
hsk

′hsk
′ − k2hskh

s
k

]
. (3.1.49)

Here we define the new variable vsk as we did in the scalar case.

vsk ≡ a

2
hsk (3.1.50)

By rewriting (3.1.49) using this variable,

S(2) =
∑
s

1

2

∫
dτd3k

[
(vsk

′)2 −
(
k2 − a′′

a

)
(vsk)

2

]
. (3.1.51)

Also in this action de Sitter limit

a′′

a
=

2

τ 2
, (3.1.52)

can be applicable. Here we can find that (3.1.51) looks two-copy of scalar

perturbation.
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Quantization

As mentioned above, since hsk can be regarded as a massless scalar field in

FLRW space-time, we can use ψ̂k introduced in the case of scalar perturba-

tion,

hsk = 2ψsk = 2ψk, ψk ≡ vk
a
. (3.1.53)

Now we can use the formula of the power spectrum calculated for ψk. Since

∆2
ψ = (H/2π)2, power spectrum of the tensor perturbation ∆2

h simply mul-

tiplied factor 4.

∆2
h(k) = 4

(
H∗

2π

)2

(3.1.54)

In the following sections, we will use the expression ∆R ≡ ∆s for scalar

perturbation and ∆2
t ≡ 2∆2

h for tensor perturbation.

Energy Scale of Inflation and Lyth Bound

Here we introduce tensor-to-scalar ratio r, which is an important parameter

for evaluating inflation model.

r ≡ ∆2
t (k)

∆2
s(k)

(3.1.55)

This is the ratio of the tensor perturbation and the scalar perturbation cre-

ated by inflation. Since generated perturbations are different from each in-

flation model. Thus we can evaluate the model by comparing it with CMB

temperature fluctuation.

By setting the value of r, we can estimate the energy scale of inflation.

The typical size of ∆2
s is ∼ 10−9. On the other hand, using (3.1.54) and

the Friedmann equation (2.2.20) with slow-roll approximation, we obtain

∆t ∝ H2 ∼ V . By using this relationship, the energy scale at which inflation
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have occurred is given as

V 1/4 ∼
( r

0.01

)1/4
1016GeV. (3.1.56)

For example, let us consider r ∼ 0.1. (r/0.01)1/4 is not too large to change the

order of magnitude, V 1/4 ∼ 1016GeV and the scale of Inflation is estimated

to be about GUT scale.

In addition, we can estimate the extent of the inflaton field ϕ inflation

between Inflation using r. (3.1.46) (3.1.54) r,

r =
∆2
t (k)

∆2
s(k)

=
2∆2

h(k)

∆2
R(k)

= 8

(
H2 · ϕ̇

2

H4

)

= 8

(
1

H2

(
dϕ

dt

)2
)

= 8

(
1

H2

(
dN

dt

dϕ

dN

)2
)

= 8

(
dϕ

dN

)2

.

(3.1.57)

We used that N = ln(af/ai) =
∫ f
i
(da/a) =

∫
Hdt. If we revive Mpl (3.1.57)

for understanding of the scale,

∆ϕ

Mpl

=

∫ Ni

Nf

dN

√
r

8
. (3.1.58)

Here, ∆ϕ represents how much the inflaton has valid during inflation. As

long as the slow-roll condition are satisfied, r does not change so much and is

considered to be almost constant. Thus, (3.1.58) can be rewritten as follows

[28].

∆ϕ

Mpl

=

∫ Ni

Nf

dN

√
r

8
∼
√
r

8

∫ Ni

Nf

dN =

√
r

8
·60 ∼ O(1)×

( r

0.01

)1/2
. (3.1.59)

From this rough estimation, if r is greater than 0.01, it is ∆ϕ > Mpl, which
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means that the excursion of inflaton is greater than the Plank scale. This type

of Inflation models is called large field Inflation. A model such as ∆ϕ < Mpl

is called small field inflation. In this paper we mainly focus on the large field

type Inflation model.

Relations between power spectrum and inflaton poten-

tial

In this section we will see the relationship between power spectrums ∆s,∆t

and the potential of inflaton. The goal of this chapter is to evaluate and verify

each inflation model by comparing power spectrum and temperature fluctu-

ation of CMB. Since most terms other than the potential term are common

in most slow-roll inflation models, the characteristics of models are reflected

in the potential. Therefore, if a relationship between power spectrum and

potential is obtained, we can immediately discriminate each model or put

constraints from CMB observation.

First of all, power spectrum of scalar perturbation was derived as

∆s =
H2

(2π)2
H2

ϕ̇2
(3.1.60)

On the other hand, the slow-roll parameter ϵ introduced in Chapter 2 (2.2.1)

is defined as ϵ = −Ḣ/H2. In addition, Ḣ has been calculated under slow-roll

conditions (2.2.14) and Ḣ = −ϕ̇2/2M2
pl. Therefore, ∆s can be represented

by ϵ,

∆2
s =

1

8π2

H2

M2
pl

1

ϵ
(3.1.61)

Using this equation and (3.1.54), we can see that r is represented only by

the slow-roll parameter ϵ.

r =
∆2
t

∆2
s

= 16ϵ (3.1.62)
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We can express ϵ with the potential using the (2.2.14) and (2.2.20) under

slow-roll conditions.

ϵ = − Ḣ

H2
=

1

2M2
pl

(
ϕ̇

H

)2

=
1

2M2
pl

(
3Hϕ̇

3H2

)2

=
1

2M2
pl

(
−V ′

V/M2
pl

)2

=
M2

pl

2

(
V ′

V

)2

.

(3.1.63)

this final expression

ϵv ≡
M2

pl

2

(
V ′

V

)2

(3.1.64)

It should be noted that ϵ ∼ ϵv is only available when the slow-roll condition

is satisfied.

From the above discussion, we can represent the power spectrum of each

scalar and tensor now with potential and ϵv.

∆2
s ∼

1

24π2

V

M4
pl

1

ϵv
, ∆2

t ∼
2

3π2

V

M4
pl

(3.1.65)

Also, in slow-roll approximation, r is expressed as

r ∼ 16ϵv (3.1.66)

This is the relationship between the potential of power spectrum, r and

inflaton that these were desired.

The relationship between e -folding N and ϵv is also derived. Since dN =

−Hdt,

dN = −Hdt = −H
ϕ̇
dϕ = − 3H2

˙3Hϕ
dϕ ∼ 1

M2
pl

V

V ′dϕ, (3.1.67)

According to the definition of ϵv,
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N =

∫ ϕ∗

ϕf

dϕ

Mpl

1√
2ϵv

. (3.1.68)

Scale-Dependence

The scale dependence of power spectrum is also an important index in veri-

fying inflation models called spectral index.

ns − 1 ≡ d ln∆2
s

d ln k
, nt ≡

d ln∆2
t

d ln k
. (3.1.69)

For example, for the scalar perturbation, this can be rewritten as follows.

d ln∆2
s

d ln k
=
d ln∆2

s

dN
× dN

d ln k

=

(
2
d lnH

dN
− d ln ϵ

dN

)
× dN

d ln k
.

(3.1.70)

The first term in parentheses on the right-hand-side is simply −2ϵ. The

second term in parenthesis can be written as follows

d ln ϵ

dN
= 2(ϵ− η), where η = −d lnH,ϕ

dN
(3.1.71)

On the other hand, with respect to dN/d ln k, if we remember that this mode

satisfies the relationship ok = aH when the mode k we are interested in is

Horizon exit,

dN

d ln k
=

[
d ln k

dN

]−1

=

[
1 +

d lnH

dN

]−1

∼ 1 + ϵ. (3.1.72)

We used dN = d ln a here. From the above, the spectral index ns of the

scalar perturbation is calculated by using the slow-roll parameter

1− ns ∼ 4ϵ− 2η (3.1.73)

Similar results can be derived for spectral index nt. Since it is ∆2
t ∝ H2, we

obtain
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d ln∆2
t

d ln k
=
d ln∆2

t

dN
× dN

d ln k

∼ 2
lnH

dN
× (1 + ϵ) = −2ϵ(1 + ϵ) ∼ −2ϵ.

(3.1.74)

We neglected terms that are second order of ϵ here . From this, nt is given

by

nt ∼ −2ϵ (3.1.75)

Under the slow-roll condition as described above, ϵ is ϵ ∼ ϵv. On the other

hand, η is expressed as,

η ∼ ηv − ϵv, where ηv ≡M2
pl

V ′′

V
(3.1.76)

Therefore, we can write the spectral index with ϵv, ηv,

1− ns ∼ 6ϵv − 2ηv, nt ∼ −2ϵv. (3.1.77)

Since ϵv, ηv can be written with potential and its derivative, we now have an

expression that evaluates the spectral index using potentials. From (3.1.66)

and (3.1.77), we can immediately find a relationship between r and nt

r = −8nt (3.1.78)

In this section the relationships between the inflaton potential V (ϕ) and

ns, nt, r are clarified. Now, by comparing the observed values from CMB

temperature fluctuation and theoretical calculation, we can test each inflation

model. This can be done in the following procedure. First choose a certain

scale k0 (for example, k0 = 0.002Mpc−1) for Planck collaboration, expand

the fluctuation Power Spectrum around k0.

ln∆s(k) = ln∆s(k0) + (ns − 1) ln(k/k0) +O((ln(k/k0))
2)

ln∆t(k) = ln∆t(k0) + nt ln(k/k0) +O((ln(k/k0))
2)

(3.1.79)
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Here, the theoretical unknown quantities are ∆s(k0),∆t(k0), ns, nt. However,

we have the relations (3.1.78) and ∆t/∆s = r. Thus, in fact, there are three

independent quantities.

By comparing theoretical estimate from each model and observational

results of CMB temperature fluctuation, we can decide whether each model

can explain observation facts or not.
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Planck Collaboration: Constraints on Inflation
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Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized
joint 68 % and 95 % CL regions assume dns/d ln k = 0.

limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' � 2
N
, r ' 12

N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.
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⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
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disfavoured by the Planck 2018 plus BK14 data with a Bayes
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tial provides a better fit than a quadratic one. In the quartic
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with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
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Figure 3.1.1: Constraints on spectral index ns and tensor-to-scalar ratio
r(Planck collaboration, 2018)
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3.2 Single-field v.s. Multi-field

In multi-field inflation, unlike the case of single-field, we have to pay attention

to the following points. ζ was defined as −ζ = Ψ + H
ρ̇
δρ. Here if there is

a relationship δρ = δp, this fluctuation is called adiabatic in analogy with

thermodynamics. However, we can rewrite δρ as follows.

δρ = δp− ṗ Γ, where Γ ≡ δp

ṗ
− δρ

ρ̇
(3.2.1)

The condition of adiabatic fluctuation is Γ = 0. Again by analogy with ther-

modynamics, let us define the “generalized adiabatic condition” as follows.

Γxy = 0, where Γxy ≡
δx

ẋ
− δy

ẏ
(3.2.2)

Where x, y can be any quantities which can be expressed by inflatons. In the

case of single-field, we can calculate Γxy using relations like δx = (∂x/∂ϕ)δϕ.

Thus we can show that Γxy = 0 in single-field cases. In other words, we can

conclude that fluctuations generated by single-field inflation are adiabatic

fluctuations.

On the other hand, in the case of multi-field, for example in two-field case,

ϕ, χ are taken as x, y, then Γϕχ = δϕ/ϕ̇ − δχ/χ̇, and in general this is non-

zero. Therefore, in the case of multi-field, non-adiabatic fluctuation should

also be considered, and also we need to take into accounts the interaction

between an adiabatic part and a non-adiabatic part.

To see the concrete situation, let us consider giving perturbation: Q

in a certain path on the field space as shown in Fig. 3.2.1. In single-field

inflation, inflaton goes only along a one-dimensional path, and its fluctuation

is adiabatic. However in multi-field cases, as shown in the figure, we can

decompose Q with Qad in the direction along the trajectory and Qs in the

direction perpendicular to the trajectory.

Qad = cos θδϕ+ sin θδχ

Qs = − sin θδϕ+ cos θδχ
(3.2.3)
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Figure 3.2.1: The schematic picture of the decomposition of a perturbation
Q.

Where θ is the angle between Qad and δϕ, or same meaning, tan θ = δχ/δϕ =

χ̇/ϕ̇. Qs is Γϕχ = δϕ

ϕ̇
− δχ

χ̇
, and so it can be interpreted as the entropy

fluctuation.

ζ is represented by −ζ = H
ρ̇
δρ on the spatially flat time constant surface,

Ψ = 0. Using inflaton ϕ, we can express ζ as −ζ = H
ϕ̇
δϕ. In the case of

two-field inflation, we have ρ̇ =

√
ϕ̇2 + χ̇. And also, the adiabatic part of δρ

is given by Qad of (3.2.3). Therefore,

ζ = − H√
ϕ̇2 + χ̇2

Qad (3.2.4)

Interestingly, in the case of single-field, we can find that ζ̇ ∼ O
(
k
aH

)2
, and tis

means after Horizon exit ζ is constant on the superhorizon scale. However,

in the case of multi-field we obtain,

ζ̇ = −2
Hθ̇√
ϕ̇2 + χ̇2

Qs +O
(
k

aH

)2

, (3.2.5)

and it turns out that ζ evolves over time after the Horizon exit. Especially,

according to the expression (3.2.5), entropy transfer is obtained by evolution
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of θ (which directly connects to bending degree of the inflaton trajectory in

the field space) and that fluctuation turns to be the adiabatic fluctuation.
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Chapter 4

δN formalism

4.1 Separate Universe approach and δN for-

malism

In order to determine ζ and its correlation functions we make use of the

separate Universe approach and the δN formalism [13, 14, 11, 10, 53, 54].

The separate Universe approach corresponds to the leading order approxi-

mation in a gradient expansion. One first assumes that the characteristic

length scale of spatial variations, L, is longer than the Hubble scale, namely

ξ = 1/(HL) ≪ 1. Associating a factor of ξ with spatial gradients appearing

in the field equations, one can then perform an expansion in the parameter

ξ. Neglecting terms of order ξ2 and higher, one finds that the field equa-

tions take on exactly the same form as the background equations. In other

words, separate super-Hubble sised patches are found to evolve as separate

background Universes, differing only in their initial conditions. If we are

interested in a comoving scale with wavenumber k, during inflation the pa-

rameter ξ = k/(aH) will be decreasing exponentially with time. As such, the

separate Universe approach will become applicable after the Horizon-crossing

time, which is defined as the time at which k = aH.

Making use of the flat gauge, corresponding to ψ = Ci = 0, the validity

of the separate Universe approach in the case of multiple scalar fields has

been confirmed explicitly to all orders in perturbation theory by Sugiyama
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et al. [54]. βi and ḣ
(T )
ij were shown to decay away on super-horizon scales,

such that the field equations indeed take on exactly the same form as the

background equations, namely

Ĥ2 =
1

3M2
pl

[
1

2
∂τ ϕ̂

I∂τ ϕ̂
J + V

(
ϕ̂I
)]

, (4.1.1)

Dτ∂τ ϕ̂
I + 3Ĥ∂τ ϕ̂

I + GIJV,J(ϕ̂K) = 0 (4.1.2)

where Ĥ(t,x) = H(t)/α(t,x) is the local Hubble expansion and ∂τ = ∂/∂τ ,

with dτ = α(t,x)dt. A result that proves very useful is that the local e-

folding number is found to be unperturbed [13, 10], as

N̂ =

∫
Ĥdτ =

∫
Hdt. (4.1.3)

This can also be understood if, associated with the perturbed metric, we de-

fine the effective scale factor â(t,x) = a(t)eψ(t,x). The local e-folding number

is then given as

N̂ = ln

(
â

â∗

)
= ψ − ψ∗ +N, (4.1.4)

and in the flat slicing, i.e. ψ = ψ∗ = 0, this reduces to the background

e-folding number. The e-folding number is thus a useful time parameter in

the flat gauge, and given that the field equations (4.1.1) and (4.1.2) take on

the same form as the background equations, we are able to write

ϕ̂I(N,x) = ϕI(N,ϕJ∗ (x)), (4.1.5)

where ϕI(N,ϕJ∗ (x)) is a solution of the background equations of motion with

the spatially dependent initial conditions ϕI(t∗) = ϕI∗(x).
1 In other words,

the value of ϕ̂I at a given location x is found simply by solving the background

equations of motion with the appropriate initial conditions for that location.

1In principle we also need to specify the initial field velocities, but we will assume that
the slow-roll approximation is valid around the time of horizon crossing, such that field
velocities are given in terms of the field values as in eq. (5.2.19).
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Having outlined the separate Universe approach, we now wish to deter-

mine ζ, and for this we use the δN formalism [13, 14, 10, 54]. The basic

idea of the δN formalism is that ζ on some final uniform density slice can

be given in terms of the spatial fluctuations of the e-folding number between

an initial spatially flat slice and the final uniform density slice. This can be

understood if we look at the expression for the local e-folding number given

in (4.1.4). Taking the initial slice to be flat and the final slice to be a constant

density one, corresponding to ψ∗ = 0 and ψ = ζ, we find δN = N̂ −N = ζ.

Note that it does not matter exactly when we take the initial flat slice, as it

is only important that ψ∗ = 0. The only restriction is that t∗ must be after

the time at which the scales under consideration have left the horizon.

The next step in the δN formalism is to show that δN can be expanded

in terms of the field perturbations on the initial flat slice, δϕI∗(x). To see

this, recall that in the context of the separate Universe approach the field

equations take on exactly the same form as the background equations. As

mentioned above, this means that the solutions for ϕ̂I(N,x) in the flat gauge

are as given in eq. (4.1.5), i.e. they are solutions to the background equations

but with the initial conditions varying from place to place. Similarly, it also

means that the energy density on flat slices can be expressed as

ρ̂(N,x) = ρ(N,ϕI∗(x)), (4.1.6)

where ρ(N,ϕI∗(x)) is the density as determined by solving the background

field equations with the spatially inhomogeneous initial conditions ϕI(t∗) =

ϕI∗(x). In general ρ̂(N,x) is not spatially homogeneous, and if we assume

that the initial conditions at position x can be expanded about the initial

conditions of the fiducial background trajectory as ϕI∗(x) = ϕI∗+ δϕ
I
∗(x), this

leads to an expansion of the form

ρ̂(N,x) = ρ(N,ϕI∗) + ρ,I(N,ϕ
J
∗ )δϕ

I
∗(x) +

1

2
ρ,IJ(N,ϕ

K
∗ )δϕ

I
∗(x)δϕ

J
∗ (x) + ... ,

(4.1.7)

where ρ(N,ϕI∗) is the density of the fiducial background trajectory, ρ,I(N,ϕ
J
∗ ) =
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∂ρ(N,ϕJ∗ )/∂ϕ
I
∗ and similarly for ρ,IJ(N,ϕ

K
∗ ). At each location x, we can then

consider the shift along the local trajectory, δN , that is required to reach a

constant density slice. In other words, at each location x we find the shift

in N such that ρ̂(N + δN,x) = ρ(N,ϕI∗). Given the form of the expansion

for ρ̂(N,x) in eq. (4.1.7), solving ρ̂(N + δN,x) = ρ(N,ϕI∗) gives rise to an

expansion of the form

ζ(N,x) = δN(N,x) = N,I(N,ϕ
J
∗ )δϕ

I
∗(x) +

1

2
N,IJ(ϕ

K
∗ )δϕ

I
∗(x)δϕ

J
∗ (x) + · · · ,

(4.1.8)

which is the famous δN expansion. As mentioned above, in principle the

initial flat slice can be taken to be at any time after the scales under con-

sideration have left the horizon, but in practice it is useful to choose it to

coincide with the horizon crossing time, as expressions for the quantities

δϕI∗(x) and their correlations at this time are known [13, 56].

While the above form for the expansion of ζ is perfectly acceptable, in

the case of a curved field space the field perturbations δϕI∗(x) = ϕI∗(x)− ϕI∗,

which correspond to coordinate displacements, do not transform covariantly.

In order to obtain an explicitly covariant expression for ζ we follow the dis-

cussion in [57], see also [58, 59]. For sufficiently small δϕI∗(x), the two points

in field space ϕI∗(x) and ϕ
I
∗ are connected by a unique geodesic that we take

to be parameterised by λ. Normalising λ such that ϕI(λ = 0) = ϕI∗, and

ϕI(λ = 1) = ϕI∗(x), we can obtain a Taylor series expansion for δϕI =

ϕI(λ = 1)− ϕI(λ = 0) as

δϕI =
dϕI

dλ

∣∣∣∣
λ=0

+
1

2

d2ϕI

dλ2

∣∣∣∣
λ=0

+ · · · . (4.1.9)

On the other hand, the geodesic satisfies

Dλ
dϕI

dλ
≡ d2ϕI

dλ2
+ ΓIJK

dϕJ

dλ

dϕK

dλ
= 0. (4.1.10)

As such, introducing QI = dϕI/dλ|λ=0, which resides in the tangent space at

ϕI(λ = 0) and thus transforms covariantly, we can express δϕI in terms of

QI as
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δϕI = QI − 1

2!
ΓIJKQJQK + · · · . (4.1.11)

Inserting this relation into (4.1.8) we obtain

ζ(N,x) = N,I(N,ϕ
J
∗ )QI

∗(x)+
1

2
DIDJN(N,ϕK∗ )QI

∗(x)QJ
∗ (x)+ · · · , (4.1.12)

which is now explicitly covariant.

The power spectrum and bispectrum of ζ

Having obtained an expansion for ζ in terms of the covariantised field per-

turbations on a flat slice at the horizon crossing time, we now turn to the

correlation functions of ζ. Working in Fourier space, the two-point correla-

tion function of ζ is parameterised as

⟨ζ(k1)ζ(k2)⟩ = (2π)3δ3(k1+k2)Pζ(k1) = (2π)3δ(k1+k2)
2π2

k31
Pζ(k1), (4.1.13)

and the three-point correlation function is similarly parameterised as

⟨ζ(k1)ζ(k2)ζ(k3)⟩ = (2π)3δ3(k1 + k2 + k3)Bζ(k1, k2, k3). (4.1.14)

Pζ(k) and Pζ(k) are the power spectrum and reduced power spectrum, respec-

tively, while Bζ(k1, k2, k3) is the bispectrum. In both (4.1.13) and (4.1.14) the

delta functions are a consequence of assuming statistical homogeneity, and

the fact that Pζ , Pζ and Bζ depend only on the magnitudes of ki is a conse-

quence of assuming statistical isotropy. In relation to the three-point func-

tion, a useful parameter introduced to quantify the level of non-Gaussianity

is fNL, which is defined as

fNL =
5

6

Bζ(k1, k2, k3)

Pζ(k1)Pζ(k2) + c.p.
, (4.1.15)
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where c.p. denotes cyclic permutations of k1, k2 and k3. Given the expansion

for ζ in eq. (4.1.12), we see that the correlation functions of ζ can be expressed

in terms of the correlation functions of the covariantised field perturbations

on the initial flat slice, QI . In particular, we have

⟨ζ(k1)ζ(k2)⟩ = N,IN,J⟨QI
∗(k1)QJ

∗ (k2)⟩, (4.1.16)

⟨ζ(k1)ζ(k2)ζ(k3)⟩ = N,IN,JN,K⟨QI
∗(k1)QJ

∗ (k2)QK
∗ (k3)⟩ (4.1.17)

+N,IN,JDKDLN

∫
d3q

(2π)3
⟨QK

∗ (k1 − q)QI
∗(k2)⟩⟨QL

∗ (q)QJ
∗ (k3)⟩+ c.p ,

where for brevity we drop the arguments of N,I and DJDIN . The contribu-

tion to the three-point correlation function of ζ coming from the first term

involving the three-point correlation functions of QI is known to be unob-

servably small [60, 61], so in proceeding we choose to neglect it. As such, the

only quantities required are the two-point correlation functions of QI . At

linear order in perturbations we have QI = δϕI , and the two-point correla-

tion functions of δϕI in the case of a curved field space have been calculated

in [13, 56]. The result at lowest order in slow-roll is

⟨QI
∗(k1)QJ

∗ (k2)⟩ = (2π)3δ3(k1 + k2)
2π2

k31

(
H∗

2π

)2

GIJ∗ , (4.1.18)

where recall that an asterisk now denotes that a quantity should be evaluated

at the time of horizon crossing, namely k1 = a∗H∗. Substituting this result

into eqs. (4.1.16) and (4.1.17), expressions for Pζ(k1) and fNL are obtained

as

Pζ(k) =
(
H∗

2π

)2

GIJ∗ N,IN,J , (4.1.19)

fNL =
5

6

N ,IN ,JDIDJN

(N ,KN,K)
2 , (4.1.20)

where the raised indices in the second expression are raised with GIJ∗ .

In addition to the above two observables, we also consider the tilt of the

power spectrum, ns, and the tensor-to-scalar ratio, r. The tilt of the power
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spectrum is defined through the relation

Pζ(k) = As

(
k

kp

)ns−1

, (4.1.21)

where kp is some pivot scale and As gives the magnitude of Pζ at the pivot

scale. The scale dependence of Pζ as given in eq. (4.1.19) appears through

its dependence on quantities evaluated at the horizon crossing time of the

comoving scale k. We do not present a detailed derivation here, but the final

result is given as [13]

ns = 1− 2ϵ∗ − 2
1 +N,I

(
1
3
RIJKL V,JV,K

V 2 − DIDLV
V

)
∗
N,L

N ,MN,M

, (4.1.22)

where, RIJKL is the curvature tensor constructed from GIJ . Note that As is

found simply by taking k = kp in eq. (4.1.19).

Finally, the tensor-to-scalar ratio is defined as the ratio between the power

spectra of tensor and scalar perturbations. In particular, if we parameterise

the power spectrum of tensor perturbations as

PT (k) = AT

(
k

kp

)nT

, (4.1.23)

then we have r = AT/As. It can be shown that AT = 8(H∗/(2π))
2/M2

pl, see

e.g. [62], such that we obtain

r =
8

M2
plN

,IN,I

. (4.1.24)

4.2 Transport method

In this section, we introduce an extended version of the δN formalism so

called the trans port method. This has been discussed in [15, 16, 17, 18]. In

Fig.4.2.1, we can see the basic idea of the transport method.

In terms of δN formalism, we need to compute ∂N
∂ϕa∗

and ∂2N
∂ϕa∗∂ϕ

b
∗
. To do so,

we need to estimate the difference of N between the background trajectory
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and the subtrajectory, and the difference should be evaluated on the uniform

density slice. Thus, in the straightforward way of the δN formalism, we

should have consider numbers of subtrajectories. However, in the transport

method, we do not need subtrajectories anymore. In this method, first we

consider the derivative ∂N
∂φa on the uniform density slice. Here, δφa is a small

displacement on the uniform density slice. In fact, we can always calcurate
∂N
∂φa analitically on every uniform density slices. Moreover, we introduce the

gauge transformation from the displacement on the uniform density slice,

δφα to that of on the constant N slice, δϕa. That means we introduce the

gauge transformation Γαa , Γ
α
ab as,

∂N

∂ϕa∗
=
∂N

∂φα
Γαa . (4.2.1)

and

∂2N

∂ϕa∗∂ϕ
b
∗
=
∂N

∂φα
Γαab +

∂2N

∂φα∂φβ
ΓαaΓ

β
b . (4.2.2)

According to this expression, to obtain ∂N
∂φa

∗
, we have to determine ∂N

∂φa and

Γαa , respectively.

Let us first discuss the concrete form of ∂N
∂φa . We introduced this as a

differentiation on the uniform density slice (δρ = 0). Thus we have

ρNδN +
∂ρ

∂φα
δφα +

∂ρ

∂φαN
δφαN = 0 (4.2.3)

Using Friedmann equeation, we can derive the form of

δN =
1

2ϵ

(
Vα
V
δφα +

1

3− ϵ
φαNδφ

α
N(N, x⃗)

)
, (4.2.4)

∂N

∂φα
=

1

2ϵ

Vα
V
,

∂N

∂φαN
=

φαN
2ϵ(3− ϵ)

(4.2.5)

In addition, we can obtain second derivatives
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Figure 4.2.1: The schematic figure of the transport method. The red dashed
line represents the uniform density slice, and the blue solid line represents the
constant N slice. In the δN formalism, the constant N slice is not necessarily
to correspond to a slice on which slow roll conditions are violated. The
essential idea is to estimate curvautre perturbation on the unifrom density
slice.

∂2N

∂φα∂φβ
=

1

2ϵ

[
Vαβ
V

−
(
1 +

η

2ϵ

) VαVβ
V 2

]
, (4.2.6)

∂2N

∂ϕα∂φβN
=− 3− ϵ+ η/2

2ϵ2(3− ϵ)

Vα
V
φβN , (4.2.7)

∂2N

∂φαN∂φ
β
N

=
1

2ϵ(3− ϵ)

[
δαβ −

6− 3ϵ+ η/2

ϵ(3− ϵ)
φαN .φ

β
N

]
(4.2.8)

Next we determine Γαa and Γαab. Here, just for simplicity, we introduce

φαN = Uα which is defined as

Uα = ϕαN , α = 1 · · ·M (4.2.9)

Uα = −(3− ϵ)

(
ϕα modM +

Vα modM

V

)
, α =M + 1 · · · 2M (4.2.10)
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Where M is the number of inflatons. Expanding φαN with respect to δφ, we

obtain

δφαN = Uα
β δφ

β +
1

2
Uα
βγδφ

βδφγ (4.2.11)

On the other hand, by the difenition of the gauge transfromation Γαa and Γαab,

δφα = Γαb δϕ
b
∗ +

1

2
Γαabδϕ

a
∗δϕ

b
∗ (4.2.12)

Taking N derivative of (4.2.12), and compaire it with (4.2.11), we can find

the defferential equations which Γαa and Γαab obey.

d

dN
Γαa = Uα

β Γ
β
a (4.2.13)

d

dN
Γαab = Uα

β Γ
β
ab + Uα

βγΓ
β
aΓ

γ
b (4.2.14)

Solving these equations, we can determine the gauge transformtions along the

background tarjectory, and we yield ∂N
∂φα which is defined on each uniform

density slices. Combining these equations, we can calcurate ∂N
∂ϕa

much more

efficiently than the normal δN formalism.
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Part II

Multi-field Inflation Models
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Chapter 5

Multi-field effects in a simple

extension of R2 inflation

5.1 Introduction for this model

In this chapter, we study a type of R2 +m2ϕ2 models as an example of two-

field inflation models, i.e., the system containing a Ricci scalar squared term

and a canonical scalar field with quadratic mass term. In the Einstein frame

this model takes the form of a two-field inflation model with a curved field

space, and under the slow-roll approximation contains four free parameters

corresponding to the masses of the two fields and their initial positions. We

investigate how the inflationary dynamics and predictions for the primordial

curvature perturbation depend on these four parameters. Our analysis is

based on the δN formalism, which allows us to determine predictions for

the non-Gaussianity of the curvature perturbation as well as for quantities

relating to its power spectrum. Depending on the choice of parameters, we

find predictions that range from those of R2 inflation to those of quadratic

chaotic inflation, with the non-Gaussianity of the curvature perturbation

always remaining small. Using our results we are able to put constraints on

the masses of the two fields.

Because recent cosmic microwave background (CMB) observations are in

good agreement with the predictions of inflation, and the data is now precise,
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we can constrain individual models of inflation [46] by using those observa-

tional data. While observations are still perfectly consistent with single-

field inflation, in the context of high-energy particle physics theories there is

strong motivation to consider multi-field models. For instance, when com-

pactifying superstring theory or supergravity on to four dimensions, many

scalar/pseudo-scalar fields usually appear, such as moduli and axions. It is

thus important to determine the observable consequences of multi-field in-

flation models and how they, and the theories in which they are embedded,

can be constrained by current and future observations. In relation to this

there are perhaps two key features that distinguish multi-field models from

single field models. The first is that the curvature perturbation on constant

density slices, ζ, is not necessarily conserved on super-horizon scales, and the

second is that its statistical distribution may deviate from a Gaussian one.

In the case of single-field inflation, Maldacena’s consistency relation dictates

that the non-Gaussianity of ζ in the squeezed limit should be unobservably

small, which is a consequence of the fact that ζ is conserved on super-horizon

scales in single-field inflation models [12]. This suggests that if a relatively

large non-Gaussianity were to be observed, this would be a strong indication

that multiple fields were present during inflation. Even if not observed, how-

ever, it is still important to determine the implications of this for multi-field

models. While current constraints on non-Gaussianity from the CMB are rel-

atively weak, future large scale structure surveys promise to improve these

constraints considerably, see e.g. [47]. In light of the above, it is clear that

in looking to test any multi-field model of inflation one will need to be able

to calculate how the curvature perturbation evolves on super-horizon scales

and how much its statistical distribution deviates from a Gaussian one.

In this work we consider a simple multi-field extension of so-called R2

inflation, also sometimes referred to as Starobinsky inflation [48]. In its Jor-

dan frame representation, the original model consists of a modified gravity

sector containing a term proportional to R2, and the inflationary predictions

are in very good agreement with observations [46]. In trying to embed this

model in a more fundamental framework such as a supergravity, however, it

is natural to expect the appearance of additional scalar degrees of freedom
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(see e.g. [49]) and an important question is then how much the inflationary

predictions are affected by these additional degrees of freedom. As a toy

model, here we consider adding a canonical scalar field with quadratic mass

term to the original Jordan frame action, which is the same model as consid-

ered in [50]. Similar models have also been considered in [51, 52]. Re-writing

the model as a scalar-tensor theory of gravity plus additional scalar, and

transforming to the Einstein frame, this model takes the form of a two-field

inflation model with a non-flat field space. One of the fields, often referred

to as the scalaron, corresponds to the additional scalar degree of freedom

associated with the R2 term in the original action, and the second is simply

the field we have introduced by hand. In addition to the non-flat field space,

the potential in the Einstein frame also contains interactions between the

two fields.

In analyzing the inflationary predictions of this model we make use of

the separate Universe approach and δN formalism [13, 14, 11, 10, 53, 54].

Due to the non-flat field space and interaction terms in the potential, it is

not possible to calculate δN(= ζ) analytically, and so we rely on numerical

calculations. Making the slow-roll approximation, such that only the initial

field positions need to be specified in solving the inflationary dynamics, the

model essentially contains four parameters: the masses of the two fields and

their initial positions. We explore how the inflationary dynamics and predic-

tions for the correlation functions of ζ depend on these four parameters, and

using current observational data we put constraints on the masses of the two

fields.

This chapter is organised as follows. In Sec. 5.2, we explain the concrete

set-up of our model and present the background field equations. In Sec. 5.3 we

briefly describe our numerical method and present the results of our analysis.

Our findings are then summarised in Sec. 5.4.
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5.2 Set-up and background equations

The model we consider contains an R2 term and an additional scalar field χ

with a canonical kinetic term. We further assume that the potential for the

χ field is a simple quadratic. The action of this model is thus given by

SJ =

∫
d4x
√

−g̃
[
M2

pl

2
R̃ +

µ

2
R̃2

]
+

∫
d4x
√
−g̃
[
− 1

2
g̃µν∂µχ∂νχ− 1

2
m2
χχ

2

]
.

(5.2.1)

Here the subscript J denotes the Jordan frame, g̃µν is the Jordan frame

metric, R̃ is the Ricci scalar constructed from g̃µν and its derivatives, Mpl =

1/
√
8πG is the reduced Planck mass, where G is Newton’s gravitational

constant, and µ is a dimensionless parameter. In analyzing the above model

it is useful to re-write it as a model containing two scalar fields and a canonical

Einstein-Hilbert term, which can be achieved as follows, see e.g. [55]. First

we introduce the auxiliary field φ, and consider the action

SJ Grav =
M2

pl

2

∫
d4x
√

−g̃ (f(φ) + f,φ(φ)(R− φ)) , (5.2.2)

where f(φ) = φ + µφ2/M2
pl and f,φ = df/dφ. Minimizing this action with

respect to φ gives the constraint

2µ

M2
pl

(R− φ) = 0, (5.2.3)

which for non-zero µ gives φ = R. On substituting φ = R into (5.2.2)

we recover the gravitational part of (5.2.1), which confirms the equivalence

of these two actions. Next we introduce e2αϕ = 1 + 2µφ/M2
pl with α =

1/(
√
6Mpl), such that (5.2.2) takes the form

SJ Grav =

∫
d4x
√

−g̃
(
M2

pl

2
e2αϕR̃− Ṽ (ϕ)

)
, Ṽ (ϕ) =

M4
pl

8µ

(
e2αϕ − 1

)2
.

(5.2.4)
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Thus we have re-written the gravitational part of the action given in eq. (5.2.1)

as a scalar-tensor theory with a non-minimal coupling between the scalar field

ϕ and gravity. Note, however, that there is no kinetic term for the ϕ field in

this representation. Finally we make a conformal transformation of the met-

ric, expressing the Jordan frame metric g̃µν in terms of the so-called Einstein

frame metric gµν as

gµν = Ω2g̃µν , where Ω2 = e2αϕ. (5.2.5)

On doing so we find that the total action takes the form

SE =

∫
d4x

√
−g
[
M2

pl

2
R− gµν

2
(∂µϕ)(∂νϕ)−

1

2
gµνe−2αϕ(∂µχ)(∂νχ)−V (ϕ, χ)

]
,

(5.2.6)

with

V (ϕ, χ) =
3

4
m2
ϕM

2
pl(1− e−2αϕ)2 +

1

2
m2
χe

−4αϕχ2. (5.2.7)

Here we introduced m2
ϕ =M2

pl/(6µ) and the subscript E denotes the Einstein

frame. The label ‘Einstein frame’ is appropriate given that the gravity part of

the action now takes the canonical Einstein-Hilbert form, which is somewhat

easier to analyze than the gravity sector of the original action (5.2.1). Note,

however, that reducing the gravity sector to the canonical Einstein-Hilbert

form has come at the cost of introducing the additional scalar degree of free-

dom ϕ — often referred to as the scalaron — and interaction terms between

the two fields ϕ and χ, which appear in the second term of the potential and

in the kinetic term of χ.

Using a more abstract notation, the action (5.2.6) can be re-written in

the form of a non-linear sigma model as

SE =

∫
d4x

√
−g
[
M2

pl

2
R− 1

2
GIJgµν∂µϕI∂νϕJ − V (ϕI)

]
. (5.2.8)

In our case the Latin indices I and J take on the values ϕ and χ, with ϕϕ = ϕ

and ϕχ = χ. GIJ is interpreted as the metric on field space, and in our case
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the components are given as

Gϕϕ = 1, Gχχ = e−2αϕ, Gϕχ = Gχϕ = 0. (5.2.9)

Varying the action (5.2.8) with respect to gµν , assuming a Friedmann-Lemaitre-

Robertson-Walker (FLRW) metric of the form gµν = diag(−1, a2(t), a2(t), a2(t))

and taking the scalar fields to be homogeneous, namely ϕI = ϕI(t), we obtain

the Friedmann equation

H2 =
1

3M2
pl

[
1

2
GIJ ϕ̇I ϕ̇J + V (ϕI)

]
, (5.2.10)

and the continuity equation

Ḣ = − 1

2M2
pl

GIJ ϕ̇I ϕ̇J , (5.2.11)

where H = ȧ/a and an overdot denotes taking the derivative with respect to

time. The equations of motion for the homogeneous fields ϕI are given as

Dtϕ̇
I + 3Hϕ̇I + GIJV,J = 0, (5.2.12)

where V,J = ∂V/∂ϕJ and we have introduced the covariant time derivative

Dt that acts as DtX
I = ẊI + ΓIJK ϕ̇

JXK , with the Christoffel symbols ΓIJK

being constructed from GIJ and its derivatives (see Appendix for details). In

our case, the equations of motion for ϕ and χ are given as

ϕ̈+ 3Hϕ̇+ αe−2αϕχ̇2 + V,ϕ = 0, (5.2.13)

χ̈+ 3Hχ̇− 2αϕ̇χ̇+ e2αϕV,χ = 0. (5.2.14)

In the context of inflation, it is useful to define the slow-roll parameters

ϵ = −Ḣ/H2 and η = ϵ̇/(ϵH). In order to obtain quasi-exponential inflation

we require ϵ≪ 1, and the condition η ≪ 1 ensures that inflation lasts for long

enough.1 The amount of inflation is parameterised in terms of the e-folding

1Strictly speaking η can be negative. So we take slow-roll to mean that |η| ≪ 1.
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number N defined as

N(t, t∗) =

∫ t

t∗

H(t)dt = ln

(
a(t)

a(t∗)

)
, (5.2.15)

where t∗ is the initial time, and observational constraints dictate thatN ∼ 60.

In terms of the scalar fields, we have

ϵ =
1

2M2
pl

GIJ ϕ̇I ϕ̇J

H2
and η = 2ϵ+ 2

GIJ ϕ̇IDtϕ̇
J

HGKLϕ̇K ϕ̇L
. (5.2.16)

The slow-roll condition ϵ≪ 1 thus implies that

H2 ≃ V (ϕI)

3M2
pl

. (5.2.17)

Given that ϵ≪ 1, the condition η ≪ 1 implies that

GIJ ϕ̇IDtϕ̇
J

HGKLϕ̇K ϕ̇L
≪ 1. (5.2.18)

In the single-field case, where we can always redefine the field such that Gϕϕ =
1, this reduces to ϕ̈≪ Hϕ̇, which allows us to neglect the acceleration term in

the equation of motion for ϕ. In the multi-field case with a curved field space,

however, the situation is not so simple, as the above condition only constrains

the component of Dtϕ̇
I along the background trajectory. Nevertheless, we

assume that the magnitude of the acceleration vector Dtϕ̇
I is much smaller

than the magnitude of the velocity vector Hϕ̇I , namely (GIJDtϕ̇
IDtϕ̇

J)1/2 ≪
H(GIJ ϕ̇I ϕ̇J)1/2. By the Cauchy-Schwarz inequality, this will guarantee that

condition (5.2.18) is satisfied. If we further assume that the field basis is such

that |Dtϕ̇
I | ≪ |Hϕ̇I | for all I, where here by |XI | we mean the magnitude of

the Ith component of XI , then the equations of motion (5.2.12) reduce to

3Hϕ̇I ≃ −GIJV,J , (5.2.19)

meaning that we are in an attractor regime where the field velocities are given

as functions of the field positions. Using the slow-roll equations (5.2.17) and

70



(5.2.19) we can then derive consistency conditions for the potential and its

derivatives. Namely, we find

ϵ ≃ ϵV =
M2

pl

2

GIJV,IV,J
V 2

≪ 1, η ≃ ηV = 4ϵV −
M4

pl

ϵV

DKV,JGKLV,LGJMV,M
V 3

≪ 1,

(5.2.20)

where DKV,J = V,JK − ΓLJKV,L is the covariant derivative of V,J . The first

condition ϵV ≪ 1 thus puts a constraint on the first derivatives of V , while

the condition ηV ≪ 1 constrains the second derivatives of V . In particular,

assuming ϵV ≪ 1, the condition ηV ≪ 1 will be satisfied if we assume that

all the eigenvalues of the field-space tensor ηIJ are small, where ηIJ is defined

as

ηIJ ≡M2
pl

GIKDJV,K
V

. (5.2.21)

Provided the number of fields is not too large, the Eigenvalues of ηIJ will in

turn be small if ηIJ ≪ 1 for all I and J . Note that the quantity ηIJ corresponds

to the covariant Hessian of the potential divided by V/M2
pl ≃ 3H2, and the

covariant Hessian of the potential contributes to the effective mass matrix

of field fluctuations about the background trajectory, see e.g. [13]. As such,

the condition ηIJ ≪ 1 will constitute part of the sufficient condition for the

effective mass of field fluctuations to be small compared to the Hubble scale.

5.3 Numerical analysis and results

As can be seen from the expressions given in eqs. (4.1.19), (4.1.20), (4.1.22)

and (4.1.24), the observables Pζ , ns, r and fNL for a given inflationary trajec-

tory can be determined with knowledge of the background dynamics alone,

which is one of the very appealing aspects of the δN formalism. In particu-

lar, we require the background quantities H, ϵ, GIJ and V evaluated at the

horizon-crossing time of the comoving scale under consideration, as well as

the derivatives of the e-folding number up to a constant density surface with

respect to the field values at the horizon crossing time, N,I and DJDIN . For a
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restricted class of potentials and field-space metrics it is possible to determine

the derivatives of N analytically if the slow-roll equations of motion (5.2.19)

are assumed to hold throughout inflation, see e.g. [76, 77, 78, 79, 80], but in

general one has to resort to numerical calculations. The model we are con-

sidering contains both a non-trivial field-space metric and interaction terms

in the potential, meaning that the derivatives of N cannot be determined an-

alytically. We thus have to take a numerical approach, the method of which

we now briefly explain.

Our code is based on the finite difference method. We first consider

a background trajectory with the initial conditions (ϕ∗, χ∗), and assume

that the scale under consideration left the horizon as the trajectory passed

through this point. Evolving along the trajectory, at any later time of inter-

est t, we can determine the number of e-foldings since the horizon-crossing

time, N(t, ϕ∗, χ∗), and the density at that time, ρ(t, ϕ∗, χ∗). Next we con-

sider another trajectory with displaced initial conditions, e.g. (ϕ∗ +∆ϕ, χ∗).

Evolving along this trajectory we determine the time t̃ = t + δt at which

the density of the displaced trajectory coincides with ρ(t, ϕ∗, χ∗), namely

ρ(t̃, ϕ∗ +∆ϕ, χ∗) = ρ(t, ϕ∗, χ∗). We then determine the number of e-foldings

that have elapsed on the perturbed trajectory from the initial time up to the

time t̃, N(t̃, ϕ∗+∆ϕ, χ∗). This is the number of e-foldings up to the constant

density surface, and the derivative of N with respect to ϕ∗ is then given as

N,ϕ∗ =
N(t̃, ϕ∗ +∆ϕ, χ∗)−N(t, ϕ∗, χ∗)

∆ϕ
. (5.3.1)

The same procedure applies for determining N,χ∗ , and can be extended to

calculate the second-order derivatives N,ϕ∗ϕ∗ , N,χ∗χ∗ and N,ϕ∗χ∗ = N,χ∗ϕ∗ . In

all our calculations we assume that the slow-roll field equations (5.2.17) and

(5.2.19) are a good approximation at the time of horizon crossing. The initial

field velocities are thus determined through eq. (5.2.19) and do not need to

be specified independently. Nevertheless, we do solve the full equations of

motion eq. (5.2.12) when calculating the derivative of N . This allows for the

possibility that the slow-roll approximation breaks down later on during the

super-horizon evolution. We have worked with 32-digit precision.
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Note that the time t in the above discussion can be any time after the

horizon crossing time, so by varying t we can determine the evolution of ζ. If

we are interested in determining ζ at the end of inflation, then we take t to

be the time at which ϵ ≃ 1. As discussed at the end of the previous section,

if an adiabatic limit has not been reached by the end of inflation then it

is necessary to follow the evolution of ζ through (p)reheating and until an

adiabatic limit is reached and ζ becomes conserved. However, the evolution

of ζ through (p)reheating is beyond the scope of this work, and we restrict

our attention to the evolution of ζ up until the end of inflation.

In proceeding, rather than working with the parameters mϕ and mχ, we

instead introduce the mass ratio defined as

Rmass ≡
mχ

mϕ

. (5.3.2)

This allows an overall m2
ϕ to be factored out of the potential, namely

V (ϕ, χ) = m2
ϕV(ϕ, χ), V(ϕ, χ) = 3

4
M2

pl(1− e−2αϕ)2 +
1

2
R2

masse
−4αϕχ2.

(5.3.3)

If we then introduce the re-scaled time parameter τ̃ = mϕt, we find that the

background field equations reduce to

Dτ̃ϕ
I
τ̃ + 3HϕIτ̃ + GIJV,J = 0, (5.3.4)

H2 =
1

3M2
pl

[
1

2
GIJϕIτ̃ϕJτ̃ + V(ϕI)

]
, (5.3.5)

where a subscript τ̃ denotes taking the derivative with respect to τ̃ , e.g.

ϕIτ̃ = dϕI/dτ̃ , H = aτ̃/a and Dτ̃X
I = XI

τ̃ +ΓIJKϕ
J
τ̃X

K . As such, we see that

the mass mϕ drops out of the field equations. In particular, this means that

the solution for H as a function of τ̃ will be independent of mϕ. If we then

consider the definition of the e-folding number, we have

N =

∫ t

t∗

Hdt =

∫ τ̃

τ̃∗

Hdτ̃ , (5.3.6)
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from which we conclude that the e-folding number is independent of the

overall mass scale mϕ. This in turn means that the derivatives of N , required

in calculating Pζ , ns, r and fNL, will also be independent of mϕ. Given the

expressions for ns, r and fNL, we thus find that they are all independent of

mϕ. The only observable that depends on mϕ is Pζ , as this depends on the

overall normalization of H2
∗ .

2 Explicitly, we have

Pζ(k) = m2
ϕ

(
H∗

2π

)2

GIJ∗ N,IN,J , (5.3.7)

which means that we are able to determine the quantity Pζ/m2
ϕ without

knowing mϕ.

Using this new parameterization, the free parameters of the theory (as-

suming slow-roll at horizon crossing) are mϕ, Rmass, ϕ∗ and χ∗. We will now

consider how the infationary dynamics and predictions for ζ depend on these

parameters.

Background trajectories

In light of the preceding discussion, we see that the shape of trajectories

in field space will be independent of mϕ. As such, the only remaining pa-

rameters are Rmass, ϕ∗ and χ∗. Broadly speaking, we are interested in the

three regimes Rmass > 1, Rmass ∼ 1 and Rmass < 1, and in Fig. 5.3.1 we plot

example trajectories for the representative values Rmass = 5, 1, 1/5. In each

case we consider the three sets of initial conditions (ϕ∗/Mpl, χ∗/Mpl) = (6, 3),

(ϕ∗/Mpl, χ∗/Mpl) = (5, 3) and (ϕ∗/Mpl, χ∗/Mpl) = (6, 1.5), and each trajec-

tory is evolved until inflation ends. When interpreting the trajectories, one

has to be careful to recall that it is not only the potential shape that is impor-

tant, as the effect of the non-flat field space must also be taken into account.

In this model, for example, we have Gχχ = e2αϕ. Given that the slow-roll

equation of motion for χ takes the form 3Hχ̇ ≃ −GχχV,χ, we can expect that

2Another way to see the independence of mϕ is to write the field equations of motion
directly in terms of the time parameter N . On doing so, the potential only appears in the
combination V,I/V , meaning that the overall factor of m2

ϕ drops out.
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for super-Planckian values of ϕ the velocity is enhanced compared to what we

would naively expect from the gradient of the potential alone. Nevertheless,

the trajectories in Fig. 5.3.1 qualitatively agree with our naive expectation.

(a) (b)

(c)

Figure 5.3.1: Examples trajectories for three different values of Rmass. We
show the cases a) Rmass = 5.0, b) Rmass = 1.0, and c) Rmass = 0.2. For each
value of Rmass three trajectories are plotted, with the initial conditions given
as (ϕ∗/Mpl, χ∗/Mpl) = (6.0, 3.0) (magenta line), (ϕ∗/Mpl, χ∗/Mpl) = (5.0, 3.0)
(orange line) and (ϕ∗/Mpl, χ∗/Mpl) = (6.0, 1.5) (blue line).

In the case Rmass = 5 we find that the trajectories first rapidly evolve in

the χ direction, with most of inflation then taking place as the trajectory

proceeds along the local minimum at χ = 0. Given that the potential re-

duces to the single-field R2 potential at χ = 0, we expect the last stage of

inflation to be indistinguishable from the original R2 model. At the level of

perturbations, as the trajectory evolves along the local minimum we expect
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that ζ should be conserved and that isocurvature perturbations will decay,

such that an adiabatic limit is approached. Recall that in the original R2 in-

flation model approximately 60 e-foldings of inflation are obtained by taking

ϕ∗/Mpl ≃ 5.5. As such, in the large Rmass limit, if we take any set of initial

conditions with ϕ∗/Mpl ∼ 5.5, the final stage of inflation along χ = 0 will

constitute the whole observable part of inflation, and we thus expect that

predictions for ζ and its statistical properties will be indistinguishable from

the original R2 model.

In the case Rmass = 1, the trajectories are less trivial, in the sense that

they continue to turn throughout the evolution. Correspondingly, we expect

that ζ will continue to evolve throughout inflation. It is in this parameter

region that an adiabatic limit may not be reached by the end of inflation,

and ζ may continue to evolve through the (p)reheating epoch. If this is the

case, then the correlation functions of ζ that we find at the end of inflation

should not be directly compared with observations.

Finally, in the case Rmass = 1/5, the trajectories are again as expected,

with essentially two stages of inflation taking place. Initially the trajectories

evolve in the ϕ direction, with the potential profile in the ϕ direction being

very similar to that of the original R2 inflation model. In the cases of the

orange and magenta trajectories, they then turn and inflation proceeds as

they evolve essentially in the χ direction but while oscillating about the local

minimum located close to but not exactly at ϕ = 0. For this choice of Rmass,

these trajectories do not appear to fully relax to the bottom of the local

minimum before the end of inflation, and so we might expect that ζ is still

evolving. In the case of the blue trajectory, due to the smaller initial position

χ∗/Mpl = 1.5, we find that there is no second stage of inflation driven by the

χ field.

A feature that it is common to all choices of Rmass is that for χ = 0

both the potential and V,ϕ reduce to those of R2 inflation, while V,χ = 0.

Consequently, trajectories with χ∗ = 0 will evolve purely in the ϕ direction,

and we expect that predictions for ζ will coincide with those of R2 inflation.

As we move to non-zero values of χ, deviations from the R2 potential

depend on Rmass, ϕ and χ. For super-Planckian values of ϕ satisfying 2αϕ≫
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1, such that e−2αϕ ≪ 1, deviations from the R2 potential are suppressed by a

factor of e−4αϕ, and will therefore be negligible for sufficiently large values of

ϕ. This feature can be seen in all panels of Fig. 5.3.1. In order for the χ-field

contribution to the potential to dominate at some super-Planckian value of ϕ,

one would require R2
massχ

2 ≫ 3M2
ple

4αϕ/2, i.e. Rmass or χ must be very large.

However, in such a parameter region we find that ϵϕ ≡ M2
pl(V,ϕ/V )2/2 ≃

8M2
plα

2 > 1, such that ϵV = ϵϕ + ϵχ > 1, where ϵχ ≡ M2
ple

2αϕ(V,χ/V )2/2, i.e.

the slow-roll approximation breaks down.

Note that although the potential reduces to m2
χχ

2/2 if we take ϕ = 0,

due to the interaction term we do not have V,ϕ = 0 when ϕ = 0. As such,

even if we start with ϕ∗ = 0, we do not necessarily obtain chaotic inflation

along the χ direction. Indeed, ϕ̇ is positive along the axis ϕ = 0, and if we

calculate ϵϕ we again find ϵϕ = 8M2
plα

2 > 1, such that ϵV > 1 and the slow-

roll approximation is violated. Nevertheless, in the limit Rmass ≪ 1, with

appropriate initial conditions we do find that the final stages of inflation

essentially coincide with quadratic chaotic inflation driven by the χ field. As

can be seen in the third panel of Fig 5.3.1, for small values of Rmass and

sufficiently super-Planckian initial conditions for ϕ and χ, we obtain two

stages of inflation. The first stage is driven by ϕ, and once ϕ reaches its

minimum the second stage is driven essentially by χ. The minimum of the

potential in the ϕ direction lies on the curve defined by

2

3
R2

mass

χ2

M2
pl

= e2αϕ − 1. (5.3.8)

As such, if Rmass is small enough to ensure that Rmassχ/Mpl ≪
√

3/2, we

find that the minimum lies very close to the χ axis, with ϕ/Mpl ≪
√

3/2. In

the same limit Rmassχ/Mpl ≪
√

3/2, we find that along the minimum with

respect to ϕ the potential and its derivative with respect to χ are approxi-

mately given as

V |V,ϕ=0 ≃
1

2
m2
χχ

2, V,χ|V,ϕ=0 ≃ m2
χχ, (5.3.9)

i.e. they coincide with the case of a quadratic mass term for the χ field. Con-
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sequently, in the limit Rmass ≪ 1, or more precisely Rmass ≪
√
3/2Mpl/χ∗,

once the ϕ field has evolved to its minimum we expect quadratic chaotic

inflation driven by χ to take place. If we require that this stage of chaotic

inflation lasts for approximately 60 e-foldings, then this means we require

χ∗ ≃ 15.5Mpl, which in turn gives the condition Rmass ≪
√
3/2/15.5 ≃ 0.08.

In analogy with the large Rmass limit, we find that for Rmass ≪ 0.08 the

whole of the observable period of inflation will essentially coincide with

quadratic chaotic inflation driven by χ if we take any initial conditions with

χ∗ ∼ 15.5Mpl. At the level of perturbations, in analogy with the large Rmass

case, as the trajectory evolves along the the local minimum close to ϕ = 0 we

expect that ζ will be conserved and that isocurvature perturbations decay,

such that an adiabatic limit is approached.

Figure 5.3.2: An example trajectory for Rmass = 0.02 and (ϕ∗/Mpl, χ∗/Mpl) =
(2.0, 10.0). The region with ϵV > 1 is shaded in blue. The trajectory consists
of two inflationary stages separated by a non-inflationary stage.

Given that the mass ratio Rmass = 0.2 considered in Fig. 5.3.1 is not so

small, in Fig. 5.3.2 we plot an example trajectory for the case Rmass = 0.02

and the initial conditions (ϕ∗/Mpl, χ∗/Mpl) = (2.0, 10.0) . We also show the

region where ϵV > 1. Similar to the case Rmass = 0.2 considered in Fig. 5.3.1,
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the trajectory first evolves in the ϕ direction and the potential profile essen-

tially coincides with R2 inflation. Intermediately, when ϕ drops below Mpl,

one thus finds that ϵV becomes greater than unity and inflation temporarily

ceases. However, once the trajectory reaches the local minimum, ϵV once

again becomes less than unity and inflation recommences, with the subse-

quent trajectory evolving essentially in the χ direction. It is thus important

when considering small values of Rmass that we do not terminate our inte-

gration of the trajectory prematurely, in order not to miss the second stage

of inflation. Note that there is a period during which the ϕ field oscillates

about its minimum, and during this period one might expect the ϕ field to

decay into any matter fields to which it is coupled, including the χ field.

Indeed, due to the non-minimal coupling of ϕ to the Ricci scalar in the Jor-

dan frame, we expect there to at least be gravitationally induced couplings

between ϕ and any other matter fields present, see e.g. [81, 82]. However,

in the following we neglect the possible decay of the ϕ field, postponing a

careful consideration of this effect to future work.

Evolution of perturbations

Having given some example background trajectories, we now consider the

evolution of ζ, or more precisely its correlation functions. As discussed above,

in single field inflation we know that ζ is conserved on superhorizon scales,

while in multi-field inflation it is sourced by isocurvature perturbations if the

trajectory in field space deviates from a geodesic, see e.g. [65, 66].

Perhaps the most interesting evolution of ζ and its correlation functions

is observed in the case of small Rmass. As an example, we consider the

parameters Rmass = 0.1 and (ϕ∗/Mpl, χ∗/Mpl) = (5, 8). The background

trajectory for this choice of parameters is shown in Fig. 5.3.3. Given that

Rmass ≪ 1, we see that the trajectory first evolves in the ϕ direction, before

moving along the local minimum that runs almost parallel to the χ axis.

In total there are approximately 60 e-foldings of inflation, with the turn

occurring at N ∼ 45. In the left panel of Fig. 5.3.4 we plot the evolution of

the power spectrum, normalised by the final value. As expected, it remains
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Figure 5.3.3: An example trajectory with Rmass = 0.1 and initial conditions
(ϕ∗/Mpl, χ∗/Mpl) = (5.0, 8.0). Inflation lasts for a total of 58 e-foldings.

constant for the first 40 e-folds, and is then sourced by isocurvature modes

as the trajectory turns at around N ∼ 45. Given the relatively large mass

hierarchy, Pζ is seen to oscillate as the trajectory oscillates about the local

minimum, before again approaching a constant as an essentially single-field

limit is reached.

In the right panel of Fig. 5.3.4 we show the evolution of fNL for the same

trajectory. Up until the turn it is negligibly small, with fNL ∼ O(10−2).

During the turn and subsequent oscillations we find that fNL also oscillates,

with a peak amplitude of fNL ≃ 0.35. In the final stage, however, fNL relaxes

back down to an unobservably small value of O(10−2). The behaviour of the

power spectrum and fNL in this example are qualitatively very similar to

that observed in double quadratic inflation models, see e.g. [76, 83, 84] and

references therein.

We have also considered the evolution of Pζ and fNL in the other regimes

Rmass > 1 and Rmass ∼ 1. For trajectories with Rmass > 1, such as those

shown in the first panel of Fig. 5.3.1, due to the fact that the trajectories

quickly evolve to the ϕ axis and reach an effectively single-field trajectory
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Figure 5.3.4: Evolution of the normalised power spectrum P ζ =
Pζ(N)/Pζ(Nfinal) (left panel) and fNL (right panel) for the example trajectory
plotted in Fig. 5.3.3.

along the ϕ axis, we find that Pζ and fNL also quickly reach constant values,

with fNL ∼ O(10−2). Note that the background trajectories shown in the

first panel of Fig. 5.3.1 do not oscillate about the ϕ axis, and correspondingly

we find that Pζ and fNL also do not oscillate before settling to their constant

values. For trajectories with Rmass ∼ 1, such as those shown in the second

panel of Fig. 5.3.1, we find that the evolution of Pζ and fNL is much more

gradual, with fNL remaining O(10−2) throughout the evolution.

Exploring and constraining parameter space

Having looked at representative example trajectories in the three regimes

Rmass < 1, Rmass ∼ 1 and Rmass > 1, we now proceed to put constraints

on the parameters mϕ and Rmass. In doing so we consider thirty-one differ-

ent mass ratios in the range 10−3 ≤ Rmass ≤ 103, distributed evenly over

logRmass. For each value of Rmass we then consider a 50 × 50 grid of ini-

tial conditions (ϕ∗, χ∗), with ϕ∗ spanning the range 0 ≤ ϕ∗ ≤ 6Mpl and χ∗

spanning the range 0 ≤ χ∗ ≤ 16Mpl.
3 Next we neglect any points on the

grid for which either ϵV > 1 or |ηV | > 1, i.e. we require that the slow-roll

approximation is valid at the horizon-crossing time. For the remaining points

3From our knowledge of the R2 and quadratic chaotic inflation models, we know that
taking ϕ∗ > 6 or χ∗ > 16 will always give Ntotal > 60, but observationally we are only
interested in the last 60 e-folds of inflation. Hence our choice of maximum ϕ∗ and χ∗.
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Figure 5.3.5: Predictions in the ϕ∗–χ∗ plane for the e-folding number N
(upper left), spectral tilt ns (upper right), tensor-to-scalar ratio r (lower left)
and non-Gaussianity parameter fNL (lower right) for the case Rmass = 1.0.
The red shaded region in the upper left plot shows the initial conditions for
which 50 < Ntotal < 60. Here Ntotal is the total amount of e-foldings from the
horizon exit to the end of inflation. The light blue (dark blue) shaded region
in the upper right plot indicates the range of initial conditions for which ns
lies within 1-σ (2-σ) of the observed value. The grey shaded region in all
plots corresponds to where ϵV > 1.
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we are then able to determine N , Pζ/m2
ϕ, ns, r and fNL without needing to

specify mϕ. Neglecting points that do not give 50 < Ntotal < 60, for each

of the remaining points we perform a chi-squared analysis to determine the

range of mϕ for which the predictions for Pζ , ns, r and fNL lie within 1-

and 2-σ of the observed values summarised at the end of chapter 4. At this

point, for every observationally allowed set of initial conditions (ϕ∗, χ∗) we

have a maximum and minimum allowed mϕ. To find the overall maximum

and minimum allowed values of mϕ for a given Rmass, we must then take

the maximum of all the maxima and the minimum of all the minima. Note

that for any value of Rmass we are guaranteed to find a non-vanishing allowed

range of mϕ, as we will always recover the predictions of R2 inflation if we

take χ∗ = 0.

As an example, in Fig. 5.3.5 we show the predictions for N , ns, r and

fNL in the ϕ∗–χ∗ plane for the case Rmass = 1. In the plot of N we highlight

in red the region for which 50 < Ntotal < 60. Similarly, in the plot of ns

we highlight in light- and dark-blue the regions that fall within 1- and 2-σ

of the observed value. For all values of ϕ∗ and χ∗ we find that r and fNL

are consistent with observational constraints. In Fig. 5.3.6 we combine the

constraints coming from N and ns, which allows us to determine the region in

the ϕ∗–χ∗ plane in which the horizon exit point must lie. The intersection of

the red shaded region with the ϕ axis corresponds to the initial conditions for

R2 inflation. As we move away from the ϕ axis we see that there is quite an

extended region that remains in agreement with observations. Interestingly,

there is another small allowed region towards the top left-hand corner of the

ϕ∗–χ∗ plane.

The obtained constraints on mϕ as a function of Rmass are shown in

Fig. 5.3.7. In the limits of both small and large Rmass we find that the

allowed range is consistent with that of R2 inflation, for which slow-roll esti-

mates give mϕ ≃ (1.2–1.4) × 10−5Mpl for Ntotal = 50–60. In the large Rmass

limit this has a relatively simple interpretation. As the χ field becomes more

massive one approaches a limit in which all slow-roll trajectories satisfiying

ϵV , |ηV | ≪ 1 at horizon crossing and giving 50 < Ntotal < 60 correspond

to effecitvely single-field trajectories that evolve along the ϕ axis, where the
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Figure 5.3.6: Combined constraints in the ϕ∗–χ∗ plane for the case Rmass = 1.
The red shaded region corresponds to the constraint 50 < Ntotal < 60, while
the light- and dark-blue regions correspond to the 1- and 2-σ observational
constraints on ns given at the end of chapter 4. Predictions for r and fNL

are consistent with observations for all sets of initial conditions. The grey
shaded region corresponds to where ϵV > 1.

potential reduces to that of R2 inflation. We can see from Fig. 5.3.7 that

such a limit is reached for Rmass ∼ 10. In the small Rmass limit the situation

is less clear. The fact that the allowed range of mϕ approaches a constant

can be understood as follows. So long as Rmass is smaller than some criti-

cal value — which our results suggest is around Rmass ≃ 10−2 — one finds

that for a given set of initial conditions the last 60 e-foldings of inflation is

well approximated by a stage of R2 inflation followed by a stage of quadratic

chaotic inflation, as was observed in Fig. 5.3.2. The fact that the allowed

range of mϕ coincides with that of R2 inflation, however, is not so obvious.

As χ∗ is increased from 0 to 16Mpl (and ϕ∗ is correspondingly adjusted to

give the desired number of e-foldings), we expect that predictions for Pζ ,
r, ns and fNL will interpolate between those of R2 inflation and those of

quadratic chaotic inflation. While the latter are ruled out by observations,
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Figure 5.3.7: Allowed regions in the Rmass–mϕ plane at 1-σ (red shaded
region) and 2-σ (blue shaded region).

one might naively expect that intermediately there are values of χ∗ that give

predictions deviating from R2 inflation but still in agreement with observa-

tions, which in turn would naively alter the allowed range of mϕ. However,

our results suggest that the allowed range of mϕ is essentially unaffected.

For intermediate values of Rmass the obtained bounds on mϕ are found to

deviate from those of R2 inflation. As we can see in Fig. 5.3.7, the allowed

range of mϕ has a peak of mϕ ≃ 3 × 10−5Mpl at around log10 (Rmass) ≃
−0.5 (Rmass ≃ 0.3). However, one must bear in mind that for some of the

trajectories in this parameter range an adiabatic limit will not have been

reached by the end of inflation. As such, it may be that the constraints in

this region would change if effects of the (p)reheating epoch were taken into

account.

Using the definition of Rmass, we can use the above constraints on mϕ

to also put bounds on mχ as a function of Rmass. The results are shown

in Fig. 5.3.8a. Similarly, recall that in the Jordan frame representation of

this model one has the parameter µ instead of mϕ, see eq. (5.2.1). Given
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that these two parameters are related as m2
ϕ = M2

pl/(6µ), we can re-express

our constraints on mϕ as constraints on µ, and the results are shown in

Fig. 5.3.8b. In the original R2 inflation model, slow-roll estimates determine

that in order to satisfy observational constraints one requires µ ≃ (0.9–

1.2)× 109 for Ntotal=50–60 [85, 86], which is consistent with our constraints.

In the multi-field extension of R2 inflation that we have considered, we find

the allowed range of µ to be µ ≃ (0.2–1.3)× 109.

(a) (b)

Figure 5.3.8: (a) Allowed regions in the Rmass–mχ plane at 1-σ (red shaded
region) and 2-σ (blue shaded region). (b) Allowed regions in the Rmass–µ
plane at 1-σ (red shaded region) and 2-σ (blue shaded region). The purple-
shaded region shows µ = (0.9–1.2)× 109, which corresponding to the case of
the original R2 inflation model with Ntotal = 50–60.

5.4 Summary of this model

In this chapter we have considered a two-field inflation model based on a

simple multi-field extension of R2 inflation. In addition to a term propor-

tional to R2, the Jordan frame action contains a canonical scalar field χ with

quadratic mass term. On re-writing the model as a scalar-tensor theory and

making a conformal transformation into the Einstein frame, the model takes

the form of a two-field inflation model with a non-flat field space as shown in

eq. (5.2.6). The first field, ϕ, corresponds the additional degree of freedom

associated with the R2 term in the original action and is often referred to
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as the scalaron. This field has a canonical kinetic term and its potential

takes on the same form as in the original R2 inflation model, approaching a

constant for super-Planckian values of ϕ. The second field, χ, on the other

hand, has a non-canonical kinetic term that depends exponentially on ϕ, and

its quadratic mass term similarly contains an exponential coupling with ϕ.

Assuming that the slow-roll approximation is valid at horizon crossing,

such that only the initial field positions have to be specified in solving for

the inflationary dynamics, the four free parameters of the model are mϕ,

Rmass = mχ/mϕ, ϕ∗ and χ∗. In Sec. 5.3 we have explored how the inflationary

dynamics and predictions for the correlation functions of ζ depend on these

four parameters, both qualitatively and quantitatively.

For Rmass ∼ 10 we find that all slow-roll trajectories satisfying ϵV , |ηV | ≪
1 at horizon crossing and giving 50 < N < 60 follow an effectively single-

field trajectory evolving along the local minimum of the potential at χ = 0.

Given that the potential coincides with that of the original R2 inflation model

along χ = 0, the predictions for ζ and its correlation functions also coincide

with the original model. In this region of parameter space observational

constraints give mϕ ≃ (1.1–1.6)× 10−5Mpl at 2-σ.

For Rmass < 10−2 we find that inflationary trajectories consist of a stage

of R2 inflation driven by ϕ followed by a stage of quadratic chaotic inflation

driven by χ. How the last observable 60 e-foldings of inflation are divided

between these two stages depends on the initial conditions, and the predic-

tions for ζ and its correlation functions thus range from those of R2 inflation

to those of quadratic chaotic inflation. Interestingly, however, we find that

the final constraints on mϕ are very similar to those obtained in the large

Rmass limit, namely they essentially coincide with the limits on mϕ obtained

in the original R2 model.

Finally, in the parameter region Rmass ∼ 1, we find that the constraints on

mϕ are less tight, with mϕ ≃ (1.1–3.2)× 10−5Mpl at 2-σ. Here it is less easy

to interpret the results, as the inflationary trajectories are truly multi-field in

nature, with both ϕ and χ evolving throughout inflation in many cases and

the dynamics very much depending on the initial conditions. Nevertheless,

one can see that the net result of these multi-field effects is to increase the
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allowed range of mϕ as compared to the original R2 model, and in particular

to allow for larger values of mϕ.

One issue that we have not fully addressed in this work is the possibility

that ζ may continue to evolve after the end of inflation. If an adiabatic limit

is not reached by the end of inflation then one should continue to follow the

evolution of ζ through (p)reheating and until an adiabatic limit is reached.

It is only the final ζ that should then be compared with observations. In the

cases Rmass ≫ 1 and Rmass ≪ 1 the issue is naively not important, as we

expect an adiabatic limit to be reached before the end of inflation for most

inflationary trajectories. For Rmass ∼ 1, however, this is no longer the case,

and so post-inflationary evolution of ζ may affect the constraints on mϕ in

this region. We hope to address this issue in future work.
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Chapter 6

Multi-Moduli inflation

6.1 Introduction for this model

In this chapter, we discuss a multi-field inflation model based on string com-

pactification. String theory is formulated in 10 or 11 dimensions. Therefore,

we need to compactify it on any internal manifolds to obtain four-dimensional

effective theories. Associated with a compactification, a lot of scalar fields

appear in four-dimensional theory, which are called moduli fields. To fix each

physical constant and to avoid “fifth-force” interaction, we have to stabilize

these moduli fields. This is so-called “The moduli stabilization problem” (for

review, see [87, 88]).

On the other hand, inflation is one of the most promising paradigm in

modern cosmology. The typical energy scale of inflation could be close to the

Grand Unification scale or string scale. Thus, from the top-down viewpoint,

it is natural to regard stabilized moduli as inflation fields. So far, numbers

of works have been proposed which are based on moduli stabilization, but

almost all model rely on tuning of parameters to realize single-field infla-

tion. This is just because for simplicity of their models or lack of the way to

analyze multi-field models. However, from the viewpoint of string compact-

ification, it is ubiquitous to consider multi-field type inflation. In our work,

we established the numerical framework to address analysis of multi-field dy-

namics, and applied it to the multi-field inflation model which is based on
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string compactification and string loop corrections.

In analyzing the inflationary predictions of this model we make use of

the δN formalism and the transport method developed in [15, 16, 17, 18].

Utilizing this method, we can analyze the inflation model with taking into

account full multi-field effects such that isocurvature transfers in turning or

oscillation trajectories.

This chapter is organized as follows. In section 6.2 we briefly review

fibre inflation which is an inflation model based on moduli stabilization and

string loop corrections. In section 6.3, we extend the fibre inflation to a

multi-field model. We analyze this model with δN formalism in section 6.4.

In particular, we discuss trajectory-dependence of inflationary predictions.

Section 6.5 is devoted to summary of this model.

6.2 Fibre inflation

In the effective 4d supergravity, scalar potential is given by

V = eK [Kij̄DiWDj̄W − 3|W |2]. (6.2.1)

Here, K is a Kähler potential, and W is a superpotential. Di is the covariant

derivative associated with Kähler metric, and defined as

Di ≡ ∂i + ∂iK, (6.2.2)

where the index i denote each scalar field.

Following Kallosh et al.[89], we take a superpotential of moduli Ti as

follows:

W =

∫
G3 ∧ Ω +

∑
i

Aie
−aiTi = W0 +

∑
i

Aie
−aiTi , (6.2.3)

In general, Ti are complex fields, and here the first term comes from a

combination of induced 3-form flux G3 and the holomorphic 3-form Ω. Ω

can be determined by the geometry of the internal space, and this term fixes

complex structure moduli. The second term comes from non-perturbative
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effects (e.g. gaugino condensation, or world sheet instanton) and it gives the

potential of Käler moduli.

Following Large Volume Scenario, we take a Käler potential of the form,

K = −2 ln

(
V +

ξ

2g
3/2
s

)
, (6.2.4)

V is a volume of the internal space, and the second term in the parenthesis

comes from α′ correction which is a perturbative correction to the Kähler

potential [90].

In the original paper of Fibre inflation, authors took a volume V as follows:

V =λ1t1t
2
2 + λst

3
s

=α
(√

τ1τ2 − γτ 3/2s

)
,

(6.2.5)

where τi is the real part of Ti, and in this expression, τ1, τ2 and τs are 4-cycles

of the internal manifold. τ2 fixes overall volume, and τ1 is much smaller than

τ2. Therefore, in terms of moduli, τ1 is expected to be a dynamical field, and

τs is a blow-up mode.

In Fibre inflation, they considered string-loop corrections to scalar poten-

tial which is given by

δV(gs) = δV KK
(gs),τ1

+ δV KK
(gs),τ2

+ δV W
(gs),τ1τ2

, (6.2.6)

and each term is expressed as

δV KK
(gs),τ1

= g2s

(
CKK

1

)2
τ 21

W 2
0

V2
, (6.2.7)

δV KK
(gs),τ2

= 2g2s

(
CKK

2

)2
τ 22

W 2
0

V2
, (6.2.8)

δV W
(gs),τ1τ2

= −
(
2CW

12

t∗

)
W 2

0

V3
. (6.2.9)

By using
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V ∼ α
√
τ1τ2 ⇒ 1

τ2
∝

√
τ1
V

, (6.2.10)

we can rewrite (6.2.8)

δV KK
(gs),τ2

∝ τ1
V2

W0

V2
. (6.2.11)

Also, once we compute the intersection of τ1 and τ2, we can express (6.2.9)

in terms of τ1. According to (6.2.5),

τ1 =
∂V
∂t1

= (λ1t2) t2 and τ2 =
∂V
∂t2

= 2t1 (λ1t2) , (6.2.12)

and then, this implies that intersection t∗ is given by

t∗ =
√
λ1τ1. (6.2.13)

Now (6.2.9) can be expressed as

δV W
(gs),τ1τ2

∝ − 1

V√τ1
W 2

0

V2
. (6.2.14)

In the end, we obtain the final expression of the string-loop corrections:

δV(gs) =

(
A

τ 21
− B

V√τ1
+
Cτ1
V2

)
W 2

0

V2
, (6.2.15)

In terms of the canonically normalized field φ,

φ =

√
3

2
ln τ, (6.2.16)

(6.2.15) becomes

δV(gs) =
W 2

0

V2

(
Ae−2κφ − B

V
e−κφ/2 +

C

V2
eκφ
)
. (6.2.17)

where κ = 2√
3
. Then, we obtain
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V ≃ W 2
0

V2

[
(3−R)− 4

(
1 +

1

6
R

)
e−κφ/2 +

(
1 +

2

3
R

)
e−2κφ +Reκφ

]
(6.2.18)

In [93], the authors took R = 10−3, and then the potential has a flat region

which is suitable for inflation.

6.3 Multi-Moduli inflation

In the context of string compactification, especially Calabi-Yau compacti-

fication, it is more natural to consider multi-moduli in the effective theory,

and it leads to multi-field type model-building of inflation. Motivated by this

reason, we extend the fibre inflation theory to a multi-field version. First, we

take following modulus dependence of the volume.

V = λ1t1t2t3 + λst
3
s

= α
(√

τ1τ2τ3 − γτ 3/2s

)
.

(6.3.1)

We consider the case that τ3 fixes the overall volume and τ1 and τ2 are

dynamical. Again τs is the blow-up mode.

In this set up, we have following correction terms from string-loop cor-

rections.

δV KK
(gs),τi

= g2s

(
CKK
i

)2
τ 2i

W 2
0

V2
(i = 1, 2, 3) (6.3.2)

δV W
(gs),τ1τ2

= g2s

(
CKK

12

)2
τ1τ2

W 2
0

V2
(6.3.3)

δV W
(gs),intersection = −

(
CW
ij

t∗ij

)
W 2

0

V3
(i, j = 1, 2, 3, i ̸= j) (6.3.4)

,and

93



δV W
(gs),τ1τ2τ3

= −
(
CW

123

t∗123

)
W 2

0

V3
(6.3.5)

Eq.(6.3.2) is corresponding to a contribution from each moduli τi, and (6.3.3)

comes from the cycle which is linear combination of τ1 and τ2. (6.3.4) and

(6.3.5) come from intersections of each moduli. (6.3.4) corresponds to inter-

sections of two of three moduli and, (6.3.5) corresponds to the intersection

of all three moduli.

Combining all terms, the final expression is written as

δV(gs) =

(
C1

τ 21
+
C2

τ 22
+
C3

τ 23
+

C4

τ1τ2
− C5

t12V
− C6

t23V
− C7

t31V
− C8

t123V

)
W 2

0

V2
.

(6.3.6)

Here we can use the relation

V ∼ α
√
τ1τ2τ3,

1
√
τ3

∝
√
τ1τ2
V

. (6.3.7)

and compute tij, t123 from (6.3.1). Then we have

δV(gs) =

(
C1

τ 21
+
C2

τ 22
+
C3(τ1τ2)

2

V2
+

C4

τ1τ2
− C5

V√τ1
− C6

V√τ2
− C7

V2

√
τ1τ2 − C0

)
W 2

0

V2
.

(6.3.8)

Here we used the fact t123 = λ1 = const. and replaced the C8 term with

another constant C0.

Again using the canonically normalized field φ

φi =

√
3

2
ln τi, (6.3.9)

then we obtain the explicit form of the potential of Multi-moduli inflation,
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Vinf = V0 + δV(gs)

= V0 +
W 2

0

V2
×(

C1e
−2κφ1 + C2e

−2κφ2 +
C3

V2
e2κ(φ1+φ2) + C4e

−κ(φ1+φ2) − C5

V
e−κφ1/2

−C6

V
e−κφ2/2 − C7

V2
eκ(φ1+φ2)/2 + C0

)
.

(6.3.10)

Taking a similar choice of coefficients of each terms to fibre inflation, we

set

Vinf ∝ 6(1 +R) + (1 +R)(e−2κφ1 + e−2κφ2)− 4(1 +R)(e−κφ1/2 + e−κφ1/2)

+ (1 +R)e−κ(φ1+φ2) −Re−κ(φ1+φ2) +Re2κ(φ1+φ2)

(6.3.11)

Again taking R = 10−3, the potential has a flat region. In this set up, there

exist a lot of variations of trajectories of inflaton. Thus, we cannot apply the

analysis which we used in cases of single-field inflation, and we need to take

into accounts of multi-field effects.

6.4 Multi-field analysis and results

Using the transport method, we analyze this model shown in Eq.(6.3.10).

One can immediately find that all trajectories on this potential are classified

into two types. One type is like Fig.6.4.1. The trajectories showed in Fig.

6.4.1 behave like a single-field inflation at the beginning, and once they relax

to the bottom of the potential (φ2 = 0, in this case) they turn almost perpen-

dicularly. After they turned, again they go down like a single-field inflation.

For initial conditions such that we take in Fig. 6.4.1, all trajectories converge

to the straight trajectory along φ1-axi. This is one of an attractor trajectory

in this potential.

For these kinds of trajectories in Fig. 6.4.1,the situation is similar to
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double inflation models, and we can see the evolution of ns, r, and fNL in

Fig. 6.4.2. Before turning points, some of trajectories yield values of ns

and r which are far from the observationally-allowed values. However, after

turning, the isocurvature perturbation is changed to the adiabatic curvature

perturbation, and then almost all trajectories yield values of ns and r which

are close to allowed value.

On the other hand, since the later stages of inflation is the same as essen-

tially single-field inflation, fNLs are as small as those of single-field cases even

though they have peaky futures and yield large non-Gaussianity fNL ∼ O(1)

intermediately. Hence, one can realize that if trajectories converge to the

attractor, it is hopeless to find large non-Gaussianity. This is an important

consequence for the trajectories shown in Fig.6.4.1

We show a different class of trajectories in Fig.6.4.3. For example, if

inflation starts from (φ1∗/Mpl, φ2∗/Mpl) = (5.0, 5.0), then we can find the

trajectory becomes almost straight line. Thus, each quantities ns, r and

fNL are almost constant during inflation. However, if inflation starts an

initial point such that slightly deviated from on the straight line, for instance

(φ1∗/Mpl, φ2∗/Mpl) = (5.16, 5.0), then we see some non-trivial behaviors. In

Fig.6.4.3, a blue trajectory start from (5.1, 5.0), and it has no specific feature.

It is almost the same as the one of single-field inflation. However, if we start

(5.16, 5.0)(orange trajectory), first it goes down as same as straight line,

but intermediately it deviates from that line. Moreover, near the end of

inflation, the trajectory is bending and gives multi-field effects. In the end

point of inflation, we have the times larger non-Gaussianity (fNL ∼ 0.23)

than that is predicted by single-field models. This is one of the interesting

results of this model. In fact, similar analysis have already done in [59].

In addition, if inflation starts from (5.2, 5.0)(green trajectory), its motion

is almost same with orange trajectory, and near the end of inflation, fNL

is enhanced. However, after the enhancement, this trajectory relax to the

attractor trajectory and fNL becomes small again fNL ∼ O(10−2) in the end

of inflation. This means that in order to obtain large non-Gaussianity, we

need to tune the initial conditions, and it would be challenging to yield large

fNL.
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Figure 6.4.1: Examples of trajectories. Each initial conditions are
(φ1/Mpl, φ2/Mpl) = (6.0, 4.0) (blue), (φ1/Mpl, φ2/Mpl) = (6.2, 3.2) (orange),
(φ1/Mpl, φ2/Mpl) = (6.4, 2.4) (green), (φ1/Mpl, φ2/Mpl) = (6.5, 1.6) (red),
(φ1/Mpl, φ2/Mpl) = (6.8, 0.0) (purple). All trajectories roll down to the min-
imum of φ2 direction, and in that stage, they are essentially the same as
those of single-field inflation. After they turn, they become almost same
single-field inflation.
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Figure 6.4.2: Superhorizon evolutions of the normalized power spectrum
(Pζ(N)/Pζ(Nfinal)), spectral index ns (left-upper), tensor-scalar ratio r (right-
upper), non-Gaussianity fNL (left-bottom). All trajectories yield ns ∼ 0.97.
Strictly speaking, however, all trajectories yield a bit too large ns because
the observational bound is ns = 0.965 ± 0.0042(68%C.L.). Tensor-scalar
ratios are small r ∼ O(10−2) for all trajectories. At the first regime of in-
flation, all trajectories are almost straight, and so fNL are as small as cases
of single-field inflation(fNL ∼ O(10−2)). At the turning points, they are
enhanced to O(10−1), and they may violate the Maldacena’s consistency re-
lation (fNL ∼ (1− ns)). However, after the turns, they become small again
(∼ O(10−2)) and they become horizon re-entry values.
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Figure 6.4.3: Examples of trajectories. (φ1/Mpl, φ2/Mpl) = (5.0, 5.0 + 0.10)
(blue), (φ1/Mpl, φ2/Mpl) = (5.0, 5.0 + 0.16) (orange), (φ1/Mpl, φ2/Mpl) =
(5.0, 5.0 + 0.20) (green).

99



0 10 20 30 40 50
0.960

0.962

0.964

0.966

0.968

0.970

N

n s

0 10 20 30 40 50
0.00
0.01
0.02
0.03
0.04
0.05
0.06

N

r

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

N

f N
L

48 49 50 51 52 53 54 55
0.00

0.05

0.10

0.15

0.20

0.25

N

f N
L

Figure 6.4.4: Superhorizon evolutions of spectral index ns (left-upper) tensor-
scalar ratio r (right-upper), non-Gaussianity fNL (left-bottom) and close-up
version of evolution of fNL (N = 48-55).
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Exploring and constraining field space

In Fig. 6.4.5, we show the predictions for N,ns, r and fNL in the φ1 − φ2

plane. We compute the predictions from 30× 30 grid of initial points.

In the plot of e-folding number N , we highlight in red the region for

which 50 ¡ N ¡ 60. Similarly, in the plot of ns we highlight in cyan and

blue the regions that yield within 1- and 2-σ of the observed value. The

shape of the band of ns is not so trivial. According to the expression of ns,

it contains second derivative of the potential, and it gives relatively larger

negative contribution to ns at around the regions which are close to φ1 and

φ2 axes. That is why such a winding feature appears. In the plot of r, we

draw the current observational bound on r with magenta line, r < 0.07. We

can see that in the outside region of the magenta line, r falls to allowed value

everywhere. For all initial points which yield enough e-folds, non-Gaussianity

fNL obtains small, and that magnitudes are almost same as that of single-

field inflation models fNL ∼ O(10−2). Therefore, we can conclude that every

points which give enough e-folds predict the observationally-allowed values

of r and fNL.

In Fig.6.4.6 we combine the constraints coming from N and ns, which

allows us to determine the region in the φ1 − φ2 plane in which the hori-

zon exit point should be. It is reasonable that we find the allowed regions

such that the intersections of the red shaded region with the axis. These

regions approximately correspond to the initial conditions for single-field fi-

bre inflation. A allowed region at around (φ1/Mpl, φ2/Mpl) ∼ (5.0, 5.0) is

also natural because if inflation starts at this region, its trajectory becomes

almost straight line. Thus, the predictions reduce to those of single-field fi-

bre inflation. Moreover, there are non-trivial allowed regions such as around

(φ1/Mpl, φ2/Mpl) ∼ (6.0, 1.0) and (φ1/Mpl, φ2/Mpl) ∼ (1.0, 6.0). That is

coming from the non-trivial shape of the allowed region of ns, and that wind-

ing future is originally coming from the tachyonic property of the inflaton

potential.
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6.5 Summary of this model

In this chapter, we have considered the two-field inflation model based on

the string compactification and the moduli stabilization with the string loop

corrections. The KKLT framework is known as the successful scenario to

stabilize all moduli, and it is one of natural directions to use these stabilized

moduli to be the inflaton fields. However, the scalar potential derived from

the KKLT framework is not suitable for inflation since it is too steep to

obtain the slow-roll for small field. Actually t should have become a run-

away type potential at a large field value. One key idea to obtain a flat

potential is to consider perturbative corrections. In particular, in the fibre

inflation model, the string loop correction plays an important role to obtain

a flat direction. In fact, this discussion is applicable to multiple moduli,

and we have constructed an inflation potential in which two Kähler moduli

have an exponentially flat direction. In multi-field inflation models, generally

curvature perturbation is not conserved on the superhorizon scale. Thus, we

need to estimate curvature perturbation not only at the beginning of the

inflation, but also time-evolution of the adiabatic mode of the curvature

perturbation fully in whole period of the inflation.

An important observable to discriminate single-field models from multi-

field models is the non-Gaussianity of curvature perturbation. The Malda-

cena’s consistency relation claims that in a single-field inflation, there is a

special relationship between the spectral index ns and the non-Gaussianity

fNL to be fNL = 5
12
(1−ns). This means that the non-Gaussianity is as small

as O(10−2) in single-field models. In contrast, there is a possibility that

multi-field models may yield a relatively larger fNL.

According to our analysis, almost every trajectory of this model converges

to an attractor trajectory. Once they converge to attractors, then they be-

have essentially like a single-field inflation. Hence, for such trajectories, we

cannot expect to find any deviations from those in single-field cases. On

the other hand, we have addressed another class of trajectories such that

first it moves as just a straight line, but intermediately deviate from it and

shows non-trivial multi-field effects at the end of inflation. For this kinds of
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trajectories, we can find a significantly larger non-Gaussianity than that is

predicted by single field models. In this work, we have surely found such a

kind of trajectory, and it really yields a large non-gaussianity fNL ∼ 0.23.

While current constraints on non-Gaussianity from the CMB are still too

weak to test the model, future observations are expected to considerably im-

prove the constraints (see, e.g., Ref.[47]). This implies that we have a great

possibility to test if inflation is really driven by multi-fields, and the results

should provide rich information of new physics beyond the standard model

to describe the early Universe.
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Figure 6.4.5: Results of the searches on the field search. Left-top : numbers
of e-folds. The red band shows a region which yields N = 50−60. Right-top
: spectral index ns. The cyan and blue bands correspond to the region which
gives ns within 1-σ, and2-σ of the observed value, respectively. Left-bottom :
tensor-to-scalar ratio. The magenta line shows current observational bound,
r < 0.07. Right-bottom : non-Gaussianity. For all initial points which yield
enough e-folds, fNL becomes as small as O(10−2). The gray region in each
panel corresponds to where ϵ > 1, and slow-roll inflation does not occur.
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The magenta line represents r = 0.07. The Gray shaded region corresponds
to where ϵ > 1
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Chapter 7

Summary

In this thesis, I have discussed how to compute the observables related with

curvature perturbation and putting constraints on inflation models by com-

paring them with observation, particularly focusing on the special techniques

of the multi-field effects appeared in the multi-field inflation models. In terms

of the buildings of inflation models based on superstring/supergravity, the

multiple scalar fields naturally play roles of inflaton. In this sense multi-field

models are attractive, and it is crucial to consider the multi-field effects to

theoretically calculate the observables in the multi-field inflation models.

As we have seen in chapter 3, in cases of single-field inflation, the super-

horizon mode of curvature perturbation is conserved during inflation. Thus,

we just need to estimate perturbation only at the horizon exit point. On the

other hand, in cases of multi-field models, because of the existence of the

isocurvature modes, curvature perturbation can growth with time even after

the modes exit the horizon. Hence we need to fully trace the time-evolution

of curvature perturbation from the beginning to the end of inflation or a

sufficiently later time until curvature perturbation becomes constant. To

perform such an analysis we have introduced the δN formalism and the

transport method in chapter 4. Our approaches by using these techniques

are so helpful that we can compute curvature perturbation along the inflaton

trajectory even in the multi-field models.

Using the δN formalism and the transport method, we have analyzed two
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inflation models. In chapter 5, we have investigated a R2 + χ2 model. In

this model, performing conformal transformation, we find that this model

has a Starobinsky-like asymptotic flat potential of scalaron, and χ has a

non-canonical kinetic term and mixing terms with scalaron in the potential.

We have traced the time-evolution of power spectrum and the non-linearity

parameter of Non-Gaussianity fNL. Then, we have shown that in a certain

parameter set, fNL becomes large fNL ∼ O(1) at the turning point of the

trajectory of the fields. However, unfortunately we could not find a parameter

set in which fNL becomes large at the end of inflation with satisfying the

observed values of N,ns and r.

In chapter 6, we have worked on a two-field model based on string com-

pactification, which can be called “Multi-Moduli inflation”. To obtain four

dimensional effective theory from 10 dimensional superstring/supergravity,

we need to reduce the dimension of the spacetime. Associated with this di-

mensional reduction, moduli fields appear in its effective theory, and become

good candidates for inflaton fields. We have extended a known moduli infla-

tion model (Fibre inflation) to a multi-field model. We have searched model

parameters, in particular the initial configuration of inflaton fields. Remark-

ably, we have found a set of initial conditions which yields the allowed value

of N,ns and r, and give significantly larger Non-Gaussianity (fNL ∼ 0.23)

than that predicted in the single-field models. Thus, when we observe fNL

of the order of the O(0.1) precision by using future-planning CMB projects,

we will be able to test this type of multi-field models.

To summarize this thesis, with the approaches we have developed here,

we can investigate various multi-field inflation models. In future, by com-

paring lots of theoretical predictions on the observables in inflation with new

observational results, we expect that we can enjoy more rich insights into

high-energy physics and physics in the beginning of the Universe.
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Appendix A

ADM decomposition and the

action of R

In this Appendix A, we derive the action up to the second order of the pertur-

bation R using a method so-called Arnowit-Deser-Misner (ADM) formalism

or ADM decomposition. The starting point is,

S =

∫ √
−g d4x

[
M2

pl

2
R− 1

2
gµν∂µϕ∂νϕ− V

]
.

The spatial component of the metric gµν in this action is the perturbed FLRW

metric,

qij = a2[(1− 2R)δij + hij], where ∂ihij = hi i = 0. (A.0.1)

In particular, R = Ψ+ H
ϕ̇
δϕ, and if we take a comoving gauge of ϕ it becomes

R = Ψ.

Here we introduce ADM decomposition. In this decomposition, we can

express the line element ds as follows.

ds2 = −N(x)2dt2 + qij(N
i(x)dt+ dxi)(N j(x)dt+ dxj). (A.0.2)
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Here, N(x) is a Lapse function, N i(x) is a shift vector. In ADM decom-

position, metric gµν is represented by the Lapse function and shift vector

like

gµν =

(
−N2 + hijN

iN j Nj

Ni qij

)
(A.0.3)

On the other hand, the inverse matrix gµν is given by

gµν =

(
−N−2 N−2N j

N−2N i qij −N−2N iN j

)
(A.0.4)

We can use these expressions for later calculation. Next let us calculate the

inflaton part and Einstein-Hilbert part R separately.

First of all, the kinetic term of inflaton is given by

gµν∂µϕ∂νϕ = −N−2ϕ̇2 + 2N−2N iϕ̇∂iϕ+ (qij −N−2N iN j)∂iϕ∂jϕ

= −N−2(ϕ̇2 − 2ϕ̇N i∂iϕ+N iN j∂iϕ∂jϕ) + qij∂iϕ∂jϕ

= −N−2(ϕ̇−N i∂iϕ)
2 + qij∂iϕ∂jϕ.

(A.0.5)

Next we address the Einstein-Hilbert part. For the later convenience, we

define the scalar curvature R of 4-dimensional spacetime as R(4), and the

scalar curvature of a constant 3-dimensional hypersurface of a certain time

in the 4-dimensional time space is expressed asR(3),

R(3) = R(4) −KijK
ij +K2. (A.0.6)

Here, Kij is called extrinsic curvature,

Kij ≡ qki q
l
j∇knl. (A.0.7)

nl is defined as nl = Nl/
√
N iNi, which is a unit normal vector of a constant

surface for a certain time and K = Ki
i.
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Furthermore,
√
−g can be rewritten by the determinant of qij,

√
−g = √

qN (A.0.8)

To summarize (A.0.5), (A.0.6) and (A.0.8), we obtain

S =

∫
d4x

√
qN [R(3) +KijK

ij −K2 +N−2(ϕ̇−N i∂iϕ)
2 − qij∂iϕ∂jϕ− 2V ]

(A.0.9)

Here we calculate the extrinsic curvature using the concrete form of the

metric gµν (A.0.2) ,

Kij = N−1 × 1

2
( ˙qij −∇iNj −∇jNi) ≡ N−1Eij (A.0.10)

This Eij represents the action,

S =

∫
d4x

√
q[NR(3)+N−1(EijE

ij−E2)+N−1(ϕ̇−N i∂iϕ)
2−Nqij∂iϕ∂jϕ−2NV ]

(A.0.11)

Here, E = Ei
i.

From (A.0.11), we obtain the action of perturbation R. The important

point here is that there is a relationship R(3) = 4∇2R(3).

(A.0.11) are varied by N,Ni, so that each equation is obtained. Since

N,Ni do not have kinetic terms, these equations are not equations of motion

but simply constraint conditions.

R(3) −N(EijE
ij − E2)−N−2ϕ̇2 − 2V = 0. (A.0.12)

Next we consider the variance with respect toNi, but the variance of EijE
ij is

similar to the field strength of the gauge field FµνF
µν , which is similar to Eij.

For the variance of E2, ∂E2

∂(∂iNj)
= 2E ∂E

∂(∂iNj)
. When we use E = 1

2
˙gij −∇iNi,
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we obtain a term 2Eδij. Therefore, the expression obtained by varying with

Ni is

∇i[N
−1(Ei

j − Eδij)] = 0. (A.0.13)

Let us perturbe N,N i, respectively to solve the two constraint equations

(A.0.12) and (A.0.13).

N = 1 +N1,

N i = ∂iξ +N i
T where ∂iN

i = 0.
(A.0.14)

(A.0.14) can be interpreted as expanding N,N i to first order of R . Using

such a perturbative expansion, from (A.0.12),

N1 =
Ṙ
H
. (A.0.15)

and from (A.0.13),

ξ = −Ṙ
H

+
a2

H
ϵχ where ∂2χ = Ṙ, (A.0.16)

respectively.

By substituting these expressions, and performing partial integral, we

obtain the second order action of R,

S(2) =
1

2

∫
d4xa3

ϕ̇2

H2

[
Ṙ2 − a−2(∂iR)2

]
(A.0.17)
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Appendix B

Conformal transformation and

Starobinsky inflation

Conformal transformation for metric gµν is defined as,

g̃µν = Ω2
(x)gµν (B.0.1)

this Ω(x) is called a conformal factor. Let us consider how Ricci scalar is

transformed for this conformal transformation. By converting from any ar-

bitrary frame to another frame, the covariant derivative of a vector ων is

∇̃µων = ∇µων − Cρ
µνωρ. (B.0.2)

where Cρ
µν is defined as,

Cρ
µν =

1

2
g̃ρσ(∇µg̃νσ +∇ν g̃σν −∇σg̃µν) (B.0.3)

note that this is not a Christoffel simbol.

Since ∇ρgµν = 0,

∇ρg̃µν = ∇ρ(Ω
2gµν) = 2Ωgµν∇ρΩ (B.0.4)

using this to Cρ
µν we have,
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Cρ
µν = Ω−1gρσ(gµσ∇νΩ + gνσ∇νΩ− gµν∇σΩ)

= 2δρ(µ∇ν) lnΩ− gµνg
ρσ∇σ lnΩ

(B.0.5)

The relationship between a curvature tensor R σ
µνρ obtained from ∇µ and

∇̃µ with curvature tensor R̃ σ
µνρ is

R̃ σ
µνρ = R σ

µνρ − (∇µC
σ
νρ −∇νC

σ
µρ − Cλ

ρµC
σ
νλ + Cλ

ρνC
σ
µλ)

= R σ
µνρ − 2∇[µC

σ
ν]ρ + 2Cλ

ρ[µC
σ
ν]λ. (B.0.6)

Substituting (B.0.5) into (B.0.6),

R̃ σ
µνρ =R σ

µνρ + 2δσ[µ∇ν]∇ρ lnΩ− 2gσλgρ[µ∇ν]∇λ lnΩ

+ 2(∇[µ lnΩ)δ
σ
ν]∇ρ lnΩ− 2(∇[µ lnΩ)gµ]ρg

σλ∇λ lnΩ

− 2gρ[µ δ
σ
ν]g

αβ∇α lnΩ∇β lnΩ

(B.0.7)

In the expression (B.0.7), we contract ν and σ. In the case of n dimensional

spacetime, we obtain

R̃µρ =Rµρ − (n− 2)∇µ∇ρ lnΩ− gµρg
αβ∇α∇β lnΩ

+ (n− 2)∇µ lnΩ∇ρ lnΩ− (n− 2)gµρg
αβ∇α lnΩ∇β lnΩ

(B.0.8)

If we contract (B.0.8) with g̃µρ = Ω−2gµρ

R̃ = Ω−2
[
R− 2(n− 1)gαβ∇α∇β lnΩ− (n− 2)(n− 1)gαβ∇α lnΩ∇β lnΩ

]
(B.0.9)

in the case of 4 dimensional spacetime (B.0.8) and (B.0.9) become,
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R̃µρ =Rµρ − 2∇µ∇ρ lnΩ− gµρg
αβ∇α∇β lnΩ

+ 2∇µ lnΩ∇ρ lnΩ− 2gµρg
αβ∇α lnΩ∇β lnΩ,

(B.0.10)

R̃ = Ω−2
[
R− 4gαβ∇α∇β lnΩ− 6gαβ∇α lnΩ∇β lnΩ

]
. (B.0.11)

These are the transformation laws of Ricci tensor and Ricci scalar by confor-

mal transformation. To derive the potential of Starobinsky inflation, we use

(B.0.11).

Starobinsky inflation

The starting point to derive the action of Starobinsky inflation is

S =

∫
d4xL =

M2
pl

2

∫ √
−gd4x

(
R +

α

2M2
pl

R2

)
. (B.0.12)

We have to find a expression that is equivalent to this action and that has

the kinetic term and potential of inflaton. To do so, we first use (B.0.12)

with scalar fields φ and Lagrange multiplier χ,

S =
M2

pl

2

∫ √
−gd4x

(
ξφ+

α

2M2
pl

(ξφ)2 + χ(R− ξφ)

)
. (B.0.13)

(B.0.13) is equivalent to R = ξφ (B.0.12). ξ is a parameter for matching the

mass dimension.

(B.0.13) with φ to derive the relationship between φ and χ. φ is an

auxiliary field without kinetic term, and so the equation of motion is not

obtained, it gives a constraint equation.

1 +
αξ

M2
pl

φ = χ, ξφ =
M2

pl

α
(χ− 1) (B.0.14)

Substitute the second expression of (B.0.14) into (B.0.13), and we can remove

φ.
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S =
M2

pl

2

∫ √
−gd4x

(
M2

pl

α
(χ− 1) +

α

2M2
pl

(
M2

pl

α
(χ− 1)

)2

+ χR− χ
M2

pl

α
(χ− 1))

)

=
M2

pl

2

∫ √
−gd4x

(
χR +

M2
pl

α
(χ− 1)

(
1 +

1

2
(χ− 1)− χ

))
=
M2

pl

2

∫ √
−gd4x

(
χR−

M2
pl

2α
(χ− 1)2

)
(B.0.15)

(B.0.15) there is a coupling between χ and R (called non-minimal coupling).

Thus graviton’s kinetic term is not canonically normalized. Therefore, using

the conformal transformation described above, let us consider moving to a

frame without non-minimal coupling.

We introduce a new scalar field ϕ to χ in (B.0.15),

χ = exp

√
2

3

ϕ

Mpl

(B.0.16)

In addition to the above (B.0.11), conformal factor Ω is set to

Ω2 = χ = exp

√
2

3

ϕ

Mpl

, Ω = exp
1√
6

ϕ

Mpl

(B.0.17)

Now we have lnΩ = 1√
6

ϕ
Mpl

, and so

χR = e

√
2
3

ϕ
MplR = R̃− 4g̃αβ∇̃α∇̃β

(
1√
6

ϕ

Mpl

)
− 6g̃αβ∇̃α

(
1√
6

ϕ

Mpl

)
∇̃β

(
1√
6

ϕ

Mpl

)
= R̃−

√
2

3M2
pl

∂µ∂µϕ− 1

m2
pl

g̃αβ∇̃αϕ∇̃βϕ

(B.0.18)

However, here the frame with the tilde is replaced with the frame without

the tilde, and it is just redefinition. Since this second term is total derivative,

it can be dropped in the action integral.

From (B.0.15) and (B.0.18)

117



S =
M2

pl

2

∫ √
−gd4x

(
χR−

M2
pl

2α
(χ− 1)2

)
=
M2

pl

2

∫ √
−g̃d4x

(
R̃− 1

M2
pl

gαβ∂αϕ∂βϕ−
M2

pl

2α
(e

√
2
3

ϕ
Mpl − 1)2

)
,

S =

∫ √
−g̃d4x

(
M2

pl

2
R̃− 1

2
g̃αβ∂αϕ∂βϕ−

M4
pl

4α
(e

√
2
3

ϕ
Mpl − 1)2

)
.

(B.0.19)

Note that the covariant derivative of the scalar field becomes the normal

derivative. (B.0.19) is an explicit expression of the action of Starobinsky

inflation that we have wanted to obtain.
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