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Chapter 1

Introduction

Bayesian methods provide intuitive ways to evaluate randomness and prob-

ability in areas of science, engineering and economics. In Bayesian inference,

uncertainty of the future event is evaluated through Bayes risk, which de-

pends on the posterior distribution p(yobs|θ) of the unknown parameter θ

of the model M given the evidence. Posterior distribution plays a central

role in Bayesian methods. It contains all the information of the parameter

θ that can be used for inference, model checking and decision making. The

posterior distribution p(θ|yobs) can be formulated with the prior distribu-

tion p(θ) which is updated through the likelihood function p(yobs|θ) with the

observation yobs. It can be written as:

p(θ|yobs) =
p(yobs|θ)p(θ)∫

θ
p(yobs|θ)p(θ)dθ

.

The prior distribution p(θ) represents the prior beliefs of the parameters;

the likelihood function p(yobs|θ) is the function of parameter θ of the specific

5



CHAPTER 1. INTRODUCTION 6

observed data yobs. The partition function p(yobs) = p(yobs|θ)p(θ)dθ is the

marginal distribution of the data. Due to the lacking of information on the

true distribution p(yobs), the partition function is often unavailable and rep-

resents one of the main challenges of Bayesian analysis. Another challenge

arises when the likelihood function is not of explicit analytic form or is com-

putationally too expensive to evaluate, which calls for methods that do not

need to evaluate the likelihood functions.

In the early days of Bayesian inference, due to limited computing power,

the only feasible way of doing Bayesian inference is by using conjugate pri-

ors with likelihoods in the forms of exponential families. In this way, the

posterior distribution falls into the same family as the prior distribution and

can be explicitly analyzed. This method works fine for simple statistically

models in the sense that the posterior distribution can be reasonably mod-

eled by a parametric model. However, with the rapidly increased computing

power, these limitations are no longer necessary. Significantly more complex

statistical models are developed to better fit the reality.

When sampling is done with sample size of thousands or even millions,

Monte Carlo integration is utilized as the numerical approximation method in

many Bayesian methods to circumvent the above mentioned first challenge.

Instead of directly deriving the distribution function of the posterior distribu-

tion p(θ|yobs), we draw samples (θ1, θ2, ..., θn) from the posterior distribution

and then approximate it using the empirical distribution

p(θ|yobs) ≈
1

N

N∑
i=1

δΘ(θ)
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where δθ is the Dirac measure of θ such that δΘ(θ) = 1 if θ ∈ Θ and δΘ(θ) = 0

otherwise. By the law of large number, 1
N

∑N
i=1 δΘ(θ) → p(θ|yobs) in distri-

bution when N →∞.

There are a large number of Monte Carlo Methods and their variants pro-

posed for the posterior approximation including the Rejection-Acceptation

method, Markov Chain Monte Carlo (MCMC) method and Sequential Monte

Carlo method (SMC)[33][13][41]. In the case of Rejection-Acceptation method,

each sample is generated by the random number generator independently, so

the convergence applies. For Monte Carlo chains based methods, if the Mote

Carlo chains are irreducible and recurrent, then the chain has the same limit-

ing distribution from almost every starting point. In this case, the sample in

the chain can be considered as drawn from the limiting distribution without

care for the beginning of chain when estimating the function f . The accuracy

of the approximation depends on the number of the sample drawn from the

distribution and on the support of the density. These problems are about

efficiency: to design an efficient algorithm that can reduce the variance of

the estimation at a manageable speed.

Monte Carlo based sampling methods rely on the repeated evaluations of

the likelihood function. As in the MetropolisHastings algorithm (MCMC),

the samples are simulated in a sequential manner. For each time, the newly

simulated sample θ(n+1) is accepted by the probability

p(θ(n+1)|yobs)q(θn|θ(n+1))

p(θn|yobs)q(θ(n+1)|θn)
=
p(yobs|θ(n+1))p(θ(n+1))q(θn|θ(n+1))

p(yobs|θn)p(θn)q(θ(n+1)|θn)
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where θn is the current state, and q(θ1|θ2) is the transitional kernel of θ, p

is the prior density of the parameter θ. For each newly generated sample,

the likelihood function has to be evaluated for each observation yobs, and

the transition kernel plays a practical role in the efficiency of the algorithm:

setting a variance too large or too small will make the convergence of chain

unmanageable.

As discussed above, the unavailability of the marginal distribution is cir-

cumvented by evaluating the ratio of density instead of directly calculating

the density itself. Yet still, as seen in the Metropolis-Hastings method, the

likelihood function has to be evaluated repeatedly in the process. For many

cases, for example, if the likelihood function is computationally too demand-

ing, or if the number of observation yobs is too large, which often occurs in

the big data, or if it is only known partially or lacks a functional form and

is implicitly defined using a data generation program as in the population

genetics, then the MCMC methods cannot be applied. For these areas, one

approach is to use a different model which can be analytically analyzed; but

this approach is often not optimal, as the underlying problem is often com-

plex and calls for a complex model to describe. Another option is to use

approximation; instead of using an over-simplistic model and under-fitting

the data, using a complex model and making approximations is more attrac-

tive, as the discrepancy between the true model and the approximation can

be measured by approximation error. This leads to a lot of interests in the

so-called likelihood-free methods.

Recently, one of the likelihood-free algorithm called Approximate Bayesian

Computation (ABC) becomes more and more popular among many areas [21]
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[31] [43] [48] [5] [14] [2] [4]. It is introduced to make inference in the cases that

the likelihood functions are intractable. Statistical models used in these cases

have no explicit function forms; they are instead described by some generat-

ing programs which are designed to simulate the true underlying stochastic

processes. The simulation data are used in the later inferences as samples

from the desired posterior distribution. Since the program is usually much

more complex than a simple function, ABC enables the domain experts to

have much more expressing powers in describing their understandings of the

true phenomenon and thus greatly expands the landscapes of the existing

Bayesian inference algorithms.

1.1 Approximate Bayesian Computation

The fundamental difference between ABC and other Bayesian approximation

methods is that the likelihood function need not to be known provided that

it can be described implicitly by the generating program. No evaluations

of density functions or likelihood functions are involved in the computing

process. ABC does not directly sample from the posterior distribution. In-

stead, a sufficiently large set of parameters are generated first from some prior

distribution, then the data points are simulated by the generating program

using these parameters as inputs. The approximation then can be done by

accepting only the data points that are close to the observation where close-

ness is measured by some distance measure, usually Euclidean. Then these

data points are treated as i.i.d samples from the true posterior and further

inferences of the parameters like posterior means and variances can be made.
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This algorithm is based on the Rejection ABC.

In this section, an intuitive introduction of the Rejection-Acceptation

ABC (Rejection ABC) is given [43]. The more sophisticated expansions of

ABC using Monte Carlo chain based methods will be described in chapter 2

in detail.

A Rejection ABC algorithm takes a prior distribution of the parameter,

the generating program and the observation as input; generating many sam-

ple pairs (θi, yi) from the prior distribution and the program; then accept

those that are same as the observation.

1. Inputs

(a) Prior density function q(θ)

(b) Generating program f(y|θ) that produce y given input θ

(c) Observation yobs

2. Sampling Process

(a) Sample independent parameters (θ1, θ2, ..., θn) from q(θ)

(b) Generate (y1, y2, ..., ym) using f(y|θ)

(c) Compare (y1, y2, ..., ym) with (yobs)

(d) Accept yi if yi = yobs

3. Outputs

(a) A set of accepted sample with parameters θi as from the posterior

distribution
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In this strict version of rejection sample, as the generated sample strictly

equals the observation, it can be considered as drawn from the true posterior

distribution by a classic rejection-acceptation algorithm. To understand this,

consider a classic rejection-acceptation algorithm with a target distribution

function f(x) and a sampling distribution g(x). A sample is accepted with

probability f(x)
Mg(x)

, where M > f(x)
g(x)

. In the case of Bayesian inference, f(x) is

the target posterior distribution which is proportional to p(y|θ)p(θ) and g(x)

is the prior distribution. In this case, the acceptation probability is the same

as the likelihood function p(y|θ) up to some constant. In the above described

Rejection ABC, the output of the generating program y given θ can be seen

as the realization of the likelihood function at θ; thus the sample can be seen

as from the true posterior distribution.

However, to generate enough samples by yi = yobs is very inefficient,

or even impossible given the randomness of the generating program. In

reality, a small threshold h is introduced in the distance metric function.

Thus the step 3 of the sampling Process in Rejection ABC becomes: Accept

yi if ||yi − yobs|| < h. If the distance between the generated sample and

the observation is small enough, the sample is considered as from the true

posterior. By introducing this threshold, an approximation error has also

induced in the sampling. A large threshold induces a large acceptance rate,

thus the speed of sampling. However, if the threshold is set too large, bias

is introduced in the sampling and the approximation becomes less accurate.

This is a central consideration in designing ABC algorithms.

There are two challenges associated with ABC. First, as only the accepted

data are used in the inference, ABC algorithm becomes very inefficient when
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the accepting rate gets low, which often is the case if uninformative priors

are used or the dimensionality of the data is high. It is of great interests

to get more efficient sampling algorithm than the simple rejection algorithm

described above. To address this problem, a lot of sophisticated sampling

methods have been introduced to ABC, like MCMC and Sequential Monte

Carlo (SMC).

The second challenge is closely related to the first one. The simulated data

come out of the simulation program are often of high dimensionalities, like

gene sequence. And the acceptance is based on the distance function which

suffers significantly from the curse of dimensionality. It is then a common

practice to use summary statistics instead of the original data in the distance

function. This approximation induces possible loss of information and can

lead to biased inference. To avoid this problem, a relatively large set of

original summary statistics are proposed by the domain experts first; then a

dimensional reduction algorithm is applied to further reduce the dimension

while preserving the information.

1.2 Contents of Thesis

In this thesis, we focus on the applications of kernel methods to the ABC to

provide an automatic algorithm which can produce low dimensional summary

statistics while preserving information. As described above, summary statis-

tics play a central role in the efficiency and accuracy of the ABC methods. It

is important that the dimensional reduction algorithm can achieve the lowest

dimension without information loss. Although a lot of dimensional reduction
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methods have been introduced to ABC already, an automatic algorithm with

theoretically sound guarantees is still missing.

This thesis introduces a kernel based sufficient dimensional reduction al-

gorithm to solve the above problem. Sufficient dimensional reduction (SDR)

is a classic type of dimensional reduction algorithms that guarantees to find

the sufficient lower dimensional subspace provided that the assumptions of

the underlying space are met. In here sufficient means no information loss.

As the assumptions of classic SDR are often too restrictive for real-world

problems, we instead draw the idea from the kernel dimensional reduction

method.

To provide a principled way of designing the regression function, captur-

ing the higher order non-linearity and realizing an automatic construction of

summary statistics, this thesis introduces the kernel based sufficient dimen-

sional reduction method. This dimensional reduction method is a localized

version of gradient-based kernel dimensional reduction (GKDR) [17]. GKDR

estimates the projection matrix onto the sufficient subspace by extracting

the eigenvectors of the kernel derivatives matrices in the reproducing kernel

Hilbert spaces (RKHS). We give a brief review of this method in Chapter

3. In addition to the GKDR, in which the estimation averages over all data

points to reduce variance, a localized GKDR is proposed by averaging over a

small neighborhood around the observation in ABC. Each point is weighted

using a distance metric measuring the difference between the simulated data

and the observation. The idea is similar to the role of the distance kernel

function.

Another proposal is to use different summary statistics for different pa-
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rameters. Note that sufficient subspace for different parameters can be differ-

ent, depending on the particular problem. In these cases, applying separated

dimensional reduction procedures yield better estimations of the parameter.

Three experiments are investigated in the thesis to evaluate the proposed

method against popular dimensional reduction methods. Each experiment

is conducted with two sampling algorithms: Rejection ABC and Sequential-

ABC (SABC). The former provides an intuitive overall comparison and the

later is used to access the generated summary statistics in the extreme sit-

uations that the threshold of the distance function is pushed to as small as

possible. This strategy makes the latter experiments very time consuming,

but provides a useful assessment on the generated summary statistics.

1.3 Outline

In Chapter 2 we give a detailed introduction of ABC algorithms including the

Rejection ABC, MCMC ABC and Sequential-ABC (SABC). Rejection ABC

uses simple rejection method and is very easy to implement, it provides a

baseline for analyzing other more advanced sampling method. MCMC ABC

introduce a ABC version of MCMC to improve the sampling efficiency of the

Rejection ABC. SABC use sequential generations of parameters and reduce

the distance threshold in the meantime. It can be used to achieve a very

small threshold.

In Chapter 3 we give a brief introduction to the kernel based dimensional

reduction method. First the theoretical foundations of kernel methods are

briefly introduce. Then a more detailed introduction is given on deriving
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the GKDR. These basic details are provided for the understanding of latter

chapters.

In Chapter 4 we develop the main contribution: local dimensional reduc-

tion algorithm and the separated construction of summary statistics. Dis-

cussions on hyper-parameters and computation time are included.

In Chapter 5 we investigate in detail three experiments including a Queue

model, a population genetics model, and a dynamic system model. Compar-

ison between different dimensional reduction methods is provided for each

of the two sampling algorithms. In the end of this chapter, a comparison

between LGKDR, GKDR and sliced inverse regression is given using Queue

mode, it provides the motivation for the whole work.

In Chapter 6 we give the conclusion of the thesis and discuss the possible

future directions.



Chapter 2

Approximate Bayesian

Computation

As briefly discussed in Chapter 1, likelihood-free methods are gaining in-

terests due to their ability to do inference without explicitly evaluate the

likelihood function. This property makes these methods suitable for a lot of

complex statistical models where explicit function forms are not available.

Within the likelihood-free algorithms, ABC is a Monte Carlo method that

approximates the posterior distribution by jointly generating simulated data

and parameters and does the sampling based on the distance between the

simulated data and the observation, without evaluating the likelihoods. ABC

was first introduced in population genetics [40] [4] and then have been ap-

plied to a range of complex applications including dynamical systems [49],

ecology [12], Gibbs random fields [22] and demography [5].

Bayesian inference works through updating the posterior distribution via

p(θ|yobs) ∝ p(yobs|θ)p(θ), where θ is the parameter of the assumed statistical

16
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model, p(yobs|θ) is the likelihood of the model and yobs is the observed data

point. By observing more and more data, the posterior is moving from the

prior distribution to the position of maximum likelihood. Bayesian inference

works very well on the situation where prior information occupies an im-

portant factor in the model and the observation is scarce which often is the

case in the scientific setting. Bayesian inference relies on the evaluation of

the likelihood function in the updating process and the likelihood determines

the underlying statistical model.

Likelihood-free methods or ABC represent a type of methods that can be

used where likelihood is intractable. This intractability includes several sit-

uations: it is computationally intractable to evaluate the likelihood function

point-wise; the likelihood function cannot be expressed in analytic form or

the statistical model is available but can not be solved analytically. To bypass

the evaluation of the likelihood function, ABC introduces an approximation

to the evaluation of the likelihood function. ABC is composed of the follow-

ing components: a generating model, often written as a computer program

that generates the synthesized data-set; summary statistics that transform

the data to low dimensional vectors which plays a key factor in the sampling

efficiency and a sampling method that employ the summary statistics and

the generating model to efficiently sample from the approximate posterior

distribution.

The accuracy of ABC posterior depends on sufficiency of summary statis-

tics and Monte Carlo errors induced in the sampling. Before going into details

of the three components, first we give a general introduction to the method:

Given the generating model p(y|θ) of observation yobs with parameter
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θ, consider summary statistics sobs = Gs(yobs) and s = Gs(y), where Gs :

Y → S is the mapping from the original sample space Y to low dimensional

summary statistics S. The posterior distribution, p(θ|yobs), is approximated

by p(θ|sobs), which is constructed as p(θ|yobs) ≈
∫
pABC(θ, s|sobs)ds, with

pABC(θ, s|sobs) ∝ p(θ)p(s|θ)K(‖s− sobs‖/ε), (2.1)

where K is a smoothing kernel with bandwidth ε. In the case of Rejection

ABC, K is often chosen as an indicator function I(‖s − sobs‖ < ε). If the

summary statistics s are sufficient, it can be shown that p(θ|sobs) reduces to

p(θ|yobs) as ε goes to zero[6].

As shown above, the sampling is based on the distance between the sum-

mary statistics of the simulated sample s and the observation sobs. Approx-

imation errors are induced by the distance measure and are proportional to

the distance threshold ε. It is desirable to set ε as small as possible, but a

small threshold will increase the simulation time. This is a trade-off between

the accuracy and the efficiency (simulation time). According to recent re-

sults on asymptotic properties of ABC [16] [30], assuming that the summary

statistics follow the central limit theorem, the convergence rate of ABC when

accepted sample size N →∞ is depended on the behavior of µ = εdN , where

ε is the threshold above and the dN is defined as of the same magnitude of

eigen(ΣN), the eigenvalues of the covariance matrix of the summary statistics

as the function of N . In practice, if a specific sampling method is chosen, the

threshold ε is constrained by the computing resources and time, thus can be

accordingly determined. The design of summary statistics then remains the
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most versatile and difficult part in developing an efficient ABC algorithm.

To avoid the “curse of dimensionality”, summary statistics should be low

dimensional in addition of sufficiency.

A vast body of literature of ABC has been published. Many are devoted

to reduce the sampling error by using more advanced sampling methods,

from simple Rejection method[34], Markov Chain Monte Carlo(MCMC)[32]

to more sophisticated methods like sequential Monte Carlo [44][49] and adap-

tive sequential Monte Carlo methods [35].

In the following sections, we will give more details about the components

of ABC.

2.1 Rejection ABC

An elemental form of the Rejection ABC algorithm has been introduced in

Chapter 1. In this section, I will give a more detailed explanation of the

algorithm and its related issues [43].

The Rejection ABC algorithm introduced in Chapter 1 use the exact equal

condition d(y, yobs) = 0 to determine whether the generated sample is indeed

drawn from the true posterior distribution. For discrete models with finite

parameter/data space, this condition can be met but the acceptance rate,

which is yaccepted/yall, is very small, thus highly inefficient. For the continuous

models where the probability of d(y, yobs) = 0 is zero, this algorithm simply

can not be applied.

To improve the efficiency and to apply to continuous models, a distance

threshold is used in the Rejection algorithm. Instead of asking d(y, yobs) = 0,
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by setting a threshold h, the generated sample is accepted if d(y, yobs) < h.

This relaxation can significantly improve the acceptation rate and the effi-

ciency, depending on the dimensionality of the data. The threshold intro-

duced here is an approximation of the true posterior distribution, the bigger

the threshold, the less accurate the approximation is. Formally, the approx-

imated posterior can be written as:

p(θ|yobs) ∝ I(||yobs − y|| < h)p(y|θ)g(θ)

where I is the indication function, p(y|θ) is the data generated from the

simulating program, representing the evaluation of the likelihood function of

the model, g(θ) is the generation of the parameter from the prior distribution.

Setting a proper threshold for a particular model is a difficult design

choice, especially if the dimensionality of the data y is high. However, for

a typical model in ABC applications, the dimensionality of y can easily be

a few dozens or even a few hundreds. In these cases, setting the threshold

small may result in very low acceptation rate, rending the algorithm useless.

However, setting the threshold too high is also a poor choice since the effect

of “curse of dimensionality”. Thus a second approximation is introduced to

ABC, called summary statistics.

2.1.1 Summary Statistics

The synthetic data y generated from the model is often of high dimensional-

ity. Direct comparison between the generated data y and the observation yobs

suffers significantly from the curse of dimensionality. The resulting sampling
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efficiency is too low to be practical. Summary statistics that are sufficient

are then used in the distance function. Sufficient summary statistics contain

all the information for the inference theoretically, resulting in the unbiased

estimation of the parameters. Thus, the comparison between the observation

and the data becomes ||sobs − s||, where s = S(y), sobs = S(yobs), S is the

summary statistics. In this case, if the s is sufficient that it contains all the

information of y, then the approximation of posterior p(θ|yobs) = p(θ|sobs);

otherwise, if S is not sufficient, then p(θ|sobs) can be understood as an ap-

proximation of p(θ|yobs), thus a second approximation is introduced by the

usage of summary statistics. The sufficiency of summary statistics is then

one of the most important factors whether an ABC algorithm is accurate.

Addition to sufficiency, low dimensionality is also an important require-

ment of summary statistics. Low dimensionality plays a central role in avoid-

ing the ”curse of dimensionality”. It is often desirable to have a set of sum-

mary statistics that the number of the summary statistics is smaller than at

least 10. However, in reality, summary statistics are rarely sufficient, espe-

cially if the dimensionality is low. And it is non-trivial to determine whether

it is sufficient or not.

Traditional summary statistics such as mode, mean and quantiles are

often used as summary statistics, as they are used in parametric models.

But it is understandable that only use these statistics is rarely sufficient for

any model that has a likelihood function more complex than exponential

family distributions, not mention the models which can only be described

using a simulation program and lack any functional form. For these kinds of

models, since the models are often developed by the domain experts, they can
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often contribute some highly informative summary statistics based on their

understanding of the generating model and the underlying scientific problem.

These statistics often contain a lot of information and of low dimensionality,

but they are rarely sufficient.

There are two problems associated with these kinds of handpicked statis-

tics. First, it is difficult to determine that, from which point the statistics

are sufficient; or is there existed a set sufficient statistics. Second, choosing

a set of appropriate summary statistics is much more difficult for complex

models, the information extracted by the domain experts are limited in these

cases; as the data itself become high dimensional and difficult to understand,

as in the case of the gene data, it is hard to design a set a summary statis-

tics that extract all the information contained in the data. To address this

problem, a set of redundant summary statistics are often constructed as ini-

tial summary statistics. Sufficiency rather than dimensionality is the priority

considerations in this process. After obtaining a large set of possible sum-

mary statistics, dimensional reduction methods are then applied to yield a

set of low dimensional summary statistics while persevering the information.

This approach can be understood as a detour that utilizes the techniques of

dimensional reduction algorithms, which have been thoroughly studied and

consist of a lot of different algorithms.

Many dimensional reduction methods have been proposed for ABC. Entropy-

based subset selection [28], partial least square [52], neural network [7] and

expected posterior mean [15] are a few of them. The entropy-based subset

selection method works well in instances where the set of low dimensional

summary statistics is a subset of the initial summary statistics, but the com-
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putational complexity increases exponentially with the size of the initial sum-

mary statistics. The partial least square and neural network methods aim

to capture the nonlinear relationships of the original summary statistics. In

both cases, a specific form of the regression function is assumed. A com-

prehensive review [8] discusses the methods mentioned above and compares

the performances. While the results are a mixed bag, it is reported that the

expected posterior mean method (Semi-automatic ABC) [15] produces rel-

atively better results compared to the methods mentioned above in various

experiments. It is a popular choice also due to its simplicity.

Semi-automatic ABC [15] uses the estimated posterior mean as summary

statistics. A pilot run of ABC is conducted to identify the regions of pa-

rameter space with non-negligible probability mass. The posterior mean is

then estimated using the simulated data from that region and is used as

the summary statistics in a formal run of ABC. A linear model of the form:

θi = β(i)f(y) + εi is used in the estimation, where f(y) are the possibly

non-linear transforms of the data. For each application, the features f(y)

are carefully designed to achieve a good estimation. In practice, a vector of

powers of the data (y,y2,y3,y4, ...) is often used as noted in [15].

2.1.2 Distance Kernels

As discussed above, the ABC approximate estimation will converge to the

true posterior if the threshold goes to 0, assuming that the summary statis-

tics are sufficient. However, a threshold that is too small will result in a

significantly lower acceptance rate and worsen sampling efficiency. Instead,
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in practice, a threshold that gives a trades off between time and accuracy is

preferred and a distance function is used to improve the convergence of the

estimation.

Given summary statistics and the observation, a distance kernel func-

tion K with bandwidth h is used to determine the acceptance of the gen-

erated sample. Thus the posterior is then written as p(θ|yobs) = Kh(||y −

yobs||)p(y|θ)p(θ). There are many distance functions used in the literature.

The most simple one is the indication function. Given observation yobs, sum-

mary statistics S, generated data and parameter pair (yi, θi), threshold ε, a

distance function d, the probability of acceptance δ is determined by:

δ =


1 d(S(y), S(yobs)) < ε

0 d(S(y), S(yobs)) ≥ ε

The accepted sample are then given the same weights in the estimation of the

parameter as: θ = 1
N

∑N
i=1 θi. The indicator function can also be viewed as a

uniform kernel function. Another often used kernel function is the Gaussian

function:

wi = e−(
||S(yi)−S(yobs)||

2ε
)2

The Gaussian distance spread the weights across the whole parameter

space. when we prefer a more concentrated function, Epanechnikov kernel is

often used:
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Figure 2.1: Different kernel functions typically used in ABC


1− ( ||S(yi)−S(yobs)||

ε
)2 d(S(y), S(yobs)) < ε

0 d(S(y), S(yobs)) ≥ ε

Depended on the application and the summary statistics, different kernel

distance function can be chosen.

2.1.3 Algorithm

In this section, we combine the several tools introduced in the previous sec-

tions and introduce the final version of the Rejection ABC algorithm.

A Rejection ABC algorithm takes the prior distribution of the parameter,
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the generating program and the observation as input; then it generates many

pairs of (θi, yi) from the prior distribution through the generating program;

summary statistics and kernel functions are then used to determine how

close the generated sample is to the observation; at last those samples that

are close to the observation area accepted. Accepted samples are seen as

drawn from the approximate posterior distribution.

1. Inputs

(a) Prior density function q(θ)

(b) Generating program f(y|θ) that produce y given input θ

(c) Observation yobs

(d) summary statistics S

(e) kernel function Kh

2. Sampling Process

(a) Sample independent parameters (θ1, θ2, ..., θn) from q(θ)

(b) Generate (y1, y2, ..., ym) using f(y|θ)

(c) Calculate summary statistics (s1, s2, ..., sn) by s = S(y)

(d) Compare (s1, s2, ..., sm) with (sobs) where sobs = S(yobs)

(e) Accept si if Kh(||si − sobs||) > 0

3. Outputs

(a) A set of accepted sample with parameters θi as from the posterior

distribution
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Here concludes the introduction of the Rejection ABC, in the next section,

two advanced sampling methods are introduced to enhance the sampling

efficiency.

2.2 Advanced Sampling Methods

At first, acceptance/rejection method is used in the original ABC. However,

although the rejection method is conceptually simple, it is computationally

very inefficient. For fast prototyping and comparison of different dimen-

sional reduction methods, rejection method is still commonly used due to

its simplicity. But for complex models which sampling efficiency is impor-

tant, MCMC-ABC and Sequential ABC are more commonly used to achieve

a higher sampling performance. In the following section, we give a brief

introduction of these methods.

2.2.1 MCMC-ABC

Markov chain Monte Carlo (MCMC) methods are widely used in the ap-

plications where the distributions are complex. Compared to sequential

Monte Carlo, MCMC methods are relatively straightforward to implement.

A MCMC method samples a series of examples from a Markov chain, of which

the limiting distribution is the target distribution as long as the Markov chain

is irreducible. Then a sample from the chain can be considered as sampled

from the target distribution. MCMC methods are extremely popular among

Monte Carlo methods, its ABC version is also proposed after the Rejection

ABC shows potential.
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For the general MCMC method, given the existing state θ, the transitional

MCMC algorithm propose a new parameter θ′ from θ using a translation

kernel k, θ k(θ, θ′) = k(θ′|θ), the newly generated sample is accepted with

probability of min(1, p(θ
′)k(θ′|θ)

p(θ)k(θ|θ′) ), where p is the target distribution. If the new

proposal is accepted, the state of the chain become θ′, otherwise it remains at

θ. This conceptional simple algorithm achieves great success, and is widely

used in all areas of Bayesian inference.

The ABC version of MCMC is in spirit similar to Rejection ABC, the eval-

uation of the likelihood is approximated by a distance-based sampling process

[39] [32]. Formally, given the target distribution of the chain pABC(θ|sobs),

the likelihood function f(s|θ), distance kernel Kh, the proposal distribution

can be written as k(θ′|θ)f(s′|θ′). And the acceptance rate α can be written

as

α =
pABC(θ′, s′|sobs)k(θ′|θ)f(s|θ)
pABC(θ, s|sobs)k(θ|θ′)f(s′|θ′)

=
Kh(||s′ − sobs||)f(s′|θ′)π(θ′)k(θ′|θ)f(s|θ)
Kh(||s− sobs||)f(s|θ)π(θ)k(θ|θ′)f(s′|θ′)

=
Kh(||s′ − sobs||)π(θ′)k(θ′|θ)
Kh(||s− sobs||π(θ)k(θ|θ′)

.

where p denotes the likelihood function.

Thus the algorithm of MCMC-ABC can be written as follows:

1. Inputs

(a) Initial state θ

(b) Proposal distribution k(θ′|θ)
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(c) Generating program f(y|θ′) that produce y given input θ′

(d) Observation yobs

(e) summary statistics S

(f) kernel function Kh

2. Sampling Process

(a) Sample θ′ from k(θ′|θ)

(b) Generate (y) using f(y|θ′)

(c) Calculate summary statistics s by s = S(y)

(d) Compare (s) with (sobs) where sobs = S(yobs)

(e) Accept the generated state with probability min(1, α)

(f) Return to step Process 1

3. Outputs

(a) A set of accepted sample with parameters θi as from the posterior

distribution

Compared to Rejection ABC, MCMC-ABC generate a sample from a

Markov chain which is more efficient than the random generation from uni-

form distributions. But the method suffers from “sticking” problem, which

the parameter is stuck in the area where density is very low, and it becomes

very difficult to jump out of this low-probability area. Also, the threshold

has to be set fixed, and it is difficult to determine this parameter.
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2.2.2 Sequential-ABC

Rejection ABC and MCMC-ABC both use fixed thresholds throughout the

sampling process. Since the threshold controls the accuracy of the ABC ap-

proximations, it is desirable if an adaptive threshold can be used. If the

threshold decreases as the sampling continues, the accuracy of the approxi-

mation can improve over time. It is also beneficial for the setting up stage

of the algorithm where a relatively large threshold can be used to increase

the acceptance rate. Sequential Monte Carlo [13] constructs a series of dis-

tributions in the sampling process and acts as a proper candidate for an

adaptive threshold setting. In Sequential-ABC (SMC) [35] [44], a series of

distributions πi are formed with decreasing thresholds εi < εi−1 < εi−2....

The samples generated in the previous stage are reused in the later approxi-

mations with re-sampling if the weights degenerate.

Formally, SMC sampler approximates a sequence of probability distribu-

tions πn0≤n≤T , which are approximated by a set of samples of size N , called

particles. At time 0, a simple distribution π0 is used such that it is easy

to sample from. N random samples Z0
T
i are sampled from distribution π0.

Then at time n, the particles Zn
T
i are moved using a Markov kernel Kn which

defines the probability that a sample is moving from Zn to Zn+1. During the

transition of states, the weights of the particles Wn becomes smaller, indi-

cating that it is more difficult to move the particle to the region that has a

high probability measure. The Effective Sample Size (ESS) is defined as

ESS(W (i)
n ) = (

N∑
i=1

(W (i)
n )2)−1 (2.2)
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where the weights of the particles Wn is updated by

W (i)
n ∝ W

(i)
n−1

πn(Z
(i)
n )Ln−1(Z

(i)
n , Z

(i)
n−1)

πn−1(Z
(i)
n−1)Kn(Z

(i)
n−1, Z

(i)
n )

. (2.3)

As in [35], if an MCMC kernel of invariant distribution πn for Kn is

selected, and use the backward kernel as

Ln−1(z, z′) =
πn(z′)Kn(z′, z)

πn(z)

the weight update be becomes

W (i)
n ∝ W

(i)
n−1

πn(Z
(i)
n−1)

πn−1(Z
(i)
n−1)

(2.4)

where πn(Z
(i)
n ) is depended on εn since the distribution is approximated by

an ABC samplers which contains εn.

The ESS criterion takes values between 1 and N . It indicates that the

inference based on the N weighted samples is approximately equivalent to

the inference based on ESS(W
(i)
n ) samples. When the value of ESS drops to

very small, it is necessary to re-sample the whole particle set. As mentioned

above, it is favourable to gradually reduce the threshold εn in the sequence.

A simple way to selecting εn is by control the ESS over iterations by selecting

the tolerance level εn such that

ESS(W (i)
n , εn) = αESS(W

(i)
n−1, εn−1) (2.5)

for α ∈ (0, 1), W
(i)
n is given in 2.4 which depends on εn. The parameter α

controls the speed and smoothness of the sequence. If α ≈ 1, the speed is
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slow but the most of the particles will be able to move to the the next state.

Instead if α ≈ 0, the sequence will move very quickly towards the target but

the result will be unreliable.

The whole algorithm is summarized as follows:

1. Inputs

(a) Initial distribution π0

(b) Markov transition kernels Kt

(c) Threshold ε

(d) Generating program f(y|θ′) that produce y given input θ′

(e) Observation yobs

(f) Summary statistics S

(g) Kernel function Kh

2. Sampling Process, in step n

(a) Sample θ
(i)
n from Kt(θ

(i)
n |θ(i)

n−1)

(b) Determine εn to make it satisfying (2.5)

(c) Update weights Wn+1 by (2.4)

(d) If ESS(W
(i)
n ) < NT , where NT is the size threshold, resample the

sample and reset the weights to 1/N , set n to n+ 1

(e) Return to step Process 1

3. Outputs
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(a) A set of accepted sample with parameters θi as from the posterior

distribution

When the ε drops to 0 or begins to drop very slowly, it will be safe to stop

the sampling. And the resulting ε will be recorded as the final threshold. The

final set of particles can be used as a sample from the target distribution.

The accuracy of this approximation is depended on the final ε.



Chapter 3

Gradient-based Kernel

Dimensional Reduction

In this chapter, a self-contained introduction to Gradient-based Kernel Di-

mensional Reduction (GKDR) is given before the introduction of the main

method in the next chapter. Since there are many types of dimensional reduc-

tion methods exist in the literature, to give a motivation in choosing GKDR,

we first introduce the idea of Sufficient Dimensional Reduction, which works

well on regression problems.

3.1 Sufficient Dimensional Reduction

Sufficient Dimensional Reduction (SDR) [29] [10] aims to estimate the lin-

ear projection directions that project the explanatory variables to a lower

dimensional subspace. It assumes that for a specific function, a sufficient

dimensional reduction space exists such that all the information that is rel-

34
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evant to the response variable y inside explanatory variable x are contained

in the subspace B, which is called the “Sufficient Dimensional Reduction

Space” (s.d.r space). Depended on the problem it tries to solve, different

level of assumptions can be made. In the broadest setting, it can be writ-

ten as p(y|x) = p̃(y|BTx), where p is the probability density function. In

this strictest assumption, the probability distribution of y is independent of

x, given BTx. While this assumption may be too restrictive, in the regres-

sion problem, a relaxed assumption is sufficient. That is, given the regression

function E(y|x), The SDR methods are designed to find this s.d.r space. SDR

is different with other dimensional reduction methods like Principle Compo-

nents Analysis in the sense that it works as a supervised learning problem

when estimating the projection matrix, while PCA tries to figure out the

hidden structure by only look at the x. This property makes SDR suitable

in the supervised learning algorithms in which conditional expectation is the

focus.

More precisely, in the contest of ABC, given observation (s, θ), where

s ∈ Rm are initial summary statistics and θ ∈ R is the parameter to be esti-

mated in a specific ABC application. Assuming that there is a d-dimensional

subspace U ⊂ Rd, d < m such that

θ ⊥⊥ s | BT s, (3.1)

where B = (β1, ..., βd) ∈ Rm×d is the orthogonal projection matrix. The

columns of B spans U and BTB = Id. Condition (3.1) shows that given

BT s, θ is independent of the initial summary statistics s. It is then sufficient
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to use d dimensional constructed vector z = BT s as the summary statistics.

This subspace U is called Sufficient Dimensional Reduction (SDR) space [29]

in classical dimensional reduction literature. While there are a tremendous

amount of published works about estimating the SDR space, in this paper, we

propose to use GKDR in which no strong assumption of marginal distribution

or variable type is made. We give a brief review of KDR in the following

sections, for further details, we refer to [17] [18] [19].

There is a vast set of literature already published in the field of SDR. In

this thesis, we focus on the kernel dimensional reduction which generalizes the

linear projection of SDR to incorporate non-linearity by implicitly consider

all possible transformations in the estimation of the projecting matrix. Here

we give a more detailed introduction to the method as it is the foundation

for our latter proposal to the ABC.

3.2 Conditional Mean Embedding in Repro-

ducing Kernel Hilbert Space

The key idea of Kernel-based methods is to implicitly map the original dis-

tributions on the training data into innite dimensional feature spaces using

kernels, such that subsequent estimations or inferences of distributions can

be done in the new feature space [9] [11] [51] [1]. The kernels used in this case

are often characteristics, such that the function of the original space and the

points in the feature space are one-to-one. It is especially useful when mea-

suring the distance between two functions. If two functions are close in the
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feature space, they are also close in the original space. This can be viewed as a

generalization of the feature mapping of individual points, as used in classical

kernel methods. By mapping probabilities into infinite dimensional feature

spaces, we can ultimately capture all the statistical features of arbitrary dis-

tributions without explicit compute the features in the infinite dimensional

spaces. This change of space is often called kernel trick. With this tool, we

are able to avoid working explicitly with the infinite dimensional features,

instead developing our algorithms in the forms of Gram matrices. The in-

finite and implicit nature of the feature spaces provides us with a rich yet

ecient framework for handling arbitrary distributions and high-dimensional

data. In this section, we give a brief review of kernel methods to estimate

the conditional mean.

3.2.1 RKHS and Mean Embedding

A reproducing kernel Hilbert space (RKHS) H is a Hilbert space where all

evaluation functionals are bounded. It is equivalent as specifying that the

point evaluation is a continuous linear functional. As discussed above, this

means that two functions f and g that are close in norm ||f − g|| are also

close in point-wise |f(x) − g(x)| for all x. This property enables the usage

of RKHS in statistical machine learning. It has been extensively used in

Support Vector Machines (SVM) in classification problems. Recently, by

embedding the distribution into RHKS, the applications of kernel methods

have been expanded to many statistical problems like PCA, non-parametric

Bayesian, MCMC and causal discovery [47],[46],[20],[27] [42].
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RKHS is closely related to the positive-definite functions, which are also

called kernel functions. For a set Ω, a positive-definite kernel is a function

k : X× X→ R that is symmetric such that k(x, y) = k(y, x), and the Gram

matrix is positive definite:

n∑
i,j=1

cicjk(xi, xj) ≥ 0

for any x1, ..., xn ∈ X, and n ∈ N . This positive definite kernel defines a

RKHS and acts as the reproducing kernel in that space. It is known that a

positive-definite kernel is uniquely associated with a Hilbert space consisting

of functions such that (1)k(x, ·) is in H, (2) the linear hull of k(x, ·) is dense,

and (3) for any x ∈ X and f ∈ H, 〈f, k(x, )〉 = f(x), this property is called

reproducing property.

The kernel functions are first introduced to machine learning community

by replacing an inner product 〈x, y〉 in space H where x, y ∈ X with a dot

product and a feature map φ : X→ H without needing to compute φ directly

([23]). This is often called kernel trick. This method can be applied to any

learning method where an inner product is contained. One clear advantage

of using a feature mapping instead of an inner product is that the feature

map introduces a nonlinear transformation into the similarity measure and

should be able to capture nonlinear relationships in the data.

The idea of introducing non-linearity into the inner product is further

expanded since the popularity of kernel trick enabled methods. It has been

revealed that the idea of kernel mean embedding can extend the feature map

to the space of probability distributions by representing each distribution as
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a function

µP (x) :=

∫
X
k(x, ·)dP (X),

where k is a positive-definitive function. To understand this embedding,

considering a RKHS H associated with a reproducing kernel K. For any

function f ∈ H, by the reproducing property, 〈k(x, ·), f〉 = f(x). In light of

this property, we can view the kernel k(x, ·) as a representer of x in H. In

addition, if the kernel function k is characteristic, the mapping is injective.

This means that the representer function k(x, ·) is the unique element of H,

implying that ||µP − µQ|| = 0 if and only if P = Q, where P and Q can be

any distributions.

With the mean element defined, it is easy to extend the definition to

expectation, covariance and conditional expectation.

3.2.2 Covariance Operator and Conditional Mean Em-

bedding

Let (X,µX) and (Y, µY ) be measure spaces, and (X, Y ) be a random variable

on X × Y with probability distribution P . Let kX and kY be measurable

positive definite kernels on X and Y, respectively, with respective RKHS HX

and HY . It is assumed that E[kX(X,X)] and E[kY (Y, Y )] are finite. The

(un-centered) cross-covariance operator CY X : HX → HY is defined as the

operator such that

〈g, CY Xf〉 = E[f(x)g(Y )] = E[〈f,Φ(X)〉HX 〈ΦY (Y ), g〉HY ]
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holds for all f ∈ HX , g ∈ HY , where ΦX : X → HX and ΦY : Y → HY

are defined by x → kX(·, x) and y → kY (·, y), respectively. Similarly, CXX

denotes the operator on HX that satisfies 〈f2, CXXf1〉 = E[f2(X)f1(X)] for

any f1, f2 ∈ HX . These definitions can be viewed as extensions of the covari-

ance matrices, as CY X is the covariance of the random vectors ΦX(X) and

ΦY (Y ) on RKHSs.

We can also write the operators in integral expressions. With g(y) =

kY (·, y), the reproducing property can be rewritten as

(CY Xf)(y) =

∫
kY (y, ỹ)f(x̃)dP (x̃, ỹ)

and

(CXXf)(x) =

∫
kX(x, x̃)f(x̃)dPX(x̃),

where PX is the marginal distribution ofX. These equations show the explicit

expressions of CY X and CXX as integral operators.

Empirical estimation of the covariance operators is straightforward with

the reproducing property of the RKHSs. Given i.i.d. sample (X1, Y1), ..., (Xn, Yn),

the covariance operator is estimated by the empirical covariance operator

C̃
(n)
Y Xf =

1

n

n∑
i=1

kY (·, Yi)〈kX(·, Xi), f〉HX =
1

n

n∑
i=1

f(Xi)kY (·, Yi)

The estimator C̃
(n)
XX can be written accordingly. It is known that these

estimators are consistent in the Hilbert-Schmidt norm.

The crucial result that forms the foundation for estimation of conditional
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mean embedding is the following result. If E[g(Y )|X = ·] ∈ HX holds for g,

then

CXXE[g(Y )|X = ·] = CXY g.

If CXX is injective, the above relation can be expressed as

E[g(Y )|X = ·] = C−1
XXCXY g. (3.2)

These covariance operators are fundamental elements in building the ker-

nel version methods of the classical statistical methods like PCA and CCA.

And in the next section, it will be used to estimate the gradients of the

conditional mean embedding.

3.3 Kernel Dimensional Reduction

Let B = (β1, ..., βd) ∈ Rm×d be the projection matrix to be estimated, and

z = BT s. We assume (3.1) is true and p(θ|s) = p̃(θ|z). The gradient of the

regression function is denoted by ∇s as

∇s =
∂E(θ|s)
∂s

=
∂E(θ|z)

∂s
= B

∂E(θ|z)

∂z
(3.3)

which shows that the gradients are contained in the SDR space. Given the fol-

lowing estimatorM = E[∇s∇T
s ] = BABT , whereAij = E[E(θ|βTi s)E(θ|βTj s)],

i, j = 1, ..., d. The projection directions β lie in the subspace spanned by the

eigenvectors of M . It is then possible to estimate the projection directions

using eigenvalue decomposition. In GKDR, the matrix M is estimated by
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the kernel method described below.

Let Ω be an non-empty set, a real valued kernel k : Ω× Ω→ R is called

positive definite if
∑n

i,j=1 cicjk(xi, xj) ≥ 0 for any xi ∈ Ω and ci ∈ R. Given

a positive definite kernel k, there exists a unique reproducing kernel Hilbert

space (RKHS) H associated with it such that: (1)k(·, x) spans H; (2)H has

the reproducing property [1]: for all x ∈ Ω and f ∈ H, 〈f, k(·, x)〉 = f(x).

Given training sample (s1, θ1), ..., (sn, θn), let kS(si, sj) = exp(−||si −

sj||2/σ2
S) and kΘ(θi, θj) = exp(−||θi − θj||2/σ2

Θ) be Gaussian kernels defined

on Rm and R, associated with RKHS HS and HΘ, respectively. With as-

sumptions of boundedness of the conditional expectation E(θ|S = s) and

the average gradient functional with respect to z, the functional can be esti-

mated using cross-covariance operators defined in RKHS and the consistency

of their empirical estimators are guaranteed [19].

To derive the estimator, first assume that, for any g ∈ HΘ there exists a

function φ(z) on R such that

E(g(Θ)|S) = φg(B
TS). (3.4)

In addition to the assumptions we make above about RKHS HΘ and HS, We

further make some technical assumptions that

1. kS(s̃, s) is continuously differentiable, its gradient lies in the range of

CSS.

2. φ(z) is differentiable with respect to z and the functional g → ∂φg(z)

∂za
is

continuous for any z ∈ R and a = 1, ..., d.
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3. E(kΘ(θ,Θ)|S = ·) ∈ HS

With the above assumptions, there exists Φa(z) ∈ HS such that

〈g,Φa(z)〉 =
∂φg(z)

∂za

Φa(z) is the derivative of z → E[kΘ(·,Θ)|S = z]. By the above assumption

of SDR, the derivative of the original function g and can be written as

∂E[g(Θ)|S = s]

∂si
=
φg(B

T s)

∂si
=

d∑
a=1

Bia〈g,Φa(B
TS)〉 (3.5)

holds for any g ∈ HΘ. This expression explicitly shows the relation of the

gradient and the projection matrix B. On the other hand, by 3.2 and the

assumptions above, there exist C−1
SS (∂kS(·, s)/∂xi) such that for any g

∂E[g(Θ)|S = s]

∂si
= 〈g, CΘSC

−1
SS

∂kS(·, s)
∂si

〉 (3.6)

Using 3.5 and 3.6, we construct a covariance matrix of average gradients

as

Mij = 〈CΘSC
−1
SS

∂kS(·, s)
∂si

, CΘSC
−1
SS

∂kS(·, s)
∂sj

〉

its empirical estimator can be easily shown as

M̂n(si) = ∇kS(si)
T (GS + nεnIn)−1GΘ(GS + nεnIn)−1∇kS(si) (3.7)

where GS and GΘ are Gram matrices kS(si, sj) and kΘ(θi, θj), respectively.

∇kS ∈ Rn×m is the derivative of the kernel kS(·, si) with respect to si, and εn
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is a regularization coefficient. This matrix can be viewed as the straight for-

ward extension of covariance matrix in principle component analysis (PCA);

the data here are the features in RKHS representing the gradients instead of

the gradients in their original real space.

The averaged estimator M̃ = 1/n
∑n

i=1 M̂n(si) is calculated over the

training sample (s1, θ1), ..., (sn, θn). Finally, the projection matrix B is esti-

mated by taking d eigenvectors corresponding to the d largest eigenvalues of

M̃ just like in PCA, where d is the dimension of the estimated subspace.



Chapter 4

Local Kernel Dimensional

Reduction

To provide a principled way of designing the regression function, capturing

the higher order non-linearity and realizing an automatic construction of

summary statistics, we introduce the kernel based sufficient dimensional re-

duction method as an extension of the linear projection based Semi-automatic

ABC. This dimensional reduction method is a localized version of gradient

based kernel dimensional reduction (GKDR) [17]. GKDR estimates the pro-

jection matrix onto the sufficient subspace by extracting the eigenvectors

of the kernel derivatives matrices in the reproducing kernel Hilbert spaces

(RKHS). We give a brief review of this method in Section 2. In addition to

the GKDR, in which the estimation averages over all data points to reduce

variance, a localized GKDR is proposed by averaging over a small neigh-

borhood around the observation in ABC. Each point is weighted using a

distance metric measuring the difference between the simulated data and the

45
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observation. The idea is similar to the role of the distance kernel function

in (2.1). Another proposal is to use different summary statistics for differ-

ent parameters. Note that sufficient subspace for different parameters can

be different, depending on the particular problem. In these cases, applying

separated dimensional reduction procedures yield better estimations of the

parameter.

The proposed method gives competitive results in comparison with Semi-

automatic ABC[15] when using simple rejection sampling. Substantial im-

provements are reported in the sequential Monte Carlo cases, where threshold

ε are pushed to as small as possible to isolate the performance of summary

statistics from the Monte Carlo errors.

As discussed above, the estimator M̃ is obtained by averaging over the

training sample si. When applied to ABC, since only one observation sample

is available, we propose to generate a set of training data using the generating

model and introduce a weighting mechanism to concentrate on the local

region around the observation and avoid regions with low probability density.

Given simulated data X1, ..., XN and a weighted kernel Kw : Rm → R,

we propose the local GKDR estimator

M̃ =
1

N

N∑
i=1

Kw(Xi)M̂(Xi) (4.1)

where M̂ is m×m matrix and Kw(Xi) is the corresponding weight. Kw(x)

can be any weighting kernel. In the numerical experiments, a triweight kernel

is used, which is written as
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Kw(Xi) = (1− u2)31u<1 u =
‖Xi −Xobs‖2

‖Xth −Xobs‖2

where 1u<1 is the indicator function, and Xth is the threshold value which

determines the bandwidth. The normalization term of the triweight kernel

is omitted since it does not change the eigenvectors we are estimating. The

bandwidth determined by Xth is chosen by empirical experiments and will be

described in 4.2. The triweight kernel is chosen for its concentration in the

central area than other ”bell-shaped” kernels and works well in our experi-

ments. Other distance metrics could be used instead of squared distance.

Description of LGKDR algorithm are given in Algorithms 1. Procedure

GenerateSample is the algorithm to generate sample with parameter as

input. Procedure LGKDR is the algorithm to calculate matrix M(Xi) as

given in (3.7) and (4.1).

Since the dimensional reduction procedure is done before the sampling,

it works as a preprocessing unit to the main ABC sampling procedure. It

can be embodied in any ABC algorithm using different sampling algorithms.

In this paper, the rejection sampling method is firstly employed for its sim-

plicity and low computation complexity as a baseline. Further results on

Sequential Monte Carlo ABC are also reported to illustrate the advantage

of the purposed method. In these experiments, the distance thresholds are

pushed to as small as possible to suppress the Monte Carlo errors and isolate

the effects of summary statistics alone.
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input : weighting kernel Kw, procedure GenerateSample, prior
distribution Dprior, number of an accepted sample N, process
LGKDR

output: projection matrix B

training sample generation;
while i ≤ N do

draw θi ← Dprior;
Xi ← GenerateSample(θi);
w(i)← Kw(Xi);
if w ≤ 1 then

i← i+ 1
end

end

calculate B ;
for j ← 1 to N do

M ←M + LGKDR(w(j). ∗Xj)
end
Mave ←M./N ;
B ← eigen(Mave);

Algorithm 1: LGKDR

input : projection matrix B, distance kernel Kd, bandwidth ε,
number of sample NABC and observation Xob

output: set of parameters {θ(j)}
j ← 1;
for i← 1 to NABC do

draw θi ← Dprior;
Xi ← GenerateSample(θi);
if Kd(B

TXi, B
TXob) < ε then

θ(j)← θi;
j ← j + 1;

end

end

Algorithm 2: Rejection ABC
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input : projection matrix B, distance kernel Kd, target threshold εt,
number of particle NABC , effective sample size threshold esst

output: set of parameters {θ(j)}
for i← 1 to NABC do

draw θi ← Dprior;
Xi ← GenerateSample(θi);

end
ε←Maximum(Kd(B

TX,BTXobs));
while ε ≥ εt do

decrease ε;
for i← 1 to Nabc do

if Kd(B
TXi, B

TXabc) ≤ ε then
Xpartical ← Xi;
θparticle ← θi;
calculate weight Wi;

end

end
MoveParticle (Xparticle);

if
∑Nabc

i=0 Wi ≤ esst then
X ←Resample (Xparticle);

end

end

MoveParticle;
for Xj in Xparticle do

θnew ← Normal(θj, std(θpartical));
Xj ← GenerateSample(θnew);
update weight Wj;

end

Resample for i← 1 to Nabc do
copy Xi NabcWi times;
if Wi = 0 then

discard Xi

end
re-weight Wi to 1/Nabc

end

Algorithm 3: Sequential-ABC
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4.1 Separated Dimensional Reduction

In some problems, not all summary statistics are necessary for every parame-

ter. For example, in the M/G/1 Queue model, the parameter θ3 that controls

the distribution of the inter-arrival time are not related to the parameters θ1

and θ2, which jointly determine the distribution of the service time. It can be

expected that using different sets of summary statistics for θ3 with smaller

dimensionality would improve the sampling efficiency. To do that, the in-

formation that is unrelated to the particular parameter is dropped in the

dimensional reduction in exchange of lower dimensionality. The experiments

show that better results can be achieved using these settings.

More precisely, LGKDR incorporates information of θ in the calculation

of gradient matrix M̃ . If θ is a vector, the relation of different elements of

θ are contained in the gram matrix Gθ as in (3.7). Separate estimations

concentrate on the information of the specific parameter rather than the

whole vector. As shown in the experiments in Chapter 5, it can construct

significantly more informative summary statistics in some problems by means

of reducing estimation error.

For Semi-automatic ABC [15], the summary statistic for each parameter

is the estimated posterior mean, thus naturally separated. However, if these

one dimensional vectors are used for each parameter separately, the results

are not very good. For best subset selection methods [52][38], summary

statistics are chosen as the best subset of the original summary statistics

using mutual information or sufficiency criterion. It can also be extended to

a separated selection procedure. In LGKDR, we simply construct summary
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statistics by using only the particular parameter as the response variable.

4.2 Discussion on Hyper Parameters

In this section, we discuss the parameters for LGKDR. Parameters for the

ABC sampling will be discussed in the experiments section.

First, the bandwidth of the weighting kernel affects the accuracy of LGKDR.

By selecting a large bandwidth, the weights of directions spread out a larger

region around the observation points. A small bandwidth concentrates the

weights on the directions estimated close to the observation sample. In our

experiments, a bandwidth corresponding to an acceptance rate of approx-

imately 10% gives a good result and is used throughout the experiments.

The same parameter is set for the Semi-automatic ABC as well for the sim-

ilar purpose. A more principled method for choosing bandwidth, like cross-

validation, could be applied to select the acceptance rate if the corresponding

computation complexity is affordable.

The bandwidth of the Gaussian kernels σS, σΘ and the regularization

parameter εn are crucial to all kernel based methods. The first two deter-

mine the function spaces associated with the positive definite kernels and the

latter affects the convergence rate (see [45]). In this paper, cross-validation

is adapted to select the proper parameters. In the cross-validation, for each

set of candidate parameters, the summary statistics are constructed using a

simulated observation θobs, sobs, a training set (θtraining, Straining) and a test

set (θtest, Stest). A small pilot run of rejection ABC is performed and the

estimation of parameters are calculated by kNN regression of θtest with the
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Stest. K is set to 5 in all cases. The parameters that yield the smallest least

error between the θtest and θobs are chosen. The final summary statistics are

then constructed and passed to the formal run of ABC.

4.3 Computational Complexity

Computational complexity is an important concern of ABC methods. LGKDR

requires matrix inversion, solving eigenvalue problems and the cross-validation

procedure. In this paper, the training sample size is fixed to 2× 103 and 104

for LGKDR and Semi-automatic ABC, respectively. Under this setting, the

total computational time of LGKDR is about 10 times over the linear regres-

sion. We believe that it is a necessary price to pay if the non-linearity between

the summary statistics are strong. Being unable to capture this information

in dimensional reduction step will induce a poor sampling performance and

a biased estimation. Also, although the cross-validation procedure takes the

majority of computation time in LGKDR, it needs to be performed only once

for each problem. Once the parameters are chosen, the computation com-

plexity of LGKDR is comparable to the linear-type algorithms. Overall the

computational complexity depends on both the dimensional reduction step

and the sampling step. For complex models like population genetics, sam-

pling is significantly more time consuming than the dimensional reduction

procedure.



Chapter 5

Experiments

In this section, we investigate three problems to demonstrate the performance

of LGKDR. Our method is compared to the classical ABC using initial sum-

mary statistics and the Semi-automatic ABC [15] using estimated posterior

means. In the first problem, we discuss a population genetics model, which

was investigated in many ABC literature. We adopt the initial summary

statistics used in [36], and rejection ABC is used as the sampling algorithm.

In the second problem, an M/G/1 stochastic queue model which was used

in [7] and [15] are discussed. While the model is very simple, the likelihood

function could not be trivially computed. In the last experiment, we explore

the Ricker model as discussed in [53] and [15]. The latter two problems

are investigated by both Rejection ABC and sequential ABC method (SMC

ABC) [35], the first problem is omitted from SMC ABC because it involves

repeated calling an outside program for simulation and is too time-consuming

for SMC ABC.

53
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5.1 Implementation Details

The Rejection ABC is described in Algorithm 2 and the SMC ABC is shown

in Algorithm 3. The hyper-parameters used in LGKDR is set as discussed in

section 4.2. We use a modified code from [35] and R package ”Easyabc” [26]

in our SMC implementation and would like to thank the corresponding au-

thors. Gaussian kernels are used in all the LGKDR algorithms. The detailed

specifications of Semi-automatic ABC will be described in each experiment.

For evaluation of the experiments conducted using rejection ABC, a set

of parameters θj where j ∈ 1, ..., Nobs and the corresponding observation

sample Y j
obs are simulated from the prior and the conditional probability

p(Y |θ), respectively, and are used as the observations. For each experiment,

we fix the total number of simulations N and the number of accepted sample

Nacc. The sample used for rejection are then generated and fixed for all three

methods. Using this setting, although the randomness of the simulation

program is contained in the sample, yet the sample used for each method

is same and fixed, we can ignore the randomness in the simulation program

and compare the methods more fairly. Also, by accurately determine the

acceptance rate, which is the most influential parameter for the estimation

accuracies. The Mean squared error (MSE) over the accepted parameters θ̂ji

and observation θj are defined as

MSEj =
1

Nacc

(
Nacc∑
i=1

(θj − θ̂ji )2

)
.

The Averaged Mean Square Error (AMSE) is then computed as the av-

erage over MSEj of each observation pair (θj, Y j
obs) as
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AMSE =
1

Nobs

Nobs∑
j=1

MSEj. (5.1)

It is used as the benchmark for Rejection ABC. Because of the difference of

computation complexity, for the fairness of comparison, the acceptance rates

are set differently. For LGKDR, the acceptance rate is set to 1%; while for

Semi-automatic ABC and original ABC, the acceptance rates are set to 0.1%.

The training sample and simulated sample are generated from the same prior

and remain fixed.

For SMC ABC, to get to as small tolerance as possible, the simulation

time is different for a different method. AMSE is used as the benchmark for

the accuracy of the queue model. In the case of the Ricker model, due to the

extremely long simulation time, only one observation is used and MSE is used

instead in this case. Computation time are reported for both experiments.

5.2 Parameter Settings

Several parameters are necessary for running the simulations in ABC. For

Rejection ABC, the total number of samples N and the accepted number of

samples Nacc are set before the simulation as mentioned above. For Semi-

automatic ABC and LGKDR, a training set needs to be simulated to calcu-

late the projection matrix. For LGKDR, a further testing set is also generated

for cross-validation purposes. The value of these parameters is reported in

the corresponding experiments. The simulation time for generating these

sample sets are negligible compared to the main ABC, especially in SMC
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ABC. For LGKDR, another important parameter is the target dimensional-

ity d. There are no theoretically sound methods available to determine the

intrinsic dimensionality of the initial summary statistics. In practice, since

the projection matrix is simply the extracted eigenvectors of the matrix M

as in (4.1) ordered by the absolute value of the corresponding eigenvalues,

the dimensionality is just the number of the eigenvectors been used. In our

experiments, we run several Rejection ABC procedures using different B on

a small fixed test set and then fix the dimensionality. Since the test set is

fixed and the different projection matrices are directly accessible, this pro-

cedure is very fast. A starting point can be set by preserving 70% of the

largest eigenvalues in magnitude and it usually works well. There is a large

collection of literature on how to choose the number of principal components

in PCA, which is similar to our problem, for example, see [50] and reference

therein.

5.3 Population Genetics

Analysis of population genetics is often based on the coalescent model[24]. A

constant population model is used in simple situations, where the population

is assumed unchanged across generations. The parameter of interests, in

this case, is the scaled mutation rate θ, which controls the probability of

mutation between each generation. The detailed introduction of coalescent

models can be found in [37]. Various studies [3] [32] [44] have been conducted

in population genetics following different sampling algorithms. In this study,

we adopt the setting of kernel ABC [36] and compare the performance with
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ABC and Semi-automatic ABC.

100 chromosomes are sampled from a constant population (N = 10000).

The summary statistics are defined using the spectrum of the numbers of

segregating sites, ssfs, which is a coarse-grained spectrum consisting of 7 bins

based on the Sturges formula (1 + log2Sseg). The frequencies were binned

as follows: 0 − 8%, 8 − 16%, 16 − 24%, 24 − 32%, 32 − 40%, 40 − 48% and

48 − 100%, we use the uniform distribution θ ∼ [0, 30] in this study rather

than the log-normal distribution in [36]. As ABC is often used for exploratory

researches, we believe that the performance based on an uninformative prior

is important for evaluating summary statistics. The program package ms is

used to generate the sample, which is of common choice in the literature of

coalescent model [25].

We test 3 typical scaled mutation rates 5, 8 and 10 rather than random

draws from the prior. The results are averaged over 3 tests. A total number

of 106 sample is generated; 105 sample is generated as the training sample

for LGKDR and Semi-automatic ABC. Different acceptance rates are set for

different methods as discussed above. We use ssfs as the summary statistics

for both Semi-automatic ABC and LGKDR. Local linear regression is used

as the regression function for the former. In LGKDR, the dimension is set

to 2.

As shown in Table 5.1, the performance of both LGKDR and Semi-

automatic ABC improve over original ABC method. LGKDR and Semi-

automatic ABC achieve very similar results suggesting that the linear con-

struction of summary statistics are sufficient for this particular experiment.
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Table 5.1: AMSE, Coalescent Model.

Method mutation rate θ
ABC 1.94
Semi-automatic ABC 1.62
LGKDR 1.66

5.4 M/G/1 Queue Model

The M/G/1 model is a stochastic queuing model that follows the first-come-

first-serve principle. The arrival of customers follows a Poisson process with

intensity parameter λ. The service time for each customer follows an arbi-

trary distribution with fixed mean (G), and there is a single server (1). This

model has an intractable likelihood function because of its iterative nature.

However, a simulation model with parameter (θ1, θ2, θ3) can be easily imple-

mented to simulate the model. It has been analyzed by ABC using various

different dimensional reduction methods as in [15] and [7], with the compar-

ison to the indirect inference method. We only compare our method with

Semi-automatic ABC, since it produces substantially better results than the

other methods mentioned above.

The generative model of the M/G/1 model is specified by

Yn =


Un if

∑n
i=1Wi ≤

∑n−1
i=1 Yi

Un +
∑n

i=1 Wi −
∑n−1

i=1 Yi if
∑n

i=1Wi >
∑n−1

i=1 Yi

where Yn is the inter-departure time between the nth and n− 1th customer,

Un is the service time for the nth customer, and Wi is the inter-arrival
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time between the nth and n− 1th customer. The process is initialized with

Y1 = U1. The service time is uniformly distributed in interval [θ1, θ2]. The

inter-arrival time follows an exponential distribution with rate θ3. These

configurations stay the same as [7] and [15]. We set uninformative uniform

priors for θ1, θ2 − θ1 and θ3 as [1, 10]2 × [1, 1/3].

For the rejection ABC, we simulate a set of 30 pairs of (θ1, θ2, θ3) but avoid

boundary values. They are used as the true parameters to be estimated. The

total number of 106 samples are generated. The posterior mean is estimated

using the empirical mean of the accepted samples. The simulated samples

are fixed across different methods for comparison.

we use the quantiles of the sorted inter-departure time Yn as the explo-

ration variable of the regression model f(y) as in [15]. The powers of the

variables are not included as no significant improvements are reported. A

pilot ABC procedure is conducted using a fixed training sample set of size

104. Local linear regression is used rather than a simple linear regression for

better results. For LGKDR, we use the same quantiles as initial summary

statistics for dimensional reduction as in Semi-automatic ABC. The number

of accepted training sample is 2× 103 in for the LGKDR. The dimension is

manually set to 4, as small as the performance is not degraded.

The experimental results of Rejection ABC are shown in Table-5.2. “LGKDR”

refers to the LGKDR that does not use separated estimation. “focus 1” de-

notes the separated dimensional reduction for parameter θ1, and the following

rows are of similar form. Compared to ABC, “Semi-automatic ABC” gives

a substantial improvement on the estimation of θ1; the other parameters

show similar or slightly worse results. LGKDR method improves over ABC
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on θ1 and θ2, but the estimation of θ1 is not as good as in Semi-automatic

ABC. However, after applying separated estimation, θ1 presents a substan-

tial improvement compared to Semi-automatic ABC. Separated estimations

for θ2 and θ3 give no improvements. It suggests that the sufficient dimen-

sional reduction subspace for θ1 is different from the others and a separated

estimation of θ1 is necessary.

For SMC ABC, a set of 10 pairs of parameters are generated, and the

results on SMC and LGKDR are reported. Other settings are the same as

the rejection ABC. We omit the results of using Semi-automatic ABC since

the sequential chain did not converge properly using these summary statistics

and the induced errors were too large to be meaningful. In SMC ABC, two

experiments are reported: SMC ABC1 and SMC ABC2. The number of

particles is set to 2 × 104 and 105, respectively. In LGKDR, the number of

particles are set to 2 × 104 and the training sample size for the calculation

of projection matrix is 2× 103, accepted from a training set of size 4× 104.

The dimensionality is set to 5. Cross-validation is conducted using a test set

of size 2× 104.

Results of SMC ABC are shown in Table-5.3. AMSEs are reported. The

simulation time is shown as well. The computational time of constructing

LGKDR summary statistics is included in the total simulation time and is

listed in the bracket. The results show that LGKDR gives better results of

parameter θ1 and θ2, using less time compared to SMC ABC with set E2.

The estimation of θ3 is worse but the difference is small (0.005). Focusing on

θ3 produces an estimation as good as in SMC ABC.
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Table 5.2: AMSE, Queue Model, Rejection ABC

Method θ1 θ2 θ3

ABC 0.2584 0.5113 0.0019
Semi-automatic ABC 0.0112 0.5279 0.0024
LGKDR 0.0623 0.2259 0.0023
LGKDR(focus 1) 0.0082 5.0656 0.0031
LGKDR(focus 2) 0.3942 0.2514 0.0020
LGKDR(focus 3) 0.2229 3.4958 0.0020

Focus means using only that particular parameter as responce variable.

Table 5.3: AMSE, Queue Model, SMC ABC

Method θ1 θ2 θ3 Total time
SMC ABC 1 0.0404 0.4928 0.0139 9.6e+03
SMC ABC 2 0.0429 0.1964 0.0054 3.3e+04
LGKDR 0.0235 0.1605 0.0110 2.0e+04 (7.78e+3)
LGKDR(focus 3) 0.4854 0.1383 0.0059 2.1e+04 (7.85e+3)

The simulation time of SMC ABC 1 is set to 1e+04 to provide a baseline
performance. In SMC ABC 2, the simulation is continued until the

bandwidth is no longer changing.
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5.5 Ricker Model

Chaotic ecological dynamical systems are difficult for inference due to its

dynamic nature and the noises presented in both the observations and the

process. Wood [53] addresses this problem using a synthetic likelihood infer-

ence method. Fearnhead [15] tackles the same problem with a similar setting

using the Semi-automatic ABC and reports a substantial improvement over

other methods. In this experiment, we adopt the same setting and apply

LGKDR with various configurations.

A prototypic ecological model with Richer map is used as the generating

model in this experiment. A time course of a population Nt is described by

Nt+1 = rNte
−Nt+et (5.2)

where et is the independent noise term with variance σ2
e , and r is the growth

rate parameter controlling the model dynamics. A Poisson observation y is

made with mean φNt. The parameters to infer are θ = (log(r), σ2
e , φ). The

initial state is N0 = 1 and observations are y51, y52, · · · , y100.

The original summary statistics used by Wood [53] are the observation

mean ȳ, auto-covariances up to lag 5, coefficients of a cubic regression of the

ordered difference yt− yt−1 on the observation sample, estimated coefficients

for the model y0.3
t+1 = β1y

0.3
t + β2y

0,6
t + εt and the number of zero observations∑100

t=51 1(yt = 0). This set is denoted as E0 as in [15]. Additional two sets

of summary statistics are defined for Semi-automatic ABC. The smaller E1

contains E0 and
∑100

t=51 1(yt = j) for 1 ≤ j ≤ 4, logarithm of sample variance,

log(
∑100

t=51 y
j
t ) for 2 ≤ j ≤ 6 and auto-correlation to lag 5. Set E2 further
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includes time-ordered observation yt, magnitude-ordered observation y(t), y
2
t ,

y2
(t), {log(1+yt)}, {log(1+y(t))}, time difference ∆yt and magnitude difference

∆y(t). Additional statistics are added to explicitly explore the non-linear

relationships of the original summary statistics and are carefully designed.

In Rejection ABC, we use set E0 for ABC without dimensional reduction

since the dimension of the larger sets induces severely decreased performance.

Sets E1 and E2 are used for Semi-automatic ABC as in [15]. In LGKDR, we

tested sets E0 and E1 in different experiments. The result on E2 is omitted

as the result is similar with using the smaller set of statistics, indicating

that manually designed non-linear features are unnecessary for LGKDR. The

sufficient dimension is set to 5; a smaller value induces substantial worse

results. We simulated a set of 30 parameters, a fixed simulated sample of

size 107 for all the methods and a training sample of size 106, a test sample

of size 105 for LGKDR and Semi-automatic ABC. The values of log(r) and

φ are fixed as in [15], and log(σe) are drawn from an uninformative uniform

distribution on [log(0.1), 0].

The results are shown in Table 5.4. The performance of Semi-automatic

ABC using the bigger set E2 is similar to ABC but is substantially worsen

with set E1, suggesting that the non-linear information are essential for an

accurate estimation in this model. These features are needed to be explicitly

designed and incorporated into the regression function for Semi-automatic

ABC. LGKDR using summary statistics set E0 gives similar results com-

pared with ABC. Using larger set E1, the accuracy of log(r) is slightly worse

than using set E0, but the accuracy of σe and φ present substantial improve-

ments. The additional gains of separate constructions of summary statistics
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in this model are mixed for a different parameter, log(r) and φ show very

small improvements but σe gets improvements in both cases. Overall, We

recommend using separate constructions for the potential improvements if

the additional computational costs are affordable.

In SMC ABC, we use set E0 for the SMC, E1 for LGKDR and both E1

and E2 for Semi-automatic ABC. The number of particles is set to 5×103 for

all experiments. Other parameters are the same as in Rejection ABC. Only

one set of the parameter is used and the time of simulation is set to achieve

a tolerance which is as small as possible. Simulation time are reported with

a computational time of LGKDR included. We show several results with

different settings of dimensionality in LGKDR to illustrate the influence of

that hyper-parameter. For LGKDR, we achieve better results on θ1 and θ2

with less computation time, especially on θ1. After focusing on θ3, we get

a comparable result on θ3 as well with less time. Also should be noticed

is the computation time of the LGKDR itself. Since the cross validation

for choosing kernel parameters is only to be done once, the computation

time should be averaged if multiple run of experiments are done. Another

observation is that, if the dimensionality is too high, the efficiency of the SMC

chain is decreased; if it is set too low, more bias is induced in the estimated

posterior mean suggesting a loss of information in the constructed summary

statistics. In this experiment, dimensionality 6 is chosen by counting the

number of largest 70% eigenvalues in magnitude as discussed before.

The results are shown in Table-5.5. It shows that the LGKDR can achieve

similar results as Semi-automatic ABC using only 1/10 of the simulation

time.
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Table 5.4: AMSE, Ricker Model, Rejection ABC

Method log(r) σe φ
ABC(E0) 0.049 0.217 0.944
Semi-automatic ABC(E2) 0.056 0.246 0.936
Semi-automatic ABC(E1) 0.082 0.279 1.387
LGKDR(E0) 0.043 0.241 0.984
LGKDR(E0,focus1) 0.043 0.221 1.221
LGKDR(E0,focus2) 0.068 0.200 1.234
LGKDR(E0,focus3) 0.047 0.211 1.007
LGKDR(E1) 0.047 0.179 0.895
LGKDR(E1,focus1) 0.048 0.220 1.38
LGKDR(E1,focus2) 0.059 0.174 2.694
LGKDR(E1,focus3) 0.054 0.292 0.829

Table 5.5: MSE, Ricker Model, SMC ABC

Method log(r) σe φ Total time
ABC(E0) 0.001 0.003 0.430 4.0e+5
Semi-automatic ABC(E2) 0.002 0.020 0.013 4.3e+5
Semi-automatic ABC(E1) 0.031 0.079 0.019 1.7e+5
LGKDR(Dimensional 3) 0.024 0.131 0.779 8.6e+4
LGKDR(Dimensional 6) 0.006 0.018 0.012 4.5e+4
LGKDR(Dimensional 9) 0.001 0.040 0.250 2.8e+5

All experiments are continued until no smaller bandwidth can be reached
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Table 5.6: AMSE, Queue Model, Rejection ABC

Method θ1 θ2 θ3

ABC 0.1512 0.2539 0.0020
LGKDR 0.0764 0.1949 0.0023
GKDR 0.0901 0.2194 0.0023
SIR 0.1961 0.1735 0.0021

5.6 Compare with Other SDR Dimensional

Reduction Methods

In this section, we compare the results of LGKDR the other classic SDR

dimensional reduction method including sliced inverse regression (SIR) and

GKDR without local modifications. The same model of the Queue model

from section 5.4 is used in this experiment. The total number of observation

is set to 80. The results are averaged over all 80 runs of ABC and are

compared using same criterion as 5.1: AMSE. The number of simulations for

each run of ABC is fixed to 1× 106. The acceptance rate is fixed to 0.3 %.

For LGKDR, the parameters of the RKHS kernels are fixed throughout all

runs of ABC. The number of training sample used in GKDR and LGKDR

are set to 3000. Other settings including the settings of the sampling are

the same as section 5.4. For SIR, the number of slices are set to 10, with

3000 samples used as reference data. The output dimension for the all three

projection methods are set to 5. The results are shown in Table 5.6.

From the result, we can see that LGKDR consistently outperforms GKDR

without localization. It is a reasonable result since the training samples form

GKDR are scattered in the whole parameter space and thus the directions
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estimated are not as accurate as in local GKDR. For SIR, although the

result on θ2 is best among all methods, the error on θ1 is even larger than

the original ABC, making it difficult to use. All three methods show similar

results on θ3. Overall, LGKDR provides a competitive result without the

need to re-adjusting the parameters for each run of sampling.



Chapter 6

Conclusions

In this thesis, we first review the basic idea of ABC and the motivations for

using likelihood-free Bayesian methods. Then the basics of kernel methods

are briefly reviewed to give a proper understanding of GKDR.

The main contribution of this thesis is the proposal of using LGKDR al-

gorithm for automatically constructing summary statistics in ABC. The pro-

posed method assumes no explicit functional forms of the regression functions

nor the marginal distributions, and implicitly incorporates higher order mo-

ments up to infinity. As long as the initial summary statistics are sufficient,

our method can guarantee to find a sufficient subspace with low dimension-

ality. While the involved computation is more expensive than the simple

linear regression used in Semi-automatic ABC, the dimensional reduction is

conducted as the pre-processing step and the cost may not be dominant in

comparison with a computationally demanding sampling procedure during

ABC. Another advantage of LGKDR is the avoidance of manually designed

features; only initial summary statistics are required. With the parameter

68
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selected by the cross-validation, construction of low dimensional summary

statistics can be performed as in a black box. For complex models in which

the initial summary statistics are hard to identify, LGKDR can be applied

directly to the raw data and identify the sufficient subspace. We also con-

firm that construction of different summary statistics for different parameter

improve the accuracy significantly.

Another contribution of the thesis is on the experiments of dimensional

reduction method on Sequential-ABC methods. By using Sequential-ABC

and keeping the acceptance distance as small as possible, we are able to

suppress the influence of the Monte Carlo errors as low as possible, making

computations of different dimensional reduction methods more reasonable.

For possible future directions of this work, first, the relationship of con-

centration rate for the training sample used in LGKDR is only empirically

decided. A theoretical analysis may help better understanding this problem.

Second, currently, the output dimensional of LGKDR is set based on exper-

iments by looking at the top few largest eigen values of the matrix, a more

principled way of deciding the output dimension is a good direction.
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