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Abstract

This thesis considers robust regression modeling with sparsity. In this study, we specifically
focus on robust regression modeling based on γ-divergence with sparse regularization. The
γ-divergence has been investigated for the i.i.d. problem and is renowned for exhibiting
strong robustness. This implies that the latent bias can be sufficiently small even under heavy
contamination. In this thesis, the γ-divergence is extended to the regression problem. The
parameters in regression models are estimated by minimizing the objective function which
is the empirical estimation of the γ-divergence with sparse regularization. We propose an
efficient parameter estimation algorithm which has a monotone decreasing property for the
objective function. In particular, we discuss a linear regression with the L1 regularization
in detail. Further, we consider generalized linear models, which are natural extensions of
linear regression. However, the parameter estimation algorithm obtained here is not always
applicable to generalized linear models. Some models require a higher computational cost as
the sample size becomes larger. To reduce this computational cost, we adopt a stochastic
optimization approach which can largely reduce the computational cost per iteration. Further,
two types of γ-divergence are compared under homogeneous and heterogeneous contam-
inations. We reveal the distinct difference between two types of γ-divergence in terms of
robustness. One γ-divergence can exhibit the strong robustness for any parametric model
under heterogeneous contamination. The other cannot in general except under homogeneous
contamination or when the parametric model of the response variable belongs to a location-
scale family in which the scale does not depend on the explanatory variables. Numerical
experiments and real data analyses are performed for illustrating the effectiveness of the
proposed methods and for supporting the theoretical properties which we proved.
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Chapter 1

Introduction

Regression analysis is a fundamental tool in statistical data analysis. The ordinary least
squares (OLS) is the most popular regression method. In modern regression analysis, we often
treat high-dimensional data, so that the number of explanatory variables may become larger
than the sample size. Modern data are often referred to as high-dimensional data. Typical
examples of such high-dimensional data are the microarray data, social data, and biological
data. Sparse regression methods with a sparsity-inducing regularization are extensively used
in high-dimensional data [103, 89, 101, 104, 28, 100]. One renowned example of the sparse
regression method is the least absolute shrinkage and selection operator (LASSO) [87], which
employs the OLS with the L1 regularization. However, because the LASSO is based on the
OLS, it is sensitive to outliers in the explanatory variables or the response variable. To handle
high-dimensional noisy data, we consider a regression method that exhibits both sparsity
and robustness to outliers. In this chapter, we give some historical reviews on robust and
sparse regression modelings and describe how we need a new method with both sparsity and
robustness.

1.1 Robust Estimation for i.i.d. problem

M-estimation: M-estimation: The sample mean is a typical estimator of mean parameter.
However, the sample mean can be adversely influenced by outliers. Detecting and deleting
outliers from the data is a simple way to robustify the sample mean, but it is not always
easy due to masking effect [78]. Hence, the median and trimmed mean were proposed as
robust versions of the sample mean. The M-estimation [50], which is a generalization of the
maximum likelihood estimation, is a more sophisticated way to obtain an robust estimator.
The sample mean and median are examples of the M-estimator. The M-estimation is based
on the approach that minimizes a robust loss function. The Huber’s loss [50] and Tukey’s
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bisquare loss are typical examples of the robust loss function. To compute the M-estimate,
standard parameter estimation methods, such as the Newton-Raphson method, can be applied.
However, methods based on derivatives may be unstable because of the assumption to attain
robustness in the M-estimation. Hence, the iteratively reweighted least squares (IRLS)
method has been preferably used. The theoretical properties of the M-estimator, including
consistency and asymptotic normality, have been investigated (see, Sect. 10 of [66]). By
virtue of these results, robust confidence intervals and statistical hypothesis testing can be
derived. For the estimation on the scale of the data, the M-estimation has been studied in a
similar manner. Readers may refer to Chapter 2 of [66] for details.
Measure of Robustness: The sensitivity curve (SC) is defined by the difference between the
estimate for the sample and the estimate for the sample and a single outlier, so that the SC
illustrates the adverse effect of a single outlier. The bounded SC means that the adverse effect
of a single outlier is bounded. Aforementioned location M-estimators, e.g., based on Huber’s
loss and Tukey’s bisquare loss, have the bound SC. The influence function (IF) [43] may be
considered as an asymptotic version of the SC. The IF can approximate the bias caused by
outliers under the assumption that a fraction of outliers is small. The bias is expected to be
small when the IF is small. The breakdown point (BP) [66] is the proportion of outliers that
can ensure the estimate to be finite even if outliers goes to infinity. For other measures of
robustness, maximum asymptotic bias and gross-error sensitivity were proposed.
Outlier Detection: There are many methods for outlier detection. The most simple method
is based on the 3σ distance [84]. Another simple method is the box plot rule. This uses
the difference between the third quartile and first quartile, and this quantity is called the
inter quartile range. The box plot rule closely related to the 3σ distance method when the
data is generated from the Gaussian distribution. More enhanced methods are based on
statistical hypothesis testing. The Grubb’s test [42] (the maximum normed residual test) was
proposed for the case of univariate data. Some variants of the Grubb’s test for multivariate
data were also proposed [63, 1]. The student’s t-test was also applied to outlier detection.
The multivariate version of the student’s t-test is called the Hotelling t-squared test and has
been used in the field of the quality control for a long time [49]. Further, χ-squared test was
applied to outlier detection for operating system call data [97]. Nonparametric approaches
such as histogram were also discussed (system call intrusion detection: [27], fraud detection
[29], and network intrusion detection [47]).
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1.2 Robust Regression Modeling

Case of Linear Regression: Robust linear regression methods have been studied in robust
statistics for a long time. A classical idea of the robust linear regression was based on
the M-estimation. This class of robust linear regression methods includes many common
methods. The least absolute deviation (LAD) [9] adopted sum of the absolute values of the
residuals instead of squared residuals in the OLS. The regression methods, using Huber’s loss
and with Tukey’s bisquare loss, belong to the M-estimation. Further, the IRLS method can
be used for a parameter estimation in a similar way to in the i.i.d. problem. Their robustness
has been investigated by the BP. However, the M-estimation is not robust against outliers
in the explanatory variables, which is referred to as leverage point, although it is robust
against outliers in the response variable (see, Sect. 4.6 of [66]). To enhance the robustness
to leverage point by the BP, the least median of squares (LMS) [75], least trimmed squares
(LTS) [75], and S-estimation [80] were proposed. The LMS and LTS adopted respectively
the median of squared residuals and trimmed sum of squared residuals instead of squared
residuals in the OLS. The S-estimation is defined by minimizing the variance of residuals.
However, their estimators resulted in a low asymptotic efficiency (LMS: [76], LTS: [85],
S-estimation: [66]), and there were no simple parameter estimation algorithms such as the
IRLS. To obtain a high asymptotic efficiency, the robust and efficient weighted least squares
estimator (REWLSE) was proposed by Gervini and Yohai [36]. The REWLSE is a type of
weighted least squares estimator whose weights are adaptively calculated from an initial
robust estimator. Moreover, the REWLSE attains asymptotically efficient.
Case of Generalized Linear Models: Robust generalized linear models (GLMs) [67],
which include the linear regression, logistic regression and Poisson regression models, have
been also studied in robust statistics. Künsch, Stefanski, and Carroll [61] considered the
M-estimation of GLMs and proposed conditionally unbiased bounded influence estimation.
Carroll and Pederson [18] focused on the logistic regression and used downweighting scheme
based on the Mahalanobis’s distance in order to give a small weight to terms related to outliers.
This estimation is regarded as a special case of the weighted maximum likelihood estimation.
In other robust logistic regression methods, Pregibon [73] proposed the M-estimation based
on the deviance of the logistic regression, and Bianco and Yohai [7] improved this estimator
to attain the Fisher consistent. Croux, Flandre, and Haesbroeck [20] showed that the leverage
point cause a different behaviour of the estimator in the logistic regression unlike the case of
the linear regression. Generally, the non-robust estimator tends to infinity as the influence of
the leverage point become large. On the other hand, in the logistic regression, the non-robust
estimator tends to zero in such a situation. This behaviour is called implosion breakdown by
Chi and Scott [19].
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1.3 Sparse Regression Modeling

The LASSO is the most popular sparse linear regression method over the last two decades.
The LASSO minimizes the squared loss with the L1 regularization, so that some regression
estimates are zero. Hence, the LASSO can perform estimation and variable selection
simultaneously. Variable selection in the regression problem is not a new concept. Various
variable selection methods have been proposed. Typical examples are forward/backward
stepwise method and the best-subset selection method. The former tends to be a local
optimizer. The latter is not computationally feasible in high-dimensional data. The LASSO
can overcome these problems.
Statistical Property of LASSO: Greenshtein and Ritov [41] studied the predictive perfor-
mance of the LASSO. They proved that the expected squared prediction error of the LASSO
approximates the Bayes error under mild regularity conditions. Further, results under more
refined conditions have been developed, e.g., the compatibility condition [90], the restricted
eigenvalue condition [8], the coherence condition [16], and restricted isometry condition [17].
Zhao and Yu [102] studied a sufficient and necessary condition to recover the true sparsity
pattern. Their study was based on the irrepresentable condition [68]. For the consistent
parameter estimation in the L2 sense, Meinshausen and Yu [69] investigated the behavior of
the LASSO estimator when only a relaxed version of the irrepresentable condition is met.
Computation of LASSO: The LASSO is a convex optimization problem, so that the solu-
tions, which satisfy the stationary condition, are global minimum points. On the other hand,
aforementioned variable selection methods are non-convex optimization problems. It is diffi-
cult to obtain a global minimum point. In such a situation, the least angle regression (LARS)
algorithm [26] was proposed using the stationary condition of the optimization problem on
the LASSO. The LARS can efficiently compute the solution path which is the entire solution
set of optimization problems for each value of the tuning parameter for the sparsity. This
algorithm has the same computational cost as the OLS. Some variants of the LARS were
also proposed [91, 58, 31]. Pathwise coordinate descent optimization algorithms [32, 95]
can be more efficient in high-dimensional data. Unlike the LARS, they are easily applied to
other regression methods, e.g., the logistic regression and Poisson regression methods [33].
Further, traditional convex optimization methods, such as the proximal gradient method and
alternating direction method of multipliers, can be applied to the LASSO.
Beyond LASSO: Modifying sparse regularization has been investigated to improve the
LASSO estimator’s statistical properties. Fan and Li [28] and Zhang [100] introduced
non-convex sparse regularizations, called smoothly clipped absolute deviation (SCAD) and
minimax concave penalty (MCP), respectively, instead of the L1 regularization. Fan and Li
[28] defined the oracle property and showed that the LASSO estimator does not satisfy this
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desirable property. Zou [103] proposed the adaptive LASSO which adaptively controls the
strength of the regularization and showed that the adaptive LASSO estimator satisfies the
oracle property. Moreover, the adaptive LASSO can be regarded as convex approximation
of the Lq (0 < q < 1) regularization, which was proved to satisfy the oracle property [60].
For some specific sparse structures, the group LASSO [98] and the fused LASSO [89] were
proposed. The LASSO was applied to the Cox’s proportional hazards models for modeling
survival data [88].

1.4 Robust Linear Regression Modeling with Sparsity

Classical Approach: A robust linear regression modeling with sparsity can be obtained
by combining the classical robust linear regression with the sparse regularization [92, 58,
2]. Wang, Li, and Jiang [92] proposed the least absolute deviation LASSO (LAD-LASSO),
which is constructed using the LAD with the L1 regularization. They ensured the asymptotic
consistency of the LAD-LASSO estimator. Alfons, Croux, and Gelper [2] proposed the sparse
least trimmed squares (sLTS), which is constructed using the LTS with the L1 regularization.
They investigated the robustness of the sLTS estimator by virtue of its BP. The robust least
angle regression (RLARS) [58] is a robust version the LARS and can be constructed by
replacing the sample correlation with a robust estimate of the correlation in its parameter
estimation algorithm. However, the aforementioned methods are limited to a linear regression
and are not applicable to other regression methods such as GLMs. Furthermore, most of
robust linear regression methods are based on a non-convex loss function for achieving
robustness [79], and the L1 regularization, which is a non-differentiable function. Hence,
we need to solve a non-convex and non-differentiable optimization problem to obtain the
estimator. Generally, a high computational cost can be required when such a problem is
solved by standard optimization methods.
Robust Divergence Approach: Robust parameter estimation using density power weight
has been intensively investigated, and the corresponding divergences have been discussed [82,
54, 5, 4, 93, 53, 35]. Lozano, Meinshausen, and Yang [64] focused on the L2 divergence [82]
and incorporated the L1 regularization. They investigated the consistency of the estimator
and the robustness based on the BP. Moreover, the proposed parameter estimation algorithm
ensures convergence. Zang, Zhao, Zhang, Li, Zhang, and Ma [99] adopted the density
power divergence [4] with the L1 regularization. They proposed the parameter estimation
algorithm based on the coordinate descent algorithm. As a natural extension of [99], Ghosh
and Majumdar [40] considered a non-convex sparse regularization case. They studied the
robustness based on the influence function that is not a classical one [44] but a fully rigorous
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one [3]. In contrast to classical approaches, robust divergence approaches can be easily
extended to other regression models, such as GLMs, by selecting an appropriate probability
density function. Especially, the γ-divergence [35] is known for having the strong robustness,
which implies that the latent bias can be sufficiently small even under heavy contamination.
Further, other robust divergences, including density power divergence [4], cannot achieve
such robustness, and the latent bias is caused by a high outlier ratio. However, even in this
approach, we need to solve a non-convex and non-differentiable optimization problem. In
this thesis, we deal with such a problem.

1.5 Robust and Sparse Generalized Linear Modeling

GLMs include many important regression models such as the linear regression, logistic
regression, and Poisson regression models. Recently, robust and sparse generalized linear
modeling have been proposed. Chi and Scott [19] adopted a robust divergence approach and
proposed robust logistic regression based on the L2 divergence with the L1 regularization.
Moreover, they proposed an efficient parameter estimation algorithm using the majorization-
minimization algorithm (MM algorithm) [52] and investigated the convergence property
in a similar way to in [81]. Bootkrajang and Kabán [10] proposed the robust and sparse
logistic regression modeling with mislabel probabilities on outliers. On the other hand,
Hung, Jou, and Huang [51] proposed the robust logistic regression modeling based on the
γ-divergence, and it does not need to model mislabel probabilities. However, they did not
discuss sparse regularization methods, and the proposed method cannot be directly extended
to sparse modeling. Tibshirani and Manning [86] applied a mean-shift model [83] to a
sparse logistic regression method. In the linear regression, a mean-shift model gave a new
characterization of the M-estimation in the form of the sparse regularization. Therefore, the
sparse logistic regression with mean-shift might be expected to be robust against outliers as
with the M-estimation of the linear regression. As stated above, robust and sparse generalized
linear modeling has been mainly considered in the case of logistic regression. To the best
of our knowledge, other robust and sparse GLMs, e.g., the Poisson regression, has not been
discussed yet. In this thesis, robust and sparse GLMs including the Poisson regression are
discussed.

1.6 Outline of the Thesis

In Chapter 2, we briefly describes the robust regression and sparse regression focusing on the
contents related to the subsequent discussion.
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In Chapter 3, we discuss the robust linear regression modeling with sparsity. First, the
γ-divergence is extend to the regression problem. The loss function is constructed using the
empirical estimation of the γ-divergence. The estimator is defined by the minimizer of the loss
function with sparse regularization. To obtain the estimator, an efficient parameter estimation
algorithm is proposed via the MM algorithm [52]. In particular, we discuss a linear regression
with the L1 regularization in detail. A tuning parameter selection method is proposed using a
robust cross-validation. We additionally illustrate the strong robustness of the proposed
method under heavy contamination even when outliers are heterogeneous. Finally, in
numerical experiments and real data analyses, we show that our method outperformed
existing robust and sparse linear regression methods in terms of predictive performance,
variable selection, and computational cost. Chapter 3 is based on the following journal paper
[57]:

• Kawashima, T. and Fujisawa, H. Robust and Sparse Regression via γ-Divergence.
Entropy, Volume 19, No. 608, 2017.

In Chapter 4, we discuss the robust and sparse Generalized Linear Modeling using a
stochastic optimization approach. In Chapter 3, we proposed an efficient parameter estimation
algorithm using the MM algorithm; however, the proposed one is not always applicable
to the GLMs. In the Poisson regression, we need to compute the approximate value of
hypergeometric series for all samples per iteration, and a huge computational cost can be
required when the sample size is large, e.g., n = 105. To overcome this problem, a new
parameter estimation algorithm is proposed based on the stochastic optimization approach
that can significantly reduce the computational cost per iteration and that can be easily
applied to GLMs. We can see that the stochastic optimization approach can overcome the
difficulty that can be observed when a Poisson regression with L1 regularization is considered.
Among stochastic optimization approaches, the randomized stochastic projected gradient
descent (RSPG) [38] has been adopted. The RSPG ensures the convergence of our methods.
Finally, in numerical experiments and real data analyses, we illustrate that our methods
showed better performances than comparative methods in terms of predictive performance
and computational cost. Chapter 4 is based on the following preprint paper [56]:

• Kawashima, T. and Fujisawa, H. Robust and Sparse Regression in GLM by Stochastic
Optimization. arXiv, 2018.

In Chapter 5, we reveal differences between two types of γ-divergence for the regression
problem in terms of strong robustness. Fujisawa and Eguchi [35] investigated the robustness
of the γ-divergence for the i.i.d. problem under the contamination model in detail. The
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contamination model differs between the i.i.d. problem and the regression problem. In the re-
gression problem, the outlier ratio in the contaminated model may depend on the explanatory
variable or not. In such situations, they are referred to as the heterogeneous and homogeneous
contamination, respectively. In addition to the difference between contamination models,
there are two types of γ-divergence for the regression problem in which the treatments of
base measure are different [35, 57]. We compare two types of γ-divergence for the regres-
sion problem under both homogeneous and heterogeneous contaminations in detail. One
γ-divergence can exhibit the strong robustness for any parametric model under heterogeneous
contamination. The other cannot in general except under homogeneous contamination or
when the parametric model of the response variable belongs to a location-scale family in
which the scale does not depend on the explanatory variables. Finally, numerical experiments
are performed for supporting the theoretical properties which we proved. Chapter 5 is based
on the following preprint paper [55]:

• Kawashima, T. and Fujisawa, H. On Difference Between Two Types of γ-divergence
for Regression. arXiv, 2018.



Chapter 2

Robust Regression and Sparse
Regression

We briefly describes the robust regression and sparse regression focusing on the contents
related to the subsequent discussion.

2.1 Robust Regression

The OLS method is defined by

min
β0,β

1
n

n

∑
i=1

(yi−β0− xT
i β )2, (2.1)

where y ∈R is the response variable, x ∈Rp is the explanatory vector, β0 ∈R is the intercept
and β ∈ Rp is the regression coefficient vector. The OLS estimator is not robust against
outliers in the explanatory variables or the response variable. Robust regression methods
have been studied for a long time in the filed of robust statistics to alleviate an effect of
outliers. Typical methods are the LAD, LMS, LTS, and regression methods with Huber’s
loss and with Tukey’s bisquare. Recently, the robust parameter estimation using the density
power weight has been intensively investigated, and the corresponding divergence has been
discussed [54, 5, 4, 93, 53, 35]. The density power weight gives a small weight to the terms
related to outliers; further, the estimator becomes robust against outliers. Additionally, robust
regression methods that are based on such divergences have been proposed [19, 51, 39, 64,
57, 56].

In this section, we briefly discuss some classical representable robust regression methods
along with the robust regression method that is based on the γ-divergence. In the subsequent
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sections, we consider a situation where the response variable contains outliers and refer to
the regression based on the γ-divergence as γ-regression.

2.1.1 Least Absolute Deviation

Definition: The LAD adopts L1 loss instead of the L2 loss in (2.1) as follows:

min
β0,β

1
n

n

∑
i=1
|yi−β0− xT

i β |. (2.2)

Robustness: Here, we intuitively show the robustness of the LAD. Suppose that y1 is an
outlier. The residual |y1−β0− xT

1 β | will be large, but smaller than the squared residual
(y1−β0− xT

1 β )2 of the OLS, so that an adverse effect of the outlier y1 can be alleviated in
the LAD. Therefore, we expect that the LAD will be more robust against outliers than the
OLS.
Computation: Due to the non-differentiability of the L1 loss, we cannot use standard
optimization methods such as the gradient descent, Newton-Raphson method and quasi-
Newton method, to obtain the minimizer of (2.2). Using slack variables, the optimization
problem (2.2) can be reformulated into the following linear programming problem:

min
β0,β ,u1,...,un

1
n

n

∑
i=1

ui

subject to −ui ≤ yi−β0− xT
i β ≤ ui for i = 1, . . . ,n.

The simplex method and its alternatives can effectively solve this linear programming
problem. Some software packages are available to compute the LAD in the R language; e.g.,
“L1pack” and “MASS”.

2.1.2 Regression with Huber’s Loss

Definition: This regression method adopts Huber’s loss instead of the L2 loss in (2.1) as
follows:

arg min
β0,β

1
n

n

∑
i=1

ρ(yi−β0− xT
i β ), (2.3)

where

ρ(z) =

z2 if |z| ≤ c

2c|z|− c2 otherwise,
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and c is a tuning parameter. In practice, c= 1.345 is used in terms of the asymptotic statistical
efficiency.
Robustness: In a similar way to in the LAD, we can show that the regression method with
Huber’s loss is robust. Suppose that y1 is an outlier. The residual |y1−β0− xT

1 β | will be
large, but 2c|y1−β0− xT

1 β |− c2 will be smaller than the squared residual (y1−β0− xT
1 β )2

of the OLS, so that an adverse effect of the outlier y1 can be alleviated in the regression
method with Huber’s loss. Therefore, we expect the regression method with Huber’s loss to
be more robust against outliers than the OLS.
Computation: The Huber’s loss is differentiable unlike the L1 loss in the LAD. Therefore,
we can apply standard optimization methods to (2.3). Here, we exhibit the following IRLS
method which has been used in robust statistics. For simplicity, we assume that β0 = 0.

β
(t+1) =

[
XTW (t)X

]−1
XTW (t)Y,

where X = (xT
1 , . . . ,x

T
n ) ∈ Rn×p, Y = (y1, . . . ,yn) ∈ Rn, β (t) is the regression coefficient

vector at the t-th iterative step, and

W (t) = diag
{

ρ

(
y1− xT

1 β
(t)
)
/(y1− xT

1 β
(t)), . . . ,ρ

(
yn− xT

n β
(t)
)
/(yn− xT

n β
(t))
}
.

The IRLS for the regression method with Huber’s loss is closely related to the MM algorithm
[52] which has been recently studied intensively in the machine learning community [71].
Interested readers may refer to Chapter 8 of [34] for details. Some software packages
are available to compute the regression method with Huber’s loss in the R language; e.g.,
“robustreg” and “MASS”.

2.1.3 Least Trimmed Squares

Definition: The LTS adopts the trimmed loss instead of the L2 loss in (2.1) as follows:

min
β0,β

1
m

m

∑
i=1

e[i], (2.4)

where ei = (yi−β0− xT
i β )2, e[1] ≤ ·· · ≤ e[n] are the order statistics of e1, · · · ,en and m≤ n.

Robustness: The trimming constant m is generally selected to satisfy n
2 ≤m≤ n. In practice,

the following value of the trimming constant ⌊(n+p+1)⌋
2 is used. The value of the trimming

constant determines the number of residuals required for the estimation. Large residuals,
which may contain outliers, will be excluded from the estimation. Therefore, the LTS is
expected to be robust against outliers.
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Computation: Compared with the OLS and LAD, the optimization problem (2.4) is a
non-convex optimization problem. It is difficult to obtain a global minimizer for non-convex
optimization problems. Thus, a main task for non-convex optimization problems is to obtain
a stationary point where the derivative of the objective function is equal to zero. To obtain
a stationary point of (2.2), Rousseeuw and Driessen [77] proposed the following iterative
parameter estimation algorithm referred to as the FAST-LTS algorithm.

For t = 0,1,2, . . .:
Step 1. given the t-th iterate (β

(t)
0 ,β (t)), compute the order statistics of e(t)

[1] ≤ ·· · ≤ e(t)
[n]

based on the t-th iterate (β
(t)
0 ,β (t));

Step 2. construct the trimmed loss with the set of indices corresponding to the m smallest
residuals, e(t)

[1] ≤ ·· · ≤ e(t)
[m]

, and compute next iterate (β
(t+1)
0 ,β (t+1)) based on the current

trimmed loss;
Step 3. If a convergence criterion, e.g., ∥β (t)−β (t+1)∥< 10−4, is satisfied, the algorithm

is stopped; otherwise, it returns to Step 1.

The FAST-LTS algorithm has the following monotone decreasing property:

1
m

m

∑
i=1

e(0)
[i] ≥

1
m

m

∑
i=1

e(1)
[i] ≥

1
m

m

∑
i=1

e(2)
[i] ≥ . . . .

Some software packages are available to compute the LTS in the R language; e.g., “robust-
base”.

2.1.4 γ-Regression

Definition of γ-divergence for regression: The γ-divergence was defined for two probability
density functions, and its properties were investigated by Fujisawa and Eguchi [35]. First, we
review the γ-divergence for the i.i.d. problem. Let g(u) and f (u) be two probability density
functions. The γ-cross entropy and γ-divergence were defined by

dγ(g(u), f (u)) =−1
γ

log
∫

g(u) f (u)γdu+
1

1+ γ
log
∫

f (u)1+γdu,

Dγ(g(u), f (u)) =−dγ(g(u),g(u))+dγ(g(u), f (u)),

respectively, where γ is the positive tuning parameter that controls the trade-off between
efficiency and robustness. This satisfies the following two basic properties of divergence:
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(i) Dγ(g(u), f (u))≥ 0.
(ii) Dγ(g(u), f (u)) = 0 ⇔ g(u) = f (u) (a.e.).

Let us consider the γ-divergence for regression, which is defined for two conditional proba-
bility density functions. Suppose that g(x,y), g(y|x), and g(x) are the underlying probability
density functions of (x,y), y given x and x, respectively. Let f (y|x) be another parametric
conditional probability density function of y given x. For the regression problem, Fujisawa
and Eguchi [35] proposed the following cross entropy and divergence:

dγ,1(g(y|x), f (y|x);g(x))

=−1
γ

log
∫

exp{−γdγ(g(y|x), f (y|x))}g(x)dx

=−1
γ

log
∫ {∫

g(y|x) f (y|x)γdy
/(∫

f (y|x)1+γdy
) γ

1+γ

}
g(x)dx

=−1
γ

log
∫ ∫ {

f (y|x)γ

/(∫
f (y|x)1+γdy

) γ

1+γ

}
g(x,y)dxdy. (2.5)

Dγ,1(g(y|x), f (y|x);g(x)) =−dγ,1(g(y|x),g(y|x);g(x))+dγ,1(g(y|x), f (y|x);g(x)). (2.6)

The cross entropy is empirically estimable, as will be seen later, and the parameter esti-
mation is easily defined. Further, we propose the following cross entropy and divergence,
respectively:

dγ,2(g(y|x), f (y|x);g(x))

=−1
γ

log
∫ (∫

g(y|x) f (y|x)γdy
)

g(x)dx+
1

1+ γ
log
∫ (∫

f (y|x)1+γdy
)

g(x)dx

=−1
γ

log
∫ ∫

f (y|x)γg(x,y)dxdy+
1

1+ γ
log
∫ (∫

f (y|x)1+γdy
)

g(x)dx. (2.7)

Dγ,2(g(y|x), f (y|x);g(x)) =−dγ,2(g(y|x),g(y|x);g(x))+dγ,2(g(y|x), f (y|x);g(x)). (2.8)

The base measures on the explanatory variable are taken twice on each term of the γ-
divergence for the i.i.d. problem. This extension from the i.i.d. problem to the regression
problem seems to be more natural than (2.5). The cross entropy is also empirically estimable.
We refer to these two types, (2.5) and (2.7), as type I and type II, respectively. Both types
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of γ-divergence satisfy the following two basic properties of divergence and relation to the
KL-divergence for j = 1,2:

Theorem 2.1.1.

(i) Dγ, j(g(y|x), f (y|x);g(x))≥ 0,

(ii) Dγ, j(g(y|x), f (y|x);g(x)) = 0⇔ g(y|x) = f (y|x) (a.e.),

(iii) lim
γ→0

Dγ, j(g(y|x), f (y|x);g(x)) =
∫

DKL(g(y|x), f (y|x))g(x)dx,

where DKL(g(y|x), f (y|x)) =
∫

g(y|x) logg(y|x)dy−
∫

g(y|x) log f (y|x)dy.

The proof is in Appendix A. We consider the robust and sparse regression based on type
II of γ-divergence in Chapter 3 and type I of γ-divergence in Chapter 4. Further, we discuss
the difference and theoretical robust properties on both types of γ-divergence in Chapter 5.
Estimation of γ-Regression: Let f (y|x;θ) be the conditional probability density function
of y given x with the parameter θ . The target parameter can be considered by:

θ
∗
γ, j = arg min

θ

Dγ, j(g(y|x), f (y|x;θ);g(x))

= arg min
θ

dγ, j(g(y|x), f (y|x;θ);g(x)) for j = 1,2. (2.9)

When g(y|x) = f (y|x;θ ∗), we have θ ∗
γ, j = θ ∗.

Let (x1,y1), . . . ,(xn,yn) be the observations randomly drawn from the underlying distribu-
tion g(x,y). Using the formulas (2.5) and (2.7), both types of γ-cross entropy for regression,
dγ, j(g(y|x), f (y|x;θ);g(x)), can be empirically estimated by:

d̄γ,1( f (y|x;θ)) =−1
γ

log
1
n

n

∑
i=1

f (yi|xi;θ)γ

(
∫

f (y|xi;θ)1+γdy)
γ

1+γ

,

d̄γ,2( f (y|x;θ)) =−1
γ

log

{
1
n

n

∑
i=1

f (yi|xi;θ)γ

}
+

1
1+ γ

log

{
1
n

n

∑
i=1

∫
f (y|xi;θ)1+γdy

}
.

By virtue of (2.9), we define the γ-estimator by:

θ̂γ, j = arg min
θ

d̄γ, j( f (y|x;θ)) for j = 1,2. (2.10)

In a similar way to in Fujisawa and Eguchi [35], we can show the consistency of θ̂γ, j to
θ ∗

γ, j under some conditions.
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Robustness: Here, we briefly show why type II of γ-estimator θ̂γ,2 is robust. Suppose that
y1 is an outlier. The conditional probability density f (y1|x1;θ) is expected to be sufficiently
small. We see from f (y1|x1;θ)≈ 0 and (2.10) that:

arg min
θ

d̄γ,2( f (y|x;θ))

= arg min
θ

−1
γ

log

{
1
n

n

∑
i=1

f (yi|xi;θ)γ

}
+

1
1+ γ

log

{
1
n

n

∑
i=1

∫
f (y|xi;θ)1+γdy

}

≈ arg min
θ

−1
γ

log

{
1

n−1

n

∑
i=2

f (yi|xi;θ)γ

}
+

1
1+ γ

log

{
1
n

n

∑
i=1

∫
f (y|xi;θ)1+γdy

}
.

Therefore, the term f (y1|x1;θ) is naturally ignored in (2.10). We can show the robustness of
type I of γ-estimator θ̂γ,1 in a similar manner.
Computation: We can apply standard optimization methods in a similar way to in the
regression method with Huber’s loss. However, the objective function of the γ-regression
is non-convex. Therefore, another optimization method is required to achieve numerical
stability and efficiency. In Chapters 3 and 4, we discuss this problem in detail.

2.2 Sparse Regression

Let us rewrite (2.1) as:

β̂ = arg min
β

1
n
∥Y −Xβ∥2.

For simplicity, we assume that β0 = 0. Then, β̂ is represented as (XT X)−1XTY . However,
XT X is not invertible when n < p, and β̂ does not uniquely exist, i.e., β̂ is an infinite set.
The following two problems exist for the OLS in high-dimensional data.

• Overfitting: β̂ makes the training loss 1
n∥Y −X β̂∥2 to be zero. This is an overfitting to

the training data, i.e., poor predictive performance.

• Interpretation: Typically, the elements of β̂ are nonzero. Hence, we cannot determine
a subset that shows strong effects among a large number of explanatory variables.

To prevent overfitting, regularization methods have been extensively incorporated into
the OLS. Hoerl and Kennard [48] proposed the following regularized regression method and
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its estimator:

Ridge regression: β̂ridge = arg min
β

1
n
∥Y −Xβ∥2 +λ∥β∥2,

where λ ≥ 0 is the tuning parameter for the regularization term ∥β∥2. When λ = 0, the
ridge regression is equal to the OLS. Then, β̂ridge is represented as (XT X + λ Ip)

−1XTY ,
and XT X + λ Ip for λ > 0 is invertible even when n < p. However, the ridge regression
does not overcome the problem of interpretation because the elements of β̂ridge are nonzero.
Tibshirani [87] proposed another regularized regression method referred to as the LASSO.
The difference between the ridge regression and LASSO is the regularization term. The
LASSO adopts the L1 regularization ∥β∥1(= |β1|+ · · ·+ |βp|) instead of ∥β∥2. By virtue of
the non-differentiability at the origin of ∥β∥1, the LASSO yields the sparse estimator whose
elements are zero. The LASSO is applied to many research fields such as signal processing,
bioinformatics, machine learning, and image processing, by virtue of its effectiveness. In
this section, we briefly describe the LASSO.
Definition: The LASSO and its estimator are defined by

β̂lasso = arg min
β

1
n
∥Y −Xβ∥2 +λ∥β∥1, (2.11)

where λ ≥ 0 is the tuning parameter for the regularization term |β |. When λ = 0, the LASSO
is equal to the OLS. Let us consider the case where p = n and X = In to see the sparsity of
the LASSO estimator. We can explicitly obtain β̂lasso as follows:

β̂lasso, j =

sign(yi)(yi−nλ/2) (|yi|> nλ/2)

0 (|yi| ≤ nλ/2) ,

where β̂lasso, j is the j-th element of β̂lasso. The LASSO estimator β̂lasso, j has the threshold
function, sgn(yi)max(|yi|−nλ/2,0), that is referred to as the soft-thresholding function. By
virtue of this threshold scheme, some elements become zero. Even in a general case, the
soft-thresholding function appears in optimization methods as will be shown later.
Theoretical Property: Here, we prepare some notations and a condition to show a theoretical
property of the LASSO when n≪ p. We consider the following true regression model:

Y = Xβ
∗+ ε,
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where β ∗ ∈ Rp is the true regression coefficient vector and ε = (ε1, . . . ,εn) ∈ Rn is an i.i.d.
noise vector. Let us denote the index set as S(β ) :=

{
j|β j ̸= 0

}
. For a set S, |S| denotes the

cardinality of S; further, Sc denotes the complement set of S. We consider the following
assumptions:
Assumption 1. |S(β ∗)|= d (≪ n).
Assumption 2. maxi, j |Xi, j| ≤ 1, where Xi, j is the element of the i-th row and j-th column of
X .
Assumption 3. (εi)

n
i=1 is an i.i.d. sub-Gaussian sequence: E [etεi]≤ e

σ2t2
2 (∀t ∈R) for σ > 0.

We define the following condition for X
Definition of Restricted Eigenvalue Condition.

φRE(a,b) := inf
I⊆{1,...,n},v∈Rp:|I|≤a,b∥vI∥1≥∥vIc∥1

vXT Xv
n∥vI∥2 and φRE(a,b)> 0.

Then, we state the following theorem for ensuring the parameter consistency.

Theorem 2.2.1. For 0 < δ < 1, λ is set to 4σ

√
2log(2p/δ )

n . Then, we can obtain the following
bound under the restricted eigenvalue condition, φRE(2d,3)> 0:

∥βlasso−β
∗∥2 ≤C

d log(p/δ )

n
with probability 1−δ ,

where C is a positive constant.

Proof. See Chapter 11 of [46] or Chapter 6 of [15].

The dimension of the regression coefficient vector affects the rate by log p in high-
dimensional data,. The rate intrinsically depends on d, which represents the sparsity of the
true regression coefficient vector. For other theoretical properties such as the prediction error
and variable selection consistency, the readers can refer to [46] and [15].
Computation: Many optimization methods have been developed for the LASSO. Here
we show optimization algorithms based on the proximal gradient method (PG) [72], the
alternating direction method of multipliers (ADMM) [13] and the coordinate descent method
(CD) [94].

The PG for the LASSO is give by

β
(t+1) = arg min

β

〈
−2

n
XT (Y −Xβ

(t)),β

〉
+λ∥β∥1 +

1
2ηt
∥β −β

(t)∥2, (2.12)
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where ηt is the t-th iterative step size. The first term of the objective function is related to the
first order approximation of 1

n∥Y −Xβ∥2 at β (t) as follows:

1
n
∥Y −Xβ∥2 ≈ 1

n
∥Y −Xβ

(t)∥2 +

〈
−2

n
XT (Y −Xβ

(t)),β −β
(t)
〉

=

〈
−2

n
XT (Y −Xβ

(t)),β

〉
+ const.

To ensure the convergence, the t-th iterative step size is chosen to be 0 < ηt <
n

2∥XT X∥2
,

where A, ∥A∥2 is the spectral norm for a matrix A. Then, the update formula of (2.12) can be
obtained explicitly as follows:

β
(t+1)
j =

sign
(

β
(t)
j −ηtg j

)(
β
(t)
j −ηtg j−ληt

) (
|β (t)

j −ηtg j|> ληt

)
0

(
|β (t)

j −ηtg j| ≤ ληt

)
,

where β
(t)
j and g j are the j-th element of β (t) and −2

n(Y −Xβ (t))X , respectively.
The ADMM for the LASSO is given by(
θ
(t+1),ξ (t+1)

)
= arg min

θ ,ξ

1
n
∥Y −Xθ∥2 +λ∥ξ∥1 + ⟨h(t),θ −ξ ⟩+ µ

2
∥θ −ξ∥2, (2.13)

where h(t) is t-th iterative Lagrange multipliers, and µ is the penalty parameter for the
augmented Lagrangian. Then, the update formula of (2.13) can be obtained explicitly as
follows:

θ
(t+1) =

(
µIp +

2
n

XT X
)−1

(2XTY/n+µξ
(t)−h(t)),

ξ
(t+1)
j =

sign
(

θ
(t+1)
j +h(t)j /µ

)(
θ
(t+1)
j +h(t)j /µ−λ/µ

) (
|θ (t+1)

j +h(t)j /µ|> λ/µ

)
0

(
|θ (t+1)

J +h(t)j /µ| ≤ λ/µ

)
,

h(t+1) = h(t)+µ(θ (t)−ξ
(t)),

where ξ
(t+1)
j , θ j and h(t)j are the j-th elements of ξ (t+1), θ and h(t), respectively. The ADMM

splits the regression coefficient vector into θ and ξ . In practice, θ (t+1), ξ (t+1) or θ (t+1)+ξ (t+1)

2
is used as the final output.
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The CD for the LASSO is given by

β
(t+1)
j = arg min

β j

1
n
∥Y −Xβ

(t)
[− j]∥

2 +λ∥β j∥1, (2.14)

where β
(t)
[− j] is (β (t+1)

1 , . . . ,β
(t+1)
j−1 ,β j,β

(t)
j+1, . . . ,β

(t)
p ). Then, the update formula of (2.14) can

be obtained explicitly as follows:

β
(t+1)
j =


sign

(
∑

n
i=1(yi−r(t)i,− j)xi j

)(
∑

n
i=1(yi−r(t)i,− j)xi j−2λ/n

)
∑

n
i=1 x2

i j

(
|∑n

i=1(yi− r(t)i,− j)xi j|> 2λ/n
)

0
(
|∑n

i=1(yi− r(t)i,− j)xi j| ≤ 2λ/n
)

,

where r(t)i,− j = ∑k ̸= j xik(1(k< j)β
(t+1)
k +1(k> j)β

(t)
k ) and xik is the k-th element of xi.

We compare these optimization methods applied to the LASSO in terms of convergence,
parallelization, and scalability.

• Convergence: The PG needs to set the step size appropriately for ensuring convergence,
while the ADMM and CD do not have a parameter which needs to be iteratively
adjusted. Under some assumptions, every method can guarantee the convergence
for the LASSO. However, the convergence rate of each method depends on one
problem, i.e., the optimal method cannot be determined in terms of the convergence
rate. For the CD, the convergence rate depends on the order of the update cycle through
coordinates [94].

• Parallelization: The PG and ADMM can use parallel computing for β and ξ , respec-
tively. However, the CD does not use parallel computing since the update formulas of
each coordinate are dependent on each other.

• Scalability: The ADMM needs to calculate the inverse of the matrix
(
µIp +

2
nXT X

)
.

It is difficult for very high-dimensional data, e.g., for p = 105. Hence, the Cholesky
decomposition and a matrix inversion lemma are used to decrease the computational
cost (see Sect. 4.2.4 of [13]). To update the whole parameter β , the CD has to operate
the update formula for every coordinate, β j ( j = 1, . . . , p), in one cycle. Increasing
the number of coordinates results in a high computational cost because the CD cannot
use parallel computing, and computational cost increases linearly with the number of
coordinates.

Some software packages are available to compute the LASSO in the R language; e.g.,
“glamlasso”, “APG”, “ADMM”, “flare”, “glmnet”, and “lassoshooting”.



Chapter 3

Robust Linear Regression with Sparsity
via γ-Divergence

3.1 γ-Regression with Sparsity

We adopt the type II of γ-divergence in this chapter. We have already investigated the
estimation of γ-regression with non-sparsity in Sect 2.1.4. Here, we consider the estimation
of γ-regression with sparsity. In what follows, we refer to the γ-regression with sparsity as
the sparse γ-regression.

Let f (y|x;θ) be the conditional probability density function of y given x with parameter
θ . The target parameter can be considered by:

θ
∗
γ,2 = arg min

θ

Dγ,2(g(y|x), f (y|x;θ);g(x))

= arg min
θ

dγ,2(g(y|x), f (y|x;θ);g(x))

= arg min
θ

−1
γ

logEg(x,y) [ f (y|x)γ ]+
1

1+ γ
logEg(x)

[∫
f (y|x)1+γdy

]
.
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Moreover, we can also consider the γ-cross entropy and the target parameter with a regular-
ization term, given by

θ
∗
γ2,pen = arg min

θ

Dγ,2(g(y|x), f (y|x;θ);g(x))+λP(θ)

= arg min
θ

dγ,2(g(y|x), f (y|x;θ);g(x))+λP(θ)

= arg min
θ

−1
γ

logEg(x,y) [ f (y|x)γ ]+
1

1+ γ
logEg(x)

[∫
f (y|x)1+γdy

]
+λP(θ),

(3.1)

where P(θ) is a regularization term for parameter θ and λ is a tuning parameter for the
regularization term. As an example of the penalty term, we can consider L1 (Lasso, [87]),
elasticnet [104], group Lasso [98], fused Lasso [89], and so on.

Let (x1,y1), . . . ,(xn,yn) be the observations randomly drawn from the underlying distribu-
tion g(x,y). As we have seen in Sect. 2.1.4, the γ-cross entropy, dγ,2(g(y|x), f (y|x;θ);g(x)),
can be empirically estimated by:

d̄γ,2( f (y|x;θ)) =−1
γ

log

{
1
n

n

∑
i=1

f (yi|xi;θ)γ

}
+

1
1+ γ

log

{
1
n

n

∑
i=1

∫
f (y|xi;θ)1+γdy

}
.

By virtue of (3.1), we define the sparse γ-estimator by:

θ̂γ2,pen = arg min
θ

d̄γ,2( f (y|x;θ))+λP(θ). (3.2)

To obtain the minimizer, we propose the iterative algorithm by the majorization-minimization
algorithm (MM algorithm) [52].

3.2 Parameter Estimation Procedure

3.2.1 MM Algorithm for Sparse γ-Regression

The MM algorithm is constructed as follows. Let h(η) be the objective function. Let us
prepare the majorization function hMM satisfying:

hMM(η(m)|η(m)) = h(η(m)),

hMM(η |η(m))≥ h(η) for all η ,
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where η(m) is the parameter of the m-th iterative step for m = 0,1,2, . . . Let us consider the
iterative algorithm by:

η
(m+1) = arg min

η

hMM(η |η(m)).

Then, we can show that the objective function h(η) monotonically decreases at each step,
because:

h(η(m)) = hMM(η(m)|η(m))

≥ hMM(η(m+1)|η(m))

≥ h(η(m+1)).

Note that η(m+1) does not necessarily have to be the minimizer of hMM(η |η(m)). We
only need:

hMM(η(m)|η(m))≥ hMM(η(m+1)|η(m)).

Here, we consider a convergence property of the MM algorithm. Let us denote the
difference between hMM and h as H(η), i.e., H(η) := hMM(η)− h(η). We define the
following directional derivative of h at η(m) in the direction η−η(m):

∇h
(

η
(m),η−η

(m)
)

:= lim
t→+0

h(η(m)+ t(η−η(m)))−h(η(m))

t
.

Then, a sequence
{

η(m)
}

m≥0
satisfies the following asymptotic stationary point condition

under mild conditions [65]:

Proposition 3.2.1. [Asymptotic Stationary Point Condition in [65]] If H(η) is differen-
tiable, its gradient is Lipschitz continuous, and H(η ′)=∇H(η ′)= 0, a sequence

{
η(m)

}
m≥0

satisfies

liminf
m→+∞

inf
η

∇h
(

η(m),η−η(m)
)

∥η−η(m)∥
≥ 0.

Proof. See [65], Proposition 2.1.
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We construct the majorization function for the sparse γ-regression by the following
inequality:

κ(zT
η)≤∑

i

ziη
(m)
i

zT η(m)
κ

[
ηi

zT η(m)

η
(m)
i

]
, (3.3)

where κ(u) is a convex function, z=(z1, . . . ,zn)
T , η =(η1, . . . ,ηn)

T , η(m)=(η
(m)
1 , . . . ,η

(m)
n )T ,

and zi, ηi and η
(m)
i are positive. The inequality (3.3) holds from Jensen’s inequality. Here,

we take zi =
1
n , ηi = f (yi|xi;θ)γ , η

(m)
i = f (yi|xi;θ (m))γ , and κ(u) =− logu in (3.3). We can

propose the majorization function as follows:

h(θ)

= Lγ(θ ;λ )

=−1
γ

log

{
1
n

n

∑
i=1

f (yi|xi;θ)γ

}
+

1
1+ γ

log

{
1
n

n

∑
i=1

∫
f (y|xi;θ)1+γdy

}
+λP(θ)

≤−1
γ

n

∑
i=1

α
(m)
i log

{
f (yi|xi;θ)γ

1
n ∑

n
l=1 f (yl|xl;θ (m))γ

f (yi|xi;θ (m))γ

}

+
1

1+ γ
log

{
1
n

n

∑
i=1

∫
f (y|xi;θ)1+γdy

}
+λP(θ)

=−
n

∑
i=1

α
(m)
i log f (yi|xi;θ)+

1
1+ γ

log

{
1
n

n

∑
i=1

∫
f (y|xi;θ)1+γdy

}
+λP(θ)

+ const.

= hMM(θ |θ (m))+ const.,

where

α
(m)
i =

f (yi|xi;θ (m))γ

∑
n
l=1 f (yl|xl;θ (m))γ

,

hMM(θ |θ (m)) =−
n

∑
i=1

α
(m)
i log f (yi|xi;θ)+

1
1+ γ

log

{
1
n

n

∑
i=1

∫
f (y|xi;θ)1+γdy

}
+λP(θ)

and const. is a term that does not depend on the parameter θ .
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The first term on the original target function h(θ) is a mixture type of densities, which
is not easy to optimize, while the first term on hMM(θ |θ (m)) is a weighted log-likelihood,
which is often easy to optimize.

3.2.2 Sparse γ-Linear Regression

Let f (y|x;θ) be the conditional density with θ = (β0,β ,σ
2), given by:

f (y|x;θ) = φ(y;β0 + xT
β ,σ2),

where φ(y; µ,σ2) is the normal density with mean parameter µ and variance parameter σ2.
Suppose that P(θ) is the L1 regularization ||β ||1. After a simple calculation, we have:

hMM(θ |θ (m)) =
1

2(1+ γ)
logσ

2 +
1
2

n

∑
i=1

α
(m)
i

(yi−β0− xT
i β )2

σ2 +λ ||β ||1. (3.4)

This function is easy to optimize by an update algorithm. For a fixed value of σ2, the
function hMM is almost the same as Lasso except for the weight, so that it can be updated
using the coordinate decent algorithm with a decreasing property of the loss function. For a
fixed value of (β0,β

T )T , the function hMM is easy to minimize. Consequently, we can obtain
the update algorithm in Algorithm 1 with the decreasing property:

hMM(θ (m+1)|θ (m))≤ hMM(θ (m)|θ (m)).

It should be noted that hMM is convex with respect to parameter β0, β and has the global
minimum with respect to parameter σ2, but the original objective function h is not convex
with respect to them, so that the initial points of Algorithm 1 are important. This issue is
discussed in Sect. 3.4.4.

In practice, we also use the active set strategy [32] in the coordinate decent algorithm
for updating β (m). The active set consists of the non-zero coordinates of β (m). Specifically,
for a given β (m), we only update the non-zero coordinates of β (m), until they are converged.
Then, the non-active set parameter estimates are updated once. When they remain zero, the
coordinate descent algorithm stops. If some of them do not remain zero, those are added to
the active set, and the coordinate descent algorithm continues.
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Algorithm 1 Sparse γ-linear regression.

Input: β
(0)
0 ,β (0),σ2(0)

repeat m = 0,1,2, . . .

α
(m)
i ← φ(yi;β0

(m)+xT
i β (m),σ2(m)

)γ

∑
n
l=1 φ(yl ;β0

(m)+xl
T β (m),σ2(m)

)γ
(i = 1,2, . . . ,n).

β0
(m+1)← ∑

n
i=1 α

(m)
i (yi− xi

T β (m)).

for do j = 1, . . . , p

β j
(m+1)←

S
(

∑
n
i=1 α

(m)
i (yi−β

(m+1)
0 −r(m)

i,− j)xi j, σ2(m)
λ

)
(

∑
n
i=1 α

(m)
i x2

i j

) ,

where S(t,λ ) = sign(t)(|t|−λ )+ and r(m)
i,− j =∑k ̸= j xik(1(k< j)β

(m+1)
k +1(k> j)β

(m)
k ).

σ2(m+1)← (1+γ)∑
n
i=1 α

(m)
i (yi−β

(m+1)
0 −xT

i β (m+1))2.

until convergence

Output: β̂0, β̂ , σ̂
2
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3.2.3 Robust Cross-Validation

In sparse regression, a regularization parameter is often selected via a criterion. Cross-
validation is often used for selecting the regularization parameter. Ordinal cross-validation is
based on the squared error, and it can also be constructed using the KL-cross entropy with
the normal density. However, the ordinal cross-validation will fail due to outliers. Therefore,
we propose the robust cross-validation based on the γ-cross entropy. Let θ̂γ be the robust
estimate based on the γ-cross entropy. The cross-validation based on the γ-cross entropy can
be given by:

RoCV(λ )

=− 1
γ0

log

{
1
n

n

∑
i=1

f (yi|xi; θ̂
[−i]
γ )γ0

}
+

1
1+ γ0

log

{
1
n

n

∑
i=1

∫
f (y|xi; θ̂

[−i]
γ )1+γ0dy

}
,

where θ̂
[−i]
γ is the γ-estimator deleting the i-th observation and γ0 is an appropriate tuning

parameter. We can also adopt the K-fold cross-validation to reduce the computational task
[45].

Here, we give a small modification of the above. We often focus only on the mean
structure for prediction, not on the variance parameter. Therefore, in this paper, θ̂

[−i]
γ =(

β̂
[−i]
γ , σ̂2[−i]

γ

)
is replaced by

(
β̂
[−i]
γ , σ̂2

f ix

)
. In numerical experiments and real data analy-

ses, we used σ2(0) as σ2
f ix.

3.3 Robust Properties

In this section, the robust properties are presented from two viewpoints of latent bias and
Pythagorean relation. This section is closely related to Sect. 5.2.3. However, the discussion
here is more detailed, and in addition we show the redescending property on the sparse γ

linear regression.
The latent bias was discussed in Fujisawa and Eguchi [35] and Kanamori and Fujisawa

[54], which is described later. Using the results obtained there, the Pythagorean relation is
shown in Theorems 3.3.1 and 3.3.2.

Let f ∗(y|x) = fθ∗(y|x) = f (y|x;θ ∗) and δ (y|x) be the target conditional probability
density function and the contamination conditional probability density function related to
outliers, respectively. Let ε and ε(x) denote the outlier ratios, which are independent of and
dependent on x, respectively. Under homogeneous and heterogeneous contaminations, we
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suppose that the underlying conditional probability density function can be expressed as:

g(y|x) = (1− ε) f (y|x;θ
∗)+ εδ (y|x),

g(y|x) = (1− ε(x)) f (y|x;θ
∗)+ ε(x)δ (y|x).

Let:

ν f ,γ(x) =
{∫

δ (y|x) f (y|x)γdy
} 1

γ

(γ > 0),

and let:

ν f ,γ =

{∫
ν f ,γ(x)γg(x)dx

} 1
γ

.

Here, we assume that:

ν fθ∗ ,γ ≈ 0,

which implies that ν fθ∗ ,γ(x) ≈ 0 for any x (a.e.) and illustrates that the contamination
conditional probability density function δ (y|x) lies on the tail of the target conditional
probability density function f (y|x;θ ∗). For example, if δ (y|x) is the Dirac function at the
outlier y†(x) given x, then we have ν fθ∗ ,γ(x) = f (y†(x)|x;θ ∗), which should be sufficiently
small because y†(x) is an outlier. In this section, we show that θ ∗γ −θ ∗ is expected to be
small even if ε or ε(x) is not small. To make the discussion easier, we prepare the monotone
transformation of the γ-cross entropy for regression by:

d̃γ(g(y|x), f (y|x;θ);g(x))

=−exp
{
−γdγ(g(y|x), f (y|x;θ);g(x))

}
=−

∫
(
∫

g(y|x) f (y|x;θ)γdy)g(x)dx

{
∫
(
∫

f (y|x;θ)1+γdy)g(x)dx}
γ

1+γ

.

3.3.1 Case of Homogeneous Contamination

Here, we provide the following proposition, which was given in Kanamori and Fujisawa
[54].
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Proposition 3.3.1. [Kanamori and Fujisawa [54], Section 4]

d̃γ(g(y|x), f (y|x;θ);g(x))

= (1− ε)d̃γ( f (y|x;θ
∗), f (y|x;θ);g(x))−

εν
γ

fθ ,γ

{
∫
(
∫

f (y|x;θ)1+γdy)g(x)dx}
γ

1+γ

.

Recall that θ ∗γ and θ ∗ are also the minimizers of d̃γ(g(y|x), f (y|x;θ);g(x))
and d̃γ( f (y|x;θ ∗), f (y|x;θ);g(x)), respectively. We can expect ν fθ ,γ ≈ 0 from the assump-
tion ν fθ∗ ,γ ≈ 0 if the tail behavior of f (y|x;θ) is close to that of f (y|x;θ ∗). We see from
Proposition 3.3.1 and the condition ν fθ ,γ ≈ 0 that:

θ
∗
γ = arg min

θ

d̃γ(g(y|x), f (y|x;θ);g(x))

= arg min
θ

[
(1− ε)d̃γ( f (y|x;θ

∗), f (y|x;θ);g(x))

−
εν

γ

fθ ,γ

{
∫
(
∫

f (y|x;θ)1+γdy)g(x)dx}
γ

1+γ

]
≈ arg min

θ

(1− ε)d̃γ( f (y|x;θ
∗), f (y|x;θ);g(x))

= θ
∗.

Therefore, under homogeneous contamination, it can be expected that the latent bias
θ ∗γ −θ ∗ is small even if ε is not small. Moreover, we can show the following theorem, using
Proposition 3.3.1.

Theorem 3.3.1. Let ν = max{ν fθ ,γ ,ν fθ∗ ,γ}. Then, the Pythagorean relation among g(y|x),
f (y|x;θ ∗), f (y|x;θ) approximately holds:

Dγ(g(y|x), f (y|x;θ);g(x))−Dγ(g(y|x), f (y|x;θ
∗);g(x))

= Dγ( f (y|x;θ
∗), f (y|x;θ);g(x))+O(νγ).

The proof is in Appendix B. The Pythagorean relation implies that the minimization
of the divergence from f (y|x;θ) to the underlying conditional probability density function
g(y|x) is approximately the same as that to the target conditional probability density function
f (y|x;θ ∗). Therefore, under homogeneous contamination, we can see why our proposed
method works well in terms of the minimization of the γ-divergence.
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3.3.2 Case of Heterogeneous Contamination

Under heterogeneous contamination, we assume that the parametric conditional probability
density function f (y|x;θ) is a location-scale family given by:

f (y|x;θ) =
1
σ

s
(

y−q(x;ξ )

σ

)
,

where s(y) is a probability density function, σ is a scale parameter and q(x;ξ ) is a location
function with a regression parameter ξ , e.g., q(x;ξ ) = ξ T x. Then, we can obtain:

∫
f (y|x;θ)1+γdy =

∫ 1
σ1+γ

s
(

y−q(x;ξ )

σ

)1+γ

dy

= σ
−γ

∫
s(z)1+γdz.

That does not depend on the explanatory variable x. Here, we provide the following
proposition, which was given in Kanamori and Fujisawa [54].

Proposition 3.3.2. [Kanamori and Fujisawa [54], Section 4]

d̃γ(g(y|x), f (y|x;θ);g(x))

= cd̃γ( f (y|x;θ
∗), f (y|x;θ); g̃(x))−

∫
ν fθ ,γ(x)

γε(x)g(x)dx

{σ−γ
∫

s(z)1+γdz}
γ

1+γ

,

where c = (1−
∫

ε(x)g(x)dx)
γ

1+γ and g̃(x) = (1− ε(x))g(x).

The second term
∫

ν fθ ,γ (x)γ ε(x)g(x)dx

{σ−γ
∫

s(z)1+γ dz}
γ

1+γ

can be approximated to be zero from the condition

ν fθ ,γ ≈ 0 and ε(x)< 1 as follows:∫
ν fθ ,γ(x)

γε(x)g(x)dx

{σ−γ
∫

s(z)1+γdz}
γ

1+γ

<

∫
ν fθ ,γ(x)

γg(x)dx

{σ−γ
∫

s(z)1+γdz}
γ

1+γ

=
ν

γ

fθ ,γ

{σ−γ
∫

s(z)1+γdz}
γ

1+γ

≈ 0. (3.5)
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We see from Proposition 3.3.2 and (3.5) that:

θ
∗
γ = arg min

θ

d̃γ(g(y|x), f (y|x;θ);g(x))

= arg min
θ

[
cd̃γ( f (y|x;θ

∗), f (y|x;θ); g̃(x))

−
∫

ν fθ ,γ(x)
γε(x)g(x)dx

{σ−γ
∫

s(z)1+γdz}
γ

1+γ

]
≈ arg min

θ

cd̃γ( f (y|x;θ
∗), f (y|x;θ); g̃(x))

= θ
∗.

Therefore, under heterogeneous contamination in a location-scale family, it can be
expected that the latent bias θ ∗γ −θ ∗ is small even if ε(x) is not small. Moreover, we can
show the following theorem, using Proposition 3.3.2.

Theorem 3.3.2. Let ν = max{ν fθ ,γ ,ν fθ∗ ,γ}. Then, the following relation among g(y|x),
f (y|x;θ ∗), f (y|x;θ) approximately holds:

Dγ(g(y|x), f (y|x;θ);g(x))−Dγ(g(y|x), f (y|x;θ
∗);g(x))

= Dγ( f (y|x;θ
∗), f (y|x;θ); g̃(x))+O(νγ).

The proof is in Appendix B. The above is slightly different from a conventional Pythagorean
relation, because the base measure changes from g(x) to g̃(x) in part. However, it also im-
plies that the minimization of the divergence from f (y|x;θ) to the underlying conditional
probability density function g(y|x) is approximately the same as that to the target conditional
probability density function f (y|x;θ ∗). Therefore, under heterogeneous contamination in
a location-scale family, we can see why our proposed method works well in terms of the
minimization of the γ-divergence.

3.3.3 Redescending Property

First, we review a redescending property on M-estimation (see, e.g., [66]), which is often
used in robust statistics. Suppose that the estimating equation is given by ∑

n
i=1 ζ (zi;θ) = 0.

Let θ̂ be a solution of the estimating equation. The bias caused by outlier zo is expressed
as θ̂n=∞− θ ∗, where θ̂n=∞ is the limiting value of θ̂ and θ ∗ is the true parameter. We
hope the bias is small even if the outlier zo exists. Under some conditions, the bias can be
approximated to εIF(zo;θ ∗), where ε is a small outlier ratio and IF(z;θ ∗) is the influence
function. The bias is expected to be small when the influence function is small. The influence
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function can be expressed as IF(z;θ ∗) = Aζ (z;θ ∗), where A is a matrix independent of z, so
that the bias is also expected to be small when ζ (zo;θ ∗) is small. In particular, the estimating
equation is said to have a redescending property if ζ (z;θ ∗) goes to zero as ||z|| goes to
infinity. This property is favorable in robust statistics, because the bias is expected to be
sufficiently small when zo is very large.

Here, we prove a redescending property on the sparse γ-linear regression, i.e., when
f (y|x;θ) = φ(y;β0 + xT β ,σ2) with θ = (β0,β ,σ

2) for fixed x. Recall that the estimate of
the sparse γ-linear regression is the minimizer of the loss function:

Lγ(θ ;λ ) =−1
γ

log

{
1
n

n

∑
i=1

φ(yi;β0 + xi
T

β ,σ2)γ

}
+bγ(θ ;λ ),

where bγ(θ ;λ ) = 1
1+γ

log
{1

n ∑
n
i=1
∫

φ(y;β0 + xi
T β ,σ2)1+γdy

}
+λ ||β ||1. Then, the estimat-

ing equation is given by:

0 =
∂

∂θ
Lγ(θ ;λ )

=−∑
n
i=1 φ(yi;β0 + xi

T β ,σ2)γs(yi|xi;θ)

∑
n
i=1 φ(yi;β0 + xiT β ,σ2)γ

+
∂

∂θ
bγ(θ ;λ ),

where s(y|x;θ) = ∂ logφ(y;β0+xT β ,σ2)
∂θ

. This can be expressed by the M-estimation formula
given by:

0 =
n

∑
i=1

ψ(yi|xi;θ),

where ψ(y|x;θ) = φ(y;β0 + xT β ,σ2)γs(y|x;θ)− φ(y;β0 + xT β ,σ2)γ ∂

∂θ
bγ(θ ;λ ). We can

easily show that as ||y|| goes to infinity, φ(y;β0 + xT β ,σ2) goes to zero and φ(y;β0 +

xT β ,σ2)s(y|x;θ) also goes to zero. Therefore, the function ψ(y|x;θ) goes to zero as ||y||
goes to infinity, so that the estimating equation has a redescending property.

3.4 Numerical Experiment

In this section, we compare our method (sparse γ-linear regression) with the representative
sparse linear regression method, the least absolute shrinkage and selection operator (Lasso)
[87], and the robust and sparse regression methods, sparse least trimmed squares (sLTS) [2]
and robust least angle regression (RLARS) [58].
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3.4.1 Simulation Model

We used the simulation model given by:

y = β0 +β1x1 +β2x2 + · · ·+βpxp + e, e∼ N(0,0.52).

The sample size and the number of explanatory variables were set to be n = 100 and
p = 100,200, respectively. The true coefficients were given by:

β1 = 1, β2 = 2, β4 = 4, β7 = 7, β11 = 11,

β j = 0 for j ∈ {0, . . . , p}\{1,2,4,7,11}.

We arranged a broad range of regression coefficients to observe sparsity for various
degrees of regression coefficients. The explanatory variables were generated from a normal
distribution N(0,Σ) with Σ = (ρ |i− j|)1≤i, j≤p. We generated 100 random samples.

Outliers were incorporated into simulations. We investigated two outlier ratios (ε =

0.1 and 0.3) and two outlier patterns: (a) the outliers were generated around the middle part
of the explanatory variable, where the explanatory variables were generated from N(0,0.52)

and the error terms were generated from N(20,0.52); (b) the outliers were generated around
the edge part of the explanatory variable, where the explanatory variables were generated
from N(−1.5,0.52) and the error terms were generated from N(20,0.52).

3.4.2 Performance Measure

The root mean squared prediction error (RMSPE) and mean squared error (MSE) were
examined to verify the predictive performance and fitness of regression coefficient:

RMSPE(β̂ ) =

√
1
n

n

∑
i=1

(y∗i − x∗i
T

β̂ )2,

MSE =
1

p+1

p

∑
j=0

(β ∗j − β̂ j)
2,

where (x∗i ,y
∗
i ) (i = 1, . . . ,n) is the test sample generated from the simulation model without

outliers and β ∗j ’s are the true coefficients. The true positive rate (TPR) and true negative rate
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(TNR) were also reported to verify the sparsity:

TPR(β̂ ) =
|{ j ∈ {1, . . . , p} : β̂ j ̸= 0∧β ∗j ̸= 0}|
|{ j ∈ {1, . . . , p} : β ∗j ̸= 0}|

,

TNR(β̂ ) =
|{ j ∈ {1, . . . , p} : β̂ j = 0∧β ∗j = 0}|
|{ j ∈ {1, . . . , p} : β ∗j = 0}|

.

3.4.3 Comparative Methods

In this subsection, we explain three comparative methods: Lasso, RLARS and sLTS.
Lasso is performed by the R-package “glmnet”. The regularization parameter λLasso is

selected by grid search via cross-validation in “glmnet”. We used “glmnet” by default.
RLARS is performed by the R-package “robustHD”. This is a robust version of LARS

[26]. The optimal model is selected via BIC by default.
sLTS is performed by the R-package “robustHD”. sLTS has the regularization parameter

λsLT S and the fraction parameter α of squared residuals used for trimmed squares. The
regularization parameter λsLT S is selected by grid search via BIC. The number of grids is
40 by default. However, we considered that this would be small under heavy contamination.
Therefore, we used 80 grids under heavy contamination to obtain a good performance. The
fraction parameter α is 0.75 by default. In the case of α = 0.75, the ratio of outlier is less
than 25%. We considered this would be small under heavy contamination and large under
low contamination in terms of statistical efficiency. Therefore, we used 0.65, 0.75, 0.85 as α

under low contamination and 0.50, 0.65, 0.75 under heavy contamination.

3.4.4 Details of Our Method

Initial Points

In our method, we need an initial point to obtain the estimate, because we use the iterative
algorithm proposed in Sect. 3.2.2. The estimate of other conventional robust and sparse
regression methods would give a good initial point. For another choice, the estimate of
RANSAC (random sample consensus) algorithm would also give a good initial point. In this
experiment, we used the estimate of sLTS as an initial point.

How to Choose Tuning Parameters

In our method, we have to choose some tuning parameters. The parameter γ in the γ-
divergence was set to 0.1 or 0.5. The parameter γ0 in the robust cross-validation was set to
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0.5. In our experience, the result via RoCV is not sensitive to the selection of γ0 when γ0 is
large enough, e.g., γ0 = 0.5,1. The parameter λ of L1 regularization is often selected via grid
search. We used 50 grids in the range [0.05λ0,λ0] with the log scale, where λ0 is an estimate
of λ , which would shrink regression coefficients to zero. More specifically, in a similar way
as in Lasso, we can derive λ0, which shrinks the coefficients β to zero in hMM(θ |θ (0)) [3.4]
with respect to β , and we used it. This idea was proposed by the R-package “glmnet”.

3.4.5 Result

Table 3.1 is the low contamination case with Outlier Pattern (a). For the RMSPE, our method
outperformed other comparative methods (the oracle value of the RMSPE is 0.5). For the
TPR and TNR, sLTS showed a similar performance to our method. Lasso presented the worst
performance, because it is sensitive to outliers. Table 3.2 is the heavy contamination case with
Outlier Pattern (a). For the RMSPE, our method outperformed other comparative methods
except in the case (p, ε , ρ) = (100, 0.3, 0.2) for sLTS with α = 0.5. Lasso also presented a
worse performance, and furthermore, sLTS with α = 0.75 showed the worst performance
due to a lack of truncation. For the TPR and TNR, our method showed the best performance.
Table 3.3 is the low contamination case with Outlier Pattern (b). For the RMSPE, our method
outperformed other comparative methods (the oracle value of the RMSPE is 0.5). For the
TPR and TNR, sLTS showed a similar performance to our method. Lasso presented the
worst performance, because it is sensitive to outliers. Table 3.4 is the heavy contamination
case with Outlier Pattern (b). For the RMSPE, our method outperformed other comparative
methods. sLTS with α = 0.5 showed the worst performance. For the TPR and TNR, it
seems that our method showed the best performance. Table 3.5 is the no contamination case.
RLARS showed the best performance, but our method presented comparable performances.
In spite of no contamination case, Lasso was clearly worse than RLARS and our method.
This would be because the underlying distribution can generate a large value in simulation,
although it is a small probability.
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Table 3.1 Outlier Pattern (a) with p = 100, 200, ε = 0.1 and ρ = 0.2, 0.5. RMSPE, root
mean squared prediction error (RMSPE); RLARS, robust least angle regression; sLTS, sparse
least trimmed squares.

p = 100, ε = 0.1, ρ = 0.2 p = 100, ε = 0.1, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 3.04 9.72 × 10−2 0.936 0.909 3.1 1.05 × 10−1 0.952 0.918
RLARS 0.806 6.46 × 10−3 0.936 0.949 0.718 6.7 × 10−3 0.944 0.962

sLTS (α = 0.85, 80 grids) 0.626 1.34 × 10−3 1.0 0.964 0.599 1.05 × 10−3 1.0 0.966
sLTS (α = 0.75, 80 grids) 0.651 1.71 × 10−3 1.0 0.961 0.623 1.33 × 10−3 1.0 0.961
sLTS (α = 0.65, 80 grids) 0.685 2.31 × 10−3 1.0 0.957 0.668 1.76 × 10−3 1.0 0.961

sparse γ-linear reg (γ = 0.1) 0.557 6.71 × 10−4 1.0 0.966 0.561 6.99 × 10−4 1.0 0.965
sparse γ-linear reg (γ = 0.5) 0.575 8.25 × 10−4 1.0 0.961 0.573 9.05 × 10−4 1.0 0.959

p = 200, ε = 0.1, ρ = 0.2 p = 200, ε = 0.1, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 3.55 6.28 × 10−2 0.904 0.956 3.37 6.08 × 10−2 0.928 0.961
RLARS 0.88 3.8 × 10−3 0.904 0.977 0.843 4.46 × 10−3 0.9 0.986

sLTS (α = 0.85, 80 grids) 0.631 7.48 × 10−4 1.0 0.972 0.614 5.77 × 10−4 1.0 0.976
sLTS (α = 0.75, 80 grids) 0.677 1.03 × 10−3 1.0 0.966 0.632 7.08 × 10−4 1.0 0.973
sLTS (α = 0.65, 80 grids) 0.823 2.34 × 10−3 0.998 0.96 0.7 1.25 × 10−3 1.0 0.967

sparse γ-linear reg (γ = 0.1) 0.58 4.19 × 10−4 1.0 0.981 0.557 3.71 × 10−4 1.0 0.977
sparse γ-linear reg (γ = 0.5) 0.589 5.15 × 10−4 1.0 0.979 0.586 5.13 × 10−4 1.0 0.977
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Table 3.2 Outlier Pattern (a) with p = 100, 200, ε = 0.3 and ρ = 0.2, 0.5.

p = 100, ε = 0.3, ρ = 0.2 p = 100, ε = 0.3, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 8.07 6.72 × 10−1 0.806 0.903 8.1 3.32 × 10−1 0.8 0.952
RLARS 2.65 1.54 × 10−1 0.75 0.963 2.09 1.17 × 10−1 0.812 0.966

sLTS (α = 0.75, 80 grids) 10.4 2.08 0.886 0.709 11.7 2.36 0.854 0.67
sLTS (α = 0.65, 80 grids) 2.12 3.66 × 10−1 0.972 0.899 2.89 5.13 × 10−1 0.966 0.887
sLTS (α = 0.5, 80 grids) 1.37 1.46 × 10−1 0.984 0.896 1.53 1.97 × 10−1 0.976 0.909

sparse γ-linear reg (γ = 0.1) 1.13 9.16 × 10−2 0.964 0.97 0.961 5.38 × 10−2 0.982 0.977
sparse γ-linear reg (γ = 0.5) 1.28 1.5 × 10−1 0.986 0.952 1.00 8.48 × 10−2 0.988 0.958

p = 200, ε = 0.3, ρ = 0.2 p = 200, ε = 0.3, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 8.11 3.4 × 10−1 0.77 0.951 8.02 6.51 × 10−1 0.81 0.91
RLARS 3.6 1.7 × 10−1 0.71 0.978 2.67 1.02 × 10−1 0.76 0.984

sLTS (α = 0.75, 80 grids) 11.5 1.16 0.738 0.809 11.9 1.17 0.78 0.811
sLTS (α = 0.65, 80 grids) 3.34 3.01 × 10−1 0.94 0.929 4.22 4.08 × 10−1 0.928 0.924
sLTS (α = 0.5, 80 grids) 4.02 3.33 × 10−1 0.892 0.903 4.94 4.44 × 10−1 0.842 0.909

sparse γ-linear reg (γ = 0.1) 2.03 1.45 × 10−1 0.964 0.924 3.2 2.86 × 10−1 0.94 0.936
sparse γ-linear reg (γ = 0.5) 1.23 7.69 × 10−2 0.988 0.942 3.13 2.98 × 10−1 0.944 0.94

Table 3.3 Outlier Pattern (b) with p = 100, 200, ε = 0.1 and ρ = 0.2, 0.5.

p = 100, ε = 0.1, ρ = 0.2 p = 100, ε = 0.1, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 2.48 5.31 × 10−2 0.982 0.518 2.84 5.91 × 10−2 0.98 0.565
RLARS 0.85 6.58 × 10−3 0.93 0.827 0.829 7.97 × 10−3 0.91 0.885

sLTS (α = 0.85, 80 grids) 0.734 5.21 × 10−3 0.998 0.964 0.684 3.76 × 10−3 1.0 0.961
sLTS (α = 0.75, 80 grids) 0.66 1.78 × 10−3 1.0 0.975 0.648 1.59 × 10−3 1.0 0.961
sLTS (α = 0.65, 80 grids) 0.734 2.9 × 10−3 1.0 0.96 0.66 1.74 × 10−3 1.0 0.962

sparse γ-linear reg (γ = 0.1) 0.577 8.54 × 10−4 1.0 0.894 0.545 5.44 × 10−4 1.0 0.975
sparse γ-linear reg (γ = 0.5) 0.581 7.96 × 10−4 1.0 0.971 0.546 5.95 × 10−4 1.0 0.977

p = 200, ε = 0.1, ρ = 0.2 p = 200, ε = 0.1, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 2.39 2.57 × 10−2 0.988 0.696 2.57 2.54 × 10−2 0.944 0.706
RLARS 1.01 5.44 × 10−3 0.896 0.923 0.877 4.82 × 10−3 0.898 0.94

sLTS (α = 0.85, 80 grids) 0.708 1.91 × 10−3 1.0 0.975 0.790 3.40 × 10−3 0.994 0.97
sLTS (α = 0.75, 80 grids) 0.683 1.06 × 10−4 1.0 0.975 0.635 7.40 × 10−4 1.0 0.977
sLTS (α = 0.65, 80 grids) 1.11 1.13 × 10−2 0.984 0.956 0.768 2.60 × 10−3 0.998 0.968

sparse γ-linear reg (γ = 0.1) 0.603 5.71 × 10−4 1.0 0.924 0.563 3.78 × 10−3 1.0 0.979
sparse γ-linear reg (γ = 0.5) 0.592 5.04 × 10−4 1.0 0.982 0.566 4.05 × 10−3 1.0 0.981
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Table 3.4 Outlier Pattern (b) with p = 100, 200, ε = 0.3 and ρ = 0.2, 0.5.

p = 100, ε = 0.3, ρ = 0.2 p = 100, ε = 0.3, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 2.81 6.88 × 10−2 0.956 0.567 3.13 7.11 × 10−2 0.97 0.584
RLARS 2.70 7.69 × 10−2 0.872 0.789 2.22 6.1 × 10−2 0.852 0.855

sLTS (α = 0.75, 80 grids) 3.99 1.57 × 10−1 0.856 0.757 4.18 1.54 × 10−1 0.878 0.771
sLTS (α = 0.65, 80 grids) 3.2 1.46 × 10−1 0.888 0.854 2.69 1.08 × 10−1 0.922 0.867
sLTS (α = 0.5, 80 grids) 6.51 4.62 × 10−1 0.77 0.772 7.14 5.11 × 10−1 0.844 0.778

sparse γ-linear reg (γ = 0.1) 1.75 3.89 × 10−2 0.974 0.725 1.47 2.66 × 10−2 0.976 0.865
sparse γ-linear reg (γ = 0.5) 1.68 3.44 × 10−2 0.98 0.782 1.65 3.58 × 10−2 0.974 0.863

p = 200, ε = 0.3, ρ = 0.2 p = 200, ε = 0.3, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 2.71 3.32 × 10−2 0.964 0.734 2.86 3.05 × 10−2 0.974 0.728
RLARS 3.03 4.59 × 10−2 0.844 0.876 2.85 4.33 × 10−2 0.862 0.896

sLTS (α = 0.75, 80 grids) 3.73 7.95 × 10−2 0.864 0.872 4.20 8.17 × 10−2 0.878 0.87
sLTS (α = 0.65, 80 grids) 4.45 1.23 × 10−1 0.85 0.886 3.61 8.95 × 10−2 0.904 0.908
sLTS (α = 0.5, 80 grids) 9.05 4.24 × 10−1 0.66 0.853 8.63 3.73 × 10−1 0.748 0.864

sparse γ-linear reg (γ = 0.1) 1.78 1.62 × 10−2 0.994 0.731 1.82 1.62 × 10−2 0.988 0.844
sparse γ-linear reg (γ = 0.5) 1.79 1.69 × 10−2 0.988 0.79 1.77 1.51 × 10−2 0.996 0.77

Table 3.5 No contamination case with p = 100, 200, ε = 0 and ρ = 0.2, 0.5.

p = 100, ε = 0, ρ = 0.2 p = 100, ε = 0, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 0.621 1.34 × 10−3 1.0 0.987 0.621 1.12 × 10−3 1.0 0.987
RLARS 0.551 7.15 × 10−4 0.996 0.969 0.543 6.74 × 10−4 0.996 0.971

sLTS (α = 0.75, 40 grids) 0.954 4.47 × 10−3 1.0 0.996 0.899 4.53 × 10−3 1.0 0.993
sparse γ-linear reg (γ = 0.1) 0.564 7.27 × 10−4 1.0 0.878 0.565 6.59 × 10−4 1.0 0.908
sparse γ-linear reg (γ = 0.5) 0.59 1.0 × 10−3 1.0 0.923 0.584 8.47 × 10−4 1.0 0.94

p = 200, ε = 0, ρ = 0.2 p = 200, ε = 0, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 0.635 7.18 × 10−4 1.0 0.992 0.624 6.17 × 10−4 1.0 0.991
RLARS 0.55 3.63 × 10−4 0.994 0.983 0.544 3.48 × 10−4 0.996 0.985

sLTS (α = 0.75, 40 grids) 1.01 3.76 × 10−3 1.0 0.996 0.909 2.47 × 10−3 1.0 0.996
sparse γ-linear reg (γ = 0.1) 0.584 4.45 × 10−4 1.0 0.935 0.573 3.99 × 10−4 1.0 0.938
sparse γ-linear reg (γ = 0.5) 0.621 6.55 × 10−4 1.0 0.967 0.602 5.58 × 10−4 1.0 0.966
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3.4.6 Computational Cost

In this subsection, we consider the CPU times for Lasso, RLARS, sLTS and our method.
The data were generated from the simulation model in Sect. 4.5.1. The sample size and the
number of explanatory variables were set to be n = 100 and p = 100,500,1000,2000,5000,
respectively. In Lasso, RLARS and sLTS, all parameters were used by default (see Sect. 3.4.3).
Our method used the estimate of the RANSAC algorithm as an initial point. The number of
candidates for the RANSAC algorithm was set to 1000. The parameters γ and γ0 were set to
0.1 and 0.5, respectively. No method used parallel computing methods. Figure 3.1 shows the
average CPU times over 10 runs in seconds. All results were obtained in R Version 3.3.0
with an Intel Core i7-4790K machine. sLTS shows very high computational cost. RLARS is
faster, but does not give a good estimate, as seen in Sect. 3.4.5. Our proposed method is fast
enough even for p = 5000.
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Fig. 3.1 CPU times (in seconds).

3.5 Real Data Analyses

In this section, we use two real datasets to compare our method with comparative methods in
real data analysis. We show the best result of comparative methods among some parameter
situations (e.g., Sect. 3.4.3).



3.5 Real Data Analyses 39

3.5.1 NCI-60 Cancer Cell Panel

We applied our method and comparative methods to regress protein expression on gene
expression data at the cancer cell panel of the National Cancer Institute. Experimental
conditions were set in the same way as in Alfons, Croux, and Gelper [2] as follows. The
gene expression data were obtained with an Affymetrix HG-U133A chip and the normal-
ized GCRMAmethod, resulting in a set of p = 22,283 explanatory variables. The protein
expressions based on 162 antibodies were acquired via reverse-phase protein lysate arrays
and log2 transformed. One observation had to be removed since all values were missing
in the gene expression data, reducing the number of observations to n = 59. Then, the
KRT18 antibody was selected as the response variable because it had the largest MAD
among 162 antibodies, i.e., KRT18 may include a large number of outliers. Both the pro-
tein expressions and the gene expression data can be downloaded via the web application
CellMiner (http://discover.nci.nih.gov/cellminer/). As a measure of prediction performance,
the root trimmed mean squared prediction error (RTMSPE) was computed via leave-one-out
cross-validation given by:

RTMSPE =

√√√√1
h

h

∑
i=1

(e)2
[i:n],

where e2 = ((y1− xT
1 β̂ [−1])2, . . . ,(yn− xT

n β̂ [−n])2) and (e)2
[1:n] ≤ ·· · ≤ (e)2

[n:n] are the order
statistics of e2 and h = ⌊(n+1)0.75⌋. The choice of h is important because it is preferable
for estimating prediction performance that trimmed squares does not include outliers. We set
h in the same way as in Alfons, Croux, and Gelper [2], because the sLTS detected 13 outliers
in Alfons, Croux, and Gelper [2]. In this experiment, we used the estimate of the RANSAC
algorithm as an initial point instead of sLTS because sLTS required high computational cost
with such high dimensional data.

Table 3.6 shows that our method outperformed other comparative methods for the RTM-
SPE with high dimensional data. Our method presented the smallest RTMSPE with the
second smallest number of explanatory variables. RLARS presented the smallest number of
explanatory variables, but a much larger RTMSPE than our method.

http://discover.nci.nih.gov/cellminer/
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Table 3.6 Root trimmed mean squared prediction error (RTMSPE) for protein expressions
based on the KRT18 antibody (NCI-60 cancer cell panel data), computed from leave-one-out
cross-validation.

Methods RTMSPE Selected Variables

Lasso 1.058 52
RLARS 0.936 18

sLTS 0.721 33
Our method (γ = 0.1) 0.679 29
Our method (γ = 0.5) 0.700 30

3.5.2 Protein Homology Data

We applied our method and comparative methods to the protein sequence dataset used for
KDD-Cup 2004. Experimental conditions were set in the same way as in Khan, Van Aelst,
and Zamar [58] as follows. The whole dataset consists of n = 145,751 protein sequences,
which has 153 blocks corresponding to native protein. Each data point in a particular block
is a candidate homologous protein. There were 75 variables in the dataset: the block number
(categorical) and 74 measurements of protein features. The first protein feature was used
as the response variable. Then, five blocks with a total of n = 4141 protein sequences were
selected because they contained the highest proportions of homologous proteins (and hence,
the highest proportions of potential outliers). The data of each block were split into two
almost equal parts to get a training sample of size ntra = 2072 and a test sample of size
ntest = 2069. The number of explanatory variables was p = 77, consisting of four block
indicators (Variables 1–4) and 73 features. The whole protein, training and test dataset can
be downloaded from http://users.ugent.be/~svaelst/software/RLARS.html. As a measure of
prediction performance, the root trimmed mean squared prediction error (RTMSPE) was
computed for the test sample given by:

RTMSPE =

√√√√1
h

h

∑
i=1

(e)2
[i:ntest ]

,

where e2 = ((y1− x1
T β̂ )2, . . . ,(yntest − xT

ntest
β̂ )2) and (e)2

[1:ntest ]
≤ ·· · ≤ (e)2

[ntest :ntest ]
are the

order statistics of e2 and h = ⌊(ntest +1)0.99⌋ , ⌊(ntest +1)0.95⌋ or ⌊(ntest +1)0.9⌋. In this
experiment, we used the estimate of sLTS as an initial point.

http://users.ugent.be/~svaelst/software/RLARS.html
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Table 3.7 shows that our method outperformed other comparative methods for the RTM-
SPE. Our method presented the smallest RTMSPE with the largest number of explanatory
variables. It might seem that other methods gave a smaller number of explanatory variables
than necessary.

Table 3.7 Root trimmed mean squared prediction error in the protein test set.

Trimming Fraction

Methods 1% 5% 10% # Selected Variables

Lasso 10.697 9.66 8.729 22
RLARS 10.473 9.435 8.527 27

sLTS 10.614 9.52 8.575 21
Our method (γ = 0.1) 10.461 9.403 8.481 44
Our method (γ = 0.5) 10.463 9.369 8.419 42



Chapter 4

Robust Generalized Linear Model with
Sparsity by Stochastic Optimization

4.1 Revisiting Sparse γ-Regression

We adopt the type I of γ-divergence in this chapter. Here, we reconsider the estimation of
γ-regression, which was stated in Sect. 2.1.4.

Let f (y|x;θ) be the parametric probability density function with parameter θ . The target
parameter can be considered by

θ
∗
γ,1 = arg min

θ

Dγ,1(g(y|x), f (y|x;θ);g(x))

= arg min
θ

dγ,1(g(y|x), f (y|x;θ);g(x))

= arg min
θ

−1
γ

logEg(x,y)

[
f (y|x)γ

(
∫

f (y|x)1+γdy)
γ

1+γ

]
.

Moreover, we can also consider the target parameter with a convex regularization term, given
by

θ
∗
γ1,pen = arg min

θ

Dγ,1(g(y|x), f (y|x;θ);g(x))+λP(θ)

= arg min
θ

dγ,1(g(y|x), f (y|x;θ);g(x))+λP(θ)

= arg min
θ

−1
γ

logEg(x,y)

[
f (y|x)γ

(
∫

f (y|x)1+γdy)
γ

1+γ

]
+λP(θ), (4.1)
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where P(θ) is a convex regularization term for parameter θ and λ is a tuning parameter. As
an example of convex regularization term, we can consider L1 (Lasso, [87]), elasticnet [104],
the indicator function of a closed convex set [59, 24] and so on.

Let (x1,y1), . . . ,(xn,yn) be the observations randomly drawn from the underlying distribu-
tion g(x,y). As we have seen in Sect. 2.1.4, the γ-cross entropy, dγ,1(g(y|x), f (y|x;θ);g(x)),
can be empirically estimated by

d̄γ,1( f (y|x;θ)) =−1
γ

log
1
n

n

∑
i=1

f (yi|xi)
γ

(
∫

f (y|xi)1+γdy)
γ

1+γ

.

By virtue of (4.1), the sparse γ-estimator can be proposed by

θ̂γ1,pen = arg min
θ

d̄γ,1( f (y|x;θ))+λP(θ). (4.2)

To obtain the minimizer, we solve a non-convex and non-smooth optimization problem.
Iterative estimation algorithms for such a problem can not easily achieve numerical stability
and efficiency.

4.1.1 MM Algorithm for Sparse γ-Regression

In Chapter 3, we proposed the iterative estimation algorithm for (3.2) by MM algorithm [52].
It has a monotone decreasing property, i.e., the objective function monotonically decreases at
each iterative step, which property leads to numerical stability and efficiency. In particular,
the linear regression with L1 penalty was deeply considered.

In a similar way to in Chapter 3, the following majorization function of MM algorithm
was proposed for (4.2) by using Jensen’s inequality:

hMM(θ |θ (m)) =−1
γ

n

∑
i=1

α
(m)
i log

{
f (yi|xi;θ)γ

(
∫

f (y|xi;θ)1+γdy)
γ

1+γ

}
+λP(θ), (4.3)

where

α
(m)
i =

f (yi|xi;θ (m))γ

(
∫

f (y|xi;θ (m))1+γ dy)
γ

1+γ

∑
n
l=1

f (yl |xl ;θ (m))γ

(
∫

f (y|xl ;θ (m))1+γ dy)
γ

1+γ

.

Moreover, for linear regression y = β0 + xT β + e (e∼ N(0,σ2)) with L1 regularization, the
following majorization function and iterative estimation algorithm based on a coordinate
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descent method were obtained:

hMM, linear(θ |θ (m)) =
1

2(1+ γ)
logσ

2 +
1
2

n

∑
i=1

α
(m)
i

(yi−β0− xT
i β )2

σ2 +λ ||β ||1,

β
(m+1)
0 =

n

∑
i=1

α
(m)
i (yi− xi

T
β
(m)),

β
(m+1)
j =

S
(

∑
n
i=1 α

(m)
i (yi−β

(m+1)
0 − r(m)

i,− j)xi j, σ2(m)
λ

)
(

∑
n
i=1 α

(m)
i x2

i j

) ( j = 1, . . . , p),

σ
2(m+1)

= (1+ γ)
n

∑
i=1

α
(m)
i (yi−β

(m+1)
0 − xT

i β
(m+1))2,

where S(t,λ ) = sign(t)(|t|−λ ) and r(m)
i,− j = ∑k ̸= j xik(1(k< j)β

(m+1)
k +1(k> j)β

(m)
k ). This iter-

ative estimation algorithm is equal to Algorithm 1 in Sect. 3.2.2.

4.1.2 Sparse γ-Poisson Regression Case

Typical GLMs are a linear regression, logistic regression and Poisson regression: The
former two regressions are easily treated with the above coordinate descent algorithm, but
the Poisson regression has a problem as described in the following. Here, we consider a
Poisson regression with a regularization term. Let f (y|x;θ) be the conditional density with
θ = (β0,β ), given by

f (y|x;θ) =
exp(−µx(θ))

y!
µx(θ)

y,

where µx(θ) = µx(β0,β ) = exp(β0+xT β ). By virtue of (4.3), we can obtain the majorization
function for Poisson regression with a regularization term, given by

hMM, poisson(θ |θ (m)) =−
n

∑
i=1

α
(m)
i log

exp(−µxi(θ))

yi!
µxi(θ)

yi

+
1

1+ γ

n

∑
i=1

α
(m)
i log

{
∞

∑
y=0

exp(−(1+ γ)µxi(θ))

y!1+γ
µxi(θ)

(1+γ)y

}
+λP(θ). (4.4)

The second term of the right hand side in (4.4) contains the hypergeometric series, and then
we cannot obtain a closed form on the MM algorithm with respect to the parameters β0,β

although this series converges (see Sect. 4.3.3). Therefore, we cannot derive an efficient
iterative estimation algorithm based on a coordinate descent method in a similar way to in
Chapter 3. Other sparse optimization methods which use a linear approximation on the loss
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function, e.g., proximal gradient descent [70, 25, 6], can solve (4.4). However, these methods
require at least sample size n times of an approximate calculation for the hypergeometric
series at each iterative step in sub-problem arg minθ hMM(θ |θ (m)). Therefore, it requires
high computation cost, especially for very large problems. We need another optimization
approach to overcome such problems. In this paper, we consider minimizing the regularized
expected risk (4.1) directly by a stochastic optimization approach. In what follows, we refer
to the sparse γ-regression in the GLM as the sparse γ-GLM.

4.2 Stochastic Optimization Approach for Regularized Ex-
pected Risk Minimization

The regularized expected risk minimization is generally the following form:

Ψ
∗ := min

θ∈Θ

{
Ψ(θ) := E(x,y) [l((x,y);θ)]+λP(θ)

}
, (4.5)

where Θ is a closed convex set in Rn, l is a loss function with a parameter θ and Ψ(θ) is
bounded below over Θ by Ψ∗ >−∞. Stochastic optimization approach solves (4.5) sequen-
tially. More specifically, we draw a sequence of i.i.d. paired samples (x1,y1),(x2,y2), . . .

,(xt ,yt), . . . and, at t-th time, update the parameter θ (t) based on the latest paired sample
(xt ,yt) and the previous updated parameter θ (t−1). Therefore, it requires low computational
complexity per iteration and stochastic optimization can scale well for very large problems.

4.2.1 Stochastic Gradient Descent

The stochastic gradient descent (SGD) is one of popular stochastic optimization approaches
and is widely used in machine learning community [12]. The SGD takes the form

θ
(t+1) = arg min

θ∈Θ

〈
∇l((xt ,yt);θ

(t)),θ
〉
+λP(θ)+

1
2ηt
∥θ −θ

(t)∥2
2, (4.6)

where ηt is a step size parameter. For some important examples of P(θ), e.g., L1 regulariza-
tion, (4.6) can be solved in a closed form.

When a loss function l is convex (possibly non-differentiable) and ηt is set to be appro-
priate, e.g., ηt = O

(
1√
t

)
, under mild conditions, the convergence property was established
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for the average of the iterates, i.e., θ̄T = 1
T ∑

T
t=1 θ (t) as follows (see, e.g., [14]):

E
[
Ψ(θ̄T )

]
−Ψ

∗ ≤ O
(

1√
T

)
,

where the expectation is taken with respect to past paired samples (xt ,yt) . . .(xT ,yT ). More-
over, for some variants of SGD, e.g., RDA [96], Mirror descent [23], Adagrad [22], the
convergence property was established under similar assumptions.

These methods assume that a loss function is convex to establish the convergence property,
but the loss function is non-convex in our problem (4.1). Then, we cannot adopt these methods
directly. Recently, for non-convex loss function with convex regularization term, randomized
stochastic projected gradient (RSPG) was proposed by [38]. Under mild conditions, the
convergence property was established. Therefore, we consider applying the RSPG to our
problem (4.1).

4.2.2 Randomized Stochastic Projected Gradient

First, we explain the RSPG, following [38]. The RSPG takes the form

θ
(t+1) = arg min

θ∈Θ

〈
1

mt

mt

∑
i=1

∇l((xt,i,yt,i);θ
(t)),θ

〉
+λP(θ)+

1
ηt

V (θ ,θ (t)), (4.7)

where mt is the size of mini-batch at t-th time, (xt,i,yt,i) is the i-th mini-batch sample at t-th
time and

V (a,b) = w(a)−w(b)−⟨∇w(b),a−b⟩,

where w is continuously differentiable and α-strongly convex function satisfying ⟨a−
b,∇w(a)−∇w(b)⟩ ≥ α∥a− b∥2 for a,b ∈ Θ. When w(θ) = 1

2 ||θ ||
2
2, i.e., V (θ ,θ (t)) =

1
2 ||θ −θ (t)||22, (4.7) is almost equal to (4.6).

Here, we denote two remarks on RSPG as a difference from the SGD. One is that the
RSPG uses the mini-batch strategy, i.e., taking multiple samples at t-th time. The other is
that the RSPG randomly selects the output θ̂ from

{
θ (1), . . . ,θ (T )

}
according to a certain

probability distribution instead of taking the average of the iterates. This is because for non-
convex stochastic optimization, later iterates does not always gather around local minimum
and the average of the iterates cannot work in such a convex case.

Next, we show the implementation of the RSPG, given by Algorithm2. However, Al-
gorithm 2 has a large deviation of the output because the only one final output is selected
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Algorithm 2 Randomized stochastic projected gradient

Input: The initial point θ (1), the step size ηt , the mini-batch size mt , the iteration limit T
and the probability mass function PR supported on {1, . . . ,T}.
Let R be a random variable generated by probability mass function PR.
for t = 1, . . . ,R do

θ (t+1) = arg minθ∈Θ

〈
1

mt
∑

mt
i=1 ∇l((xt,i,yt,i);θ (t)),θ

〉
+λP(θ)+ 1

ηt
V (θ ,θ (t)).

Output: θ (R).

via some probability mass function PR. Therefore, [38] also proposed the two phase RSPG
(2-RSPG) which has the post-optimization phase. In the post-optimization phase, multi-
ple outputs are selected and these are validated to determine the final output, as shown
in Algorithm 3. This can be expected to achieve a better complexity result of finding an

Algorithm 3 Two phase randomized stochastic projected gradient

Input: The initial point θ (1), the step size ηt , the mini-batch size mt , the iteration limit T ,
the probability mass function PR supported on {1, . . . ,T}, the number of candidates Ncand
and the sample size Npost for validation.
Let R1,R2, . . . ,RNcand be random variables generated by probability mass function PR.
for t = 1, . . . ,max{R1,R2, . . . ,RNcand} do

θ (t+1) = arg minθ∈Θ

〈
1

mt
∑

mt
i=1 ∇l((xt,i,yt,i);θ (t)),θ

〉
+λP(θ)+ 1

ηt
V (θ ,θ (t)).

Post-optimization phase:
θ (Rs) = arg mins=1,...,Ncand

1
ηRs
∥θ (Rs)−θ(R+

s )∥,

where θ(R+
s ) = arg minθ∈Θ

〈
1

Npost
∑

Npost
i=1 ∇l((xi,yi);θ (Rs)),θ

〉
+λP(θ)+ 1

ηRs
V (θ ,θ (Rs)).

Output: θ (Rs).

(ε,Λ)− solution, i.e., Prob
{

C(θ (R))≤ ε

}
≥ 1−Λ, where C is some convergence criterion,

for some ε > 0 and Λ ∈ (0,1). For more detailed descriptions and proofs, we refer to the
Sect.4 in [38].

4.3 Online Robust GLM with Sparsity

In this section, we show the sparse γ-GLM with the stochastic optimization approach on
three specific examples; linear regression, logistic regression and Poisson regression with L1

regularization. In what follows, we refer to the sparse γ-GLM with the stochastic optimization
approach as the online sparse γ-GLM.
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In order to apply the RSPG to our methods (4.1), we prepare the monotone transformation
of the γ-cross entropy for regression in (4.1) as follows

arg min
θ∈Θ

Eg(x,y)

[
− f (y|x;θ)γ

(
∫

f (y|x;θ)1+γdy)
γ

1+γ

]
+λP(θ), (4.8)

and we suppose that Θ is Rn or closed ball with sufficiently large radius. Then, we can apply
the RSPG to (4.8) and by virtue of (4.7), the update formula takes the form

θ
(t+1) = arg min

θ∈Θ

〈
− 1

mt

mt

∑
i=1

∇
f (yt,i|xt,i;θ (t))γ(∫

f (y|xt,i;θ (t))1+γdy
) γ

1+γ

,θ

〉
+λP(θ)+

1
ηt

V (θ ,θ (t)).

(4.9)

More specifically, we suppose that V (θ ,θ (t)) = 1
2 ||θ −θ (t)||22 because the update formula

can be obtained in closed form for some important sparse regularization terms, e.g., L1

regularization, elasticnet. We illustrate the update algorithms based on Algorithm 2 for three
specific examples. The update algorithms based on Algorithm 3 are obtained in a similar
manner.

In order to implement our methods, we need to determine some tuning parameters, e.g.,
the step size ηt , mini-batch size mt . In Sect. 4.4, we discuss how to determine some tuning
parameters in detail.

4.3.1 Online Sparse γ-Linear Regression

Let f (y|x;θ) be the conditional density with θ = (β0,β
T ,σ2)T , given by

f (y|x;θ) = φ(y;β0 + xT
β ,σ2),

where φ(y; µ,σ2) is the normal density with mean parameter µ and variance parameter σ2.
Suppose that P(θ) is the L1 regularization ||β ||1. Then, by virtue of (4.9), we can obtain the
update formula given by(

β
(t+1)
0 ,β (t+1),σ2(t+1)

)
= arg min

β0,β ,σ2
ξ1(β

(t)
0 )β0 + ⟨ξ2(β

(t)),β ⟩+ξ3(σ
2(t))σ2

+λ∥β∥1 +
1

2ηt
∥β0−β

(t)
0 ∥

2
2 +

1
2ηt
∥β −β

(t)∥2
2 +

1
2ηt
∥σ2−σ

2(t)∥2
2, (4.10)
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where

ξ1(β
(t)
0 ) =− 1

mt

mt

∑
i=1

[
γ(yt,i−β

(t)
0 − xt,i

T β (t))

σ2(t)

(
1+ γ

2πσ2(t)

) γ

2(1+γ)

exp

{
−

γ(yt,i−β
(t)
0 − xt,i

T β (t))2

2σ2(t)

}]
,

ξ2(β
(t)) =− 1

mt

mt

∑
i=1

[
γ(yt,i−β

(t)
0 − xt,i

T β (t))

σ2(t)

(
1+ γ

2πσ2(t)

) γ

2(1+γ)

exp

{
−

γ(yt,i−β
(t)
0 − xt,i

T β (t))2

2σ2(t)

}
xt,i

]
,

ξ3(σ
2(t)) =

1
mt

mt

∑
i=1

[
γ

2

(
1+ γ

2πσ2(t)

) γ

2(1+γ)

{
1

(1+ γ)σ2(t)
−

(yt,i−β
(t)
0 − xt,i

T β (t))2

σ4(t)

}

exp

{
−

γ(yt,i−β
(t)
0 − xt,i

T β (t))2

2σ2(t)

}]
.

Consequently, we can obtain the update algorithm, as shown in Algorithm 4.

Algorithm 4 Online sparse γ-linear regression

Input: The initial points β
(1)
0 , β (1), σ2(1), the step size ηt , the mini-batch size mt , the

iteration limit T and the probability mass function PR supported on {1, . . . ,T}.
Let R be a random variable generated by probability mass function PR.
for t = 1, . . . ,R do

β
(t+1)
0 = β

(t)
0 −ηtξ1(β

(t)
0 ).

β
(t+1)
j = S(β (t)

j −ηtξ2 j(β
(t)),ηtλ ) ( j = 1, . . . , p).

σ2(t+1)
= σ2(t)−ηtξ3(σ

2(t)).

Output: β
(R)
0 , β (R), σ2(R).

Here, we briefly show the robustness of online sparse γ-linear regression. For simplicity,
we consider the intercept parameter β0. Suppose that the (xt,k,yt,k) is an outlier at t-th time.
The conditional probability density f (yt,k|xt,k;θ (t)) can be expected to be sufficiently small.
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We see from f (yt,k|xt,k;θ (t))≈ 0 and (4.10) that

β
(t+1)
0

= arg min
β0

− 1
mt

∑
1≤i̸=k≤mt

[
γ(yt,i−β

(t)
0 − xt,i

T β (t))

σ2(t)

(
1+ γ

2πσ2(t)

) γ

2(1+γ)

exp

{
−

γ(yt,i−β
(t)
0 − xt,i

T β (t))2

2σ2(t)

}]
×β0

− 1
mt

γ(yt,k−β
(t)
0 − xt,k

T β (t))

σ2(t)

(
1+ γ

2πσ2(t)

) γ

2(1+γ)

exp

{
−

γ(yt,k−β
(t)
0 − xt,k

T β (t))2

2σ2(t)

}
×β0

+
1

2ηt
∥β0−β

(t)
0 ∥

2
2

= arg min
β0

− 1
mt

∑
1≤i̸=k≤mt

[
γ(yt,i−β

(t)
0 − xt,i

T β (t))

σ2(t)

(
1+ γ

2πσ2(t)

) γ

2(1+γ)

exp

{
−

γ(yt,i−β
(t)
0 − xt,i

T β (t))2

2σ2(t)

}]
×β0

− 1
mt

γ(1+ γ)
γ

2(1+γ) (yt,k−β
(t)
0 − xt,k

T β (t))

σ2(t)

(
2πσ

2(t)
) γ2

2(1+γ)
f (yt,k|xt,k;θ

(t))γ

≈0

×β0

+
1

2ηt
∥β0−β

(t)
0 ∥

2
2.

Therefore, the effect of an outlier is naturally ignored in (4.10). Similarly, we can also see
the robustness for parameters β and σ2.

4.3.2 Online Sparse γ-Logistic Regression

Let f (y|x;θ) be the conditional density with θ = (β0,β
T )T , given by

f (y|x;β0,β ) = F(x̃T
θ)y(1−F(x̃T

θ))(1−y),
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where x̃ = (1,xT )T and F(u) = 1
1+exp(−u) . Then, by virtue of (4.9), we can obtain the update

formula given by(
β
(t+1)
0 ,β (t+1)

)
= arg min

β0,β

ν1(β
(t)
0 )β0 + ⟨ν2(β

(t)),β ⟩+λ ||β ||1 +
1

2ηt
∥β0−β

(t)
0 ∥

2
2 +

1
2ηt
∥β −β

(t)∥2
2,

(4.11)

where

ν1(β
(t)
0 ) =− 1

mt

mt

∑
i=1

γ exp(γyt,ix̃T
t,iθ

(t))

{
yt,i−

exp((1+γ)x̃T
t,iθ

(t))

1+exp((1+γ)x̃T
t,iθ

(t))

}
{

1+ exp((1+ γ)x̃T
t,iθ

(t))
} γ

1+γ

 ,

ν2(β
(t)) =− 1

mt

mt

∑
i=1

γ exp(γyt,ix̃T
t,iθ

(t))

{
yt,i−

exp((1+γ)x̃T
t,iθ

(t))

1+exp((1+γ)x̃T
t,iθ

(t))

}
{

1+ exp((1+ γ)x̃T
t,iθ

(t))
} γ

1+γ

xt,i

 .
Consequently, we can obtain the update algorithm as shown in Algorithm 5. In a similar way

Algorithm 5 Online sparse γ-logistic regression

Input: The initial points β
(1)
0 , β (1), the step size ηt , the mini-batch size mt , the iteration

limit T and the probability mass function PR supported on {1, . . . ,T}.
Let R be a random variable generated by probability mass function PR.
for t = 1, . . . ,R do

β
(t+1)
0 = β

(t)
0 −ηtν1(β

(t)
0 ).

β
(t+1)
j = S(β (t)

j −ηtν2 j(β
(t)),ηtλ ) ( j = 1, . . . , p).

Output: β
(R)
0 , β (R).

to online sparse γ-linear regression, we can also see the robustness for parameters β0 and β

in online sparse γ-logistic regression (4.11).

4.3.3 Online Sparse γ-Poisson Regression

Let f (y|x;θ) be the conditional density with θ = (β0,β
T )T , given by

f (y|x;θ) =
exp(−µx(θ))

y!
µx(θ)

y,



4.3 Online Robust GLM with Sparsity 52

where µx(θ) = µx(β0,β ) = exp(β0 + xT β ). Then, by virtue of (4.9), we can obtain the
update formula given by(

β
(t+1)
0 ,β (t+1)

)
= arg min

β0,β

ζ1(β
(t)
0 )β0 + ⟨ζ2(β

(t)),β ⟩+λ ||β ||1 +
1

2ηt
∥β0−β

(t)
0 ∥

2
2 +

1
2ηt
∥β −β

(t)∥2
2,

(4.12)

where

ζ1(β
(t)
0 ) =

1
mt

mt

∑
i=1

γ f (yt,i|xt,i;θ (t))γ

{
∑

∞
y=0(y− yt,i) f (y|xt,i;θ (t))1+γ

}
{

∑
∞
y=0 f (y|xt,i;θ (t))1+γ

} 1+2γ

1+γ

 ,

ζ2(β
(t)) =

1
mt

mt

∑
i=1

γ f (yt,i|xt,i;θ (t))γ

{
∑

∞
y=0(y− yt,i) f (y|xt,i;θ (t))1+γ

}
{

∑
∞
y=0 f (y|xt,i;θ (t))1+γ

} 1+2γ

1+γ

xt,i

 .
In (4.12), two types hypergeometric series exist. Here, we prove a convergence of

∑
∞
y=0 f (y|xt,i;θ (t))1+γ and ∑

∞
y=0(y− yt,i) f (y|xt,i;θ (t))1+γ . First, let us consider

∑
∞
y=0 f (y|xt,i;θ (t))1+γ and we denote n-th term that Sn = f (n|xt,i;θ (t))1+γ . Then, we use the

dalembert ratio test for Sn:

lim
n→∞

∣∣∣∣Sn+1

Sn

∣∣∣∣
= lim

n→∞

∣∣∣∣∣ f (n+1|xt,i;θ (t))1+γ

f (n|xt,i;θ (t))1+γ

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣∣∣
exp(−µxt,i(β

(t)
0 ,β (t)))

n+1! µxt,i(β
(t)
0 ,β (t))n+1

exp(−µxt,i(β
(t)
0 ,β (t)))

n! µxt,i(β
(t)
0 ,β (t))n

∣∣∣∣∣∣∣
1+γ

= lim
n→∞

∣∣∣∣∣µxt,i(β
(t)
0 ,β (t))

n+1

∣∣∣∣∣
1+γ

If the term µxt,i(β
(t)
0 ,β (t)) is bounded,

= 0.

Therefore, ∑
∞
y=0 f (y|xt,i;θ (t))1+γ converges.
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Next, let us consider ∑
∞
y=0(y− yt,i) f (y|xt,i;θ (t))1+γ and we denote n-th term that S

′
n =

(n− yt,i) f (n|xt,i;θ (t))1+γ . Then, we use the dalembert ratio test for S
′
n:

lim
n→∞

∣∣∣∣∣S
′
n+1

S′n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(1+ 1
n −

yt,i
n ) f (n+1|xt,i;θ (t))1+γ

(1− yt,i
n ) f (n|xt,i;θ (t))1+γ

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(1+ 1
n −

yt,i
n )

(1− yt,i
n )

∣∣∣∣∣
∣∣∣∣∣ f (n+1|xt,i;θ (t))1+γ

f (n|xt,i;θ (t))1+γ

∣∣∣∣∣
= 0.

Therefore, ∑
∞
y=0(y− yt,i) f (y|xt,i;θ (t))1+γ converges.

Consequently, we can obtain the update algorithm as shown in Algorithm 6. In a similar

Algorithm 6 Online sparse γ-Poisson regression

Input: The initial points β
(1)
0 , β (1), the step size ηt , the mini-batch size mt , the iteration

limit T and the probability mass function PR supported on {1, . . . ,T}.
Let R be a random variable generated by probability mass function PR.
for t = 1, . . . ,R do

β
(t+1)
0 = β

(t)
0 −ηtζ1(β

(t)
0 ).

β
(t+1)
j = S(β (t)

j −ηtζ2 j(β
(t)),ηtλ ) ( j = 1, . . . , p).

Output: β
(R)
0 , β (R).

way to online sparse γ-linear regression, we can also see the robustness for parameters β0

and β in online sparse γ-Poisson regression (4.12). Moreover, this update algorithm requires
at most twice sample size 2n = 2×∑

T
t=1 mt times of an approximate calculation for the

hypergeometric series in Algorithm 6. Therefore, we can achieve a significant reduction in
computational complexity.

4.4 Convergence Property of Online Sparse γ-GLM

In this section, we show the global convergence property of the RSPG established by [38].
Moreover, we extend it to the classical first-order necessary condition, i.e., at a local minimum,
the directional derivative, if it exists, is non-negative for any direction (see, e.g., [11]).

First, we show the global convergence property of the RSPG. In order to apply to online
sparse γ-GLM, we slightly modify some notations. We consider the following optimization
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problem (4.5) again:

Ψ
∗ := min

θ∈Θ
E(x,y) [l((x,y);θ)]+λP(θ)

:=Ψ(θ)

,

where E(x,y) [l((x,y);θ)] is continuously differentiable and possibly non-convex. The update
formula (4.7) of the RSPG is as follows:

θ
(t+1) = arg min

θ∈Θ

〈
1

mt

mt

∑
i=1

∇l((xt,i,yt,i);θ
(t)),θ

〉
+λP(θ)+

1
ηt

V (θ ,θ (t)),

where

V (a,b) = w(a)−w(b)−⟨∇w(b),a−b⟩,

and w is continuously differentiable and α-strongly convex function satisfying ⟨a−b,∇w(a)−
∇w(b)⟩ ≥ α∥a−b∥2 for a,b ∈Θ. We make the following assumptions.

Assumption 1 ∇E(x,y) [l((x,y);θ)] is L-Lipschitz continuous for some L > 0, i.e.,

∥∇E(x,y) [l((x,y);θ1)]−∇E(x,y) [l((x,y);θ2)]∥< L∥θ1−θ2∥, for any θ1,θ2 ∈Θ. (4.13)

Assumption 2 For any t ≥ 1,

E(xt ,yt)

[
∇l((xt ,yt);θ

(t))
]
= ∇E(xt ,yt)

[
l((xt ,yt);θ

(t))
]
, (4.14)

E(xt ,yt)

[∥∥∥∇l((xt ,yt);θ
(t))−∇E(xt ,yt)

[
l((xt ,yt);θ

(t))
]∥∥∥2
]
≤ τ

2, (4.15)

where τ > 0 is a constant.
Let us define

PX ,R =
1

ηR

(
θ
(R)−θ

+
)
,

P̃X ,R =
1

ηR

(
θ
(R)− θ̃

+
)
,
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where

θ
+ = arg min

θ∈Θ

〈
∇E(x,y)

[
l((x,y);θ

(R))
]
,θ
〉
+λP(θ)+

1
ηR

V (θ ,θ (R)), (4.16)

θ̃
+ = arg min

θ∈Θ

〈
1

mR

mR

∑
i=1

∇l((xR,i,yR,i);θ
(R)),θ

〉
+λP(θ)+

1
ηR

V (θ ,θ (R)).

Then, the following global convergence property was obtained.

Theorem 4.4.1. [Global Convergence Property in [38]]
Suppose that the step sizes {ηt} are chosen such that 0 < ηt ≤ α

L with ηt <
α

L for at least
one t, and the probability mass function PR is chosen such that for any t = 1, . . . ,T ,

PR(t) := Prob{R = t}= αηt−Lη2
t

∑
T
t=1
(
αηt−Lη2

t
) . (4.17)

Then, we have

E
[
||P̃X ,R||2

]
≤

LD2
Ψ
+
(
τ2/α

)
∑

T
t=1 (ηt/mt)

∑
T
t=1
(
αηt−Lη2

t
) ,

where the expectation was taken with respect to R and past samples (xt,i,yt,i) (t = 1, . . . ,T ; i=

1, . . . ,mt) and DΨ =
[

Ψ(θ (1))−Ψ∗

L

] 1
2
.

Proof. See [38], Theorem 2.

In particular, [38] investigated the constant step size and mini-batch size policy as follows.

Corollary 4.4.1. [Global Convergence Property with constant step size and mini-batch
size in [38]]
Suppose that the step sizes and mini-batch sizes are ηt =

α

2L and mt = m (≥ 1) for all
t = 1, . . . ,T , and the probability mass function PR is chosen as (4.17). Then, we have

E
[
∥P̃X ,R∥2]≤ 4L2D2

Ψ

α2T
+

2τ2

α2m
and E

[
∥PX ,R∥2]≤ 8L2D2

Ψ

α2T
+

6τ2

α2m
.

Moreover, the appropriate choice of mini-batch size m is given by

m =

⌈
min

{
max

{
1,

τ
√

6N
4LD̃

}
,N

}⌉
,
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where D̃ > 0 and N (= m×T ) is the number of total samples. Then, with the above setting,
we have the following result

α2

L
E
[
∥PX ,R∥2]≤ 16LD2

Ψ

N
+

4
√

6τ√
N

(
D2

Ψ

D̃
+ D̃max

{
1,

√
6τ

4LD̃
√

N

})
. (4.18)

Furthermore, when N is relatively large, the optimal choice of D̃ would be DΨ and (4.18)
reduces to

α2

L
E
[
∥PX ,R∥2]≤ 16LD2

Ψ

N
+

8
√

6DΨτ√
N

.

Proof. See [38], Corollary 4.

Finally, we extend (4.18) to the classical first-order necessary condition as follows

Theorem 4.4.2. [The Modified Global Convergence Property]
Under the same assumptions in Theorem 4.4.1, we can expect PX ,R ≈ 0 with high probability
from (4.18) and Markov inequality. Then, for any direction δ and θ (R) ∈ relint(Θ), we have

Ψ
′
(θ (R);δ ) = lim

k↓0

Ψ(θ (R)+ kδ )−Ψ(θ (R))

k
≥ 0 with high probability. (4.19)

The proof is in Appendix C. Under the above assumptions and results, online sparse
γ-GLM has the global convergence property. Therefore, we adopted the following parameter
setting in online sparse γ-GLM:

step size: ηt =
1

2L
,

mini-batch size: mt =

⌈
min

{
max

{
1,

τ
√

6N
4LD̃

}
,N

}⌉
.

More specifically, when the (approximate) minimum value of the objective function Ψ∗

is known, e.g., the objective function is non-negative, we should use DΨ instead of D̃. In
numerical experiment, we used the DΨ because we can obtain Ψ∗ in advance. In real data
analysis, we cannot obtain Ψ∗ in advance. Then, we used the some values of D̃, i.e., the some
values of mini-batch size mt .
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4.5 Numerical Experiment

In this section, we present the numerical results of online sparse γ-linear regression. We
compared online sparse γ-linear regression based on the RSPG with online sparse γ-linear
regression based on the SGD, which does not guarantee convergence for non-convex case.
The RSPG has two variants, which are shown in Algorithms 2 and 3. In this experiment, we
adopted the 2-RSPG for the numerical stability. In what follows, we refer to the 2-RSPG as
the RSPG. As a comparative method, we implemented the SGD with the same parameter
setting described in Sect. 4.2.1. All results were obtained in R version 3.3.0 with Intel Core
i7-4790K machine.

4.5.1 Simulation Model

We used the simulation model given by

y = β0 +β1x1 +β2x2 + · · ·+βpxp + e, e∼ N(0,0.52).

The sample size and the number of explanatory variables were set to be N = 10000,30000
and p = 1000,2000, respectively. The true coefficients were given by

β1 = 1, β2 = 2, β4 = 4, β7 = 7, β11 = 11,

β j = 0 for j ∈ {0, . . . , p}\{1,2,4,7,11}.

We arranged a broad range of regression coefficients to observe sparsity for various degrees of
regression coefficients. The explanatory variables were generated from a normal distribution
N(0,Σ) with Σ = (0.2|i− j|)1≤i, j≤p. We generated 30 random samples.

Outliers were incorporated into simulations. We set the outlier ratio (ε = 0.2) and the
outlier pattern that the outliers were generated around the middle part of the explanatory
variable, where the explanatory variables were generated from N(0,0.52) and the error terms
were generated from N(20,0.52).
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4.5.2 Performance Measure

The empirical regularized risk and the (approximated) expected regularized risk were used to
verify the fitness of regression:

EmpRisk =
1
N

N

∑
i=1
− f (yi|xi; θ̂)γ(∫

f (y|xi; θ̂)1+γdy
) γ

1+γ

+λ∥β̂∥1,

ExpRisk = Eg(x,y)

− f (y|x; θ̂)γ(∫
f (y|x; θ̂)1+γdy

) γ

1+γ

+λ∥β̂∥1

≈ 1
Ntest

Ntest

∑
i=1
− f (y∗i |x∗i ; θ̂)γ(∫

f (y|x∗i ; θ̂)1+γdy
) γ

1+γ

+λ∥β̂∥1,

where f (y|x; θ̂) = φ(y; β̂0 + xT β̂ , σ̂2) and (x∗i ,y
∗
i ) (i = 1, . . . ,Ntest) is test samples generated

from the simulation model with outlier scheme. In this experiment, we used Ntest = 70000.

4.5.3 Initial Point and Tuning Parameter

In our method, we need an initial point and some tuning parameters to obtain the estimate.
Therefore, we used Ninit = 200 samples which were used for estimating an initial point
and other parameters L in (4.13) and τ2 in (4.15) to calculate in advance. We suggest the
following ways to prepare an initial point. The estimate of other conventional robust and
sparse regression methods would give a good initial point. For another choice, the estimate
of the RANSAC (random sample consensus) algorithm would also give a good initial point.
In this experiment, we added the noise to the estimate of the RANSAC and used it as an
initial point.

For estimating L and τ2, we followed the way to in Sect. 6 of [38]. Moreover, we used the
following value of tuning parameters in this experiment. The parameter γ in the γ-divergence
was set to 0.1. The parameter λ of L1 regularization was set to 10−1,10−2,10−3.

The RSPG needed the number of candidates Ncand and post-samples Npost for post-
optimization as described in Algorithm 3. Then, we used Ncand = 5 and Npost = ⌈N/10⌉.

4.5.4 Result

Tables 4.1-4.3 show the EmpRisk, ExpRisk and computation time in the case λ = 10−3,10−2,
and 10−1. Except for the computation time, our method outperformed comparative meth-
ods with several sizes of sample and dimension. We verify that the SGD, which are not
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theoretically guaranteed to converge for non-convex loss, cannot reach the stationary point
numerically. For the computation time, our method was comparable to the SGD.

Table 4.1 EmpRisk, ExpRisk and computation time for λ = 10−3

N = 10000, p = 1000 N = 30000, p = 1000
Methods EmpRisk ExpRisk Time EmpRisk ExpRisk Time
RSPG -0.629 -0.628 75.2 -0.692 -0.691 78.3

SGD with 1 mini-batch -0.162 -0.155 95.9 -0.365 -0.362 148
SGD with 10 mini-batch 1.1×10−2 1.45×10−2 73.2 -5.71×10−2 -5.6×10−2 73.7
SGD with 30 mini-batch 4.79×10−2 5.02×10−2 71.4 -5.71×10−2 -5.6×10−2 73.7
SGD with 50 mini-batch 6.03×10−2 6.21×10−2 71.1 -3.98×10−2 -3.88×10−2 238

N = 10000, p = 2000 N = 30000, p = 2000
Methods EmpRisk ExpRisk Time EmpRisk ExpRisk Time
RSPG -0.646 -0.646 117 -0.696 -0.696 125

SGD with 1 mini-batch 0.187 0.194 145 -3.89×10−2 -3.56×10−2 251
SGD with 10 mini-batch 0.428 0.431 99.2 0.357 0.359 112
SGD with 30 mini-batch 0.479 0.481 95.7 0.442 0.443 101
SGD with 50 mini-batch 0.496 0.499 166 0.469 0.47 337

Table 4.2 EmpRisk, ExpRisk and computation time for λ = 10−2

N = 10000, p = 1000 N = 30000, p = 1000
Methods EmpRisk ExpRisk Time EmpRisk ExpRisk Time
RSPG -0.633 -0.632 75.1 -0.65 -0.649 78.4

SGD with 1 mini-batch -0.322 -0.322 96.1 -0.488 -0.487 148
SGD with 10 mini-batch 1.36 1.37 73.4 0.164 0.165 79.7
SGD with 30 mini-batch 2.61 2.61 71.6 1.34 1.34 73.9
SGD with 50 mini-batch 3.08 3.08 409 1.95 1.95 576

N = 10000, p = 2000 N = 30000, p = 2000
Methods EmpRisk ExpRisk Time EmpRisk ExpRisk Time
RSPG -0.647 -0.646 117 -0.66 -0.66 125

SGD with 1 mini-batch -0.131 -0.13 144 -0.436 -0.435 250
SGD with 10 mini-batch 3.23 3.23 99.1 0.875 0.875 112
SGD with 30 mini-batch 5.63 5.63 95.6 3.19 3.19 100
SGD with 50 mini-batch 6.52 6.53 503 4.38 4.38 675
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Table 4.3 EmpRisk, ExpRisk and computation time for λ = 10−1

N = 10000, p = 1000 N = 30000, p = 1000
Methods EmpRisk ExpRisk Time EmpRisk ExpRisk Time
RSPG -0.633 -0.632 74.6 -0.64 -0.639 78.1

SGD with 1 mini-batch -0.411 -0.411 95.6 -0.483 -0.482 148
SGD with 10 mini-batch 0.483 0.483 72.9 -4.56×10−2 -4.5×10−2 79.6
SGD with 30 mini-batch 1.53 1.53 71.1 0.563 0.563 73.7
SGD with 50 mini-batch 2.39 2.39 70.8 0.963 0.963 238

N = 10000, p = 2000 N = 30000, p = 2000
Methods EmpRisk ExpRisk Time EmpRisk ExpRisk Time
RSPG -0.654 -0.653 116 -0.66 -0.66 130

SGD with 1 mini-batch -0.462 -0.461 144 -0.559 -0.558 262
SGD with 10 mini-batch 0.671 0.672 98.9 -9.71×10−2 -9.62×10−2 116
SGD with 30 mini-batch 2.43 2.44 95.4 0.697 0.697 104
SGD with 50 mini-batch 4.02 4.02 165 1.32 1.32 340

4.6 Application to Real Data

We applied our method ‘online sparse γ-Poisson’ to real data ‘Online News Popularity’
(Fernandes, Vinagre, and Cortez [30]), which is available at https://archive.ics.uci.edu/ml/
datasets/online+news+popularity. We compared our method with sparse Poisson regression
which was implemented by R-package ‘glmnet’ with default parameter setting.

Online News Popularity dataset contains 39644 samples with 58 dimensional explanatory
variables. We divided the dataset to 20000 training and 19644 test samples. In Online News
Popularity dataset, the exposure time of each sample is different. Then, we used the log
transformed feature value ‘timedelta’ as the offset term. Moreover, 2000 training samples
were randomly selected. Outliers were incorporated into training samples as follows:

youtlier,i = yi +100× ti (i = 1, . . . ,2000),

where i is the index of the randomly selected sample and yi is the response variable of the
i-th randomly selected sample and ti is the offset term of the i-th randomly selected sample.

As a measure of predictive performance, the root trimmed mean squared prediction error
(RTMSPE) was computed for the test samples given by

RTMSPE =

√√√√1
h

h

∑
j=1

e2
[ j],

https://archive.ics.uci.edu/ml/datasets/online+news+popularity
https://archive.ics.uci.edu/ml/datasets/online+news+popularity
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where e2
j =
(

y j−
⌊

exp
(

log(t j)+ β̂0 + xT
j β̂

)⌋)2
, e2

[1] ≤ ·· · ≤ e2
[19644] are the order statistics

of e2
1, · · · ,e2

19644 and h = ⌊(19644+1)(1−α)⌋ with α = 0.05, · · · ,0.3.
In our method, we need an initial point and some tuning parameters to obtain the estimate.

Therefore, we used Ninit = 200 samples which were used for estimating an initial point and
other parameters L in (4.13) and τ2 in (4.15) to calculate in advance. In this experiment, we
used the estimate of the RANSAC. For estimating L, we followed the way to in [38], page
298-299. Moreover, we used the following value of tuning parameters in this experiment. The
parameter γ in the γ-divergence was set to 0.1,0.5,1.0. The parameter λ of L1 regularization
was selected by the robust cross-validation proposed by Kawashima and Fujisawa [57]. The
robust cross-validation was given by:

RoCV(λ ) =−1
n

n

∑
i=1

f (yi|xi; θ̂ [−i])γ0(∫
f (y|xi; θ̂ [−i])1+γ0dy

) γ0
1+γ0

,

where θ̂ [−i] is the estimated parameter deleting the i-th observation and γ0 is an appropriate
tuning parameter. In this experiment, γ0 was set to 1.0. The mini-batch size was set to
100,200,500. The RSPG needed the number of candidates and post-samples Ncand and Npost

for post-optimization as described in Algorithm 3. We used Ncand = 5 and Npost = ⌈N/10⌉.
We showed the best result of our method and comparative method in Table 4.4. All results
were obtained in R version 3.3.0 with Intel Core i7-4790K machine. Table 4.4 shows that
our method performed better than sparse Poisson regression.

Table 4.4 Root trimmed mean squared prediction error in test samples

trimming fraction 100α%
Methods 5% 10% 15% 20% 25% 30%

Our method 2419.3 1760.2 1423.7 1215.7 1064 948.9
Sparse Poisson Regression 2457.2 2118.1 1902.5 1722.9 1562.5 1414.1



Chapter 5

Robust Regression via γ-divergence
against Heterogeneous Contamination

5.1 Revisiting the Estimation of the γ-Regression

The γ-divergence for the i.i.d. problem was first proposed by Fujisawa and Eguchi [35]. It
measures the difference between two probability density functions. As stated earlier, the
γ-divergence for regression was first proposed by Fujisawa and Eguchi [35] and we refer to
it as the type I. Then, we proposed the other γ-divergence for regression and refer to it as
the type II. In this section, we briefly review both types of γ-divergence for regression and
present the corresponding parameter estimation.

Theoretical properties of the γ-divergence for the i.i.d. problemwere deeply investigated
by Fujisawa and Eguchi [35]. Theoretical properties of the γ-divergence for regression
were studied by Fujisawa and Eguchi [35], Kanamori and Fujisawa [54], but not well
under heterogeneous contamination, which is special in the regression problem and does
not appear in the i.i.d. problem. Hung, Jou, and Huang [51] pointed out that a logistic
regression model with mislabeled data can be regarded as a logistic regression model with
heterogeneous contamination and then applied the type I to a usual logistic regression model,
which enables us to estimate the parameter of the logistic regression model without modelling
mislabeled scheme even if mislabeled data exist. They also investigated theoretical properties
on robustness, but they assumed that γ is sufficiently large. In Sect. 5.2, we will see that the
type I is superior to type II under heterogeneous contamination in the sense of the strong
robustness without assuming that γ is sufficiently large. Here we mention that the density
power divergence [4] is another candidate of divergence which gives robustness, but it does
not have the strong robustness [35, 51].
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5.1.1 Estimation for γ-Regression

Let f (y|x;θ) be a conditional probability density function of y given x with parameter θ .
Both types of γ-cross entropy for regression are given by

dγ,1(g(y|x), f (y|x;θ);g(x)) =−1
γ

logEg(x,y)

[
f (y|x;θ)γ

(
∫

f (y|x;θ)1+γdy)
γ

1+γ

]
,

dγ,2(g(y|x), f (y|x;θ);g(x)) =−1
γ

logEg(x,y) [ f (y|x;θ)γ ]+
1

1+ γ
logEg(x)

[
f (y|x;θ)1+γdy

]
.

The target parameter can be defined as the minimizer by

θ
∗
γ, j = arg min

θ

dγ, j(g(y|x), f (y|x;θ);g(x)) for j = 1,2.

Suppose that f (y|x;θ ∗) is the target conditional probability density function. The latent bias
is expressed as θ ∗

γ, j−θ ∗. This is zero when the underlying model belongs to a parametric
model, in other words, g(y|x) = f (y|x;θ ∗), but is not always zero when the underlying model
is contaminated by outliers. This issue will be discussed in Sect. 5.2.

5.1.2 Parameter Estimation for Location-Scale Family

Here we show that both types of γ-divergence give the same parameter estimation when
the parametric conditional probability density function f (y|x;θ) belongs to a location-scale
family in which the scale does not depend on the explanatory variables, given by

f (y|x;θ) =
1
σ

s
(

y−q(x;ζ )

σ

)
, (5.1)

where s(y) is a probability density function, σ is a scale parameter and q(x;ζ ) is a location
function with a regression parameter ζ , e.g., q(x;ζ ) = xT ζ . Then, we can obtain

∫
f (y|x;θ)1+γdy =

∫ 1
σ1+γ

s
(

y−q(x;ζ )

σ

)1+γ

dy

= σ
−γ

∫
s(z)1+γdz. (5.2)
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This does not depend on the explanatory variables x. Using this property, we can show that
both types of γ-cross entropy are the same as follows:

dγ,1(g(y|x), f (y|x;θ);g(x))

=−1
γ

log
∫ {∫

g(y|x) f (y|x;θ)γdy
/(∫

f (y|x;θ)1+γdy
) γ

1+γ

}
g(x)dx

=−1
γ

log

{∫ ∫
g(x,y) f (y|x;θ)γdxdy

/(∫
f (y|x;θ)1+γdy

) γ

1+γ

}
=−1

γ
log
∫ ∫

g(x,y) f (y|x;θ)γdxdy+
1

1+ γ
log
∫

f (y|x;θ)1+γdy

=−1
γ

log
∫ ∫

g(x,y) f (y|x;θ)γdxdy+
1

1+ γ
log
∫

f (y|x;θ)1+γdy
∫

g(x)dx

= dγ,2(g(y|x), f (y|x;θ);g(x)).

The second equality holds from (5.2). As a result, both types of γ-divergence give the same
parameter estimation, because the estimator is defined by the empirical estimation of the
cross entropy. However, it should be noted that both types of γ-divergence are not the same,
because dγ,1(g(y|x),g(y|x);g(x)) ̸= dγ,2(g(y|x),g(y|x);g(x)).

5.2 Robust Properties

In this section, we show a distinct difference between two types of γ-divergence.

5.2.1 Contamination Model and Basic Condition

Let δ (y|x) be the contamination conditional probability density function related to outliers.
Let ε(x) and ε denote the outlier ratios which depends on x and does not, respectively.
Suppose that the underlying conditional probability density functions under heterogeneous
and homogeneous contaminations are given by

g(y|x) = (1− ε(x)) f (y|x;θ
∗)+ ε(x)δ (y|x),

g(y|x) = (1− ε) f (y|x;θ
∗)+ εδ (y|x).

Let

ν f ,γ(x) =
{∫

δ (y|x) f (y|x)γdy
} 1

γ

, ν f ,γ =

{∫
ν f ,γ(x)γg(x)dx

} 1
γ

.
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Here we assume that

ν fθ∗ ,γ ≈ 0.

This is an extended assumption used for the i.i.d. problem[35] to the regression problem. This
assumption implies that ν fθ∗ ,γ(x)≈ 0 for any x (a.e.) and illustrates that the contamination
conditional probability density function δ (y|x) lies on the tail of the target conditional
probability density function f (y|x;θ ∗). For example, if δ (y|x) is the Dirac delta function at
the outlier y†(x) given x, then we have ν fθ∗ ,γ(x) = f (y†(x)|x;θ ∗)≈ 0, which is reasonable
because y†(x) is an outlier.

Here we also consider the condition ν fθ ,γ ≈ 0, which is used later. This will be true in
the neighbourhood of θ = θ ∗. In addition, even when θ is not close to θ ∗, if δ (y|x) lies on
the tail of f (y|x;θ), we can see ν fθ ,γ ≈ 0.

To make the discussion easier, we prepare the monotone transformation of both types of
γ-cross entropy for regression by

d̃γ,1(g(y|x), f (y|x;θ);g(x)) =−exp
{
−γdγ,1(g(y|x), f (y|x;θ);g(x))

}
=−

∫ ∫ f (y|x;θ)γ

(
∫

f (y|x;θ)1+γdy)
γ

1+γ

g(y|x)g(x)dxdy,

d̃γ,2(g(y|x), f (y|x;θ);g(x)) =−exp
{
−γdγ,2(g(y|x), f (y|x;θ);g(x))

}
=−

∫
(
∫

g(y|x) f (y|x;θ)γdy)g(x)dx

{
∫
(
∫

f (y|x;θ)1+γdy)g(x)dx}
γ

1+γ

.

5.2.2 Robustness of Type I

We see

d̃γ,1(g(y|x), f (y|x;θ);g(x))

=−
∫ ∫

g(y|x) f (y|x;θ)γdy

(
∫

f (y|x;θ)1+γdy)
γ

1+γ

g(x)dx

=−
∫ ∫
{(1− ε(x)) f (y|x;θ ∗)+ ε(x)δ (y|x)} f (y|x;θ)γdy

(
∫

f (y|x;θ)1+γdy)
γ

1+γ

g(x)dx

=−
∫ ∫

f (y|x;θ ∗) f (y|x;θ)γdy

(
∫

f (y|x;θ)1+γdy)
γ

1+γ

(1− ε(x))g(x)dx−
∫ ∫

δ (y|x;θ) f (y|x;θ)γdy

(
∫

f (y|x;θ)1+γdy)
γ

1+γ

ε(x)g(x)dx

=−d̃γ,1( f (y|x;θ
∗), f (y|x;θ)); g̃(x))−

∫
ν fθ ,γ(x)

γ

(
∫

f (y|x;θ)1+γdy)
γ

1+γ

ε(x)g(x)dx,
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where g̃(x) = (1− ε(x))g(x). From this relation, we can easily show the following theorem.

Theorem 5.2.1. Under the condition ν fθ ,γ ≈ 0 and
∫

f (y|x;θ)1+γdy > 0, we have

d̃γ,1(g(y|x), f (y|x;θ);g(x))≈ d̃γ,1( f (y|x;θ
∗), f (y|x;θ); g̃(x)).

Using this theorem, we can expect that the latent bias θ ∗
γ,1−θ ∗ is close to zero, because

arg min
θ

d̃γ,1(g(y|x), f (y|x;θ);g(x)) = arg min
θ

dγ,1(g(y|x), f (y|x;θ);g(x)) = θ
∗
γ,1

arg min
θ

d̃γ,1( f (y|x;θ
∗), f (y|x;θ); g̃(x)) = arg min

θ

dγ,1( f (y|x;θ
∗), f (y|x;θ); g̃(x)) = θ

∗.

The last equality holds even when g(x) is replaced by g̃(x) = (1− ε(x))g(x).
In addition, we can have the modified Pythagorean relation approximately.

Theorem 5.2.2. Under the condition ν fθ ,γ ≈ 0 and
∫

f (y|x;θ)1+γdy > 0, the modified
Pythagorean relation among g(y|x), f (y|x;θ ∗), f (y|x;θ) approximately holds:

Dγ,1(g(y|x), f (y|x;θ);g(x))≈ Dγ,1(g(y|x), f (y|x;θ
∗);g(x))+Dγ,1( f (y|x;θ

∗), f (y|x;θ); g̃(x)).

The modified Pythagorean relation implies that the minimizer of Dγ,1(g(y|x), f (y|x;θ);g(x))
is almost the same as the minimizer of Dγ,1( f (y|x;θ ∗), f (y|x;θ); g̃(x)), which is θ ∗. This
also implies the strong robustness.

In the theorems, we assume ν fθ ,γ ≈ 0 and
∫

f (y|x;θ)1+γdy > 0. The former condition
was already discussed in Sect. 5.2.1. Here we investigate the latter condition. When the
parametric conditional probability density function belongs to a location-scale family (5.1),
this condition will be expected to hold, because

∫
f (y|x;θ)1+γdy =

∫ 1
σ1+γ

s
(

y−q(x;ζ )

σ

)1+γ

dy =
1

σ γ

∫
s(z)1+γ dz.

We can also verify that this condition holds for a logistic regression model, a Poisson
regression model, and so on.

Finally we mention the homogeneous contamination. The modified Pythagorean relation
in Theorem 5.2.2 is changed to the usual Pythagorean relation, because we can easily
see Dγ,1( f (y|x;θ ∗), f (y|x;θ); g̃(x)) = Dγ,1( f (y|x;θ ∗), f (y|x;θ);g(x)) under homogeneous
contamination.
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5.2.3 Robustness of Type II

First, we illustrate that the strong robustness does not hold in general under heterogeneous
contamination, unlike for type I. We see

d̃γ,2(g(y|x), f (y|x;θ);g(x))

=−
∫
(
∫

g(y|x) f (y|x;θ)γdy)g(x)dx

{
∫
(
∫

f (y|x;θ)1+γdy)g(x)dx}
γ

1+γ

=−
∫
(
∫
(1− ε(x)) f (y|x;θ ∗) f (y|x;θ)γdy+

∫
ε(x)δ (y|x) f (y|x;θ)γdy)g(x)dx

{
∫
(
∫

f (y|x;θ)1+γdy)g(x)dx}
γ

1+γ

=−
∫ (∫

(1− ε(x)) f (y|x;θ ∗) f (y|x;θ)γdy+
∫

ε(x)ν fθ ,γ(x)
)

g(x)dx

{
∫
(
∫

f (y|x;θ)1+γdy)g(x)dx}
γ

1+γ

≈−
∫ ∫

f (y|x;θ ∗) f (y|x;θ)γdy(1− ε(x))g(x)dx

{
∫
(
∫

f (y|x;θ)1+γdy)g(x)dx}
γ

1+γ

.

The last approximation holds from ν fθ ,γ(x)≈ 0. This can not be expressed using
dγ( f (y|x;θ ∗), f (y|x;θ);h(x)) with an appropriate base measure h(x), unlike for type I, be-
cause the base measure of the numerator on the explanatory variables is different from that
of the denominator. As will be shown in numerical experiments, the type II presents a signifi-
cant bias under heterogeneous contamination. However, as already mentioned in Sect. 5.1.2,
when the parametric conditional probability density function belongs to a location-scale
family (5.1), the cross entropy for type II is the same as that for type I and then the type II
can have the strong robustness. In addition, under homogeneous contamination, we have
d̃γ,2(g(y|x), f (y|x;θ);g(x))≈ (1−ε)d̃γ,2( f (y|x;θ ∗), f (y|x;θ);g(x)) and then we expect that
the latent bias θ ∗

γ,2−θ ∗ is sufficiently small.

5.3 Numerical Experiment

In this section, using a simulation model, we compare the type I with the type II.
As shown in Sect. 5.2, the distinct difference occurs under heterogeneous contamination

when the parametric conditional probability density function f (y|x;θ) does not belong to
a location-scale family. Therefore, we used the logistic regression model as the simulation
model, given by

Pr(y = 1|x) = π(x;β ), Pr(y = 0|x) = 1−π(x;β ),
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where π(x;β ) = {1+ exp(−β0− x1β1−·· ·− xpβp)}−1. The sample size and the number of
explanatory variables were set to be n = 2000 and p = 5, respectively. The true coefficients
were given by

β0 = 0, β1 = 1, β2 =−1, β3 = 1, β4 =−1, β5 = 0.

The explanatory variables were generated from a normal distribution N(0,Σ) with Σ =

(0.2|i− j|)1≤i, j≤p. We generated 100 random samples.
Outliers were incorporated into simulations. We investigated four outlier ratios (ε =

0.1, 0.2, 0.3 and 0.4) and the following outlier pattern: The outliers were generated around
the edge part of the explanatory variables, where the explanatory variables were generated
from N(µµµout,0.5

2I) where µµµout = (20,0,20,0,0) and the response variable y is set to 0.
In order to verify the fitness of the regression coefficient, we used the mean squared error

(MSE) as the performance measure, given by

MSE =
1

p+1

p

∑
j=0

(β̂ j−β
∗
j )

2,

where β ∗j ’s are the true coefficients. The tuning parameter γ in the γ-divergence was set to
0.5 and 1.0.

Table 5.1 shows the MSE in the case ε = 0.1, 0.2, 0.3 and 0.4. The type I presented
smaller MSEs than the type II. The difference between two types was larger as the outlier
ratio ε was larger.
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Table 5.1 MSE under heterogeneous contamination

Methods γ = 0.5 γ = 1.0

ε = 0.1

Type I 0.00620 0.00712
Type II 0.00810 0.0276

ε = 0.2

Type I 0.0136 0.0149
Type II 0.0215 0.110

ε = 0.3

Type I 0.0262 0.0282
Type II 0.0472 0.282

ε = 0.4

Type I 0.0514 0.0547
Type II 0.0998 0.648



Chapter 6

Conclusion

This thesis mainly focuses on robust regression methods based on the γ-divergence and
incorporates some sparse regularization techniques into them and investigates theoretical
robust properties on γ-divergence.

In Chapter 3, we proposed the robust linear regression method with sparsity based on
the γ-divergence. We showed desirable robust properties under both homogeneous and
heterogeneous contamination. In particular, we presented the Pythagorean relation for the
regression case, although it was not shown in Kanamori and Fujisawa [54]. In most of
the robust and sparse regression methods, it is difficult to obtain the efficient estimation
algorithm, because the objective function is non-convex and non-differentiable. Nonetheless,
we succeeded to propose the efficient estimation algorithm, which has a monotone decreasing
property of the objective function by using the MM-algorithm. The numerical experiments
and real data analyses suggested that our method was superior to comparative robust and
sparse linear regression methods in terms of both accuracy and computational costs. However,
in numerical experiments, a few results of performance measure “TNR” were a little less than
the best results. Therefore, if more sparsity of coefficients is needed, other sparse penalties,
e.g., the Smoothly Clipped Absolute Deviations (SCAD) [28] and the Minimax Concave
Penalty (MCP) [100], can also be useful.

In Chapter 4, we proposed the online robust regression methods in GLM based on the
γ-divergence. We applied a stochastic optimization approach in order to reduce the computa-
tional complexity and overcome the computational problem on the hypergeometric series in
Poisson regression. We adopted the RSPG, which guaranteed the global convergence prop-
erty for non-convex stochastic optimization problem, as a stochastic optimization approach.
We proved that the global convergence property can be extended to the classical first-order
necessary condition. In this paper, linear/logistic/Poisson regression problems with L1 regu-
larization were illustrated in detail. As a result, not only Poisson case but also linear/logistic
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case can scale well for very large problems by virtue of the stochastic optimization approach.
To the best of our knowledge, there is no efficient method for the robust and sparse Poisson
regression, but we have succeeded to propose an efficient estimation procedure with online
strategy. The numerical experiments and real data analysis suggested that our methods had
good performances in terms of both accuracy and computational cost. However, there are
still some problems in Poisson regression problem, e.g., overdispersion [21], zero inflated
Poisson [62]. Therefore, it can be useful to extend the Poisson regression to the negative
binomial regression and the zero inflated Poisson regression for future work. Moreover, the
accelerated RSPG was proposed in [37], and then we can adopt it as a stochastic optimization
approach in order to achieve faster convergence than the RSPG.

In Chapter 5, we investigated both types of γ-divergence for regression in terms of the
parameters estimation and robust properties. We pointed out that the parameter estimation of
both types of γ-divergence is the same under the assumption that the parametric conditional
probability density function belongs to a location-scale family. Moreover, we elucidated a
distinct difference between both types of γ-divergence form the view point of the latent bias
and the Pythagorean relation. The numerical experiments were illustrated to verify the differ-
ence of the theoretical robust property between the type I and type II under heterogeneous
contamination.
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Appendix A

Proof of Theorem 2.1.1

Here, we show the proof in the case of type II for simplicity. We can prove Properties (i), (ii)
and (iii) even in the case of type I in a similar manner.

Proof of Theorem 2.1.1. For two non-negative functions r(x,y) and u(x,y) and probability
density function g(x), it follows from Hölder’s inequality that:

∫
r(x,y)u(x,y)g(x)dxdy≤

(∫
r(x,y)αg(x)dxdy

) 1
α
(∫

u(x,y)β g(x)dxdy
) 1

β

,

where α and β are positive constants and 1
α
+ 1

β
= 1. The equality holds if and only if

r(x,y)α = τu(x,y)β for a positive constant τ . Let r(x,y) = g(y|x), u(x,y) = f (y|x)γ , α =

1+ γ and β = 1+γ

γ
. Then, it holds that:

∫ (∫
g(y|x) f (y|x)γdy

)
dg(x)

≤
{∫ (∫

g(y|x)1+γdy
)

dg(x)
} 1

1+γ
{∫ (∫

f (y|x)1+γdy
)

dg(x)
} γ

1+γ

.

The equality holds if and only if g(y|x)1+γ = τ( f (y|x)γ)
1+γ

γ , i.e., g(y|x) = f (y|x) because
g(y|x) and f (y|x) are conditional probability density functions. Properties (i) and (ii) follow
from this inequality, the equality condition and the definition of Dγ(g(y|x), f (y|x);g(x)).
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Let us prove Property (iii). Suppose that γ is sufficiently small. Then, it holds that
f γ = 1+ γ log f +O(γ2). The γ-divergence for regression is expressed by:

Dγ,2(g(y|x), f (y|x);g(x))

=
1

γ(1+ γ)
log
∫ {∫

g(y|x)(1+γ logg(y|x)+O(γ2))dy
}

g(x)dx

− 1
γ

log
∫ {∫

g(y|x)(1+ γ log f (y|x)+O(γ2))dy
}

g(x)dx

+
1

1+γ
log
∫ {∫

f (y|x)(1+γ log f (y|x)+O(γ2))dy
}

g(x)dx

=
1

γ(1+γ)
log
{

1+γ

∫ (∫
g(y|x) logg(y|x)dy

)
g(x)dx+O(γ2)

}
− 1

γ
log
{

1+ γ

∫ (∫
g(y|x) log f (y|x)dy

)
g(x)dx+O(γ2)

}
1

1+ γ
log
{

1+ γ

∫ (∫
f (y|x) log f (y|x)dy

)
g(x)dx+O(γ2)

}
=

1
(1+ γ)

∫ (∫
g(y|x) logg(y|x)dy

)
g(x)dx

−
∫ (∫

g(y|x) log f (y|x)dy
)

g(x)dx+O(γ)

=
∫

DKL(g(y|x), f (y|x))g(x)dx+O(γ).



Appendix B

Some Proofs in Chapter 3

Proof of Theorem 3.3.1. We see that:

∫ (∫
g(y|x) f (y|x;θ)γdy

)
g(x)dx

=
∫ (∫

{(1−ε) f (y|x;θ
∗)+εδ (y|x)} f (y|x;θ)γdy

)
g(x)dx

= (1− ε)

{∫ (∫
f (y|x;θ

∗) f (y|x;θ)γdy
)

g(x)dx
}

+ ε

{∫ (∫
δ (y|x) f (y|x;θ)γdy

)
g(x)dx

}
.

It follows from the assumption ε < 1
2 that:

{
ε

∫ (∫
δ (y|x) f (y|x;θ)γdy

)
g(x)dx

} 1
γ

<

{
1
2

∫ (∫
δ (y|x) f (y|x;θ)γdy

)
g(x)dx

} 1
γ

<

{∫ (∫
δ (y|x) f (y|x;θ)γdy

)
g(x)dx

} 1
γ

= ν fθ ,γ .
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Hence, ∫ (∫
g(y|x) f (y|x;θ)γdy

)
g(x)dx =

(1−ε)

{∫ (∫
f (y|x;θ

∗) f (y|x;θ)γdy
)

g(x)dx
}

+O
(

ν
γ

fθ ,γ

)
.

Therefore, it holds that:

dγ,2(g(y|x), f (y|x;θ);g(x))

=−1
γ

log
∫ (∫

g(y|x) f (y|x;θ)γdy
)

g(x)dx

+
1

1+ γ
log
∫ (∫

f (y|x;θ)1+γdy
)

g(x)dx

=−1
γ

log
∫ (∫

f (y|x;θ
∗) f (y|x;θ)γdy

)
g(x)dx

+
1

1+ γ
log
∫ (∫

f (y|x;θ)1+γdy
)

g(x)dx

−1
γ

log(1− ε)+O
(

ν
γ

fθ ,γ

)
= dγ,2( f (y|x;θ

∗), f (y|x;θ);g(x))

−1
γ

log(1− ε)+O
(

ν
γ

fθ ,γ

)
.

Then, it follows that:

Dγ,2(g(y|x), f (y|x;θ);g(x))−Dγ,2(g(y|x), f (y|x;θ
∗);g(x))

−Dγ,2( f (y|x;θ
∗), f (y|x;θ);g(x))

=
{
−dγ,2(g(y|x),g(y|x);g(x))+dγ,2(g(y|x), f (y|x;θ);g(x))

}
−
{
−dγ,2(g(y|x),g(y|x);g(x))+dγ,2(g(y|x), f (y|x;θ

∗);g(x))
}

−
{
−dγ,2( f (y|x;θ

∗), f (y|x;θ
∗);g(x))+dγ,2( f (y|x;θ

∗), f (y|x;θ);g(x))
}

= dγ,2(g(y|x), f (y|x;θ);g(x))−dγ,2( f (y|x;θ
∗), f (y|x;θ);g(x))

−dγ,2(g(y|x), f (y|x;θ
∗);g(x))+dγ,2( f (y|x;θ

∗), f (y|x;θ
∗);g(x))

= O(νγ) .
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Proof of Theorem 3.3.2. We see that:

∫ (∫
g(y|x) f (y|x;θ)γdy

)
g(x)dx

=

{∫ (∫
f (y|x;θ

∗) f (y|x;θ)γdy
)
(1− ε(x))g(x)dx

+
∫ (∫

δ (y|x) f (y|x;θ)γdy
)

ε(x)g(x)dx
}
.

It follows from the assumption ε(x)< 1
2 that:

{∫ (∫
δ (y|x) f (y|x;θ)γdy

)
ε(x)g(x)dx

} 1
γ

<

{∫ (∫
δ (y|x) f (y|x;θ)γdy

)
g(x)

2
dx
} 1

γ

<

{∫ (∫
δ (y|x) f (y|x;θ)γdy

)
g(x)dx

} 1
γ

= ν fθ ,γ .

Hence, ∫ (∫
g(y|x) f (y|x;θ)γdy

)
g(x)dx

=

{∫ (∫
f (y|x;θ

∗) f (y|x;θ)γdy
)
(1− ε(x))g(x)dx

}
+O(ν

γ

fθ ,γ
).
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Therefore, it holds that:

dγ,2(g(y|x), f (y|x;θ);g(x))

=−1
γ

log
∫ (∫

g(y|x) f (y|x;θ)γdy
)

g(x)dx

+
1

1+ γ
log
∫ (∫

f (y|x;θ)1+γdy
)

g(x)dx

=−1
γ

log
{∫ (∫

f (y|x;θ
∗) f (y|x;θ)γdy

)
(1−ε(x))g(x)dx

}
+O(ν

γ

fθ ,γ
)+

1
1+ γ

log
∫ (∫

f (y|x;θ)1+γdy
)

g(x)dx

= dγ,2( f (y|x;θ
∗), f (y|x;θ);(1− ε(x))g(x))+O(ν

γ

fθ ,γ
)

− 1
1+ γ

log
∫ (∫

f (y|x;θ)1+γdy
)
(1− ε(x))g(x)dx

+
1

1+ γ
log
∫ (∫

f (y|x;θ)1+γdy
)

g(x)dx

= dγ,2( f (y|x;θ
∗), f (y|x;θ);(1− ε(x))g(x))

+O(ν
γ

fθ ,γ
)− 1

1+ γ
log
{

1−
∫

ε(x)g(x)dx
}
.

Then, it follows that:

Dγ,2(g(y|x), f (y|x;θ);g(x))

−Dγ,2(g(y|x), f (y|x;θ
∗);g(x))

−Dγ ,2( f (y|x;θ
∗), f (y|x;θ);(1− ε(x))g(x))

=
{
−dγ,2(g(y|x),g(y|x);g(x))+dγ,2(g(y|x), f (y|x;θ);g(x))

}
−
{
−dγ,2(g(y|x),g(y|x);g(x))+dγ,2(g(y|x), f (y|x;θ

∗);g(x))
}

−
{
−dγ,2( f (y|x;θ

∗), f (y|x;θ
∗);(1− ε(x))g(x))

+dγ,2( f (y|x;θ
∗), f (y|x;θ);(1− ε(x))g(x))

}
= dγ,2(g(y|x), f (y|x;θ);g(x))

−dγ,2( f (y|x;θ
∗), f (y|x;θ);(1− ε(x))g(x))

−dγ,2(g(y|x), f (y|x;θ
∗);g(x))

+dγ,2( f (y|x;θ
∗), f (y|x;θ

∗);(1− ε(x))g(x))

= O(νγ) .



Appendix C

Proof of Theorem 4.4.2

Proof of Theorem 4.4.2.

lim
k↓0

Ψ(θ (R)+ kδ )−Ψ(θ (R))

k

= lim
k↓0

E(x,y)

[
l((x,y);θ (R)+kδ)

]
−E(x,y)

[
l((x,y);θ (R))

]
+λP(θ (R)+kδ )−λP(θ (R))

k

= lim
k↓0

E(x,y)

[
l((x,y);θ (R)+ kδ )

]
−E(x,y)

[
l((x,y);θ (R))

]
k

+ lim
k↓0

λP(θ (R)+ kδ )−λP(θ (R))

k
. (C.1)

The directional derivative of the differentiable function always exist and is represented by
the dot product with the gradient of the differentiable function and the direction given by

lim
k↓0

E(x,y)

[
l((x,y);θ (R)+ kδ )

]
−E(x,y)

[
l((x,y);θ (R))

]
k

=
〈

∇E(x,y)

[
l((x,y);θ

(R))
]
,δ
〉
. (C.2)

Moreover, the directional derivative of the (proper) convex function exists at the relative
interior point of the domain and is greater than the dot product with the subgradient of the
convex function and direction [74] given by

lim
k↓0

λP(θ (R)+ kδ )−λP(θ (R))

k
= sup

g∈∂P(θ (R))

λ ⟨g,δ ⟩

≥ λ ⟨g,δ ⟩ f or any g ∈ ∂P(θ (R)). (C.3)
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Then, by the optimality condition of (4.16), we have the following equation

0 ∈ ∇E(x,y)

[
l((x,y);θ

(R))
]
+λ∂P(θ+)+

1
ηR

{
∇w
(
θ
+
)
−∇w

(
θ
(R)
)}

1
ηR

{
∇w
(

θ
(R)
)
−∇w

(
θ
+
)}
∈ ∇E(x,y)

[
l((x,y);θ

(R))
]
+λ∂P(θ+). (C.4)

Therefore, we can obtain (4.19) from PX ,R ≈ 0, (C.1), (C.2), (C.3) and (C.4) as follows;

lim
k↓0

E(x,y)

[
l((x,y);θ (R)+ kδ )

]
−E(x,y)

[
l((x,y);θ (R))

]
k

+ lim
k↓0

λP(θ (R)+ kδ )−λP(θ (R))

k

≥
〈

∇E(x,y)

[
l((x,y);θ

(R))
]
,δ
〉
+λ ⟨g,δ ⟩ f or any g ∈ ∂P(θ (R))

=
〈

∇E(x,y)

[
l((x,y);θ

(R))
]
+λg,δ

〉
f or any g ∈ ∂P(θ (R))

∋ 0.
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