
Bayesian inference for transcription 
elongation rates by using total RNA 

sequencing 
 
 

河村 優美 

 
 

博士（統計科学） 

 
総合研究大学院大学 
複合科学研究科 
統計科学専攻 

 

平成３０（２０１８）年度 
  



Bayesian inference for transcription
elongation rates by using total RNA

sequencing

Yumi Kawamura

Department of Statistical Science
School of Multidisciplinary Sciences SOKENDAI (The Graduate

University for Advanced Studies)

This dissertation is submitted for the degree of
Doctor of Philosophy

March 2019





Abstract

Motivation: Sequencing total RNA without poly-A selection enables us to obtain a tran-
scriptomic profile of nascent RNAs undergoing transcription with co-transcriptional splic-
ing. In general, the RNA-seq reads exhibit a sawtooth pattern in a gene, which is charac-
terized by a monotonically decreasing gradient across introns in the 5’ to 3’ direction, and
by substantially higher levels of RNA-seq reads presented in exonic regions. Such patterns
result from the process of underlying transcription elongation by RNA polymerase II, which
traverses the DNA strand in the 5’ to 3’ direction as it performs a complex series of mRNA
syntheses and processing. Therefore, data of sequenced total RNAs could be used to infer
the rate of transcription elongation by solving the inverse problem. We addressed this issue
by using a signal reconstruction technique based on a sequential Monte Carlo algorithm.
The objective was to reconstruct the spatial distribution of transcription elongation rates
from a given noisy, sawtooth-like profile.
Results: It is necessary to recover the signal source of the elongation rates separately from
several types of nuisance factors, such as unobserved modes of co-transcriptionally occur-
ring mRNA splicing, which exert significant influence on the sawtooth shape. The present
method was applied using published total RNA-seq data derived from mouse embryonic
stem (ES) cells. We describe the spatial characteristics of the estimated elongation rates,
focusing especially on promoter-proximal sites, exons, and introns. We found that the pre-
dicted elongation rates are highly correlated with the epigenetic landscape of nucleosome
occupancy and histone modification patterns.
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Chapter 1

Introduction

Transcription elongation rates are known to play an important role in co-transcriptional
events such as splicing, termination, and genome stability [66]. However, how to measure
genome-wide elongation rates and processing is poorly understood and controversial. RNA
polymerase II (Pol II) is the producer of RNA. A better understanding of Pol II transcription
elongation rates is important to understand co-transcriptional processing and its mechanism.

Common approaches to studying the rates of transcription elongation rely on advanced
experimental technologies specifically designed to measure the moving distance of Pol II
by conducting time-course experiments. Several types of experimental technologies have
recently emerged for genome-wide measurements of Pol II elongation rates, such as global
run-on and sequencing (GRO-seq) [30], native elongating transcript sequencing (NET-seq)
[14], precision run-on sequencing (PRO-seq) [38], nascent RNA sequencing (Nascent-seq)
[50], and metabolic labeling of nascent RNA using microarrays [49]. The objective com-
mon to these methods is to deeply sequence RNAs at the binding sites of transcriptionally
active Pol II running on DNA strands in cells. Typically, elongation rates are measured by
tracking a wave front of transcriptionally active Pol II traversing 5’-3’ over time. The ob-
served travelling distance of the wave fronts between two consecutive time points is used
to calculate the velocity. Such methods operate with intractable drug-driven interventions
to induce the Pol II wave, such as manipulations for halting and restarting transcriptions.
Furthermore, the time progressions of induced waves are visually indistinguishable, and it
is often infeasible to track for most genes as will be shown later. In addition, the spatial
resolution of observable elongation rates is dependent on the length of the time interval. It
is difficult to acquire high frequency time-course data because of the intractability in the
protocols of such nascent transcript sequencing.

We have developed a simple statistical scheme that estimates the rates of transcription
elongation using a widely used, well-established experimental technique called total RNA
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sequencing (total RNA-seq). Experimental protocols of total RNA-seq are much easier to
perform than the other existing methods for measuring transcription elongation rates. A
statistical method based on Bayesian inference is the key to address this issue.

As will be described, in a given profile of total RNA-seq, a specific pattern of data
that we call the sawtooth-like profile is often observed, which is caused by an unobserved
process of transcription elongation on Pol II traversing the DNA strand in the 5’ to 3’ direc-
tion. We propose a Bayesian method that predicts the transcription elongation rates from
observed total RNA-seq reads by solving an inverse problem. To be specific, after forwardly
modeling the given sequenced RNA-seq reads for unknown rates of elongating Pol II and
unknown modes of splicing, the backward prediction is performed according to Bayes’ law
to inversely predict the unknowns. As a proof of principle, we applied our approach on the
total RNA-seq data derived from mouse ES cells. We identified some spatial features of
elongation rates such as slow down of transcription at exons and promoter-proximal regions.
In addition, spatial features of the predicted elongation rates were comprehensively investi-
gated in relation to some epigenetic observations, i.e., nucleosome positioning and histone
methylation. This association study has revealed some previously unknown mechanisms.

Until now, genome-wide measurements for the rates of transcription elongation have re-
quired us to obtain time-course data in order to capture moving Pol II. In general, such meth-
ods involve tedious operation times and high costs for repeated RNA sequencing. However,
our proposed method enables us to estimate transcription elongation rates using a one-time
operation of total RNA-seq without time-course experiments. This will be a great contribu-
tion to the study of the mechanisms of transcription.



Chapter 2

Background

2.1 Transcription elongation

Here, we briefly describe the basic biology relevant to transcription elongation.

2.1.1 Elongation stage by the Pol II and molecular mechanisms

For many genes, Pol II pauses at ∼30-50 base pairs (bp) downstream of the transcription
start site (TSS). This is called the promoter proximal pausing stage. Pol II passes the pausing
phase, and then enters a productive elongation stage. At the termination stage, reaching the
3’ end and the RNA chain stabilized by the addition of a poly(A) tail, it releases from the
DNA [60].

Fig 2.1 illustrates the following mechanism. After Pol II initiates, Pol II enters the
promoter proximal pausing stage under the control of the negative elongation factor (NELF)
and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF),
which is a prevalent feature across metazoan genomes. Before the transition into productive
elongation, NELF and DSIF form an elongation complex that is responsible for transcription
inhibition. The positive transcription elongation factor b (P-TEFb) mediates the transition
into the productive elongation stage. DSIF is phosphorylated by P-TEFb, and NELF is
eliminated from the elongation complex, whereas DSIF remains in the complex. Other
elongation factors come into the complex, such as the polymerase-associated factor complex
(PAFc) and the super elongation complex (SEC). Splicing and polyadenylation machinery
to promote a properly processed messenger RNA (mRNA) are coupled with transcription
elongation [73].
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Fig. 2.1 After Pol II initiates, Pol II pauses at a promoter-proxy site under the control of
NELF and DSIF. Pol II begins to elongate by P-TEFb. In transcription termination, Pol II is
released from the DNA after the poly(A) tail is added to transcripts [13, 30].

2.1.2 Elongation rate controls alternative exons

Transcription elongation rates by Pol II influence pre-mRNA processing such as splicing, ter-
mination, and genome stability. Numerous factors and regulatory mechanisms are involved
in the stages of transcription elongation by Pol II, suggesting that the elongation process is
highly complex. Elongation rates play an important role in the regulation of transcription
by Pol II.

It has also been observed that transcription elongation rates are highly related to the de-
termination of splice patterns. As illustrated in Fig 2.2, Pol II elongation rates control exon
inclusion and skipping. Faster Pol II elongation, passing an exon, does not have time to
recognize it. As a consequence, the alternative exon is often skipped. Slower Pol II elonga-
tion as it goes through an exon has enough time for the splicing machinery to recognize and
splice out the exon [9, 22].

2.2 Total RNA sequencing

Total RNA sequencing has been widely used to investigate different populations of RNAs,
including pre-mRNA and non-coding RNA species in pooled cells. Here, we provide an
overview of total RNA-seq experiments with RNA selection independent of the poly(A)
tails, which were used in our analysis as shown in later chapters.

2.2.1 Total RNA-seq with and without poly(A) selection

In the gene expression process, RNA synthesis and processing such as 5’ end capping,
pre-mRNA splicing, RNA editing, and 3’ end cleavage and polyadenylation occur. Splic-
ing takes place co-transcriptionally, and pre-mRNA splicing conducts the removal of non-
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Fig. 2.2 Co-transcriptional splicing controls alternative splicing by Pol II elongation rates.
Fast elongation rates tend to lead to the skipping of alternative exons (top). Slow elongation
rates tend to lead to the inclusion of exons (bottom). This figure is modified from Ref [9].

coding RNA sequences (introns) and the ligation of coding RNA sequences (exons) to form
the mature mRNA. Pol II functions in RNA synthesis and is responsible for the production
of nascent RNAs. The use of nascent RNAs and deep sequencing techniques such as with
next-generation sequencing (NGS) make it possible to track the process of transcription
elongation. In particular, non-coding RNA sequences in intronic regions provide important
statistical information to infer the transcription elongation process as detailed in Section
2.2.2.

Currently, NGS technology is an indispensable tool for various studies of the transcrip-
tome, such as RNA-seq [48]. The complete set of transcripts is referred to as the transcrip-
tome and includes protein-coding mRNA (coding RNA) and non-coding RNAs (ribosomal
RNA (rRNA), transfer RNA (tRNA), and other non-coding RNAs) [40].

In principle, total RNA sequencing can preferentially detect more of a specific type of
transcript by performing RNA selection by poly(A) tailing [69]. Sequenced ribosomal RNA-
depleted (ribo-minus or rm) transcripts from total RNAs have been used as a purification
method that enriches the RNA transcripts by the selective depletion of rRNAs from total
RNAs. Ribo-minus RNA leads to be the absence of poly(A) tailing on transcripts (poly
A(-)). The resulting RNA-seq without poly(A) selection can capture both the coding and
non-coding RNA transcripts. The data that we analyzed were taken from the total RNA-seq
without poly(A) selection. Conversely, RNA-seq with poly(A) selection (RNA-seq) detects
only mature RNA transcripts with poly(A) tails (poly A(+)).
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Total RNA-seq generates millions of reads and has the potential to determine the full
range of the abundance of RNA transcripts. Conventionally, total RNA-seq has been used to
quantify just the abundance of RNA molecules originating from both coding and noncoding
regions. This study provides another way to use total RNA-seq in genome-wide studies of
transcription elongation.

2.2.2 Sawtooth pattern in total RNA-seq

Sequenced total RNAs without poly-A selection (total poly-A(-) RNA-seq) consist of the
pool of nascent transcripts and mature polyadenylated RNAs. Pol II traverses on the DNA
strand from the 5’ to 3’ direction and generates nascent transcripts combined with co-
transcriptional splicing [9]. It has been reported that total poly-A(-) RNA-seq exhibits a
sawtooth pattern in the read density of a gene [2] as characterized by a monotonically de-
creasing 5’-3’ slope in the intronic regions and substantially higher levels of RNA present
in the exonic regions (Fig 3.1). One of the major determinants that influences the observed
sawtooth pattern is the rate of transcription elongation by Pol II. For example, the faster
Pol II elongation becomes, the steeper the decreasing gradient appears in introns, and vice
versa. Hence, it has been argued that total poly-A(-) RNA-seq could potentially be utilized
to obtain relative measures of transcription elongation rates across the genome [4, 42, 57].
However, the use of total poly-A(-) RNA-seq for such purposes has not been widespread,
possibly because of the difficulty in analyzing considerably noisy data with low read counts.
The underlying mechanisms behind the presence of sawtooth patterns and the statistical
methods for inversely inferring the elongation rates from such observations will be described
in a later chapter.
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2.3 Experimental technologies of measuring transcription
elongation rates

Here, we review existing technologies that have been used to measure the rate of transcrip-
tion elongation at individual-gene and whole-genome levels. Advantages and disadvantages
of each method are summarized in Tables 2.1 and 2.2.

2.3.1 Measurement on individual genes

Fluorescence recovery after photobleaching (FRAP) [70] is an in vivo imaging method to
detect Pol II elongation during steady state transcription. This technique enables us to mon-
itor the recovery rate of fluorescent-tagged transcription factors in living cells. Upon com-
pleting transcription, the recovery rate depends on the amount of time that it takes for the
photobleached elongating Pol II. The fluorescence recovery rate after photobleaching at a
single locus or at multiple loci gives information on transcription elongation rates.

Quantitative RT-PCR (qRT-PCR) coupled with using the compound 5,6-dichlorobenzimidazole
1-β -d-ribofuranoside (DRB), which reversibly prevents gene transcription in vivo, can be
used to analyze transcription and RNA processing. DRB inhibits the P-TEFb-dependent
Ser2 phosphorylation of Pol II. As a consequence, qRT-PCR measures the time during which
it fails to progress from the initiation to the elongation step of transcription [57].

The advantages and disadvantages of such gene-by-gene based experimental methods
are summarized in Table 2.2.

2.3.2 ChIP-seq of Pol II

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) of Pol II can be used to
directly observe the spatial distribution of nascent transcripts over the genome that undergo
transcription [15]. Observing Pol II transiting between two consecutive time points provides
the information required to infer the velocity (see Table 2.2 for summary).

2.3.3 Nascent RNA-seq

Several experimental technologies, generally referred to as nascent RNA-seq, have recently
emerged for genome-wide measurements of Pol II elongation rates, such as global run-on
and sequencing (GRO-seq) [30], native elongating transcript sequencing (NET-seq) [14],
precision run-on sequencing (PRO-seq) [38], nascent RNA sequencing (Nascent-seq) [50],
and metabolic labeling of nascent RNA using microarrays [49]. The objective common to
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Table 2.1 Comparison between nascent RNA-seq and total RNA-seq

Method Disadvantages Advantages
Nascent RNA-seq and others Costly to acquire time-course data

(possibly high frequency). Difficulty
in the wave front identification (Bio-
conductor ’groHMM’). Long genes
only.

Absolute elongation rates.

Total RNA-seq Relative elongation rates only. Long
genes only.

Widely used, well-established.

these methods is to deeply sequence RNAs at the binding sites of transcriptionally active Pol
II running on DNA strands in cells. Typically, the elongation rates are measured by tracking
a wave front of transcriptionally active Pol II traversing 5’-3’ over time. The observed trav-
elling distance of the wave fronts between two consecutive time points is used to calculate
the velocity. Such methods operate with intractable drug-driven interventions to induce the
Pol II wave, such as manipulations for halting and restarting transcription. Furthermore, the
time progressions of induced waves are visually indistinguishable, and it is often infeasible
to track for most genes as will be shown in later chapters. In addition, the spatial resolution
of the observed elongation rates depends on the length of the time interval. It is difficult
to acquire high frequency time-course data because of the intractability in the protocols of
such nascent transcript sequencing (Table 2.2).

2.3.4 Estimation of elongation rates using groHMM

The groHMM package is an R library that can be used to detect the boundaries of transcrip-
tion waves induced from GRO-seq experiments [12]. After measuring GRO-seq data that
shows the leading edge of the Pol II wave by short 17β -estradiol (E2) [27] treatments with
inducers and inhibitors of gene activation, a hidden Markov model (HMM) is used to esti-
mate three regions: (1) upstream of the wave, (2) the Pol II wave, and (3) downstream of
the wave. GRO-seq is used to detect the elongation rates that are the moving distance of Pol
II divided by a defined time period [17]. In real applications, which will be shown later, the
proposed method will be compared with a method based on GRO-seq plus groHMM.
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2.4 Determinants that control the rates of transcription
elongation

In Chapter 4.3, gene-to-gene variations in the estimated elongation rates will be associated
with some epigenetic observations obtained from independent analyses. Here, we describe
the biological implications of chromatin modifications and nucleosomes as major determi-
nants of elongation rates.

2.4.1 Histone modifications

The fundamental unit of chromatin is the nucleosome, which consists of 147 bp of DNA
wrapped around a core histone protein octamer made of two dimers of H2A and H2B and
a tetramer of H3 and H4. All histones can have post-translational modifications, including
acetylation, phosphorylation, methylation, and ubiquitylation, which regulate the chromatin
structure. As a result, the structures of the chromatin state change in relation to histone
modifiers [71] (Fig 2.4).

In general, active transcription states are due to high levels of lysine acetylation on
the H3 and H4 tails, trimethylation of H3 at lysine 4, trimethylation of H3 at lysine 79,
ubiquitylation of H2B, and trimethylation of H3 at lysine 36 (Fig 2.3). Silent and repressed
transcription is caused by trimethylation of lysine 27, ubiquitylation of H2A on lysine 119,
and trimethylation of H3 at lysine 9 (Fig 2.3).

One of the major determinants of transcription elongation is histone modification. There
is some evidence that the histone modifications along gene bodies are associated with tran-
scription elongation. A subset of histone modifications includes histone H3 methylated at
lysines 4, 36, and 79 (H3K4me, H3K36me, and H3K79me), and histone H2B monoubiqui-
tylated on lysine 120 (H2Bub1) [61].

Set1 enzymes are the catalytic subunits of Set1/COMPASS that are H3K4 methyltrans-
ferase complexes [54]. Methyltransferase of the COMPASS complex is responsible for
all H3K4 methylations in yeast. H3K4 di- and tri-methylation by Set1/COMPASS is a
highly regulated process that depends on mainly monoubiquitination of H2B on lysine
123 (H2Bub) by the Rad6/Bre1 complex. H2Bub is recognized by COMPASS compo-
nent Cps35 (Swd2) and then recruits the other subunits of COMPASS to conduct H3K4
di- and tri-methylation. H2B ubiquitination is the product of a complex regulatory cascade
for which Pol II functions as a central platform. Methylation of H3K4 requires H2B ubiqui-
tination, but not vice versa [59].
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Fig. 2.3 Role of histone modifications in active or silent transcription. This figure is modified
from Ref [71].
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Fig. 2.4 Active and inactive transcription states are regulated via the modification of chro-
matin states, which are called euchromatin and heterochromatin, respectively.
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Dot1/DOT1L (disruptor of telomeric silencing-1) catalyzes mono-, di-, and tri-methylation
of histone H3 at lysine 79 via a non-processive mechanism using S-adenosylmethionine
(SAM) as a cofactor. Efficient H3K79 trimethylation mainly requires ubiquitination of
H2B, such as with H3K4. The Paf1 complex, associated with elongating Pol II, enhances
the recruitment of Rad6 and Bre1 to chromatin, linking this modification to transcription
elongation [68]. Some DOT1L-associated complexes have been identified in mammals that
contain the Pol II Ser2-specific CTD kinase P-TEFb, implicating the involvement of Dot1
in transcription elongation. However, whether this mechanism relates H3K79 methylation
to transcription activation and elongation is still not clear [59].

H3K36 methylation is catalyzed by Set2 family enzymes within the coding regions of
transcribed genes. H3K36me2 and H3K36me3 are generally associated with transcription
activation, and H3K36me3 levels in particular are known to correlate with transcription
elongation rates. H3K36 methylation is associated with transcribed genes, and therefore it
is used as a reference of active transcription [59, 67].

2.4.2 Transcription regulation through nucleosomes

Eukaryotic genomes are packaged into nucleosomes, which are chromatin composed of
repeating units of 147 bp of DNA wrapped around eight histone proteins. Nucleosome
assembly prevents Pol II access to DNA because Pol II has to cross the nucleosome barrier
to get access to DNA and transcribe genes efficiently [64, 37]. Nucleosome occupancy and
positioning are measured by microccocal nuclease sequencing (MNase-seq).

Most core histone proteins have a diversity of minor (e.g. H2B.1, H3.3) or major (e.g.
H2A.Z, H2A.Bbd, centromere protein A [CENP-A]) modifications in their amino acid se-
quences. Nucleosomes containing histone variants might change their bonding and inter-
actions with DNA, which can clarify the role of varying DNA sequence preferences and
nucleosome positions [52].

The intrinsic DNA sequence and structural preferences of nucleosomes play a crucial
role in nucleosome occupancy and positioning, and this chromatin landscape is further dis-
tributed by chromatin remodelers [52, 31]. Chromatin remodelers use the energy from ATP
hydrolysis to evict, assemble, or slide nucleosomes. The main subfamilies of remodelers
are divided into four classes: SWI/SNF, ISWI, INO80, and CHD [11].

The chromatin remodeler Chd1 evicts nucleosomes downstream of the promoter, and
Chd1 is responsible for the vast majority of transcription-mediated nucleosome turnover.
Chd1 is required to overcome the nucleosomal barrier and enables the Pol II promoter to
escape in order to be transcribed. It was reported in a previous study that Chd1 plays a
crucial role in breaking the nucleosome barrier for progressive transcription [58].
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2.5 Recursive splicing is a stepwise removal event of a long
intron

As a fortuitous byproduct, the current proposed method could be used to analyze a recently
reported novel splicing event, referred to as recursive splicing (RS). It is commonly accepted
that splicing of introns is a single removal process as one unit from mRNA transcripts. RS is
a stepwise removal process of an intron that has most often been observed in exceptionally
long introns [21, 55]. As mapped reads of total RNA-seq without poly(A) selection con-
tain a mixture of mRNA, pre-mRNA, and nascent RNA transcripts, RNA-seq reads contain
transcripts originating from introns that are non-coding sequences. Co-transcriptional splic-
ing can be observed in total RNA-seq data that shows the sawtooth pattern of repeatedly
decreasing gradient read densities across introns in the 5’-3’ direction of transcription. Pre-
vious studies have identified the occurrence of RS using observations from total RNA-seq
([21, 55]). It has been observed that the read density of total RNA-seq shows a lot of valleys
in intronic regions that can be used as signals for the occurrence of RS (Fig 2.5). RS de-
pends on 3’ and 5’ splice-site sequences, called recursive splice sites, that are in the way of
long introns. Many of the functional sites of ratchet points are conserved across Drosophila
strains, indicating that RS is evolutionarily conserved [21]. A total of 197 ratchet points in
130 introns of a total of 115 Drosophila genes that have been known to show RS have been
identified [21]. The technology of total RNA-seq has the potential to identify the unknown
RS sites from the splicing patterns of read density. Some previous studies have suggested
that many genes that have longer introns in which RS occurs are related to neurological
diseases and autism [33, 39, 47].

Fig. 2.5 Schematic diagram for the identification of RS sites using the observed read density
of total RNA-seq. This figure is modified from Ref [21, 55].
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2.6 Statistical inference

Well-established total RNA sequencing is the most promising tool for elucidating genome-
wide transcription elongation rates. We focused on the use of total poly-A(-) RNA-seq. The
proposed method relies on a state space representation [34–36] that describes a mathemat-
ical relationship between the observed read density and spatially varying elongation rates.
A prior distribution is placed on the elongation rates and splicing patterns, which is then
followed by Bayesian inference by performing sequential Monte Carlo calculations (SMC)
[7, 20, 19]. The data captures the pool of different kinds of source signals associated with
the spatial dynamics of elongation rates and co-transcriptionally occurring mRNA splicings
such as exon skipping, intron retention, RS [21, 55], etc. The problem is a kind of blind
source separation in which unobserved splicing patterns influence the observed sawtooth as
a secondary signal to be decoupled, and the data contain a considerably high level of noise
because of the low read depth, especially in short introns. We have also investigated some
important characteristics of the data and described the advantages and the disadvantages
over GRO-seq. We explored the Pol II elongation rates in 659 genes in mouse ES cells
[56]. The estimated elongation rates were compared with some epigenetic observations of
nucleosome occupancy and histone modification patterns in mouse ES cells that have been
reported in different studies [62, 43, 16]. We found that position-specific variations in the
elongation rates agree to some extent with the observed epigenetic landscape.





Chapter 3

Forward modeling and backward
prediction

3.1 Sawtooth observation in total poly-A(-) RNA-seq

Transcription elongation is coupled to splicing. In the process of Pol II running through a
gene from the 5’ to 3’ end, a nascent transcript gets elongated successively and an intron
is removed, typically when Pol II reaches the 3’ end of the intron. In addition to mature
mRNAs, there exist in cells nascent transcripts at different stages of the elongation process
coupled with co-transcriptional splicing. It was first found by Ameur et al. [2] that a saw-
tooth shape appears in the read density, since the sequenced reads capture the pool of mature
and immature RNAs in cells as schematically shown in Fig 3.1.

Let x(t) be the probability of existence of Pol II instantly occurring at nucleotide position
t on a DNA strand t ∈ {1, . . . ,T}. The 5’ and 3’ ends of the gene correspond to t = 1 and
t = T , respectively. The existence probability is inversely proportional to the elongation rate
v(t) ∝ 1/x(t). The tth nucleotide is spliced out when Pol II reaches the position s(t)(t ≤
s(t)≤ T ). Then, the expected read density r(t) is expressed by the integral of x(t) over the
interval between its transcribed position t and the splice site s(t):

r(t) =
∫ s(t)

t
x(u)du. (3.1)

The conversion between the read density r(t) and the Pol II density x(t) can be carried out
by taking the integral or differentiation.
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Fig. 3.1 The inverse problem of the transcription elongation rate. (A) Total poly-A(-) RNA-
seq captures a mixture of mature and nascent transcripts in a pool of cells. During the
displacement of Pol II from 5’ to 3’, elongating and co-transcriptionally spliced RNAs can
take various states as shown in the middle. The sawtooth pattern of sequenced RNA-seq
reads shown in the bottom results from the expected frequency of nucleotides included in
those transcripts at various stages. This figure was created by referring to Fig. 2 of Ameur
et al. [2]. (B) Total poly-A(-) RNA-seq reads of a gene (GRM7) in human fetal brain
[2]. Splice variants reported in hg19, GRCh37 (Genome Reference Consortium Human
Reference 37) are shown in the upper side.
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If the splicing mode is conventional, that is, all exons are retained in the final product
and introns are removed when Pol II reaches the 3’ end, the expected read density becomes

r(t) =

{ ∫ T (Ik)
t x(t)dt t ∈ Ik∫ T
t x(t)dt t ∈ Ek

where Ik and Ek denote sets of nucleotide positions for the kth intron and the kth exon,
respectively, and T (Ik) denotes the 3’ end in Ik. It is assumed that, for each gene, K exons
and K −1 introns are arranged as E1I1E2I2 . . . IK−1EK from the 5’ to 3’ direction.

In this case, the sawtooth pattern has the following characteristics.

• Non-monotonic increasing gradient in an intron: ∀t ≥ s and (t,s) ∈ Ik × Ik, r(t)≤ r(s).

• Non-monotonic increasing gradient in exons: ∀t ≥ s and (t,s)∈ Ek ×Eh such that k ≤ h,
r(t)≤ r(s).

• Higher read density in an exon than in subsequent introns: ∀t ≥ s and (t,s) ∈ Ek × Ih

such that k ≤ h, r(t)≥ r(s).

These characteristics are retained only for the given splicing mode, but the statements imply
an important feature of the data: shorter introns or exons closer to the 3’ end of a gene
exhibit lower read counts. As shown later, read depths indeed correlate negatively with
intron lengths, and sawtooth patterns become less clear in shorter introns because of the
lack of a sufficient amount of reads. In other words, the inference of elongation rates is
feasible only to a small subset of longer genes without performing deep sequencing.

3.2 Existing method

Despite the great potential to utilize total RNA-seq to study transcription elongation rates,
there has been considerably less progress made in statistical methods. In a previous study,
the slope of the read density in an intron was estimated using a linear regression model,
and the estimated coefficient was used as an estimate of the relative elongation speed [2].
However, the estimated slope is just a measure of the average elongation rate in the intron.
Obviously, the transcription elongation rates vary from one place to another in the intron.
Furthermore, since the estimate of the slope is affected by the baseline expression level of
the intron, it is infeasible to compare such estimates between different introns. In addition,
different splicing modes bring different slopes to the read density. Therefore, any statistical
estimation of elongation rates should be coupled with the identification of splicing variations.
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One contribution of this study is to provide a method of estimating unobserved states of
transcription elongation rates and splicing modes simultaneously.

3.3 State space representation

Each intron is divided into bins with intervals equal to 400 bp. An exonic region is treated
positionally as a single point. Accordingly, the Pol II density is discretized into the corre-
sponding N grid points as {xn|n = 1, . . . ,N}, and the read counts are averaged within each
range, giving the dataset {yn|n = 1, . . . ,N}. It is assumed here that n = 1 and n = N denote
the 5’ and 3’ ends of a gene, respectively. The state variables to be inferred from the data
comprise the Pol II existence probability {xn|n = 1, . . . ,N} and the splice site sn (≥ n) of the
nth position in a transcribed RNA. The grid points {1, . . . ,N} consist of K exonic regions,
E1, . . . ,EK , and K −1 introns, I1, . . . , IK−1. Note that, by definition, the first and last exonic
regions become E1 = {1} and EK = {N}. The 5’ and 3’ ends of a reduced intronic region Ik

are denoted by S(Ik) and T (Ik), respectively.
The state space representation is then

logyn = logrn +ηn, ηn ∼ N(µ,σ),

rn =
sn

∑
i=n

xi,

logxn = logxn+1 +νn, νn ∼ N(0,γ),

sn ∼ p(sn|sn+1,sn+2, . . . ,sN), (3.2)

with the initial distributions on the state variables, logxN ∼ N(µ0,τ0) and sN = N. As in the
first equation, referred to as the measurement model, the read count is subject to the expected
read count rn corrupted by the multiplicative measurement noise ηn of the log-normal with
mean µ and variance σ . In the second line, the expected read count is represented by the sum
of the Pol II existence probabilities over the interval between n and sn, which corresponds
to a discretization of the integral in Eq. 3.1. The last two equations, referred to as the system
model, describe the state transition processes; a first-order random walk is imposed on the
transition of xn to induce spatially smooth estimates on the Pol II existence probabilities.
The splice sites following the conditional distribution will be detailed in the next subsection.
Note that the Pol II existence probabilities and the splice sites are sequentially generated in
the 3’-5’ direction (n = N,N −1, . . . ,1) since the expected read rn at the nth position could
be calculated with the given {xn,xn+1, . . . ,xN} and {sn,sn+1, . . . ,sN}.
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The estimated values of xn and sn are calculated through an algorithm based on the SMC
method [20, 41] that draws a set of samples from the posterior distribution (X ,S)∼ p(X ,S|Y )
to derive estimates such as the posterior mean. A class of SMC methods provides rather
easy-to-implement algorithms to produce Monte Carlo samples from analytically intractable
posteriors. The standard reference is [20]. These methods share a common algorithmic
structure with genetic algorithms. The system model in Eq. 3.2 is used to generate samples
of (xn,sn) with a given history, {xn+1, . . . ,xN} and {sn+1, . . . ,sN}. Fitness scores of the
generated samples are assessed based on the measurement model with respect to a given yn.
Samples having better fitness have a better chance at surviving in the next generation. This
process keeps iterating from N to 1, and at the end, samples from the targeted posterior will
be produced. The algorithmic details are shown in Algorithm 1.

Posterior distribution: p(x1:N ,s1:N |y1:N)∼ p(x1)p(s1)
N

∏
n=2

p(yn|xn+1:N ,sn)p(xn|xn+1)p(sn|sn+1:N)

(3.3)

Fig. 3.2 Graphical model of a state space representation in this work

3.4 Prior distribution of unknown splice variants

One difficulty of the inverse problem lies in the fact that splicing variations cause signifi-
cant deviations from the expected sawtooth pattern as shown in previous studies. Hence,
it is essential to infer the splicing patterns simultaneously with the elongation rate through
analysis of a given read density. The prior distribution p(sn|sn+1,sn+2, . . . ,sN) is used in the
SMC calculation to sequentially produce unknown splicing sites for which the sites n are re-
moved out from the transcribed RNA. The challenge is to avoid the occurrence of infeasible
splicing patterns during random generation.
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Fig. 3.3 (A) Four splicing modes to be modeled in the system with illustrative examples:
(i) conventional mode, (ii) intron retention, (iii) RS of introns, and (iv) exon skipping. (B)
Infeasible and feasible modes of exon skipping are exemplified in (i) and (ii), respectively.
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Algorithm 1 sequential Monte Carlo

Input: {yn}n, µ , σ , γ , splice site generator p(sn|sn+1, . . . ,sN), the number of particles M,
µ0, τ0
Output: {xm

n }n,m, {sm
n }n,m

Initialize:
for m = 1, . . . ,M do

xm
N ∼ N(µ0,τ0)

sm
N → N

end for
for n = N −1, . . . ,1 do

for m = 1, . . . ,M do
Renewal of xn: xm

n = xm
n+1 +ηm

n with ηm
n ∼ N(0,γ)

Renewal of sn: sm
n ∼ p(sm

n |sm
n+1, . . . ,s

m
N)

Expected read: rm
n = ∑sm

n
i=n xm

i
Likelihood: wm = N(logyn − logsm

n |µ,σ)
end for
Resampling: Perform the resampling of {xm

n ,s
m
n }(n,m) with the selection probabilities

proportional to {wm}m (residual systematic resampling [7]).
The resampled set forms a new ensemble set {xm

n ,s
m
n }(n,m).

end for

As illustrated in Fig 3.3, we modeled three modes of splicing events: (i) exon skipping,
(ii) intron retention, and (iii) RS of an intron. The occurrence of alternative donor/acceptor
sites is not taken into consideration because of the reduction of exonic regions into single
points. RS is a stepwise removal process of an intron that has most often been observed in
exceptionally long introns [55]. The occurrence of splicing in the middle of an intron brings
a valley in the sawtooth shape of total poly-A(-) RNA-seq reads at the RS site [21, 55].
Deviation from the monotonic decreasing gradient in the RNA-seq density of an intron
could be indicative of RS. As reported in previous studies, there are also a large number of
apparent RS sites in the data that we analyzed as shown in Fig 3.4.

The prior distribution describes the dependence of the splicing site sn at position n on
the preceding ones, sn+1,sn+2, . . . ,sN . Adjacent sn and sn+1 in the same intron should be
more likely to take the same value; for example, they would be the 3’ end of the intron,
conventionally. However, if the nth position is an RS site, it then holds that sn = n while the
neighboring sn+1 turns out to be the 3’ end of the intron with high probability. On the other
hand, sn for an exonic region tends to take the 3’ end of the gene if no skipping occurs, but
the intronic sn+1 is likely to be the 3’ end of the intron. In this way, a sequence {s1, . . . ,sN}
is not smoothly evolved, and the prior probability of sn should be dependent on whether or
not n is an exon or an intron as well as on the configuration of sn+1, . . . ,sN .
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The procedure for successively constructing such a sequence is summarized in quasi-
code Algorithm 2. Several generators are switched into the active or inactive mode accord-
ing to the if statements that classify the current position n and the configured preceding
sequence sn+1, . . . ,sN into several conditions. This classification is employed to exclude
the emergence of unlikely occurring splice variants as illustrated in Fig 3.3. For example,
consider that a gene consists of E1I1E2I2E3 with the three exons Ek (k = 1,2,3) and the two
introns Ik (k = 1,2). Conventionally, when the second exon E2 is skipped out, it temporally
forms with the previous and next introns, I1 and I2 as a nascent transcript dangling from the
DNA strand, and they are removed out together at the same time, possibly when the 3’ end
of I2 is transcribed and isolated. This splicing mode is represented as E1(I1E2I2)E3, where
the unit in the parentheses is isolated simultaneously. On the other hand, E1(I1)(E2I2)E3

would be unlikely to occur. This mode describes a nascent transcript comprised of E1E2I2

dangling from the DNA strand temporarily, and its subunit E2I2 is removed while only E1 is
retained in the transcript when Pol II reaches the 3’ end of I2. Such an unrealistic splicing
mode should not be allowed to emerge. Meanwhile, (E1I1)(E2I2)E3 could realistically hap-
pen as the first exon is spliced out together with the first intron, and then a nascent transcript
consisting of the second exon and the second intron disappears simultaneously.

Consequently, our generator follows the statements shown below:

• Rule 1. Let sn be a splice site of the exonic nucleotide in Ek, and then sn−1 and
sn+1 be its nearest neighbors in the 5’ and 3’ directions, respectively. If sn = sn+1

but sn ̸= sn−1, all upstream exonic nucleotides closer to the 5’ end, i.e., any m ∈ Eh

∀h <= k, satisfy sm ≤ sn.

• Rule 2. Whenever being skipped out, the exonic nucleotide n∈Ek is removed together
with the neighboring intronic nucleotide (i.e., sn = sn+1) or the most surviving exon
sn = s∗ where s∗ = min{sm|m ∈ Ek+1, . . . ,EK}.

3.5 Hyperparameters

For each gene, the hyperparameters on the log-normal measurement noise, µ and σ , were
determined as follows: (i) a smoothing spline f (n) was fitted to the logarithmically trans-
formed read counts, which provides an initial guess of the expected reads, i.e., logrn =

log∑sn
i=n xi (see the measurement equation in Eq. 3.2), and then (ii) the mean and the vari-

ance of the residuals were given to µ and σ , respectively. Using the estimated expected
reads, we could derive the estimates on the state variables as xn = exp f (n)− exp f (n +
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Fig. 3.4 Read density of the OPCML gene in human fetal brain [2]. The observed valley in
the intron implies the occurrence of RS.

Algorithm 2 Generator for splice sites p(sn|sn+1, . . . ,sN)

Input: sn+1, . . . ,N, α,β ,δ ,ε,ϕthr
Output: sn, ϕthr

t1 . . . tp = unique.intron (sn+1, . . . ,sN) (# get unique values from the given splice sites of
only intronic regions)
Remove from {t1 . . . tp} N and those less than ϕthr, and then we have u1 . . .uq.
if n ∈ {T (I1), . . . ,T (IK−1)} then (# 3’ end of the intron)

sn =

{
n with probability α
sn+1 otherwise

if sn ̸= sn+1 and sn+1 ∈ {u1 . . .uq} then
ϕthr = n

end if
end if
if n ∈ I1 \{t(I1)}∪ . . .∪ IK−1 \{t(IK−1)} then (# intronic region other than the 3’ end)

sn =

{
n with probability β (RS)
sn+1 otherwise

end if
if n ∈ E1 ∪E2 . . .∪EK−1 then

sn =


N with probability δ
sn+1 with probability (1−δ )ε
ui with probability (1−δ )(1− ε)/q for i = 1, . . . ,q

end if
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1) (n = 1, . . . ,N − 1). The variance of the first-order differences logxn − logxn+1 (n =

1, . . . ,N −1) was given to η , and the mean of xn was given to µ0.
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3.5.1 Residual systematic resampling

We use the resampling algorithm residual systematic resampling (RSR), which is similar
to residual resampling (RR) and systematic resampling (SR). The resampling process is to
replicate particles with higher weights and discard particles with lower weights. In RR,
the number of replications of a specific particle is determined in the loop by truncating the
generation of the number of particles and the normalized weight using uniform distribution
numbers. In RSR instead, the updated uniform distribution number is produced in a different
procedure, which allows for only one iteration loop, and processing time is different from
the distribution of the weights at the input. The RSR algorithm for N input and M output
(resampled) particles is the following quasi-code Algorithm 3 [7].

Algorithm 3 residual systematic resampling [7]

Objective: product of an array of indices {i}N
1 at time n,n > 0.

Input: an array of weights {w(m)
n }N

1 , N input and M output number of particles.
Method:
(i) = RSR(N,M,w)
Generate a random number ∆U0 ∼ u[0,1/M]
for m = 1−N do

i(m) = [w(m)
n −∆U (m−1) ·M]+1

∆U (m) = ∆U (m−1)+ i(m)/M−wm
n

end for





Chapter 4

Bayesian inference of transcription
elongation rates

4.1 Total poly-A(-) RNA-seq data

The total poly-A(-) RNA-seq data that we used was derived from mouse ES cells [56]. As
already discussed, the RNA-seq reads were considerably sparse, especially in shorter genes,
hence we began by selecting analyzable genes. The objective was to identify introns in
which almost monotonically decreasing slopes were observed in the 5’-3’ direction. To
assess the monotonicity of an intron, we used Pearson’s correlation coefficients between
intronic read counts and their positions. Fig 4.1 shows the relationship between the lengths
of introns and the correlation coefficients. We then selected introns with lengths ≥ 5000 bp
and with correlation coefficients ≥ 0.5, providing 659 genes that contain one or more such
selected introns.

4.2 Estimated Pol II density

For each gene, we calculated the Pol II density, the splicing sites, and the expected reads by
taking the averages of 105 particles generated from the posterior distribution, which could
be summarized with known splice variants as in Fig 4.2. The reconstructed elongation
rates of the 653 genes are displayed by a heatmap in Fig 4.3. The results suggest that the
estimated elongation rates of the 653 genes have roughly six patterns, such as faster or
slower elongation rates across a gene.
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Fig. 4.1 Selection of introns to be analyzed that seem to exhibit monotonically decreasing
gradients. Pearson’s correlation coefficient between intronic read counts and their positions
was used as the monotonicity measure. We selected introns in the rectangle with lengths
≥ 5000 bp and with correlation coefficients ≥ 0.5.

4.3 The spatial features of the transcription elongation rates

First, we compared the estimated Pol II densities and two ChIP-seq profiles of Pol II (GSM1865697,
GSM1865698), which were generated from mouse ES cells in a different study [24]. As
shown in Fig 4.5(D), the Pol II densities obtained by the different experimental methods ex-
hibited a significantly strong correlation; the number of genes exhibiting significant positive
correlations was nearly 11 times larger than that of significantly negative genes at the 5%
significance level (Fig 4.6 (C)).

Next, we investigated the spatial features of the transcription elongation rates in neigh-
boring regions of TSSs as shown in Fig 4.4 (A). The averaged elongation rates at 0-3 kb and
3-6 kb downstream from the TSSs were compared. A nearly 1.75-fold slower elongation
was observed in the TSS-adjacent regions than in the downstream regions. This is due to the
widely known promoter-proximal pausing of Pol II at ∼30-50 bp downstream of the TSS,
which is mediated by negative elongation factors [30]. In addition, as shown in Fig 4.4 (B),
a comparison of the average elongation rates between exons and introns strongly suggests
that Pol II slows down significantly at exons, presumably to facilitate splicing [9, 61]. On
the other hand, a lack of correlation was observed between the estimated Pol II densities
and the guanine-cytosine content (GC content) in the DNA sequences (Fig 4.4 (C)), though
several studies suggest that GC-rich sequences negatively influence elongation rates [29].

The effects of nucleosome occupancy and histone modification on elongation rates were
investigated by assessing the correlation between the estimated Pol II densities and epigenetic-
level profiles derived from mouse ES cells in independent studies [62, 43, 16]. Pearson’s
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Fig. 4.2 Estimated Pol II density, expected read density, and splicing patterns are shown on
the DNA coordinates of the Nck2 gene 5’-3’ from the left to right. The observed read counts
are shown in the top panel.
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Fig. 4.3 The estimated elongation rates of 653 genes are arranged on the vertical axis. The
horizontal axis denotes the relative position from the TSS. The color scale chart shown on
the side denotes the estimated values normalized to [0; 1].

correlation coefficients were evaluated with respect to the nucleosome occupancies observed
through MNase-seq from mouse ES cells (GSE40910: GSM1004652), neural progenitor
cells (NPCs) derived from these ES cells (GSE40910: GSM1004653), and mouse embry-
onic fibroblasts (MEFs) from the corresponding mouse strain (GSE40910: GSM1004654)
[62]. Nucleosomes form barriers against Pol II elongation, and nucleosome-depleted re-
gions become more accessible by Pol II [64]. Indeed, the correlation coefficients indicated
positive relationships between the estimated Pol II densities and the nucleosome positioning
patterns [37] in many genes (Fig 4.5 (B) and Fig 4.6 (B)).

For the association with histone modification patterns, we used the ChIP-seq profiles
of histone modifiers involved in epigenetic silencing (histone H3 lysine 79 dimethylation
(H3K79me2)) and activation (histone H3 lysine 4 trimethylation (H3K4me3), histone H3
lysine 36 trimethylation (H3K36me3), and histone H3 lysine 27 acetylation (H3K27ac))
(GSE11724, GSE24165) [43, 16]. For many genes, the estimated Pol II densities seem
to be positively related to the histone modification marks associated with transcriptional
activation (Fig 4.5 (A) and Fig 4.6 (A)). The number of genes exhibiting significant positive
correlations was more than eight times larger than those with negative correlations at the 5%
significance level. However, the histone modification patterns of the silencer groups tended
to correlate negatively with the Pol II densities within the gene bodies (Fig 4.5 (A) and Fig
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Fig. 4.4 Spatial features of the estimated elongation rates of 653 genes: (A) barplot describ-
ing the difference in the averaged elongation rates between the promoter-proximal regions
0-3 kb downstream from TSSs and the subsequent regions (3-6 kb from TSSs); (B) differ-
ences between exons and introns; and (C) the estimated elongation rates and GC contents in
all the binned intronic regions.
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4.6 (A)). The number of genes exhibiting statistically significant negative correlations was
nearly 1.5 times larger than those with positive correlations. Even though these epigenetic
data are derived from different laboratories, we found that the estimated Pol II densities
have a highly consistent pattern with the observed epigenetic landscape.

In addition, the estimated Pol II densities were investigated in relation to computation-
ally annotated chromatin states. We used 15 annotations of chromatin states [53], which
were obtained by performing a Poisson-based multivariate hidden Markov model (ChromHMM)
[23] on 7 ChIP-seq profiles of H3K4me1, H3K4me3, H3K36me3, H3K27me3, H3K27ac,
the insulator-binding protein CCCTC-binding factor (CTCF), and Pol II in mouse ES cells
(GSE29184). We then compared the averages of the estimated Pol II densities in regions
with and without a given annotation. As shown in Fig 4.5 (C), it was found that some
chromatin states, for example ’active promoter’, tend to show significant associations with
high-density regions of Pol II in most genes.

4.4 Comparison between the elongation rate of total poly-
A(-) RNA-seq and GRO-seq

The estimated elongation rates of the 645 genes were compared to those estimated based
on GRO-seq [30, 27]. Using a hidden Markov model with the groHMM package [12, 17]
of R language, we tracked the wave fronts of Pol II progression at 5, 12.5, 25, and 50 min
after the release from the Pol II paused state. The elongation rate was calculated by the
moving distance of the adjacent wave fronts per minute. The Pol II densities obtained by
our method were summed in each interval of the identified wave fronts at two consecutive
times, and the relative elongation rate of each of the five intervals was calculated by dividing
the inverse of the summed Pol II densities by the respective moving distance. Then, the
correlation coefficients were calculated for each gene, and they showed a lack of agreement
between the different estimates of elongation rates with total RNA-seq and GRO-seq (Fig
4.7). This inconsistency likely arises from the difficulty in identifying the induction waves
of elongating Pol II with GRO-seq. As exemplified in Fig 4.8, it was quite hard for many
genes even to recognize the exact visual positions on the wave fronts of elongating Pol II.
While induction waves should progress in time monotonically from 5’ to 3’, the tracked
positions could take place in the reverse order across time points.



4.4 Comparison between the elongation rate of total poly-A(-) RNA-seq and GRO-seq 35

Fig. 4.5 Correlation coefficients between the estimated Pol II densities and (A) ChIP-seq
profiles of histone modifiers and (B) nucleosome occupancies observed by MNase-seq from
mouse ES cells. (C) Differences between the averages of the estimated Pol II densities
in regions with and without the chromatin state annotated. The 15 annotations shown in
the right panel were obtained by performing ChromHMM on the ChIP-seq profiles of the
histone modifiers. (D) Correlation coefficients between the estimated Pol II densities and
two ChIP-seq profiles of Pol II. The color scale charts shown on the sides denote the given
values in which the mean differences shown in (C) are scaled to [-1; 1].
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Fig. 4.6 Histograms of the statistically significant correlation coefficients (at a significance
level 5%) between the estimated Pol II densities and (A) ChIP-seq profiles of histone mod-
ifiers, (B) nucleosome occupancies observed by MNase-seq, and (C) ChIP-seq profiles of
Pol II from mouse ES cells.
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Fig. 4.7 Comparison between the estimated elongation rates using total poly-A(-) RNA-seq
and GRO-seq with the hidden Markov model.
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Fig. 4.8 Example of GRO-seq time-course data at 0,2,5,12.5,25, and 50 min after release
from the paused state of Pol II in the Mcph1 gene. The black rectangles shown at top denote
the wave fronts of Pol II progression that were estimated by the hidden Markov model (the
groHMM package in R).
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4.5 Implementation of estimating Pol II density

An implementation using C software of "Pol II density estimated by the statistical inference
of transcription elongation rates by total RNA-seq (PolSter)" and sample data are available
at https://github.com/yoshida-lab/PolSter.

We demonstrate how to estimate the Pol II density with this software. At the outset,
it needs to prepare an example total RNA-seq dataset [56] (mouse dataset) in which each
intron is divided into bins with intervals equal to 400 bp, and an exonic region is treated
positionally as a single point. Here’s an example of a potential input file:

• ∗_read.txt: read count data across genomic bin positions from TSS, * shows gene
number.

• ∗_EI.txt exon or intron across genomic bin positions, * shows gene number.

• Particle_num.txt: The number of particles for the particle filter: recommend more
than 100,000.

• SRR960177_pickup_gene_num_ joint_ei_av_mu_tau_sigma.txt: hyper parameter for
each gene, mu is the initial state of the variable of the state model, tau is noise of the
system model, and sigma is noise of the measurement model (log). The details are
described in our paper [32] and Section 3.5.

• SRR960177_pickup_gene_num_ joint_ei_av_chrPosSE_sig_len5cor05_cov01raw.txt:
gene number, chromosome number, gene name, strand, start, end. Here, one gene re-
sults in combining all isoforms in one.

It is possible to estimate the Pol II density in this mouse dataset by performing the
following commands:

1. gcc − lm Estimate_Pol2.c

2. ./a.out /DIRECTORY _input_data/





Chapter 5

Conclusion

We implemented a Bayesian framework for the reconstruction of transcription elongation
rates from sawtooth-like observations derived from total RNA-seq. After forwardly mod-
eling given RNA-seq reads for unknown rates of elongating Pol II and unknown modes of
splicing, the backward prediction was performed according to Bayes’law to inversely pre-
dict the unknowns. As a proof of principle, we tested our approach on the total RNA-seq
data derived from mouse ES cells. We identified some spatial features of elongation rates
such as the slowdown of transcription at exons and promoter-proximal regions. In addition,
the predicted elongation rates were highly consistent spatially with epigenetic observations,
i.e. nucleosome positioning and histone methylation, even though the data were acquired in
different studies.

Despite the potentially great promise of utilizing total RNA-seq to study transcription
elongation, there has been considerably less progress made in statistical methods. In some
previous studies, the slope of the read density gradients, for instance, which is obtained us-
ing linear regression, was used as the relative elongation speed. However, as described in
this work, different splicing modes can bring different slopes to the read density, thereby
drawing the wrong conclusion in the absence of inferring the splicing variations. One con-
tribution of this work is to provide a way to estimate unmeasured states of elongation rates
and splicing modes simultaneously.

As a byproduct of our method, RS sites could be identified. Quite a lot of valleys,
possibly indicating ratchet points of RS, were found in the intronic regions in addition to
those shown in Fig 5.1. For example, the luna gene in Drosophila melanogaster is known
to contain a 108-kb intron with five ratchet points, such that the intron is removed in six
stepwise RS events [21]. As shown in Fig 5.1, the splicing sites estimated by our method
captured the five ratchet points reported in a previous study, though some seemingly false
estimates of the splicing sites were also given.
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This study focused on only 653 genes since intronic reads were considerably sparse in
most other genes. Fig 5.2 shows an example of such data in which RNA-seq reads covered
only 6.47 % of the entire region. One difficulty is the infeasibility of inferring splicing sites
from such data. The current method is applicable only for long introns. In our perspective,
the currently achieved estimation accuracy might decline substantially for shorter introns,
even for the selected 656 genes, where read coverages tend to be low. By performing deeper
sequencing, a genome-wide elongation rate distribution is potentially predictable with the
well-established RNA-seq protocol.

Fig. 5.1 The observed read density and splicing patterns are shown for the DNA coordinates
of the Luna gene 5’-3’ from the left to right.
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Fig. 5.2 The expected read density and splicing patterns are shown for the DNA coordinates
of the Cntnap2 gene (mouse ES cells [56]) 5’-3’ from the left to right.

Thoroughly as a byproduct, the inverse problem solution predicts RS sites from total
RNA-seq reads represented as sawtooth patterns, where there are underlying transcription
principles required to regulate the molecular mechanism. It is a worthwhile topic for explor-
ing the theoretical side of a subject from real scientific data. It has actually been reported
that many genes that have longer introns, in which RS occurs, are related to neurological
diseases and autism [33, 39, 47].

However, the obtained data from total RNA-seq reads presents a challenge in analyzing
clearly noisy data with low read coverage. At present, some false positive estimates of
the splicing sites were also seen. To address this problem, the model must become more
complex, and it clearly needs read density from deeper sequencing.





Acknowledgements

First, I would like to express my gratitude to my supervisor Ryo Yoshida, whose advice and
suggestions were immensely valuable throughout the course of my study at The Graduate
University for Advanced Studies (SOKENDAI) and The Institute of Statistical Mathematics
(ISM). He led me to carry out a wonderful study that is a worthy accomplishment. Despite
the various demands on his time and energy, he generously gave me his time and encourage-
ment with our scientific endeavors. I hope that someday I will have the opportunity to do
the same for future scientists.

I am indebted to the chair of my dissertation committee, Prof. Gen Ueno, whose com-
ments made an enormous contribution to my study, and to the members of the committee,
Prof. Rui Yamaguchi, Prof. Masayuki Henmi, and Prof. Shinsuke Koyama, who provided
considerable and diverse feedback on my doctoral work.

I would like to thank Dr. Charles Boone, Prof. of the University of Toronto and the
project leader of the Institute of Physical and Chemical Research (RIKEN), who gave me
a chance to learn statistical science and machine learning as a Ph.D. candidate. I would
also like to thank to my talented collaborator Dr. Chad Myers, Prof. of the University of
Minnesota-Twin Cities (U of M) and a project member of RIKEN, who hosted my fruitful
visit at U of M.

I am deeply grateful to the members of the Data Science Center for Creative Design and
Manufacturing at ISM, who provided support and encouragement at various times in this
study.

Finally, I would like to show my greatest appreciation to all my colleagues at SOK-
ENDAI and ISM, people with whom I have spent so many joyful times throughout my life.
My deepest gratitude goes to my family for their understanding while I pursued a Ph.D.





References

[1] Alexander, Ross, D., Innocente, Steven, A., Barrass, J, D., and Beggs, Jean, D. (2010).
Splicing-dependent RNA polymerase pausing in yeast. Molecular cell, 40(4):582–593.

[2] Ameur, A., Zaghlool, A., Halvardson, J., Wetterbom, A., Gyllensten, U., Cavelier, L.,
and Feuk, L. (2011). Total RNA sequencing reveals nascent transcription and widespread
co-transcriptional splicing in the human brain. Nat Struct Mol Biol, 18(12):1435–1440.

[3] Ardehali, M, B., Yao, J., Adelman, K., Fuda, N, J., Petesch, S, J., Webb, W, W., and Lis,
J, T. (2009). Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J,
28(8):1067–1077.

[4] Bentley, D, L. (2014). Coupling mRNA processing with transcription in time and space.
Nat Rev Genet, 15(3):163–175.

[5] Bishop, C. (2006). Pattern recognition and machine learning. Springer-Verlag New
York.

[6] Boireau, S., Maiuri, P., Basyuk, E., de la Mata, M., Knezevich, A., Pradet-Balade, B.,
Backer, V., Kornblihtt, A., Marcello, A., and Bertrand, E. (2007). The transcriptional
cycle of HIV-1 in real-time and live cells. J Cell Biol, 179(2):291–304.
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