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This thesis considers robust regression modeling with sparsity. In this study, we
specifically focus on robust regression modeling based on y-divergence with sparse
regularization. The y-divergence has been investigated for the i.i.d. problem and is
renowned for exhibiting strong robustness. This implies that the latent bias can be
sufficiently small even under heavy contamination. In this thesis, the y-divergence is
extended to the regression problem. The parameters in regression models are
estimated by minimizing the objective function which is the empirical estimation of
the y-divergence with sparse regularization. We propose an efficient parameter
estimation algorithm which has a monotone decreasing property for the objective
function. In particular, we discuss a linear regression with the L1 regularization in
detail. Further, we consider generalized linear models, which are natural extensions
of linear regression. However, the parameter estimation algorithm obtained here is
not always applicable to generalized linear models. Some models require a higher
computational cost as the sample size becomes larger. To reduce this computational
cost, we adopt a stochastic optimization approach which can largely reduce the
computational cost per iteration. Further, two types of v-divergence are compared
under homogeneous and heterogeneous contaminations. We reveal the distinct
difference between two types of y-divergence in terms of robustness. One y-
divergence can exhibit the strong robustness for any parametric model under
heterogeneous contamination. The other cannot in general except under homogeneous
contamination or when the parametric model of the response variable belongs to a
location-scale family in which the scale does not depend on the explanatory variables.
Numerical experiments and real data analyses are performed for illustrating the
effectiveness of the proposed methods and for supporting the theoretical properties
which we proved. .

QOutline of the thesis is as follows. Chapter 1 is the introduction of this thesis. In
Chapter 2, we briefly describes the robust regression and sparse regression focusing
on the contents related to the subsequent discussion. In Chapter 3, we discuss the
robust linear regression modeling with sparsity. First, the y-divergence is extend to
the regression problem. The loss function is constructed using the empirical estimation
of the y-divergence. The estimator is defined by the minimizer of the loss function with
sparse regularization. To obtain the estimator, an efficient parameter estimation

algorithm is proposed via the MM algorithm. In particular, we discuss a linear



regression with the L1 regularization in detail. A tuning parameter selection method
1s proposed using a robust cross-validation. We additionally illustrate the strong
robustness of the proposed method under heavy contamination even when outliers are
heterogeneous. Finally, in numerical experiments and real data analyses, we show that
our method outperformed existing robust and sparse linear regression methods in
terms of predictive performance, variable selection, and computational cost. Chapter
3 is based on the following journal paper:

+ Kawashima, T. and Fujisawa, H. Robust and Sparse Regression via y-Divergence.
Entropy, Volume 19, No. 608, 2017.

In Chapter 4, we discuss the robust and sparse Generalized Linear Modeling using a
stochastic optimization approach. In Chapter 3, we proposed an efficient parameter
estimation algorithm using the MM algorithm; however, the proposed one is not
always applicable to the GLMs. In the Poisson regression, we need to compute the
approximate value of hypergeometric series for all samples per iteration, and a huge
computational cost can be required when the sample size is large, e.g., n=10~5. To
overcome this problem, a new parameter estimation algorithm is proposed based on
the stochastic optimization approach that can significantly reduce the computational
cost per iteration and that can be easily applied to GLMs. We can see that the
stochastic optimization approach can overcome the difficulty that can be observed
when a Poisson regression with L1 regularization is considered. Among stochastic
optimization approaches, the randomized stochastic projected gradient descent
(RSPG) has been adopted. The RSPG ensures the convergence of our methods.

Finally, in numerical experiments and real data analyses, we illustrate that our

" methods showed better performances than comparative methods in terms of

predictive performance and computational cost. Chapter 4 is based on the following
preprint paper:

- Kawashima, T. and Fujisawa, H. Robust and Sparse Regression in GLM by Stochastic
Optimization. arXiv, 2018.

In Chapter 5, we reveal differences between two types of y-divergence for the
regression problem in terms of strong robustness, Fujisawa and Eguchi (2008)
investigated the robustness of the y-divergence for the i.i.d. problem under the
contamination model in detail. The contamination model differs between the i.i.d.
problem and the regression problem. In the regression problem, the outlier ratio in
the contaminated model may depend on the explanatory variable or not. In such
situations, they are referred to as the heterogeneous and homogeneous
contamination, respectively. In addition to'the difference between contamination
models, there are two types of y-divergence for the regression problem in which the
treatments of base measure are different. We compare two types of y-divergence for
the regression problem under both homogeneous and heterogeneous contaminations

in detail. One y-divergence can exhibit the strong robustness for any parametric



model under heterogeneous contamination. The other cannot in general except under
homogeneous contamination or when the parametric model of the response variable
belongs to a location-scale family in which the scale does not depend on the
explanatory variables. Finally, numerical experiments are performed for supporting
the theoretical properties which we proved. Chapter 5 is based on the following
preprint paper:

- Kawashima, T. and Fujisawa, H. On Difference Between Two Types of y-divergence

for Regression. arXiv, 2018.
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