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Ohta, Tazro 

 

Abstract 

 

Genomic science has become a big data science since the advent of the 

high-throughput sequencing (HTSeq) technologies which produce a massive amount of 

nucleotide sequence data. Sequence Read Archive (SRA) is a public data repository for 

the HTSeq, where researchers submit the raw data from HTSeq experiments, now 

archives more than 4 million samples. To extract biological knowledge from these big 

data of genome sequences, researchers need to use computational software to perform 

various kinds of data analysis. 

 

Performing genomic data analysis is often a complicated process because many 

factors affect the application of data analysis software. For example, researchers need to 

confirm the target molecules, the nature of the sequenced sample, the applied 

experimental instruments, and the used reagents to select appropriate software for data 

analysis. Researchers also have to understand the software operation often with many 

options and input parameters. Without sufficient background information and accurate 

operation of software, one cannot perform a proper data analysis, which results in 

producing the unreliable output. Thus, the precise description of the data analysis 

process is a key to evaluate the output of the research. However, it is not a manageable 

task for researchers to describe the precise process of knowledge extraction from the 
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data without a system to support. Therefore, in this research through the case of 

database development from the public sequencing data, I propose the methods to 

describe the data analysis process to remove uncertainty. 

 

To describe the precise information of input data for the analysis, I developed 

the methods to integrate sample metadata with publication information and statistics of 

sequencing quality. The developed system integrated the sample metadata with the 

related publication, which also enabled researchers to find related data from the public 

database easily. The calculated quality statistics of each sequencing data can provide 

more comparable attributes of the data rather than free text. The additional information 

helped to supplement the lack of description in the metadata, which also helps 

researchers to interpret the output of data analysis.  

 

The description of software used in the data analysis is also crucial to evaluate 

the output of the analysis. To describe the process of data analysis without any uncertain 

points, I developed a method to package the operations in an executable form with 

runtime information. The developed system called CWL-metrics works with Common 

Workflow Language (CWL), a community standard of workflow description, which one 

can describe the operations of tools and workflows. CWL enables researchers to write 

their workflows in a format that is executable by several workflow runner 

implementations. CWL-metrics provides additional information of runtime metrics to 

the CWL description, which makes workflows highly portable and reproducible.  
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The additional information to input data and the method to describe data analysis 

workflow in a reproducible form enable researchers to perform data analysis with a 

precise description of its processes. To demonstrate the data analysis with these 

methods, I developed a database and a web application using the public HTSeq data. 

The database, ChIP-Atlas, is to provide the results of data analysis of the public 

ChIP-Seq and DNase-Seq to show the comprehensive data of transcription factor 

binding sites and open chromatin regions. By using the proposed methods to make data 

analysis process transparent, the users of ChIP-Atlas can evaluate the result of the 

analysis with the precise description of sample metadata and the data analysis 

workflow. 
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CHAPTER 1 

 
INTRODUCTION 

 
 

Genomic science has made a significant achievement as an important research           

field in life science since its early history, which also has been providing useful              

techniques for the whole biological research domains. Researchers use nucleotide          

sequencing technologies not only as the method to survey the functions of genes and the               

relationship with phenotypes, but also for taxonomic classification, studies of evolution,           

or detection of microorganisms in an environment. Behind the wide range of            

applications of the method, there is a fundamental contribution of the nucleotide            

sequences accumulated by the past studies, and the databases which manage them. 

 

In the late 1970s, following the rise of nucleotide sequencing method, there were             

emerging discussions for the needs of a database to share the nucleotide sequencing data              

[1]. In 1982, the EMBL-bank started in the European Molecular Biology Laboratory            

(EMBL) Heidelberg to collect and share the nucleotide sequencing data, followed by            

the GenBank database started in the Los Alamos National Laboratory [2]. In 1986, the              

DNA Data Bank of Japan (DDBJ) launched to accept submissions of nucleotide            

sequencing data [3]. The three databases started the International Nucleotide Sequence           

Database Collaboration (INSDC) where they exchange the submitted data and          

collaborate to maintain the regulations on data sharing [4]. 
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At the same time of the foundation of the public nucleotide sequence databases,             

the researchers in National Institute of Health (NIH) developed the algorithm of            

similarity search against nucleotide and protein sequence database [5]. The genomic           

science made the first great leap by this method to compare sequences to find similar               

sequences which may have similar molecular functions. This method has changed the            

role of the nucleotide database from the box to store the evidence of the past studies to                 

the platform to share the data as a material for further research.  

 

In the middle of '00s, there were epic changes in the sequencing technology. The              

techniques which enable highly parallelized nucleotide sequencing are called the "next           

generation." The instruments which appeared first such as Roche 454, Illumina Genome            

Analyzer, or Applied Biosystems SOLiD enabled to sequence a massive amount of            

DNA sequences, though the length of one sequence was shorter and the accuracy of              

base call was lower in comparison with the previous Sanger sequencing method [6]. The              

methods to comprehensively sequence input DNA molecules became the new booster           

for biological research, and its advent has the INSDC start the new data repository              

called Short Read Archive, which the INSDC later changed its name to Sequence Read              

Archive (SRA) [7].  

 

The "traditional" nucleotide sequence database accepts submissions of        

nucleotide information, then made them public in the form of a text file which includes               

nucleotide sequence represented by alphabetical characters. On the other hand, SRA           

accepts submissions of raw sequencing data in the form of a FASTQ file, which records               

nucleotide sequences and its base call accuracy encoded in ASCII codes [8]. The rapid              
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advance of the next generation sequencing, now called high-throughput sequencing          

(HTSeq) technologies results in a tremendous amount of data submissions to SRA,            

which made more than eight quadrillion bytes of sequences submitted in these ten years              

[9]. The fast growth of the number of submissions has increased the cost of data storage,                

which has The National Center for Biotechnology Information (NCBI) issued an           

announcement that they no longer accept submissions to SRA, which was later            

withdrawn [10]. Until today, the INSDC still manage to keep the data repository by              

using data compression formats such as SRA format or CRAM format [11].  

 

The advance of the HTSeq technologies and the accumulated data in the            

database has changed the genomic science into a data-driven science. Unlike the            

conventional hypothesis-driven approach using the methods of molecular biology, the          

genomics as a data-driven, so-called big data science describes biological functions by            

analyzing data obtained from the high-throughput measurement methods which capture          

molecules in the sample material comprehensively. This approach based on capturing           

whole molecules is generically called Omics research. The genomic science from the            

late '00s was the beginning of the era of knowledge acquisition from the massive              

amount of nucleotide sequencing data. 

 

The data produced by nucleotide sequencing instruments are a number of           

fragments of the nucleotide sequence (read) which is not understandable in the raw             

format. To acquire biological knowledge from the reads, one needs to perform data             

processing and data analysis on a computer. The data processing is a step to recover the                

genomic sequence from sequence read using existing biological knowledge. This          

6 



process includes trimming of the reads of low-quality base calling, read mapping to the              

reference sequence, or de novo assembly. The following data analysis step is to extract              

biological features from the genome or cDNA sequence obtained from the data            

processing. Those steps of data processing and analyzing are often called "data analysis"             

as one component of the scientific workflow. There are various factors that define the              

software used for the data analysis. For example, used sequencing instruments and            

reagents, sequenced samples, types of measured molecules, experimental treatment, or          

the biological features of interest may affect the selection of software.  

 

In the data-driven science where the knowledge comes from the extensive           

amount of data, a factor that is responsible for the reliability of the knowledge is the                

quality of data analysis. The data analysis of good quality requires followings: selecting             

appropriate software and input parameters according to the character of the input data,             

executing the selected set of software properly, and providing provenance information           

of the output result. 

 

However, researchers have no sufficient tools to ensure the quality of the data             

analysis in genomic science. Without the reliability to the data analysis, one cannot trust              

the results of studies. To make a research output more reliable, researchers need to              

describe more details of data analysis, which improves the transparency and removes            

the uncertainty. There are two major points concerning the description of the data             

analysis. First, researchers need to have methods to describe information of the input             

data to the analysis. The incorrect, insufficient, or unclear background information of            

input data leads to the usage of an inappropriate software or the misinterpretation of the               
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analysis result. Another is the description of tracking the steps of data analysis, which is               

required to perform replication. The information regarding to data analysis includes           

information of software, versions of software and libraries, input parameters, and the            

used computational environment, which are necessary to reproduce the data analysis.  

 

Therefore, in this research, I propose methods to eliminate uncertainty from the            

data analysis of genomic research through the case study to construct the database from              

the public HTSeq database. First, I developed methods to integrate metadata of input             

data with external sources such as publications or statistics of sequencing quality            

(Chapter 2). The metadata recorded in the database often lack the information required             

for further data analysis. Thus, adding more description to the input data enabled to              

provide more information for the interpretation of analysis results. Following the           

extension of data description, I developed the method to describe the steps and the              

environment of data analysis on a computer (Chapter 3). Using a description framework             

for software tools and workflows, I described the process of data analysis in a              

reproducible manner. The description of data analysis also includes the information of            

runtime and environment. The use of description framework and environment          

information removes any uncertain points from the actions taken in the data analysis,             

which enable to replicate the data analysis by a different actor in a different computing               

platform. With these methods to make the process of data analysis transparent, I             

developed a database and a web application that users can access the process of data               

analysis, and the result data with referring the information of input data (Chapter 4). The               

database is already widely used for genomic researches, which shows that the            
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transparency of the knowledge acquisition process is the key to provide a useful tool for               

genomic research.  
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INTEGRATION OF SAMPLE METADATA WITH PUBLICATION AND QUALITY 
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Background 

 

The publication of primary data used as evidence is essential for ensuring            

transparency and reproducibility in scientific research, but also important for promoting           

the reuse of data in future research activities [12,13]. In the last decade, the rapid               

advance of HTSeq technologies has enabled omics research projects to produce massive            

amounts of data, which have huge potential for reuse from different perspectives [14].             

An increasing number of sets of omics data are being produced not only by international               

consortiums but also from individual research projects [15]. However, only a portion of             

all archived data derived from large projects is frequently being reused, in contrast to              

data from individual studies. This is probably because users prefer to collect data from a               

single project that had a sufficient number of samples and that were produced by              

experiments under reliable conditions with precise sample metadata, thus ensuring the           

quality of the data.  

 

With the simple keyword search model used in SRA, users often get too large or               

too small number of search results since there is a bias of the number of submission per                 

data type. For example, a search performed on 26 September 2018 with the query              

"human liver RNA-seq" got 5298 matches on NCBI SRA data search on . On the other                

hand, the query "whale liver RNA-seq" only returned 16 matched records, while 4 of              

them are dolphins. Without knowing this submission number bias, users are not able to              

evaluate if the number of search results is reasonable. Furthermore, the search index is              
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built on the metadata described by the data submitters, which means that the data with               

insufficient metadata cannot be found on the data search. 

 

To promote the reuse of combined sets of data from multiple projects, public             

repositories have to provide a filtering feature in data searches, so that users can control               

the number of experiments and quality of the data in their searches. Currently, data              

searches provided by repositories based on metadata described by the data submitter            

cannot be used for filtering by data quality. To enable such filtering, repositories have to               

provide information on the quality of sequence data. 

 

Providing information on data quality can also provide insight into the data            

repository itself. Basic quality values, for example, mean and median levels of            

sequencing throughput, read length, or base call accuracy of the specific sequencing            

method, are important to obtain an overview of the archive. These values can be used to                

illustrate the overall distribution of data in the repository. The distribution can show the              

standard of data quality; thus, a user can use these values to filter out inappropriate               

datasets from among the thousands of search results. 

 

Therefore, I developed a framework that integrates sample metadata with related           

information from different sources to enable precise provenance tracking of published           

data. Sample metadata often have only qualitative information such as biological           

sources or preservation condition. The framework added two different information          

sources. The first is the background information of the project used the sample, and the               

second is the quantitative information that can be calculated from the obtained data.             
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Those two types of additional information can provide more insights to the published             

data and the samples, and enable more practical data search. 

 

Methods 

 

Articles extraction related to each SRA entry 

The publications that refer to SRA data are listed to improve the accessibility of              

archived data. First, a collection of the PubMed IDs (PMIDs) cited in the reference              

sections of the whole SRA metadata was performed, followed by the extraction of SRA              

IDs from journal articles in MEDLINE. The external database section of MEDLINE            

does not have the SRA IDs to refer the data used in the research, while identifiers of the                  

other database such as GenBank or OMIM were recorded. Therefore, SRA IDs were             

extracted from the full-text versions of articles in PubMed Central (PMC) and the             

websites of the journals that were freely available for parsing using regular expression             

pattern matching. In particular, the articles which the MeSH term ‘‘High-throughput           

Nucleotide Sequencing’’ was assigned were used for the ID extraction. The SRA IDs             

extracted from journal articles are often not the same IDs used for submissions (i.e.,              

start from SRA, ERA and DRA) or study (i.e. SRP, ERP and DRP), but are the IDs used                  

for experiment (start from SRX, ERX and DRX) or run (SRR, ERR and DRR). Thus,               

the extracted IDs were converted to the corresponding SRA study IDs by the ID              

mapping table previously constructed. 
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Some transcriptome data captured by HTSeq are also submitted to the Gene            

Expression Omnibus (GEO). Since publications often cite GEO IDs as links to the data,              

GEO IDs and the related PMIDs are collected from the entire set of GEO data               

downloaded from the NCBI FTP site [16]. GEO has three types of identifiers, GDS for               

dataset, GSE for data series, and GSM for samples. All the GEO identifiers found in               

publications are converted to correspond SRA IDs using metadata submitted to GEO            

and SRA. Accordingly, I constructed a publication list referring to SRA data, showing             

publication title, journal name, PMID and referring SRA ID and data title. 

 

Building search index and implementation of web application 

Using the pairs of PMID and SRA ID, the metadata of publications are retrieved              

from NCBI Eutils service [17] and metadata of SRA from NCBI FTP site [18]. All the                

fields recorded in PubMed entries and PMC entries were gathered to be linked to SRA               

metadata. I built the search index with full text search engine framework groonga [19].              

The source code of the web application is available on GitHub [20].  

 

Data retrieval from the data repository for quality calculation 

I downloaded data from the FTP server of the DDBJ [21] by using the ​lftp 

command. Most of the data were downloaded as a FASTQ format file. When data were 

only available in SRA format, I decompressed the data to FASTQ format by using the 

fastq-dump​ command of the SRA toolkit (ver. 2.5.1). The decompress command is 

performed with the ​--split-3 ​ option to split paired-end files into individual FASTQ files. 

Downloaded data were analyzed by md5 checksum to confirm that they were not 

corrupt. 
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Extraction of sequencing quality information 

First, I performed FastQC [22] via the command line with options 

--no-extraction ​ and ​--threads 4. ​ The versions of FastQC software used in this study 

were 0.10.0, 0.10.1, and 0.11.3, depending on the date when each sequencing run was 

performed. I confirmed that there were no differences in the results of the modules that I 

used among the versions. I parsed the result files of FastQC (fastqc_data.txt) by the 

bioruby [23] module ​bio-fastqc​ [24], which I developed based on biogem [25]. The 

results from paired-end reads were concatenated by calculating the average values for 

each quality value, excluding values of the total number of sequences that were 

summed. If an experiment involved multiple sequencing runs, quality values were also 

concatenated to create comparable values for each experiment. By using relation of 

SRA Experiment ID and BioSample ID, calculated quality values, experimental 

metadata, and sample organism metadata were assembled. The code is available online 

[26]. 

 

Publishing quality data as linked open data 

I published the individual results of FastQC for each sequencing run on the web 

server [27]. Each set of sequencing quality data was converted into RDF format and 

deposited in the NBDC RDF portal [28]. I developed an ontology to describe 

sequencing quality information, namely, sequence statistics ontology, and also 

published it in the NBDC RDF portal. 

 

Visualization of the data distribution in the repository 
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Visualization of the distribution of data was performed using R language (ver. 

3.2.3) [29] and library ggplot2 (ver. 2.1.0) [30]. The code is available online [26].  

 

Results 

 

Trends and growth of SRA entries 

The HTSeq technologies are applied to the various research purposes including           

whole genome sequencing, transcriptome analysis, and metagenomics. To classify the          

projects available on SRA according to the sequencing applications, I extracted the            

study type fields from metadata and visualized by a line chart (Figure 2.1). As of               

September 2018, SRA has over 150,000 projects where the number was just 14,000 in              

March 2013. About one third of the total (52388) are projects for whole genome              

sequencing, became 8 times larger than the same category in 2013. The other major              

projects are of metagenomics (23360) and transcriptome analysis (21509), dramatically          

increased the numbers from 1240 and 1983 in March 2013, respectively. Further, I             

investigated experiments archived in SRA by using sequencing platform (Figure 2.2).           

Once the Illumina Genome Analyzer II was the dominant of ones used for data in SRA,                

but in 2018, it became just 2.4% of total experiments (115231/4805611). The current             

dominant is, surprisingly, still the Illumina HiSeq 2000 as it was in 2013. There were               

several newcomers in this sequencing instrument market, but none of them could reach             

to the top 10 instruments, at least by the number of experiments. Each instrument has its                

strength and suitable application, thus the number does not reflect the power of             
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instrument, but just popularity. This numbers are a heads-up for users that they need to               

care of this huge bias in numbers of submissions when they perform data search. 

 

 

 

Figure 2.1: The growth of SRA data categorized by project types 

The growth of the number of SRA studies categorized by project types. The number of               

experiments for Whole Genome Sequence has been the largest part of the SRA since the               

beginning of SRA. 
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Figure 2.2: The growth of SRA data categorized by sequencing platforms 

The growth of the number of SRA experiments categorized by sequencing platforms.            

HiSeq 2000 has been the dominant of the market since late 2012. Users must concern               

this huge bias of the instruments when they perform data search specifying a used              

sequencing instrument. 

 

Building a list of publications that refer SRA entries 

There are HTSeq data submitted to SRA before their papers get published. This             

means that one cannot access the details of all the sequencing projects that are found in                

SRA. To investigate the numbers of publications that are linked to SRA data, the              

publication list was generated from the identifiers found in SRA metadata and            

publication data in MEDLINE. The SRA IDs extracted from journal articles are often             

not the IDs used for submissions or study, thus the extracted IDs are converted to their                

corresponding study IDs using the ID mapping table provided by NCBI [31]. There are              
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24501 pairs of SRA ID and PubMed ID, which 30 times of the number in 2013. The                 

number is relatively small in comparison with the number of projects archived in SRA.              

It may be because of the failure of ID retrieval from the publications that describe the                

identifiers in supplementary files such as PDF files available only on journal websites.             

However, for those entries having related publication information are able to be found             

by their metadata with publication information such as authors, affiliations, or versions            

of reagents or software described in materials and methods section in a publication. I              

used Groonga, a software for building full-text search engine, to build a search index by               

original SRA metadata with related publication information, including full-text data          

available on PMC.  

 

Implementing web application interface for data search 

To perform efficient data search, it is required to have an interface that can              

control the number of target entries to which users submit a keyword query. I              

implemented a web interface for data search, which has two steps for search. First, users               

are required to select facets to reduce the number of target entries. The facets are sample                

organism, sequencing application, and sequencing instrument (Figure 2.3). The         

interface shows the number of entries match to the facets and the combination of them,               

which remind users the number of data available in SRA for each metadata field. Users               

can select "show all" option to browse the list of selected entries or submit a keyword                

query to the target entries. This two-step search interface helps users to understand the              

number of data of their interest, which avoid repeating keyword search that only             

matches the small number of entries. 
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Figure 2.3: The visualization of filtering condition on data search 

An example of a data search trial to find the RNA-seq data. The submitted filtering               

condition was a combination of ​Orcinus orca as an organism, Transcriptome analysis as             

sequencing application, and Illumina HiSeq 2000 as sequencing instrument. The search           

index has no result as shown at the top donut graph, but one can understand there is only                  

one data entry sequenced ​Orcinus orca ​, while the sequencing application and platform            

were not the factors to reduce the number of matched entries. 
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Browsing search results by project report format 

The search interfaces provided by the INSDC members show the search result            

separated for each object, such as project, experiment, sample, or run. This makes users              

to get lost on the websites unless they understand the complexity of the metadata object               

relationship. Therefore, in the newly implemented data search application, the search           

result shows information integrated multiple objects into one project (Figure 2.4). The            

result page shows the main three facets on top followed by related publications,             

materials, and methods of the articles, a list of publications that cite the article. In the                

bottom of the page, sample information is summarized in a table where users can              

perform filtering or sorting. The table data can be exported to TSV or JSON format file                

to download. This result page format helps users to find data of their interest effectively. 
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Figure 2.4: Report formatted SRA data search result 

The search result page of DRP000950 on the faceting search web application. The page              

shows key metadata used for faceting search on the top, and related article summary              

with headings of methods and result of the manuscript, publications citing the paper,             

sequencing profile with read condition, information of sequenced samples, and          

hyperlinks to external resources. The actual looking of the result page differs since the              
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screenshot expands links of buttons, and the click-to-expand actions are embedded on            

headings of paper information. 

 

API implementation for programmatic data search 

The web application interface is not sufficient for the cases that users have to              

inspect metadata fields of many entries matched to the query. There are also cases that               

users want to collect and analyze metadata fields from a large number of entries. To               

help those use cases, I implemented an Application Program Interface (API) to perform             

large-scale data search. Users can access the server with the syntax to get results in               

JSON format (Table 2.1). API accepts standard HTTP GET/POST requests, which           

makes it easy to create scripts in any programming languages to access the system. This               

feature enables efficient data search trials which handle more than tens of thousands of              

search results. 

 

 

Command 

HTTP 
Metho
d URI format Example 

Response data 
type 

Count number 
of entries GET /<object type> /api/bioproject 

Number of 
entries 
(integer) 

Get an entry by 
ID GET /<object type>/<id> /api/biosample/SAMD00062996 

Full metadata 
object 

Get entries by 
multiple IDs POST /<object type> /api/biosample 

A list of full 
metadata 
object 

List unique 
values GET 

/<object type>/<key 
name> 

/api/sra/experiment/instrument_
model 

A list of values 
with counts 

Keyword search 
(specific field) GET 

/<object 
type>?<key>=<value> 

/api/biosample?taxid=9606&title
=breast%20cancer 

A list of 
identifiers 

Keyword search 
(all fields) GET 

/<object 
type>?term=<value> 

/api/biosample?term=hot%20spri
ng 

A list of 
identifiers 
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Range search GET 

/<object type>?<date 
field>=<date1>TO<date2
> 

/api/bioproject?submission_date
=2017-01-01TO2017-12-31 

A list of 
identifiers 

 

Table 2.1: The SRA data search API reference 

The commands to perform metadata search via RESTful API. Users can use a command              

line interface or web browser to access the URIs to get JSON formatted search result.               

Users can use a keyword search and range search functions to get identifiers of entries               

of interest, then get full metadata of the entries by using GET or POST method. The                

return values are all JSON format which allows users to use their favorite programming              

language or framework. 

 

Downloading of sequencing data 

To calculate quality values of sequencing data, I downloaded the data from the             

SRA, which is the largest public repository for HTSeq data [11]. Sequencing data             

containing personally identifiable information that should be shared in a          

controlled-access manner are not archived in SRA. In this study, I downloaded            

open-access SRA data stored in FASTQ format from the FTP server of the DDBJ [32]. 

 

I analyzed all of the publicly available HTSeq data submitted to SRA up until              

December 2015. The total number of sequenced samples was 1,171,313 and the number             

of sequenced bases was more than 2.7 trillion. The varieties of sequencing methods,             

sequencing instruments, and sequenced sample organisms are shown in Figure 2.5,           

which were extracted from the metadata described by the data submitter. The most             

common sequencing method is the whole-genome shotgun (WGS) approach, which was           
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employed for 426,841 samples, or 36.4% of the total. The number of different             

sequenced organisms is 33,961, based on the Taxonomy ID. The most commonly            

sequenced organism in SRA is human, with 216,896 samples, or 18.5% of the total,              

while the total number of samples whose scientific name contains “metagenome” is            

244,457, or 20.9% of the total. The number of experiments counted by the sequencing              

instrument model used shows that Illumina HiSeq 2000 is the most commonly used             

instrument in SRA, with 542,332 experiments, or 46.3% of the total. 
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Figure 2.5: Performed sequencing experiments and sequenced samples of public          

data for quality calculation 

(a) Bar plot of the top 20 library strategies. Values are categorical, retrieved from              

metadata described by the data submitter. (b) Bar plot of the top 20 sequenced sample               

organisms. Taxonomy information is retrieved from the NCBI taxonomy database and           

declared by the data submitter. (c) Bar plot of sequencing instrument models. 

 

Calculation of sequence read quality 

To enable filtering of the search results in the repository by quality information,             

I extracted sequence read quality values from raw sequencing data using FastQC.            

FastQC is one of the most popular software programs for performing quality control of              

HTSeq data [22]. By using the results from FastQC, I calculated comparable values of              

sequence data, such as the total number of reads, mean and median sequence read              

length, %GC, read duplicate percentage, mean and median base call accuracy, and            

percentage of failed base calling (N content) (Table 2.2). The read quality values were              

calculated for each downloaded set of sequencing run data in FASTQ format, and then              

assembled using the SRA Experiment ID. 

 

 

Calculated quality value Numbers of multiple runs in an 

experiment 

Used FastQC modules 

Total Number of Reads Added Basic Statistics module 

Mean/Median Read Length Average Sequence Length Distribution module 
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%GC Average Basic Statistics module 

Total Duplicate Percentage Average Duplicate Sequences module 

Mean/Median Base Call Accuracy Average Per Base Sequence Quality module 

N Content Average Per Base N Content module 

 

Table 2.2: Calculated sequence quality values 

The list of calculated values with methods to merge multiple values in one experiment              

and used FastQC modules.  

 

I integrated the categorical values described in metadata of the sample and            

experiment with calculated read quality data. Experimental metadata were extracted          

from an SRA metadata XML file downloaded from the FTP server of the NCBI Sample               

information was extracted from the XML file downloaded from BioSample, a database            

maintained by the INSDC to archive information on biological materials [33]. 

 

The state of the HTSeq repository visualized by the distribution of data quality 

Providing sequence data quality enables users to control the number of search            

results from a data repository. The integration of information on data quality with             

metadata of samples and experiments can be used to develop a better search function.              

However, to offer a method of obtaining a suitable dataset from thousands of search              

results, it is necessary to know the standard of data quality and the data distribution in                

the repository. To illustrate the state of publicly available HTSeq data using quality             

values, histograms were created for sequencing throughput, base call accuracy, and N            
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content (Figure 2.6, Figure 2.7, Figure 2.8, Figure 2.9). As Figure 2.5 shows, there is a                

huge bias in numbers of sequencing methods, sequenced organisms, and used           

sequencing instruments. Thus, I focused on the factor that defines the range of the              

quality values, not the count of data, which is probably affected by the bias of the                

number of sequencing instruments. To understand the data attribute that is decisive to its              

distribution, histograms were color-coded (Figure 2.6b, 2.6d) or separated (Figure 2.7,           

Figure 2.8) in terms of the metadata of sequencing experiments and sequenced sample             

organisms. In the histograms of sequencing throughput, library source, particularly          

genomic, transcriptomic, or metagenomic source of sequencing, clearly explains the          

distribution of sequenced bases (Figure 2.6a, 2.6b, Figure 2.7). Overall, the mean value             

of throughput was 2.371e+09 and the median value was 3.349e+08. In the histogram of              

base call accuracy, as expected, the values are strongly affected by the choice of              

sequencing chemistry (Figure 2.6c, 2.6d, Figure 2.8). The mean value of base call             

accuracy was 29.45, while the median value was 35.52. The histogram drawn by N              

content showed that 1,103,515 items, namely, 94.2% of the data, had N at less than 1%                

of the total sequences (Figure 2.9). For the data with a higher proportion of N content,                

there may have been an error in the sample DNA preparation or sequencing operation. 
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Figure 2.6: Data distribution in a public data repository by sequencing quality 

(a, b) Histogram of sequencing throughput (a), and one color-coded by library source             

(b). (c, d) Histogram of base call accuracy (c), and one color-coded by instrument              

manufacturer (d). 
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Figure 2.7: Data distribution of sequencing throughput for each set of metadata 

(a–e) Histograms of sequencing throughput (a), separated by library strategy (b), library            

source (c), top 20 taxonomic scientific names (d), and instrument manufacturer (e). 
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Figure 2.8: Data distribution of base call accuracy for each set of metadata 

(a–e) Histograms of base call accuracy (a), separated by library strategy (b), library             

source (c), top 20 taxonomic scientific names (d), and instrument manufacturer (e). 
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Figure 2.9: Data distribution by N content 

(a–f) Histograms of N content percentage per experiment. Histograms of base call            

failure of overall (a), separated by library strategy (b), library source (c), sample             

organism (d), instrument manufacturer (e), and year of data submission (f). The y-axis is              

log 10 scale. 
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Data distribution by read quality for each sequencing method 

SRA accepts the submission of various kinds of sequencing data, such as those             

obtained by WGS, RNA-Seq, ChIP-Seq, and metagenomic approaches, as well as many            

other DNA library construction strategies. To accomplish higher measurement accuracy          

and greater dynamic range, each sequencing method has ideal conditions regarding           

sequencing quality. I analyzed the distribution of data in each dataset by a library              

strategy to investigate how many performed experiments achieved such ideal          

conditions. I employed 988,678 sets of data for this analysis, which were obtained by              

the sequencing of human samples via WGS, amplicon sequencing, RNA-Seq,          

ChIP-Seq, pooled clone sequencing, or whole-exome sequencing (WXS). I visualized          

the data distribution by creating a histogram for each library strategy (Figure 2.10). The              

histograms were also separated by the sequencing instrument manufacturer to show           

which type of sequencing chemistry had been selected (Figure 2.11). In one of the six               

library strategies, namely, amplicon sequencing, multiple types of sequencing chemistry          

were used, while the others were performed mostly by the Illumina sequencing            

chemistry. The histograms indicate that the five library strategies require a larger            

number of sequence reads and higher base call quality. In contrast, experiments by other              

library strategies were performed with a short read length of around 100 bases long,              

while some amplicon sequencing experiments were performed with longer sequence          

reads of hundreds of bases. A total of 66.3% of amplicon sequencing experiments were              

performed by non-Illumina sequencers, for which the average read length was 388.4.            

This is consistent with the standards of each sequencing strategy [34]. 
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Figure 2.10: Human data distribution for each library strategy 

(a–d) Histograms separated by the top 6 library strategies. Data distribution is by the              

total number of sequences (a), median read length (b), sequencing throughput (c), and             

median base call accuracy (d) per experiment. 
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Figure 2.11: Human data distribution for each library strategy separated by           

instrument manufacturer 

(a–d) Histograms separated by the top 6 library strategies and instrument. Data            

distribution is by the total number of sequences (a), median read length (b), sequencing              

throughput (c), and median base call accuracy (d) per experiment. 
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Changes of sequencing quality during SRA’s history 

Since 2007, when the first next-generation sequencing data were submitted to           

the SRA, there have been rapid advances in the sequencing technology regarding both             

the instruments and the chemistry, which have significantly improved the quality of            

sequencing data. The improved specs of sequencers have enabled various new           

sequencing methods to be developed, but have also helped improve the data quality             

output by existing methods. I visualized the changes of quality values for each             

sequencing method over time. A change in four sequencing qualities, total number of             

reads, read length, sequencing throughput, and base call quality, of six library strategies,             

WGS, amplicon, RNA-Seq, ChIP-Seq, pooled clone, and WXS, are visualized by box            

plots in quarterly time series (Figure 2.12, Figure 2.13). While the plots of pooled clone               

sequencing could not be evaluated due to a lack of continuous data submission, the plots               

of the other strategies show their trends over time. The plots of amplicon sequencing              

show no specific tendency, probably indicating that such sequencing quality values are            

determined by the characteristics of each sequencing project, surveying of which           

requires more detailed metadata. In ChIP-Seq and WXS, sequencing throughput          

increased slightly over time. In plots of base call accuracy, ChIP-Seq, RNA-Seq, WGS,             

and WXS showed increases of the value, possibly reflecting the improvement of            

sequencing technologies. 
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Figure 2.12: Change of data distribution by sequencing quality over time 

(a, b) Box plots separated by the top 6 library strategies, showing quarterly change. Data               

distribution is by the sequencing throughput (a) and median base call accuracy (b) per              

experiment. The numbers in plots indicate the numbers of samples in a row. The lines               

connecting boxes indicate changes of mean value. 
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Figure 2.13: Change of data distribution by number of reads and read length over              

time. 

Box plot of sequence quality per experiment over time. (a) Data distribution by total              

number of sequence reads per experiment. (b) Data distribution by median sequence            

read length per experiment. 

 

Discussion 

 

I constructed a data search index to integrate related publication information.           

This extended metadata enabled users to search with queries of more variations.            

However, using the contents of the published article as metadata of archived data also              

have a problem. The system cannot remove irrelevant information from the contents,            

and the information can cause search noise.  

 

To reduce the cost to evaluate search results, I developed the web application             

with an interface to show the integrated search result in a report-like format. The              

interface was designed to help users' decision to use the matched data by organizing              

related information and emphasizing main attributes. Also, for the search cases that            

have many matched entries, I implemented API to allow programmatic access which            

helps users to perform a large scale data exploration efficiently. 
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As the number of pairs of PMID and SRA ID was smaller than that of total                

projects, connecting publications to improve findability of data has a limitation. It is             

also important to help data submitters to describe metadata richer in quality and             

quantity. The INSDC started to ask submitters to use the packages per sequencing             

purpose, which define required and recommended fields of sample or experiment           

metadata with the data type and a controlled vocabulary set to be used [35]. It is obvious                 

that cooperation of the database administrators and data submitters to improve the value             

of archived data, and the database itself. 

 

By calculating the quantitative variables of sequencing data and integrating them           

with information on experiments and sample organisms, I enabled an appropriate size of             

the subset to be obtained from multiple projects archived in the repository. Without any              

quantitative information, users cannot choose a reliable dataset from among thousands           

of search hits. When users search data with a query of sample-related information, such              

as a treatment of biological materials, the number of search results tends to be very               

small or too large for users to be able to browse through, due to the lack of detailed                  

metadata. It is also claimed that the metadata described by data submitter lack some              

important information, or may contain errors [36]. In contrast, my results can provide             

information in a way that enables users to look into a large dataset and control the                

amount of data output by their search by setting a threshold regarding the quality value. 

 

The amount and the accuracy of sequencing data is drastically changing in these             

years. This means that database users have to care about the details of the experiment,               

for example, date of sequencing or used sequencing equipment for each database entry.             
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The quality information of public sequencing data provided by my work can be used to               

evaluate the reliability of entries in biological databases, such as genome variations or             

gene expressions. 
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Background 

 

According to the improvement of DNA sequencing technology in accuracy and           

quantity, various sequencing methods are now available to measure different genomic           

features. Each method produces a massive amount of nucleotide sequence data that            

requires a different data processing approach [37]. Bioinformatics researchers develop          

data analysis tools for each sequencing technique, and they publish implementations as            

open source software [38]. To start data analysis, researchers need to select the tools by               

their experimental design and install them to their computing environment. 

 

Installing open source tools in one's computational environment is, however, not           

always straightforward. Tools developed by different developers and different         

programming framework require different prerequisites, which forces one to follow the           

instruction provided by each tool's developer. Installing various software in one           

environment also can occur a conflict of software dependencies that are hard to resolve.              

Even if one could successfully install all the tools required for the analysis, maintaining              

the environment where all the tools keep working as expected is also a burden. There               

are also many events that can break the environment such as changes or updates of               

hardware, operating system, or software libraries. Therefore, the complexity of data           

analysis environment management gets higher when a project performs genomic data           

analysis that requires many tools. The high cost of setting up an environment results in               

the prevention of scaling out the computational resources as well. The difficulty also             
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brings researchers' dependency to the existing computing platform already set up, and            

the concentration of data processing jobs to the limited resource. 

 

The container virtualization technology, represented by Docker, enables users to          

create a software runtime environment isolated from the host machine [39]. This            

technology that is getting popular also in the biomedical research domain is a promising              

method to solve the problem of installing software tools [40]. Along with the containers,              

using workflow description and execution frameworks such as those from the Galaxy            

project [41] or the Common Workflow Language (CWL) project [42] lowered the            

barrier to deploy the data analysis environment to a new computing environment.            

Moreover, the workflows described in a standardized format can help researchers to            

share the environment with collaborators with ease. The improvement of portability of            

data analysis environment, consequently, has made the on-demand cloud infrastructure          

an appealing option for researchers. 

 

On-demand cloud is beneficial for most cases in genome science because users            

can increase or decrease the number of computing instances without maintaining           

hardware as the amount of data from laboratory experiments changes [43]. For example,             

some sequencing applications require data analysis software that uses a considerable           

amount of memory, but individual research projects often cannot afford such a large             

scale computing platform. Users can save their budget by using the on-demand cloud             

platform as most of the service providers charge per usage. 
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However, to use an on-demand cloud environment efficiently regarding time and           

economic cost, it is essential to select a suitable computing unit, so-called ​instance type​,              

from many options offered by the cloud service providers. For example, Amazon Web             

Service (AWS), one of the popular cloud service providers, offers instance types of             

different scales for five categories (general purpose, compute optimized, memory          

optimized, accelerated computing, and storage optimized) [44]. Each data analysis tool           

has the different minimum requirement of computational resources such as memory or            

storage, and it can change by input parameters. Executing data analysis workflows on             

an instance without enough computational resource will result in a runtime failure or             

unexpected outputs. For example, tools to assemble short reads to construct genome by             

constructing De Bruijn graph usually take long processing time and a large amount of              

memory. If one failed to estimate the required amount of memory, the process might fail               

after a few days of execution, which results in losing one's time and budget. Thus, users                

need to know the minimum amount of computational resource required by the execution             

of their workflows to select a suitable instance type. 

 

To optimize the instance type selection concerning processing time or running           

cost, users need to compare runtime metrics of workflow executions on environments of             

different computational specs. Here, I developed ​CWL-metrics ​, a system to accumulate           

runtime metrics of workflow executions with information of the workflow and the            

machine environment. CWL-metrics provides runtime metrics summary such as usage          

of CPU, memory, storage I/O with workflow's input files and parameters to help users              

to select the proper cloud instance for their workflows. 
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Methods 

 

CWL-metrics software components 

CWL-metrics runtime metrics capturing system is composed of five software          

components: Telegraf [45], Fluentd [46], Elasticsearch [47], Kibana [48], and a Perl            

daemon script. Telegraf is an agent to collect runtime metrics of running containers via              

Docker API using Telegraf Docker plugin. Fluentd works as a log data collector to send               

metrics data produced by Telegraf to Elasticsearch server. Elasticsearch is a data store             

to accumulate runtime metrics data and workflow metadata, accepting JSON format           

data via API endpoint. Kibana is a data browsing dashboard for Elasticsearch to view              

raw JSON data and to summarize and visualize data. Telegraf, Fluentd,           

Elasticsearch/Kibana launch as a set of containers during the initialization of           

CWL-metrics. CWL-metrics runs a Perl script which monitors processes on the host            

machine to capture cwltool processes. Once the script found a cwltool process, the             

script runs a function to collect workflow information via debug output of the cwltool              

process, " ​docker info ​" command output, Docker container log via " ​docker ps ​"           

command, and output of system commands to collect environment information.          

CWL-metrics provides a command ​cwl-metrics ​, which allows users to start and stop the             

metrics collection system, and fetch summarized runtime metrics data in a specified            

format, JSON or tab-separated format. The script to launch the whole system,            

CWL-metrics installation instructions, and the documentation are available on GitHub          

[49].  
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Packaging RNA-Seq tools and workflows 

I used 7 different RNA-Seq quantification workflows to capture runtime metrics           

and analyze performance on cloud infrastructure. Each workflow starts with the tool to             

download sequence data from SRA, then convert SRA format file to FASTQ format.             

Consequently, each pipeline does sequence alignment to reference genome sequence          

(HISAT2, STAR, and TopHat2) or alignment-like approaches (Kallisto and Salmon) to           

the set of reference transcript sequence, then perform transcript quantification. Most of            

the tool containers used in the workflows are from the Biocontainers [50] registry. I              

containerized the tools those are not available on the registry and uploaded them to the               

container registry service Quay [51]. I described tool definitions such as input and             

output of tool execution and the workflow procedures in CWL tool files, which are              

available on GitHub [52]. Each workflow has two options for sequence read layout             

single-end and paired-end; thus I used fourteen workflows in total. The Table 3.1 shows              

the tool versions, the online location of the CWL tool files, and the original tool website                

locations. 

 

Select RNA-Seq workflow input sequence data from the public data repository 

To analyze the effect of sequence data quality to workflow runtime performance,            

I chose 9 samples of different read length and number of reads from the public raw                

sequencing data repository, SRA (Table 3.2). I used the Quanto database [53] to select              

the data by filtering length and number of sequence reads, with the condition of read               

length, 50, 75, or 100 and the approximate number of sequence, 1,000,000, 5,000,000,             

or 10,000,000. I filtered the data with the query "organism == Homo sapiens", "study              

type == RNA-Seq", "read layout == PAIRED", and "instrument model == Illumina            
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HiSeq", then manually picked suitable data. Both single-end and paired-end workflows           

used the same dataset while single-end workflows treated paired-end read files reads as             

two single-end read files. The version of the reference genome is GRCh38. I             

downloaded the reference genome file from the UCSC genome browser [54], and the             

transcriptome was from Gencode [55].  

 

 

SRA Run 
ID 

Read 
length 

Number of reads 
per strand 

BioSamp
le ID Sample description 

Sequencing 
instrument 

SRR4250
750 50 1,000,425.00 

SAMN05
779985 

cultured embryonic stem 
cells 

Illumina HiSeq 

2500 

SRR5185
518 50 5,008,398.00 

SAMN06
239034 

cultured embryonic stem 
cells 

Illumina HiSeq 

2500 

SRR2932
901 50 10,017,495.00 

SAMN04
211783 fetal lung fibroblasts 

Illumina HiSeq 

2500 

SRR4428
678 75 1,043,870.00 

SAMN05
913930 

embryonic stem cell 
derived macrophage 

Illumina HiSeq 

4000 

SRR4241
930 75 5,004,985.00 

SAMN05
770731 PGC-like cells (PGCLCs) 

Illumina HiSeq 

2000 

ERR2048
93 75 10,234,883.00 

SAMEA1
573291 lymphoblastoid cell line 

Illumina HiSeq 

2000 

SRR5168
756 100 1,006,868.00 

SAMN06
218220 subcutaneous metastasis 

Illumina HiSeq 

2500 

SRR5023
408 100 5,004,554.00 

SAMN06
017954 primary breast cancer 

Illumina HiSeq 

2500 

SRR2567
462 100 10,007,044.00 

SAMN04
147557 

prostate cancer cells 
LNCaP 

Illumina HiSeq 

2500 

 

Table 3.2: The read characteristics of processed RNA-Seq data 

We chose nine different RNA-Seq data from the SRA, a public HTSeq data. Each data               

are different in their read length and a total number of reads for performance              
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comparison. All data are from human sample sequenced by the Illumina HiSeq            

platform. 

 

Run workflows on AWS EC2 

To evaluate the performance on running different RNA-Seq workflows, I          

selected instance types of two different sizes 2xlarge and 4xlarge from three categories,             

general purpose, compute optimized, and memory optimized to run all workflows for all             

samples (Table 3.3). Each combination of instance type, workflow, and sample data was             

executed for five times while CWL-metrics is running on the same machine to capture              

the runtime metrics information. All workflow runs used Elastic Block Storage of            

General Purpose SSD volumes as file storage. I downloaded all the reference data used              

for workflows in advance. The scripts to get reference data and run workflows are              

available online [52]. 

 

 

Instance 
type Category vCPU ECU 

Memory 
(GiB) 

Linux/UNIX Usage (per 
Hour) 

m5.2xlarge General Purpose 8 31 32 $0.384 

m5.4xlarge General Purpose 16 60 64 $0.768 

c5.2xlarge 
Compute 
Optimized 8 34 16 $0.34 

c5.4xlarge 
Compute 
Optimized 16 68 32 $0.68 

r5.2xlarge 
Memory 
Optimized 8 31 64 $0.504 

r5.4xlarge 
Memory 
Optimized 16 60 128 $1.008 
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Table 3.3: The machine specs of AWS EC2 instance types used in the metrics              

collection 

To compare the performance of workflow runs on different computing platforms, we            

selected three categories from AWS EC2 categories, general purpose, compute          

optimized, and memory optimized. We further selected two different instance types           

from those three categories according to the number of virtual CPUs, 2xlarge and             

4xlarge, with 8 and 16 CPU cores, respectively. Instance usage prices are as of 14               

August 2018 for on-demand use in the US East (N. Virginia) region. Prices are not               

including charges for storage, network usage, and other AWS features. 

 

Collect runtime metrics and summarize 

After the workflow executions, I collected summarized metrics data from          

Elasticsearch by ​cwl-metrics fetch command. Exported JSON format data were parsed           

by a ruby script to create data summarized per workflow runs, loaded on Jupyter              

notebook [56] for further analysis. I calculated statistics of metrics by R language             

functions [29], and I created the box plots by the ggplot2 package [30]. The notebook               

file is available on GitHub [57]. 

 

Results 

 

Implementation of CWL-metrics 

51 



CWL-metrics is designed to capture runtime metrics data of workflows          

described in CWL, a workflow description specification developed by an open source            

community. I designed the system as it does not require the users to perform any               

configurations to capture runtime metrics. Figure 3.1 shows the procedures of runtime            

metrics collection by CWL-metrics. To start collecting metrics, one only needs to install             

the system, and then run their workflows with ​cwltool​, a reference implementation of             

CWL [58]. After the installation, the system starts monitoring the processes running on             

the host machine. Once the system found a cwltool process, it automatically starts             

collecting runtime metrics via Docker API and environmental information from the host            

machine. CWL-metrics also captures the log file generated by cwltool to extract            

workflow metadata such as input files and input parameters. 
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Figure 3.1: The container runtime metrics collection procedure with CWL-metrics 

CWL-metrics was designed to capture runtime metrics of workflow steps automatically.           

After the initialization of the system, users only need to run a workflow by cwltool to                

start metrics capturing. The system collects runtime metrics of containers, and then the             

workflow metadata is captured after the workflow process finished. To retrieve runtime            

metrics, using the ​cwl-metrics command can output summary data in JSON or            

tab-delimited format. 

 

To capture and store the information from multiple data source, CWL-metrics           

launches multiple components as Docker containers (Figure 3.2). These components          

keep running on the host machine after the initialization to cooperate the data collection.              

The Telegraf container collects runtime metrics data from the Docker API for every             

sixty seconds, and send the data to the Elasticsearch container. The Elasticsearch            

container provides data storage and the data access API. CWL-metrics automatically           

launches and stops these components on the single host machine. If users need to collect               

metrics of workflows running on multiple instances, they need to install CWL-metrics            

on each instance and assemble the summary data after the metrics data capture. Users              

can use their Elasticsearch server by setting environment variable ES_HOST and           

ES_PORT before initializing CWL-metrics. 

 

To access and analyze the data collected by CWL-metrics, users can use the             

command ​cwl-metrics to get the data in JSON (Figure 3.3) or tab separated values              

(TSV) format. The JSON format contains workflow metadata such as the name of the              
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workflow, the time of start and end of the workflow execution. It also has the               

information of the environment including the total amount of memory and the size of              

storage available on the machine. The steps field of the JSON format contains             

information of the runtime metrics, the executed container, and the input files and             

parameters. Users can parse the data to analyze the performance of a tool execution or               

the whole workflow. The TSV format provides minimum information for each container            

execution so that one can easily compare the metrics data of steps. 
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Figure 3.3: An example of runtime metrics data summarized by CWL-metrics 

CWL-metrics can output JSON formatted data which includes workflow metadata, tool           

container metadata, and tool container runtime metrics. The workflow metadata appears           

once for one workflow run with data of multiple steps in "steps" key while the example                

only has one step in the workflow to reduce the number of lines. Each step has a name,                  

exit status, input files with file size, and details of the Docker container. Runtime metric               

values can be null for short-time steps since CWL-metrics collects these metrics with             

sixty seconds interval. 

 

Use CWL-metrics to capture runtime metrics of RNA-Seq workflows 

As an example use case to capture and analyze runtime metrics of workflows, I              

performed an analysis to optimize instance type selection for RNA-Seq quantification           

workflows. I run 7 RNA-Seq workflows (Table 3.1) for 9 public human RNA-Seq data              

with different read length and number of reads (Table 3.2) on 6 types of AWS Elastic                

Compute Cloud (EC2) service (Table 3.3) to capture the runtime metrics with            

CWL-metrics for each combination. Each workflow description has two different          

options for read layout: single-end and paired-end. For the selection of workflows, I             

chose two read mapping tools STAR and Hisat2, with two transcriptome assembly and             

read count programs Cufflinks and StringTie. I also used two popular tools using             

alignment-like algorithms, Kallisto and Salmon. TopHat2, the program which was once           

the most popular, but now obsolete, was added among them for comparing purpose. I              

performed metrics data collection five times for each combination of workflow, input            

data, and instance type. 
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Workflo
w name Steps CWL definition files 

tophat2-
cufflinks 

download-sra, pfastq-dump, tophat2-mapping, 
cufflinks 

https://github.com/pitagora-galaxy/cwl/tre
e/master/workflows/tophat2-cufflinks 

hisat2-c
ufflinks 

download-sra, pfastq-dump, hisat2-mapping, 
samtools_sam2bam, samtools_sort, cufflinks 

https://github.com/pitagora-galaxy/cwl/tre
e/master/workflows/hisat2-cufflinks 

hisat2-st
ringtie 

download-sra, pfastq-dump, hisat2-mapping, 
samtools_sam2bam, samtools_sort, stringtie 

https://github.com/pitagora-galaxy/cwl/tre
e/master/workflows/hisat2-stringtie 

star-cuff
links 

download-sra, pfastq-dump, star-mapping, 
samtools_sam2bam, samtools_sort, cufflinks 

https://github.com/pitagora-galaxy/cwl/tre
e/master/workflows/star-cufflinks 

star-stri
ngtie 

download-sra, pfastq-dump, star-mapping, 
samtools_sam2bam, samtools_sort, stringtie 

https://github.com/pitagora-galaxy/cwl/tre
e/master/workflows/star-stringtie 

kallisto download-sra, pfastq-dump, kallisto-quant 
https://github.com/pitagora-galaxy/cwl/tre
e/master/workflows/kallisto 

salmon download-sra, pfastq-dump, salmon-quant 
https://github.com/pitagora-galaxy/cwl/tre
e/master/workflows/salmon 

 

Table 3.1: The components of RNA-Seq quantification workflows 

We described seven different RNA-Seq quantification workflows in CWL. Each          

workflow description has two different options for read layout, single-end and           

paired-end. We selected two major read mapping tools STAR and Hisat2, with two             

transcriptome assemble and read count programs Cufflinks and StringTie. We also used            

two popular tools using alignment-like algorithms, Kallisto and Salmon. We added           

TopHat2, one of the most popular but obsolete program for comparing purpose. 

 

Table 3.4 shows the summary of runtime metrics, processing duration, and the            

calculated cost of instance usage per run for two workflows, HISAT2-Cufflinks and            

TopHat2-Cufflinks. The fastest processing time was one of the HISAT2-Cufflinks          
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workflow run on the c5.4xlarge instance, but the execution at the cheapest cost was the               

HISAT2-Cufflinks workflow on the c5.2xlarge instance. It indicates that workflows on           

cloud instances can have a trade-off of the processing time and the financial cost. The               

priority of the research project, the execution speed over the financial cost or vice versa,               

will be required for the final decision of instance selection optimization. The table also              

shows the possibility of loss of time or money when one failed to choose a proper                

instance type. For example, if one used the r5.4xlarge instance to run the             

HISAT2-cufflinks workflow, it is 7% slower than c5.4xlarge, and about 1.6 times            

expensive per sample. The impact of the instance type optimization failure will be more              

serious for the data processing jobs that take days or weeks. 

 

 

Workflo
w name 

Instanc
e type 

Workflow 
duration 

Max 
CPU 
usage 

Total amount 
of memory 

Total amount of 
memory cache 

Total amount 
of BlockIO 

Cost 
per 
run 

HISAT2-
Cufflinks 

c5.2xlar
ge 1014.5 

796.8330
796 10033995776 5183479808 4748816384 0.0958 

HISAT2-
Cufflinks 

c5.4xlar
ge 778 

1595.031
529 9163902976 4314202112 1204879360 0.147 

HISAT2-
Cufflinks 

m5.2xla
rge 1013 

799.0908
131 11254398976 6396575744 1204858880 0.1081 

HISAT2-
Cufflinks 

m5.4xla
rge 846 

1538.403
444 11802640384 6938824704 331776 0.1805 

HISAT2-
Cufflinks 

r5.2xlar
ge 1015 

798.2115
564 10912165888 6065545216 3608539136 0.1421 

HISAT2-
Cufflinks 

r5.4xlar
ge 834 

1588.403
182 9973350400 5116166144 0 0.2335 

TopHat2-
Cufflinks 

c5.2xlar
ge 5139 

797.8534
259 12310124544 8869050368 12343222272 0.4854 

TopHat2-
Cufflinks 

c5.4xlar
ge 3695 

1587.471
528 15879102464 7833452544 1204891648 0.6979 

TopHat2-
Cufflinks 

m5.2xla
rge 5579 

799.5529
991 15149662208 9395200000 51970048 0.5951 
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TopHat2-
Cufflinks 

m5.4xla
rge 3981 

1595.226
713 15875092480 7913992192 49848320 0.8493 

TopHat2-
Cufflinks 

r5.2xlar
ge 5487 

798.6095
883 15152807936 9492783104 49848320 0.7682 

TopHat2-
Cufflinks 

r5.4xlar
ge 4001 

1291.353
527 15877746688 7930822656 49848320 1.1203 

 

Table 3.4: The runtime metrics comparison of TopHat2 and HISAT2 

We summarized the runtime metrics values to compare two different workflows           

HISAT2-cufflinks and TopHat2-cufflinks. All runs are of input data SRR2567462. The           

read length was 100bp, the number of reads was 10,007,044.00, and the read layout was               

single-end. The shown values are workflow duration in seconds, the maximum CPU            

usage in percentage, the total amount of memory in bytes, the total amount of cache in                

bytes, the total amount of block IO in bytes, and the cost per run in USD. We calculated                  

the median values for metrics values from the data of five times workflow iteration.              

Values can be zero for short-time steps since CWL-metrics collects these metrics with             

sixty seconds interval. 

 

Figure 3.4 shows the results of processing duration of the HISAT2-StringTie           

workflow. There are clear differences of processing time between the samples, where            

the samples of the smaller number of reads have smaller differences between the             

instance types, but the runs on instance types with more CPU (4xlarge) marked shorter              

processing time with the samples of the larger number of reads. Each workflow runs              

used as many CPU cores as available on the environment; thus the difference can be               

considered as the difference of the number of threads. The read length and the              
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processing duration also have a strong linear relationship. This result will be useful to              

estimate the resource usage from the size of input data. 

 

 

Figure 3.4: Box plot of per sample processing duration distribution of           

HISAT2-StringTie workflow 

We plotted the values of processing duration of workflow runs excluding data download             

time. The x-axis shows SRA Run ID of samples used as input data with read length and                 

number of reads. The y-axis shows the workflow processing duration in seconds. Values             

are separated and colored by the used instance type. Some runs on specific instance              

types are not in the plots because the failed executions are excluded. Each combination              

of sample and instance type were iterated five times to show the distribution of metrics.               

The plot shows that read length and the number of reads are both the factors that effect                 

to the processing duration, and the differences between instance types are relatively            

small with the smaller number of reads (1G bases), while instances with more CPU              

cores (*.4xlarge) show shorter processing duration with 10GB reads. 
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On the other hand, the result of the comparison of the total amount of memory               

per input data in Figure 3.2 needs a different interpretation. Unlike HISAT2 and             

TopHat2, Kallisto and Salmon did not show clear differences in memory usage in             

different sizes of input data. The result indicates that the users need to know the               

behavior of the tool beforehand since the resource usage depends on the algorithms and              

the implementations. 

 

 

Figure 3.2: The CWL-metrics components and working process 

CWL-metrics runs a daemon process and Docker containers on the host machine. The             

process and containers keep running until the system is terminated. Once a cwltool             

process starts running on the same machine, CWL-metrics system monitors the process            
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to get the list of workflow step containers and log files. Every sixty seconds, the               

Telegraf container try to access the Docker daemon to get runtime metrics of running              

containers. Fluentd container (not shown in the figure) sends runtime metrics data            

collected by Telegraf to the Elasticsearch container. CWL-metrics daemon process          

captures cwltool log file and sends workflow metadata to Elasticsearch. 

 

The runtime metrics data provided by CWL-metrics also helps to perform a tool             

comparison. Figure 3.5 shows that the difference of processing time between the used             

workflows. Although users need to know the difference of the design concept and the              

strength of the tools to select the proper one for their research objectives, this result               

helps to understand the difference of the resource requirement of the workflows for             

similar purpose. For example, HISAT2 and STAR marked almost the same processing            

time, but STAR uses far more amount of memory. The plot of the processing time also                

shows that the obsolete tool TopHat2 is remarkably slower than the other tools. 
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Figure 3.5: Box plot of processing duration and maximum memory usage of            

sample SRR2567462 per workflow  

The values of processing duration were without data download time. Both plots used             

values of workflow executions as single end input of SRR2567462. The x-axis shows             

workflow names, and the y-axis shows the processing duration in seconds and total             

memory usage in bytes. We iterated each combination of workflow and instance type             

for five times. The plot of processing duration shows that there is a significant              

difference in execution time between the TopHat2 workflow and the others. While the             

difference of processing durations is relatively small, workflows with STAR aligner           

require four or five times much memory than HISAT2 workflows. These data suggest             

users know about runtime metrics of workflows before selecting cloud instance type. 

Discussion 

 

CWL-metrics enabled users to choose a proper cloud instance for workflow runs            

based on the runtime metrics data. The metrics data summarized by workflow inputs,             

such as the number of threads to use or total file size of input data, provides the most                  

efficient cloud use for a research project. The data will also help the administrator of               

computational infrastructure to encourage researchers to use the cloud environment in           

case their local environment has too many running jobs to accept new job submissions.              

Each user might perform different analyses and visualizations concerning input          

parameters of their interest. Thus CWL-metrics outputs JSON and TSV data which are             
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easy to parse and used for visualization by any language of users' favorite, rather having               

a custom visualization tool other than Kibana. 

 

CWL-metrics is applicable for most cases in bioinformatics data analysis.          

However, there are cases that the system does not work as effectively as expected. For               

example, the current implementation of CWL-metrics cannot capture the precise          

runtime metrics data of a tool that scatter its processes to multiple computation nodes.              

Also, it cannot estimate the performance of software that uses hardware acceleration            

systems such as GPU, since the information of those specific architectures is not             

available via Docker API. Nevertheless, in the example use case using RNA-Seq            

workflows, I showed CWL-metrics could provide beneficial information to help users to            

decide on the use of cloud infrastructure. 

 

There are also the other workflow operation frameworks that have functions to            

capture runtime metrics, such as Galaxy [41], Toil [59], or Nextflow [60]. However, I              

chose CWL as the workflow description framework and its reference implementation           

cwltool as the workflow runner for the system because CWL is the project providing a               

way to share the workflow across the different workflow systems. Once users collected             

the runtime metrics of workflows by CWL-metrics, they can use the same workflow             

description with multiple workflow runner implementations. There are fifteen         

implementations listed as those supporting CWL [61]. Some implementations including          

Galaxy are still not covering full functions to import and export CWL description to              

share and run workflows, but the others including Arvados, Toil, and Apache Airflow             

are already available to users. If one wanted to use a workflow system that does not                
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support CWL yet, the summary of runtime metrics collected through Docker container            

is still valuable resource across the different frameworks. 

 

CWL project has a subproject, CWLProv, to provide the provenance information           

of workflow executions to improve reproducibility of workflows by tracking          

intermediate files and logs [62]. The provenance information helps users to track inputs             

and outputs of workflow runs by using file checksum but does not record the detail of                

the resource usage. Adding runtime metrics data into the provenance information will            

cover the information regarding deployment, which helps users to reproduce the runs on             

a proper computing environment. Thus, the summary of runtime metrics collected by            

CWL-metrics should be bundled with the provenance information. 

 

There will be more amount of sequencing data that one researcher needs to             

process by the technologies that produce a large amount of sequencing data such as              

high-throughput single-cell sequencing. In such a situation, it is essential to have a             

flexible computing environment that can quickly scale out according to the amount of             

data. The fast deployment of the data analysis environment to the proper cloud instance              

supported by Docker, CWL, and CWL-metrics is a way to achieve the computational             

scale out, which brings a huge benefit for bioinformatics researchers. 
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CHAPTER 4 

 

DEVELOPMENT OF A DATABASE WITH TRANSPARENT DATA ANALYSIS 

PROCESS 

 

 

 

Published Article 4 

 
ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data.  

 
Shinya Oki, Tazro Ohta, Go Shioi, Hideki Hatanaka, Osamu Ogasawara, Yoshihiro 

Okuda, Hideya Kawaji, Ryo Nakaki, Jun Sese, Chikara Meno. 
EMBO reports. 2018 Dec 1;19(12):e46255. 
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Background 

 

The methods to collect data from SRA and construct workflows to run on cloud              

infrastructure enabled large-scale reprocessing of published omics data at low cost.           

Users not having a large scale computational environment are also able to create a              

secondary database of their interest with reliable quality. 

 

My collaborator and I developed a database named ​ChIP-Atlas ​, which provides           

results of re-analysis of ChIP-Seq and DNase-Seq data archived in SRA [63]. As of              

September 2018, the database has data of 78,000 experiments processed and made            

publicly available. The project performed reference alignment and peak calling to detect            

genomic locations determined as regulatory regions. The database shares the final           

output of its workflow such as bed format file from MACS2 peak calling software [64].  

 

A large number of data of ChIP-Atlas makes it difficult to check the entire list to                

select data of interest. Each data has sample metadata manually curated, thus users use              

the information to summarize and select a dataset. However, it takes an unacceptably             

long time to download the dataset since the file size is huge. Therefore, a simple data                

sharing on the public server is not the best way to provide the results of re-analysis.                

Users need an interface to access the data fast and easily, and to visualize a part of data                  

of their research interest. 
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To solve the problem to improve the accessibility of the large number of data in               

ChIP-Atlas, I developed a web application called chip-atlas.org [65]. It provides users a             

guide to select a subset from the available data, and connect to users' local genome               

browser to visualize genomic features. The web interface also has features to show             

details for each experiment with external data resources with calculated sequence           

quality. 

 

 

Methods 

 

Re-analyzed ChIP-Seq and DNase-Seq data available on ChIP-Atlas 

ChIP-Atlas collects data from SRA with the condition that library strategy is            

"ChIP-Seq" or "DNase-Hypersensitivity", library source is "GENOMIC", and        

instrument model is from Illumina, Inc (San Diego, California, United States). As of             

September 2018, it has data from six organisms: 34390 samples of ​Homo sapiens ​,             

31775 samples of ​Mus musculus ​, 729 samples of ​Rattus norvegicus ​, 3988 samples of             

Drosophila melanogaster ​, 2464 ​Caenorhabditis elegans ​, and 4809 samples of         

Saccharomyces cerevisiae ​. The data files are published on the DBArchive of the            

National Bioscience Database Center (NBDC) [66].  

 

Implementing web application for dataset selection and browsing 

As an interface to explore and visualize the data provided by ChIP-Atlas, I             

implemented the web application chip-atlas.org. It enables incremental search of sample           
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attributes by using curated metadata including antigen class, antigen, cell type class, and             

cell type. The web application was designed and implemented as to provide fast data              

selection feature without data processing or calculation, which enabled the lightweight           

application usage. The application has features such as dataset retrieval, visualization on            

local genome browser, and exploring details of samples and experiments with external            

data resources. I chose Integrative Genomics Viewer (IGV) as local genome browser,            

which users need to install on their local computers beforehand [67]. The program to              

launch the application is publicly available on GitHub [68]. The documentation of            

ChIP-Atlas data is also available on GitHub wiki [69].  

 

 

Results 

 

Obtaining subset of ChIP-Atlas database by using curated sample attributes 

The metadata described by data submitters are manually curated using controlled           

vocabularies. There are many alternative names for antigens and cell types together with             

misspellings, efforts are taken to pick representatives (Table 4.1). The curated cell types             

are classified into cell type class by their origin tissues. The antigen used for              

immunoprecipitation are further classified to antigen class such as histone,          

RNA-polymerase, or transcription factors. The interface was designed as it uses the            

curated metadata as the main faceting for data selection (Figure 4.1). Users first need to               

select two attributes, antigen class and cell type class. The interface shows child             

elements of these classes, which users can choose one of them to filter the number of                
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the dataset. There is an option to select the threshold of quality value for each peak                

calculated by the MACS2 software. After the selection, users can choose to download             

the dataset as a single file or visualize the data on the local genome browser. Once users                 

start the IGV genome browser on their local computer, they can browse data as fast as                

the data are on their computer by receiving data streaming from the ChIP-Atlas server,              

without downloading whole data files. 

 

 

Original description in submitters' metadata #Exp 

H3K27me3 681 

H3K27me3 (Millipore, 07-449) 88 

H3K27me3 (Millipore 07-449) H3K27me3 81 

anti-H3K27me3 75 

H3K27me3(Diagnode, pAb-069-050) 44 

K27me3 40 

H3K27Me3 37 

H3K27me3 (07-449, Millipore) 30 

H3K27me3 (ActiveMotif,39155) 29 

Millipore 07-449 28 

Millipore, 07-449 26 

H3K27me3 (Abcam ab6002) 23 

H3K27me3 (Active Motif, 39155) 22 

H3K27me3 (Active Motif 39155) 21 
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Table 4.1: The list of user described metadata terms curated to the term             

"H3K27me3" 

An example of term curation of user-described terms with experiments categorized to            

H3K27me3 (n > 20). Lacking a standard of metadata description caused having many             

variations to specify the same antigen or cell line name in the same or related sample                

attribute fields. In this example, variations include different character cases, comma           

existence, catalog name or identifiers of reagent companies. The experiments with these            

terms are categorized to those of antigen "H3K27me3" based on the Brno nomenclature. 
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Figure 4.1: ChIP-Atlas data search interface 

A screenshot of ChIP-Atlas data search interface (peak browser). Users first choose an             

organism of their interests, then select an antigen class and a cell type class from the                

select boxes. An antigen or a cell type is able to be chosen for the further data filtering.                  

Options for peak call score threshold are available on the right-upper panel to reduce the               

number of peaks on the genome browser. Clicking "View on IGV" will fetch the data               

from the data server to the local machine to browse on the IGV genome browser. Users                

will query a gene or a genome location on the browser to see the region to find                 

transcription factor binding sites or the other biological features. 

 

Browse experimental details integrated with external data resources 

Using the genome browser to check genomic locations of interest, users will find             

peaks having interesting aspects. Users can check the experimental information that           

produced the browsing peak by mouseover. The peaks showed on the genome browser             

have hyperlinks which get users back to the browser web application to show the              

experimental details (Figure 4.2). The page of individual experiment shows original and            

curated sample attributes, links to WikiGenes [70], PosMed [71], and PDBj [72] with             

query of the antigen, links to ATCC [73], MeSH [74], RIKEN BRC [75] with query of                

the cell type (Figure 4.2). There are also data processing information such as the number               

of reads, mapping ratio, duplicated reads removed, and number of peaks. The page also              

shows the base call accuracy of the data retrieved from the sequence quality database              

[53].  
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Figure 4.2: The information for each experiment with links to external databases 

An example of detailed information of experiment ID SRX018625. The page contains            

curated sample data, cell type information, attributes by original data submitter,           

metadata submitted to SRA, read processing pipeline logs, and base call quality of             
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original sequence data. The page also offers hyperlink to external database, WikiGenes,            

PosMed, and PDBj for antigen, ATCC, MeSH, RIKEN BRC for cell type. 

 

Discussion 

 

The interface built based on the curated sample attributes helps users to explore             

data provided by the ChIP-Atlas database where more than 70,000 experiments from            

SRA were re-analyzed. While there are other omics databases available online, and            

some of them are providing similar dataset, most of the databases have their front pages               

with single keyword search box. For example, the UCSC genome browser, one of the              

most popular genome data browsers where the data from the ENCODE project            

published, has a genome browser oriented interface which users issue queries of genes             

or genomic locations to move to the location, then clicking list of data to show items on                 

a new track [76]. This type of browser makes the application interface having too many               

list items to browse manually when the database has many types of data, like              

ChIP-Atlas. To keep the interface simple as the users who visit for the first time can                

understand what they need to do to find the data, chip-atlas.org was designed as it               

separates application to the web interface for data browsing and the genome browser             

running locally. By this decision, the web application becomes easy to use, and also is               

able to allow uploading local data to compare with the ChIP-Atlas data. The             

chip-atlas.org web application has been already used by many projects [77].  
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However, there is a problem on the sustainability of the application since it             

depends on the attributes manually curated. As of September 2018, the ChIP-Atlas            

updates its data monthly, but the most of the updating process is totally depending on               

the curation team, while the other procedures are already automated. There is an             

ongoing project which evaluates a machine-learning approach to automate the curation           

effort, but the approach has a problem that it cannot curate the new terms which the                

system does not know. Thus, for the time being, the curation effort is not fully               

automated, but the team is using an assistant software to support finding related terms.  

 

As the automation of term curation, it is also important to have a system that               

promotes data submitters to follow the guidelines to describe proper metadata. DDBJ is             

developing the system called BioSample validator, which helps users to check data type             

or avoid misspelling [78]. The system can help a database to have the data with high                

quality of metadata description that reduce the cost of metadata curation by the third              

party. 
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CHAPTER 5 

 

CONCLUSIONS 

 

In this research, I developed the methods to describe precise information of data             

processing including sample data and software workflow. The metadata of samples and            

experiment submitted to SRA with sequence data lack description standards to control            

its quality. There are various factors such as an experimental reagent, sequencing            

instrument, or software version for base calling that changes sequencing quality.           

Researchers submit their sequencing data of different read length, number of reads, or             

base call accuracy. I developed a search system that integrates sample metadata with the              

external resources such as information extracted from related publications, and a           

database that calculates and collects sequencing quality statistics per entry. These           

systems and methods help users to select dataset that has precise information which are              

required for the evaluation of results of data analysis. 

 

Describing data analysis workflow is also essential for evaluation of outputs           

from data analysis. The tools like Docker container or CWL can help to describe the               

information, however, runtime metrics information is also important for reproducibility          

of the data analysis. To add runtime information to the description of data analysis, I               

developed CWL-metrics, a system to analyze runtime metrics of workflows. Using this            

system, users can select the best possible option by analyzing the relationship between             

input parameters for workflow and resource usages such as CPU, memory, or disk IO.              
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The analysis result also helps users to estimate the amount of charge for the use of the                 

cloud service. 

 

The methods are developed according to the needs from problems that are            

unique to biological big data. The nucleotide sequence data after the appearance of the              

HTSeq technologies often are referred to as representative of big data in life science              

[79]. However, nucleotide sequence data has different characteristics from those of big            

data in commercial industries (Table 5.1). The representatives from industrial big data            

such as log data of web servers or messages on social networking services have much               

more entries of text, audio or images of the relatively small data size per entry, which                

are required to be analyzed in real time. The "three Vs", volume, velocity, and variety,               

which are called as the main characteristics of big data [80], do not suit biological big                

data. Thus, the methods to solve the problem on knowledge extraction from the big data               

in biology must be unique in comparison with those of the industries. 

 

 

 Web server SNS 
Machine 
learning Literature 

Nucleotide 
sequencing 

Data size per entry + + + 〜 ++ ++ +++ 

Processing time per entry + + + 〜 +++ + +++ 

Number of entries +++ +++ + 〜 +++ ++ +++ 

Variation of data production 
agents + + +++ + +++ 

Data quality distribution - - +++ - +++ 

Data production time 
interval + + - - ++ 

Real time analysis 
requirement + + + - - 

Variation of data analysis 
purposes + ++ +++ ++ +++ 
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Human curation 
requirement - + + + + 

Data analysis repeat 
requirement - - + + +++ 

Data sharing requirement - - - - + 

 

Table 5.1: The characteristics of big data among different domains 

Comparison of so-called big data of 5 different domains, web server access log data              

(Web server), messages and user relationships in social network services (SNS),           

training data for machine learning techniques (Machine learning), text mining and           

natural language processing of literature data (Literature), and nucleotide sequencing          

data in biomedical sciences (Nucleotide sequencing). Though there are many methods,           

tools, or frameworks for "big data", the one in the life science makes itself unique with                

its characteristics which has many entries with large data size and several requirements             

in quality control and manual curation, while it does not require real-time processing             

that is said to be an important part of the definition of industrial big data. 

 

I presented the problem that data analysis lacking information of input and            

process may cause the inappropriate interpretation of the result. In this research, I             

demonstrated the method to avoid the situation causes such misinterpretation of an            

output of data analysis with two different approaches, the extension of input metadata             

and the use of the frameworks to package software runtime information. Though I             

developed the methods and the frameworks for the nucleotide sequencing data, the            

approach to remove ambiguity and uncertainty from data analysis process is also typical             

for data analysis applications in different scientific domains. For example, scientific           
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research projects in different domains such as astrophysics also have problems in            

sharing the observation data in terms of reproducibility [81]. This indicates that sharing             

research data is to face the difference in the way of scientific studies between different               

research teams, which often needs many communications between the people having           

different practice on data management. The proposed approaches can help researchers           

to share their data without misinterpretation by providing further information that often            

dropped during the data exchange process. It is very important to find a common              

practice shared by different scientific domains for achieving a comprehensive exchange           

of data analysis process. I believe this study is the first step to solve this problem for                 

future studies.  
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