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Doctor of Philosophy

Quantum Resource Engineering

by Michael Robert HANKS

The discovery of quantum mechanics introduced principles such as entangle-
ment having no classical counterparts. These are now known to allow a twenty-first
century technological paradigm shift: Quantum technologies promise unparalleled
performance in certain areas of computation, physical simulation, secure communi-
cation, and metrology. These promises prompt an investigative process targetting
the reliable control of small-scale physical systems. On the design front, schemes for
control, communication, and the protection of information have been developed.
On the discovery front, a range of disparate physical systems including among oth-
ers quantum dots, trapped ions, crystal defects, and superconducting circuits, have
been investigated for suitability in the machinery of quantum information processing.
This process of design and discovery forms the immediate context for the work con-
tained in this two-part thesis.

Following a brief general introduction, the first part begins with the protection
of information against local noise. Initially, I consider the utility of strong coupling
in the protection of Greenberger-Horne-Zeilinger (GHZ) states for quantum sensing.
Here it is found that such strong coupling narrows the gap between the sensitivity
of the composite sensor and the Heisenberg limit, and that the form of the coupling
with distance defines the optimal size of each GHZ state. I then turn to consider
the impact of local information on the logical error rate of small-scale topological
quantum error correction codes; I show how such information reduces resource re-
quirements.

In the second part I look at how physical qubits might be implemented, consid-
ering two defect centers in diamond: The nitrogen–vacancy center and the silicon–
vacancy center. Beginning with the nitrogen–vacancy center, I build upon the earlier
work of others to show that projective spin measurements via cavity reflection statis-
tics can in principle be achieved with operational fidelities sufficient for fault toler-
ant quantum information processing. By way of comparison, I then turn to consider
measurement and single-qubit rotations on the electronic state of the silicon–vacancy
center, but am forced to conclude that despite its promising optical properties, such
operations are not forthcoming with the silicon–vacancy center to fidelities suffi-
cient for fault tolerant quantum information processing. I end by linking results in
this second part with prior proposals, describing the potential of a nitrogen–vacancy
center photonic module for distributed quantum information processing tasks. I ar-
gue that the potential of such modules for high-fidelity entangled link generation
puts them in a promising position to implement near term proof-of-principle devices
for quantum repeaters and distributed parameter estimation, and that this promise
further extends in the longer term to large-scale quantum computation.
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Preface

Motivation and Opinion The field of quantum information processing has ad-
vanced in leaps and bounds since its conception in the 1980s [1–4]. Algorithms and
protocols have been developed for a series of interesting and rewarding applications,
and in quantum cryptography and nano-scale sensing the developments in this field
are already contributing to commercial society. Progress does not proceed at a con-
stant rate or difficulty, however, and it seems we now face a crossroads: Long-term,
high-impact, commercial developments appear to require a level of scalability, ei-
ther in size or in time, with no ready solution. Each member in the canonical set
of physical systems, such as trapped ions and superconducting circuits, seems lim-
ited by its own specific fundamental challenges, and the recent surge in commercial
interest threatens either to cement the position of the first such system to cross the
scalability-threshold or to cause a collapse in interest akin to the so-called AI Winter
in artificial intelligence research.

It has been said that we now operate in the noisy intermediate-scale quantum era [5].
This era is characterised by severe resource limitations, both in qubit number and in
time; in contrast to the strict modularisation of the abstraction hierarchy for classical
information processing, questions of the design and operation of quantum informa-
tion processing devices at all levels of abstraction will need to be considered in con-
junction with one another. The compilation process for the superconducting-circuit
quantum system made available for public use by IBM provides a representative ex-
ample: Users are forced to consider the physical layout of qubits and local expected
operational fidelities at compile-time. Further, the large qubit numbers required for
quantum error correction imply that, even once scalable operation is reached in the
limited sense of the requirements of quantum error correction codes, resource lim-
itations will continue to play a major role in device design and operation, if only
due to the sheer magnitude of the costs involved. It is therefore in our interest to
consider in detail those resources and methods available to us, to engineer greater
levels of efficiency.

There has been an apparent rift between those researchers more immediately
interested in demonstrating near-term quantum supremacy [6] and those with their
sights fixed on continuing the long march toward scalability. Stable interest and
development appears to me to require a path both allowing for gradual refinement
of current technologies in the near term while simultaneously laying the ground-
work to meet those larger long-term challenges. To the best of my knowledge, there
appear to be four commercially significant applications that can be refined in the
near-term: quantum cryptography, quantum random number generation, quantum
optimisation algorithms, and quantum metrology. Each of these applications places
emphasis on a different aspect of the eventual composite quantum information pro-
cessing system: Among other considerations, quantum cryptography depends on
the quality and repetition rate of single-photon sources and detectors; quantum ran-
dom number generation depends on the characterisation and speed of single-qubit
rotations and measurements; quantum optimisation algorithms appear to depend
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on minimising collective and inhomogeneous noise in many-qubit systems with lo-
cal interactions; and quantum metrology appears to depend on the ability to gen-
erate and maintain entangled states, as well as on selective system–environment
interactions. In this thesis I have chosen to focus primarily on aspects relevant to the
generation and maintenance of entangled states. These are most relevant in the near-
term, in my estimation, to quantum metrology, in the mid-term to (perhaps partially
error corrected) quantum communication, and in the long-term to the generation of
the fully error corrected states of quantum computation.

Structure, Origins and New Results Following a general introductory history to
set the context of the work, I have arranged the structure of this report into five
sections, grouped into two parts.

In Part I, I consider general schemes for reducing the impact of local noise for
small-scale, near-term quantum devices. Chapter 2 begins with a consideration
of the potential role of strong-coupling in quantum sensing. It is based on the
published work of the same name, robust quantum sensing with strongly interacting
probe systems [7], performed in conjunction with Shane Dooley, Shojun Nakayama,
William J. Munro, and Kae Nemoto. This work was supported in part by the MEXT
KAKENKHI Grant number 15H05870. The presentation has however been re-worked
to relate the results more directly with the overarching theme of this report, and to
avoid plagiarisation of Dr Shane Dooley, to whom is owed primary credit for the au-
thorship of the original text. We are very grateful to Yuichiro Matsuzaki for helpful
discussions. The essential feature of this section is the application of strong coupling
for passive state protection, a feature well known among researchers interested in
passive error mitigation, to quantum sensing. In this way the reduced efficacy of ac-
tive correction schemes in the presence of one-way relaxation processes is overcome
while yet allowing for dynamical decoupling, so that such relaxation processes may
remain a limiting factor. Results are presented for a range of inter-qubit coupling
strengths and environment temperatures, optimal qubit numbers are determined as
a function of the relaxation rate and the form of the interaction with distance, and the
example of superconducting flux qubits is described to suggest the near-term utility
of the scheme. The two key resources of quantum sensing are time and the number
of probe systems; by engineering the composite energy level structure of our system,
we enhance the efficiency of these resources as expressed by the sensitivity parame-
ter. Chapter 3 continues the discussion of local noise mitigation with a look at the
role of local information in the decoding of the repetition code and the surface code for
the protection of quantum states. This work has not yet been published elsewhere,
and was performed in conjunction with William J. Munro and Kae Nemoto. Fruit-
ful discussions on this work were had with Simon Devitt and Ashley Stephens, to
whom we owe many thanks. The key result of this section is an improvement in re-
source efficiency when local information is taken into account during the decoding
process: the code distance (related to the required number of qubits) associated with
a given logical error rate is reduced with a magnitude depending on the proximity
of the physical error rate to the accuracy threshold of the code (the maximum physical
error rate for which the logical error rate is not increased). An averaged approach
to local information for table-lookup and localised decoding schemes is suggested, a
breakdown of these effects for large-scale systems is predicted, and the importance
of this resource reduction in the near-term is highlighted.

In contrast to the largely system-agnostic discussion of noise in Part I, Part II
considers the implementation of single-qubit gates, particularly measurement, on
specific physical systems: The nitrogen–vacancy and silicon–vacancy defect centers
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in diamond. Chapter 4 leads this part with a theoretical performance estimate for
an indirect measurement of the electronic spin of the nitrogen–vacancy center based
on the reflection statistics of a coupled optical cavity. It is based on the published
work of the same name, high fidelity spin measurement on the nitrogen–vacancy center
[8], performed in conjunction with Michael Trupke, Jörg Schmiedmayer, William J.
Munro, and Kae Nemoto. This project was made possible through the support of a
grant from the John Templeton Foundation. The opinions expressed in this publi-
cation are those of the authors and do not necessarily reflect the views of the John
Templeton Foundation (JTF #60478). We also acknowledge support from the MEXT
KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas “Science of Hy-
brid Quantum Systems” Grant No. 15H05870. This section opens with an overview
of the relevant properties of the nitrogen–vacancy center, followed by a description
of the single-photon measurement process considered and its model. Idealised mea-
surement time and fidelity estimates are provided for current and near-term tech-
nology. The impacts of the photon bandwidth on the pulse time and the required
cavity decay rate are then incorporated, before providing estimates of the additional
error incurred by introducing weak coherent light sources in place of single-photon
sources. The section ends with a brief discussion stressing the roles of weak coher-
ent light sources and single-photon sources in the near- and long-term respectively.
Chapter 5 estimates the achievable performance of single-qubit rotations and spin
measurements for the negatively charged silicon–vacancy center in diamond. This
previously unpublished work was performed in conjunction with William J. Munro
and Kae Nemoto, and we thank Michael Trupke for helpful discussions. Following
an overview of the relevant known properties of the silicon–vacancy center, we lead
the analysis by justifying a particular field configuration and qubit encoding with
respect to the center’s energy level structure and decay processes. The adoption of
the measurement scheme introduced in the previous section is justified, and perfor-
mance estimates are given. Unlike the preceding work for the nitrogen–vacancy cen-
ter, however, this section additionally provides and explains performance estimates
for optical stimulated Raman adiabatic passage (STIRAP) single-qubit rotations. We
conclude with a discussion emphasising the potential use of silicon–vacancy centers
in small-scale or rate-dependent (in contrast to fidelity-dependent) applications. Fi-
nally, in Chapter 6 I conclude Part II by outlining potential goals for the near-, mid-,
and long-term. This broad discussion is based on the published conference proceed-
ings paper of the same name, a universal quantum module for quantum communication,
computation, and metrology [9], written in conjunction with Nicoló Lo Piparo, Michael
Trupke, Jörg Schmiedmayer, William J. Munro, and Kae Nemoto. However, certain
elements have been modified and added to increase the compatibility of that text
with this wider report. This section begins by expressing certain of the results in
Chapter 4 in the language of rates and probabilities, suitable for the proposed ap-
plications to follow. Sections 6.4-6.6 then explain and provide loose performance
estimates for

1. single-node, heralded, memory-assisted quantum communication,

2. distributed quantum sensing, and

3. cluster state generation for quantum computation.

After providing a brief comparison with the silicon–vacancy center considered in
the preceding section, we conclude by emphasising the suitability of the nitrogen–
vacancy center photonic module both for the current resource-limited era and look-
ing further toward scalable quantum information processing.
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Though connected by the overall theme and goals of this thesis, the content of
each section above is commonly approached as a distinct sub-field in its own right.
For this reason, for the sake of those readers with particular interests each section is
written to be as self-contained as possible.

The report concludes with a very brief final chapter, wherein I summarise and
discuss my hopes for the direction along which this report might contribute to the
development of quantum information processing devices.
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Chapter 1

An Introductory History of
Quantum Information Processing

The computing revolution of the twentieth century was one of the most significant
developments in the history of mankind. Steady exponential improvement in the
speed and size of modern computers over roughly the past seventy years since the
invention of the transistor has changed — and digitised — almost every aspect of
our lives.

Since the 1980s [1–4], it has been realised that quantum mechanics offers the po-
tential to revolutionize certain important information processing tasks. Such tasks
fall under the categories of secure communication [10–13], precise and accurate metrol-
ogy and measurement [14–16], the simulation of physical systems [17], and compu-
tation tasks such as the famous prime factorisation problem that lies at the heart of
most modern public key cryptography [18]. Landmark discoveries, such as Wies-
ner’s conjugate coding [2], the factoring and search algorithms of Shor [18] and
Grover [19], or the correction of error in an arbitrary and unknown quantum state
[20–22], promise to achieve with technology based on the principles of quantum
physics what cannot be achieved with conventional, classical machines alone.

There is an expected progression to the development of technologies to accom-
plish these tasks:

1. Basic (single-qubit) quantum communication and nano-scale metrological ap-
plications to encoded- and entangled-state metrology,

2. communication with quantum repeaters (further split into short-term and fully-
scalable schemes),

3. simulation of systems with restricted operation sets and O(100) atomic ele-
ments, and

4. universal quantum computation.

The applications of point (4), universal quantum computation, will in general re-
quire from thousands to billions of entangled qubits [23, 24] and a universal set of
quantum operations.

To understand the challenges ahead for quantum information processing, it can
help to put these challenges in the context of the historical development of the field.
This introductory chapter seeks to do just that, to explain the stages of development
of quantum information processing, how they distinguished themselves from their
classical foundations, and the unique aspects of the challenges they face.
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1.1 Reversible Computing

1960 was a time of rapid and exciting progress in computer technology. Design-
ers were leaving behind vacuum tubes, which were large and generated significant
amounts of heat, in favour of transistors (the first computer made from transistors
was built in 1953) and magnetic cores (developed also in 1953). Further, the in-
vention of the integrated circuit in 1958 promised to continue the trend of making
computers faster, cheaper, and more efficient.

“What I want to talk about is the problem of manipulating and controlling
things on a small scale.
As soon as I mention this, people tell me about miniaturization, and how far it
has progressed today. They tell me about electric motors that are the size of the
nail on your small finger. And there is a device on the market, they tell me, by
which you can write the Lord’s Prayer on the head of a pin. But that’s nothing;
that’s the most primitive, halting step in the direction I intend to discuss. It is
a staggeringly small world that is below. In the year 2000, when they look back
at this age, they will wonder why it was not until the year 1960 that anybody
began seriously to move in this direction.
Why cannot we write the entire 24 volumes of the Encyclopaedia Brittanica on
the head of a pin?”

— Richard Feynman, There’s Plenty of Room at the Bottom, 1960 [25]

This milieu, the march toward small, efficient machines, caused people to won-
der about the extent to which such progress might continue — Moore’s Law, observ-
ing the exponential growth of transistor circuits, was first described in 1965 [26].
Was there a fundamental law, akin to the second law of thermodynamics, that would
ultimately impede progress? It was known that energy (and heat) dissipation was
linked to the entropy of the system via this second law: Brillouin [27] and others had
argued that each measurement would necessarily dissipate some energy on the or-
der of kBT, the thermal energy associated with a classical degree of freedom, where
kB is Boltzmann’s constant and T is the operating temperature. Concerned that such
arguments about measurement might not apply to data processing generally, Lan-
dauer in 1961 [28] extended them in this direction based on two fundamental argu-
ments: Firstly, he argued that initialisation (or set) operations cannot be performed
without dissipation, because the result does not depend on the initial state and these
therefore cannot be reversible; secondly, though recognising that additional, fixed-
state bits can be used to bias truth tables and simulate irreversible classical logical
gates, he argued that the storage of extraneous intermediate results would cause the
required memory to increase unmanageably. It seemed as if there were indeed a
limit.

Landauer’s thinking was overturned in 1973 by Bennett [29], when he described
a scheme for completely reversible computing without the explosion in memory
cost predicted by Landauer. Bennett’s scheme had two fundamental ideas: firstly,
assuming the use of redundant control bits as described by Landauer to bias the
truth tables of logical gates, Bennett proposed a compute – copy output – uncompute
sequence to avoid throwing away information at the end of a computation despite
re-initialisation of the machine; secondly, Bennett suggested that this could be done
many times with intermediate steps during the computation, to avoid needing to
store the entire history (junk output) across the computation as a whole.
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FIGURE 1.1: Toffoli’s reversible AND gate. Though the AND gate in
its original form (top) is not reversible as the size of the state space is
reduced, it may be embedded within a larger reversible gate
(bottom).

NOT CNOT CCNOT[
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FIGURE 1.2: The three gates proposed by Toffoli as a universal set
for reversible computation: The NOT, CNOT (Controlled-NOT), and
CCNOT. Though the CCNOT gate is itself universal, the addition of
the NOT and CNOT gates allow any reversible circuit to be
implemented without redundant output bits.

After Bennett showed that all classical processes could be simulated by reversible
circuits, people began to search for a standard universal set of reversible logic gates
to achieve reversible classical computation. Just as classical logic gates evolved from
considerations in sequential logic, so too did reversible logic gates evolve of out
work in so-called conservative logic, notably by Fredkin and Toffoli [30]. Toffoli [31]
gave the reversible version of the AND gate, shown in Figure 1.1, which is universal
for reversible computation. This complements Fredkin’s universal controlled-swap
gate, and these gates are now named after their respective authors.

Additionally, Toffoli proposed a set of three primitive gates that are universal for
reversible computation: NOT, CNOT, and CCNOT. Of course, the first two of these
are special cases of the CCNOT gate, which is itself universal. Significantly, however,
Toffoli found that the NOT, CNOT, and CCNOT gates together (see Figure 1.2) allow
us to implement any reversible operation without redundant (or in Toffoli’s words,
garbage) output bits.

In light of these theoretical developments, it was quickly realised that the unitary
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evolution of isolated quantum mechanical systems could provide a universal reali-
sation of reversible logic, and in the 1980s there were a number of papers addressing
the implementation of reversible computing with quantum mechanical Hamiltoni-
ans [32–40]. Feynman’s Quantum Mechanical Computers [41] for example took the
σ̂X Pauli operator in place of the NOT gate, from which definitions equivalent to
Toffoli’s CNOT and CCNOT follow (see Figure 1.2).

1.2 Generalisation of Quantum Operations

The 1980s also saw the first inklings of the power of quantum mechanical systems to
exceed classical ones. The earliest example is perhaps Feynman’s famous recogni-
tion, in his 1982 lecture Simulating physics with computers [1], that quantum systems
could potentially simulate other such systems with an exponential improvement in
efficiency over their classical counterparts. Around the same time Wiesner pub-
lished his 1983 paper Conjugate Coding [2], the ideas in which were later expanded
upon in the quantum cryptographic scheme BB84 [11]. We can think of the devel-
opment of these cryptographic ideas as the extension of Toffoli’s reversible gates by
the addition of the Hadamard operator,

Ĥ =
1√
2

[
1 1
1 −1

]
. (1.1)

The conjugate bases of a two-level quantum system could now be accessed and the
measurement limitations exemplified by the well-known Stern-Gerlach experiment
could now be exploited. The space of states in use here, however, remained the
discrete set of four points at the extreme top, bottom, left, and right of a circular
projection of the Bloch sphere: the full space of quantum states was not yet included.

The germ of the idea of quantum supremacy begins here: Wiesner’s conjugate
coding was an example of a quantum operation using conjugate bases that could
not be reproduced classically, and Feynman’s idea on simulation was an example of
a calculation for which the resources of a quantum system seemed an exponential
improvement. However, these two ideas had not yet been expressed in a manner
that could bring them together and generalise them to algorithms beyond analogue
quantum simulation. It was in this context that in 1985 Deutsch published his Quan-
tum Theory, the Church-Turing Principle and the Universal Quantum Computer [3], in
which he argued explicitly that computing with quantum mechanics is more gen-
eral than with a classical Turing machine, which was itself a special case.

“The universal quantum computer Q has all the properties of [Turing’s universal
computing machine]. But Q admits a further class of programs which evolve
computational basis states into linear superpositions of each other.”

— Deutsch, Quantum Theory, the Church-Turing Principle and the
Universal Quantum Computer, 1985 [3]

Deutsch suggested four ways in which the universal quantum computer sur-
passed the classical computer: true random number generation; quantum corre-
lations (in the sense of Bell’s theorem [42]); perfect simulation of arbitrary, finite
physical systems; and parallel processing on a serial computer. This last point, quan-
tum parallelism, would be the spark underlying the central algorithmic results of the
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following decade, and in his 1985 paper Deutsch had provided a rough early pre-
decessor to the Deutsch–Jozsa algorithm [43] for evaluating the parity of a two-valued
function.

This initial claim was followed up by Deutsch with a full circuit representation
for quantum logic in his 1989 paper quantum computational networks [4]. This quan-
tum network description was a generalisation of the descriptions already in use for
classical circuits, “an acyclic directed graph in which nodes correspond to functions and
arcs to variables” [31]. The quantum case had a few characteristic restrictions worth
noting, however. For example, the arcs corresponding to qubits (though the term
qubit for the quantum analogue of a bit would not be coined until 1995 [44]) were
not allowed to split, as the copying of arbitrary quantum information is not possible
[45], and the function nodes were assumed to represent only unitary operations.

The second contribution of Deutsch in his 1989 paper was the first definition of a
universal quantum logic gate,

D̂(θ) |a, b, c⟩ →
{(

i cos(θ) + sin(θ)σ̂(c)
x

)
|a, b, c⟩ , (a ∧ b)
|a, b, c⟩ , ¬(a ∧ b),

(1.2)

now known as the Deutsch gate, where σ̂
(c)
x , the Pauli-X operator on qubit c, is to be

interpreted as not c. The Deutsch gate is a generalisation of the Toffoli 3-bit reversible
AND gate, and reduces to it for θ = π/2.

Though Deutsch had shown his quantum circuit description to be a universal
representation of operations on quantum systems, he had not, in 1989, proven it to
be an efficient description. If it was not efficient (and indeed, it was not), then it
would not be clear that quantum algorithms expressed in this language provided an
advantage over those of the classical Turing machine. This problem was solved for
the pure-state case in 1993 in two stages; begun by Bernstein and Vazirani [46], the
work was completed by Yao [47]. The generalisation to mixed states was provided
later by Aharonov et al. [48], following an increased interest in decoherence and
quantum error correction.

1.3 Quantum Algorithms

By the 1990s the idea of quantum parallelism, pioneered by Deutsch, was being in-
vestigated by other authors. The utility of this unique form of parallelism was not
immediately apparent, however, as the measurement of a qubit state results in at
most one bit of information. Jozsa, in 1991, characterised the collective properties
of the output values of functions according to interference patterns derivable from
a quantum superposition [49]. Soon afterward, in 1992, having in hand a concrete
description of the kinds of (global) properties that could be efficiently extracted from
a function by a quantum system, Deutsch and Jozsa then introduced the quantum
Fourier transform and published their famous proof-of-principle algorithm: the de-
termination of whether a function is balanced with only a single evaluation [43] (later
refined in [50]). Following this, detailed discussion took place about how quantum
computing should be incorporated into the hierarchy of computational complexity
[46, 51–53]. Then, in 1994, Shor built on the approach of Simon [53] to invent an effi-
cient quantum algorithm for the prime factorisation of integers [18]. Many quantum
algorithms exist today [54], famously among them Grover’s unstructured database
search [19] and quantum annealing [55]. Yet, I think it is not an exaggeration to say
that Shor’s factoring algorithm, for its practical implications with respect to public
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FIGURE 1.3: The four gates CNOT (left, top), Hadamard (right, top),
Phase (left, bottom), and π/8 (right, bottom) are sufficient to
generate any arbitrary quantum operation to predetermined
accuracy.

key cryptography, has been the primary motivating force behind long-term techno-
logical development in this field.

1.4 Development of Universal Quantum Gate Sets

Following Shor’s discovery in 1994 of a quantum algorithm with practical utility,
development in quantum information processing takes a distinctly practical turn.
From here, the development we will be interested in diverges into two main streams:
quantum gate sets and quantum error correction, though the two eventually reunify.
I begin here with quantum gate sets.

While the Deutsch gate [4] is universal, it is difficult to implement; most quan-
tum mechanical interactions, as indicated by the matrix representation of the Hamil-
tonian, are at most bipartite. This could potentially have presented quite a practical
challenge, as three-bit gates were known to be required for universality in classical
reversible logic. Quantum logic, fortunately, turned out to differ in this regard, and
in 1995 it was shown that two-qubit gates were universal for quantum computation
[56–58]. This discovery began the search for efficient, realisable and universal two-
qubit gate sets [59–61] and decompositions of the universal reversible logic gates
[62–64]. For example, either the Toffoli gate or the Fredkin gate can be realised with
five two-qubit gates [64]. A commonly-cited universal set of quantum gates is shown
in Figure 1.3.

While Bennett et al. had shown in 1993 that a qubit can be projectively teleported
at the cost one entangled bit (or ebit) [65], Gottesman and Chuang in 1999 made
the significant observation that the phenomenon of quantum teleportation could be
used to project gates onto quantum data using ancillae prepared in particular states
[66, 67]. Quantum teleportation therefore provides an alternative standardised two-
qubit gate, and this would later become one of the foundations of encoded, fault
tolerant gates with magic state distillation [68] and of measurement-based quantum
computation [69].
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1.5 Quantum Error Correction

With Shor’s 1994 factoring algorithm [18], quantum information processing had a
clear motivating promise. In turning toward the fulfilment of this promise, how-
ever, researchers soon realised a fact that would become a (perhaps the) defining
challenge for large-scale quantum information processing: despite its origins, quan-
tum computing is not strictly reversible. The system cannot be perfectly isolated
from its surrounding environment and the resulting interaction allows information
to leak out into that environment, where it is lost for all practical purposes and in-
troduces computational error. The significance of this environmental source of error
and of cumulative systematic gate errors were formally identified in 1995 [70] and
the error rate requirements for large-scale computation, in the absence of correction
or stabilisation, were estimated [71–73].

Classically, simple data protection through redundancy had been in use for many
centuries, and a formal theory of error correction [74] and fault-tolerant classical
information processing [75] had developed alongside the rise of computers in the
middle of the twentieth century. Two factors prevented their direct application to
quantum information:

1. Measurement destroys information in conjugate bases, so that neither an un-
known quantum state nor the individual qubits of an entangled multi-qubit
state can be measured without collapsing that state. Simple majority-voting
schemes could therefore not be directly applied.

2. An unknown quantum state cannot be copied [45], so that classical redun-
dancy cannot be generated ex post facto.

The key to overcoming these two issues was identified late in 1994 [20–22], at the on-
set of popular interest in quantum error rates: The collective state of a set of qubits
maximally entangled in a known basis, in the absence of error, can exist in a state of
known symmetry. If error disturbs this symmetry, then measurement of the stabilis-
ing operators of its subspace (qubit parity-check operators) acts as an error-detecting
operation. It is perhaps no surprise that Deutsch and Jozsa, the first people to exploit
the utility of functional parity measurements in quantum algorithms, were among
the authors who first proposed coherent parity measurements for the stabilisation of
quantum states. Quantum error detection would go on to be used for the distillation
of high-purity known states from multiple noisy copies [76, 77].

While error detection allows for the post hoc selection of high-purity states and can
mitigate errors susceptible to the quantum Zeno effect [78], more general, memory-
less forms of noise are not suppressed in this way. The first quantum error correcting
code was proposed by Shor in 1995 [79] as a concatenated generalisation of the clas-
sical repetition code. This proposal relied upon the fact that the effect of general
error on a state in a finite-dimensional Hilbert space can be expressed as the inco-
herent mixture of a finite set of operations. This is most apparent in the Bloch vector
representation [80], and a quantum state can therefore be fully protected if it can
be protected against the generators of this set: Classical error correction codes can
be nested within one another to mitigate the noise associated with each generator.
Shor’s nine qubit code, now named for him, and its nested structure is shown dia-
grammatically in Figure 1.4.

The following years [81–92] saw a number of results on the identification of the
criteria for a quantum error correction code, the discovery of efficient codes, the
construction of efficiency bounds, and the discovery of constructions for quantum
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FIGURE 1.4: Shor’s quantum error correction code consists of nine
qubits and two sub-logical layers. At the first sub-logical layer, errors
in the σ̂z basis are mitigated by a classical repetition code of three
qubits, with parity checks indicated here by solid boundaries. At the
second logical layer, these partially-encoded, three-qubit subsystems
are nested inside a second classical repetition code. Errors in the σ̂x
basis are mitigated by parity checks indicated here by dashed
boundaries. Shor’s code can locate and correct any single-qubit
error, as well as certain multi-qubit errors at the first logical layer.

error correction codes from classical codes. The primary criterion considered during
this period was the efficiency in terms of the number of redundant qubits used as
compared with the number of qubits encoded and the number of single-qubit errors
that could be simultaneously corrected. One key result was the identification of the
very smallest code (of only five qubits) capable of correcting a single error [87, 93].
Nonetheless, the quantum error correction codes discussed above were proposed
under the assumption that the operations of syndrome measurement and correction
did not introduce a new source of error; they were strictly storage codes. If quantum
error correction was to be used for computation, it would also need to mitigate the
otherwise cumulative effects of faulty operations.

The result, formalised with the threshold theorem and the construction of fault-
tolerant correction procedures [94–99], is that the error rate is now required to be
small on the scale not of the total computation, but only of the parity-check subrou-
tine. The specific requirement is expressed as a threshold error rate and varies with
the encoding scheme. The error threshold is also called the accuracy threshold. From
this point onward, due to the high error rates of real quantum systems, the accuracy
threshold would become the primary factor in the comparative analysis of quantum
error correction codes, in lieu of the degree of redundancy.

To date, the quantum error correction codes with the largest accuracy thresholds
belong to the family of topological quantum error correction codes. These codes iden-
tify qubits and parity check measurements with the cells of a regular lattice. The
first topological code was Kitaev’s toric code, wherein qubits were identified with the
edges of a periodic square lattice, and parity measurements in the X and Z bases
with vertices and faces of this lattice respectively [100–102]. The toric code encodes
two logical qubits at the cost of L2 physical qubits, with an accuracy threshold (per
correction round, and without measurement error) of about 11%. Here L is the code
distance, the minimum number of single-qubit operations separating logical encoded
states. The periodic structure of this code was recognised as a barrier to its adoption,
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however, so it was soon adapted in a planar variant, the surface code [103–105], which
encodes a single logical qubit in L2 + (L − 1)2 physical qubits with an equivalent ac-
curacy threshold. Error models have been refined since the early development of
these codes, and the accuracy threshold per quantum logic gate in the presence of
measurement error is estimated to be between 0.5% and 1% [106]. These remain the
highest per-gate accuracy thresholds found to date for codes protecting against any
single qubit quantum error. Operations must be achievable with error rates below
these values before any known form of error correction can be implemented.

The theoretical developments of quantum information processing did not of cou-
rse end with the discovery of topological error correction codes. For instance, pro-
tected and multiplexed schemes for quantum state transmission through lossy chan-
nels [107–110], the advent of measurement-based quantum computing [111,112], the
abstract generalisation of quantum error correction codes [113–116] and the plurality
of logical gate implementations [68, 117–119] represent only a fraction of the topics
that could be discussed in a comprehensive review. However, we end our brief his-
torical survey here because, from a near-term technological perspective, the essential
challenges are those that were defined by the turn of the millenium and mentioned
above.

1.6 Modern Challenges

What should we seek to achieve in the near-term? Sub-tasks in communication and
quantum metrology have received a lot of attention as they have both seen the most
practical success in the forms of medium-range (≈ 200 km) quantum key distri-
bution and (primarily) in-vivo biological imaging, field sensing and temperature
sensing. Immediate targets for the implementation of quantum technologies are
repeater-based quantum communication, sensing, and simulation, due to the low
qubit and operation numbers involved.

The next significant development in quantum communication will likely be the
use of single long-lived qubits as middleman storage in 3-point memory-assisted
quantum key distribution, eventually working towards the first quantum repeaters
encoded against (partial) errors. The developments for quantum metrology look as
if they will be extensions of the recent results using relaxation-encoded states, and
could also exploit entangled states and dynamical decoupling sequences to enhance
measurements of high-frequency periodic processes.

Many physical systems, including ion-traps [120–130], superconducting circuits
[131–140], quantum dots [141–149], linear optics [150–152], donor spins in silicon
[153–160] and nitrogen–vacancy centers among other defects [161–171], have been
proposed to realize such technologies. Key experiments have been performed demon-
strating basic required operations [172–178], and small-scale applications have also
been demonstrated [179–181]. It remains challenging to realize two-qubit gates and
projective measurements with sufficient accuracy in most physical systems.

Yet, we should keep in mind the potential of any scheme to serve as a stepping
stone toward large-scale quantum computation. Many technologies are coherence
limited; quantum error correction, if only partial correction at first, will be a cen-
tral component of quantum technologies of any moderate scale. Quantum error
correction demands that unitary operations and projective measurements achieve
operational error rates less than a code-dependent accuracy threshold. For instance
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the surface code [103–105] has a conservative accuracy threshold of 0.54% [106]). Re-
source overheads necessitate an error rate significantly below the accuracy thresh-
old, suggesting the practical requirement that the operational fidelity be > 99.9%.
These requirements may be lower for quantum communication schemes with lim-
ited maximum distances. Topological codes such as the surface code promise to be
the easiest to implement in the near future, as multi-qubit systems are also com-
monly limited by local and operational noise to short error correction protocols. We
address the mitigation of these noise sources in Part I.
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Part I

Local Noise in Near-Term
Applications
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Chapter 2

Robust quantum sensing with
strongly interacting probe systems

Physical quantities are the guideposts that we use to navigate through life, and the
drive toward cheaper, faster, more accurate devices for their measurement has a
direct commercial impact through increased productivity and efficiency. The field of
quantum metrology [14], and more specifically here quantum sensing [16], promises
refinements over existing technologies in two key respects: Firstly, direct control
over coherent systems at the nano-scale promises an enhanced spatial resolution, as
well as measurement in vivo without adverse effects to the host system; secondly, the
presence of coherent, quantum correlations and entanglement promise to achieve
sample variances dependent, not linearly in the sample size as is characteristic of
a classical statistical sample, but with a form approaching a quadratic dependence.
This improved scaling is said to approach the Heisenberg limit, in contrast to the
classical standard quantum limit. As mentioned in Section 1.6, quantum sensing is a
potential near-term application on account of its low qubit number and restricted
operation set.

Quantum sensing devices have been proposed most famously for thermometry,
magnetometry [182–184], and frequency estimation (timing) [185]. In this work we
focus on quantum sensing with a set of N spin-1/2 systems maximally entangled in
a Greenberger-Horne-Zeilinger (GHZ) state [186], as

|GHZ⟩ = 1√
2

(
|0⟩⊗N + |1⟩⊗N

)
. (2.1)

More specifically, we seek to estimate the mean free energy, ωµ, of this set of spins,
according to their evolution under the Hamiltonian

ĤSys =
h̄
2

N

∑
i=1

ωiσ̂
(i)
z − h̄

4

N

∑
i=1,j ̸=i

gijσ̂
(i)
z ⊗ σ̂

(j)
z , (2.2)

ωµ :=
1
N

N

∑
i=1

ωi, (2.3)

Gi :=
N

∑
j=1,j ̸=i

gij. (2.4)
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FIGURE 2.1: Energy level structure for a) a single spin-1/2 system,
with an energy gap ω deviating by a small amount ω′ from a known
calibration energy ω0; b) two spin-1/2 systems without interaction,
under the assumption of equal energy gaps; and c) two spin-1/2
systems under strong ferromagnetic coupling with an amplitude
G > ω. While in case (b) relaxation to a single insensitive ground
state can occur even at zero temperature, case (c) identifies the most
sensitive probe states with local ground states to extend the lifetime
of the system.

Here ωi is the free energy of spin i, gij is the spin-spin coupling between particles i

and j, and σ̂
(i)
z is the operator corresponding to the application of the Pauli z-matrix,

σz =

[
1 0
0 −1

]
, (2.5)

to spin i. We have also defined a collective coupling for spin i, Gi, and the mean free
energy of the total spin system, ωµ. This mean free energy ωµ, or rather its deviation
from a lower-precision calibration point ω0, can then be related to other physical
parameters of interest, such as an axial magnetic field or temperature, through their
respective susceptibilities. A coupling term has been introduced to engineer the
energy level structure of the composite spin system, with the goal of locating the
most sensitive probe states at localised ground states with respect to anticipated
spin relaxation [187–197] and thereby reducing the spin number and measurement
time resources. While the free energy term in Equation (2.2) is intended to describe
the effect of an external field along an arbitrarily selected axis, it is important that
the coupling term is aligned with this axis so that the stationary states of the system
are preserved. An illustration of this is given in Figure 2.1.

In summary, it is known that entanglement can enhance sensing efficiency, but
that this effect is lost in the presence of a memoriless noisy environment. Active cor-
rection schemes are known to show reduced effectiveness in the presence of asym-
metric relaxation, and cannot improve the T1 times of individual spins. It is also
known that large energy gaps exponentially suppress excitation, forming a passive
noise barrier. With these points in mind we would like to answer the following
question: How can we create such a passive barrier and under what conditions will
it improve sensing performance?

2.1 Quantifying Measurement Performance

Intuitively, the performance of a measurement is related to the difference between
the inferred and the true probability distributions governing the measurement out-
comes. In quantum sensing, this difference is quantified at the level of differential
geometry by the Fisher information and through it the sensitivity of the measurement.
We now take a brief pedagogical detour to explain these terms, summarising loosely
the formulation in [198].
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The relative entropy was introduced in the mid-twentieth century by Kullback and
Leibler [199] and by Jeffreys [200] as an asymmetric measure of the distinguishability
between two probability distributions. It can be thought of as a slight generalisation
of the Shannon entropy [201], becoming

S(P||Q) =
K

∑
i=1

pi ln
(

pi

qi

)
, (2.6)

where here we assume a discrete set of outcomes labelled 1 → K. pi denotes the
probability of each outcome for distribution P, while qi denotes the probability of
each equivalent outcome for distribution Q.

Sanov’s theorem [202], valid for large sample sizes M, allows us to interpret the
relative entropy as the decay rate of the probability of inferring a sample distribution
PSample if the true distribution is Q,

Prob(PSample|Q) ∼ e−M·S(PSample||Q). (2.7)

The Fisher information matrix Fij(Q), or the Fisher-Rao metric, is the metric defin-
ing the relative entropy between two infinitesimally close probability distributions,
or equivalently the Hessian matrix of the Shannon entropy for the true probability
distribution. Note that the relative entropy becomes a symmetric measure in this
limit. The Fisher information therefore describes, under the Sanov interpretation,
the decay rate of the probability to infer a sample distribution other than the true
distribution, as

Prob(PSample ̸= Q) ∼ e−M·S(Q+δQ||Q) (2.8)

= e−M ∑i,j δQi Fij(Q)δQj (2.9)

= e−M·δQ2·F(Q) for a one-dimensional distribution. (2.10)

The notion of an estimate being precision-limited by the Fisher information was for-
malised in the Cramér-Rao bound [203, 204],

M · ∆P2
Sample · F(Q) ≥ 1, (2.11)

where ∆P2
Sample is the variance of the sampled distribution.

While a quantum generalisation of the Fisher information metric has been de-
veloped [205], the simple measurements considered in this section will not require
it: The measurement we consider reduces, after evolution of the quantum state, to a
simple Bernoulli trial for which the classical Fisher information is sufficient.

Simple Bernoulli trials are known to saturate the Cramér-Rao bound. However,
we are interested not in the trial success probability, but rather in an underlying
parameter, the mean free-energy ωµ. The dependence of the probability distribu-
tion on this parameter may be curved, so that the bound with respect to this un-
derlying parameter is saturated only in the limit of a large sample size, for which
∆P2

Sample/∆ω2
µ → (∂PSample/∂ωµ)2.

In the final analysis, we have

F =

(
∂p

∂ωµ

)2

p(1 − p)
, (2.12)
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so that

∆ω2
µ ≥ p(1 − p)

M
(

∂p
∂ωµ

)2 . (2.13)

Given this, the sensitivity is defined as the inverse of the product between the total
sensing time, T, and the variance of the inferred parameter,

S :=
1

∆ω2
µ · T

(2.14)

→ M · F
T

, in the large M limit. (2.15)

When a set of M successive, independent measurements are performed, the total
sensing time T can be expressed as a multiple of the characteristic time for a single
trial t, as T = Mt. This number can therefore be eliminated from the sensitivity, so
that we have

S → F
t

. (2.16)

2.2 GHZ Sensing

2.2.1 Ideal Conditions

Under noiseless evolution, the initial state accumulates a relative phase dependent
on the evolution time, t, and the mean free energy of the set of N spin-1/2 systems,
ωµ, as

|GHZ⟩ → 1√
2

(
|0⟩⊗N + eiNωµt |1⟩⊗N

)
(2.17)

up to a global phase. The interaction term in Hamiltonian Equation (2.2) contributes
only a global phase under ideal conditions.

Measurement along an axis in the X/Y plane of the collective Bloch sphere, with
the angle of deviation from the X-axis governed by the expected evolution under a
lower-precision calibration frequency ω0, and chosen to linearise the infinitessimal
dependence of the outcome probability on ω′ := ωµ − ω0, then results in a binary
measurement outcome (a Bernoulli trial). The success probability of this trial is given
by

pSuccess =
1
2
+

1
2

sin
(

N · ω′ · t
)

(2.18)

≈ 1
2
(
1 + N · ω′ · t

)
. (2.19)

The Fisher information and sensitivity are then simply calculated to be

F =

(
∂pSuccess

∂ω′

)2

pSuccess(1 − pSuccess)

∣∣∣∣∣∣∣
ω′→0

= (Nt)2 , (2.20)
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and

S =
F
t

= N2t, (2.21)

saturating the Heisenberg limit.

2.2.2 The Effect of Noise

In contrast to the well-known result above, real systems are neither perfectly iso-
lated, nor perfectly controlled. We consider the effects of noise here by allowing the
system to interact with a thermal harmonic oscillator environment, and, under the
Born, Markov, and rotating wave approximations, the resulting evolution [206, 207]
of the projective measurement’s expectation value corresponds to a Bernoulli trial
probability of

pSuccess =
1
2
+

1
2

sin
(

N · ω′ · t
)

e
−NΓt

2 (2.22)

≈ 1
2

(
1 + N · ω′ · te

−NΓt
2

)
. (2.23)

Here Γ is a decay rate averaged over all spin-1/2 systems, 1
N ∑i Γi, where the Γi fol-

low the typical form of rate coefficients in a Linblad-type master equation approxi-
mating interaction with a harmonic-oscillator environment (ωi > 0),

Γi = Ω (|Gi ± ωi|) (2n̄i + H (Gi + ωi)− H (Gi − ωi) + H (−Gi − ωi)) . (2.24)

H(·) is the Heaviside step function and n̄i is the mean photon occupation number for
the energy gap separating the ground and first excited states of the spin-1/2 system,
while Ω (|Gi ± ωi|) is a (potentially) frequency-dependent coupling rate reflecting
the spectral density of the perceived environment. The basis of the advantage found
in this chapter will be the diminution of n̄i by increasing Gi.

Under the effect of this noise, the Fisher information and sensitivity become

F = (Nt)2 e−NΓt (2.25)

and

S = N2te−NΓt. (2.26)

We maximise this sensitivity by taking the simple derivative, finding

∂S
∂t

= N2 (1 − NΓt) e−NΓt, (2.27)

⇒ topt =
1

NΓ
(2.28)

Sopt =
N
eΓ

. (2.29)

For fixed Γ this sensitivity does not reach the Heisenberg limit, but remains at the
linear N-scaling of the standard quantum limit.
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2.3 Temperature and Coupling Strength

We established in Subsection 2.2.2 that the optimal sensitivity depends linearly on
the number of spins N and inversely on the decay rates Γi of Equation (2.24). These
decay rates depend on the energy gap between the ground and first excited states
of the collective spin system in three ways: firstly, the coupling to the environment
Ω follows an as-yet unspecified spectral density function; secondly, the mean pho-
ton occupation number, assuming a thermal environment, depends exponentially
on the ratio between this energy gap and the temperature; and thirdly, the relative
magnitudes between Gi and ωi will determine the values of the Heaviside func-
tions in Equation (2.24), according to whether the system is in the weak, strong anti-
ferromagnetic, or strong ferromagnetic coupling regime.

Figure 2.2 shows Sopt/N as a function of the inverse temperature β = 1/kBTenv,
where kB is Boltzmann’s constant and Tenv is the temperature. The spectral density
is chosen arbitrarily as the constant value Ω = 0.001. An increasing value of Sopt/N
indicates an improvement over the standard quantum limit. Even at low tempera-
tures, the decay rates for the weak coupling and strong anti-ferromagnetic coupling
regimes saturate at Γi ∼ Ω, giving Sopt/N ∼ 300. For strong ferromagnetic cou-
pling the optimal sensitivity increases exponentially according to Arrhenius’ Law
1/Γ ∼ e−β·∆E [192]; two stages appear corresponding to the two energy gaps Gi ±ω0
represented in Figure 2.1. As it is our objective to approach the Heisenberg limit,
our focus for the remainder of this section will be the regime of strong ferromagnetic
coupling.

2.4 An Example

We now consider a concrete example. Recent experiments have used dynamical
decoupling to extend the T2 time in superconducting flux qubits to the T2 ≤ 2T1 limit
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[208–210], while others have demonstrated strong, ferromagnetic coupling between
superconducting flux qubits [211–213]. These are the two requirements necessary for
the implementation of our proposal, though they have not yet been demonstrated
simultaneously.

Assuming an environment temperature of Tenv = 20 mK and uniform coupling
rates Gi between all spin pairs, we compare four cases in Table 2.1. The first two
rows constitute the base cases against which we compare the last two, and demon-
strate through the scaled sensitivity the conclusion of Equation (2.29) that without
the coupling term the system operates at the standard quantum limit. The final two
rows, in addition to displaying a sensitivity enhancement over the zero-coupling
case due to reduced decay, also display a change in the scaled sensitivity relative to
one another; the strong coupling of the final two rows allows us to overcome the
standard quantum limit.

There are two important factors contributing to the scaled sensitivities in Ta-
ble 2.1: the relaxation time T1 and the thermal mean photon occupation number.
These are both influenced by the energy gap |Gi ±ω|, which is in turn affected by the
number of spins, N. We note that the sharp decrease in relaxation time for the final
row of Table 2.1 is an idiosyncrasy of the particular system considered; the dominant
form of environmental noise changes from 1/ f noise to a combination of Ohmic and
other forms of noise at higher frequencies [210]. It is in spite of this change that the
sensitivity enhancement observed in the final row of this table is achieved.

TABLE 2.1: Estimated sensitivities for superconducting circuits,
varying the T1 time, the free energy ω0, the collective coupling Gi,
and the number of qubits N.

T1 (µs) ω0 (GHz) Gi/(N − 1) (GHz) N Sopt/N (s)
30 5 0 2 3.5 × 10−6

30 5 0 4 3.5 × 10−6

20 2 5 2 5.5 × 10−6

2 2 5 4 35 × 10−6

In the final subsections we describe the influence of the qualitative behavioural
differences under different spectral noise profiles and of the spin number on the
coupling strength for short-range interactions.

2.5 Noise Spectra

We noted in Section 2.4 that for the superconducting flux qubits considered the
form of the environmental spectral density changes with the energy gap between
the ground and first excited states, from Ω ∼ ∆E−1 to Ω ∼ ∆E+1. In the limit
Gi ≫ ω0, the improvement observed in Figure 2.2 should still be present, as the de-
pendence on n̄i of this energy gap dominates the low-order scaling of coupling to
the environment. For Gi − ω0 → 0+, however, sub-Ohmic environmental spectra,
with terms that scale sub-linearly in the energy gap, will either cause a divergence in
and of themselves or will allow the mean photon occupation number n̄i to diverge,
as

lim
Gi−ω0→0+

Ω · n̄i =
Ω (|Gi − ω0|)
h̄β |Gi − ω0|

. (2.30)
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FIGURE 2.3: Rescaled optimal single-trial sensitivity Sopt/N as a
function of the relative collective coupling strength Gi/ω0 for (Top)
an Ohmic noise profile, (Left, Bottom) a 1/ f noise profile, and
(Right, Bottom) a white noise profile. Three sample inverse
temperatures, β = 0.1, 1.0, and 10.0 are shown. While the sensitivity
increases monotonically for the Ohmic noise profile, it displays a
sharp decrease near the divergences of the 1/ f and white noise
profiles at unit relative coupling strength.

This behaviour is shown in Figure 2.3 for linear (Ohmic), constant (white noise), and
inverse (1/ f noise) scaling respectively. While the advantage found for the Ohmic
spectral density increases monotonically with |Gi − ω0|, the aforementioned diver-
gence of the white noise and 1/ f spectra reduces the optimal sensitivity; a threshold
value must be reached for the collective coupling before an advantage is found.

2.6 Short-Range Interactions

We have been speaking so far about a collective coupling Gi, but have not made
mention of the dependence of this parameter on the pairwise spin-spin couplings gij
from Equation (2.2) that comprise it. While in the ideal case of a uniform interaction
the collective coupling increases steadily with the number of spins, in reality these
pairwise coupling rates are likely to be distance dependent. A distance dependence
in the pairwise coupling rates is significant because it indicates a potential saturation
of the average decay rate Γ in the spin number, as additional new qubits are too far
to significantly contribute to the collective coupling Gi of the old.
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In Figure 2.4 we demonstrate this effect by considering pairwise couplings for a
periodic, one-dimensional spin chain of the form

gij ∼
1

|i − j|α
, (2.31)

where the subtraction is understood to be modulo the length of the chain for the case
of no interaction (gij = 0), infinite-range uniform interaction (α = 0), a dipole-dipole
coupling interaction (α = 3), and nearest neighbour interactions (α → ∞). We find
that for short-range coupling the sensitivity rapidly saturates at N = 3 for nearest-
neighbour interactions and at about N = 7 for dipole-dipole interactions respectively.
The sensitivity continues an unbounded exponential increase with N for the case of
uniform coupling.

Beyond the saturation point, adding additional qubits to the entangled probe
state will continue to decrease the single-trial optimal sensing time of Equation (2.29),
topt, but the increase in sensitivity will not exceed the standard quantum limit and
any application-dependent advantage gained thereby must be considered in light of
the progressive difficulty of constructing larger entangled states.

It is a curious observation that the sensitivity for the uniform interaction should
increase exponentially with N when the Heisenberg limit appears to suggest a re-
striction to at most quadratic scaling. In fact, however, there is no contradiction:
The Heisenberg limit is quoted S ∼ N2 on the assumption that the sensing time topt
is independent of N. Any scheme for which topt may increase with N contains the
potential for super-quadratic scaling.
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2.7 Discussion

Recent proposals have shown that error correction schemes can, in principle, im-
prove the sensitivity of a quantum sensor when the limiting noise process is orthog-
onal to the basis of interaction of the probe field [214–217]. However, even combined
with dynamical decoupling [218] in the presence of an AC field, such schemes can-
not be used to extend the bound imposed on the coherence time by the T2 ≤ 2T1
limit, because they do not change the T1 time of the individual physical qubits.
Further, their improvement is limited when the noise process is energy relaxation
[214, 219].

The passive method presented in this work, exploiting strong coupling to en-
gineer a stable collective ground space, overcomes both of the limitations of active
error correction schemes: Firstly, the π-pulses of dynamical decoupling commute
with the two-qubit interaction terms and the T1 times of the individual spins im-
prove, not only the coherence time of the system as a whole — these being related
to the Γi of Equation (2.24); secondly, since the probe states are local energy ground
states the asymmetric relaxation behaviour of the assumed noise process only im-
proves the performance. We have also shown a concrete example, in superconduct-
ing flux qubits, where this proposal could be implemented in the near-term to the
benefit of T1-limited applications in quantum metrology.

Not all systems can generate large, strongly coupled clusters; even where this
is possible, any application requiring cluster-to-cluster interactions will introduce
operational error for which active correction schemes again become necessary. It is
in our interest therefore to look also at how the performance of these active schemes
can be improved. This we consider in Chapter 3.
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Chapter 3

Decoding Quantum Error
Correction Codes with Local
Variation

It has long been known that quantum information processing devices at any signifi-
cant scale will face the obstacles of mounting noise and error [70–73]. Quantum error
correction codes [220–222] were developed to overcome these obstacles, at the cost
of increased qubit and time overheads. Even for smaller devices in the near-term,
partially error-corrected approaches have been proposed to mitigate limiting noise
processes [214–217]. Present devices face tight resource restrictions and error rates
comparable to even the largest accuracy thresholds, so it is not (yet) sufficient to
treat quantum error correction schemes as if their choice was agnostic with respect
to the underlying technology or application: we must consider all idiosyncrasies
and constraints before us. The constraints of most physical systems mean that the
family of topological quantum error correction codes seems most promising for any
near- to mid-term development, having three characteristic advantages: large accu-
racy thresholds, small correction circuits, and local interactions. The surface code
[103–105], for example, requires only nearest-neighbour interactions. Conversely,
many codes without such local constraints, such as Shor’s code [79] and other con-
catenated codes [95], are simply out of reach for many real physical systems.

Just as the form of interaction varies according to our choice of physical system,
so too does the form of the noise and error we confront; the very earliest proposals
for quantum error correction in fact relied on error detection schemes [20–22, 223],
under the assumption that the error of the state was subject to the quantum Zeno ef-
fect [78]. Standard models did eventually settle on the depolarising noise channel [87],
but even then parallel streams of development emerged to deal with quantum chan-
nels for which depolarising noise was insufficient, such as loss channels [107]. In
the last decade we have seen a plethora of results looking at different noise models,
verifying the performance of the codes under such models and asking what modi-
fications, if any, might be made to improve performance. Early examples focussed
on the tendency for errors to be highly biased toward one particular basis (such as
dephasing) [224–226]. Since then investigations of qubit loss [227–231], amplitude
damping [232,233], correlated error [234–239], and qubit leakage [240,241] have been
undertaken.

In this work we focus not on qualitatively distinct channel behaviour, such as
loss or amplitude damping, but on local variation in a standard depolarising noise
channel. Specifically, we assume that the measurement outcomes associated with
each stabiliser operation are asymmetric with respect to their information content.
This variability will not be the result of any changing external influence, but inherent
in the information content associated with the measurement outcomes themselves.
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Any multi-shot measurement scheme in the presence of error is expected to display
such local variation, and in particular the cavity-enhanced spin measurements con-
sidered in Chapter 4 are expected to roughly follow an exponential distribution at
the local level. We perform pseudo-threshold simulations for the repetition and sur-
face codes, comparing the standard, fixed-error-rate case with an error-rate drawn
from a discrete, balanced, two-component distribution of equal mean pµ but a fixed
relative width σ,

D(x; pµ, σ) =
δ
[
x − pµ(1 − σ)

]
+ δ

[
x − pµ(1 + σ)

]
2

. (3.1)

We also introduce two approximate measures consistent with the simulated results
to extrapolate the significance of variation for larger codes and higher dimensions.
In Section 3.1 we describe and justify the approximate measures we introduce. Sec-
tion 3.2 then defines and takes the repetition code as an exemplar of the significance
of local variation for increasing code distance, while Section 3.3 extends the anal-
ysis to the surface code for comparative inference about the behaviour of codes in
higher dimensions. In Section 3.4 we summarise our results and discuss a potential
generalisation for alternative decoding schemes before concluding.

To summarise, it is known that the performance thresholds of quantum error
correction codes are difficult to meet, and that close to these thresholds, resource re-
quirements are steep. Noise and error processes vary, introducing idiosynchrasies
like correlation and bias, and many such effects have been studied. The rate of error
itself is often drawn from a known prior distribution at runtime, though consequent
local variability is not represented in theoretical quantum error correction models.
With these points in mind, we would like to answer the following question: In the
simplest case of measurement error with local information, what performance ben-
efits are obtained and under what conditions?

3.1 Quantifying Significance

Our aim will be to investigate the impact of σ on the error rate as a function of
the code size and structure. This will be quantified in two ways: Firstly, numeri-
cal pseudo-threshold simulations will be performed for the repetition and surface
codes, allowing us to compare the logical error rate between these two codes and
across a range of code distances and local error rates. Secondly, we develop an intu-
ition for the observed numerical behaviour with approximate models; we model the
probability that local variance allows an error chain of length ⌊ L

2 ⌋ to be less likely
than an error chain of length ⌊ L

2 ⌋+ 1, where L is the code distance.
We consider chains of adjacent lengths because we are interested in the transi-

tion point at which local information becomes useful. Additionally, modifications to
chains within a homology class — chains resulting in the same logical state — are
of at least second order in the link probability. The intuition is that the exponential
suppression of a chain’s probability with length means that local information will
have the most impact when two options are close to one another in length, so that
this relationship is a qualitative proxy for the proportion of logical errors that the
local information can help us identify and correct.

A chain’s length is modelled as a number of successful Bernoulli trials, since a
chain need not be contiguous along a given dimension of the lattice to cause a logi-
cal error. A binomial distribution approaches a Gaussian distribution for large L; we
expect chains of length ⌊ L

2 ⌋ will have a lesser share of the tail of this distribution if
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FIGURE 3.1: The fraction of logical errors caused by error chains of
length L/2 for a one-dimensional lattice, R (Equation (3.2)), as a
function of the code distance L. The individual error rate is fixed
arbitrarily at pµ = 0.1.

they are far above the mean number of errors Q · pµ, where Q is the total number of
qubits and pµ is the mean error rate per qubit. As the code distance increases local
information should have a lesser impact on the logical error rate, so that our approx-
imate measure is more valid for small code distances. Along a single dimension, we
can justify this assertion by explicitly computing the ratio R,

R =

L!
(L/2)!2

[
pµ(1 − pµ)

]L/2

1 − ∑L
i= L

2

(
L
i

)
pi

µ(1 − pµ)L−i
. (3.2)

This is the probability of sampling an error chain of length L/2 from L qubits via a
binomial distribution, divided by the probability of sampling an error chain greater
than or equal to L/2. The behaviour of this ratio with increasing L and fixed pµ = 0.1
is shown in Figure 3.1. Over the range of code distances considered in this report,
our approximate measure should correspond well to true behaviour.

3.2 The Repetition Code and Chain Length

The repetition code, depicted in Figure 3.2, is defined by mapping qubit subsystems
and operations to a 1 × L chain. It is essentially a classical code, but may nonethe-
less be used to partially protect quantum information and is useful when the limiting
source of error is highly biased along a single dimension. The repetition code em-
beds one bit of information within the +1 eigenspace of parity operators acting on
adjacent bits in this 1-dimensional chain,

ŜX(v) = ⊗e|v∈∂eσ̂
(e)
x . (3.3)

Here v are vertices and e are edges. Vertices of degree-1 are excluded. Equation (3.3)
uses a common shorthand notation for operators that are sparse with respect to the
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Qubit, Qi

⊗Qi
σ̂(Qi)
x , Qi ∈ Boundary

Qubit with σ̂x Pauli Error

Qubit with σ̂z Pauli Error

Qubit with σ̂y Pauli Error

Odd-Parity σ̂x Stabiliser Operator

Apply Error

Measure Syndrome

Apply Correction

FIGURE 3.2: A graphical representation of the repetition code. Edges
represent qubits, while nodes represent σ̂

(i)
x σ̂

(i+1)
x parity (stabiliser)

operations between adjacent qubits. Errors in a basis orthogonal to
the parity operations are detectable.

set of qubit subsystems, ignoring the order of, and trivial elements in, the tensor
product in favour of superscript indices.

A single local operation on any bit in the basis protected by the code (the basis
orthogonal to the parity check operators) will be detected by measurement of the
parity operators and may be corrected so long as the number of such errors is less
than half the length of the chain. Measurement errors are incorporated by repeating
parity measurements, with the effect of extending the lattice of the code into a second
dimension [94,105]. The probability that accumulated error after the total set of such
measurement rounds cannot be corrected is called the logical error rate. We restrict
our attention to the phenomenological error model for the duration of this report; in
this model individual qubit and measurement error rates are defined per round and
associated with lattice edges.

3.2.1 The Impact of Local Variance

The variance in the total weight of a sampled error chain, as its length increases,
depends upon the assumed local distribution. It is not the absolute variance that is
important, since this will be suppressed for longer chains, but rather the variance rel-
ative to the chains’ mean weight; the variance must offset the effect of the additional
multiplicative factor associated with incrementing the length of the chain.

For the approximate measure of significance defined in Section 3.1, we will look
at two distributions: the uniform distribution,

U(x ∈ [a, b]; a, b) =
1

b − a
, (3.4)

and the discrete, balanced, two-component distribution,

D(x; a, b) =
δ(x − a) + δ(x − b)

2
. (3.5)

We calculate the ratio between the standard deviation of the weight of a chain of
length L/2 and the difference between the mean probabilities of chains of lengths
L/2 and L/2 + 1. The resultant product distributions are not normally distributed,
so the standard deviation provides only a rough characterisation of the width. With-
out analytic formulae for the sample-product distributions, we compute the consid-
ered ratio numerically via random sampling. The results are shown in Figure 3.3,
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(Blue) A discrete, balanced, two-component distribution
(Equation (3.5)) with parameters a = 0.05 and b = 0.15. (Orange) A
uniform distribution (Equation (3.4)) with the same parameters.

where the ratio is found to increase exponentially with the chain length. Local
variability is therefore expected to become more significant as the code distance
increases, and this is reflected in the results of our pseudo-threshold simulations,
shown in Figure 3.4. This behaviour necessarily results in a slight upward shift in
the sample accuracy threshold.

3.3 The Surface Code and Chain Entropy

The surface code is defined by mapping qubits and operations to an l × m rectan-
gular lattice. Edges of this lattice represent qubits, while faces and vertices repre-
sent measurements of parity operators in the Z and X bases respectively (the bases
are arbitrary, but must be orthogonal). These measurements are defined by Pauli-
operator products acting non-trivially on qubits (edges) adjacent to their respective
face or vertex,

ŜZ( f ) = ⊗e∈∂ f σ̂
(e)
z and ŜX(v) = ⊗e|v∈∂eσ̂

(e)
x , (3.6)

as represented graphically in Figure 3.5. Here v are vertices, e are edges, and f are
faces of the lattice. Vertices of degree-1 are excluded. The set of these measured
operators generates the stabiliser group, S [245]. Elements in the stabiliser group
commute with all logical operations and therefore preserve the subspace in which
the logical qubit is encoded. We require that our system exists in the +1 eigenspace
of the stabiliser group. By then ensuring that there is exactly one more physical qubit
than there are generators of this group, we restrict the total space of our system to a
two-dimensional subspace within which we can define a logical qubit.
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FIGURE 3.4: (Top) Sampled logical error rates for the repetition code
over the code distances 9, 23, 27, and 31, as a function of the mean
physical error rate pµ. Two sets of series are shown: the error rates
when the mean error probability pµ is used for decoding (light) and
those when local variation is incorporated (dark). For the latter
series, the relative local width σ is 0.5. Also shown is the line of
equality between the two axes (grey, dashed). Error bars denote 3
standard deviations from the mean, calculated according to the
Wilson Score [242]. (Bottom) Relative change in the logical error rates
when local information is incorporated, at a mean error rate
pµ = 0.091, as a function of code distances between 9 and 31 and for
relative widths of local variation σ between 0.1 and 0.5. Dashed lines
are added to guide the eye. Each point in either graph is the result of
105 trials, decoded using Kolmogorov’s Blossom V algorithm
[243, 244] for minimum-weight perfect matching.
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⊗Qi
σ̂(Qi)
z , Qi ∈ Boundary

Un-Erred Qubit

⊗Qi
σ̂(Qi)
x , Qi ∈ Boundary

Qubit with σ̂x Pauli Error

Qubit with σ̂z Pauli Error

Qubit with σ̂y Pauli Error

Odd-Parity σ̂x Stabiliser Operator

Odd-Parity σ̂z Stabiliser Operator

Un-Erred Qubit

FIGURE 3.5: a) A diagram of a surface code of length 7. Dotted edges
correspond to qubits in their initial state. An X-basis measurement
(at a vertex) detects local σz operations and vice versa. Logical σ

(L)
x

operations stretch from the left side of the lattice to the right, while
logical σ

(L)
z operations stretch from the top edge of the lattice to the

bottom. b) A sample error syndrome, where blue (red, purple) edges
correspond to qubits following a local σz (σx, iσy) operation.
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At the boundaries of the surface code, faces and vertices need not have the full
complement of four adjacent edges. If a boundary consists of three-edge vertices,
it is called smooth, while if it consists of three-edge faces, it is called rough. For
the identification we have chosen, X-basis (Z-basis) operations on vertices (faces),
a contiguous chain of Pauli σz (σx) errors with both end-points at a rough (smooth)
boundary will be undetectable. If both ends of the chain meet a single, contiguous
such boundary, then the chain is equivalent to the application of a stabilising op-
eration and therefore acts trivially on the logical qubit. On the other hand, if such
a chain has its end-points at two non-contiguous such boundaries, then there is no
equivalent stabilising operation and the chain is by definition a logical operation. A
logical operation is only unique up to elements of the stabiliser group, and is in this
sense equivalent to any string of single qubit operations stretching between its two
boundaries, though canonical representatives are usually defined as

σ̂
(L)
x =

(
⊗l

i=1σ
(i,1)
x

)
, and (3.7)

σ̂
(L)
z =

(
⊗m

j=1σ
(1,j)
z

)
, (3.8)

where qubits are designated on the lattice by the two dimensional indices (i, j).
A surface code on an L × L lattice is a [[L2 + (L − 1)2, 1, L]] code: it requires L2 +

(L − 1)2 physical qubits, encodes at most 1 logical qubit, and has a code distance of L.
The code distance indicates that states in the code space are topologically separated
by L local qubit operations. As in Section 3.2, parity measurements are repeated to
account for faulty measurements, extending the code into a third time dimension.

3.3.1 Lattice Dimension

The discussion in Section 3.2 assumed a simple, one-dimensional repetition code.
With the surface code as a point of comparison, we can now discuss the effect of
local variation in higher dimensions. Since we are assuming that physical errors
occur at a constant rate, the impact of variation will be affected by the fraction of
links in a given error chain corresponding to measurement error. Increasing the
dimension of the code will decrease this fraction. However, extending the lattice
along an additional dimension also increases the number of qubits as well as the
multiplicity of equivalent error chains: the effect of moving to higher dimensions is
not trivially apparent.

The number of direct paths connecting two vertices in an m-dimensional lat-
tice, when these points are separated by an equal number of links, n, along each
dimension, is (mn)!/(n!)m. More generally, when points are separated by a number
of steps di in dimension i, the number of direct paths is (∑i di)!/ ∏i (di!); here we
assume an average symmetry on the grounds of equal mean error rates pµ. The as-
sumption that the most likely error chain can be used as a proxy for the most likely
error class relies on the condition that the exponential suppression in likelihood with
length overcomes the additional entropic contribution from the increase in the num-
ber of chains. Approximating this as

(mn)!
(n!)m pmn ≥ (m(n + 1))!

((n + 1)!)m pm(n+1), (3.9)
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and using the further Stirling’s approximation n! ≈
√

2πn( n
e )

n we can derive that

(mn)!
(n!)m pmn ≈ (2πmn)1/2

(2πn)m/2

(mn
e

)mn( n
e

)mn pmn (3.10)

=

√
m

(2πn)
m−1

2
(mp)mn. (3.11)

Restating the condition in Equation (3.9) then, we have
√

m

(2πn)
m−1

2
(mp)mn ≥

√
m

(2π(n + 1))
m−1

2
(mp)m(n+1) (3.12)

or

p ≤ 1
m

(
n + 1

n

) m−1
2m

. (3.13)

This approaches the finite value pCritical = 1/m as n increases, and remains larger
than the accuracy thresholds of the surface code variants known at low dimensions.

The accuracy threshold of the code pth indicates the regime in which it is likely
to operate, at least in the near-term. Taking the ratio between the accuracy threshold
of the code pth and this critical probability pCritical gives us a measure indicating the
relative importance of the length or probability of a chain as against its multiplicity.
For the repetition code of Section 3.2 we find that pth/pCritical ≈ 0.2, while for the
surface code we have pth/pCritical ≈ 0.09. We conjecture that the approximate factor
of 2 separating these ratios represents the relative significance of variation in the
probability of a single error chain; this would be consistent with the approximate
factor of 2 between the relative improvements found for the sampled results shown
in Figures 3.4 and 3.6.

3.4 Discussion

In this work we have performed pseudo-threshold simulations using minimum-
weight perfect matching and Kolmogorov’s Blossom V algorithm [243,244], and have
introduced two intuitive but approximate measures of qualitative, predictive utility.
Our results show that accounting for local variability in measurement errors can re-
duce logical error rates by factors of order 30%, and also show evidence that this
reduction increases for higher code distances and dimensions, under the minimum-
weight perfect matching decoder.

The minimum-weight perfect matching decoder may run into difficulties at high-
er code distances when the weight of each chain is allowed to vary. The increase in
the variance relative to the weight of the chain that we observed in Figure 3.3 indi-
cates that the most likely single chain becomes less representative of its entire class
as the length increases. At the same time, the variance of the entire class will itself
increase; individual error chains will become less significant but variability in the
set of such chains should become more useful. However, the number of chains in a
set increases exponentially with the length — see Equation (3.11); when the distance
between syndrome points is large, the inefficiency in classical processing required
to account for the full class becomes prohibitive. A direct, online consideration of
local variability therefore seems practically applicable only in small- to mid-level
applications.
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FIGURE 3.6: (Top) Sampled logical error rates for the surface code
over the code distances 15, 17, and 19, as a function of the mean
physical error rate pµ. Two sets of series are shown: the error rates
when the mean error probability pµ is used for decoding (light) and
those when local variation is incorporated (dark). For the latter
series, the relative local width σ is 0.5. Also shown is the line of
equality between the two axes (grey, dashed). Error bars denote 3
standard deviations from the mean, calculated according to the
Wilson Score [242]. (Bottom) Relative change in the logical error rates
when local information is incorporated, at a mean error rate
pµ = 0.024, as a function of code distances between 11 and 19 and
for a relative width of local variation σ = 0.5. The dashed line is
added to guide the eye. Each point in either graph is the result of 105

trials, decoded using Kolmogorov’s Blossom V algorithm [243, 244]
for minimum-weight perfect matching.
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Beyond small- to mid-level codes, the computational cost of the minimum-weight
perfect matching decoder motivates the use of alternative decoding schemes. One
popular alternative, the renormalisation group decoder of Cianci et al. [246–248], re-
lies on pre-computed local tables. While this decoder is important because it allows
us to parallelise the classical processing involved in decoding, it does not allow real-
time local feedback. However, as the probability over the links of an error chain is
multiplicative, the appropriate mean is geometric: the mean probability of a chain of
fixed length should decrease as the variance of individual links increases. The prior
distribution, though its variance, therefore has a direct macroscopic impact on the
logical error rate and can be accounted for even in alternative decoding schemes
using pre-computed tables. Additionally, we could consider qubit rotations subject
to random analogue rotation errors, without the local feedback provided by many
measurements.

We expect the local variability considered in this section to provide a large effec-
tive reduction in resource requirements for a given logical error rate, as near-term
resources are severely limited and gate error rates for many systems remain at or
near the accuracy threshold for the surface code of ∼ 1%. For two specific systems,
the nitrogen– and silicon–vacancy centers in diamond, we consider several quantum
gates exhibiting the local variation discussed above and their operational fidelities
in Part II.
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Part II

Physical Platform: Defect Centers
in Diamond
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Chapter 4

High-Fidelity Spin Measurement
on the Nitrogen–Vacancy Center

Negatively charged nitrogen–vacancy (NV) centers in diamond are versatile candi-
dates for many quantum information processing tasks, ranging from quantum imag-
ing and sensing to quantum communication and fault-tolerant quantum computers.
Critical to almost every potential application is an efficient mechanism for the high
fidelity readout of the state of the electronic and nuclear spins. Typically such read-
out has been achieved through an optically resonant fluorescence measurement, but
the presence of decay through a meta-stable state will limit its efficiency to the order
of 99%. While this is good enough for many applications, it is insufficient for large
scale quantum networks and fault-tolerant computational tasks. Here we explore
an alternative approach based on dipole induced transparency (state-dependent re-
flection) in an NV center cavity QED system, using the most recent knowledge of
the NV center’s parameters to determine its feasibility, including the decay channels
through the meta-stable subspace and photon ionization. We find that single-shot
measurements above fault-tolerant thresholds should be available in the strong cou-
pling regime for a wide range of cavity–center cooperativities, using a majority vot-
ing approach utilizing single photon detection. Furthermore, extremely high fidelity
measurements are possible using weak optical pulses.

4.1 Introduction

The negatively charged nitrogen–vacancy center in diamond is an interesting can-
didate system for quantum technologies, with potential applications ranging from
quantum metrology [249–256] to quantum communication [257–259], as well as sim-
ulation and computation [166, 259–265]. The NV− center contains electronic and
nuclear spin components, with both optical and microwave transitions, and remains
stable even at room temperature [266]. Electronic spin coherence times can be achieved
on the order of 1–100 milliseconds [267–269]. If the NV center is going to be used for
tasks related to communication or computation, it needs to perform four core tasks:

• Coherent manipulation of electronic and nuclear spins,
• Entanglement generation between remote electronic spins,
• Entanglement swapping between the electronic and nuclear spin states within

an NV center, enabling the storage of remote entanglement in the nuclear
spins,

• Measurement of the electronic and nuclear spin states.
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Though local operations (the coherent manipulation) of single centers has been per-
formed with fidelities exceeding 0.999952(6) [178], sample fabrication and high fi-
delity measurements are technological challenges yet to be overcome [270, 271].

The typical measurement scheme for an NV− center is based on a cycling transi-
tion between the ms = 0 levels in the ground and excited state manifolds. The pres-
ence of decay channels from the optically excited manifold through a meta-stable
state is expected to limit the efficiency of this scheme to order 99%. The efficiency is
therefore likely to be below the threshold required for larger-scale communication
and computational tasks, though recent work utilizing repeated initialization of the
electronic state between measurement trials [272] may prove to circumvent this lim-
itation in cases not related to the generation of entanglement. Cavity-enhanced tran-
sitions have been exploited in Purcell-enhanced fluorescence measurement schemes
[273–275] and in emission-based entanglement schemes [276–278].

Recently an alternative approach based on dipole-induced transparency has been
proposed [279–283] wherein the state of the NV center changes the resonance prop-
erties of an optical cavity. More specifically, if the electronic spin in its |0⟩ms

state, an
incident photon is reflected from the cavity, while for the |+1⟩ms

electronic spin state
the photon enters the cavity where it is scattered but not absorbed by the NV center.
Detection of the reflected photon is thus a definite signature that the electronic spin
was in the |0⟩ms

state, though the photon need not interact directly with the state
of the NV center. In this work, we build upon the analysis of [282] and make use
of recent improvements in the understanding of the NV’s low-temperature optical
characteristics [284] to refine the quantification of the scheme’s potential.

To summarise, high fidelity measurements are an outstanding requirement of a
universal quantum primitive using the NV center. They are directly linked to entan-
glement generation between centers. Typical measurements involve luminescence
detection, but direct optical excitation leaves the state vulnerable to unwanted de-
cay and instability. A reflection-based scheme without excitation has been proposed,
but this scheme has not been assessed for the NV center at low temperatures with
a complete dynamical model. With these points in mind, we would like to answer
the following question: For a complete modern description of NV center dynamics,
are we able to achieve measurement satisfying the typical fault-tolerant performance
threshold of 99.9%?

This section is structured as follows: Section 4.2 begins with an overview of the
main properties of the nitrogen–vacancy center, followed in Section 4.3 by a de-
scription of the CQED system and the measurement scheme. Section 4.4 analyzes
the measurement process in detail and estimates its performance, while Section 4.5
considers the effect of replacing the single photon source with weak coherent laser
pulses. Finally, Section 4.6 summarizes the main conclusions of our analysis and
briefly discusses some areas with the potential for improvement.

4.2 The Nitrogen–Vacancy Center

The negatively charged nitrogen–vacancy center in diamond consists of the nearest-
neighbor pair of a subsitutional nitrogen atom with a lattice vacancy (green and red
respectively in Figure 4.1). Three dangling bonds from carbon atoms adjacent to
the vacancy, two dangling bonds from the Nitrogen atom and an additional elec-
tron form the electronic structure of the center. Isotopes of both nitrogen (14,15)
and carbon (12,13) allow us to tailor the number and properties of the nuclear spins.
14N has a spin-1 nuclear spin while that of 15N is spin 1/2. Similarly, 12C has no
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nuclear spin while that of 13C is spin 1/2. With isotopic engineering an NV center
can be fabricated as one requires. For this article we consider an NV center with
the 15N isotope and no nearby 13C carbon atoms. This leads to the simplest NV
center consisting of a spin-1/2 nucleus and an electronic structure (see Figure 4.1)
that is broadly classified by symmetry and/or multiplicity into three groups. These
groups are the ground state manifold (GSM) 3A2 (three non-degenerate states with
a 180o-rotation symmetry about the principle axis), the optically excited state mani-
fold (ESM) 3E (three doubly-degenerate states), and the meta-stable manifold (MSM)
containing the singlets 1A1, one non-degenerate state with both 180o-rotation and
reflection symmetries, and 1E, one doubly-degenerate state. The ground and opti-
cally excited states can be decomposed into two three-level subsystems. The ground
states we refer to as the ‘electron spin’ S, with quantum number ms (and the nuclear
spin I, with quantum number mn). This will distinguish it from optical excitation,
which we refer to as a change in the ‘orbital angular momentum’ L, with quantum
number ml .

The structure of this center can be described, under minor approximations 1, by
the Hamiltonian [266]

HNV = HGSM ⊗ |0⟩ ⟨0|ml
+ HESM (4.1)

where HGSM gives the structure of the ground state manifold and can be expressed
as

HGSM = h̄DGSM

(
S2

z −
2
3

)
+ µBg||GSMSzBz

+µN g||n I(n)z Bz. (4.2)

Here S and I representing the usual electronic spin-1 and nuclear spin 1
2 operators

(with Sz and Iz being their respective z-components). The first term in HGSM rep-
resents an electronic spin zero field splitting of DGSM/2π = 2.88 GHz, while the
second (third) represents a magnetic field Bz splitting of the electronic spin |±1⟩ms

(nuclear spin
∣∣± 1

2

⟩
mn

) states with the Bohr magneton (nuclear magneton) given by

µB/2πh̄ = 14 GHzT−1 (µN/2πh̄ = 7.63 MHzT−1). The g-factors are g||GSM = 2.01

and g||n = −0.566 respectively.

1We ignore the axial hyperfine interaction in our Hamiltonian because it does not significantly
change optical transition detunings and because its relative phase does not affect the fidelity of mea-
surement in the spin basis. We have also removed cross-terms from the ground state Hamiltonian
on the basis of their strength. These terms are the hyperfine spin-flip interaction, A⊥ = 3.65 MHz
[285, 286] and the transverse strain field, δx ≈ 1 MHz [287]. The energy gap, GHz, between the spin
states they connect diminishes their effect. Moving to the dispersive-regime, the respective evolution
terms can be approximated by A2

⊥t/(GHz) and δ2
xt/(GHz). Measurement pulses are separated on

timescales of the order 100 ns; over the course of a single such pulse these quantities are expected to
change state amplitudes to order (106)210−7/109 = 10−4 and probabilities to order 10−8, which we
can neglect

2Lifetimes and decay percentages through the meta-stable subspace are estimated from the 0 mT
values using the energy level mixing ratios. For the low-temperature excited-state Hamiltonian we are
using parameters averaged between those of [288, 289].
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FIGURE 4.1: (Left) Schematic illustration for single-photon
measurement of the NV− electron spin state based on
dipole-induced transparency. The CQED system is driven by a
single-photon source while detection in the reflected mode is used to
infer information about the state of the NV− center. The NV center is
composed of an adjacent nitrogen atom (red) and lattice vacancy
(green) in a tetrahedral carbon lattice (gray). (Right) The electronic
energy level structure of the NV− center, at low temperature under a
Bz = 20 mT external magnetic field set along the NV axis. The
energy levels are represented by bold horizontal lines and grouped
into three subspaces: ground state manifold (GSM), excited state
manifold (ESM) and meta-stable state manifold (MSM). Allowed
radiative transitions between the ground and optically excited states
are horizontally segmented, with overlap indicating relative spin
composition of the energy eigenstates. The optically excited states
contain non-zero orbital angular momentum components +1 (red)
and −1 (blue). Dashed arrows represent decay paths not resulting in
reflection of a photon incident on the cavity (they represent
transmission into the cavity mode, c, through the second cavity
mirror (into b), spontaneous emission into the free field (d) and
decay to a meta-stable state). The solid double-sided arrow
represents a possible zero-phonon line transition in resonance with
the optical cavity.
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TABLE 4.1: Relative energy levels E (and low temperature free
lifetimes τ [284, 291]) of the optically excited states, showing the
polarization of dominant transitions at both zero and 20 mT external
fields. Small mixing of spin states (below 1%) is not shown here. The
20 mT segment of this table is consistent with the energy level
diagram in Figure 4.1. We also indicate the proportion of the
spontaneous decay through a meta-stable (MS) state.2

0 mT E2 E1 Ex Ey A1 A2

E (GHz) −4.46 −4.46 −0.796 −0.796 3.98 6.53
τ (ns) 7.5 7.5 12.1 12.1 5.1 12.1

MS decay 38% 38% 0 − 1% 0 − 1% 54% 0 − 1%
ms = −1
ms = 0

ms = +1

σ−

σ+

σ+ + σ− σ+ − σ−

σ+

σ−

σ+

−σ−

20 mT M1 M2 M3 M4 M5 M6

E (GHz) −5.05 −3.87 −0.82 −0.77 3.87 6.64
τ (ns) 7.5 7.5 12.1 12.1 5.2 11.5

MS decay 38% 38% 0 − 1% 0 − 1% 52% 2 − 3%
ms = −1
ms = 0

ms = +1

σ−

σ+

σ− σ+

0.83σ+

0.56σ−

0.56σ+

−0.83σ−

The structure of the excited state manifold is determined by the component HESM,
where

HESM = h̄D||
ESM

(
S2

z −
2
3

)
L2

z − h̄λ
||
ESMSzLz

+
h̄
2

D⊥
ESM

(
S2

y − S2
x

) (
L2

x − L2
y

)
− h̄

2
D⊥

ESM
(
SySx + SxSy

) (
LxLy + LyLx

)
+

h̄
2

λ⊥
ESM (SxSz + SzSx)

(
L2

x − L2
y

)
− h̄

2
λ⊥

ESM
(
SySz + SzSy

) (
LxLy + LyLx

)
+ µB

(
l||ESMLz + g||ESMSzL2

z

)
Bz. (4.3)

Here D||
ESM/2π = 1.21 GHz denotes the zero-field splitting, D⊥

ESM/2π = 0.6375

GHz, λ
||
ESM/2π = 4.85 GHz, and λ⊥

ESM/2π = 0.141 GHz are spin-orbit interaction

terms and g||ESM, g⊥ESM = 2.01 (l||ESM = 0.1) are the electronic spin (orbital angular
momentum) g-factors respectively. At cryogenic temperatures (4 − 8 K) the non-
zero orbital angular momentum components are distinct [288, 289] and determine
photon polarization selection rules on allowed optical transitions [290]. These are
enumerated in Table 4.1 (along with free transition lifetimes [284, 291]) for the zero-
field and 20 mT external magnetic field cases 3. The zero-phonon line between the
|0⟩ms

intrinsic spin ground state and the optically excited states at zero field is 637nm.

3We have assumed ideal control over the electric and magnetic fields; we expect, though the effects
are not investigated here, that a transition to the large magnetic field regime would suppress variation
in the electric field (or due to strain). As noted by Childress et al. [257], for weak driving, fluctuations
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ms= 0

ms= +1

NV-

NV-

FIGURE 4.2: When the nitrogen–vacancy center is in the ms = 0
ground state, resonant coupling with the optical cavity causes the
composite system to form dressed states detuned from the frequency
of the incident photon — the photon does not enter the cavity, and is
reflected. When the nitrogen–vacancy center is in the ms = +1 state,
there is no optical transition close enough in energy to be able to
couple with the cavity mode — the photon sees an empty cavity,
enters, and is transmitted. In such ideal cases, no interaction occurs
between the incident photon and the nitrogen–vacancy center,
preserving the center’s state.

As the nitrogen–vacancy center decays, emission into the phonon side-band collec-
tively exceeds emission at the zero-phonon line [292–294]. Elastic scattering occurs
approximately 3–5% of the time [295–299], linearly degrading the cooperativity of a
coupled cavity.

Next (as seen in Figure 4.1), a decay channel couples the optically excited states
to a meta-stable subspace. These decay rates (shown in Table 4.1) can have a signifi-
cant effect on the measurement fidelity as decay through a meta-stable state removes
phase information and introduce a bit-flip error rate of 67–81% from the ms = +1
state, and 38–65% from the ms = 0 state [300, 301]. Here we assume a polarizing
sample with a bit-flip rate 81% from the ms = +1 state, and 38% from the ms = 0
state. The longer-lived 1E meta-stable state has a lifetime of 462 ns at 4.4 K, while
the shorter-lived 1A1 state (separated by a 1042 nm energy gap from its 1E counter-
part) has a lifetime of less than 1 ns [302]. Transitions to and from the meta-stable
subspace do not conserve the intrinsic electron spin [284], they therefore degrade the
measurement fidelity.

4.3 Photonic Readout of the Nitrogen–Vacancy Center State

The optically accessible transitions in an NV center provide a natural way to measure
it, given the excellent frequency separation of allowed transitions from the ms = 0
state relative to those of the ms = ±1 states (Table 4.1). The absence of hyperfine

in the transition energies over time have the effect of broadening the transition, combining with the
decay rate to reduce the cooperativity.
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interactions 4 and the smaller decay rates from the ms = 0 ESM levels to the meta-
stable subspace leads to the selection of the |0⟩ms ↔ |M3,4⟩ms transitions for the opti-
cal readout. The presence of decay through a meta-stable state, however, limits that
measurement efficiency after a certain number of light pulses, as the excited states
|M3,4⟩ms will decay into the MSM (< 1% of the time). Dipole-induced transparency
(giant Faraday rotation) [280–283, 303] provides an elegant way to mitigate this ef-
fect, as we can use strong coupling between our NV center and an optical cavity to
modify the resonance properties of that cavity. In this strong coupling regime, a σ+
polarized photon near resonance with the empty cavity and with the |0⟩ms ↔ |M4⟩ms

transition would be reflected when the NV center is in the |0⟩ms state 5. This means
the photon is not absorbed by the NV center, mitigating the effect of decay through
the meta-stable state and providing, in the ideal case, an interaction-free measure-
ment. On the other hand, the photon will be transmitted through the cavity (and not
absorbed or scattered) if the NV center is in its | ± 1⟩ms states as it is far off resonance
with the | ± 1⟩ms ↔ |M1,2,5,6⟩ms transitions. Measurement of the presence or absence
of the reflected photon (or series of photons) thus allows us to infer the state of the
NV’s electron spin. How well this works required a detailed analysis of the entire
measurement scheme.

Coupling between the cavity, external field modes and electron spin can be rep-
resented as shown in Figure 4.1 and by the Hamiltonian

Hcoupling = h̄
[

c
(√

κa

π
a† +

√
κb

π
b†
)
+
√

2gcLx

]
+ h̄

6

∑
i=1

√
2γi

π
d|Mi⟩⟨Mi|Lx + h.c, (4.4)

where a, b, c, d (a†, b†, c†, d†) are the annihilation (creation) operators of the reflected,
transmitted, cavity and scattering (spontaneous emission) operators. Next, Lx is the
angular spin-1 X operator while g is the vacuum-Rabi coupling rate. Further, κa
and κb are the left and right mirror cavity decay rates, which we assume are equal
giving us a total decay rate κ = κa + κb. Finally, γi is half the spontaneous decay
rate of the ith optically excited state 6. These three parameters allow us to define the
cooperativity Ci = g2/2κγi, a dimensionless measure of coherent coupling [304].

The Hamiltonians in Equations (4.2), (4.3) and (4.4) incorporate spin-1 operators
Sx,y,z and Lx,y,z. Explicitly, for the ms subsystem these are

Sz =
[ 1 0 0

0 0 0
0 0 −1

]
, Sx =

1√
2

[ 0 1 0
1 0 1
0 1 0

]
, Sy =

1√
2

[ 0 −i 0
i 0 −i
0 i 0

]
(4.5)

so that the raising and lowering operators are given by

S+ =
√

2
[

0 1 0
0 0 1
0 0 0

]
, S− =

√
2
[ 0 0 0

1 0 0
0 1 0

]
. (4.6)

Matrices for the ml subsystem are identical.

4The hyperfine interaction is effectively turned off for the ms = 0 levels, while there is a difference
in hyperfine coupling constants between the ESM and GSM ms = ±1 levels. The spontaneous nature
of the decay from the ESM will lead to a small random phase shift in this case.

5The use of a σ+ polarized photon means that photon can not be resonant with the |0⟩ms
– |M3⟩

transition.
6These have not be measured at 20 mT but their values can be estimated roughly by appropriate

mixing of the zero-field values.
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On resonance, the coupling is related to the spontaneous decay rate by

g =
√

ρω
π2c3

h̄ω3
γRad
2π f , (4.7)

where f is the Huang-Rhys quantum efficiency of the transition (0.03 − 0.05 for the
nitrogen–vacancy center), γRad is the radiative component of the spontaneous decay
rate (2π × 13.2 MHz), ω is the angular frequency of the transition, c is the speed
of light, and ρω denotes the energy density of the cavity-field per unit angular fre-
quency [305].

With the NV and coupling Hamiltonians we can derive Langevin equations of
motion for the various field and spin operators. These are nonlinear in nature due to
coupling terms between the field and spin operators, which makes them difficult to
solve in general. Two alternative approaches can be taken to simplify this situation:
the first assumes that NV center is always in the GSM while the second is to work
in a single excitation subspace [306] where the field probing the NV center contains
no more than one photon (both approaches lead to the same answer). We take the
second route and will use probe fields with at most one photon.

The Hamiltonian, in Equations 4.2, 4.3 and 4.4, is first expanded to distinguish
between photon polarizations (σ+ and σ−), so as to preserve orbital angular momen-
tum and enforce polarization selection rules:

cLx → cσ+ L+ + cσ− L− (4.8)

c
(

a† + b†
)
→ cσ+

(
a†

σ+ + b†
σ+

)
+ cσ−

(
a†

σ− + b†
σ−

)
(4.9)

Next, exploiting conservation of energy to bind us within the single-excitation
subspace, we define composite operators fully characterising the spin and angular
momentum states of the system, such that the equations of motion are linear in these
operators. Two examples are lowering operators we will arbitrarily call Ĉ and Ê
(for Cavity-mode and Excitation), corresponding respectively to c†

σ+cσ+ = 1, ms =
+1, ml = 0 and to ms = +1, ml = +1.

Ĉ = cσ+S−
(
S2

z + Sz
)

/2 (4.10)

Ê = L−S−
(

L2
z + Lz

) (
S2

z + Sz
)

/4. (4.11)

The mean values for Ĉ, Ê, and their equivalents for the orthogonal polarization
and when ms ̸= +1 are important because they are directly related to output scat-
tering rates. Finally, we derive Langevin equations for these composite operators of
the form

∂Ĉ(t)
∂t

= −i
[(

ωc + D||
gs +

µB

h̄
g||gsBz − i

κ

2

)
Ĉ(t)

+αĈ

√
κ

2π
e−ikt + gÊ(t)

]
. (4.12)

Here αĈ is the amplitude of driving into the σ+–polarized cavity mode, k is the fre-
quency of this driving, ωc is the cavity mode frequency, t is the time-dependence of
the operators, and other parameters are obtained from the aforementioned Hamilto-
nians. Performing a Fourier transform gives us a set of linear equations, which can
then be solved using the standard methods of numerical linear algebra to obtain the
scattering matrix.
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This approximation results in a set of linear Langevin equations that are straight-
forward but tedious to solve. The solutions are those for the cavity mode and excited
states and not what we measure. However by using input–output relations [307]

aout(t) = ain(t)− i
√

κc(t), (4.13)

we can express our output field aout(t) in terms of the cavity field c(t) and the cav-
ity input field ain(t). This then enables us to calculate the mean photon number
⟨a†

out(t)aout(t)⟩ over time and so determine whether an incident photon was reflected
or not.

Source and detection efficiencies, as well as losses and imperfections, mean that
one single-photon measurement will not be sufficient to determine the NV state with
the accuracy we require. Instead our measurement here consists of a series of tem-
porally spaced single-photon pulses which we individually attempt to detect. The
time between photon pulses is chosen to be ∼ 165 ns, from the axial hyperfine Rabi
period. By matching gate times to this period, the effect of electron dephasing on the
nuclear state can be minimized. Though it is not possible to restrict pulse times ex-
actly to a periodic point, it has been shown that error associated with decay channels
following optical excitation can be reduced by centering the pulse on such a point
[308]. This is much larger than the excited state lifetime of the |M4⟩ state (12.1 ns)
[284], but significantly shorter than the GSM decoherence times.

The outcome at the detector of each measurement pulse is dependent on its ini-
tial state distribution and thus successive outcomes are dependent on the detection
history preceding them. After n pulses therefore there are 2n possible measurement
paths. Not all branches in the outcome tree will be full-length, however, as outcome
branches that are successful early in the procedure can be truncated. In particular,
reflection from the |+1⟩ms

state can be suppressed by polarization and detuning,
so that a detection event very strongly indicates the |0⟩ms state and will terminate
an outcome branch (especially as dark count probabilities can be exceptionally low
[309–311]).

4.4 Simulation of the Measurement Process

Along with our description of the NV− center’s photonic readout, let us now turn
our attention to simulating it. Our model has a large number of parameters, but with
the external magnetic (electric) fields set at 20 mT (0 V/m), our primary focus will
be restricted to four experimentally relevant parameters: the cooperativity C, single
photon source and detection efficiencies and the ms = 0 decay rates through the
meta-stable subspace. Figure 4.3 shows example transmission and reflection spectra.

It is useful to begin by considering the situation with perfect single photon sources
and detectors but with finite cooperativity C and transitions through the meta-stable
subspace (in the range 0–1% for the target transition, as indicated in Table 4.1).
When the electronic spin is in its |0⟩ms

state, an incoming photon is reflected with
a probability PR ≈ 4C2/(2C + 1)2, so that if we send n photons, the probabil-
ity of detecting one or more photons is ps = 1 − (1 − PR)

n (equivalently we need
n = log(1− ps)/ log(1− PR) trials to have at least one photon detected with success
probability ps). There are two n’s of interest here, nave and n f t. nave is associated with
the average number of single photon trials to get a measurement ‘click’ while n f t is
the number that guarantees at least one measurement click with probability above
the fault tolerance threshold we set of 99.9%. For an initial state |+1⟩ms

we have to
perform n f t trials (we call this trial limit number the stop-limit) with no clicks to infer
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FIGURE 4.3: Reflection (red) and transmission (blue) spectra, over a
range of cavity-atom detunings relative to the energies depicted in
Figure 4.1, when the nitrogen–vacancy center is in the |0⟩ms

(solid
line) and |+1⟩ms

(dashed line) states. σ+ photon polarization has
removed several other possible transitions. The cooperativity is
taken at C = 10. The presence of additional decay paths prevents
these lines from summing to one. Alternative decay pathways
include spontaneous decay outside of the cavity mode, phonon-line
decay, and non-radiative decay to the meta-stable states.

it was this state (with error probability 1 − ps). Figure 4.4 shows the effect of the
cooperativity on both nave, n f t and the measurement fidelities Fi∈{0,+1} = ⟨i|ρ|i⟩ms

(where ρ is the state of the system after the n trials) for varying decay rates to the
meta-stable subspace. As the cooperativity, and therefore also the reflection proba-
bility, increases, the number of trials required to achieve ps decreases in integer steps.
These steps manifest as negative discontinuous jumps in the measurement fidelity.

When we start with a general superposition state, each measurement pulse will
introduce some error and so the reflection probability will not remain static as was
assumed in Figure 4.4. Instead, the contrast between the initial |0⟩ms

and |+1⟩ms
states will degrade as the number of pulses increases, thereby increasing n f t. Rather
than initially specifying a maximum number of trials, we can look at the perfor-
mance over a range of such numbers to identify an optimum number of measure-
ment trials and the sensitivity of the measurement performance to changes in this
number. In Figure 4.5 we plot the measurement fidelity for the initial state(

|0⟩ms

∣∣∣∣−1
2

⟩
mn

+ |+1⟩ms

∣∣∣∣+1
2

⟩
mn

)
/
√

2. (4.14)

For the ideal case we observe that the 99.9% threshold is met even at cooperativi-
ties as low as C = 2, and that the dependence of the measurement fidelity on the
pulse number, while sensitive at low cooperativities, is as low as order 0.0001 for
cooperativities greater than 5.

Now including the effects of source and detection efficiency into our analysis, we
show in Figure 4.6 the behavior of the measurement fidelity as a function of source
and detection efficiencies. We observe that the performance depends slightly more
sensitively on the detector than the source, but that the performance is robust for
extraction rates ∼ 0.9.
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based on the reflection probability of an initial pure state. (Bottom,
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the cooperativity, C, and (Top) single-photon source efficiency,
ηSource, and (Bottom) single-photon detection efficiency, ηDetect. The
ms = 0 decay rate to the meta-stable subspace is taken to be 1%.
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4.4.1 Realistic Performance Estimate

A natural question to ask is what our expected measurement fidelity would be
with current technology. To this end let us specify a cooperativity of 0.2 [312], a
single-photon source probability of 60% 7, a single-photon detection efficiency of
92% [310, 311, 315–318], and ms = 0 decay rates to the meta-stable subspace of 1%
[284]. Our model then predicts a maximum measurement fidelity of F = 0.992 oc-
curring (within rounding error) after 145 single photon pulses. The total time for
the measurement is then ∼ 150 × 165 ns ≈ 25 µs. During this time we would ex-
pect an electron spin dephasing error between 1%–0.01% for coherence times in the
region 1–100 ms. The upper range would have a consequential effect on remote
entangling operations, though dephasing should not effect the nuclear spin mea-
surements. Limiting the maximum number of pulses to 10 reduces the measure-
ment fidelity to F = 0.686. In Table 4.2 for contrast we outline similar numbers for
C ∈ {0.5, 1, 2, 5, 10} and ηSource, ηDetect ∈ {0.2, 0.6}. For a low source efficiency, it is
apparent that high measurement fidelities can be maintained at the cost of greatly
increasing the number of pulses.

TABLE 4.2: Measurement fidelities, F, and pulse numbers, n, when
the ms = 0 decay rate to the meta-stable subspace is 1%, varying the
cooperativity and the single-photon source and detection
efficiencies, ηSource and ηDetect.

C ηSource ηDetect F n
0.5 0.2 1.0 0.9965 290
1 0.2 1.0 0.9982 159
2 0.2 1.0 0.9992 80
5 0.2 1.0 0.9997 66
10 0.2 1.0 0.9998 57
0.5 0.6 1.0 0.9965 93
1 0.6 1.0 0.9985 42
2 0.6 1.0 0.9992 27
5 0.6 1.0 0.9997 19
10 0.6 1.0 0.9998 15
0.5 1.0 0.2 0.9830 255
1 1.0 0.2 0.9914 141
2 1.0 0.2 0.9962 73
5 1.0 0.2 0.9983 57
10 1.0 0.2 0.9990 49
0.5 1.0 0.6 0.9950 72
1 1.0 0.6 0.9975 41
2 1.0 0.6 0.9987 24
5 1.0 0.6 0.9995 18
10 1.0 0.6 0.9997 15

7PPLN sources can be purchased with 60% heralding efficiency [313], which may be multiplexed at
a low individual extraction rate to suppress multi-photon components. Recent genuine single-photon
sources have also been built based on quantum dots [314] that have achieved extraction efficiencies of
65%, though unpolarized and at a different frequency than the one we require
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4.4.2 Single Photon Pulses

In any realistic model we also need to consider the bandwidth of our atomic reso-
nances compared to those of the photon. Here we are working in the regime where
the photon bandwidth is much less than the transform limited linewidth of the NV
center’s zero-phonon optical transitions. Our single photon pulses are 165 ns apart
implying a bandwidth at least of order ΓP/2π ∼ 1/2 MHz (HWHM). The reflection
spectrum from |0⟩ms

is not sensitive at those scales but reflection from |+1⟩ms
sits in

the trough of a narrow resonance (ΓR ∼ κ = 2π × 50 MHz), necessitating further
consideration. We assume a Gaussian pulse shape,

1√
2σ2

t π
e
−(t−165/2)2

2σ2
t , (4.15)

and set the standard deviation to σt = 165/6 ns so that the width of the pulse is
much less than the time between pulses (at three standard deviations the area trun-
cated in the tails is 0.3%). By the time–bandwith product, σ2

t σ2
P = 1/4, the standard

deviation in the frequency then becomes σP/2π = 2.9 MHz. By integrating over
the probability-weighted reflection spectrum we can estimate the realistic reflection
probability to be

Pave R ∼ 1 −
√

π (σtκ) erfcx (σtκ)

= 0.66% (4.16)

The reflection here is a direct result of the relative magnitudes of the photon and
cavity linewidths, and is not influenced by the nitrogen–vacancy center. Since the
width of the reflection trough is set by κ, it also governs the transmission and scat-
tering peaks, which are each reduced to 99.34% of their maximum values. A 0.66%
reflection probability from the |+1⟩ms

state, when we want to suppress our error to
within 0.1%, means that detection is no longer a strongly-classifying event.

Let us assume our initial state is predetermined and restricted to the {|0⟩ms
and

|+1⟩ms
} subspace, but that the fidelity decays exponentially in the number of photon

pulses. The probability of each state after n pulses is then given by Bayes’ theorem
and a binomial distribution (similar to the treatment of a Poisson-distribution in
[283]). The probability of a detection event from |0⟩ms

and |+1⟩ms
will be p0 and p+1

respectively. With single-photon source efficiency, detection efficiency and coopera-
tivity of 60%, 92% and 10 respectively, the photon bandwidth detection probabilities
are p0 = 0.50 and p+1 = 0.00364. We can estimate the error rates per pulse, as
η0 = 1.5 × 10−4 (η0 = 3.5 × 10−4) for the ms = 0 decay to the meta-stable subspace
of 0% (1%) respectively with η+1 = 1.2 × 10−5. This means we can achieve an ex-
pected measurement fidelity of F = 99.9% (F = 99.8%) using 13 (12) single photon
pulses. Using more pulses than this decreases the resulting fidelity but at the levels
indicated here we are right at the border of our 99.9% requirement.

At what pulse times does the error associated with false-positive detection events
become significant? We can obtain a quick estimate by determining the error and the
average number of additional trials that would need to be performed to distinguish
between the two rates of reflection, assuming once more that the error follows an
exponential decay. As above, the cooperativity is assumed to be 10, the source and
detection probabilities are 60% and 92% respectively, and the ms = 0 metastable
decay rate is 1%. In the point-frequency case this approximation predicts a fidelity
of 0.99775 after 11 trials (this is a more conservative estimate than the numerical
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calculations represented in previous sections). Errors differing from this by 10−5,
10−4, and 10−3 occur when the pulse times reach 455 ns (requiring 11 trials), 115 ns
(requiring 12 trials), and 24 ns (requiring 19 trials) respectively.

Understanding that the above is a conservative approximation, we can also ask
what values for κ or for σt we would require to suppress reflection (rather than er-
ror) from the |+1⟩ms

so that it is below our threshold of 0.1%. We find that either
κ = 2π × 129 MHz for the current pulse-time or σt = 71 ns for the current cav-
ity decay rate (so that either is 2.58 times larger than its original value) satisfy this
condition. Due to dephasing, for application to projective entanglement generation
there is a fundamental tradeoff to be made between longer pulse times, related di-
rectly to σt, and the number of such pulses required, as influenced by κ through the
cooperativity.

4.5 Weak Coherent Pulses

Our previous considerations (and in [282]) assumed the use of single-photon sources
that are technologically challenging to realize and were found to be a key limiting
factor in achieving higher measurement fidelities. Weak coherent laser pulses are a
natural alternative [319] and offer a number of potential advantages including:

• Ready availability at the appropriate wavelengths,

• Easy tailoring of their mean photon number,

• Ready pulse shaping to customize the state dependent reflection/absorption
from the cavity.

Allowing more than one photon to be reflected from the cavity dramatically im-
proves our detection efficiency, potentially turning this into a single-shot (pulse)
measurement. There is however a potential issue here associated with ionization
of the NV center, which can occur when the electronic state absorbs more than one
637 nm photon. Ionization converts the NV− center to the charge neutral NV0 cen-
ter (which is spin-0). Little applicable information is known about photo-induced
ionization at this wavelength and temperature apart from the fact it must be a two-
photon process [320–322].

Our situation here is different as we are working with an NV in a CQED config-
uration at low temperatures, which will enhance the light–center interaction. We do
however know that the probability of photons being reflected from the cavity mir-
ror on resonance is PR ≈ 4C2/(2C + 1)2 and for a weak coherent laser pulse |α⟩ the
mean number of photons in that pulse entering the cavity is |α|2(1 − PR). We can
then estimate that over time of the entire pulse τp, the probability P2+ of having two
or more photons within the cavity’s line-width 1/κ should be

P2+ ∼ |α|4(1 − PR)
2 κτp

2
∼ 10−3 (4.17)

for our typical parameters with |α|2 ∼ 3. It is critical to remember that having two
photons in the cavity does not that mean both are simultaneously absorbed and
cause ionization. We can go a step further and calculate the probability that the
NV center is in its ESM and that simultaneously at least one photon is in the cavity
mode. The results of our master equation simulation are shown in Figure 4.7 and
we immediately observe that this joint probability is nearly an order of magnitude
lower than P2+. Unfortunately we do not know the coupling rate between the ESM
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and the conduction band. However, based on these preliminary estimates, for rea-
sonable values of C and |α|2 we expect that the ionization probability will be less
than 10−3, and that therefore weak coherent laser pulses should be ideal for initial
measurement experiments. Performance estimates for several cases are shown in
Figure 4.8. In addition to increasing the ionization rate, a higher photon number
also increases the coupling between the cavity and center, as well as the effective
detection efficiency. In fact, with |α|2 ∼ 3, cooperativities in the strong coupling
regime and current detection efficiencies we should be able to achieve a single-shot
measurement. This measurement cannot be used for entanglement generation, how-
ever, due to the likely presence of additional scattered photons.

4.6 Discussion

The scheme investigated here uses a dipole-induced transparency to entangle the
path of a photon with the spin state of a single nitrogen–vacancy center at cryo-
genic temperatures. This provides, through subsequent detection of such a photon,
a projective measurement on the spin state of the center. The fidelity of this projec-
tive measurement forms the key figure of merit in our results. Typically, analyses of
these approaches have used significant approximations (e.g. limiting the state space
and assuming memoryless scattering distributions) to argue the initial case for their
competitiveness, but it is important, before these devices are realized for scalable
systems, to determine just how scalable they are. This requires a more in-depth and
complete model. In our work here:

• The model of the energy level structure of the nitrogen–vacancy center incor-
porates all ground and optically excited states.

• Errors arising from evolution among optically excited states are considered, as
well as the ability of the decay path through a meta-stable state to feed back
into the correct subspace, when accounting for multiple single-photon pulses.

• We characterize the impact of external photon loss and variation in the decay
rate to the meta-stable subspace.

• With the exception of Subsection 4.4.2, scattering probabilities are dependent
on the outcomes of preceding measurement pulses.

Incorporating these effects allows us to begin to make statements about the applica-
bility of this approach to real, large-scale systems.

Accounting for these additional factors, we expect that the two primary hurdles
to the implementation of this scheme are the construction of high-fidelity, narrow-
bandwidth (σtκ >> 1) single-photon sources and a cooperativity in the strong-
coupling regime (recent work [312] reported a cooperativity C ≈ 0.2). The pre-
liminary use of few-photon, weak coherent pulses may circumvent the issue of the
single-photon sources, and increases the effective cooperativity by increasing the
electric field density. However, larger scale applications and projective entangle-
ment generation between multiple color centres will require single-photon sources:
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For the larger applications, charge-state switching and its correction will cause tem-
poral inhomogeneous broadening [323], while for entanglement generation, the pos-
sibility of stray photons, avoidable only with large cooperativities and high detec-
tion efficiencies, degrades the resultant entanglement fidelity. Contemporary diffi-
culties in mind, however, with continuing development we do expect the parame-
ters assumed here for cooperativity (10), and source (60%) and detection (92%) ef-
ficiencies to be experimentally achievable in the near future; we intend our charac-
terization of the impact of individual error sources to assist experimental efforts to
engineer high-fidelity projective operations with this system.

To summarize our view for the immediate future, setting aside the challenges of
large-scale applications and projective entanglement generation between nitrogen–
vacancy center devices, we envisage that the preliminary use of weak coherent states
should allow high-fidelity spin measurements in smaller-scale, contemporary set-
tings. We have estimated an upper bound on the rate of charge-state switching for
moderate photon-numbers on the order of 10−3. This bound, along with the fideli-
ties depicted in Figure 4.5, suggests that the measurement scheme considered here
sees an error rate improvement of, in principle, an order of magnitude over the tra-
ditional method of luminescence-detection. While our estimates could be improved
with a finer characterization of the ionization rate and the ms = 0 decay rate through
the meta-stable subspace, our results therefore suggest that dipole-induced trans-
parency should provide high fidelity measurement of the spin state of the nitrogen–
vacancy center.

Recent interest has also been generated around the silicon–vacancy center in di-
amond; this system has several apparent optical advantages, such as the strength
of its zero-phonon line, over the nitrogen–vacancy center. We consider the silicon–
vacancy center, comparing it with the above results for the nitrogen–vacancy center,
in Chapter 5.
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Chapter 5

Operations on the Negative
Silicon–Vacancy Center in
Diamond

The silicon–vacancy center in diamond has recently attracted significant attention
as a candidate for quantum information processing as it overcomes many of the
optical problems of the nitrogen–vacancy center. Historically it has been hampered
by short dephasing times, however high-purity samples at low temperatures resolve
this issue. Here we investigate the potential of the silicon–vacancy center to achieve
optically two operations required for quantum information processing: projective
measurement and population transfer.

5.1 Introduction

The silicon–vacancy center defect in diamond has been seen by many as a successor
to the optically problematic nitrogen–vacancy center [324]. This center consists of a
single silicon atom at the center of a split-vacancy, in the space left by the removal of
two adjacent carbon atoms in the diamond lattice. The measured O(10 − 100 ns) co-
herence times of the spin states of silicon–vacancy centers at cryogenic temperatures
[325–327] were previously comparable to the period of the hyperfine interaction be-
tween the electronic and nuclear spin states in the 29Si isotope (O(10− 100 ns) [325]).
It was thus supposed that the silicon–vacancy center would not be a reliable system
in which to store the state of a qubit; it was proposed as a source of single pho-
tons [328] due to its narrow, stable, optical transitions and strong zero-phonon line,
though non-radiative decay is a dominant process reducing the quantum efficiency
of optical transitions. More recently, however, investigations [329] have suggested
that the coherence time of the silicon–vacancy center can be increased under condi-
tions of low temperature (10 − 100 mK) with Sukachev et al. [330] reporting a T2
time of 13 ms and a T1 time exceeding 1 s.

Such findings cause us to reconsider the potential of the silicon–vacancy center
for the encoding, processing, and measurement of qubit information. If information
can, in fact, survive long enough to be reliably stored in the nuclear spin state of
the 29Si isotope, could the silicon–vacancy center provide a path around the optical
complications of the nitrogen–vacancy center [295–298, 300, 301]? The apparent ad-
vantages of the silicon–vacancy center over the nitrogen–vacancy center relate to op-
tical transitions; the potential to exploit these optical transitions for spin population
transfer and measurement has been our immediate concern. Specifically, we inves-
tigate theoretically the fidelity of spin measurement mediated by cavity reflection
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[8, 279–283] and of single-qubit manipulation using STIRAP [331] pulses through
intermediate states in the optically excited subspace.

To summarise, the SiV center is known to bypass several optical complications of
the NV center. Uncertainties remain in the centers dynamics, however, and the best
implementations of quantum logic gates with this center remain unknown, though
several approaches have been tried. The potential of the center for quantum in-
formation processing therefore remains uncertain. With these points in mind, we
would like to answer the following question: Under optimistic assumptions, are op-
tical gates with the SiV center likely to allow it to supersede the NV center?

This chapter is organised as follows: In Section 5.2 we begin with an overview
of the properties of the silicon–vacancy center and the assumptions we make for
our model. In Section 5.3 we explain our selection of external fields and the qubit
subspace. Sections 5.4 and 5.5 respectively describe cavity-mediated measurement
of the spin state and population transfer via optical STIRAP. Finally, in Section 5.6 we
summarise our understanding of the potential of the silicon–vacancy center relative
to the well-known nitrogen–vacancy center.

5.2 The Silicon–Vacancy Center

The model we use for the electronic energy level structure of the SiV− center consists
of four optically excited states (ES) and four lower-energy ground states (GS). These
subspaces are respectively composed of two, two-level subsystems, associated with
the spin and orbital angular momentum electronic states [325,332]. This energy level
structure is displayed in Figure 5.1, where the GS and ES subspaces respectively are
governed by the Hamiltonians

Ĥ/h̄ = λ(GS/ES)Ŝ(o)
Z Ŝ(e)

Z + f µBBZŜ(o)
Z

+ 2.0µB ∑
i∈{X,Y,Z}

BiŜ
(e)
i

+ ϵ
(GS/ES)
I Ŝ(o)2

Z + ∑
i∈{X,Y}

ϵ
(GS/ES)
i Ŝ(o)

i , (5.1)

and where Ŝ(o/e)
X/Y/Z are spin-1/2 operators for the orbital (o) and spin (e) subsystems

with the orbital operators containing an extra factor of 2 [327, 332]. Here λ(GS) =
2π × 51.5 GHz (λ(ES) = 2π × 257 GHz) denotes spin–orbit coupling, while f =
0.1 reflects an expected suppression of the magnetic field’s influence on the orbital
component due to a dynamic Jahn–Teller effect. µB = 2π × 14.0 GHz T−1 is the Bohr
magneton, while BX/Y/Z are applied magnetic fields along each of the principal axes.
Finally, ϵ

(GS/ES)
I/X/Z represent strain fields.

The ES lifetimes, appearing to be independent of the particular spin or angular
momentum states, are set at 1.8 ns [333]. Optical transitions are divided by the sym-
metry of the center into axially polarised on the one hand, and circularly polarised
components orthogonal to the principal axis of the center on the other. Orthogonally
polarised photons flip the orbital angular momentum state in the transfer between
the GS and ES subspaces, while axially polarised photons leave the orbital angular
momentum state unchanged and are coupled twice as strongly [325, 332].

There appear to be at least three primary sources of decoherence in the ground
state subspace: thermal phonons, spin-spin interaction with impurities such as 13C,
and at least one other, unknown source [326, 329, 330, 334]. At temperatures on the
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FIGURE 5.1: The energy level structure of the negatively charged
silicon–vacancy center under the assumptions described in
Section 5.2, for (a) zero magnetic field, (b) a magnetic field with
BZ = 9.179 T and BX = 0.6 T, and (c) a magnetic field with
BZ = 29.179 T. The zero-phonon line of the negative silicon–vacancy
center is 1.682 eV. All optical transitions preserve the spin state (|ψ⟩S,
denoted by color), while Z-polarized optical transitions additionally
preserve the orbital state (|ψ⟩L, denoted by column).



58 Chapter 5. Operations on the Negative Silicon–Vacancy Center in Diamond

scale of the ground state splitting and above, decoherence is dominated by an Or-
bach process [327]. This process is limited by the excitation rate of the orbital com-
ponent, and subsequent relaxation from the upper branch of the ground states ap-
pears to occur in the orbital and spin components respectively at a ratio of 100 : 1.
The zero-temperature orbital and spin relaxation rates from the upper branch we
infer [327, 329] to be 66 ns and 6.6 µs respectively. In what follows we will assume
a regime in which the mean thermal photon number at the characteristic energy of
the ground state splitting is much less than one (T ≤ 100 mK). At such low temper-
atures, and for a high-purity diamond sample, the limiting decoherence rate at zero
field is thought to be due to spin-spin coupling to impurities with T∗

2 of order 10 µs
[330].

We begin with a qualification: Not enough is yet known about the silicon–vacancy
center to provide performance estimates at the level of precision required for scalable
quantum information processing tasks. Here we deliberately take an optimistic view
where we encounter uncertainty in the properties of the center, to clarify known
limitations while leaving open the potential for fortunate refinement in the future.
Specifically, our assumptions are: No static Jahn-Teller terms (these are wrapped
into strain); no fluctuation, nor statistical uncertainty, in the dynamical parameters;
no non-radiative decay from the optically excited states; no native decay terms with
decay times greater than O(10 µs), which we justify by expected operation times; no
nuclear (hyperfine) sublevels; and no additional energy levels around the optically
excited states [325, 335, 336].

5.3 Qubit Subspace and External Fields

Before any claims about operational fidelity have meaning they must be related to a
specific encoded qubit subspace within the energy level structure of the center. We
have the following requirements for the selection of such a subspace:

1. Our two qubit states are long-lived;

2. transition energies between our two qubit states and respective optically ex-
cited states (where the transition polarisation is equal) are sufficiently dis-
tinct as to allow selective excitation from one state to another, both for cavity-
mediated projective measurement and for population transfer mediated by
these excited states;

3. the energies of the qubit states themselves must be sufficiently distinct from
their equal-spin counterparts in the inverse orbital subspace to avoid overlap
with single-qubit rotations mediated by the excited states and/or this inverse
subspace.

To satisfy the first condition, long qubit lifetimes, we must first consider the dom-
inant noise processes of the SiV− center. The dominant decoherence process at low
temperatures is a downward (emissive) relaxation of the orbital subspace. As noted
in Section 5.2, we expect this process to have a decay time of 66 ns. The next dom-
inant process is downward (emissive) spin relaxation, for which we expect a decay
time of order (100 × 66 ns) = 6.6 µs. Our first preference, then, is the lowest-energy
orbital component associated with each spin component. If possible, we would also
like to satisfy the inverse: that our qubit is encoded in the lowest-energy spin com-
ponent of each orbital subspace.
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We break the energy-level structure into three classes according to magnetic field
magnitude:

• At small fields (BZ < 1.8 T) the coherence times reach T∗
2 = 10 µs and T2 =

10 ms [330]. Population transitions in this regime are two-photon processes
relying upon perturbative differences in spin composition between the qubit
subspace and either the higher-energy pair of ground states or the lower-energy
pair of optically excited states. See Figure 5.1 (a).

• At fields above approximately BZ ≈ 1.8 T, the two central ground states cross,
so that the two most stable states become the first and third ground states in
order of ascending energy. This has the effect of reducing the qubit lifetime to
the emissive spin lifetime (6.6 µs). At an axial magnetic field of 9.179 T the cen-
tral optically excited states can be brought together; while population transfer
between qubit states remains a two-photon process, the creation of |+⟩ and |−⟩
spin configurations in the central excited states via the application of a small
transverse magnetic field suggests the potential in this regime for single-qubit
rotations via Stimulated Raman Adiabatic Passage (STIRAP). The appeal of a
STIRAP approach is that it avoids optical excitation of the center, and there-
fore avoids the error channels associated with spontaneous optical decay (and
also of non-radiative decay and unknown variation in the hyperfine coupling
magnitude in the presence of a 29Si nuclear spin). See Figure 5.1 (b).

• At fields of approximately 30 T and above, the two most stable states take on
the same orbital degree of freedom (differing only in their spin component). In
this regime population transfer therefore becomes a direct, one-photon pro-
cess. The expected qubit lifetime, as for regime (2), is limited by the spin
relaxation time to 6.6 µs. While this regime appears promising, the required
constant magnetic field of order 30 T is, as far as we are aware, beyond normal
experimental capabilities. See Figure 5.1 (c).

Excluding regime (3) because of its impracticable magnetic field magnitude, we next
consider the relative strengths and weaknesses of regimes (1) and (2).

At zero-field, due to strong spin–orbit coupling, the requirements for a long qubit
lifetime as described above are satisfied by the lowest-energy eigenstates:

|01⟩L,S ; |10⟩L,S . (5.2)

Single-qubit rotations through the optically excited states via STIRAP additionally
requires the ability to couple the two qubit states to the same excited state (or the
same set of excited states). Engineering photon polarization can enable us to drive
transitions toward the same orbital component. However, optical transitions are
spin-conserving and the spin components remain distinct in the optically excited
states due to strong spin–orbit coupling; at zero-field, population transfer through
these states relies upon a relative perturbative mixing of the spin in the ground
states. For STIRAP transfer, such perturbative mixing is insufficient; when over-
lap between the qubit states and the intermediate states are not equal, applying the
Stokes’ and pump pulses in the usual counterintuitive order is unable to suppress
population transfer into the intermediate states. Population transfer into the inter-
mediate states is a source of error because of the rapid and weakly-selective nature
of optical decay. Spin mixing must be caused by a magnetic field orthogonal to the
axis of the SiV− center, because the strain field affects only the orbital components
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FIGURE 5.2: Relaxation processes affecting the negatively charged
silicon–vacancy center, for the cases of (a) zero magnetic field, and
(b) a magnetic field with BZ = 9.179 T and BX = 0.6 T. While the
qubit lifetime in the zero-field case is limited by the slower rate of
orbital excitation, for axial magnetic fields greater than BZ ≈ 1.84 T
it is limited by the faster spin relaxation time.

[327]. We therefore seek to apply external magnetic fields to induce a relative mix-
ing of the spin component in either the ground states or the excited states. Relative
differences between the excited and ground states must be due to prior energy gaps
between spin components in the same orbital subspace, as the magnetic susceptibil-
ity is the same for the excited and ground subspaces. Since strain does not affect the
spin subsystem, these energy gaps will be caused by a combination of the natural
spin–orbit coupling and a magnetic field aligned with the SiV− axis.

Controlling this component of the magnetic field allows us to mix the relative
spin components either by bringing two of the ground states together, at BZ ≈
±1.84 T, or two of the excited states together at BZ ≈ ±9.179 T. Bringing the cen-
tral ground states together forces us to encode the qubit in a high-energy orbital
component, reducing the lifetime of the qubit to around 66 ns through orbital relax-
ation. Bringing the central excited states together inverts the order of the two central
ground states, leaving the qubit with a lifetime limited to order 6.6 µs due to spin re-
laxation. We justify the latter, applying a magnetic field of BZ = 9.179 T, BX = 0.6 T,
by the O (10 ns) timescale of operations performed on the center necessary in the
presence of a 29Si nuclear spin qubit. The decoherence per operation is then ≤ 1%:
smaller than the error otherwise associated with optical excitation and subsequent
decay. These operations will be described in the sections to follow.

One immediate question is the potential role of strain terms in the Hamiltonian.
When the strain terms are comparable to the spin-orbit splitting of the ground states,
the orbital components of the two qubit states are no longer orthogonal. In such
a case a direct transition can be driven between the states of the spin component,
though this comes at the expense of a direct relaxation process between the two
qubit states, decreasing the coherence time. This regime was investigated experi-
mentally by Sukachev et al. [330] to achieve dynamical decoupling. A high-strain
environment such as is explored in [327] might be used to manipulate optical tran-
sition detunings, in addition to raising the operating temperature. We have decided
to leave these terms at zero. Strain terms strong enough to preserve the symmetry in
transition overlap between the ground and excited states desired for the fast STIRAP
pulses we are investigating would require a magnetic field two orders of magnitude
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larger than the current figure (9.179 T). Such strong fields are not believed to be
experimentally feasible at the current time.

5.4 Measurement and Initialisation of the Electronic Spin State

The most common means of measuring the spin state of the center has been by res-
onance fluorescence [325, 326, 329, 330, 334, 337, 338]. However, factors such as non-
radiative decay and excited state hyperfine coupling make us hesitant to rely on
pumped fluorescence as the primary means of measurement, due to its direct pop-
ulation of the excited states. Strong Purcell-enhancement can be used to mitigate
population of the excited states by targeting even-order processes. However, using
orthogonal transitions (as in the Purcell-enhancement of pumped fluorescence mea-
surements) necessarily removes us from the qubit subspace. This primarily results
in dephasing, which is not a problem where we are interested in spin measurement,
but which prevents the application of such a scheme to projective entanglement gen-
eration. The alternative, achieving second order with the inverse transition, has the
advantages of requiring lower driving powers (since both single-order components
are enhanced by the resonator) and of maintaining population in the qubit subspace.
Additionally, shelving does not occur in the higher orbital ground state, which is
relevant when pulses occur on the timescale of the orbital decay time, O(66 ns) or
below.

For the SiV− center, we can choose to target either an axially-polarised transition
or a transition with circular, orthogonal polarisation. The axially-polarised transition
has the advantage of a higher ratio of coupling to spontaneous decay by a factor of
2, and of probable return to the initial state on spontaneous decay at a ratio of 2/3
[332]. We therefore discuss here only the axially-polarised case.

Unlike the nitrogen–vacancy center, the blinking that characterises charge-state
switching is not typically observed for the SiV− center on optical driving. This im-
plies that we are free — for the purpose of spin measurement, though not for projec-
tive entanglement generation — to use coherent light sources. Coherent light sources
allow us to account for inward-coupling photon loss, to tune the light near to reso-
nance, to maintain longer pulse times (reducing photon bandwidth), and to increase
the effective cooperativity of the atom–cavity system by increasing the electric field
density.

We have established minimum pulse times according to other decay terms. As-
suming a Gaussian pulse, a z-score of −2.5 covers 0.49% of the pulse area, so that
99% of the pulse lies within a width of 5.16σ. We will call this the width of the pulse.
The pulse time is limited by the lifetime of the center and the minimum energy gap
between optical transitions. In our particular case, there exist two levels either side
of the target that appear to interfere destructively; shown in Figure 5.3 are example
reflection probabilities from the target (red) and secondary (blue) qubit states. For
the example in this figure, the target state achieves a maximum reflection probability
of O(99%), the limit fidelity of a single-shot, single-photon measurement. The error
channel due to scattering is relatively insensitive to the bandwidth of the pulse, so as
a rough bound on the frequency-bandwidth we take the minimum width at which
the transmission or reflection probabilities diverge from their extremal order. With
the aim of maximising the reflection contrast between the two qubit states, we there-
fore take 2π × 0.71 GHz as the rough upper bound on the total frequency width of
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FIGURE 5.3: Example complement of the single-photon reflection
probability curve from the target (red) state and the reflection
probability for the secondary (blue) qubit state as functions of the
center–cavity detuning. For this figure only, the incident field and
cavity mode are resonant, the cavity mirrors are balanced, and the
center–cavity cooperativity is 70. The peaks from the secondary
qubit state appear to interfere destructively to suppress reflection
close to the target transition. Units are expressed in pure frequencies.

the pulse, obtaining

σf ≤
2π × 0.71 GHz

5.16
= 2π × 0.13 GHz (5.3)

σt ≥
1

2σf
= 0.58 ns. (5.4)

If the time of a pulse is 5.16σt, we then have a rough lower bound on this time of
TPulse = 5.16σt ≥ 2.98 ns.

When it comes to using cavity-enhanced detection for projective entanglement
generation, the greater the mean photon number at the input, the lower the final
state fidelity due to the possibility of the loss of stray entangled photons. For this
reason, sources with narrow photon number distributions and high-efficiency op-
tical channels and detectors will be necessary. We now turn from a single, multi-
photon coherent pulse to look at multiple single-photon pulses. Setting the initial
state to a 50–50 mixture between qubit states, we have calculated the operational fi-
delity of a reflective cavity-assisted measurement of the spin state of the SiV− center.

We have used a scattering approach as in Section 4.3. This relies two main as-
sumptions: photon populations from pulses in succession do not interfere with one
another and the bandwidth of the driving field is small. For decay on the order of
the optical lifetime, 1.8 ns, 0.67% of the population will remain for an inter-pulse
time of 10 ns and 4.5× 10−3% for an inter-pulse time of 20 ns. We have chosen 20 ns,
bounding the maximum number of probe pulses to O(10) through the error associ-
ated with the spin relaxation time. That the inter-pulse time is an order of magnitude
larger than the minimum width of 2.98 ns derived above justifies the assumption of
a small bandwidth.
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TABLE 5.1: Measurement fidelity with varying cooperativity, C, and
the single-photon source and detection efficiencies, ηSource and
ηDetect, as well as the number n of pulses. The pulse number is
chosen to maximise the fidelity.

C ηSource ηDetect n F
1000.0 1.0 1.0 1 0.9645
100.0 1.0 1.0 1 0.9899
10.0 1.0 1.0 2 0.9785
2.0 1.0 1.0 4 0.9224
1.0 1.0 1.0 6 0.8687

1000.0 1.0 0.5 4 0.8533
100.0 1.0 0.5 6 0.9611
10.0 1.0 0.5 8 0.9526
2.0 1.0 0.5 9 0.8628
1.0 1.0 0.5 9 0.7912

1000.0 0.5 1.0 5 0.9061
100.0 0.5 1.0 7 0.9730
10.0 0.5 1.0 8 0.9679
2.0 0.5 1.0 11 0.9117
1.0 0.5 1.0 13 0.8573

Results are displayed in Table 5.1 and in Figure 5.4. The chief limitation dis-
covered was scattering to alternate states; this caused temporary leakage to higher-
energy ground states. Such leakage results in significant dephasing, which is not an
issue for spin measurement, but also a non-negligible probability of spin-flip tran-
sitions. Maximum measurement fidelities of order 99% are found for a cavity co-
operativity of order 50 − 100 when ideal sources and detectors are assumed. When
photon loss is allowed to affect these devices, the fidelity drops to order 96% with
an increased number of single photon pulses.

5.5 Population Transfer between Spin States

Beginning with population concentrated in the lowest-energy ground state, we wou-
ld like to create a coherent superposition between the two qubit states using optical
or microwave pulses. Optical and microwave pulses may be applied in the resonant
regime, or may be far detuned. The former, a resonant transition, leads simply to
Rabi oscillations at a frequency determined by the area of the pulse. However, as the
encoded qubit states differ both in spin and orbital angular momentum components,
this transition must be a second-order (two-photon) process. The latter case, using
far-detuned pulses, gives rise to Raman-type schemes, which make use of a combi-
nation of independently detuned pulses to achieve resonant beat frequencies. These
detuned schemes require unpopulated intermediate states. Such intermediate states
may be chosen from either the ground or optically excited subspaces, so long as the
appropriate transitions between the intermediate and target states are allowed.

We simulate coherent population transfer via STIRAP by numerical integration
of the master equation, where Linblad terms include O(1.8 ns) optical decay, O(66 ns)
ground state orbital decay, and O(6.6 µs) ground state spin decay. Following [339],
Stokes and pump pulses are Gaussian, have the same width and magnitude, and
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FIGURE 5.4: Measurement fidelity as a function of the cooperativity
and the number of single-photon pulses. Identified in red is the
maximum observed fidelity, 0.9903. Also identified, with black
dashed lines, are the cooperativities where 1 pulse exceeds 2 at 79.43,
2 exceeds 3 at 10.0, and 3 exceeds 4 at 3.16.

are separated by one standard deviation. Frequencies and polarizations are chosen
resonant with the target transitions.

Because the spin state of the center does not change under optical excitation,
transfer between the qubit states must be involve a set of at least two intermediary
states composed of a coherent spin superposition. One principal limitation of popu-
lation transfer via STIRAP is therefore the separation between these two (symmetric
and anti-symmetric) intermediary states; this separation, along with the requirement
that the applied pulses match their amplitudes to the relative amplitudes of the spin
components in each state, defines an upper limit on the characteristic timescale of
the transfer. Above this limit, which is of order 2π × 10 GHz, the overlap between
pulse widths begins to induce rapid oscillations in the transfer curve; destructive
interference caused by overlap of the first pulse with the second reduces the popu-
lation transfer and therefore the fidelity.

Further, in the specific case of the SiV− center, as the driving amplitude increases
or as the total time of the pulse decreases the Stokes’ pulse begins to overlap with
a transition from the initial qubit state. This transition populates the lowest-energy
optically excited state, resulting in rapid optical decay that causes dephasing and
lowers the rate of transfer. We find the best performance with a maximum pulse am-
plitude (Ωmax) at approximately 1% of the detuning between the pulse energy and
the energy of this undesirable transition. The population dynamics for this STIRAP
approach are shown in Figure 5.5. The degree of transfer is limited to order 90% by
population transfer to excited states, and subsequent rapid spontaneous decay to the
ground states. Further increasing Ωmax increases this transfer to the excited states,
while decreasing Ωmax lowers the population transfered to the final qubit ground
state.



5.6. Discussion 65

Ground States
|10 LS

|01 LS

|11 LS

|00 LS

1.0

0.0

0.2

0.4

0.6

0.8

Time (ns)

Pr
ob

ab
ili

ty

10 706050403020

FIGURE 5.5: State populations as a function of time under STIRAP
tranfer via the two central optically excited states. Initial (light blue)
and target (green) states have been labelled by orbital and spin
components. Erroneous transfer to the excited states results in
population of the non-qubit ground states (orange and dark blue).
The fidelity of the final state is of order 90%. The pulse time, tmax,
was chosen at 66 ns to limit spin relaxation to ≤ 1%, and the
maximum pulse amplitude, Ωmax, was set to approximately 1% of
the detuning between the pulse energy and the energy of the two
erroneous optical transitions (approximate because the detunings for
the two pulse components differ slightly).

5.6 Discussion

Having considered optical spin measurement and population transfer with the
silicon–vacancy center in diamond, we conclude with three points: There is a trade-
off between the lifetime of the qubit and the rate and fidelity of STIRAP population
transfer; cavity-mediated measurement can be performed in O(20) ns with an er-
ror rate of order 1%; and population transfer between encoded qubit states can, in
principle, be achieved in O(66) ns, with a fidelity of order 90%.

It might be asked whether the spin measurement of Section 5.4 could be im-
proved if the magnetic field were not tuned to allow for the STIRAP pulse of Sec-
tion 5.5. The spin measurement was found to be limited by relative transition de-
tunings and by rapid decay to non-qubit ground states. Because the magnetic sus-
ceptibility of the spin is equal for the ground and excited states, and because the
magnetic field is not thought to change excited state lifetimes, these limiting factors
too remain unchanged.

Having simulated estimates for the fidelity of coherent population transfer via
optical STIRAP and of spin measurement mediated by cavity reflection statistics,
we find that these fidelities do not surpass those of the nitrogen–vacancy center
[8, 340]. Nonetheless, the speed with which projective measurements can be per-
formed — roughly an order of magnitude faster than equivalent measurements
with the nitrogen–vacancy center — suggests that the silicon–vacancy center might
yet be usefully applied to efforts in quantum communication, where the strict er-
ror rate requirements of fault tolerant quantum computation need not necessarily
apply. How such a module might operate, we consider using the example of the
nitrogen–vacancy center in Chapter 6.
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Chapter 6

A Universal Quantum Module for
Quantum Communication,
Computation and Metrology

In this section we describe a simple module that could be ubiquitous for quantum in-
formation based applications. The basic module is comprised of a single NV− center
in diamond embedded in an optical cavity, where the cavity mediates interactions
between photons and the electron spin (enabling entanglement distribution and ef-
ficient readout), while the nuclear spin constitutes a long-lived quantum memory
capable of storing and processing quantum information. We discuss how a network
of connected modules can be used for distributed metrology, communication and
computation applications.

6.1 Introduction

There are a wide range of candidate systems/technologies competing to implement
quantum information processing tasks. They can be broadly compared according
to operational control fidelities, coherence times divided by average operation times
(where these are characteristic times for a specific problem considered), operating
temperatures, fabrication reliability (scaled by time and repetition cost), connectiv-
ity with other device components (perhaps telecom fiber or the more general scaling
and complexity of large systems), and finally fabrication suitability to the task at
hand (including robustness to perturbation, size and symmetry). Some of these can-
didates include quantum dots, trapped atoms and ions, or defect centers in silicon
and diamond. The module we propose here as the basis for distributed quantum
technologies consists of a single, negatively-charged nitrogen–vacancy center in dia-
mond (with 15N isotope) embedded in an optical cavity. Here we discuss the poten-
tial in the near future of such a module for many quantum information processing
tasks.

To summarise, the NV center in an optical cavity has previously been proposed
as a universal primitive quantum structure. Here, our measurement performance
estimates from Chapter 4 can be readily adapted to projective entanglement gen-
eration. Noting this, we would like to answer the following question: What can
such an adapted entanglement generation rate tell us about the potential of an NV
photonic module for near-term targets of memory-assisted quantum communication
and sensing, and about the longer-term goal of large cluster state generation?

This chapter is structured as follows: In Section 6.2 we describe the basic opera-
tion of the module and some important parameters, while in Section 6.3 we describe
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why we chose NV centers for the analysis in this chapter, in contrast to the silicon–
vacancy centers of Chapter 5 or the related germanium–vacancy centers. In Sec-
tion 6.4, we will describe an immediate application of the proposed NV–cavity de-
vice for quantum repeaters in a quantum communication system. Following this we
will in Section 6.5 discuss those aspects of quantum metrology to which we expect
the device to be applicable, and provide a ball-park estimate of the performance.
Finally in Section 6.6 we discuss the benefits of distributed schemes to quantum
computing architectures, and estimate what we might require of the center to reli-
ably construct cluster states as the basis for quantum error correction codes or full
measurement-based computation. The discussion will center heavily on the success
rate of probabilistic entanglement generation, an important quantity for distributed
quantum information processing.

6.2 The NV–Cavity Module

The nitrogen–vacancy center consists of a single nitrogen impurity adjacent to a va-
cant site in a diamond lattice. When an additional electron is absorbed, the center
is stable with 11 known accessible levels as shown in Figure 4.1. While fabrication
procedures for diamond have not reached the maturity of those for silicon-based de-
vices, advances in isotropic purification and atom implantation enable the fabrica-
tion of such single centers in bulk diamond with a surrounding 13C impurity density
of only 0.3% [267] of atoms in the surrounding lattice and sample lattice strains with
an energetic impact on the ground state of only 2π × 1 MHz [287]. Coherence times
of the electronic state on the order of 10− 100 ms are possible [267,341]. Meanwhile,
as mentioned in Chapter 4, local operations on the electronic state of the NV center
have been achieved with fidelities as high as 0.99995 [178], and rotation of the elec-
tronic state can be performed in times on the order of 5 ns. For the 15N isotope, a
long lived spin-1/2 nuclear system is also present, with coherence times on the order
of 1–10 s [268]. For the nuclear state we expect fidelities of general local operations
of order 0.99 to be possible in times of order 1 µs. Importantly however, a CPhase
gate with the electron spin is expected to be achievable with a fidelity greater than
0.999 on the order of 100 ns [340].

When the nitrogen–vacancy center is aligned at the focal point of an optical cav-
ity, and that cavity is tuned to be resonant with the transitions between the ms = 0
ground state and the EX, EY excited states, the NV–cavity system may form dressed
states that change the reflectivity properties of the composite system. We investi-
gated the utility of this system in Chapter 4 for projective electronic spin measure-
ment, and expect the measurement of the electronic state of the nitrogen–vacancy
center to be possible with operational fidelities on the order of F = 0.999 in times on
the order of 100 ns.

The correlation between the photon’s path and the NV center state also allows
projective entanglement generation using beam splitters to erase which-path infor-
mation following a photon’s interaction with either of two NV–cavity systems. For
long communications channels, photon loss is expected to be the dominant source
of error. As described in Chapter 4, loss between a single-photon source and an
NV-cavity system, and between an NV–cavity system and a single-photon detector
(including coupling losses) are two potential sources of loss. For long communica-
tions channels, we also expect loss events to occur as we up-convert the frequency
of the transmitted photon to telecommunications wavelengths, and as the photon
traverses the channel. We expect the performance of this projective entanglement
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generation can there be very roughly estimated by the approximate probability of
success

Pent ≈
1
8

PR(C)PDetectPSourcePUp−Converte
− L

L0 ≈ 0.03e−
L

L0 (6.1)

where PR(C = 2.0) ≈ 0.64 is the reflection probability of a photon from the NV–
cavity system when the NV center is in the ms = 0 state, PDetect ≈ 0.9 is the detection
efficiency, and PSource ≈ 0.6 is the single-photon extraction rate of the source. These
parameters are as assumed in Chapter 4. In addition, we assume PUp−Convert ≈ 0.7
is the conversion efficiency to the resonant frequency of the center, while the factor
of 8 is unavoidable in the scheme we consider and arises from post-selection on

the center state and photon path. Finally, the term e−
L

L0 accounts for exponential
photon attenuation along the length of the communication line, where L0 ≈ 25 km
for optical fibre and photons at telecommunications wavelength.

The fidelity of this resultant entanglement is affected by the dark-count rate,
decoherence of the NV centers while photons propagate through the channel and
while awaiting necessary classical signaling, as well as the operational fidelities of
initialization and electron rotation. The limiting factor is expected to be initializa-
tion, which shares the operational fidelity of measurement of 0.999, resulting in very
high fidelity entangled states when the correct outcome is heralded. The time to
reinitialize the electron state after each entanglement attempt takes on the order of
100 ns, the time to perform a projective spin measurement as described in Chapter 4
(the single-qubit rotation required to exclude the |−1⟩ms

spin state is expected to
take much less time [340]), so that the expected time to create one entangled pair is
on the order of

E [Tent] ≈ 3 × e
L

L0 µs. (6.2)

With these estimates, we will now turn our attention to the use of the module in
quantum communication tasks.

6.3 Silicon– and Germanium–Vacancy Centers

Not as much is known about the silicon–vacancy (SiV) and germanium–vacancy
(GeV) centers in diamond as about the NV center. Nonetheless, we can use the
information that is available to make educated guesses about the utility of such sys-
tems for quantum technologies. These centers have a much simpler energy level
structure than the NV center, with much larger energy gaps. With the exception of a
reversal in the order of the optically excited state energies, the SiV and GeV centers
are expected to be very similar; we therefore address only the SiV center, previously
considered in Chapter 5, below.

From the perspective of optical manipulation, we identify two major differences
between the SiV center and the NV center:

• the first is that every optical transition of the SiV center forms part of a lambda-
like structure, in that any optically excited state can be reached from more than
one ground state, depending on the polarisation of the exciting photon.

• the second is that the zero-phonon line is much stronger for the SiV center
(≈ 70% of radiative decay) than for the NV center (≈ 4%), though the non-
radiative component of the decay is less certain.
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The relation between the vaccum-Rabi coupling to a cavity mode and the radiative
spontaneous decay rate is given by

g ∝
√

γ f , (6.3)

where f is the proportion of spontaneous decay to the resonant zero-phonon line,
and γ is the total spontaneous decay rate. At the low temperatures required to use
SiV centers with reasonable coherence times (≈ 100 mK [329]), the non-radiative
decay rate is not known precisely, but certain estimates have not been able to distin-
guish it from zero [329,342], so that it is likely samples exist where the non-radiative
decay rate is between zero and the order of the decay rate of the zero-phonon line.
We therefore take f ≈ 0.5, and estimate that the cavity-cooperativity, C ∝ g2/γ
(where γ is the total spontaneous decay rate), will be roughly 10 times larger for the
SiV center than for the NV center. Purcell enhancements on the same order have
already been achieved [312, 342]. However, the pervasive lambda structures and
small excited state lifetimes together indicate that any cycling optical transition will
be weaker for the SiV center, requiring Purcell enhancement of the resonant transi-
tion exceeding the alternative radiative decay path by several orders of magnitude.
We expect that high fidelity optical operations, such as measurement, could there-
fore be difficult to perform. This suspicion is consistent with the results of Chapter 5.
With a view to longer term developments, we restrict the remainder of this chapter
to a consideration of the NV center photonic module.

6.4 Quantum Communication

Quantum communication involves the distribution of information with coherent
(quantum) correlations between multiple spatially separated parties. The number of
such parties is usually restricted to two, known colloquially as Alice (A) and Bob (B).
Quantum teleportation further allows us to reduce the general problem of informa-
tion transmission to the generation of entangled states (most commonly Bell-pairs).
Whether we require these Bell-pairs to be generated with high fidelity, at a very high
rate, or both depends on our specific application. In general, however, the perfor-
mance can be separated into either those parameters corresponding to the method
of distribution or those parameters corresponding to the physical construction. As-
suming the use of frequency conversion to translate between the frequency of the
optical zero-phonon line of the NV center and photons of telecommunications wave-
length before transmission, only the physical construction is directly determined by
the NV–cavity device. Here, we therefore consider the device’s performance only
when the method of distribution is restricted to a single-node heralded scheme pro-
posed in the context of memory-assisted measurement-device independent quan-
tum key distribution [343]. Importantly, the mechanism for projective entanglement
generation that we assume [282] differs from that of the proposal in [343] and results
in an error model dominated by dephasing when dark counts are low. This scheme
is shown schematically in Figure 6.1.

The protocol for the single-node heralded scheme we consider, the circuit for
which is shown in Figure 6.2, may be divided into “chunks” consisting of contiguous
deterministic operation sets. The key rate will be restricted by the time of the largest
of these chunks, when errors are negligible. The wait times are the operating times
of: initialization, photon-atom interaction, and measurement. Initialization may be
governed by a combination of measurement and pi-pulse times, or it may be subject
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FIGURE 6.1: Schematic diagram of the single-node, heralded,
memory assisted quantum communication scheme [343] we
consider in Section 6.4. Single-photons are sent from the nodes at the
left and right, possibly entangled with long-lived qubits at those
sites. The central, composite node consists of two long lived qubit
devices and three optical circuits for performing Bell measurements.
The outer Bell measurements herald the loading (or equivalently,
entanglement) of the two central qubits with the incoming signals.
Once both qubits are loaded, a final central Bell measurement (or
entanglement swapping operation) is performed between them, and
the result reported to the external parties.

to a “polarization time” (i.e. the time to reach a pointer state, under continuous
driving).

A natural first application is quantum key distribution where the secret key rate
expressed in the form

Secret Key Rate = (Distribution Success Rate) (6.4)
× (Bits of Information Remaining After the Channel)

≈
∏i∈Probabilistic Operations Psuccess,i

TSlowest Operation
× (1 − H(Total Error Rate))

(6.5)

determines the device’s performance. Here T is the time of the slowest operation
in the circuit, Pi the success probabilities of probabilistic operations, and H(·) the
binary entropy function. This performance is initially dominated by the distribution
success rate, which may be further decomposed and attributed to a bottleneck rep-
etition rate (for some limiting deterministic operation) and the cumulative success
rates of trailing probabilistic operations. The bottleneck repetition rate as a function
of the channel length is subject to an initial offset attributable to local gate times,
but is subsequently determined by exponential attenuation in the optical fibre that
increases the average time-to-connection. For finite coherence times, at even larger
distances this attenuation is dominated by decoherence, reducing the bits of infor-
mation remaining in the signal, which typically factors into the equation in double-
exponential form.

As we know that the attenuation rate will scale more slowly for a repeater-based
scheme than for direct transmission, we want to identify the distance at which the
decoherence effect becomes comparable to the effect of attenuation in the optical
fiber. This critical distance is the channel length at which the rate of change of the
key rate (Equation (6.5)), with respect to decoherence, approaches the same order
of magnitude as the decay rate due to the signal attenuation term. The attenua-
tion length is same regardless of the particular device technology. We identify the
probabilities in the numerator of Equation (6.5) with the probability of entanglement
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FIGURE 6.2: The protocol for the quantum communication scheme
we consider in Section 6.4, divided into deterministic “chunks”
(green) and probabilistic operations (blue). Operation labels denote:
Left semicircle, state initialization; S, the swap operation between
electron and nuclear spins in a single NV–cavity module; R, the
conditional reflection of a photon from an NV–cavity module; X, the
transfer of a photon to the central node (see Figure 6.1); T, storage in
one memory at the central node while waiting for the other to be
loaded; right semicircle, measurement (in the Z-basis for NV–cavity
modules). The most time consuming operation is the wait for the
second memory to be loaded. Here the upper (lower) rail
corresponds to the NV center system of the first (last) party, either
Alice or Bob, to achieve entanglement with a central memory. The
third and fifth rails correspond to the NV center systems of the
central memories closest to the first and last parties to achieve
entanglement respectively. The second, fourth and fifth rails
correspond to the photon modes in the optical fibre that become
entangled with the NV center systems following conditional
reflection.
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generation found above and appearing in two locations in the circuit of Figure 6.2,
and the slowest operation with entanglement generation between the second party
and the second central memory. Under the assumption that dark count rates are
low and therefore dephasing dominates the error term in Equation (6.5), we then
take the derivatives of Equation (6.5) with respect to decoherence and attenuation
respectively. Requiring that these two rates of change are approximately equal, we
find the resultant condition to be

−1
L0

≈
− log2

(
ez

1−ez

)
e−τ/τc

2τc
τ
L0

(1 − H(ez))
, (6.6)

where ez := 1−e−τ/τc

2 quantifies decoherence due to dephasing, τ is the time taken
for the entanglement distribution, and τc is the dephasing time. We estimate the
L = 0 offset in the key rate to be on the order of 2000 bits per second, account-
ing for the expected times of both entanglement distribution and swap operations
between electronic and nuclear spins. A total parameter of interest, which we can
use to directly compare the key rates under different conditions on a semi-log scale,
then becomes the difference between this circuit offset and the product between the
attenuation rate and the critical distance defined by Equation (6.6).

For direct transmission, we assume a 50 MHz source. Here we simply assume
that an NV center photonic module is used as the single-photon source, to keep the
compared devices consistent and for proof-of-principle applications, and allow 200
ns for transmission and reinitialisation. In a comparison of direct transmission with
the single-node scheme based on the secret key Equation (6.5), depicted in Figure
6.3, initially the direct transmission is better, but we find a crossover between the
rates of the two options at approximately 508 km. When the nuclear spin coherence
time is 1 s, the critical distance for the single node scheme is 596 km, and for a 10
s time it is 712 km. In the intervening region the possibility exists to demonstrate
a secret key rate advantage by including a central repeater node. These points are
only indicative, not exact, due to the approximations we have made to the circuit
time and error rate.

As described in the preface, quantum key distribution is a potential near-term
stepping stone motivating the development of single-photon sources and detectors,
but for more general applications we would like the distribution of entangled states.
Noting that the Bell-State measurement in the center of the scheme is an entangle-
ment swapping operation, we can modify the key-rate formula to obtain a rough
estimate for the rate of creation of entangled pairs. This is done by decreasing the
effective coherence time to account for state components stored by Alice and Bob
at the end nodes. While the density matrix remains diagonal in the Bell-state basis,
the component of Equation (6.5) quantifying the remaining bits of information cor-
responds to an upper bound on the distillable entanglement [344]. The secret key rate
then estimates the distillable entanglement generated per unit time, and the resul-
tant pairs can be purified. In this case, rather than a 50 MHz source, the direct rate
depends upon entangling remote NV centers, and is therefore limited by the time-
to-connection (Equation (6.2)). This new rate (≈ 0.3 MHz) reduces the crossover
point to 256 km. The offset does not change, but the critical distance is decreased;
for a nuclear coherence time of 1 s the critical distance becomes 562 km and for 10 s
it becomes 678 km. These relationships are depicted in black in Figure 6.3.
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FIGURE 6.3: The approximate secret key (top, red) and distillable
entanglement (bottom, black) rates derived from Equation (6.5), next
to the estimated rate for direct transmision (blue, dotted). Nuclear
spin coherence times of 1 s (dashed) and 10 s (solid) are shown. The
critical distances for each curve are identified by gray dotted lines
approaching the axis, at 562, 596, 678, and 712 km, and the crossover
points at 508 km and 256 km. The offset point is also labelled at
approximately 2000 bits per second. Gray dotted line segments
follow the slope of direct transmission through the critical points at
678 km 712 km, to guide the eye and emphasize the matching
gradient. Plots are kept distinct to avoid confusing overlap between
the similar, but distinct, rates of key distribution and entanglement
generation using the memory-assisted scheme.
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6.5 Quantum Metrology

The use of devices amenable to quantum coherent control to enhance the precision
of measurements is broadly called quantum metrology. The problem of quantum
metrology can be divided into two facets, relating to the two types of advantages
offered. The first is the potential to manipulate the rules of quantum mechanics to
achieve single-trial sensitivities beyond those attainable with classical probes. This
includes squeezing and entanglement-based improvements as discussed in Chap-
ter 2. The second is a decrease in the size and increase in the sensitivity of the probes
used (atomic scales). The size and sensitivity question, for example, is the primary
driver in applications of quantum metrology in a biological setting. We do not ex-
pect the NV–cavity module we propose to be useful in this latter class of problems.
The reasons are several: the temperatures required, often up to room temperature,
are larger than our restriction of operating at cryogenic temperatures; the size of the
cavity is likely to be on the order of micrometers or even millimeters, which is much
larger than the nano-scale frontiers of this problem; finally, in certainz perturbative
settings such as biological environments, the cavity structure and the target optical
transitions of the nitrogen–vacancy center will not be rotationally symmetric and are
unlikely to have stable frequencies. With these issues in mind, we turn to the latter
type of target for quantum metrology: preparation of non-classical states. For us this
means entanglement generation between separated modules and the application of
quantum error correction, and we restrict the discussion to field sensing under the
circuit depicted in Figure 6.4.

When the time available to perform repeated measurements is long, as is typ-
ically assumed, and in the presence of Markovian noise, entanglement does not
provide any advantage with respect to parameter estimation (see Subsection 2.2.2).
However, when the time available to perform a measurement is short, as when char-
acterising a periodic process with high-frequency components, using an entangled
state can reduce the sampling time and thus increase the Nyquist frequency of the
measurement. (

|0⟩⊗N + |1⟩⊗N
)

√
2

→

(
|0⟩⊗N + ei(∑N

i=1 Bi
z)t |1⟩⊗N

)
√

2
(6.7)

Additionally, using entangled states in a distributed fashion allows us to directly
measure spatial averages. Such averages over a distributed region could help to
suppress or at least stabilise the impact of spatially-local noise. The suppression
of local noise relates to the multiplication by N of a single random process versus
the sum of N independent processes. For Gaussian noise, the former scales the x-
axis (and thus σ) by N, while the latter scales the variance by N for a square-root
improvement:

σ2
X+Y = σ2

X + σ2
Y + 2ρσXσY, ρ: Correlation (6.8)

The ability of our proposed module to perform these tasks is governed by the oper-
ational fidelities and times of GHZ state initialization and measurement, and by the
coherence time of the GHZ state. GHZ states can be prepared in a distributed fash-
ion by following the procedure for projective entanglement generation mentioned
in Section 6.2 and distributing such states to the desired subsystem (or location) by
the process of direct quantum communication mentioned in Section 6.4. The dis-
tances involved should be short enough that coherence times will not become an
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FIGURE 6.4: (Left) The circuit corresponding to the sensing
operation assumed in Section 6.5. The operations in this circuit are:
Left semicircle, state initialization in the Z-basis via measurement
(initialisation via cooling or optical pumping could also be used but
may require greater time); H, Hadamard operation on the electron
spin; E, (projective) entanglement generation between modules; Z,
interaction with a magnetic field in the Z-direction; right semicircle,
measurement of the electron spin in the Z-basis. The general
protocol for performing sensing in quantum metrology consists of a
number of repeated applications of such a circuit. The number of
repetitions is optimised over a total available measurement time,
such that the interaction time is restricted in a single run, which
takes a time T. (Right) Schematic diagram of the star graph of
NV–cavity modules (blue, circles) proposed for the problem of
distributed metrology, with redundant qubits at the central node
(gray, square) to speed probabilistic state preparation.

issue over the time taken to prepare the initial state. Limited sensing time makes the
probabilistic operations the key performance factor. We therefore propose to struc-
ture a network of centers according to a star graph as shown in Figure 6.4, such that
the number of probabilistic operations is minimised. It is known that the entangle-
ment of a GHZ state and of a star graph are equivalent, so that the two states are
interchangeable via local operations.

For the purpose of minimising probabilistic operations during potential sensing
time, in the central node of the graph we imagine maintaining more qubits than nec-
essary (equal to the number of outer nodes), in an asymmetric approximation to the
device multiplexing proposed for quantum communication [109]. During a single
round of sensing for the outer nodes, these central qubits are connected in prepa-
ration in their own GHZ state. Subsequent initialization then generates the GHZ
state with only a single round of probabilistic operations followed by the removal
via measurement of the central qubits (or an optimised number, trading the size of
the generated state off against the time available for initialization). Outer nodes that
are unable to be connected during the initialization time can be partially compen-
sated by leaving central qubits in the GHZ state. We envisage simply avoiding the
entanglement-swapping operations that remove these middle nodes from the graph.
The failed outer nodes can then be connected, with the redundant central qubits, in
advance of the following round. A thorough analysis of the sensing performance
would need to take into account the overlapping sensing periods associated with
each subsystem, incorporating the effects of the field during initialization. We do
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not go into that level of detail here.
If the optimal sensing time per round is T, then the number of nodes is upper

bounded by the size of the star graph that can be created in this time, and lower-
bounded by the minimum acceptable size of the entangled state. For a high connec-
tion probability, the limiting factor may be the fraction of these nodes that are able
to form a successful connection in a single round. For a low connection probability,
however, the initialization procedure will be dominated by graph state construction
during the sensing time, so that we have two alternating subsystems with long times
for (what is essentially deterministic) initialization. Assuming attenuation is small
over the distances between nodes, the average time for a connection from a single
pair is estimated by Equation (6.2) as 3 µs. For a minimum GHZ state of size M and a
chain-like structure, we approximate the time required to achieve a GHZ state of this
size by ≈ 6 ln(M/2) µs, where ln(M/2) is itself an approximation to the harmonic
number HM/2, so that M ≤ 2eT×105

.

6.6 Quantum Computation

Quantum computation is the last, most general, and most difficult goal for quan-
tum information technology. Recently, high fidelity operations and relatively long
lifetimes have been achieved in several physical systems, so that how one might go
about designing the architecture for such a system has become a serious area of con-
sideration. Any design that depends on having physical qubits close to one another
runs into a packing problem not only with the control wires but also with qubits
themselves — the mean distance between any two qubits will scale with the diam-
eter of the total region, while the total number of qubits will scale with the volume
(or in 2D the area) of the region. For direct interactions, or for schemes requiring the
physical movement of the qubits so that they may be brought close to one another,
the mean distance between qubits will affect the interaction time as well as the oper-
ation fidelity. The complexity of control pulses used to isolate pair-wise interactions
will also increase with the size of the system.

A similar architectural problem arises naturally in the structure of quantum error
correction codes, both within a logical qubit and between such qubits. Concatenated
codes become less local with each layer, the number of qubits to interact with each
ancilla scaling as MNd−1, where d is the number of layers of concatenation, N is the
multiplicative factor with which the number of qubits increases at each layer, and M
is the number of qubits involved in the measurement of a stabiliser operator. Shor’s
code, for example, consists of d = 2 layers of the repetition code, where the number
of qubits is multiplied by N = 3 at each layer and the number of qubits involved
in each stabiliser operation is M = 2. In total then, a single ancilla in one layer of
Shor’s code must interact with a maximum of six physical qubits. Quantum error
correction codes with local stabiliser operations, on the other hand, either require
multiple layers of physical qubits, with each corresponding to a logical qubit, as for
the surface code, or require additional time to shift defects around a lattice, as for
cluster state quantum computing. Finally, because quantum error correction codes
do not allow a universal set of transversal operations, other methods like magic state
distillation must be used in general. Connecting all the additional ancillae such that
the distilled state can be connected to the appropriate physical qubit in the encoded
state is then likely to be highly non-local. Shifting to a distributed scheme offers
non-local interactions via photon-mediated probabilistic operations. Key rates for
quantum key distribution, which we used in Section 6.4 as indicators of the ability
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FIGURE 6.5: (Left) Entangled links (black) are generated
probabilistically between modules (blue) arranged regularly on a 2D
square lattice. Not every attempt is successful, and there are defects
in the subsequent entanglement graph. (Middle) On identifying and
measuring the qubits of redundant modules (gray) in the X-basis to
remove them from the entangled graph, what remains is a collection
of entangled modules (red) in a graph without defects. (Right)
While the remaining modules may not be arranged regularly in
space, the entangled state is homologically identical to a rectangular
2D cluster state. Such states can be extracted from sufficiently large
original lattices [345] so long as the probability of each entangled
link is greater than the bond percolation threshold of the 2D square
lattice, 0.5.

to rapidly create Bell states, are very high for distances as small as the expected me-
chanical size of a quantum computer, O(meters). In a distributed approach, each
qubit is an extension of a repeater module, endowed with the additional require-
ments that each node contain a logical qubit encoded for quantum error correction,
and that it be able to manipulate this qubit with a universal set of quantum gates.

The first step toward independent modules for quantum computation is to con-
struct an encoded logical qubit [282]. Taking the distributed approach also with
respect to each node’s internal architecture, we can estimate the time to create an
entangled state suitable for the surface code of quantum error correction by further
altering the analysis in Section 6.5. Instead of the star graph of that section, we
now assume a 2D square lattice and estimate the probability that each link in this
lattice will be successfully connected. These link probabilities can then be applied
to discussions of percolation theory and cluster state generation [345], and we can
determine a minimum initialization time such that the threshold for efficiently con-
structing a 2D cluster state from a larger lattice of modules is satisfied. The concept
behind this process is depicted in Figure 6.5. The bond percolation threshold for a
2D square lattice is 0.5, so that the expectation value for the time-to-connection in
Equation (6.2), 3 µs, gives the minimum initialization time required. This is well be-
low the coherence time of the nuclear spin in the nitrogen–vacancy center, which is
at least of order seconds. This excess allows for entangled states involving on the
order of 300 qubits to be included before the collective coherence time is reduced to
10 ms, and error from decoherence due to the initialization time of the state becomes
significant on the scale relevant to ongoing quantum error correction (≈ 0.1%).
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6.7 Discussion

Through the approximate rates and bounds derived above, we have attempted to
show:

1. that the proposed NV–cavity system has the potential to generate entangled
links between distant nodes (Sections 6.2 and 6.4),

2. that this entanglement could allow initial demonstrations of the advantages of
quantum repeater modules (Section 6.4), which, extended simultaneously to
several such devices, could find preliminary application in parameter estima-
tion problems (Section 6.5),

3. and, finally, that once many of these devices are able to be fabricated and con-
nected, the potential exists to generate cluster states applicable to large-scale
quantum computation (Section 6.6).

As fabrication and control procedures continue to be refined, we expect that our es-
timates will prove conservative, and the potential of this system will increase. These
points together paint a picture of the NV–cavity module as a candidate for the devel-
opment of quantum technologies right across the technological development map
outlined in the introduction of Section 6.1. We conclude this report with a discus-
sion of this broader developmental picture, and of the challenges that remain ahead,
in Chapter 7.
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Chapter 7

Conclusions and Future Work

After a brief history of quantum information processing from the perspective of a
proponent of distributed, topological cluster state quantum computing, this report
has covered five subjects:

1. The use of strong-coupling to engineer a spin-network state with a long coher-
ence time, and its application to quantum sensing.

2. The exploitation of local variance in measurement error rates in the decoding
of topological quantum error correction codes, for the reduction of logical error
rates or physical qubit numbers.

3. The expected fidelities of cavity-enhanced spin measurement on the negatively
charged nitrogen–vacancy center in diamond, incorporating loss, coupling rates,
and photon bandwidth.

4. The expected fidelities with the negatively charged silicon–vacancy center in
diamond of both

(a) cavity-enhanced spin measurement, and

(b) single-qubit rotations via optical STIRAP.

5. Broad rate and performance estimates for the application of the
nitrogen–vacancy center photonic module to memory-assisted QKD and en-
tanglement distribution, to distributed quantum sensing, and to cluster state
generation.

It will have become apparent to the reader that there is an expected technolog-
ical progression underlying and tying together the otherwise potentially disparate
strands of this report. I have intended for the results outlined in this report to con-
tribute to those levels of computational abstraction relevant to the generation and
maintenance of large cluster states. Part I considered the protection of an arbitrary
system against local, one-dimensional noise. I focussed here first at the level of fab-
rication, with strong coupling for passive state protection, and then moved upward
to the very lowest layer of what may be considered a software or active approach to
state protection, knowingly (see Sections 2.6 and 3.3) focussing on small-scale ef-
fects. At the fundamental physical level, in Part II, I described and analysed low
level physical operations in specific physical systems necessary to perform the one-
and two-qubit Clifford-group operations of entanglement distribution.

Why do this? Large-scale quantum error correction codes operate successfully
and efficiently only once a minimum reliability, expressed through their respective
accuracy thresholds, has been attained. For classical computation this is only a con-
cern in a few select areas; usually fundamental operations are reliable enough that



82 Chapter 7. Conclusions and Future Work

active data protection can be performed explicitly at the software layer in a system-
agnostic fashion. Quantum machines, however, have not yet attained this level of
reliability; it is not yet possible to separate the software and hardware elements of this
process. Nonetheless, it is not necessary to keep these layers bound to one another
in their entirety.

Many systems are limited primarily by error in a single basis — usually dephas-
ing. Highly biased concatenated schemes have been proposed in the past to reduce
and equalise error rates prior to the application of higher-level codes for full state
protection, with the advantage that resources, either in time or in qubit number,
have been saved [24, 226]. It has been my intention with this report to exploit small-
scale idiosyncrasies to effect a separation between error protection at the hardware
and software layers, to extend the definition of the quantum module to incorporate
small-scale error protection measures. In this sense, and with the exception of the
universality of the required operations, the definition of the quantum module ex-
pands to resemble the quantum repeater.

Two-qubit gates are the most fundamental contributors to error in a typical quan-
tum error correction circuit [234]. As I endeavoured to show in Chapter 6, the imple-
mentation of these entanglement-generating gates shares many practical challenges
with the fields of quantum sensing and quantum communication. It is in these fields
that I see the near-term justification for the necessary but gradual development of
larger-scale quantum information processing technologies.

A number of challenges remain ahead. As mentioned in Chapter 4, the fab-
rication of single photon sources and detectors, as well as the refinement of opti-
cal cavities with a diamond interface, remain necessary for high-fidelity projective
entanglement generation as proposed. Nor have the two requirements of Chap-
ter 2, strong coupling and T1-limited coherence through dynamical decoupling, been
demonstrated concurrently for the superconducting flux qubits taken there as our ex-
ample. On the theoretical side, while we have shown the benefit of local information
for the repetition and surface codes, there is no reason in the near-term nor for en-
acting the hardware–software separation discussed above why we must use these
particular codes; in the small-scale regime and for the distributed approach con-
sidered in Chapter 6, the cited advantages of topological codes are not unarguable.
For single-basis noise processes any classical code will suffice; the repetition code is
only the simplest example. As a final point, we have been speaking in Part II as if
the source and detector inefficiencies were strictly problems of experiment and hard-
ware engineering. This assumption is valid under the short-range, small-scale appli-
cations envisaged in the near-term, but provides only an incomplete picture when
considering the potential long-range interactions of a large-scale, distributed quan-
tum information processing device: when the primary loss channel is long-range
transmission, photons (or other carrying media) can be encoded with quantum er-
ror correction codes designed to mitigate losses. While there have been a number
of developments in this area, it is likely that the optimal code will depend upon the
hardware available at each end of the channel for encoding and decoding; this hard-
ware dependence introduces many new details that to the best of our knowledge
have not previously been considered in the comparative analysis of these loss codes.
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Appendix A

Numerical Methods

Throughout this thesis I have performed several numerical calculations. It is the
purpose of this appendix to briefly describe their implementation.

A.1 Dynamical Evolution

The evolution of a physical system under a given Hamiltonian and decay processes
was simulated in Chapters 2 and 5. These simulations were performed in the Python
programming language, making use of the ordinary differential equation (ode) mod-
ule of the scipy library [346]. The Dormand–Prince 8 − 5 − 3 high-order Runge-
Kutta method [347] (‘dop853’) was used, with absolute and relative tolerances of
10−14 and 10−6 respectively. Linblad terms were incorporated and complex arith-
metic handled in the derivative function passed to this solver. The steps per unit
time were chosen to allow at least 2 timesteps in the shortest period of oscillation of
any of the energy eigenstates.

A.2 Scattered Light

Chapters 4 and 5 used a scattering treatment to determine the reflection statistics
of an optical cavity coupled to a negatively charged nitrogen–vacancy center and a
negatively charged silicon–vacancy center respectively. This treatment amounts to
finding the steady state solution of the system under the evolution of the Hamil-
tonians described in these respective chapters, with complex frequencies added to
account for decay processes as shown in the example Langevin Equation (4.12). To
do this, we need only solve a set of linear equations. To this end, the problem was
constructed in the Python programming language using the linear algebra (linalg)
module of the scipy library [346]. Ground states and other metastable states of
these systems, with lifetimes long by comparison with the optical decay times of the
centers and cavities, were then treated between scattering rounds by discrete decay
processes according to the chosen time between optical pulses. For mixed states, the
density matrix was first diagonalised with the eigh function and the scattering treat-
ment applied to each pure state component. The relative frequencies between the
modes of the cavity, center, and input field, as well as the relative decay rates of the
two cavity mirrors, were optimised locally via gradient descent using the Nelder–
Mead algorithm [348] from the minimize function from the optimize module of the
scipy library. The initial condition for these relative parameters was equality.
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A.3 Decoding Random Error Configurations

Chapter 3 used a Monte Carlo simulation to investigate the logical error rates of the
repetition and surface codes for a partcular decoding scheme. This simulation was
performed in the C++ programming language.

The SFMT variant of the Mersenne Twister pseudo-random number generator
[349] was used to sample both local logical error rates and errors themselves from
uniformly distributed pseudo-random numbers provided by the sfmt_genrand_real2
function. Multiple instances of the simulation were run in parallel, and to seed these
instances and control their generation, a control script written in the Python pro-
gramming language was used. The seeds passed to the pseudo-random number
generators of each instance were themselves generated randomly by this control
script, using the random module of the scipy library [346]. This library itself uses the
Mersenne Twister pseudo-random number generator and was seeded with a combi-
nation of the current time and the process ID of the control script.

The Boost graph library [350] was used for convenience to provide a data struc-
ture allowing quick identification of affected stabiliser measurements (treated as
graph nodes) for qubit and measurement errors (treated as graph edges). The log-
arithm of local error rates and the presence of error were incorporated as double-
precision floating-point and integer edge properties respectively, while the detection
of an odd-parity stabiliser measurement was treated as an integer node property. A
further convenience of the Boost graph library was the quick solution of error chain
weights via the johnson_all_pairs_shortest_paths function.

Following the application of qubit and measurement error in each trial, odd-
parity stabiliser measurements (nodes) and the pair-wise distances between them
were passed to the minimum-weight perfect matching Blossom V library of Kol-
mogorov [243]. A dummy node was connected to all boundaries of the main graph,
at zero distance, to allow matching between stabiliser nodes through the lattice
boundaries if this should be the most likely configuration. In cases where an odd
number of odd-parity nodes were present (due to measurement error) the additional
dummy node was also passed to the matching algorithm.
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