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Introduction 

 

Neuropsychiatric disorders—such as schizophrenia, bipolar disorder, major 

depressive disorder, and autism spectrum disorder—are common, with over a third of the 

population in most countries being diagnosed with at least one such disorder at some point in 

their life1. Almost all neuropsychiatric disorders are currently classified mainly on the basis of 

clinical signs and symptoms. However, there is evidence that patients with different clinical 

diagnoses share similar biological features, such as genetic mutations, molecular expression, 

and brain activity2–6. Recently, psychiatry has undergone a tectonic shift to incorporate the 

concepts of modern biology. There have been recent attempts to reclassify psychiatric disorders 

according to biological domains (e.g., genes, neural circuits, behavior), such as through the 

Research Domain Criteria (RDoC) initiative7. Therefore, identifying appropriate biomarkers 

that can be used for transdiagnostic assessment of neuropsychiatric disorders is essential for 

improving the classification of these diseases and understanding their biological basis. 

Using coexpression network analysis, a recent study revealed that cross-disorder 

gene expression overlaps could be used to characterize five major neuropsychiatric disorders8. 

Some of these overlapping gene groups were well characterized biologically by Gene Ontology 

enrichment or cell-type specificity, but the biological properties of other gene groups were 

rather unclear. Thus, nonbiased coexpression network analyses do not necessarily detect 

modules that extract the biological features of neuropsychiatric disorders. Thus, in order to 

improve the characterization of neuropsychiatric disorders, it might be helpful to detect 

modules of coexpressed genes and conduct gene expression analysis based on the findings 

derived from studies on animal models of neuropsychiatric disorders. 

To date, our group have screened more than 180 strains of genetically engineered 

mice using a large-scale, and comprehensive battery of behavioral tests, and we have identified 

several strains with abnormal behaviors related to neuropsychiatric disorders such as 

schizophrenia, bipolar disorder, and intellectual disability9. We discovered common 

endophenotypes in the brains of multiple strains of these genetically engineered mice with 

behavioral abnormalities. We termed one such endophenotype in the hippocampus of adult 

mice the immature dentate gyrus (iDG) phenotype10–13. In this phenotype, the molecular and 

electrophysiological properties of adult DG neurons in the genetically engineered mice were 

similar to those of immature DG neurons in typically developing infants. For example, the 

expression of calbindin, a marker of maturity in DG neurons, was decreased, and the expression 

of calretinin, a marker of immaturity, was increased10–15. Molecular changes similar to some of 

those found in mice with iDG have been observed in the postmortem brains of patients with 
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schizophrenia16, bipolar disorder16, and epilepsy17–19. Furthermore, there is growing evidence 

that changes in molecular markers of pseudoimmaturity are also present in other brain areas of 

patients with schizophrenia20-28, bipolar disorder26, autism26, and alcoholism29. Therefore, we 

proposed that pseudoimmaturity of the brain could potentially be a useful transdiagnostic 

biomarker9. 

Pseudoimmaturity of the brain can be induced in adulthood. Previously, we found 

that chronic fluoxetine treatment reversed the maturation status of DG neurons in adult wild-

type mice, a phenomenon that we termed dematuration30,31. Likewise, recent studies suggest 

that several maturation-related genes and electrophysiological properties in the DG of wild-

type adult mice assume an immature-like status after treatment with pilocarpine or 

electroconvulsive stimulation16,32. As mentioned above, an iDG-like phenotype has been found 

in patients with epilepsy17–19. Therefore, we hypothesized that the neural hyperexcitation may 

induce pseudoimmaturity of the brain in adulthood; however, this hypothesis has not been 

tested in human samples. 

Some studies suggest that hyperexcitation of neurons may underlie abnormalities 

related to certain types of neuropsychiatric disorders. Individuals with epilepsy are at increased 

risk of developing schizophrenia, and vice versa33,34; additionally, patients with epilepsy can 

display psychotic symptoms that resemble those found in patients with schizophrenia35. 

Excitatory/inhibitory imbalances have been proposed to be involved in the pathogenesis and 

pathophysiology of schizophrenia36–39. Hyperactive action-potential firing has also been 

observed in hippocampal granule-cell-like neurons derived from induced pluripotent stem cells 

(iPSCs) of patients with bipolar disorder40. Recent studies have suggested that human patients 

with Alzheimer’s disease and temporal lobe epilepsy may harbor common underlying disease 

mechanisms17,41–43. Considering these findings, I hypothesized that the immature-like gene 

expression patterns induced by neural hyperexcitation may overlap with the abnormal gene 

expression patterns in the brains of patients with neuropsychiatric disorders and the related 

animal models. If this is the case, I hypothesized that this overlap can be used to perform 

transdiagnostic characterization of neuropsychiatric disorders. 

To test this hypothesis, I first performed a meta-analysis of microarray datasets, 

comparing the changes in gene expression in the rat DG after seizure induction with the 

differences in gene expression in infant mice versus adult mice. To assess consistency across 

species, I also conducted a similar comparison using the human fetal hippocampus. The overlap 

between gene sets was estimated using the Running Fisher test44, which is a nonparametric 

statistical method. The fold change and direction of change (up- or downregulation) for each 

gene between the two conditions were used to define the ranked gene signatures. For 
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comparison across different arrays, orthologs were used for each organisms. To determine the 

similarities between two datasets, I used a combination of rank-based enrichment statistics and 

ontology-based meta-analysis. This method enables us to statistically assess the pairwise 

correlations between any two datasets, including datasets from different species and 

organs28,29,45,46. The gene expression patterns in the rat DG after seizure induction significantly 

overlapped with those specific to the immature mouse DG and with those specific to the early-

stage human fetal hippocampus. From the set of overlapping genes, I defined two groups: 

maturity-marker genes and immaturity-marker genes that are inducible by neural 

hyperexcitation. I assessed the expression patterns of these two groups of maturation-related 

genes in 87 public gene expression datasets derived from the postmortem brains of patients 

with various neuropsychiatric disorders and from neural cells derived from patient iPSCs. I 

further analyzed 12 datasets from the brains of related animal models. Through this analysis, I 

characterized the expression patterns of maturation-related genes that are inducible by neural 

hyperexcitation across different disease conditions and animal models of these diseases. 
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Results 

 

Hyperexcitation induces immature-like gene expression 

To examine the developmental changes in gene expression patterns in the rodent DG, 

I created a microarray dataset from postnatal days 8, 11, 14, 17, 21, 25, and 29 (GSE113727) 

and compared it with a dataset from 33-week-old adult mice (GSE42778)12. Within the entire 

mouse DG dataset, the largest overlap for changes in gene expression after pilocarpine injection 

was for the comparison between day 8 infant and 33-week-old adult mice (Supplementary 

Figure 1a). I included the dataset from postnatal day 8 infant mice for subsequent analysis. The 

expression levels of 6552 genes were increased in the DG of infant mice compared with adult 

mice, whereas the expression levels of 8637 genes were decreased (absolute fold change > 1.2 

and t-test P < 0.05). Next, I assessed the changes in gene expression induced by neural 

hyperexcitation in a rodent model. I obtained publicly available microarray datasets from the 

DG of adult rats after seizures induced by injection of pilocarpine (GSE47752)47. The 

expression levels of 7073 genes were significantly changed in the DG of epileptic-seizure rats 

1 day after pilocarpine injection compared with rats treated with saline (absolute fold change 

> 1.2, P < 0.05). 

To investigate whether the neuronal hyperexcitation datasets contain immature-like 

gene expression patterns, I assessed the overlap between the set of genes with altered 

expression in immature mice and the set of genes with altered expression in adult seizure-

model rats using the Running Fisher algorithm on the BaseSpace platform to determine the 

significance of the overlap (see Supplementary Methods for details). I found a striking degree 

of similarity: 2807 genes showed changes in expression in both datasets (overlap P = 3.8 × 

10−11) (Figure 1a). Among these 2807 genes, I named the 726 genes whose expression levels 

decreased in both datasets hyperexcitation-induced maturity-related genes (hiM genes 

(mouse): green bar in Figure 1a) and the 938 genes whose expression levels increased in both 

datasets hyperexcitation-induced immaturity-related genes (hiI genes (mouse): red bar in 

Figure 1a). Comprehensive lists of hiM and hiI genes are in Supplementary Data 1. The overlap 

for genes with positively correlated expression (red and green bars) was larger than the overlap 

for genes with negatively correlated expression (light and dark yellow bars), indicating that the 

directions of expressional change in the two datasets are more often similar than they are 

different. These results suggest that neuronal hyperexcitation induces a pattern of immature-

like gene expression in the adult DG. 

Next, I compared the changes in expression during development in the human fetal 

hippocampus with those in rats after seizure induction to assess consistency across species. I 
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obtained publicly available microarray datasets for the human fetal hippocampus during 

development (GSE25219)48. Within the entire fetal hippocampal dataset, the largest overlap 

for changes in gene expression after pilocarpine injection was for the comparison between 8- 

to 9-week fetuses and 19- to 23-week fetuses (Supplementary Figure 1b). Again, I found a 

striking degree of similarity: 2043 genes showed changes in expression in both datasets 

(overlap P = 1.8 × 10−12) (Figure 1b). Among these 2043 genes, I termed the 579 genes whose 

expression decreased in both datasets hiM genes (human) (green bar in Figure 1b) and the 716 

genes whose expression increased in both datasets hiI genes (human) (red bar in Figure 1b). 

The overlaps for genes with positively correlated expression (red and green bars) were larger 

than the overlaps for genes with negatively correlated expression (light and dark yellow bars), 

suggesting that, similar to the results in mice, the gene expression changes in the rat DG after 

seizure induction are comparable to the reverse of the changes that occur as the human 

hippocampus develops. 

 

hiM/hiI genes exhibit different biological properties 

To characterize the biological features associated with the hiM and hiI gene groups 

in mice and humans, I conducted pathway enrichment analyses in BaseSpace. The 20 

biogroups that had the largest overlap with the hiM and hiI genes are listed in Tables 1. Among 

mouse hiM genes, 4 out of the top 20 biogroups are associated with synapse and channel 

activity (e.g., transmission of nerve impulse, synapse, and synaptic transmission) (Table 1); 

among human hiM genes, 6 out of the top 20 biogroups are also associated with synapse and 

channel activity (e.g., transmission of nerve impulse, synaptic transmission, axon, and synapse) 

(Table 1). Among the mouse hiI genes, 4 out of the top 20 biogroups were associated with the 

nucleus (e.g., genes involved in the cell cycle and genes involved in DNA replication) (Table 

2). Among the human hiI genes, 15 out of the top 20 biogroups were associated with the nucleus 

(e.g., genes involved in the cell cycle, chromosomes, and response to DNA damage stimulus) 

(Table 2). Notably, there is little overlap in the top 20 biogroups for the hiM and hiI genes 

(Table 2). Thus, the biogroups related to the hiM and hiI genes are likely to be functionally 

different. I further characterized the biological significances of hiM and hiI genes by comparing 

them with coexpression gene modules obtained from mouse DG development datasets and 

conducting pathway analyses of those modules. For the detail of the results, see Supplementary 

Figure 4. 

I also compared datasets from the DG of typically developing infants with datasets 

from the rat DG at three different timepoints after seizure induction by injection of pilocarpine 

or kainate (day 1, day 3, and day 10) and performed principal component analysis on the 
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changes in mouse hiM and hiI genes at different timepoints (Supplementary Figure 2a, 2b; 

Supplementary Notes). The time-course of changes in the mouse hiM genes after seizure 

induction was different from the time-course of changes in the mouse hiI genes. In addition, I 

conducted a spatial pattern analysis of the mouse hiM and hiI genes, which indicated that their 

protein products have slightly different patterns of subcellular localization (Supplementary 

Figure 2c; Supplementary Notes). The mouse hiM genes tend to be strongly expressed at the 

plasma membrane, with expression changes stabilizing by the third day after seizure induction. 

In contrast, the hiI genes tend to be expressed in the nucleus, and changes in expression after 

seizure induction are slower to stabilize (Supplementary Figure 2b). Together, these results 

indicate that the hiM and hiI genes have different spatiotemporal patterns of changes in 

expression. 

 

Gene expression analyses of patient samples by hiM/hiI genes 

Next, I investigated whether and to what extent the expression changes in 

maturation-related genes induced by hyperexcitation overlap with gene expression patterns in 

various neuropsychiatric disorders. As above, I evaluated similarities between the changes in 

gene expression patterns in different groups using overlap P-values calculated by the Running 

Fisher algorithm (Figure 2a). Similarity indexes for each comparison were defined as the −log 

of the overlap P-values with hiM or hiI genes, denoted by hiM-index or hiI-index, respectively. 

High values of the hiM-/hiI-index indicate that there is a large overlap between the dataset 

analyzed and hiM/hiI genes. I obtained the hiM-/hiI-indexes for the datasets from human 

patients and plotted them in two-dimensional (2-D) space to show the extent of overlap 

between datasets and hiM/hiI genes (Figure 2a). 

I initially performed this 2-D analysis on a dataset containing the expression profile 

of the prefrontal cortex in the postmortem brains of patients with schizophrenia 

(schizophrenia dataset #1: details in Supplementary Data 2) (Figure 2b). The expression of 

1744 genes differed between patients and healthy controls (significance level of 0.05). The 

numbers of hiM and hiI genes with altered expression in schizophrenia dataset #1 were 87 

and 76, respectively, and the overlap P-values were 2.4 × 10−10 and 6.9 × 10−7, respectively. 

The hiM-index and hiI-index for this dataset were 9.62 (= −log(2.4×10−10)) and 6.16 (= 

−log(6.9×10−7)). This result corresponds to a point in 2-D space (Figure 2b). Points that fall 

below the unity line (dashed line) indicate datasets in which changes in hiM genes are 

dominant, whereas points above the unity line indicate datasets with dominant changes in hiI 

genes. The angle from the unity line indicates the degree of hiM or hiI dominance. The same 

analysis was performed for other schizophrenia datasets (schizophrenia datasets #2–#16), 
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including those obtained from different areas of the postmortem brain and from cultured 

neurons derived from the iPSCs of patients. Scatter plots of the results from the schizophrenia 

datasets are shown in Figure 3a. Thirteen out of sixteen points were below the unity line. 

Most of the schizophrenia datasets exhibited hiM-index-dominant patterns, showing high 

hiM-index values and low hiI-index values (Figure 3a). 

I extended the same analysis to 87 disease datasets from seven other 

neuropsychiatric diseases (amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), 

autism spectrum disorder (ASD), Parkinson’s disease (PD), bipolar disorder (BPD), 

Huntington’s disease (HD), and major depressive disorder (MDD); Supplementary Data 2). 

The results from each dataset are shown in Figure 3b-3h. The overall distribution patterns of 

each disease are shown in Figure 3i. The ALS datasets tended to show higher hiI-index 

values than hiM-index values, indicating an hiI-index-dominant pattern (Figure 3b). The AD 

datasets showed different patterns in the hiM-/hiI-index depending on the type of sample; 

datasets from the postmortem brains of patients with AD tended to show high values only for 

the hiM-index, and datasets from patient iPSCs tended to show high values only for the hiI-

index (Figure 3c). Datasets from ASD did not show any dominant patterns in either the hiM-

index or the hiI-index (Figure 3d). Most datasets from patients with PD, BPD, HD, and MDD 

did not show pronounced values for the hiM-index or the hiI-index (Figure 3e, 3f, 3g, 3h). I 

applied same analyses on the microarray expression datasets from a recent report by Gandal 

and colleagues, in which confounding factors are controlled relatively well. Datasets from 

postmortem brains of patients with schizophrenia and alcohol abuse disorder showed high 

values for the hiM-index, and those from patients with ASD showed high values for the hiI-

index (Supplementary Figure 3). 

Thus, the 2-D analysis revealed that some neuropsychiatric diseases have 

characteristic patterns in the hiM-/hiI-indexes; for example, most datasets from patients with 

schizophrenia exhibited a higher hiM-index than hiI-index, whereas ALS datasets showed an 

hiI-index-dominant pattern (Figure 3i). Meanwhile, different diseases sometimes shared 

similar changes in the hiM- or hiI-index; for example, some of the schizophrenia, ASD, and 

AD datasets shared a high hiM-index, and some of the ALS and AD datasets shared a high hiI-

index. The other four diseases—PD, BPD, HD, and MDD—did not feature pronounced 

changes in the hiM-/hiI-indexes, suggesting that these diseases may not share an 

endophenotype of pseudoimmaturity inducible by neural hyperexcitation. These results raise 

the possibility that there are patterns of gene expression perturbations that are shared and 

distinct across these neuropsychiatric disorders. 
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Genetic and environmental risks induce pseudoimmaturity 

Previous studies suggest that many genetic risk factors and environmental factors, 

such as seizure, hypoxia, and infection, contribute to the development of neuropsychiatric 

disorders2,49,50. I next applied the 2-D analysis technique to datasets from genetic animal 

models of disorders and from animals that had experienced risk events. 

First, I obtained publicly available datasets for mice that had experienced putative 

risk events for schizophrenia, bipolar disorders, and Alzheimer’s disease, including seizure 

(#1: GSE49030, #2: GSE4236)51,52, ischemia (#1: GSE32529, #2: GSE35338)53,54, and 

infection (mimicked by CpG; GSE32529)53,54. All the studies used here included datasets for 

different time points after the risk event; hence, I was able to examine the time-course of 

changes in the hiM- and hiI-indexes to reveal the short- and long-term effects of risk events on 

the expression patterns of hiM/hiI genes. The results showed that datasets from the 

hippocampus of mice treated with kainite, a seizure-inducing drug, exhibited time-course 

changes in the hiM- and hiI-indexes; the hiM-index tended to be dominant in the early stage 

after seizure induction, and the hiI-index became more dominant in the late stages (Figure 4a: 

seizure #1). The results from other datasets on seizure, ischemia, and infection showed time-

course pattern changes in the hiM- and hiI-indexes that roughly matched those observed in 

seizure dataset #1, being relatively hiM-index-dominant in the early stage and then relatively 

hiI-index-dominant in the later stage (Figure 4a: seizure, ischemia, and CpG infection). These 

results indicate that different types of putative risk events for neuropsychiatric disorders induce 

roughly similar time-course changes in the expression of maturation-related genes induced by 

neural hyperexcitation. 

Next, I obtained datasets from animal models with a genetic risk of a 

neurodegenerative disease: mice with transgenic expression of a G93A mutant form of human 

SOD1, as a model of ALS (#1: GSE46298, #2: GSE18597)55,56; transgenic mice with mutant 

human amyloid precursor protein (APP) and presenilin1 (PSEN1) genes, which cause familial 

Alzheimer’s disease (#1: GSE64398, #2: GSE64398)57; and Df16(A) heterozygous mice 

carrying a chromosome 16 deletion syntenic to human 22q11.2 microdeletions, as a model of 

schizophrenia (GSE29767)58. I also acquired datasets from Schnurri-2 (Shn-2) knockout mice 

as a model of schizophrenia12 and intellectual disability14,59,60 and from mice with heterozygous 

knockout of the α-isoform of calcium/calmodulin-dependent protein kinase II (α-

CaMKII+/−)10,13 as a model of bipolar disorder74. These mice show an array of behavioral 

abnormalities, including locomotor hyperactivity and severe deficits in working memory. The 

expression profiles of several maturation marker genes in exhibit immature-like patterns in 

these mice10,12. The threshold current of granule cells to induce spikes was low in these mice, 
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indicating that the granule cells of these mice are highly excitable10,12. I performed 2-D analysis 

on these datasets and evaluated the changes in the hiM-/hiI-indexes of these model mice. Both 

datasets from transgenic mice with the SOD1(G93A) mutation exhibited an hiI-index higher 

than the hiM-index in the later stages of disease progression (Figure 4b). These hiI-index-

dominant patterns were also observed in the results derived from human patients with ALS 

(Figure 3b). In the mice with mutant human APP and PSEN1, both the hiM- and hiI-indexes 

increased in the dataset from the hippocampus, and only the hiI-index increased in the dataset 

from the cortex during the course of disease progression (Figure 4c). These patterns are neutral 

or hiI-index dominant and partially mimic the results from human patients with Alzheimer’s 

disease (Figure 3c). The Df16(A) heterozygous mice and α-CaMKII+/− mice showed hiM-

index-dominant patterns, similar to results from human patients with schizophrenia (Figure 4d). 

Shn-2 KO mice showed high values for both the hiM- and hiI-indexes (Figure 4d). Thus, the 

results from the 2-D analysis of animal models are to some extent consistent with the results 

from human patients, indicating that these model mice have patterns of pseudoimmaturity 

induced by neural hyperexcitation that are similar to those in human patients. Potential 

confounding factors, such as types of samples, brain areas, and age, were less numerous in the 

animal-model analyses than in the analyses of samples from human patients, establishing the 

causal links between experimental manipulations corresponding to disease conditions and 

pseudoimmaturity inducible by hyperexcitation. 
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Discussion 

 

In this study, I demonstrated that neural hyperexcitation induces changes in the 

pattern of gene expression in the DG that are similar to the patterns in the immature 

hippocampus of typically developing human fetuses. From the pool of genes, I identified two 

groups of genes, and found that these are shared by multiple neuropsychiatric disorders, such 

as schizophrenia, Alzheimer disorders, and ALS. 

Many of the datasets from patients with schizophrenia and from the postmortem 

brains of patients with Alzheimer’s disease exhibited hiM-index-dominant pattern changes. 

The hiM genes include genes encoding a GABA receptor, voltage-dependent calcium channel, 

glutamate receptor, and voltage-dependent sodium channel (Supplementary Data 1). These 

genes have been implicated in the pathological changes in the brains of patients with 

schizophrenia and Alzheimer’s disease61–64. Thus, many of the synaptic genes that changed in 

the brains of patients with schizophrenia or Alzheimer’s disease could be genes whose 

expression increases during maturation and decreases with neural hyperexcitation. Although 

reductions in the expression of some synaptic genes in these disorders are well documented, to 

our knowledge, my results are the first to raise the possibility that neuronal hyperexcitation 

may also induce reductions in such synaptic molecules. Most of the datasets from patients with 

ALS and Alzheimer’s disease exhibited hiI-index-dominant patterns. The hiI genes include 

genes encoding DNA methyltransferase, cyclin D1, cyclin-dependent kinase 1, integrin beta 3 

binding protein, and tumor protein p53 (Supplementary Data 1). These genes are known to be 

important in chromosomal modification and DNA repair, and abnormal functioning of these 

systems has been observed in patients with ALS and Alzheimer’s disease65–69. Thus, some of 

the genes that are considered to be important in the development of these disorders are 

immaturity-related genes, whose expression decreases during maturation and can be increased 

by neural hyperexcitation. As for the datasets from patients with PD, BPD, HD, and MDD, 

most of them did not overlap with either hiM or hiI genes, suggesting that there might not be 

major pathological changes in transcriptomic pseudoimmaturity inducible by neural 

hyperexcitation in the datasets of these four diseases. Thus, I was able to characterize the gene 

expression patterns in disease datasets of each disease category using the hiM- and hiI-indexes. 

My study has some limitations. First, the number of available datasets was limited. 

All the datasets except the one for mouse development were obtained from the BaseSpace 

Correlation Engine. On this platform, vast numbers (over 21,000) of complex biological and 

clinical datasets are available. Although I used all the gene expression dataset hits from my 

keyword query to avoid sampling bias, the number of datasets was still small, from 8 datasets 
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for ALS to 16 datasets for schizophrenia. Further accumulation of the studies will improve the 

reliability of my results. Another limitation is that the datasets used in this study are from 

different types of samples, including various areas within the central nervous system, such as 

the hippocampus, prefrontal cortex, striatum, and spinal cord. The gene expression 

abnormalities in patients could differ depending on the brain area48. I also used datasets from 

cultured neurons differentiated from the iPSCs of human subjects, and it is controversial 

whether the pattern of gene expression in these neurons is comparable to that of neurons in the 

patients’ brains70,71. It is also possible that the altered gene expression in the postmortem brains 

is due to the effects of medication rather than pathological changes from the disease itself72. I 

compared the expression patterns of the genes derived from rodents and humans. There could 

be critical differences among different species, which might have caused the analysis to miss 

important molecular regulatory elements shared among those neuropsychiatric disorders. Other 

conditions that were not controlled in this study and can be potential confounding factors 

include the age of subjects at death, the storage conditions of the samples, the genetic 

background of animals, and the animal housing conditions. For these reasons, I need to be 

careful in interpreting the results of the analyses. It should be noted, however, that despite the 

variety of sample types used, I was able to identify some shared and distinct patterns of gene 

expression, which is mostly due to the advantages of utilizing the Running Fisher test; this test, 

using a rank-based nonparametric algorithm, can evaluate similarity between datasets from 

different species or organs44. Moreover, I applied 2-D analysis to the animal models, in which 

potential confounding factors such as species, sample types, and brain areas are well controlled. 

The results from these models were comparable to those from human samples, supporting the 

idea that pseudoimmaturity inducible by hyperexcitation is a feature shared by multiple 

neuropsychiatric disorders. It should be noted, however, that a gene expression pattern 

resembling those induced by neural hyperexcitation may not be induced by neural 

hyperexcitation per se but by other factors such as inflammation, hypoxia, and infection. 

Another potential advantage of using the Running Fisher test is that this method is applicable 

to the dataset of gene expression profiles from an individual patient or control. In the future, it 

might be interesting to apply this method to the characterization and classification of gene 

expression patterns in the brains of individual patients and in neurons derived from patients’ 

iPSCs. 

Recent attempts such as the RDoC initiative have tried to reclassify psychiatric 

disorders according to biological domains (e.g., genes, neural circuits, behavior)7. While 

Gandal et al. conducted nonbiased coexpression analyses8, this study utilized gene groups  

derived from the findings based on the studies of animal models of neuropsychiatric disorders. 
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Characterization by these gene groups enabled us to extract novel biological features of some 

neuropsychiatric disorders that are related to pseudoimmaturity inducible by neural 

hyperexcitation. Detecting such domains that extract the biological features of each 

neuropsychiatric disorder will move this diagnostic framework forward, from criteria based on 

signs and symptoms to those including biological dimensions. 

In conclusion, the biological domain of pseudoimmaturity inducible by neural 

hyperexcitation is a common endophenotype among several neuropsychiatric disorders. Future 

studies are needed to find translational indices that correspond to these features and can be 

applicable to human patients for better diagnosis of these neuropsychiatric disorders. My 

findings here may promote the development of biomarkers, leading to a better diagnosis of 

neuropsychiatric disorders. 
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Methods 

 

Microarray experiments to examine mouse DG development 

Wild-type mouse DGs were sampled at postnatal days 8, 11, 14, 17, 21, 25, 29 

(C57BL/6J × BALB/cA background; male, n = 5)73, and microarray experiments were 

performed with Mouse Genome 430 2.0 Array (Affymetrix, Santa Clara, CA) as previously 

described10. RNA was isolated by using the TRIzol method (Invitrogen, Carlsbad, CA) from 

the hippocampus of mice, followed by purification, using RNeasy columns (Qiagen, Valencia, 

CA). Double-stranded cDNA was synthesized from the total RNA, and invitro transcription 

reaction was then performed on biotin-labeled RNA that was made from the cDNA. Labeled 

RNA was hybridized with Mouse Genome 430 2.0 Array (Affymetrix, Santa Clara, CA) 

containing 45101 probe sets, and washed according to the manufacturer’s recommendations. 

The hybridized probe array was then stained with streptavidin-conjugated phycoerythrin, and 

each GeneChip was scanned by an Affymetrix GeneChip Scanner 3000 (GCS3000). GeneChip 

analysis was performed with Microarray Analysis Suite version 5.0. All of the gene represented 

on the GeneChip were globally normalized. Genes with a P-value < 0.05 (without correction 

for multiple testing) and an absolute fold change > 1.2 were included in the differentially 

expressed gene datasets. The microarray data, including those used in this study, were 

deposited in the Gene Expression Omnibus (GEO) database under accession number 

GSE113727. I also obtained a dataset for 33-week-old wild-type mice, which our group 

previously reported (C57BL/6J × BALB/cA background) (GSE42778)12. I integrated these two 

datasets into one to construct the dataset for the development of the wild-type mouse DG used 

in this study (P8 versus adult, fold change > 1.2, P < 0.05). All animal experiments were 

approved by the Institutional Animal Care and Use Committee of Fujita Health University, 

based on the Law for the Humane Treatment and Management of Animals and the Standards 

Relating to the Care and Management of Laboratory Animals and Relief of Pain. Every effort 

was made to minimize the number of animals used. 

 

Data collection and processing 

Except for the mouse DG developmental dataset mentioned above, the 99 gene 

expression datasets used in this study were obtained from publicly available databases (listed 

in Supplementary Data 2). I used all the hits from my keyword query for gene expression 

studies to avoid sampling bias. If a single study included several different datasets, I chose the 

one that I considered the most comprehensive (e.g., if the study includes datasets from male, 

female, and all subjects, I used datasets from all subjects). All gene expression datasets were 
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analyzed with the BaseSpace Correlation Engine (formerly known as NextBio) 

(https://japan.ussc.informatics.illumina.com/c/nextbio.nb; Illumina, Cupertino, CA), a 

database of biomedical experiments. BaseSpace is a repository of analyzed gene expression 

datasets that allows researchers to search expression profiles and other results44. The datasets 

registered in BaseSpace undergo several preprocessing, quality control, and organization 

stages. Quality control ensures the integrity of the samples and datasets and includes 

evaluations of pre- and postnormalization boxplots, missing value counts, and P-value 

histograms (after statistical testing) with false-discovery rate analysis to establish whether the 

number of significantly altered genes is larger than that expected by chance. 

Genes with a P-value < 0.05 (without correction for multiple testing) and an absolute 

fold change > 1.2 were included in the differentially expressed gene datasets. This sensitivity 

threshold is typically the lowest used with commercial microarray platforms and the default 

criterion in BaseSpace analyses44. Correction for multiple testing was omitted to minimize false 

negatives at this stage. All data from the Affymetrix GeneChip series were downloaded from 

the NCBI GEO database. Affymetrix Expression Console software (specifically, the robust 

multiarray average algorithm) was used to preprocess the data. 

I used the expression values (on a log base 2 scale) to calculate the fold changes and 

P-values between two conditions (infants–adults and patients–healthy controls). To determine 

the fold changes, I began with the expression values of the probes/genes in the test data sets 

and divided them by those of the control data sets. If the fold change was < 1.0, these values 

were converted to the negative reciprocal, or −1/(fold change). Genes with an absolute fold 

change > 1.2 and a t-test P-value < 0.05 were imported into BaseSpace Correlation Engine 

according to the instructions provided by the manufacturer. The rank order of these genes was 

determined by their absolute fold change. All statistical analyses were performed in BaseSpace, 

and the similarities between any two datasets were evaluated as overlap P-values using the 

Running Fisher algorithm44. The Bonferroni correction was used to adjust the significance level 

according to the number of datasets pairs44. 

 

Data availability statement  

The microarray and RNAseq data that support the findings of this study have been 

available in the BaseSpace Correlation Engine 

(https://japan.ussc.informatics.illumina.com/c/nextbio.nb; Illumina, Cupertino, CA) and Gene 

Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). All detailed information is 

listed in Supplementary Data 2. 
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Computing overlap P-values of gene expression patterns in different datasets 

BaseSpace can be used to compare the signatures in publicly available microarray 

datasets with a signature provided by the user using a “Running Fisher” algorithm, as 

previously described25,29,44-46. To enable comparison across different arrays, orthologs were 

identified for each pair of organisms. Ortholog identification was based on information 

obtained from Mouse Genome Informatics (MGI) at Jackson Lab 

(http://www.informatics.jax.org), HomoloGene at NCBI (http://www.ncbi.nlm.nih.gov), and 

Ensembl (http://www.ensembl.org). The overlap P-value, i.e., the direction of the correlation 

between two given gene signature sets (b1, b2), and the P-values between subsets of gene 

signatures are calculated as follows.  

Each gene signature set was rank-ordered according to the absolute fold-change value. 

Upregulated and downregulated genes were denoted by positive and negative signs, 

respectively, to indicate directionality. A directional subset was generated for each direction, 

such as b1+, b1-, b2+, and b2-.  

Next, all of the subset pairs were identified as b1Di, b2Dj, where Di and Dj were the 

available directions (+ or −) in b1 and b2, respectively. The Running Fisher algorithm was 

applied to each subset pair. The top ranking genes in the first subset b1Di were collected as a 

group, G, and the second subset b2Dj was scanned from top to bottom in rank order to identify 

each rank with a gene matching a member in group G. At each matching rank, K, the scanned 

portion of the second subset b2Dj, consisted of N genes, and the overlap between group G and 

these N genes was defined as M. Fisher’s exact test was performed at rank K to evaluate the 

statistical significance of observing M overlaps between a set of size G and a set of size N, 

where the set of size G comes from platform P1, and the set of size N comes from platform P2, 

given the sizes of P1 and P2 as well as the overlap between P1 and P2. At the end of the scan, 

the best P-value was retained, and a multiple-hypothesis-testing correction factor was applied. 

The negative log of the multiple-testing-corrected best P-value (Pb1Di→b2Dj) was a score 

(Sb1Di→b2Dj) for the subset pair. Here, the subscript b1Di → b2Dj indicates that b1Di was the 

first subset used to define the top genes G, and b2Dj was the second subset that was used for 

the scan. 

                Sb1Di→b2Dj = -ln Pb1Di→b2Dj                           (1) 

Next, the Running Fisher algorithm was performed in the reverse direction. The same 
procedure in this reverse direction produced another score ( ) for the same subset 

pair. The two scores were averaged to represent the magnitude of the similarity between the 

two subsets. 
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                                     (2) 
The P value (Pb1Dib2Dj) between b1Di and b2Dj was calculated using the following 

equation: 

               Pb1Dib2Dj = exp ( -Sb1Dib2Dj )                           (3) 

A positive sign was assigned to pairwise correlation scores (Sb1+b2+ and Sb1-b2-) for a 

subset pair of the same direction (b1+b2+, b1-b2-), and a negative sign was assigned to 

pairwise correlation scores (Sb1+b2- and Sb1-b2+) for a subset pair of opposite directions (b1+b2-, 

b1-b2+). Then, the overall score (Sb1b2) between b1 and b2 was calculated from the correlation 

scores (Sb1+b2+, Sb1-b2-, Sb1+b2-, and Sb1-b2+) of subset pairs using the following equation: 

                                (4)  
The sign of Sb1b2 reflected whether the two signatures were positively or negatively 

correlated. The overall P-value (Pb1b2) between b1 and b2 was calculated using the following 

equation: 

              Pb1b2 = exp ( -|Sb1b2| )                                (5) 

This overall P-value is referred to as the “overlap P-value” between two gene 

expression patterns in this paper.  

 

Prediction of the subcellular of proteins coded by genes 

To predict the subcellular localizations of proteins coded by genes in each dataset, 

COMPARTMENTS (http://compartments.jensenlab.org)75 was used. COMPARTMENTS is a 

web resource that integrates evidence on protein subcellular localization from manually curated 

literature, high-throughput screens, automatic text mining, and sequence-based prediction 

methods. For each gene queried, it provides a score reflecting the localization to multiple 

cellular compartments (e.g., the plasma membrane, nucleus, cytosol, and so on) based on 

aggregating data from prediction algorithms (e.g., PSORT and YLoc).  

The WoLF PSORT program76, a sequence-based protein localization predictor, was 

used for the prediction of protein subcellular localization in this study. PSORT predicts 

subcellular localization based on various sequence-derived features such as sorting signals, 

binding domains, and amino acid composition. All PSORT scores were sorted by the number 

of stars (Spsort) assigned to a sequence-based prediction, from 0 to 3 (e.g., Rreb1: nucleus = 3, 

cytosol = 2, and other = 0; Fam107a: nucleus = 2, cytosol = 2, and other = 0). Detailed 

information about PSORT and Spsort score have been described previously6,7. In this study, 

the score of each gene was determined by the highest Spsort score among the subcellular 
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compartment(s). If there were two or more compartments sharing the highest score, the score 

of each gene was determined by dividing the total number by the number of compartments 

with the highest score (e.g., Rreb1: nucleus = 1; Fam107a: nucleus = 0.5, cytosol = 0.5). The 

subcellular distribution patterns of hiM/hiI genes are expressed as the proportion of the 

integrated scores of the top 50 genes.  

 

Principal component analysis 

Principal component analysis (PCA) was performed to reveal the relationship 

between datasets of marker genes. PCA was performed for datasets composed of hiM/hiI genes 

at three different timepoints: day 1, day 3, and day 10 after treatment. From the comprehensive 

gene lists, the 500 genes with the largest fold changes were used for PCA. The two primary 

components in the results of PCA, which are denoted as principal component 1 (PC1) and PC2, 

correspond to the x-/y-axes on the graphs. For data processing and PCA, I used R for Mac OS 

X (The R Foundation for Statistical Computing). 
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Supplementary Notes 

 

To evaluate the time-course of changes in immature-like gene expression patterns 

after seizure induction, I compared datasets from the DG of typically developing infants with 

datasets from rat DG at three different timepoints after seizure induction by injection of 

pilocarpine or kainite (day 1, day 3, and day 10). As shown in Supplementary Figure 2a, the 

overlap P-values for the hiM genes were smaller than those for the hiI genes on the first day 

after seizure induction in both the pilocarpine and kainate datasets. Interestingly, the overlap 

P-values for the hiI genes were smaller than those for the hiM genes on day 3. These differences 

in the overlap P-values of the hiM/hiI genes with the number of days after seizure induction 

suggest that the expression levels of maturity-/immaturity-related genes induced by neural 

hyperexcitation change over time; the expression changes of hiM genes in the DG occur earlier 

than those of hiI genes after seizure induction. The similarity of the results for pilocarpine and 

kainite also suggests that the induction of immature-like gene expression is not dependent on 

the specific seizure-inducing drugs but on the induced neural hyperexcitation itself. 

I performed principal component analysis (PCA) to visualize the relationships 

between hiM/hiI genes at different timepoints after seizure induction. For these analyses, I 

generated integrated datasets comprised of hiM or hiI genes at three different timepoints after 

seizure induction by pilocarpine or kainite (pilocarpine hiM gene sets, pilocarpine hiI gene sets, 

kainite hiM gene sets, and kainite hiI gene sets) and performed PCA for each dataset. Datasets 

at every timepoint after seizure induction and those of untreated control were plotted in a two-

dimensional space with coordinates corresponding to principal components (PC) 1 and 2 

(Supplementary Figure 2b). The PC1/PC2 coordinates of the hiM genes are different for day 1, 

day 3, and the untreated control, but those for day 3 and day 10 are close to each other 

(Supplementary Figure 2b), indicating that the expression changes in hiM genes after seizure 

induction become stable by day 3. However, the PC1/PC2 coordinates for hiI genes differed 

from each other at all timepoints after seizure (Supplementary Figure 2b), indicating that the 

expression changes in hiI genes continue after day 3 until at least day 10. These results also 

suggest that the changes in expression of the hiM genes follow a different temporal pattern 

than the changes in expression of hiI genes. 

I conducted a bioinformatic estimation of the subcellular distributions of the protein 

products of hiM/hiI genes. To predict their subcellular distribution, I used the open-source tool 

COMPARTMENTS, which provides information on the estimated subcellular localization of 

genes of interest (see Methods). The subcellular distributions of hiM genes in the plasma 

membrane/nucleus were 28%/16% (in the pilocarpine dataset) and 26%/15% (kainite), and 
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those of hiI genes were 16%/20% (pilocarpine) and 16%/23% (kainate) (Supplementary Figure 

2c). The proportion of expression in the plasma membrane was higher in the hiM gene group 

than in the hiI gene group, while that in the nucleus was higher in the hiI gene group than in 

the hiM gene group. These results indicate that the protein products of hiM/hiI genes tend to 

have spatially distinct localizations. 

I applied my analysis on the microarray expression datasets generated by Gandal and 

colleagues, in which confounding factors are largely controlled (Supplementary Figure 3). The 

hiM-index and hiI-index of datasets from patients with schizophrenia were 7.85 and 2.46, 

respectively, indicating hiM-index-dominant pattern. This result indicates that schizophrenia 

datasets used in Gandal’s study also show transcriptomic pseudoimmaturity inducible by neural 

hyperexcitation. The hiM-index and hiI-index of datasets from bipolar disorder patients were 

2.19 and 1.48, respectively, and those of major depressive disorder were both 0. These indexes 

are smaller than those of schizophrenia, which is mostly consistent with my results in Figure 

3. The hiM-index and hiI-index of autism were -6.74 and 28.66, respectively. This hiI-index-

dominant pattern is different from my results, as shown in Figure 3d and 3i. Although the 

pattern in autism is apparently different from mine, datasets from autism show significant 

overlap with pseudoimmaturity inducible by hyperexcitation, regarding hiI-index. I have added 

analysis of the datasets from alcohol abuse disorder and inflammatory bowel disease. Their 

hiM-/hiI-indexes were 25.85/-5.92 and -7.03/9.31, respectively. 

To further evaluate biological significances of hiM and hiI genes, I performed 

weighted gene coexpression network analysis (WGCNA), which is a common method in 

systems biology for describing the correlation patterns among genes across microarray samples 

based on the k-means algorithms. I applied this method to the datasets from mouse DG 

development (postnatal day 8, 11, 14, 17, 21, 25, and 29 mouse infants and 33-week-old adult 

mice), and extracted 5 gene modules (turquoise, blue, brown, yellow, and grey) 

(Supplementary Figure 4a). I compared hiM and hiI gene groups with these 5 gene modules 

and evaluated their similarities by Running Fisher test (Supplementary Figure 4b). The hiM 

and hiI genes showed partially different patterns of overlap with these 5 modules of 

coexpressed genes during DG development. While hiM genes significantly overlap with 

turquoise, blue, and yellow modules, hiI genes significantly overlap with only turquoise 

module (Supplementary Figure 4b). Additionally, I performed pathway analyses on these 5 

modules in BaseSpace (Supplementary Figure 4c). The turquoise module includes biogroups 

associated with the nucleus (e.g., “cell division”, “Genes involved in Cell Cycle”, and 

“mitosis”), and blue module includes biogroups associated with synapse (e.g., “dendritic spine” 

and “synapse”). Similar biogroups were found in results of pathway analysis in Table 1 and 
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Table 2 (for example, biogroups such as “synaptic transmission” and “synapse” were involved 

in the results of pathway analysis for hiM genes; biogroups such as “Genes involved in Cell 

Cycle”, “mitosis”, and “cell division” were involved in the results of pathway analysis for hiI 

genes). 

All information on the datasets and gene lists used in this study are provide as 

Supplementary Data 1 to 12. 
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Figure 1. Neural hyperexcitation induces immature-like gene expression patterns in mouse 

and human 

The patterns of changes in gene expression in the rat DG 1 day after pilocarpine treatment 

compared with developmental changes in the mouse DG and human hippocampus. Venn 

diagrams illustrating the overlap in genome-wide gene expression changes between the rat DG 

after seizure induction (GSE47752) and the DG of typically developing mouse infants 

(GSE113727; P8 infants compared with 33-week-old adults) (a) or the hippocampus of 

typically developing human fetuses (GSE25219: 19- to 23-week fetuses compared with 8- to 

9-week fetuses) (b). Bar graphs illustrate the −log of the overlap P-values for genes upregulated 

(red arrows) or downregulated (green arrows) by each condition. The Bonferroni correction 

was used to adjust the significance level according to the number of dataset pairs (see the 

Methods section and Supplementary Methods). Genes that were downregulated in both 

conditions were defined as mouse hiM genes (green bar in (a)), and genes that were upregulated 

in both conditions were defined as mouse hiI genes (red bar in (a)). Similarly, human hiM genes 

and human hiI genes were defined as the groups of genes with positive correlations between 

the conditions of development and seizures (b). 
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Figure 2. Overview of the two-dimensional (2-D) analysis of disease datasets 

(a) Genes with expression changes in the disease datasets are compared with the hiM and hiI 

gene groups. The hiM- and hiI-indexes were defined as the −log of the overlap P-values with 

the hiM and hiI genes, respectively. The gene expression patterns of the disease datasets are 

plotted in two-dimensional coordinates, in which the x- and y-axes are defined by the hiM- and 

hiI-indexes. Each dataset is characterized as hiM- or hiI-dominant by the ratio of the hiM-index 

to the hiI-index, and the degree of hiM- or hiI-dominance is evaluated by deviation from the 

unity line. The distance of each dataset from the origin shows the degree of overlap with hiM-

/hiI-genes. (b) 2-D analysis applied to a dataset of postmortem brains (prefrontal cortex) from 

patients with schizophrenia (schizophrenia dataset #1). The expression levels of 1744 genes 

are significantly changed in this disease dataset. Of these, 87 and 76 genes overlap with the 

hiM/hiI genes. The overlap P-values between the disease dataset and the hiM/hiI genes are 2.4 

× 10−10 and 6.9 × 10−7. The hiM- and hiI-indexes for the disease dataset are therefore 9.62 and 

6.16, indicating that this dataset is hiM-dominant. The results of the 2-D analysis for this 

dataset are plotted in the two-dimensional coordinates defined by the hiM- and hiI-indexes.  
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Figure 3. Two-dimensional (2-D) analysis for disease datasets from various 

neuropsychiatric disorders  

(a-h) Results of the 2-D analysis of datasets for schizophrenia (a), ALS (b), Alzheimer’s disease 

(c), autism (d), Parkinson’s disease (e), bipolar disorder (f), Huntington’s disease (g), and major 

depressive disorder (h). Each point corresponds to the results of one independent study. Filled 

points indicate datasets from the postmortem brain or spinal cord (ALS) of patients, and open 

points indicate those from cultured neural cells from patient iPSCs. (i) The distribution patterns 

of the hiM- and hiI-indexes for all diseases analyzed. The extent of the changes in hiM-/hiI-

indexes is assessed by the average distance of all datasets for each disease from the origin. Four 

diseases whose average distances from the origin are over 5.0 are shown as circular sectors, 

and the others are shown as points. The radii of the circular sectors indicate the average distance 

of all datasets in each disease from the origin, and the central angles of the circular sectors are 

the average deviation ± SEM from the unity line. Each point indicates the average distance 

from the origin and average deviation from unity line. 
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Figure 4. Time-dependent changes in the hiM- and hiI-indexes in animals subjected to 

various putative risk events for neuropsychiatric disorders and in genetic mouse models of 

schizophrenia, bipolar disorder, ALS, and Alzheimer’s disease 

(a) Pattern of changes in the hiM- and hiI-indexes in the mouse and rat hippocampus after 

treatment with kainite (seizure #1 (GSE1831) and seizure #2 (GSE4236)), in mouse cortex and 

astrocytes after middle cerebral artery occlusion (MCAO; ischemia #1 (GSE32529), ischemia 

#2 (GSE35338)), and in mouse cortex after CpG infection (GSE32529). (b) Pattern of changes 

in the hiM- and hiI-indexes of the spinal cord of an ALS mouse model with the SOD1(G93A) 

mutation. (c) Pattern of changes in the hiM- and hiI-indexes of the hippocampus and cortex of 

an Alzheimer’s disease mouse model with mutations in APP and PSEN1. (d) hiM- and hiI-

indexes in mouse models of schizophrenia and bipolar disorder.  
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hiI genes (mouse)

Biogroup name direction
Common 

genes p-value
response to wounding up 60 1.10E-16
positive regulation of developmental process up 66 9.30E-16
cardiovascular system development up 61 7.70E-15
circulatory system development up 61 7.70E-15
proteinaceous extracellular matrix up 32 7.80E-15
Genes involved in Cell Cycle up 47 1.00E-14
extracellular matrix up 37 1.30E-14
Genes involved in Cell Cycle, Mitotic up 42 6.30E-14
protein domain specific binding up 60 7.00E-14
positive regulation of signal transduction up 58 8.70E-14
Genes involved in DNA Replication up 32 9.20E-14
cell cycle up 67 3.00E-13
Genes involved in Adaptive Immune System up 56 3.20E-13
Focal adhesion up 31 5.60E-13
kinase binding up 44 5.50E-12
cytoskeleton organization up 54 5.60E-12
neuron differentiation up 52 5.80E-12
basement membrane up 19 7.50E-12
regulation of cell migration up 36 1.10E-11
MAPKinase Signaling Pathway up 20 1.40E-11

hiM genes (mouse)

Biogroup name direction
Common 

genes p-value
multicellular organismal signaling down 56 4.00E-23
transmission of nerve impulse down 51 3.10E-19
axon down 45 7.30E-19
neuron differentiation down 58 4.70E-17
synapse down 57 5.70E-17
neuron development down 50 1.50E-16
neuronal cell body down 45 5.20E-16
cell junction down 56 3.00E-15
cell part morphogenesis down 43 4.70E-15
neuron projection development down 42 6.20E-15
cell projection part down 56 6.50E-15
cell morphogenesis involved in neuron differentiation down 35 2.90E-14
cell morphogenesis involved in differentiation down 40 6.70E-14
cellular chemical homeostasis down 53 2.50E-13
cell-cell signaling down 44 2.60E-13
synaptic transmission down 37 3.60E-13
regulation of neurological system process down 31 1.10E-12
regulation of transmission of nerve impulse down 30 1.40E-12
Genes involved in Neuronal System down 31 1.70E-12
cellular ion homeostasis down 49 1.80E-12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Summary of results from the pathway analyses of mouse hiM and hiI genes 

The 20 biogroups with the most significant similarities to mouse hiM and hiI genes. Green 

columns indicate biogroups that are related to the plasma membrane. Red columns indicate 

biogroups that are related to reactions in the nucleus. 
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hiI genes (human)

Biogroup name direction
Common 

genes p-value
chromosome down 65 1.30E-32
response to DNA damage stimulus down 60 4.80E-32
Genes involved in Cell Cycle down 50 3.60E-31
Genes involved in Cell Cycle, Mitotic down 43 1.20E-30
Genes involved in DNA Replication down 34 2.00E-30
interphase down 47 8.20E-30
interphase of mitotic cell cycle down 46 5.10E-29
Genes involved in Mitotic M-M/G1 phases down 29 2.60E-26
Cell cycle down 25 7.60E-23
DNA repair down 40 2.30E-22
wound healing down 50 7.40E-22
response to ionizing radiation down 21 1.20E-20
nuclear division down 35 8.00E-20
mitosis down 35 8.00E-20
cell division down 38 2.20E-19
G1/S transition of mitotic cell cycle down 26 1.70E-18
cardiovascular system development down 46 3.20E-18
circulatory system development down 46 3.20E-18
S phase down 22 3.80E-18
blood coagulation down 41 6.10E-18

hiM genes (human)

Biogroup name ���������

������

����� �������
multicellular organismal signaling �� �
 4.40����
transmission of nerve impulse �� �� 1.40����
synaptic transmission �� 
� 6.70����
neuron projection �� 
� 2.60����
axon �� �� 2.90����
synapse �� �� 2.60����
neuron development �� �� 1.60����
Genes involved in Neuronal System �� �� 3.40����
Genes involved in Transmission across Chemical 
Synapses �� �� 1.50����
regulation of neurological system process �� �� 6.50����
regulation of transmission of nerve impulse �� �� 9.20����
cell projection part �� �� 1.80���

passive transmembrane transporter activity �� �� 1.80���	
ion channel activity �� �� 2.20���	
cell part morphogenesis �� �� 1.80����
behavior �� �� 2.90����
single-organism behavior �� �� 3.70����
cell morphogenesis involved in neuron differentiation �� �� 4.30����
neuron projection development �� �
 4.40����
dendrite �� �
 2.00����

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Summary of results from the pathway analyses of human hiM and hiI genes 

The 20 biogroups with the most significant similarities to human hiM and hiI genes. Green 

columns indicate biogroups that are related to the plasma membrane. Red columns indicate 

biogroups that are related to reactions in the nucleus.   
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Supplementary Figure 1. The pattern of changes in gene expression in rat DG 1 day after 

pilocarpine treatment compared with various developmental stages in mouse DG and human 

hippocampus 

Gene expression changes in rat DG after seizure induction (GSE47752) and the DG of 

developing mice at various stages (GSE113727, infants: P8, P11, P14, P17, P21, P25, P29; 

adults: 33 weeks) (a) or the hippocampus of typically developing human fetuses (GSE25219: 

10–12-week, 13–15-week, 16–18-week, 19–23-week, and 24–38-week fetuses compared with 

8–9 week fetuses, or 6–12-month, 1–5-year, 6–11-year, 12–19-year, 20–39-year, 40–59-year, 

and 60+-year adults compared with 0–5-month infants) (b). Bar graphs illustrate the −log of 

overlap P-values between conditions. The dataset from the DG of day 8 infant mice versus 33-

week adults had the largest overlap with the dataset for rat DG 1 day after seizure induction 

versus controls. The dataset from the hippocampus of 19–23-week fetuses versus 8–9-week 

fetuses showed the largest overlap with the dataset for rat DG 1 day after seizure induction 

versus controls.  
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Supplementary Figure 2. Differences in the spatiotemporal patterns of the hyperexcitation-

induced expression changes in hiM and hiI genes 

(a) Gene expression changes in rat DG at three time points after seizure induction (pilocarpine 

or kainite) compared with the differences between infant and adult mouse DG. Bar graphs 

illustrate the overlap P-values for genes upregulated or down-regulated in each condition. The 

Bonferroni correction was used to adjust the significance level according to the number of 

dataset pairs. (b) The results of principal component analysis for the time-course expression 

pattern changes in hiM and hiI genes after seizure induction. (c) Subcellular distribution 

patterns of hiM and hiI genes. Pie charts show the subcellular distribution ratios of the 50 genes 

with the highest fold change included in each gene set. 
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Supplementary Figure 3. Results of 2-D analysis performed on the datasets from cerebral 

cortical samples of subjects with major neuropsychiatric disorders (Gandal et al., Science, 

2018) 

Each dot corresponds to results of microarray datasets from each disease. hiM-index-dominant 

pattern were found in schizophrenia and bipolar disorder/major depression disorder show small 

changes in both of hiM and hiI index, which is mostly consistent with our results in Figure 3. 

Autism show changes in hiI index but not in hiM index, which is different pattern obtained in 

our results. Alcohol abuse disorder and inflammatory bowel disorders, which were not assessed 

in Figure 3, show hiM-index-dominant and hiI-index-dominant patterns. 
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Module: Turquoise (7649 genes)

Biogroup name common 
genes p-value

cell division 201 2.60E-39

Genes involved in Cell Cycle 179 1.20E-30

mitosis 144 6.30E-30

Genes involved in Cell Cycle, Mitotic 155 3.60E-29

Genes involved in Developmental Biology 167 1.50E-23

positive regulation of cell differentiation 196 4.10E-23

Genes involved in Axon guidance 120 1.20E-22

Genes involved in DNA Replication 101 1.30E-21

brain development 161 5.40E-21

negative regulation of cellular component organization 131 5.90E-21

Module: Blue (5424 genes)

Biogroup name common 
genes p-value

GTPase regulator activity 120 3.70E-11

dendrite 127 2.10E-09

dendritic spine 62 5.00E-07

regulation of small GTPase mediated signal transduction 91 7.30E-07

synapse 149 9.20E-07

regulation of anti-apoptosis 25 1.30E-06

neuronal cell body 118 1.50E-06

Genes involved in Neuronal System 76 2.50E-06

Genes involved in Transmission across Chemical Synapses 57 3.00E-06

enzyme activator activity 92 7.50E-06

Module: Brown (4568 genes)

Biogroup name common 
genes p-value

Large Drosha complex 9 0.004

cytoplasmic sequestering of protein 7 0.0045

gene silencing 16 0.0109

transcription elongation factor complex 9 0.0178

mitotic spindle 6 0.0182
Genes involved in Transcriptional activity of 
SMAD2/SMAD3:SMAD4 heterotrimer 10 0.0197

Genes involved in Signaling by TGF-beta Receptor Complex 16 0.0203

vacuolar transport 11 0.0219

lysosomal transport 10 0.0358

G alpha q Pathway 9 0.0373

Module: Yellow (2454 genes)

Biogroup name common 
genes p-value

perinuclear region of cytoplasm 64 6.80E-06

sarcolemma 22 1.00E-05

Genes involved in Developmental Biology 60 5.50E-05

protein N-terminus binding 22 5.70E-05

Golgi-associated vesicle membrane 9 0.0001

mitochondrial membrane 63 0.0002
Genes involved in NGF signalling via TRKA from the plasma 
membrane 28 0.0003

Genes involved in Keratan sulfate/keratin metabolism 9 0.0003

cell-substrate adhesion 21 0.0003

14-3-3 protein binding 7 0.0004

Module: Grey (76 genes)

Biogroup name common 
genes p-value

cell surface receptor signaling pathway involved in heart 
development 2 0.0008

regulation of transcription regulatory region DNA binding 2 0.0013

Beta1 integrin cell surface interactions 3 0.0013

pattern specification process 5 0.0019

cellular lipid catabolic process 3 0.0023

negative regulation of leukocyte apoptotic process 2 0.0023

Genes involved in Nuclear signaling by ERBB4 2 0.0029

Genes involved in Tight junction interactions 2 0.0031

Genes involved in Amyloids 2 0.0036

BMP receptor signaling 2 0.004

-log(overlap p-value)

hiM
genes

hiI
genes

Turquoise Blue Brown Yellow Grey

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Supplementary Figure 4. Comparison between gene modules obtained from mouse DG 

development datasets and hiM/hiI genes 

(a) Network dendrogram from coexpression topological overlap of genes across disorders. (b) 

Overlap between genes in hiM/hiI genes and 5 gene modules obtained from coexpression 

analyses in (a). Color bars show -log of overlap P-value. (c) Summary of results from the 

pathway analyses of 5 modules.  
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Supplementary Data listed below will be published with Murano et al., Commun Biol, (2019). 

 

Supplementary Data 1. 

Gene list of hiM/hiI genes in mouse and human. 

 

Supplementary Data 2. 

Detailed information on the 99 microarray datasets used in this study. 

 

Supplementary Data 1. 

Gene lists of hiM and hiI genes in mouse and human. 

 

Supplementary Data 2. 

Detailed information on the 99 microarray datasets used in this study. 

 

Supplementary Data 3. 

The lists of hiM and hiI genes included in datasets from patients with amyotrophic lateral 

sclerosis (ALS). 

 

Supplementary Data 4. 

The lists of hiM and hiI genes included in datasets from patients with Alzheimer’s disease 

(ALZ). 

 

Supplementary Data 5. 

The lists of hiM and hiI genes included in datasets from patients with autism spectrum disorder 

(ASD).  

 

Supplementary Data 6. 

The lists of hiM and hiI genes included in datasets from patients with bipolar disorder (BPD). 

 

Supplementary Data 7. 

The lists of hiM and hiI genes included in datasets from patients with Huntington’s disease 

(HD). 

 

Supplementary Data 8. 

The lists of hiM and hiI genes included in datasets from patients with major depressive disorder 
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(MDD). 

 

Supplementary Data 9. 

The lists of hiM and hiI genes included in datasets from patients with Parkinson’s disease (PD). 

 

Supplementary Data 10. 

The lists of hiM and hiI genes included in datasets from patients with schizophrenia (SCZ). 

 

Supplementary Data 11. 

The lists of hiI genes shared in all datasets in each disease categories. 

 

Supplementary Data 12. 

The lists of hiI genes shared in all datasets in each disease categories.   

  

 




