
Implicit Feedback Embeddings for
Recommender Systems on Sparse Data

NGUYEN THAI BINH

Doctor of Philosophy

Department of Informatics

School of Multidisciplinary Sciences

The Graduate University for Advanced Studies,

SOKENDAI

Implicit Feedback Embeddings for Recommender
Systems on Sparse Data

by

NGUYEN THAI BINH

A dissertation submitted to the Department of Informatics
in partial fulfillment of the requirements for the degree of

Doctor of Philosopy

SOKENDAI (The Graduate University for Advanced Studies)
National Institute of Informatics

March 2019

Committee

Advisor: Dr. Atsuhiro TAKASU
Professor of National Institute of Informatics/SOKENDAI

Subadvisor: Dr. Kenro AIHARA
Associate Professor of National Institute of Informatics/SOKENDAI

Examiner: Dr. Akiko AIZAWA
Professor of National Institute of Informatics/SOKENDAI

Examiner: Dr. Seiji YAMADA
Professor of National Institute of Informatics/SOKENDAI

Examiner: Dr. Yusuke MIYAO
Professor of the University of Tokyo

Abstract

In information recommendation, the preferences of users and the attributes of items

to be recommended are represented by feature vectors. The items are recommended

based on the similarity of the corresponding feature vectors. Characteristics of users

and items are learned from the rating for items of users, etc. In general, the amount of

ratings is limited, and extracting effective features from sparse data will be necessary.

Also, for users who newly participate in the system, it is difficult to obtain user

characteristics because the information is limited. The aim of this thesis is to propose

effective models of recommender systems for such sparse data.

We first look into the rating prediction problem, one of the essential tasks in rec-

ommender systems. Rating is another kind of feedback known as explicit feedback.

Different from the implicit feedback, the amount of rating data is limited because it

requires users to provide the ratings explicitly. I first proposed a feature extraction

method that utilizes the data that is easy to obtain, such as the click history recorded

in the log when a user examines an item. In this method, the features of items are

extracted based on two sources of feedback: rating data and click data. We show that

exploiting the click data can supplement the shortage of rating data.

We further advance this research and proposed a method to analyze the similarity

of items in more detail. The proposed model can identify two kinds of relationships

between items, (1) “items that can be replaced" such as products of company A and

products of company B, and (2) items that are “often purchased together” such as

bread and butter. In this research, the item features are extracted under the assump-

tion that there is a strong correlation between the items that are positively evaluated

by each user.

Finally, we introduce a model to learn the representations of the products based

on their titles to model a collection of shopping transactions. The learned representa-

tions can help identify two kinds of relationships between products: the similar prod-

ucts and also-buy products. The proposed model can be used for multiple purposes:

next product recommendation, similar product recommendation, also-buy product

recommendation, and product search by keywords. Because the model learns the

representations from product titles, it can deal with the cold-start problem, the prob-

lem of modeling new products which have not appeared in any shopping transac-

tions.

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1

1.2 Contributions of This Work . 2

1.3 Organization of This Thesis . 4

2 Background and Related Work 7
2.1 Recommender Systems . 7

2.1.1 Types of Recommender Systems 8

2.1.2 Types of Feedback . 8

2.2 Related Work . 9

2.2.1 Collaborative filtering . 9

2.2.2 Sequential Recommendation 11

2.2.3 Embedding Models . 11

2.2.4 Shopping Basket Analysis 12

3 Implicit Feedback Embedding for Rating Prediction 15
3.1 Introduction . 15

3.2 Preliminary . 18

3.2.1 Notation and Problem Formation 18

3.2.2 Probabilistic Matrix Factorization 18

3.3 Proposed method . 21

3.3.1 Item embedding model based on implicit feedback 21

3.3.2 Generative collaborative item embedding model 23

i

3.3.3 Parameter learning . 25

3.3.4 Rating prediction . 27

3.4 Empirical study . 27

3.4.1 Datasets . 27

3.4.2 Evaluation . 28

3.4.3 Competing methods . 29

3.4.4 Parameter settings . 30

3.4.5 Experimental results . 30

3.5 Chapter Summary . 36

4 NPE: Neural Personalized Embedding 37
4.1 Introduction . 37

4.2 NPE: Neural Personalized Embedding 39

4.2.1 Problem Formulation . 39

4.2.2 Model Formulation . 39

4.2.3 The Model Architecture 41

4.2.4 Objective Function . 42

4.2.5 Model Training . 43

4.2.6 Connections with Previous Models 44

4.3 Empirical Study . 44

4.3.1 Datasets . 44

4.3.2 Experiment Setup . 45

4.3.3 Implementation Details . 46

4.3.4 Experimental Results . 46

4.4 Chapter Summary . 50

5 Learning Product Representations from Shopping Transactions 53
5.1 Introduction . 53

5.2 BASTEXT: The Shopping Basket Model 56

5.2.1 Notations and Definitions 57

5.2.2 Next Product Choice . 58

5.2.3 Dual Text Encoders for Shopping Basket Data 59

5.2.4 Training Data Forming . 60

5.2.5 Model training . 61

5.3 Experiments . 62

ii

5.3.1 Datasets . 62

5.3.2 Experimental Setup . 63

5.3.3 Implementation Detail . 65

5.3.4 Predictive Performance Comparison 66

5.3.5 Product-based Recommendation 68

5.3.6 Effectiveness of the Representations 70

5.3.7 Hyper-parameter Sensitivity 72

5.4 Chapter Summary . 75

6 Conclusion 77
6.1 Contribution Summary . 77

6.2 Future Work . 78

References 81
References . 81

iii

List of Figures

1.1 The high-level architecture of the proposed click embedding and the

joint model CoMF. The black lined block is the existing model, the

red lined blocks are the proposed models. Here the click embedding

and the matrix factorization are the building block of the CoMF. . . 3

1.2 The high-level architecture of the proposed personalized neural em-

bedding model (NPE). The black lined block is the existing model,

the red lined block is the proposed model. Here the NPE is built

upon the matrix factorization by introducing the co-occurrence in-

formation of the items. 3

1.3 The high-level architecture of the proposed BASTEXT model. The

black lined block is the existing model, the red lined block are the

proposed models. Here the BASTEXT is built upon the content

model and the sequential embedding model. 4

3.1 The graphical model of the PMF. 19

3.2 The graphical model of the proposed model. 24

3.3 Test RMSE of in-matrix prediction for different subsets of ML-1m

and ML-20m data . 32

3.4 Test RMSE of out-of-matrix prediction for different subsets of ML-

1m and ML-20m data . 33

3.5 Test RMSE of in-matrix prediction task on ML1-50 dataset corre-

sponding to different values of λ. 34

3.6 Test RMSE of in-matrix prediction task on ML1-50 dataset corre-

sponding to different values of λY 35

4.1 The architecture of NPE. 42

v

4.2 Recall@20 for different groups of users 48

4.3 Top-5 similar items for a given item. In each row, the given item is

at the left and the top-5 similar items are to its right. 49

4.4 Top-5 items that are likely to be bought together with a given item.

The given item is at the left and its top-5 most similar items are to its

right. 49

5.1 The general architecture of BASTEXT framework. 59

5.2 Similar product recommendation. For each row, the product in the

left side is a “query” product, following by its top-3 similar products. 69

5.3 Also-buy product recommendation. For each row, the product in the

left side is the “query” product, following top-3 products that are

often co-purchased with it. 70

5.4 Performance of product category classification on Instacart. 72

5.5 Impact of the negative sampling ratio. Here we use BASTEXT-Avg

with embedding size d = 64. 73

5.6 Impact of the embedding size to the next product recommendation.

Here we use BASTEXT-Avg with negative sampling ratio n = 8. . . 74

vi

List of Tables

3.1 The notations used throughout the Chapter 3. 19

3.2 Statistical information of the datasets 28

3.3 Statistical information of some subsets drawn from Movielens data . 29

3.4 Test RMSE of in-matrix prediction on three datasets. 31

3.5 Test RMSE of out-of-matrix prediction on three datasets. 31

3.6 Comparison between joint learning (CoMF) and separate learning

(Item2Vec+MF). 34

4.1 The notations used throughout the Chapter 4. 40

4.2 Statistical information about the datasets. 45

4.3 Recall and nDCG for three datasets, with embedding size d = 64

and negative sampling ratio n = 4. 47

4.4 Recall for different numbers of items to be recommended, with em-

bedding size d = 64 and negative sampling ratio n = 4. 47

4.5 Recall@20 for various embedding sizes, with negative sampling ra-

tio n = 4. 50

4.6 Recall@20 for different negative sampling ratios, with a fixed em-

bedding size d = 32. 50

5.1 The notations used throughout the section. 57

5.2 The statistical information of the datasets 63

5.3 Recall and MRR for next product recommendation (warm-start set-

ting). Here, we fixed the embedding size d = 64 and negative sam-

pling ratio n = 8. 67

5.4 Recall and MRR for next product prediction (cold-start setting). Here,

we fixed the embedding size d = 64 and negative sampling ratio n = 8. 68

vii

5.5 Keyword-based product search results performed on Instacart dataset.

The top line are the query (boldface font). Below the query are top

five answers by BASTEXT-Avg and word2vec, respectively. Inside

the braces () are the categories of the returned products. Underlined

words are words appearing in the query. 71

viii

List of Abbreviations

LDA Latent Dirichlet Allocation

MAP Mean Average Precision

MAR Mean Average Rank

MRR Mean Reciprocal Rank

NDCG Normalized Discounted Cumulative Gain

NMF Non-negative Matrix Factorization

PMF Probabilistic Matrix Factorization

RMSE Root Mean Squared Error

WRMF Weighted Regularization Matrix Factorization

ix

Acknowledgments

First and foremost, I would like to express my thankfulness to my supervisor Prof.

Atsuhiro Takasu for being an incredible advisor and encouraging me during the

Ph.D. I also would like to thank Prof. Kenro Aihara, my second supervisor, and

my committee members for their valuable feedback, support, and guidance.

I would like to thank the National Institute of Informatics for providing me such

a good research environment. I also thank the Japanese government for providing me

the scholarship for the Ph.D. course. Many thanks to the members in the Takasu-lab

for many interesting and inspiring discussion.

Finally, I would like to thank my parents and my family for their continuing

support. Many thanks go to my wife and my kids. They are the motivations for me

to finish this Ph.D.

xi

Chapter 1

Introduction

1.1 Motivation

In recent years, recommender systems (RS) have become a core component of many

online services. Given a specific user, the goal of an RS is to provide a personal-

ized recommendation of products that he or she may have interest. Common exam-

ples of applications include the recommendation of movies (Netflix, Amazon Prime

Video), music (Pandora), videos (YouTube), news content (Outbrain) or advertise-

ments (Google).

Understanding users and products is crucial in making good recommendations.

Typically, recommender systems learn user and item representations from the user-

item interaction data (e.g., rating data or shopping cart data). For example, one of the

essential problems in recommender systems is the rating prediction task. Given the

historical ratings of users to items, the task is to predict the unseen rating of a given

user to a given item. By predicting the rating of a user to an item, a recommender

system can understand the preferences of the user to the items and can suggest the

items that he or she may like. This requires understanding both the preferences of

users as well as items from the historical interactions between users to items.

As another example, we consider the recommendation for online shoppers. We

want to recommend the products that a shopper would insert to his/her current shop-

ping cart. We recommend not only the product already in the historical collection of

the shopping carts but also want to recommend the new products which have not ap-

peared in any previous shopping carts. This requires understanding both the content

of the products from the texts (e.g., product titles and descriptions), as well as the

1

relationships between products that appear together in the shopping carts.

In this thesis, we aim to learn effective representations of users and items from

the real world data (e.g., movie data, music data, online retail data) by applying the

tools of probabilistic models, or more precisely, latent variable models, and deep

learning techniques. Probabilistic models help reason about the uncertainty of the

preferences of users to items, while deep learning provides the flexibility to model

complex interactions in the data.

1.2 Contributions of This Work

Typically, the user-item interaction data is extremely sparse. In the rating data, the

density of the rating matrix is often less than 0.1%. In the purchase data, each user

buys only a handful number of products among a huge amount of the products. Par-

ticularly, only one or two products are observed in the purchase history of many

users. Due to the sparsity of the user-item interaction data, the traditional mod-

els such as matrix factorization or user-based collaborative filtering model are less

accurate. There are some research that try to address this problem by exploiting aux-

iliary information such as textual data (Wang and Blei, 2011; Wang et al., 2015a),

visual data (He and McAuley, 2016), or audio signals (Oord et al., 2013). However,

these content models still rely on the observed data, and if the observed data (the

interaction data) is extremely sparse, a good content model cannot be obtained. Fur-

thermore, in many cases, the auxiliary data is not easy to collect. In this research,

we focus on studying the embedding models, the models for learning the useful rep-

resentations of users and items from the sparse data. These embedding models are

used in essential tasks of the recommender systems: rating prediction, top-n recom-

mendation, and session-based recommendation for online shoppers.

In details, we propose three embedding models as follows.

1. We propose a probabilistic embedding model for the click data. The proposed

embedding model extracts the relationships between the items that are often

clicked together by the same users. We then propose CoMF, a joint model of

the propose embedding model and the probabilistic matrix factorization for the

rating prediction task. By this way, the model can learn the item representa-

tions reflecting the item relationships and are useful for rating prediction. This

can help address the sparsity of the rating matrix. The proposed model shows

2

a better result than competing methods, in addition to the favorite performance

in the cold-start case. The high-level architecture of the proposed model and

the CoMF is shown in Fig.1.1.

Figure 1.1: The high-level architecture of the proposed click embedding and the
joint model CoMF. The black lined block is the existing model, the red lined blocks
are the proposed models. Here the click embedding and the matrix factorization are
the building block of the CoMF.

2. We propose a neural personalized embedding model which is effective in mak-

ing recommendations for cold-users, i.e., the users who have few historical

data. In recommending a product to a user, we consider two signals: the pref-

erence of the user to the product, and the compatibility between this product

and other products that the users already consumed. When the user is not well

understood, the relationships between the candidate product and other prod-

ucts that he/she already consumed will help provide a good suggestion. The

high-level architecture of the proposed NPE model is shown in Fig.1.2.

Figure 1.2: The high-level architecture of the proposed personalized neural embed-
ding model (NPE). The black lined block is the existing model, the red lined block
is the proposed model. Here the NPE is built upon the matrix factorization by intro-
ducing the co-occurrence information of the items.

3. We propose a model to learn the representations of the products based on their

titles to model a collection of shopping transactions. First, we propose a se-

quential embedding model that capture the relationships between the products

that are often added to the same baskets. Then we propose BASTEXT, which

is a combination of this sequential model and the textual content model (e.g.,

3

convolutional neural network, LSTM) for learning the representations of the

products from shopping basket data and product titles. The learned repre-

sentations can help identify two kinds of relationships between products: the

similar products and also-buy products. The proposed model can be used for

multiple purposes: next product recommendation, similar product recommen-

dation, also-buy product recommendation, and product search by keywords.

Because the model learns the representations from product titles, it can deal

with the cold-start problem, the problem of modeling new products which have

not appeared in any shopping transactions. The high-level architecture of the

BASTEXT is shown in Fig.1.3.

Figure 1.3: The high-level architecture of the proposed BASTEXT model. The
black lined block is the existing model, the red lined block are the proposed models.
Here the BASTEXT is built upon the content model and the sequential embedding
model.

1.3 Organization of This Thesis

Chapter 2

This chapter discusses some background knowledge and previous work that are help-

ful in understanding the rest of this thesis. Broadly speaking, we will make use of

matrix factorization techniques for recommender systems and word embedding tech-

niques for modeling words and sentences.

Chapter 3

We introduce a model that efficiently combines explicit and implicit feedback in a

unified model for rating prediction. This model is a combination of matrix factor-

ization and item embedding, a similar concept with word-embedding in natural lan-

guage processing. We also describe the experiments on three real-datasets (Movie-

4

lens 1M, Movielens 20M, and Bookcrossing) to demonstrate the advantages of the

model in rating prediction, particularly for sparse datasets.

Chapter 4

We introduce a neural personalized embedding (NPE) model, which improves the

recommendation performance for cold-users and can learn effective representations

of items. It models a user’s click to an item in two terms: the personal preference of

the user for the item, and the relationships between this item and other items clicked

by the user. The evaluation by both quantitative and qualitative experiments shows

the advantages of the model.

Chapter 5

We introduce a model to learn the representations of the products of a collection

of shopping baskets from their titles. The learned representations can help iden-

tify two kinds of relationships between products: the similar products and also-buy

products. The proposed model can be used for multiple purposes: next product rec-

ommendation, similar product recommendation, also-buy product recommendation,

and product search by keywords.

5

Chapter 2

Background and Related Work

This chapter discusses some background knowledge and previous work that is help-

ful for understanding the rest of this thesis. Broadly speaking, we will make use

of matrix factorization techniques for recommender systems, word embedding tech-

niques for modeling words and sentences.

2.1 Recommender Systems

Modern recommender systems (RS) are a core component of many online services.

An RS analyzes users’ behavior and provides them with personalized recommen-

dations for products or services that meet their needs. For example, Amazon rec-

ommends products to users based on their shopping histories; an online newspaper

recommends articles to users based on what they have read. Broadly speaking, rec-

ommender systems use the historical data, i.e., the feedback, to infer users’ prefer-

ences and use the inferred preferences to suggest items.

In recommender systems, there is a set of users and a set of items (e.g., movies,

songs, products, articles) and the feedback from the users (e.g., ratings, like/dislike,

clicks, views, purchases). The feedbacks are also referred to as the interactions

between users and items (user-item interactions). In addition to the user-item in-

teractions, additional data may be available such as textual contents (e.g., product

descriptions), visual contents (e.g., product images) and demography information.

7

2.1.1 Types of Recommender Systems

Generally, an RS can be classified into two categories: Content-based approach and

collaborative filtering-based (CF-based) approach. The content-based approach cre-

ates a description for each item and builds a profile for each user’s preferences. In

other words, the content-based approach (Pazzani and Billsus, 2007) recommends

items that are similar to items for which the user has expressed interest in the past.

In contrast, the CF-based approach (Das et al., 2007; Koren, 2008; Salakhutdinov

and Mnih, 2008) relies on the past behavior of each user, without requiring any

information about the items that the users have consumed. The consensus is that

the CF-based methods generally outperform the content-based methods if there is

enough feedback (e.g., ratings, clicks).

2.1.2 Types of Feedback

The feedbacks of users can be explicit (e.g., rating scores/stars, like/dislike) or im-

plicit (e.g., click, view, purchase). The explicit feedbacks explicitly reflect the opin-

ion of users to items. For example, a user clicks to like/dislike explicitly express that

he/she likes or dislikes a product; or a user rates movies on a scale, e.g., 1-5 stars.

The advantage of explicit feedback is that it can express the preference of a user to

an item that he/she likes or dislikes the item. This is important to capture the taste

of a user. However, one disadvantage of the explicit feedback is that it is difficult to

collect, thus usually the explicit data is extremely sparse.

The implicit feedback, in contrast, is collected when users use the systems, for

example when a user clicks a product or when a user reads an article. Different from

the explicit feedback which is represented by both positive and negative values (e.g.,

like/dislike), the implicit feedback is represented by positive values. Usually, we

use 1 to indicate that interaction actually happened, e.g., a user clicked/purchased a

product, or a user viewed an article. The advantage of the implicit feedback data is

that it is easy to collect and usually is abundant. However, the disadvantage is that it

does not directly express the preference of a user to an item. For example, even if a

user purchased an item, it does not mean that the user likes the item. In addition, if

there is no interaction between a user to an item, it does not necessarily imply that

the user dislikes the item. It may be because the user is not aware of the existence of

the item.

8

2.2 Related Work

2.2.1 Collaborative filtering

Most of the modern recommender systems rely on collaborative filtering (CF), which

learns user preferences from their prior behaviors such as ratings, purchases, or

clicks. One of the most efficient methods for CF is matrix factorization (MF) which

models user preferences based on the user-item interaction matrix (e.g., rating ma-

trix, click matrix) (Hu et al., 2008; Koren, 2008; Pan et al., 2008; Salakhutdinov and

Mnih, 2008). Given prior ratings of users to items, MF learns the latent feature vec-

tors of users and items and uses these vectors to predict missing ratings. Recently,

MF is improved by replacing the inner products of the latent factor vectors of the

users and items with a feed-forward neural network (Dziugaite and Roy, 2015; He

et al., 2017).

The rating prediction suffers from the sparseness of the rating matrix. To address

sparseness in the user-item matrix, additional data about items/users are also used

(Oord et al., 2013; Wang and Blei, 2011; Wang et al., 2015a). Implicit feedback is

also exploited to address this problem. The idea of using implicit feedback to boost

the performance of rating prediction is first introduced in (Bell and Koren, 2007)

and SVD++ (Koren, 2008). In these models, the authors integrate implicit feedback

which is in the form "who rates what" into the factorization model. The implicit

feedback that these models used is inferred from the rating data, therefore they can

not model an item if it does not have any rating. Our approach is different, we

use implicit feedback as an independent data source, therefore our model can model

an item even if it does not have any rating. Another difference is that the implicit

feedback used in (Bell and Koren, 2007) and (Koren, 2008) is inferred from rating

data, therefore it is also very sparse. The implicit feedback used in our model is

denser and we can exploit more information from the implicit feedback.

Co-rating (Liu et al., 2010) combines explicit and implicit feedback by treating

explicit feedback as a special kind of implicit feedback. The explicit feedback is

normalized into the range [0, 1] and is summed up to implicit feedback matrix with

a fixed proportion to form a single matrix. This matrix is then factorized to obtain

the latent vectors of users and items. The main difference between Co-rating and

our method is that the contribution of implicit feedback and explicit feedback in the

representation of items is equal for every item, while in our approach this proportion

9

is dynamic. For an item to which there are a lot of ratings available, its representation

mainly comes from the explicit feedback. On the other hand, if an item has few or

does not have any rating data, its representation mainly comes from the implicit

feedback data.

Wang et. al.(Wang et al., 2012) proposed Expectation-Maximization Collabo-

rative Filtering (EMCF) which exploits both implicit and explicit feedback for the

recommendation. For predicting ratings for an item to which rating data is not avail-

able, the rating is inferred from ratings of its neighbor regarding click data. However,

the algorithm is based on an iterative Expectation-Maximization (EM) in which E-

phase is a matrix factorization model. In other words, it needs multiple times of

matrix factorization and therefore is not efficient in computation.

Collective matrix factorization (CMF) (Singh and Gordon, 2008) proposed a

framework for factorizing multiple related matrices simultaneously, in order to ex-

ploit information from multiple sources. For example, if the item-genre matrix

exists, one can factorize both user-item and item-genre matrices in a shared latent

space. This approach is able to incorporate the side information (e.g., genre infor-

mation of items) into the latent factor model. Our model is a special case of CMF

with the rating matrix and item-item co-occurrence matrix.

Recently, the CoFactor (Liang et al., 2016) and CEMF (Nguyen et al., 2017)

models have been proposed. These models integrate item embedding into the MF

model. They simultaneously decompose the preference matrix and the SPPMI ma-

trix (the item-item matrix constructed from co-click information) in a shared la-

tent space. However, in contrast to our proposed method, CoFactor and CEMF

use co-click information to regularize the user-item matrix information, whereas

NPE exploits co-click information for learning effective representations of items.

In (Nguyen and Takasu, 2017), the author uses co-click information to address the

data sparsity issue in rating prediction.

For cold-user recommendations, (Tang and Liu, 2017) and (Li et al., 2015b) pro-

posed models that learn user presentations from user profiles. In (Tang and Liu,

2017), the user representations are learned from user profiles via a deep convolu-

tional neural network for event recommendations, whereas (Li et al., 2015b) has

user representations being learned by an auto-encoder. Despite these models being

very useful for new-user recommendations, the main issue remains that user profiles

are not always available. Furthermore, many user profiles may be very noisy (e.g.,

10

users may not want to publish their real gender, age, or location), which leads to

inaccurate representations of users.

2.2.2 Sequential Recommendation

Another line of recommendation is sequential recommendation which considers the

interactions of users to items as a sequence with an explicit order, e.g., a sequence

of clicks. A common approach to this problem is the Markov chain-based method.

An example of this approach is Markov Decision Process (MDP) (Shani et al., 2005)

for predicting next action given last actions, Markov Embedding (Chen et al., 2012b)

for playlist generation. Recently, recurrent neural network-based approaches are also

introduced to this problem (Hidasi et al., 2016). Note that, our problem is different

from sequential recommendation. In shopping basket modeling, there is no explicit

order in which the products are added to the baskets. Although a customer adds

products to his/her basket sequentially, the order in which the products are added to

the basket does not change the nature of the basket.

2.2.3 Embedding Models

Word embedding is an approach to learn low-dimensional vector representations of

words that capture the relationships between a word with its surrounding words (i.e.,

the context). These techniques (Li et al., 2015a; Mikolov et al., 2013b) have been

applied successfully to many tasks in natural language processing. The goal of word

embedding is to learn vector representations of words that capture the relationships

with surrounding words. The assumption behind word embedding techniques is that

words that occur in the same context are similar. To capture such similarities, words

are embedded into a low-dimensional continuous space. Word embedding can be

performed by shallow neural network (Mikolov et al., 2013b) or by factorizing a

word-word matrix according to their occurrence statistics (Levy and Goldberg, 2014;

Pennington et al., 2014). Word embedding is a building block of many sentence or

paragraph embedding techniques.

If an item is viewed as a word, and a list of items clicked by a user is a context

window, we can map word embedding to recommender systems. Item2Vec (Barkan

and Koenigstein, 2016) was introduced as a neural network-based item-embedding

model. However, Item2Vec is not able to predict missing entries in a user-item matrix

11

directly. Furthermore, in its recommendations, Item2Vec relies only on the last item,

ignoring previous items that a user has clicked.

Exponential Family Embeddings (EFE) (Rudolph et al., 2016), a probabilistic

embedding model that generalizes the spirit of word embedding to other kinds of

data, which can be used for modeling clicks and learn item representations. However,

EFE does not support for side information such as items’ rich contents. In addition,

EFE is not personalized.

Early approaches on text representation focus on bag-of-words (BoW) represen-

tation (Manning et al., 2008). Despite that this is a simple common used method, one

of its disadvantages is the size of the embedding vectors is proportional to the size

of the vocabulary, resulting in high and sparse representations, which is not efficient

in computation. Many approaches have been proposed to improve the performance

of BoW including low-rank factorization models such as Latent Semantic Indexing

(Deerwester et al., 1990), or topic models such as Latent Dirichlet Allocation (Blei

et al., 2003). In this approaches, texts are represented by low-dimensional dense

vectors, which outperform BoW model in computational complexity as well as in

predictive accuracies in natural language processing (NLP) tasks.

Recently, distributed representation learning approaches archive tremendous suc-

cess in learning text representations. Such approaches range from simply composi-

tion of the word vectors (Mikolov et al., 2013b; Pennington et al., 2014) to more

complicated network architectures. Approaches in this category include doc2vec

(Le and Mikolov, 2014); CNN-based approaches (Kim, 2014; Weston et al., 2014);

RNN-base approaches (Tai et al., 2015). Skip-through (Kiros et al., 2015) is another

line of text representations, which learn sentence representations by predicting the

surrounding sentences of a given one.

2.2.4 Shopping Basket Analysis

By far, the most common approach to shopping basket analysis is association rules,

which discovers the rules in the form: “Consumers who buy diapers are likely to

buy beer”. Formally, such rules can be expressed as B => i, where B is a set of

products and i is a product not contained in B. Such rules are useful in making

recommendations given the products currently in the basket.

Another direction of basket analysis is next basket recommendations (Rendle et

12

al., 2010; Wang et al., 2015b; Yu et al., 2016) which is to suggest a specific customer

a whole basket, given his previously shopping transaction. Our work is different. We

are not working on recommending next basket, we are focusing on recommending

the next product to add to the current basket.

A relevant technique to the basket-sensitive recommendation is item-to-item rec-

ommendation (Linden et al., 2003; Sarwar et al., 2001) in which a product is rec-

ommended based on the similarity between it a product in the shopping cart. Tech-

nically, an item-item matrix is built from the available shopping baskets. The items

that frequently co-occur in shopping baskets are deemed to be similar and their cor-

responding elements in the item-item matrix should be large. The value of item-item

matrix is used for recommending the next item of a particular one. While this is a

simple-but-effective approach, it recommends products based only on the last prod-

uct, ignoring the information from other products in the basket.

13

Chapter 3

Implicit Feedback Embedding for
Rating Prediction

Collaborative filtering (CF) is one of the most efficient ways for recommender sys-

tems. Typically, CF-based algorithms analyze users’ preferences and items’ at-

tributes using one of two types of feedback: explicit feedback (e.g., the ratings given

to items by users, like/dislike) or implicit feedback (e.g., clicks, views, purchases).

Explicit feedback is reliable but is extremely sparse; whereas implicit feedback is

abundant but is not reliable. To leverage the sparsity of explicit feedback, in this

work, we propose a model that efficiently combines explicit and implicit feedback in

a unified model for rating prediction. This model is a combination of matrix factor-

ization and item embedding, a similar concept with word-embedding in natural lan-

guage processing. The experiments on three real-datasets (Movilens 1M, Movielens

20M, and Bookcrossing) demonstrate that our method can efficiently predict ratings

for items even if the rating data is not available for them. The experimental results

also show that our method outperforms competing methods on rating prediction task

in general as well as for users and items which have few ratings.

3.1 Introduction

Nowadays, recommender systems (RS) have become a core component of many on-

line services. RS analyzes users’ behavior and provides them with personalized rec-

ommendations for products or services that meet their needs. For example, Amazon

recommends products to users based on their shopping histories; an online newspa-

15

per recommends articles to users based on what they have read.

Generally, an RS can be classified into two categories: Content-based approach

and Collaborative Filtering-based (CF-based) approach. The content-based approach

creates a description for each item and build a profile for each user’s preference. In

other words, the content-based approach recommends the items that are similar to

items that interested the user. In contrast, CF-based approach (Koren, 2008, 2009;

Ning et al., 2015; Salakhutdinov and Mnih, 2008; Sarwar et al., 2001) relies on the

behavior of each user in the past, such as users’ ratings on items. The CF-based

approach is domain-independent and does not require content collection as well as

content analysis. In this work, we focus on the CF-based approach.

Basically, the data for a CF-based algorithm comes in the form of a rating matrix

whose entries are observed ratings to items given by users. This kind of feedback

is referred to as explicit feedback. Given these observed ratings, a typical task of

CF-based algorithms is to predict the unseen ratings. One of the most efficient ways

to perform CF is matrix factorization (MF) (Koren, 2008, 2009; Salakhutdinov and

Mnih, 2008) which decompose the rating matrix into latent vectors that represent

users’ preferences and items’ attributes. These latent vectors are then used to predict

the unseen ratings. Usually, MF-based algorithms suffer from the sparseness of the

rating matrix: if a user or an item has a very few numbers of ratings, it is difficult to

find a "right" latent vector for the user or the item; in an extreme case, if rating data

is not available for an item, MF-based algorithms cannot find a latent vector for it.

When the ratings are not sufficient for modeling the items, exploiting other side

information is a solution. Collaborative topic model (Wang and Blei, 2011) and

content-based Poisson factorization (Gopalan et al., 2014) use text content informa-

tion of items as a side information for recommending new items. Collaborative deep

learning (Wang et al., 2015a) models music content by a deep neural network and

combine with an MF-based model for music recommendation. However, in many

cases, the items’ contents are not available or are not informative enough for model-

ing the items (e.g., when an item is described by a very short text, or only by some

keywords).

In this chapter, instead of using such side information of items’ contents, we

focus on utilizing another type of feedback, known as implicit feedback (e.g., clicks,

views or purchase history), which can be easily collected with abundance during the

interaction of users to the system. One way for recommending items that have no

16

ratings is performing MF model based entirely on the implicit feedback only (Hu et

al., 2008; Pan et al., 2008; Rendle et al., 2009). However, implicit feedback only is

not reliable in capturing users’ preferences because it does not directly express the

opinions of users to items. For example, a user’s click on an item does not mean that

he/she likes the item; it may be the case that the user finally finds that he/she does

not like it after clicking it. On the other hand, a user did not click an item may not be

because he/she does not like the item, it may be because he/she is unaware about the

existence of it. Therefore, using implicit feedback only is not reliable for inferring

the preferences of users or attributes of items.

To address the challenges above, we propose a probabilistic model that efficiently

combines explicit feedback and implicit feedback in a unified model. We aim to

make the model capable of modeling an item using both information from explicit

feedback and implicit feedback data. For items that have many ratings, the represen-

tation of the item is mainly inferred from the rating data because it is more reliable.

On the other hand, for items that have few or does not have any ratings, the recom-

mendation is mainly based on its implicit feedback data.

To find the representation for items without rating data, we exploit the implicit

feedback with the assumption: if two items are usually clicked in the same context

of each other, they are similar. This technique is referred to as item embedding

which is very similar to word-embedding techniques (Le and Mikolov, 2014; Levy

and Goldberg, 2014; Mikolov et al., 2013a) in natural language processing, which

represents each by vectors that capture the relationships with its surrounding words.

In detail, our approach is a combination of two components: (i) the matrix factor-

ization model (Salakhutdinov and Mnih, 2008) for finding representations of users

and items based on explicit feedback, and (ii) the item embedding model for finding

the representations of items that can capture the relationships among items based on

implicit feedback. We will develop a probabilistic model that jointly learns the MF

and item embedding model together. The item representations from item embedding

model are learned to adapt with the item representations in the MF model, and then

can be used for rating prediction.

The rest of this section is organized as follows. In Section 3.2 we formulate the

problem and represent the background knowledge related to the method. Section

3.3 represents our idea in modeling items using implicit feedback and describes the

probabilistic model for integrating implicit and explicit feedback data in a unified

17

model. In Section 3.4, we present the effectiveness of our method by comparing with

state-of-the-art techniques using three public datasets. We summarize the method as

well as discuss some potential future directions in Section 3.5.

3.2 Preliminary

3.2.1 Notation and Problem Formation

Let us establish some notations. We use u to denote a user and i or j to denote an

item. Each observation of explicit feedback is represent by a triplet (u, i, rui) where

rui is the rating that user u gave to item i. The explicit feedback can be represented

by a matrix R ∈ RN×M where N is the number of users and M is the number of

items. Each entry rui of the matrix R is either the rating of item i given by user u

or zero if the rating is not observed (missing entries). We use R to denote the set of

(u, i)-pair that rui > 0,Ru to denote the set of item that user u gave ratings, andRi

to denote the set of users that gave ratings to item i.

The implicit feedback of a user-item pair is represented by a triplet (u, i, pui)

where pui = 1 if implicit feedback of user u to item i is observed (i.e., the click,

views or purchase of item i by user u), and pui = 0 if the implicit feedback is not

observed. Implicit feedback is represented by matrix P ∈ {0, 1}N×M .

Usually, explicit feedback matrix R is very sparse (i.e., with many missing en-

tries). We are interested in predicting the missing entries of R based on the observed

data.

The notations used in this section are summarized in Table 3.1.

3.2.2 Probabilistic Matrix Factorization

Probabilistic matrix factorization (PMF) (Salakhutdinov and Mnih, 2008) is a method

for modeling ratings which represents users and items by vectors in a shared latent

space: user u is represented by vector xu ∈ Rd (u = 1, 2, . . . , N) and item i is rep-

resented by vector yi ∈ Rd (i = 1, 2, . . . ,M), where d is the dimension of the latent

space.

PMF assumes that the rating rui can be modeled by a normal distribution as

follows.

P (rui|xu,yi, σ2
r) ∝ N (x>u yi, σ

2
r) (3.1)

18

Table 3.1: The notations used throughout the Chapter 3.

Notation Meaning
N,M the number of users and items, respectively
R the rating matrix matrix (R ∈ RN×M)
Ru the set of items that user u provided ratings
Ri the set of users that provided ratings to item i

d the dimensionality of the latent space
xu the latent factor vector of user u (xu ∈ Rd)
yi the latent factor vector of item i (yi ∈ Rd)
wi the embedding vector of item i (wi ∈ Rd)
zi the embedding vector of item i (zi ∈ Rd)
bu the bias term of user u (bu ∈ R)
ci the bias term of item i (ci ∈ R)
µ the global mean of the rating data (µ ∈ R)
Θ The set of all model parameters

where θu and yi are random variables that are drawn from multivariate Gaussian

distributions:
xu ∝ N (0, σ2

XId)

yi ∝ N (0, σ2
Y Id)

(3.2)

The graphical model of the PMF is shown in Fig.3.1

Graphical Models in Tikz

Laura Dietz, Jaakko Luttinen

January 8, 2019

rui

xu yi

�2
X �2

Y

�2
r

N M

Figure 1: Probabilistic Matrix Factorization.

rui

xu yi

sij

zj

�2
X �2

Y �2
Z

�2
r �2

s

N

M

M

Figure 2: CoMF.

1

Figure 3.1: The graphical model of the PMF.

The parameters of the model (x1:N ,y1:M) are learned by maximizing the log

19

posterior distribution which is given in Eq.(3.3).

logP (x1:N ,y1:M |R,σ2) = − 1

2σ2
R

∑

(u,i)∈R

(rui−x>u yj)
2− 1

2σ2
X

N∑

u=1

||xu||2−
1

2σ2
Y

M∑

i=1

||yi||2+C

(3.3)

where σ = (σ2
R, σ

2
X , σ

2
Y), and C is a constant when σR, σX , σY , are fixed.

Maximizing Eq.(3.3) is equivalent to minimizing the following error function.

L(x1:N ,y1:M) =
1

2

∑

(u,i)∈R

(rui − x>u yi)
2 +

λX
2

N∑

u=1

||xu||2F +
λY
2

M∑

i=1

||yi||2F (3.4)

where ||.||F is the Frobenius norm of a vector, λX = σ2
R/σ

2
X , λY = σ2

R/σ
2
Y . We can

see that maximizing the log posterior is equivalent to minimizing the squared loss

between the predicted ratings and the actual ratings with L2 regularization.

Notice that when either the user feature vectors or item feature vectors are fixed,

the loss function becomes quadratic so its global minimum can be easily computed.

This suggests using the alternating least square (ALS) for solving the problem. The

idea behind the ALS method to update one of the latent factor vectors xu or yi while

the remaining parameters are fixed. In updating xu, we take the partial derivative

with respect to xu while the remaining parameters are fixed, and set this partial

derivative to zero to obtain the new value of xu. Updating yi is performed in a

similar way. The update rules of xu and yi are given in the following equations.

xnewu =
(∑

i∈Ru

yiy
>
i + λXId

)−1(∑

i∈Ru

ruiyi

)

ynewi =
(∑

u∈Ri

xux
>
u + λY Id

)−1(∑

u∈Ri

ruixu

) (3.5)

The method can be summarized as in the Algorithm 1. As we can see from the

above equations, the new value of xu depends only on the latent factor vectors of the

items, and is independent from the latent factor vectors of other users. This enables

to update the xu (u ∈ {1, 2, . . . , N}) parallelly. Similarly, we also can paralellize

the updates of the item latent factor vectors yi (i ∈ {1, 2, . . . ,M}).

20

Algorithm 1: The ALS algorithm for the probabilistic matrix factorization.
Input : Rating matrix: R, regularization parameters: λX , λY
Output: The latent factor vectors x1:N ,y1:M

1 Randomly initialize x1:N ,y1:M from Gaussian distributions
2 for epoch=1 . . . T do
3 for u=1 . . . N do
4 Update user latent factor vector xu by Eq.(3.5)
5 end
6 for i=1 . . . M do
7 Update item latent factor vector yi by Eq.(3.5)
8 end
9 end

3.3 Proposed method

In this section, we describe our method, which is a combination of probabilistic

matrix factorization for rating prediction and item embedding model for implicit

feedback data. First, we will present the idea of item embedding model.

3.3.1 Item embedding model based on implicit feedback

Inspired by word embedding techniques (Le and Mikolov, 2014; Levy and Goldberg,

2014; Li et al., 2015a; Mikolov et al., 2013a,b) which represent a word by vectors

that capture the relationship with its surrounding words, we apply the same idea to

find representations of items based on implicit feedback data.

Similar to words, items also have their contexts, which is a model choice and can

be defined in different ways. For example, the context can be defined as the set of

items that are clicked by a user (user-based context); or can be defined as the items

that are clicked in a session with a given item (session-based context). In this work,

we use the user-based context, which is defined as follow: given an item i that is

clicked by user u, the context of i is the list of all items that u have clicked.

The item embedding model presented in this section is partly based on the word-

embedding model presented in (Li et al., 2015a) which we bring into the world of

items with a change: in (Li et al., 2015a), each word is represented by a unique

vector while in this item embedding model we use two vectors to represent each

item. We found that a model that uses two vectors for representing items can be

efficiently trained by parallelizing the algorithm for the optimization problem (see

21

our discussion on parameter learning in Section 3.3.2).

Each item is represented by two vectors: an embedding vector wi and a context

vector zi. These two vectors have different roles: the embedding vector governs

the distribution of the item, while the context vector governs the distribution of its

context items.

The model describes the appearance of an item conditional on other items in its

context as follows.

p(i|j) = f(i, j)p(i) (3.6)

where p(i) is the probability that item i appears in the data, p(i|j) is the probability

that i appear in context of j and f(i, j) is the link function that reflects the association

between i and j. The role of the link function is straightforward: if item i is often

clicked (i.e., p(i) is high), however, i and j are not often clicked together (i.e., p(i|j)
is low) then the link function f(i, j) should have small value. On the other hand, if i

is rarely clicked (i.e., p(i) is low) but if i and j are often clicked together (i.e., p(i|j)
is high), the link function f(i, j) should have high value.

There are different choices for the link functions which lead to different embed-

ding models. Here, we choose the link function f(i, j) = exp{w>i zj}. Combining

with Eq.(3.6) we have: p(i, j) = exp{w>i zj}, or:

log
p(i|j)
p(i)

= w>i zj (3.7)

Note that log p(i|j)
p(i)

= log p(i,j)
p(i)p(j)

is the point-wise mutual information (PMI)

(Church and Hanks, 1990) of i and j, Eq.(3.7) can be rewritten as follows.

w>i zj = PMI(i, j) (3.8)

Empirically, PMI can be estimated using the actual number of observations in the

implicit feedback data.

PMI(i, j) = log
#(i, j)|D|
#(i)#(j)

(3.9)

where D is the set of all item-context pairs that are observed in the click history of

any user, #(i) is the number of users who clicked item i, #(j) is the number of users

who clicked j, and #(i, j) is the number users who clicks both i and j.

22

From Eq.(3.7) and Eq.(3.9) we can observe that, the item vectors and context

vectors can be obtained by factorizing the matrix whose elements are defined in

Eq.(3.9).

A practical issue arises here: for item pair (i, j) that are less often clicked by the

same user, PMI(i, j) is negative, or if they have never been clicked by the same

user, #(i, j) = 0 and PMI(i, j) = −∞. However, a negative value of PMI does

not necessarily imply that the items are not related. The reason may be because

the number of items is very huge, and a user who clicks i may not know about

the existence of j. A common way in natural language processing is to replace the

negative values by zeros to form the positive PMI (PPMI) matrix (Bullinaria and

Levy, 2007). The PPMI matrix S whose elements are defined as follows.

sij = max{PMI(i, j), 0} (3.10)

The item embedding model for implicit feedback can be summarized as follows:

(1) construct an item-item matrix S regarding the co-occurrence of items in the click

history of users (the PPMI matrix), and (2) factorize matrix S to obtain the represen-

tations of items. The factorization can be performed following the PMF method that

was described in Section 3.2.2.

3.3.2 Generative collaborative item embedding model

We have presented the idea of item embedding via factorizing the PPMI matrix re-

garding items from the implicit feedback. We are ready to present the idea to com-

bine that model with the MF model for explicit feedback. Rather than performing

two independent models: matrix factorization on user ratings, and item embedding

on implicit feedback, we connect them into a unified model which is described be-

low.

In item embedding above, item i will be represented by two vectors: embedding

vector wi and context vector zi which are derived from the observations of the PPMI

matrix. Additionally, the model adds an offset value to the embedding vector wi to

capture the deviation from the item vector learned from the implicit feedback. This

deviation can be interpreted as the contribution of explicit feedback information into

the representation of the items and is useful when the click information does not

reflect the preference of a user to an item. For example, a user clicks an item many

23

times and finally found that he/she does not like the item, giving a low rating score.

The graphical model of the proposed model is displayed in Fig.3.2.

rui

xu yi

bu ci

wi

sij

zj

�2
X �2

Y �2
W �2

Z

�2
r �2

s�2
b �2

c

N

M

M

Figure 3: CEMF.

2

Figure 3.2: The graphical model of the proposed model.

The generative process for modeling the rating scores as well as the implicit

feedback data is shown below.

1. Item embedding model

(a) For each item i: draw the embedding vector wi and context vector zi

wi ∝ N (0, σ2
W I) (3.11)

zi ∝ N (0, σ2
ZI) (3.12)

(b) For each pair (i, j), draw sij of the PPMI matrix:

sij ∝ N (w>i zj, σ
2
S) (3.13)

2. Rating model

(a) For each user u: draw user vector xu and bias term bu

xu ∝ N (0, σ2
XI) (3.14)

bu ∝ N (0, σ2
b) (3.15)

24

(b) For each item i: draw the item vector yi and the bias term ci

yi ∝ N (wi, σ
2
Y) (3.16)

ci ∝ N (0, σ2
c) (3.17)

(c) For each pair (u, i): draw the rating score

rui ∝ N (µ+ bu + ci + x>u yi, σ
2
R) (3.18)

3.3.3 Parameter learning

The parameters of the model Θ = {x1:N ,y1:M ,w1:M , z1:M , b1:N , c1:N} are learned

by maximizing the log posterior distribution which is equivalent to minimizing the

following loss function.

L(Θ) =
1

2

∑

(u,i)∈R

[rui − (µ+ bu + ci + x>u yi)]
2

+
λ

2

∑

(i,j)∈S

(sij −w>i zj)
2

+
λX
2

N∑

u=1

||xu||2F +
λY
2

M∑

i=1

||yi − zi||2F

+
λW
2

M∑

i=1

||yi||2F +
λZ
2

M∑

j=1

||zj||2F

+
λb
2

N∑

u=1

b2u +
λc
2

M∑

i=1

c2i

(3.19)

where S = {(i, j)|sij > 0}, λ = σ2
R/σ

2
S, λX = σ2

R/σ
2
X , λY = σ2

R/σ
2
Y , λW =

σ2
R/σ

2
W , and λZ = σ2

R/σ
2
Z .

Function in Eq.(3.19) is not convex with respect to x1:N , y1:M , w1:M , z1:M , b1:N ,

c1:M , but it is convex if we keep five of them fixed. Therefore, it can be solved using

alternative least square (ALS) method, similar to the method described in (Hu et al.,

2008).

For each user u, at each iteration, we calculate the partial derivative of L(Θ)

with respect to xu while fixing other parameters. By setting this derivative to be

zero: ∂L
∂xu

= 0, we can obtain the update rule of xu as in Eq.(3.20).

25

xnewu =
(∑

i∈Ru

yiy
>
i + λXId

)−1(∑

i∈Ru

ruiyi

)
(3.20)

where Id is the d-dimensional identity matrix.

By doing the same way, we can obtain the update rules for wi, zj , bu and ci as

follows.

ynewi =
(∑

u∈Ri

xux
>
u + λY Id

)−1(
λY yi +

∑

u∈Ri

(rui −Bui)xu

)
(3.21)

wnew
i =

(
λ
∑

j∈Si

zjz
>
i + λρId

)−1(
λY yi + λ

∑

j∈Si

sijzj

)
(3.22)

znewj =
(
λ
∑

i∈Sj

yiy
>
i + λαId

)−1(
λ
∑

i∈Sj

sijyi

)
(3.23)

bnewu =

∑
i∈Ru

rui − (µ|Ru|+
∑

i∈Ru
ci + x>u yi)

|Ru|+ λb
(3.24)

cnewi =

∑
u∈Ri

rui − (µ|Ri|+
∑

u∈Ri
bu + x>u yi)

|Ri|+ λc
(3.25)

where Bui = µ + bu + ci, Si = {j|sij > 0}, Sj = {i|sij > 0}, Ru, again, is the set

of items that u gave ratings, andRi is the set of users that gave ratings to i.

The method can be summarized as in the Algorithm 2.

Computational complexity. For user vectors, as analyzed in (Hu et al., 2008),

the complexity for updating N users in an iteration is O(d2|R| + d3N), where |R|
is the number of non-zero entries of rating matrix R. Since |R| >> N , if d is small,

this complexity is a linear in the size of the input matrix. For item vector updating,

we can also easily show that the running time for updating M items in an iteration

is O(d2(|R| + |S|) + d3M), where |S| is the number of non-zero entries of matrix

S. We can see that the computational complexity linearly scales with the number of

users and the number of items. Furthermore, this algorithm is easy to be parallelized

to adapt to large scale data. For example, in updating user vectors xu, the update rule

of user u is independent of other users’ vectors, therefore, we can compute
∑

i yiy
>
i

in advance, and update xu in parallel.

26

Algorithm 2: The ALS algorithm for the proposed model.
Input : Rating matrix: R, PPMI matrix S, regularization parameters:

λX , λY , λW , λZ , λb, λc
Output: The latent factor vectors x1:N ,y1:M ,w1:M , z1:M

10 and the biases b1:N , c1:N Randomly initialize x1:N ,y1:M ,w1:M , z1:M , b1:N , c1:M
from Gaussian distributions

11 for epoch=1 . . . T do
12 for u=1 . . . N do
13 Update user latent factor vector xu by Eq.(3.20)
14 Update bias term bu by Eq.(3.24)
15 end
16 for i=1 . . . M do
17 Update item embedding vector wi by Eq.(3.22)
18 Update item context vector zi by Eq.(3.23)
19 Update item vector yi by Eq.(3.21)
20 Update bias term ci by Eq.(3.25)
21 end
22 end

3.3.4 Rating prediction

After learning the model parameters Θ = {x1:N ,y1:M ,w1:M , z1:M , b1:N , c1:N}, the

proposed model can be used for predicting missing ratings. We consider two cases

of rating predictions: in-matrix prediction and out-of-matrix prediction. In-matrix

prediction refers to the case that we predict the rating of user u to item i, where i has

not been rated by u but has been rated by at least one other users. Out-matrix refers

to the case that we predict the rating of user u to item i, where i has not been rated

by any users (i.e., i has implicit feedback only).

Let D be the observed data (observed rating scores), the unobserved rui can be

estimated as in Eq.(3.26).

E
[
rui|D

]
= E

[
xu|D

]>E
[
yi|D

]

r̂ui ≈ µ+ bu + ci + x>u yi
(3.26)

27

3.4 Empirical study

3.4.1 Datasets

We use three public datasets in different domains with varying sizes. The datasets

are:

MovieLens 1M (ML-1m): a dataset of user-movie ratings collected from Movie-

Lens, an online film service. It contains 1 million ratings in the range 1− 5 to 4000

movies by 6000 users. The dataset is available at GroupLens1

MovieLens 20M (ML-20m): a dataset of user-movie ratings collected from

MovieLens, an online film service. It contains 20 million ratings in the range 1 − 5

to 27,000 movies by 138,000 users. The dataset is available at GroupLens2

Bookcrossing: A dataset collected by Cai-Nicolas Ziegler in August and Septem-

ber 2004 from the Book-Crossing3. The dataset contains 278,858 users (anonymized

but with demographic information) providing 1,149,780 ratings (explicit/implicit)

about 271,379 books. We remove users and items that have no explicit feedback.

The statistical information about the datasets is given in Table 3.2.

Table 3.2: Statistical information of the datasets

ML-1m ML-20m Bookcrossing

of users 6,040 138,493 77,805
of items 3,706 26,744 185,973

value of ratings 1 - 5 0.5 - 5 1–10
average rating 3.58 3.53 7.61

of ratings 1,000,209 20,000,263 357,246
rating density (%) 4.47 0.53 0.0029

of clicks - - 892,185
click density (%) - - 0.0062

Since Movielens datasets contain only explicit feedback, we artificially create

the implicit feedback and explicit feedback data following (Bell and Koren, 2007).

For the implicit feedback, we use all the rating data by considering whether a user

rated an item or not. In other words, the implicit feedback is obtained by binarizing

the rating data. For explicit feedback, we randomly pick 10%, 50%, and 90% of

1https://grouplens.org/datasets/movielens/1m/
2https://grouplens.org/datasets/movielens/20m/
3http://www.bookcrossing.com/

28

the original rating data and assume that only these amounts of ratings are available.

These datasets are: ML1-10, ML1-50, ML1-90 (obtained by picking 10%, 50%,

90% from ML-1m, respectively) and ML20-10, ML20-50, ML20-90 (obtained by

picking 10%, 50%, 90% from ML-20m, respectively). The densities of the rating

matrices of these datasets are given in Table 3.3.

Table 3.3: Statistical information of some subsets drawn from Movielens data

Original dataset % selected Density (%)
ML1-10 ML-1m 10% 0.3561
ML1-50 ML-1m 50% 1.6022
ML1-90 ML-1m 90% 2.8206
ML20-10 ML-20m 10% 0.1001
ML20-50 ML-20m 50% 0.2108
ML20-90 ML-20m 90% 0.3459

3.4.2 Evaluation

We split the rating data into two parts: 80% for the training set and 20% for as

ground-truth for testing. From the training set, we randomly pick 10% as a validation

set that will be used for model selection and checking stopping condition of the

training phase. In evaluating the in-matrix prediction, when splitting data, we make

sure that all the items in the test set appear in the training set (to ensure that all the

items in the test set have at least one rating in the past). In evaluating out-of-matrix

prediction, we make sure that none of the items in the test set appear in the training

set (to ensure that none of the items in the test set have any rating in the past).

The model is trained on the training dataset and the optimal parameters are ob-

tained by using the validation set. The model with these optimal parameters is then

used to predict ratings for user-item pairs that appear in the test set. We use Root

Mean Square Error (RMSE), as the metric to measure the performance of the mod-

els. RMSE measures the deviation between the rating predicted by the model and

the true ratings (given by the test set) and is defined as follows.

RMSE =

√
1

|Test|
∑

(u,i)∈Test

(rui − r̂ui)2 (3.27)

where |Test| is the size of the test set. The smaller the value of RMSE on the test

29

set is, the better the performance of the model is.

3.4.3 Competing methods

For in-matrix prediction. We compare our method with the following three factor-

ization models:

1. PMF (Salakhutdinov and Mnih, 2008): a state-of-the-art method for rating

prediction which is described in Section 3.2.2.

2. NMF (non-negative matrix factorization) (Lee and Seung, 2000): a factoriza-

tion model with the constraint that all the components of user factors and item

factors must be non-negative

3. SVD++ (Koren, 2008): a factor model that exploits both explicit feedback and

implicit feedback in rating prediction. The implicit feedback used in SVD++

is in the form: "who rated what?" which is inferred from the explicit feedback

data.

We used the Librec 4, an open source library to run the competing methods above.

For out-of-matrix prediction. Since conventional collaborative filtering meth-

ods cannot predict ratings for the items with no prior ratings, we will use the user-

average as the competing method. The user-average estimates the rating of a user to

an item by the average of the ratings that he or she gave to other items.

3.4.4 Parameter settings

In all settings, we set the dimension of the latent space to d = 20. For PMF,

NMF, and SVD++, we used grid-search to find the optimal values of the regular-

ization terms that produce the best performance on the validation set. We found that,

λu = λu = 0.01 give good performance. For our proposed method, we explored

the parameters in different settings. First, we fixed λ = 1 and used grid search for

finding the optimal values of the remaining parameters that give good performance

on the validation set. We found that λX = λY = λW = λZ = λb = λc = 10 give

good performance and used this setting in comparing with the competing methods.

Second, we explored different values of λ while fixing the remaining parameters in
4http://librec.net/

30

order to study how the contribution of implicit data affects the performance of the

model. Third, we explored different values of λY , which control the divergence of

yi from wi, in order to study how the performance of the model is influenced by the

deviation of the item representation from the item embedding vector.

3.4.5 Experimental results

We report the RMSE on the test set of the in-matrix prediction for datasets ML1-50,

ML20-50 and Bookcrossing, in Table 3.4. The test RMSE of in-matrix prediction

show that our method outperforms the competing methods on over three datasets.

Table 3.4: Test RMSE of in-matrix prediction on three datasets.

Methods
Datasets

ML1-50 ML20-50 Bookcrossing
PMF 0.8983 0.8441 2.1663
NMF 1.0051 0.9891 1.9374
SVD++ 0.8871 0.8191 1.6916
CoMF (our) 0.8498 0.8024 1.6558

We can observe that our method and SVD++ are much better than PMF and

NMM, which use explicit feedback only. This indicates that exploiting implicit feed-

back is a key point to increase the prediction performance. Our method outperforms

SVD++ is because we can exploit more information from implicit feedback data than

SVD++ does. While SVD++ uses only "implicit feedback" data that is inferred from

the explicit feedback, our method uses much more implicit feedback which comes

from a different and independent source.

In Bookcrossing dataset, the test RMSE of NMF and PMF are far worse than

SVD++ and our method. The reason is that the explicit feedback Bookcrossing

data is extremely sparse (0.0029%) and explicit feedback only is not enough for

prediction.

Table 3.5: Test RMSE of out-of-matrix prediction on three datasets.

Methods
Datasets

ML1-50 ML20-50 Bookcrossing
User-average 1.0431 0.9673 1.7142
CoMF (our) 1.0132 0.9494 1.6828

31

The test RMSE of out-of-matrix prediction for ML1-50, ML20-50, and Bookcross-

ing, is given in Table 3.5. The results show that our method outperforms imputing

ratings by user-average. From the result, we can see that the performance of our

method, in this case, is worse than in in-matrix prediction. This is reasonable be-

cause this prediction is almost entirely based on the implicit feedback data.

Effect of the sparseness of explicit data

We study the performances of the methods on different levels of sparsities of explicit

feedback data.

Figure 3.3 and Fig.3.4 show the test RMSE results of in-matrix and out-of-matrix

prediction tasks on different subsets of the data. The experimental results show that

our proposed method outperforms all competing methods in both in-matrix predic-

tion and out-of-matrix prediction on two datasets over different levels sparsities of

explicit feedback data. For all methods, the predicting accuracies increase with the

density of explicit feedback. This is expected because the explicit feedback data is

reliable for inferring users’ preferences.

In all cases, the differences between our proposed method with the competing

methods are most pronounced in the most sparse subsets (ML1-10 or ML20-10).

This indicates the effectiveness of our proposed method for sparse data.

Is joint learning important?

In the proposed model, we train the matrix factorization component jointly with the

item embedding component. This “end-to-end” fashion has shown the effectiveness

in many machine learning tasks. Here, we are interested in studying the effective-

ness of jointly training the two models. To do so, we compare the proposed model

with the model where the item embedding and the matrix factorization are trained

separately. First, we use item2vec (Barkan and Koenigstein, 2016) to compute the

embedding vectors of the items. We then fixed the embedding vectors of the items

and use them as the item latent factor vectors, and learn the user latent factor vectors.

We name this model Item2Vec+MF.

The accuracies of the Item2Vec+MF and CoMF models are reported in Table 3.6a

(in-matrix prediction) and Table 3.6b (out-of-matrix prediction). We can observe that

the performance of Item2Vec+MF is much worse than the proposed model. This is

32

10% 50% 90%
Percentage of training data

0.8

0.9

1.0

1.1

RM
SE

PMF
NMF
SVD++
CoMF (our)

(a) ML-1m dataset

10% 50% 90%
Percentage of training data

0.8

0.9

1.0

1.1

RM
SE

PMF
NMF
SVD++
CoMF (our)

(b) ML-20m dataset
Figure 3.3: Test RMSE of in-matrix prediction for different subsets of ML-1m and
ML-20m data

reasonable because the item embeddings learned by Item2Vec is well-suit for the

rating prediction. In contrast, the proposed model is able to keep a balance between

the contribution of the rating data and the click data in for learning item latent factor

vectors that reflect both rating data and click data.

Impact of parameter λ

As in the Eq.(3.19), parameter λ controls the level of contribution of implicit feed-

back data to the model. If λ = 0, the model reduces to the original MF which uses

explicit feedback data only for modeling users and items. If λ =∞, the model uses

only information from the implicit feedback to model items. In this part, we vary λ

while fixing other parameters to study the effect of λ on the accuracy of the model.

Figure 3.5 shows the test RMSE of in-matrix prediction task of CoMF on the

ML1-50 data when the λ is varied. From the result, we can observe that the predic-

33

10% 50% 90%
Percentage of training data

0.95

1.00

1.05

1.10

1.15

RM
SE

User average
CoMF (our)

(a) ML-1m dataset

10% 50% 90%
Percentage of training data

0.90

0.95

1.00

1.05

RM
SE

User average
CoMF (our)

(b) ML-20m dataset
Figure 3.4: Test RMSE of out-of-matrix prediction for different subsets of ML-1m
and ML-20m data

tion performance is influenced significantly by the value of λ. For small values of λ,

the test RMSE is relatively high, it decreases when λ increases. However, when λ

goes over a certain threshold, the test RMSE starts increasing. This can be explained

as follows. For a very small value of λ, the model mainly uses information from

the explicit feedback which is too sparse to model the users and items. When the

value of λ becomes very large, the model mainly uses the implicit feedback data for

modeling the items, therefore, is not reliable. The best values of λ should balance

the contribution of implicit and explicit feedback.

Impact of parameter λY

λY is the parameter that controls the deviation of item latent vector yi from the item

embedding vector wi. When λY is small, the value of yi is allowed to diverge from

wi; in this case, the information for modeling item i mainly comes from explicit

34

Table 3.6: Comparison between joint learning (CoMF) and separate learning
(Item2Vec+MF).

(a) In-matrix prediction

Methods
Datasets

ML1-50 ML20-50 Bookcrossing
Item2Vec+MF 0.8984 0.8355 1.9014
CoMF (our) 0.8498 0.8024 1.6558

(b) Out-of-matrix prediction

Methods
Datasets

ML1-50 ML20-50 Bookcrossing
Item2Vec+MF 1.0390 0.9784 1.7027
CoMF (our) 1.0132 0.9494 1.6828

0.01 1 10 50 100 10000.85

0.90

0.95

RM
SE

Figure 3.5: Test RMSE of in-matrix prediction task on ML1-50 dataset correspond-
ing to different values of λ.

feedback. On the other hand, when λY increases, yi becomes closer to wi; in this

case, the item vectors mainly come from the embedding model of implicit feedback.

Figure 3.6 shows the test RMSE of in-matrix prediction task of CoMF on the

ML1-50 dataset when λY is varied while other parameters are fixed. From the result,

we can observe that, for small values of λY , the model produces low prediction

accuracy (high test RMSE). The reason is when λY is small, the model mostly relies

on the explicit feedback which is very sparse and can not model users and items

well. When λY increase, the model starts using implicit feedback for prediction, the

accuracy will increase. However, when λY reaches a certain threshold, the accuracy

starts decreasing. This is because when λY is too large, the representations of items

mainly come from implicit feedback, and therefore the model becomes less reliable

35

0.1 1 10 50 100 1000
Y

0.85

0.90

0.95

1.00

RM
SE

Figure 3.6: Test RMSE of in-matrix prediction task on ML1-50 dataset correspond-
ing to different values of λY .

to model the rating data.

3.5 Chapter Summary

In this section, we proposed a probabilistic model that combines explicit feedback

and implicit feedback for rating prediction task. The model is a combination of two

models: MF for explicit feedback and item embedding for implicit feedback. The

experimental results showed that our proposed method improved the accuracy of

rating prediction for three real-world datasets. Our method also can efficiently learn

the latent representations of items whose rating data is not available and efficiently

predict the missing ratings for them.

There are several ways to extend or improve this work. In this model, the optimal

hyper-parameters are found by performing grid search. It is very time consuming

for large datasets or if we increase the range of choices for hyper-parameters. One

direction to improve this work is to develop a fully Bayesian model that treats hyper-

parameters as random variables and we can perform inferring posterior distribution

over hyper-parameters. Another direction is to inject the auxiliary information of the

items (e.g., textual data or visual data) into the model for addressing the cold-start

problem.

36

Chapter 4

NPE: Neural Personalized
Embedding

Matrix factorization is one of the most efficient approaches in recommender sys-

tems. However, such algorithms, which rely on the interactions between users and

items, perform poorly for “cold-users" (users with a little history of such interac-

tions) and at capturing the relationships between closely related items. To address

these problems, we propose a neural personalized embedding (NPE) model, which

improves the recommendation performance for cold-users and can learn effective

representations of items. It models a user’s click to an item in two terms: the per-

sonal preference of the user for the item, and the relationships between this item and

other items clicked by the user. We show that NPE outperforms competing meth-

ods for top-N recommendations, especially for cold-user recommendations. We also

performed a qualitative analysis that shows the effectiveness of the representations

learned by the model.

4.1 Introduction

As motivated in Chapter 1, in order to make good recommendations, it is essential to

understand the preferences of users to items. In this chapter, we focus on the recom-

mendation with implicit data. Given previous click/purchase data, we are interesting

in making a list of n items to suggest to a specific user (the top-n recommendation).

In this setting, matrix factorization (MF) is one of the most efficient approaches

which find the latent representations of users and items (Hu et al., 2008; Pan et al.,

37

2008). To address the sparseness of the user-item matrix, additional data are inte-

grated into MF as “side information”. This might include textual information for

article recommendations (Wang and Blei, 2011; Wang et al., 2015a), product images

in e-commerce (He and McAuley, 2016), or music signals for song recommenda-

tions (Oord et al., 2013). However, there are two major issues with these MF-based

algorithms. First, these models are poor at modeling cold-users (i.e., users who have

only a short history of relevant activities). Second, because these models consider

only user-item interactions, the item representations poorly capture the relationships

among closely related items (Koren, 2009).

One approach to the cold-user recommendation is to exploit user profiles. Such

proposed models (Li et al., 2015b; Tang and Liu, 2017) can learn user representa-

tions from their profiles (e.g., gender and age). In this way, these models can make

recommendations to new users who have no historical activities, provided their user

profiles are available. However, user profiles are often very noisy, and in many cases,

they are simply not available. Another approach is item-similarity based models

(Linden et al., 2003; Sarwar et al., 2001), which recommends items based on item-

item similarity. The main issue of this approach is that it considers only the most

recent click when making a recommendation, ignoring previous clicks. In addition,

these models are not personalized.

In item representations learning, Item2Vec (Barkan and Koenigstein, 2016) is an

efficient model that borrows the idea behind word-embedding techniques (Mikolov

et al., 2013b) for learning item representations. However, the main goal of Item2Vec

is to learn item representations and it cannot be used directly for predicting missing

entries in a user-item matrix. Furthermore, in making recommendations, Item2Vec

is not personalized: it recommends items based on the similarities between items,

computed using item representations, and ignores users’ historical activities.

To address these problems, we propose a neural personalized embedding (NPE)

model that fuses item relationships for learning effective item representations in ad-

dition to improving recommendation quality for cold-users. NPE models a user’s

click on an item by assuming that there are two signals driving the click: the per-

sonal preference of the user with respect to the item and the relationships between

this item and other items that the user has clicked.

To model the personal preference term, we adopt the same approach as MF,

which views the preference of a user for an item as the inner product of the corre-

38

sponding factor vectors. To model the relationships among items, we propose an

item-embedding model that generalizes the idea behind word-embedding techniques

to click data. However, our item-embedding model differs from the word-embedding

model in that the latter can only learn word representations. In contrast, our em-

bedding model can both learn item representations and fill in the user-item matrix

simultaneously. The experimental results demonstrate that the proposed method out-

performs the competing methods on top-N recommendation task across all datasets.

The rest of this chapter is organized as follows. In Section 4.2 we present in

detail NPE, the proposed model. Section 4.3 describes the experiments and report

the experimental results. In Section 4.4, we summarize the proposed model and

discuss about the future directions for extending this work.

4.2 NPE: Neural Personalized Embedding

We propose NPE, a factor model that explains users’ clicks by capturing the prefer-

ences of users for items and the relationships between closely related items. We will

describe the model and how to learn the model parameters.

4.2.1 Problem Formulation

Each entry ru,i in the user-item preference matrix R has one of two values 0 or 1,

such that ru,i = 1 if user u has clicked item i and ru,i = 0 otherwise. We assume

that ru,i = 1 indicates that user u prefers i, whereas ru,i = 0 indicates that this entry

is non-observed (i.e., a missing entry).

Given a user u and the set of items that u previously interacted, our goal is to

predict a list of items that u may find interesting (top-N recommendations).

The notations used in this section are defined in Table 4.1.

4.2.2 Model Formulation

We denote the observations for user u as:

ru = (ru,1, ru,2, . . . , ru,M). (4.1)

NPE models the probability of each observation conditioned on user u and its

39

Table 4.1: The notations used throughout the Chapter 4.

Notation Meaning
N,M the number of users and items, respectively

R the user-item matrix (e.g., click matrix)
ru the observation data for user u (i.e., the row corresponding to user u of

matrix R)

d the dimensionality of the embedding space
H the dimensionality of the user input vector
L the dimensionality of the item input vector
xu the input vector of user u, xu ∈ RH

yi the input vector of item i, yi ∈ RL

H the user embedding matrix, H ∈ RH×D

W the item-embedding matrix, W ∈ RL×D

V the item context matrix, V ∈ RL×D

hu the embedding vector of user u, hu ∈ RD

wi the embedding vector of item i, wi ∈ RD

vi the context vector of item i, vi ∈ RD

Θ The set of all model parameters
Ω(.) The regularization term
cu,i the set of items that user u clicked, excluding i (the context items)
n the negative sampling ratio
D+ the set of positive examples, D+ = {(u, i)|ru,i = 1}
D− the set of negative examples, which is obtained by sampling from zero

entries of matrix R

context items as:

p(ru,i = 1|u, cu,i), (4.2)

This equation captures the intuition behind the model, namely that the condi-

tional distribution of whether user u clicks on item i is governed by two factors: (1)

the personal preference of user u for item i, and (2) the set of items that u has clicked

(i.e., cu,i).

The likelihood function for the entire matrix R is then formulated as:

p(R) =
N∏

u=1

M∏

i=1

p(ru,i|u, cu,i). (4.3)

40

The conditional probability expressed in Eq.(4.2) is implemented by a neural net-

work. This neural network connects the input vectors of user u, item i, and context

items cu,i to their hidden representations as:

hu = f(x>uH), (4.4)

wi = f(y>i W), (4.5)

vcu,i = f(
∑

j∈cu,i

y>i V), (4.6)

where f(.) is an activation function such as ReLU.

Note that there are two hidden representations associated with item i: the embed-

ding vector wi and the context vector vi, which have different roles. wi accounts for

the attributes of item i, whereas vi accounts for specifying the items that appear in

its context.

We can then define the conditional probability in Eq.(4.2) via the hidden repre-

sentations as:

p(ru,i = 1|u, cu,i) = σ(h>uwi + w>i vcu,i). (4.7)

Note that the σ(.) function on the right side of Eq.(4.7) comprises two terms: the first

term h>uwi accounts for how user u prefers item i, while the second term w>i vcu,i ac-

counts for the compatibility between item i and the items that u has already clicked.

From Eq.(4.7), we can also obtain the probability that ru,i = 0 as:

p(ru,i = 0|u, cu,i) = 1− σ(h>uwi + w>i vcu,i) (4.8)

The conditional probability functions in Eq.(4.7) and Eq.(4.8) can be summarized

in a single conditional probability function as:

p(ru,i = r|u, cu,i) =

µ̂u,i, if r = 1,

1− µ̂u,i, if r = 0,
(4.9)

where µ̂u,i = σ(h>uwi + w>i vcu,i).

41

4.2.3 The Model Architecture

The architecture of NPE is shown in Fig.4.1 as a multi-layer neural network. The

first layer is the input layer which specifies the input vectors of (1) a user u, (2)

a candidate item i, and (3) the context items. Above this is the second layer (the

embedding layer), which connects to the input layer via connection matrices H,

W, and V. Above the embedding layer, two terms are calculated: the personal

preference of user u for item i and the relationship between i and the context items.

Finally, the model combines these two terms to compute the output, which is the

probability that u will click i.

Note that, the input layer accepts a wide range of vectors that describe users and

items such as one-hot vectors or content feature vectors obtained from side informa-

tion. With such generic input vectors, our method can address the cold-start problem

by using content feature vectors as input vectors for users and items. Since this

work focuses on the pure collaborative filtering setting, we use only the identities

of users and items in the form of one-hot vectors as input vectors. Investigating the

effectiveness of using content feature vectors, is left for future work.

H W V V
!" #$ #%

sumReLU ReLU ReLU

ReLU

…

&'",$
Training)",$

Inner
product

Inner
product

Context itemsItem *User +

," -$
./0,1

Figure 4.1: The architecture of NPE.

4.2.4 Objective Function

Given an observed matrix R, our goal is to learn the model parameters Θ (H, W, V)

that maximize the likelihood function in Eq.(4.3). However, instead of modeling all

zero entries, we only model a small subset of such entries by picking them randomly

42

(negative sampling). This gives:

p(R) =
∏

(u,i)∈D+

p(ru,i|u, cu,i)
∏

(u,i)∈D−

p(ru,i|u, cu,i). (4.10)

Maximizing the likelihood in Eq.(4.10) is equivalent to minimizing the following

loss function (its negative log function):

L(Θ) = −
∑

(u,i)∈D+

log µ̂ui −
∑

(u,i)∈D−

log(1− µ̂ui)

+ λΩ(Θ),

(4.11)

where µ̂u,i = σ(h>uwi + w>i vcu,i).

This loss function is known as the binary cross-entropy.

4.2.5 Model Training

The model parameters are updated by the back propagation. We adopt the Adam (a

mini-batch stochastic gradient descent approach) (Kingma and Ba, 2015) as the opti-

mization algorithm for the back propagation. We do not perform negative sampling

in advance, which can only produce a fixed set of negative samples. Instead, we

perform negative sampling with each epoch, which enables diverse sets of negative

examples to be used. The algorithm is summarized in Algorithm 3.

4.2.6 Connections with Previous Models

NPE vs. MF

In the conditional probability in Eq.(4.7), we can see that the σ(.) function is a com-

bination of two terms: (1) user preference and (2) item relationship. If the second

term is removed, NPE will reduce to an original MF method.

NPE vs. Word Embedding

Similarly, if we remove the first element of σ(.) in Eq.(4.7), NPE will model only

the relationship among items. If we view each item as a word, and the set of items

that a user clicked as a sentence, the model becomes similar to a word-embedding

model. However, our embedding model differs in that word-embedding techniques

43

Algorithm 3: The training process using back propagation of the NPE model.
Input :

– R: User-item preference matrix

– n: number of negative samples per positive example

Output: Θ = {H,W,V}
23 Initialization: sample H,W,V from Gaussian distributions
24 for epoch=1 . . . T do
25 Sample negative examples D−
26 D = D+ ∪ D−
27 O = Shuffle(D)
28 for t=1 . . . # of mini-batches do
29 B = next-mini-batch(O)
30 Backprop(Θ,B)
31 end
32 end

can only learn word (item) representations and cannot fill the user-item matrix di-

rectly. In contrast, our embedding model can learn effective item representations

while predicting the missing entries in the user-item matrix.

4.3 Empirical Study

We have studied the effectiveness of NPE both quantitatively and qualitatively. In

our quantitative analysis, we compared NPE with state-of-the-art methods on top-N

recommendation task, using real-world datasets. We also performed a qualitative

analysis to show the effectiveness of the item representations.

4.3.1 Datasets

We used three real-world datasets whose sizes varied from small to large-scale, from

different domains.

• Movielens 10M (ML-10m): a dataset of user-movie ratings collected from

MovieLens, an online film service. It contains 10 million ratings to 10,000

movies by 72,000 users. The dataset is available at GroupLens1.

1https://grouplens.org/datasets/movielens/1m/

44

• OnlineRetail (Chen et al., 2012a): a dataset of online retail transactions pro-

vided at the UCI Machine Learning Repository2. It contains about 20,059

shopping transactions from December 1, 2010 to December 9, 2011 for a UK-

based online retailer.

• TasteProfile 3: a dataset of counts of song plays by users, as collected by Echo

Nest.4.

Table 4.2: Statistical information about the datasets.

ML-10m OnlineRetail TasteProfile

#users 58,059 3,705 211,830
#items 8,484 3,644 22,781
#clicks 3,502,733 235,472 10,054,204

% clicks 0.71% 1.74% 0.21%

4.3.2 Experiment Setup

Data Preparation

For the ML-10m, we binarized the ratings, thresholding at 4 or above; for TastePro-

file and OnlineRetail, we binarized the data and interpreted them as implicit feed-

back. Statistical information about the datasets is given in Table 4.2.

We partitioned the data into three subsets, using 70% of the data as the training

set, 10% as the validation set, and the remaining 20% as the test set (ground truth).

Evaluation Metrics

After training the models on the training set, we evaluated the accuracy of their top-

N recommendations using the test set. We used the rank-based metrics Recall@n

and nDCG@n, which are common metrics in information retrieval, for evaluating

the accuracy of the top-N recommendations. (We did not use “Precision" because it

is difficult to evaluate, given that a zero entry can imply either that the user does not

like the item or does not know about the item).
2https://archive.ics.uci.edu/ml/datasets/Online+Retail
3"The Instacart Online Grocery Shopping Dataset 2017", Accessed from

https://www.instacart.com/datasets/grocery-shopping-2017
4http://the.echonest.com/

45

Competing Methods

We compared NPE with the following competing methods:

• Bayesian personalized ranking (BPR) (Rendle et al., 2009): an algorithm that

optimizes the MF model with a pair-wise ranking loss

• Neural collaborative filtering (NeuCF) (He et al., 2017): a generalization of

an MF method in which the inner product of user and item feature vectors are

replaced by a deep neural network

• Sparse linear model (SLIM) (Ning and Karypis, 2011): a state-of-the-art method

for top-N recommendations, which is based on the similarities between items.

4.3.3 Implementation Details

We implemented the proposed model using Pytorch. In the experiments, we use

the embedding sizes d ∈ {8, 16, 32, 64, 128, 256} and the negative sampling ratio

n ∈ {1, 2, 4, 5, 8, 12, 16, 20} to study the impact of the embedding size d and the

negative sampling ratio n on the accuracies of the model. Since neural networks are

prone to over-fitting, we apply a dropout after the hidden representation layer. We

set the dropout rate 0.3 for all datasets. The weights for the connection matrices H,

W, and V are initialized by Gaussian distributions with mean µ = 0 and standard

deviation std = 0.01. The size of each mini-batch was 10,000. The learning rate

of the optimization algorithm is lr = 0.01, the weight decay is 0.01. We use early

stopping to terminate the training process if the loss function does not decrease on

the validation set for five epochs.

4.3.4 Experimental Results

Top-N Recommendations

Table 4.3 summarizes the Recall@20 and nDCG@20 for each model. Note that NPE

significantly outperforms the other competing methods across all datasets for both

Recall and nDCG. We emphasize that all methods used the same data. However,

NPE benefits from capturing the compatibility between each item and other items

picked by the same users.

46

Table 4.3: Recall and nDCG for three datasets, with embedding size d = 64 and
negative sampling ratio n = 4.

Methods
ML-10m OnlineRetail TasteProfile

Re@20 nDCG@20 Re@20 nDCG@20 Re@20 nDCG@20
SLIM 0.1342 0.1289 0.2085 0.1015 0.1513 0.1422
BPR 0.1314 0.1253 0.2137 0.0943 0.1598 0.1398
NeuCF 0.1388 0.1337 0.2199 0.0911 0.1609 0.1471
NPE (our) 0.1497 0.1449 0.2296 0.1742 0.1788 0.1594

In Table 4.4, we summarize Recall@20 values for the four methods when dif-

ferent numbers of items were to be recommended. From these results, we can see

that NPE consistently outperformed the other methods at all settings. The differ-

ences between NPE and the other methods are more pronounced for small numbers

of recommended items. This is a desirable feature because we often only a consider

a small number of top items (e.g., top-5 or top-10).

Table 4.4: Recall for different numbers of items to be recommended, with embed-
ding size d = 64 and negative sampling ratio n = 4.

Methods ML-10m OnlineRetail TasteProfile
Re@5 Re@10 Re@20 Re@5 Re@10 Re@20 Re@5 Re@10 Re@20

SLIM 0.1284 0.1298 0.1342 0.0952 0.1311 0.2085 0.1295 0.1304 0.1513
BPR 0.1254 0.1261 0.1314 0.0859 0.1222 0.2137 0.1307 0.1311 0.1598
NeuCF 0.1347 0.1363 0.1388 0.0871 0.1274 0.2199 0.1342 0.1356 0.1609
NPE (our) 0.1451 0.1487 0.1497 0.1392 0.1667 0.2296 0.1428 0.1523 0.1788

The Performance on Cold-Users

We studied the performance of the models for users who had few historical activities.

To this end, we partitioned the test cases into three groups, according to the number

of clicks that each user had. The Low group’s users had less than 10 clicks, the

Medium group’s users had 10 ∼ 20 clicks, and the High group’s users had more than

20 clicks.

Fig.4.2 shows the breakdown of Recall@20 in terms of user activity in the train-

ing set for the ML-10m and OnlineRetail. Although the details varied across datasets,

the NPE model outperformed the other methods for all three groups of users. The

differences between NPE and the other methods are much more pronounced for users

who have fewest clicks. This is to be expected because, for such users, NPE captures

the item relations when making recommendations.

47

~ 10 10 ~ 20 21 ~
Number of items the user has consumed.

0.18

0.20

0.22

0.24

0.26

Re
ca

ll@
20

BPR
NeuCF
SLIM
NPE (our)

(a) OnlineRetail dataset

~ 10 10 ~ 20 21 ~
Number of items the user has consumed.

0.11

0.13

0.15

0.17

Re
ca

ll@
20

BPR
NeuCF
SLIM
NPE (our)

(b) ML-10m dataset
Figure 4.2: Recall@20 for different groups of users

Effectiveness of the Item Representations

We evaluated the effectiveness of item representations by investigating how well

the representations capture the item similarity and items that are often purchased

together.

Similar items: The similarity between two items is defined as the cosine distance

between their embedding vectors. Fig.4.3 shows three examples of the top-5 most

similar items to a given item in the OnlineRetail dataset. We can see that the items’

embedding vectors effectively capture the similarity of the items. For example, in

the first row, given a red alarm clock, four of its top-5 similar items are also alarm

clocks.

Items that are often purchased together: NPE can also identify items that

are often purchased together. To assess if two items are often purchased together, we

48

Figure 4.3: Top-5 similar items for a given item. In each row, the given item is at
the left and the top-5 similar items are to its right.

calculate the inner product of one item’s embedding vector wi and the other’s context

vector vj . A high value of this inner product indicates that these two items are often

purchased together. Fig.4.4 shows an example of items that tend to be purchased

together with the given item. Here, we see that buying a knitting Nancy, a child’s

toy, might accompany the purchase of other goods for children or for a household.

Figure 4.4: Top-5 items that are likely to be bought together with a given item. The
given item is at the left and its top-5 most similar items are to its right.

Sensitivity Analysis

We also studied the effect of the hyper-parameters on the models’ performance.

Impact of the embedding size: To evaluate the effects of the dimensionality

of the embedding space on the top-N recommendations, we varied the embedding

dimension d while fixing the other parameters. Table 4.5 summarizes the Recall@20

for NPE on the three datasets for various embedding sizes: d = {8, 16, 32, 64, 128, 256}.
We can see that the larger embedding sizes seem to improve the performance of the

models. The optimal embedding size for OnlineRetail is d = 64 and, for ML-10m

and TasteProfile is n = 128.

Impact of the negative sampling ratio: During the training of NPE, we sampled

negative examples. We studied the effect of the negative sampling ratio n on the

49

Table 4.5: Recall@20 for various embedding sizes, with negative sampling ratio
n = 4.

d
ML-10m OnlineRetail TasteProfile
Re@20 Re@20 Re@20

8 0.1428 0.1187 0.0987
16 0.1451 0.1596 0.1142
32 0.1441 0.1950 0.1509
64 0.1497 0.2296 0.1788
128 0.1482 0.2284 0.1992
256 0.1459 0.2248 0.1985

performance of NPE by fixing the embedding size d = 32 and evaluating Recall@20

for n = {1, 2, 4, 5, 8, 12, 16, 20}. From Table 4.6, we note that when n increases, the

performance also increases up to a certain value of n. The optimal negative sampling

ratios are n = {4, 5} for OnlineRetail and n = 8 for ML-10m and TasteProfile. This

is reasonable because ML-10m and TasteProfile, being larger than OnlineRetail, will

need more negative examples.

Table 4.6: Recall@20 for different negative sampling ratios, with a fixed embedding
size d = 32.

n
ML-10m OnlineRetail TasteProfile
Re@20 Re@20 Re@20

1 0.1392 0.1608 0.1243
2 0.1418 0.1795 0.1451
4 0.1441 0.1950 0.1509
5 0.1478 0.1952 0.1585
8 0.1563 0.1941 0.1621
12 0.1531 0.1937 0.1615
16 0.1524 0.1925 0.1603
20 0.1496 0.1908 0.1598

4.4 Chapter Summary

We propose NPE, a neural personalized embedding model for collaborative filtering,

is effective in making recommendations to cold-users and for learning item represen-

tations. Our experiments have shown that NPE can outperform competing methods

with respect to top-N recommendations in general, and to cold-users in particular.

50

Our qualitative analysis also demonstrated that item representations can capture ef-

fectively the different kinds of relationships between items.

One future direction will be to study the effectiveness of the model when using

available side information about items (i.e., use vector representations of item instead

of one-hot vectors as input vector of the items). We also aim to investigate different

negative sampling methods for dealing with zero values in the user-item matrix.

51

Chapter 5

Learning Product Representations
from Shopping Transactions

Shopping transaction analysis is significant in understanding the shopping behav-

iors of customers. Existing models such as association rules are poor at modeling

products which have short purchase histories and cannot be applied to new products

(the cold-start problem). In this work, we propose BASTEXT, an efficient model

of shopping baskets and the texts associated with the products (e.g., product titles).

The model’s goal is to learn the product representations from the textual contents,

that can capture the relationships between the products in the baskets. Given the

products already in a basket, a classifier identifies whether a potential product is rel-

evant to the basket or not, based on their vector representations. This enables us

to learn high-quality representations of the products. The experiments demonstrate

that BASTEXT can efficiently model millions of baskets and that it outperforms the

state-of-the-art methods in the next product recommendation task. Besides, we will

also show that BASTEXT is a strong baseline for keyword-based product search.

5.1 Introduction

With the rapid development of the internet and online shopping services (e.g., Ama-

zon, Google play), modern consumers are able to access a huge amount of products.

Enabling customers to make sense of a huge amount of products is a big challenge.

During the interaction with the system, consumers leave footprints, e.g., click data

(i.e., product views) or purchase data. Such data is valuable in developing recom-

53

mender systems that can suggest products that meet the needs of customers. Tradi-

tional recommender systems such as collaborative filtering (CF) (Hu et al., 2008; Pan

et al., 2008; Salakhutdinov and Mnih, 2008) recommend products based on user’s

long-term preferences without paying attention to the current shopping context.

In this work, we are interested in analyzing shopping transaction data. A shop-

ping transaction, also known as a shopping basket or a basket, is a set of products

that a customer buys on a single shopping trip. Such data could help reveal the re-

lationships between products, understand the shopping behaviors, which are keys to

make recommendations in a given context. For example, when an online-shopping

customer is examining a mobile phone case, it is better to recommend him or her

some other mobile phone cases, or other accessories such as screen protectors or

headphones. It does not make sense to show him or her a t-shirt in that context.

A common approach to shopping basket analysis is association-rules (Agarwal

et al., 1994), which discovers the rules in the form: "Consumers who buy diapers

are likely to buy baby food". These rules can be formulated as B => x, where

B is a set of products and x is another product. Such rules are effective in sug-

gesting a customer next products to buy, given his current basket B. However, in

a system with a large number of products, many relevant products have never co-

occurred in any baskets. The relationships between such products are not able to be

discovered by association rules. An approach to the context-based recommendation

is neighborhood-based methods (Linden et al., 2003; Sarwar et al., 2001), which rely

on the similarities between products (calculated from the co-occurrences of products

in baskets). A drawback of this approach is that it takes into account only the last

product added to the basket, ignoring the previous ones, which are also valuable for

predicting the next product. For example, suppose there are {milk, sugar, egg} in

the current shopping cart. Considering all three products is a better indication of

buying flour rather than considering only egg, the last product. Moreover, since both

approaches rely on the purchase data, they are poor at modeling products which have

few purchases. Particularly, they cannot model new products which have not been

purchased by any customers. This problem is known as the cold-start problem. As

a sequence, it is inevitable to exploit auxiliary information such as textual contents

in addition to the purchase data (i.e., the interaction data).

Addressing the cold-start using textual contents is well-studied in the literature,

particularly in recommender systems (Hu et al., 2008; Li and She, 2017; Wang et

54

al., 2015a). Generally, these methods are a combination of a text model (e.g., Latent

Dirichlet Allocation (LDA) (Wang and Blei, 2011), Stacked Denoising AutoEncoder

(Wang et al., 2015a) or a Variational AutoEncoder (Li and She, 2017)) and a matrix

factorization (MF)-based model (Salakhutdinov and Mnih, 2008). The key idea be-

hind these approaches is to learn item representations from texts that are useful for

predicting the elements of a user-item matrix. Despite being effective approaches,

they are not applicable to shopping basket modeling. Indeed, though we can rep-

resent the collection of shopping baskets by a basket-product matrix, whose rows

correspond to baskets and columns correspond to products and factorize this ma-

trix in the same way as the user-item matrix, this is not appropriate for modeling

shopping baskets. The reason is that the size of the basket-product matrix changes

frequently, every time a basket is recorded, and re-factorizing this matrix frequently

is mostly impossible.

Recently, neural network-based approaches archive tremendous success in learn-

ing text representations. Such approaches include unsupervised learning approaches

ranging from simply composition of the word vectors (Mikolov et al., 2013b; Pen-

nington et al., 2014) to more complicated network architectures such as recurrent

neural networks and convolutional neural networks (Chen, 2017; Le and Mikolov,

2014). These approaches outperform traditional text representations including bag-

of-words (Manning et al., 2008), Latent Semantic Analysis (LSA) (Deerwester et

al., 1990; Hofmann, 1999) or Latent Dirichlet Allocation (LDA) (Blei et al., 2003)

in various text understanding tasks. Though they are effective in learning text repre-

sentations, applying them to learning product representations may not be appropri-

ate for understanding shopping baskets. The reason is that the text representations

learned by these models can only capture the semantic similarities of the texts, but

cannot capture the relationships between texts that co-occur in baskets. For exam-

ple, existing text representation learning methods fail to capture that milk and flour

often co-occurs in baskets because there is no semantic similarity between the titles

of these products.

This work: To address the aforementioned problems, we propose BASTEXT,

a framework for texts and shopping transaction data. In BASTEXT, products are

represented by latent factor vectors, the vector representations that are useful for

capturing the shopping behaviors of customers. BASTEXT learns such vector repre-

sentations jointly from the purchase data and the texts associated with the products

55

(e.g., product titles or product descriptions) by leveraging the recent success of deep

learning in natural language processing. BASTEXT is a general framework which

can be implemented with various network architectures. In addition, BASTEXT en-

ables to take advantages of pre-trained word vectors such as word2vec (Mikolov et

al., 2013b) or GloVe (Pennington et al., 2014) for learning better representations.

We fit BASTEXT into two real-world shopping transaction datasets. We consider

the next product recommendation task where we predict the products to be added to

a shopping basket given the products currently in the task. The experiments show

that BASTEXT outperforms the competing methods in this task. We also found that

the representations learned by BASTEXT are useful in two real-life scenarios of

recommendation: similar products recommendation and also-buy products recom-

mendation of a given product. Further, we also demonstrate the effectiveness of the

learned representations via two tasks: product search via keyword-based query and

product category classification. In both tasks, BASKTEXT shows the improvements

over the competing methods.

Our main contributions are as follows.

• We propose BASTEXT, a novel end-to-end model for learning product rep-

resentations from texts which are effective for modeling millions of shopping

baskets.

• Our intensive experiments on two real-world datasets demonstrate that BAS-

TEXT significantly outperforms the competing methods in next product rec-

ommendation task.

• We also show the effectiveness of the learned representations by performing

qualitative analysis, keyword-based product search, and product category clas-

sification.

The rest of this section is organized as follows. In section 5.2 we present the

BASTEXT model. Section 5.3 presents the experiments and results. Section 5.4

concludes the work and discusses about its issues and future work.

5.2 BASTEXT: The Shopping Basket Model

We propose BASTEXT, a factor model that jointly models the texts associated with

products and the shopping basket data. We describe the model and how to learn the

56

model parameters.

5.2.1 Notations and Definitions

Suppose that we have a collection of T previous shopping baskets. The products

in the baskets come from a set of M products, which are denoted by their indices

1, 2, . . . ,M .

For each product i, there is a text si (e.g., product title, product description, or

the set of tags) associated with it. We use wi to denote the input vector of the ith

word. Table 5.1 lists the relevant notations used throughout this section.

Table 5.1: The notations used throughout the section.

Notation Meaning
T the number of shopping baskets
M the number of products
si the text associated with ith product
SB the set of texts associated with the products currently in basket B
wi the input vector of the ith word in the vocabulary V
d the embedding size
hi the embedding vector of product i
h′i the context vector of product i
W the connection matrix for a text encoder
h
′
B the average of the context vectors of the products currently in basket

B

D+ the set of positive examples
D− the set of negative examples
D the set of all examples: D = D+ ∪ D−
n the negative sampling ratio

Definition 1 (Basket) A basket is a set of products that an individual customer buys

in a single shopping trip. A basket B is represented by a set {i1, i2, . . . , imB
} where

mB is the number of products in the basket B, and {i1, i2, . . . , imB
} is a subset of

{1, 2, . . . ,M}.

Problem 5.1 (Next product recommendation) The task is to recommend the next

product to add to the current shopping basket given the products already in the cart.

57

5.2.2 Next Product Choice

This section presents the decision process of how a customer chooses a product to

add to the current basket. We assume the customer identity is anonymous because

many websites allow shopping without account registration. We posit that the cus-

tomer adds products into the basket sequentially. At each step, the customer chooses

one product from the available ones, conditioning on the products currently in the

basket.

Given current shopping basket B and a potential product i. We are interested in

modeling the probability that i is added to the basket B.

BASTEXT associates each product i with two latent vectors: embedding vector

hi and context vector h′i with different roles. The embedding vector hi accounts for

the attributes of product i. Similar products should have their embedding vectors

located close in the latent space. On the other hand, the context vector h′i governs

the products that appear together with i in the same basket. With these two vec-

tors, we are not only able to model the attributes of a product but also to model the

relationships between products via their co-occurrences in shopping baskets.

We define the probability that a potential product iwill be added to current basket

B as follows.

p(next = i|B) = σ(h>i h
′
B) (5.1)

where h
′
B = 1

|B|
∑

j∈B h′j (i.e., the average of the context vectors of the products

currently in the basket), and σ(.) is the sigmoid function: σ(x) = 1/(1 + e−x).

After learning the embedding vector hi and context vector h′i of every product,

we can use them for predicting the product to be added in to the current basket.

In order to learned the parameters, a training set of positive examples and negative

examples are needed. We will describe how to form such examples in Section 5.2.4.

The embedding and context vectors of products can be learned from only trans-

action data. However, this way cannot be applied to new products which do not have

any purchases. This problem is known as the cold-start problem. In order to address

the cold-start problem, we are interested in learning these vectors directly from texts.

58

5.2.3 Dual Text Encoders for Shopping Basket Data

The general architecture is shown in Fig.5.1. Given the texts of products currently in

the basket B (on the right side) and the text of a potential product i (on the left side),

the model estimates the probability that i will be added to the basket.

Uncured cracked
pepper beef

Grain free chicken
formula cat food

Enc

Grain free turkey
formula cat food

0/1

Enc

Enc

Enc

Organic fruit yogurt
smoothie mixed berry

mean-pooling

h��j

hihB fE

fC

Figure 1: The general architecture of BASTEXT framework. The left side is the set of the products already in the current basket.
The right side is a potential product.

Proposed Model
First, we present the decision process of how a customer
chooses a product to add to the current basket. We assume
the customer identity is anonymous because many websites
allow shopping without account registration. We posit that
the customer adds products into the basket sequentially. At
each step, the customer chooses one product from the avail-
able ones, conditioning on the products already in the basket.

The general architecture is shown in Fig.1. Given the texts
of the products currently in a basket B (the left side) and the
text of a potential product i (the right side), the model pre-
dicts whether i will be added to the B or not. First, the texts
of the products are encoded into fixed-sized vectors. We then
apply the mean pooling operation to the vector representa-
tions of the products in B to obtain the vector representation
of the basket. Second, a classifier identifies whether the po-
tential product i should be added into basket B or not.

Here, we use two text encoders, fE and fC , for encoding
the text si of the potential product i and the text sj of each
product j in the basket B, respectively. These encoders have
the same architecture but with different weights.

hi = fE(si) 2 RK , h0
j = fC(sj) 2 RK (1)

Formally, the probability that i will be added to B is for-
mulated as follows.

p(next = i|B) = �
⇣
h>

i h
0
B

⌘
(2)

where h
0
B = 1

|B|
P

j2B h0
j .

Though we can use one encoder, using two encoders has
its advantage. If only one encoder is used, each product is
represented by one vector, thus can represent only one as-
pect of the product (e.g., the product’s attribute). In contrast,
when two encoders are used, each product will be repre-
sented by two vectors: the embedding vector hi and the con-
text vector h0

i. The embedding vector identifies the attributes
of the product, while the context vector identifies the prod-
ucts that often co-occur with it in the same basket. That is
why BASTEXT is able to identify two types of relationships
between products: “similar products” and “also-buy prod-
ucts” as demonstrated in the experiments.

The architecture of a text encoder is a modeling choice. It
can be simply the average of the vector representations of its
words, a convolutional neural network (CNN) or a recurrent

neural network (RNN). In this paper, we implemented two
types of text encoders: (1) Mean of vectors (MoV)-based
text encoder, and (2) CNN-based text encoder.

MoV-based Text Encoder. The representation of a text
is simply the mean of the representations of the words con-
tained in it. In order to introduce non-linearity, we added
ReLU after the average layer. The formal specification of
the MoV-based Text Encoder is as follows.

f(s) = ReLU
⇣ 1

|s|
X

l

w>
l W

⌘
(3)

where W is the connection matrix of the embedding layer.
Though this network is simple, it has two advantages: (1)

it is very efficient in computational cost, (2) it can be used
when there is no explicit order of the words in a text, e.g.,
when the text is a set of tags associated with a product.

CNN-based Text Encoder. Although the MoV-based
Text Encoder is simple and efficient, it ignores the order of
words in sentences. In order to verify the effectiveness of
the word order, we implement a CNN-based Text Encoder,
which can take into account the order of the words in a text.
Though using a recurrent neural network (RNN) is common
in modeling sentence, we use CNN due to its efficiency in
computational cost. We use the CNN architecture proposed
in (Kim 2014).

Forming Training Data
We present how to form the training data from a collec-
tion of shopping baskets. Each training example is a tuple:⌦
(B, i), L

↵
where B is the set of products currently in the

basket, i is a potential product, and L is the label + or � to
indicate whether i was chosen or not.

Positive examples. For each basket, we pick each product
in turn and use as the potential product, the remaining prod-
ucts are interpreted as the products currently in the basket.
By this way, we obtain mB positive examples, where mB is
the number of products in the basket B.

Negative examples. Since the negative examples are not
available, we obtain them by negative sampling). Here, we
use the uniform sampling method. Other strategies are left
for future work. For each positive example

⌦
(B, i), +

↵
, we

randomly pick a product j which is not in B to form a neg-
ative example

⌦
(B, j),�

↵
. For each positive example, we

repeat this procedure n times to obtain n negative examples.

Figure 5.1: The general architecture of BASTEXT framework.

A key component of this model is the text encoder, a function f to map a variable-

length s text to a fixed-size vector:

f(s) ∈ Rd (5.2)

where d is the embedding size.

Here, we use two text encoders, fE and fC , for generating the embedding and

context vectors respectively:
hi = fE(si)

h′i = fC(si)
(5.3)

Formally, this model is described as follows. For a given basketB and a potential

product i, the probability that i will be added in B (Eq.5.1) is equivalent to the

probability that the next text is si given a set of texts SB.

p(si|SB) = σ
(1

|B|f
>
E (si)

∑

j∈B

fC(sj)
)

(5.4)

Here, fE(.) and fC(.) are two text encoders which have same architecture but

with different weights. We can see that this model extends the concept of the contin-

uous bag of words (CBOW) for word embedding to the texts, where now the role of

words is replaced by texts. In training this model, we need a set of positive examples

and negative examples. We will show how to form such examples in Section 5.2.4.

59

The architecture of a text encoder is a modeling choice. It can be simply the

average of the vector representations of its words, a convolutional neural network

(CNN) or a recurrent neural network (RNN). In the experiments of this work, we

implemented two types of text encoders: (1) Mean of vectors (MoV)-based text

encoder, and (2) CNN-based text encoder.

MoV-based Text Encoder. This is a simple-but-effective neural network for

learning text representation. The representation of a text is simply the mean of the

representations of words contained in it.

The input of this network are the input vectors of the words contained in a text.

These input vectors can be either one-hot vectors of words (end-to-end training)

or pre-trained vectors obtained from word embedding models such as word2vec

(Mikolov et al., 2013b) or GloVe (Pennington et al., 2014). First, these word input

vectors are embedded into a low-dimensional vector space via the embedding layer.

Then, we use the average of the word embedding vectors as the representation of the

text. In order to introduce non-linearity, we added ReLU as an activation function

after the average layer.

Formal specification of the MoV-based Text Encoder is as follows.

f(s) = ReLU
(1

|s|
∑

l

w>l W
)

(5.5)

where W is the connection matrix of the embedding layer.

Though this network is simple, it has two advantages: (1) it is very efficient in

computational cost, (2) it can be used even if there is no explicit order of the words

in a text, e.g., when the text is a set of tags associated with a product.

CNN-based Text Encoder. Although the MoV-based Text Encoder is simple and

efficient, it ignores the order of words in sentences, which is helpful in learning text

representations. Although RNN can retain the order of words, we study CNN due to

its efficiency in computational cost over RNN. Here, we adopt the CNN architecture

proposed in (Kim, 2014).

5.2.4 Training Data Forming

We present how to form the training data from a collection of shopping baskets.

Each training example is a tuple:
〈
(B, i), L

〉
where B is the set of products cur-

60

rently in the basket, i is a potential product, and L is the label + (positive example)

or − (negative example) to indicate whether actually i was chosen or not.

Forming positive examples. For each basket, we form the positive examples as

follows. We pick each product in turn and use as the potential product, the remaining

products are used as the products already in the basket. By this way, we obtain mB

positive examples in the form
〈
(B, i),+

〉
wheremB is the number of products in the

basket B. We use D+ to denote the set of positive examples.

Forming negative examples. Since in the transaction data, negative examples

are not available, we will obtain such examples by sampling from the products that

do not appear in the basket. This process is known as negative sampling. Strat-

egy for negative sampling is a modelerâĂŹs choice. Here, we adopt the uniform

sampling method. Other strategies are left for future work. For each positive exam-

ple
〈
(B, i),+

〉
, we randomly pick a product j which is not in the basket to form a

negative example
〈
(B, j),−

〉
. For each positive example, we repeat this procedure

n times to obtain n negative examples. We use D− to denote the set of negative

examples.

5.2.5 Model training

After forming the training data, we have a set of examples D, where each example

is in the form
〈
(B, i), L

〉
, where L is − or +.

Our objective function is the negative log likelihood over all examples in the

training set. This objective function is formulated as.

L(Θ) =
∑

(B,i)∈D+

log µB,i −
∑

(B,i)∈D−

(1− log µB,i) (5.6)

where:

µB,i = σ(h>i h
′
B) (5.7)

Training the BASTEXT model can be efficiently performed by back-propagation

using stochastic gradient descent with mini-batch. We use Adam (Kingma and Ba,

2015), a kind of stochastic gradient descent as the optimizer. Note that we do not

perform negative sampling in advanced, which can only produce a fixed set of neg-

ative samples. Instead, we use negative sampling at each mini-batch, which let the

negative examples change time by time, producing diverse negative examples. The

61

training process is summarized in Algorithm 4.

Algorithm 4: The training process using back propagation of the BASTEXT
model.

Input :
– D+: the set of positive examples

– n: number of negative samples per positive example

Output: the weights of the network
33 Initialization: initialize the network’s weights using Gaussian distributions
34 for epoch=1 . . . T do
35 Sample negative examples D−
36 D = D+ ∪ D−
37 O = Shuffle(D)
38 for t=1 . . . # of mini-batches do
39 B = next-mini-batch(O)
40 Backprop(Θ,B)
41 end
42 end

5.3 Experiments

We perform both (1) quantitative experiments: to predict the next products to be

added to a shopping basket, and (2) qualitative experiments: to evaluate the effec-

tiveness of the product representations in capturing the relationships between prod-

ucts.

5.3.1 Datasets

In this section, we evaluate the performance of BASTEXT on two public datasets of

varying sizes. The datasets are:

• OnlineRetail (Chen et al., 2012a): a dataset of online retail transactions pro-

vided at the UCI Machine Learning Repository1. It contains about 20,059

shopping transactions from December 1, 2010 to December 9, 2011 for a UK-

based online retailer. The average number of products in a basket is 26.7. Each

1https://archive.ics.uci.edu/ml/datasets/Online+Retail

62

product is associated with a product description whose average length is 4.3

words.

• Instacart2: this dataset contains 3.2 million orders, where the average number

of products per order is 10.6. Each product is associated with a product name

whose average length is 4.7 words.

5.3.2 Experimental Setup

We randomly split the baskets into three set of baskets: training baskets, validation

basket and testing baskets, with proportions 85%, 5%, 10%, respectively. The re-

maining baskets are used to form the training set. From these set of baskets, we form

the training set, validation set and test set in two ways: warm-start and cold-start.
The details about data splitting is given in Table 5.2a and Table 5.2b.

Table 5.2: The statistical information of the datasets

(a) Warm-start splitting

Data OnlineRetail Instacart

training baskets 17K 2.7M
validation baskets 1K 159K
test baskets 1.9K 318K
test cases 51K 3.3M

(b) Cold-start splitting

Data OnlineRetail Instacart

training baskets 16K 2.3M
validation baskets 988 138K
test baskets 1.7K 312K
test cases 13.6K 2.3M

Warm-start. In this setting, we make sure that every product in the test set

appears in the training set. To do that, we remove from the test baskets the products

that do not appear in the training baskets. The test cases are constructed as follows:

in each testing basket, we repeatedly pick one product as the ground-truth potential

product, the remaining products are used as the products already in the shopping
2"The Instacart Online Grocery Shopping Dataset 2017", Accessed from

https://www.instacart.com/datasets/grocery-shopping-2017

63

basket. We form the validation set using the validation baskets, following the same

way as we do with the test set. The remaining baskets from the training set (after

picking the validation set) are used to form the training data as described in Section

5.2.4.

Cold-start. In this setting, we make sure that every product in the test set is

absent from the training baskets. We randomly pick 10% products from the test

baskets and call these products test products. We remove these products from train

baskets (to make sure the test products do not appear in training baskets). Then we

form the test cases in which the potential products come from the test products. The

validation set and training set are formed similarly with the warm-start setting.

Evaluation Metrics For each basket in the test set, we predict the relevant scores

for all the remaining products and rank these products according to their relevance

scores. We then pick N products that have highest scores to form a recommendation

list (top-N recommendation). An accurate recommendation list should contain the

products in the held-out set.

We use rank-based metrics: Recall@N , and MRR@N (mean reciprocal rank)

for evaluating the models. Recall@N measures the proportion of cases out of all test

cases in which the held-out item is listed in the top-N products. The MRR@N con-

siders the rank of the relevant product within the top-N to be equivalent. Recall@N

and MRR@N are formulated as follows.

Recall@N =
1

|V |
V∑

i=1

I{hi ∈ Si(N)} (5.8)

where |V | is the number of test cases in the test set, Si(K) is the set of top-N

products, hi is the held-out product of test case i, and I{.} is the indicator function.

MRR@N =
1

V

V∑

i=1

1

ranki
(5.9)

where ranki is the rank of the held-out product in the top-N products. The reciprocal

rank is set to zero if the rank is larger than N .

Competing Methods. In evaluating the predictive performance, we compare the

following methods (including ours).

• POP (popular products): this model recommends the most popular products

in the training set. Though this model is simple, POP is often a strong baseline

64

in certain domains.

• ItemKNN (Linden et al., 2003): this model provides a product recommen-

dation based on its co-occurrence with other products along baskets. This

approach is one of the most common item-to-item recommendation, which is

in the form “consumers who bought X also bought Y ”.

• prod2vec (Grbovic et al., 2015): a word2vec (Mikolov et al., 2013b) version

for learning the representations products by corresponding each basket as a

sentence and each product in the basket as a word. The representation of a

basket is calculated as the mean of the representations of the products con-

tained in the basket. Given a basket, we compute cosine similarities between

its representation and all available products, and pick top N -similar products.

• doc2vec (Le and Mikolov, 2014): a model for learning representations of texts.

We run doc2vec on the set of product titles to obtain the representation of

the products. The representation of a basket is calculated as the mean of the

representations of products contained in it. Given a basket, we calculate the

cosine similarities between the representation of the basket and all potential

products, and pick top-N similar products.

• BASTEXT-Avg (our): the BASTEXT model where the MoV-based text en-

coders are used for learning text representations. The word input vectors are

one-hot vectors.

• BASTEXT-Avg+w2v (our): the BASTEXT-Avg model where the input vector

for each word is the pre-trained word vector (Pennington et al., 2014).

• BASTEXT-Conv (our): the BASTEXT model where the CNN-based text en-

coder is used for learning the representations of texts. The input vector for

each word is its one-hot-vector.

• BASTEXT-Conv+w2v (our): the BASKET-Conv model where the input vec-

tor for each word is the pre-trained word2vec vector (Pennington et al., 2014).

65

5.3.3 Implementation Detail

We implemented the proposed model based on Pytorch. All BASTEXT variants are

trained by optimizing the binary cross-entropy loss in Eq.(5.6) where the embedding

size is 64 and the negative sampling ratio is 8 for each positive examples. We use

dropout (Srivastava et al., 2014) with dropout rate 0.3 for hidden layers to avoid

over-fitting. All the layers of the network are initialized using Gaussian distribution

with mean = 0 and standard deviation std = 0.01. Further, we vary the embedding

size d and the negative sampling ratio n for studying the impact of the embedding

size and the negative sampling ration on the accuracy of the proposed model. The

learning rate used in the experiments is lr = 0.01, the weight decay is 0.01.

To speed up the training process, we exploit the power of GPU. In dividing the

training data into mini-batch, we choose the mini-batch size that fit the GPU’s mem-

ory and performs the gradient descent for each mini-batch on GPU. We use mini-

batch size 10,000 for OnlineRetail dataset and 5,000 for Instacart dataset. We use

early stopping to terminate the training process if the loss function does not decrease

on the validation set for five epochs.

5.3.4 Predictive Performance Comparison

In this session, we compare the performances of next product recommendation of

the models.

Comparison over baselines. Table 5.3 and Table 5.4 show the performances

of next product prediction task of the methods in both warm-start and cold-start

settings. We can see that all variants of BASTEXT significantly outperform the

competing methods on all datasets. Besides, we have following observations.

As expected, POP does not achieve good performance because it cannot capture

the context of the shopping trips. It is easily beaten by ItemKNN and prod2vec

which can capture the relationships between products. prod2vec is slightly bet-

ter than ItemKNN, suggesting that prod2vec can capture the relationships between

products better than ItemKNN.

In both datasets, we can see that ItemKNN and prod2vec outperform doc2vec,

which uses content only. The gap between doc2vec and prod2vec and ItemKNN

indicates that product relationships are more valuable than the contents in capturing

the shopping behaviors.

66

Table 5.3: Recall and MRR for next product recommendation (warm-start setting).
Here, we fixed the embedding size d = 64 and negative sampling ratio n = 8.

(a) OnlineRetail data

Methods Recall@10 Recall@20 MRR@20

POP 0.0828 0.1212 0.0652
ItemKNN 0.1923 0.2511 0.1765
prod2vec 0.2007 0.2632 0.1876
doc2vec 0.1773 0.2332 0.1521
BASTEXT-Avg (our) 0.2181 0.2854 0.1943
BASTEXT-Avg+w2v (our) 0.2275 0.2942 0.2132
BASTEXT-Conv (our) 0.2212 0.2897 0.1998
BASTEXT-Conv+w2v (our) 0.2378 0.3096 0.2251

(b) Instacart data

Methods Recall@10 Recall@20 MRR@20

POP 0.0124 0.0153 0.0102
ItemKNN 0.1065 0.1507 0.0985
prod2vec 0.1251 0.1623 0.1048
doc2vec 0.0912 0.1215 0.0981
BASTEXT-Avg (our) 0.1527 0.1932 0.1329
BASTEXT-Avg+w2v (our) 0.1631 0.2013 0.1521
BASTEXT-Conv (our) 0.1578 0.1965 0.1401
BASTEXT-Conv+w2v (our) 0.1698 0.2102 0.1598

In both datasets, BASTEXT-Avg outperforms both prod2vec. It indicates that,

although prod2vec works well for the warm-start setting, introducing textual con-

tents will significantly improve the predictive performances. The improvements of

BASTEXT-Avg over prod2vec are 8.4% and 19% for OnlineRetail and Instacart,

respectively.

In the cold-start setting, only doc2vec and the variants of BASTEXT work. The

performances of doc2vec are almost the same as the warm-start setting because it

uses content only. Although BASTEXT-Avg’s performances decrease, compared

with the warm-start setting, it still performs slightly better than doc2vec. This indi-

cates that jointly training the texts with purchase data will improve the performance.

Impact of the Text Encoder model. From Table 5.3 and 5.4 we can observe

that BASTEXT-Conv and BASTEXT-Conv+w2v slightly perform better than their

67

Table 5.4: Recall and MRR for next product prediction (cold-start setting). Here,
we fixed the embedding size d = 64 and negative sampling ratio n = 8.

(a) OnlineRetail data

Methods Recall@10 Recall@20 MRR@20

doc2vec 0.1768 0.2315 0.1532
BASTEXT-Avg (our) 0.1823 0.2378 0.1628
BASTEXT-Avg+w2v (our) 0.1861 0.2432 0.1679
BASTEXT-Conv (our) 0.1842 0.2397 0.1642
BASTEXT-Conv+w2v (our) 0.1908 0.2483 0.1733

(b) Instacart data

Methods Recall@10 Recall@20 MRR@20

doc2vec 0.0916 0.1208 0.0977
BASTEXT-Avg (our) 0.1021 0.1297 0.1048
BASTEXT-Avg+w2v (our) 0.1098 0.1385 0.1195
BASTEXT-Conv (our) 0.1075 0.1342 0.1127
BASTEXT-Conv+w2v (our) 0.1127 0.1428 0.1249

counterparts (BASTEXT-Avg and BASTEXT-Avg+w2v). This indicates that taking

into account the order of words in texts can improve the effectiveness of the repre-

sentations. However, such minor improvements suggest that, for short texts, using

the text representations as the average of the representations of its words is also a

strong baseline, given that its complexity is much cheaper than a convolutional neu-

ral network.

Impact of pre-trained word input vectors. One advantage of BASTEXT is

that it can use the pre-trained word embedding vectors such as word2vec (Mikolov

et al., 2013b) or Glove (Pennington et al., 2014) as word input vectors. Thus, we can

study the impact of using pre-trained word embedding vectors on the performance

of BASTEXT. Here, we adopt the pre-trained vectors of Glove (Pennington et al.,

2014).

Table 5.3 and Table 5.4 show marginal improvements of BASTEXT-Avg+w2v

over BASTEXT-Avg and BASTEXT-Conv+w2v over BASTEXT-Conv for both datasets.

It means that using the pre-trained word vectors significantly improves the perfor-

mance of the model. It is because the product titles are very short, and therefore, are

poor at capturing the semantic meaning of the texts. Using pre-trained word vectors

68

will help improve the representation effectiveness of short texts.

5.3.5 Product-based Recommendation

Product-based recommendation, i.e., making recommendations in the context of a

specific product, is a typical setting in recommendation. Here, we consider two

kinds of such recommendations: similar products recommendations and also-buy

products recommendations.

Similar product recommendation. This kind of recommendation is very useful

in real-life, particularly, when a customer is considering a product to buy. For exam-

ple, if the customer is considering (i.e., viewing) a skirt, it makes sense to show her

some other skirts so that she can compare before deciding.

Given two products i and j, the similarity between these products is defined as

the cosine similarity between their embedding vectors. This definition of similarity is

natural due to the assumption of the model: the embedding hi reflects the attributes

of products i, thus, products with similar attributes should have their embedding

vectors located closed in the latent space. The similarity between two products i and

j is as follows.

sim(i, j) = cosine(hi,hj) (5.10)

little movers
comfort fit size 3

diapers

swaddlers diapers
jumbo pack size

newborn

baby dry pampers
baby dry diapers

size 2

done baby wipes
cumber & green tea

classics earl
grey tea

organic chamomile
lemon tea

everyday detox
dandelion tea

sleepytime sinus
soother herbal tea

Figure 5.2: Similar product recommendation. For each row, the product in the left
side is a “query” product, following by its top-3 similar products.

Fig.5.2 shows some examples of similar products recommendations made by

BASTEXT. In this figure, for each row, the most left is a “query” product, and the

next three products are top-3 products that are frequently purchased together with it,

calculated by Eq.(5.10).

69

infant formula baby food stage 2
raspberry spinach &

greek yogurt

4	cheese	mexican
shredded	cheese

little movers
comfort fit size 3

diapers

everyday detox
dandelion tea

organic chicken
noodle soup

yogurt, strained
low-fat, coconut

coconut cream
pie

Figure 5.3: Also-buy product recommendation. For each row, the product in the
left side is the “query” product, following top-3 products that are often co-purchased
with it.

Also-buy Product Recommendation. This is to recommend products that are

frequently purchased together with a specific product (e.g., of the product that the

customer is viewing, or of the product that the customer has just added to the bas-

ket). This scenario is useful, particularly, when a customer added a product to his

shopping basket.

Given two products i and j, we compute how likely i is bought given that the

customer has already bought j as the inner product of the context vector hi and h′j:

Also_buy(i, j) = h>i h′j (5.11)

Fig.5.3 shows some examples of Also-buy products recommendations made by

BASTEXT. In this figure, for each row, the most left is a “query” product, and the

next three products are top-3 products that are frequently purchased together with it,

calculated by Eq.(5.11).

5.3.6 Effectiveness of the Representations

For understanding more about the insights of BASTEXT, we study how well BAS-

TEXT represents the texts and how well it captures the semantics behind the prod-

ucts. To do so, we perform two tasks: keyword-based product search and product

category classification.

Keyword-based product search. We are provided a query s in the form of

keywords, the task is to retrieve the products relevant to the query. We compare

70

BASTEXT with doc2vec (Le and Mikolov, 2014), a sentence representation learning

model.

First, we infer the vector representations of the query by two models BASTEXT-

Avg and doc2vec. For BASTEXT, we use the text encoder fE . We then compute the

cosine similarity of the vector representations of these two models with the embed-

ding vector of every product in the dataset. Top-5 similar products are reported in

Table 5.5.

We can observe that BASTEXT retrieves more relevant products than doc2vec

does. Particularly for the second query, natural herb cough drops, BASTEXT, gen-

erally, captures the meaning of the query and can return relevant products. On the

other hand, doc2vec completely misunderstands the query. We found that the key-

words of this query rarely appear in the corpus, therefore, doc2vec cannot learn good

representations of them. BASTEXT, in contrast, utilizing the purchase data for cap-

turing effective representations of texts. This experiment suggests that BASTEXT

can be a potential baseline for product search via keywords, particularly when each

product is associated with a very short text.

Category classification. We additionally study the effectiveness of the prod-

uct representations of BASTEXT, prod2Vec, and doc2vec, by performing category

classification task on Instacart dataset. To do so, we use the embedding vectors of

the products learned by these models as the feature vectors for training classifiers.

We use SVM (Support Vector Machine) as the classifier. We perform 5-fold cross-

validation and report the classification accuracies. The products used in the test are

from two groups. The first group contains top-5 most active categories (categories

that are most frequently purchased): (H1) Produce, (H2) Dairy eggs, (H3) Snacks,

(H4) Beverages, (H5) Frozen. The second group contains top-5 less active categories

(categories that are less frequently purchased): (L1) Personal care, (L2) Babies, (L3).

(L4) Alcohol, (L5) Pets.

The category classification accuracy is shown in Fig.5.4. We have following ob-

servations. First, the accuracies of doc2vec are almost the same across the categories.

This is because doc2vec uses only the textual content, ignoring the purchase data.

In the less active categories (L1-L5), BASTEXT and prod2vec perform better than

doc2vec, however, the differences are not big. The differences between BASTEXT

and prod2vec with doc2vec become larger in the most active categories (H1-H5),

indicating the important role of purchase data in the performance. In the most active

71

Table 5.5: Keyword-based product search results performed on Instacart dataset.
The top line are the query (boldface font). Below the query are top five answers by
BASTEXT-Avg and word2vec, respectively. Inside the braces () are the categories
of the returned products. Underlined words are words appearing in the query.

query organic tea

BASTEXT

organic honeybush tea (tea)
organic chamomile lemon tea (tea)
organic oolong tea bags (tea)
organic white rose white tea (tea)
chinese breakfast black tea (tea)

doc2vec

organic english breakfast black tea (tea)
lemon sweet tea iced tea mix (tea)
organic grapefruit honey lightly sweetened iced green tea (tea)
bags organic turmeric ginger green tea (tea)
half sweet tea pink lemonade (tea)

query natural herb cough drops

BASTEXT

cough drop (cold flu allergy)
honey/lemon cough drops (cold flu allergy)
immune+ super orange drink mix dietary supplement (cold flu allergy)
defense vitamin c, cold flu allergy (cold flu allergy)
natural throat drops honey & pomegranate (cold flu allergy)

doc2vec

ultra thin crust cheese lovers pizza (frozen pizza)
homemade pizza sauce (pasta sauce)
deep dish sausage pizza singles (frozen pizza)
authentic deep dish sausage pizza (frozen pizza)
colby jack cheese (packaged cheese)

categories, BASTEXT is still better than prod2vec. This implies that introducing the

associated texts will improve the effectiveness of the representations.

5.3.7 Hyper-parameter Sensitivity

In this section, we study the impact of hyper-parameters including the negative sam-

pling ratio n, and the embedding size d to the performance of the next product pre-

diction.

Impact of the Negative Sampling Ratio. Fig.5.5 shows the next product predic-

tion performances of BASTEXT-Avg (other variants of BASTEXT have similar be-

haviors). We observe that the trends of the performances are quite similar. For both

72

H1 H2 H3 H4 H5 L1 L2 L4 L3 L5
0.0

0.4

0.8

1.2

1.6

A
cc

u
ra

cy

BASTEXT-Avg

prod2vec

doc2vec

Figure 5.4: Performance of product category classification on Instacart.

datasets, the Recall@20 and MRR@20 increase when the negative ratio n increases,

until a certain value of n (around 8 to 10). From this threshold, the performances

are quite stable (do not increase much). Therefore, we do not need to sample more

negative examples than this threshold.

Impact of the Embedding Size. We study the effects of the embedding sizes d

to the performance of BASTEXT. Results are shown in Fig.5.6. Here, we report the

results of BASTEXT-Avg model only, because, other variants of BASTEXT have

similar behaviors. From the results, we can observe that the performances increase

when d increase, until a threshold of d. After this threshold, the performances de-

crease due to overfitting or do not significantly increase. For OnlineRetail dataset,

the performances decrease when d > 64. On the other hand, for Instacart, the per-

formances continue increasing after d > 64, however, the improvement is not signif-

icant. These observations suggest that the embedding size around d = 64 will have

a balance between the performances and the computational complexity.

73

2 4 6 8 10 12 14
Negative sampling ratio

0.00

0.06

0.12

0.18

0.24

0.30

R
e
ca

ll@
2

0

2 4 6 8 10 12 14
Negative sampling ratio

0.00

0.05

0.10

0.15

0.20

M
R

R
@

2
0

(a) Re@20 and MRR@20 for OnlineRetail.

2 4 6 8 10 12 14
Negative sampling ratio

0.00

0.05

0.10

0.15

0.20

R
e
ca

ll@
2

0

2 4 6 8 10 12 14
Negative sampling ratio

0.00

0.04

0.08

0.12

0.16

M
R

R
@

2
0

(b) Re@20 and MRR@20 for Instacart.
Figure 5.5: Impact of the negative sampling ratio. Here we use BASTEXT-Avg with
embedding size d = 64.

74

20 40 60 80 100
Embedding size

0.00

0.05

0.10

0.15

0.20

0.25

R
e
ca

ll@
2

0

20 40 60 80 100
Embedding size

0.00

0.05

0.10

0.15

0.20

M
R

R
@

2
0

(a) Re@20 and MRR@20 for OnlineRetail.

20 40 60 80 100
Embedding size

0.00

0.05

0.10

0.15

0.20

R
e
ca

ll@
2

0

20 40 60 80 100
Embedding size

0.00

0.03

0.06

0.09

0.12

0.15

M
R

R
@

2
0

(b) Re@20 and MRR@20 for Instacart.
Figure 5.6: Impact of the embedding size to the next product recommendation. Here
we use BASTEXT-Avg with negative sampling ratio n = 8.

75

5.4 Chapter Summary

We introduced BASTEXT, a joint model of texts and shopping transaction data for

modeling the relationships between products. We proposed a dual Text Encoder-

based model learning the representations of texts associated with products, that cap-

ture the behaviors of customers in shopping. BASTEXT can utilize the texts for

addressing the cold-start problem and utilize the purchase data for improving the

performance of text representations. Experiments on two real-world datasets demon-

strate that BASTEXT outperforms competing methods in next product recommen-

dation. Further, the qualitative analysis demonstrates the effectiveness of the repre-

sentations learned by the BASTEXT. The success of BASTEXT suggests that it can

be a potential multi-purpose recommender system.

76

Chapter 6

Conclusion

6.1 Contribution Summary

In this dissertation, we propose models for learning the representations of users and

items for recommender systems that are effective for the sparse datasets and the

cold-start problem.

Implicit Feedback Embedding for Rating Prediction. We develop a model for

the rating prediction, an essential task in understanding user preferences. Usually,

the rating prediction is suffered from the sparsity of the rating matrix. Furthermore,

the items that have no prior ratings can not be predicted (the cold-start problem).

In oder to address these issues, we exploit the implicit feedback (e.g., clicks, page

views), which is abundant. To do so, we propose a probabilistic item embedding

which learn the embedding vectors of the items from the implicit feedback. The

embedding is performed by factorizing the PPMI matrix, which is constructed from

the implicit data. We then propose CoMF, a joint model of the item embedding

model and the rating prediction model. CoMF simultaneously factorizes the PPMI

matrix and the rating matrix in a shared latent space. In this method, the features of

items are extracted based on two sources of feedback: rating data and click data. We

show that exploiting the click data can supplement the shortage of rating data and is

able to deal with the cold-start issue.

Neural Personalized Embedding Model. We address a fundamental cold-start

issue of the collaborative filtering: it cannot recommend for the new users who have

only very few clicks. We proposed a neural personalized embedding model for mod-

eling the clicks of users to items. In this model, we assume that a click of a user to

77

an item is governed by two signals: the preferences of the user to this item and the

compatibility between this item and the items that the user previously clicked. The

experimental results on real-world datasets show the improvements over competing

methods. Further, the proposed model is also able to detect the similar items and the

“purchased together” items of a given item.

Learning Representations from Product Titles for Shopping Basket Collec-
tion Modeling. We introduce a model to learn the representations of the products

based on their titles to model a collection of shopping transactions. The learned

representations can help identify two kinds of relationships between products: the

similar products and also-buy products. The proposed model can be used for multi-

ple purposes: next product recommendation, similar product recommendation, also-

buy product recommendation, and product search by keywords. Because the model

learns the representations from product titles, it can deal with the cold-start problem,

the problem of modeling new products which have not appeared in any shopping

transactions.

6.2 Future Work

We have some directions for extending the current research as follows.

Exploit the rich content of the items for fully addressing the cold-start prob-
lem. Addressing the cold-start problem is one essential task of modern recommender

systems. In Chapter 3 we proposed CoMF, which is a combination of the matrix fac-

torization for rating data and the item embedding from the click data. CoMF can

predict the ratings of the items which do not have any prior ratings as long as they

have some clicks. However, in the case an item has no click data, CoMF fails to

predict the rating for it. In order to address this problem, the common way is to ex-

ploit the rich contents of the items such as textual contents (Li and She, 2017; Wang

and Blei, 2011; Wang et al., 2015a) or visual contents (He and McAuley, 2016).

These methods are a combination of content models (e.g., LDA or neural networks)

and a matrix factorization for rating data. The goal of these methods is to learning

the item representations, from the rich contents, that can explain the observed rating

data. Therefore, these methods also suffer from the sparsity of the rating matrix.

To address this issue, the proposed CoMF can be integrated with content models to

leverage the advantage of using click data.

78

In the NPE model (Chapter 4), the input vectors of the items can be either one-

hot-vectors or the feature vectors obtained from the rich contents. In this thesis,

we use one one-hot-vectors as the input vectors of the items. As a future work,

using feature vectors from the rich contents of the items can fully address the cold-

start issue. The rich contents can be integrated into NPE in an end-to-end model

or separately obtain the feature vectors using content models such as tf-idf, LDA or

neural network and then feed these feature vectors as the input of the NPE model.

Session-based recommendation with multiple feedbacks. In Chapter 5, we

proposed BASTEXT, a model for learning the representations of the items from a

collection of shopping baskets. In other words, these representations are learned

from the purchase data. However, in a real-life system, besides the purchase data

we also can collect other kinds of data. For example, a shopper usually views mul-

tiple products for examining before decide to add a product into the shopping cart.

Such product view data is much more abundant than purchase data and also con-

tain valuable information about the relationships between the products. A model

that can model such multiple related feedbacks can help learn high-quality product

representations and improve the accuracy of the product recommendations.

79

References

[Agarwal et al. 1994] Rakesh Agarwal, Ramakrishnan Srikant et al.: Fast algo-

rithms for mining association rules. In: Proceedings of the 20th International

Conference on Very Large Databases (VLDB ’94), pages 487–499, September

1994.

[Barkan and Koenigstein 2016] Oren Barkan, and Noam Koenigstein:

ITEM2VEC: Neural item embedding for collaborative filtering. In: Proceed-

ings of the IEEE 26th International Workshop on Machine Learning for Signal

Processing (MLSP ’16), pages 1–6, September 2016.

[Bell and Koren 2007] Robert M. Bell, and Yehuda Koren: Scalable Collaborative

Filtering with Jointly Derived Neighborhood Interpolation Weights. In: Proceed-

ings of the 7th IEEE International Conference on Data Mining (ICDM ’07), pages

43–52, October 2007.

[Blei et al. 2003] David M. Blei, Andrew Y. Ng, and Michael I. Jordan: Latent

Dirichlet Allocation: In: The Journal of Machine Learning Research, Vol. 3,

pages 993–1022, March 2003.

[Bullinaria and Levy 2007] John Bullinaria, and Joseph Levy: Extracting semantic

representations from word co-occurrence statistics: A computational study: In:

Behavior Research Methods, Vol. 39, No. 3, pages 510–526, August 2007.

[Chen et al. 2012a] Daqing Chen, Sai Laing Sain, and Kun Guo: Data mining for

the online retail industry: A case study of RFM model-based customer segmenta-

tion using data mining: In: Journal of Database Marketing & Customer Strategy

Management, Vol. 19, No. 3, pages 197–208, September 2012.

[Chen 2017] Minmin Chen: Efficient Vector Representation for Documents

Through Corruption (ICLR ’17), pages 1–13, April 2017.

[Chen et al. 2012b] Shuo Chen, Josh L. Moore, Douglas Turnbull, and Thorsten

Joachims: Playlist Prediction via Metric Embedding. In: Proceedings of the

18th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD ’12), pages 714–722, August 2012.

81

[Church and Hanks 1990] K. W. Church, and P. Hanks: Word Association Norms,

Mutual Information, and Lexicography: In: Computational Linguistics, Vol. 1,

No. 16, pages 22–29, March 1990.

[Das et al. 2007] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam

Rajaram: Google News Personalization: Scalable Online Collaborative Filtering.

In: Proceedings of the 16th International Conference on World Wide Web (WWW

’07), pages 271–280, May 2007.

[Deerwester et al. 1990] Scott Deerwester, Susan T Dumais, George W Furnas,

Thomas K Landauer, and Richard Harshman: Indexing by latent semantic analy-

sis: In: Journal of the American Society for Information Science, Vol. 41, No. 6,

pages 391–407, September 1990.

[Dziugaite and Roy 2015] Gintare Karolina Dziugaite, and Daniel M. Roy: Neural

Network Matrix Factorization: In: CoRR, Vol. abs/1511.06443, December 2015.

[Gopalan et al. 2014] Prem Gopalan, Laurent Charlin, and David M. Blei:

Content-based recommendations with Poisson factorization. In: Proceedings

of the 27th International Conference on Neural Information Processing Systems

(NIPS ’14), pages 3176–3184, December 2014.

[Grbovic et al. 2015] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric,

Narayan Bhamidipati, Jaikit Savla, Varun Bhagwan, and Doug Sharp: E-

commerce in Your Inbox: Product Recommendations at Scale. In: Proceedings of

the 21th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD ’15), pages 1809–1818, August 2015.

[He and McAuley 2016] Ruining He, and Julian McAuley: VBPR: Visual

Bayesian Personalized Ranking from Implicit Feedback. In: Proceedings of the

30th AAAI Conference on Artificial Intelligence (AAAI ’16), pages 144–150,

February 2016.

[He et al. 2017] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu,

and Tat-Seng Chua: Neural Collaborative Filtering. In: Proceedings of the 26th

International Conference on World Wide Web (WWW ’17), pages 173–182, April

2017.

82

[Hidasi et al. 2016] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and

Domonkos Tikk: Session-based Recommendations with Recurrent Neural Net-

works. In: Proceedings of the 4th International Conference on Learning Repre-

sentations (ICLR ’16), pages 1–10, May 2016.

[Hofmann 1999] Thomas Hofmann: Probabilistic Latent Semantic Indexing. In:

Proceedings of the 22nd Annual International ACM SIGIR Conference on Re-

search and Development in Information Retrieval (SIGIR ’99’), pages 50–57,

August 1999.

[Hu et al. 2008] Yifan Hu, Yehuda Koren, and Chris Volinsky: Collaborative filter-

ing for implicit feedback datasets. In: Proceedings of the 8th IEEE International

Conference on Data Mining (ICDM ’08), pages 263–272, December 2008.

[Kim 2014] Yoon Kim: Convolutional Neural Networks for Sentence Classifica-

tion. In: Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP ’14), pages 1746–1751, October 2014.

[Kingma and Ba 2015] Diederik P. Kingma, and Jimmy Ba: Adam: A Method for

Stochastic Optimization. In: Proceedings of the 3rd International Conference for

Learning Representations (ICLR ’15), pages 1–15, May 2015.

[Kiros et al. 2015] Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S.

Zemel, Antonio Torralba, Raquel Urtasun, and Sanja Fidler: Skip-thought Vec-

tors. In: Proceedings of the 28th International Conference on Neural Information

Processing Systems (NIPS ’15), pages 3294–3302, December 2015.

[Koren 2008] Y. Koren: Factorization meets the neighborhood: a multifaceted

collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD Interna-

tional Conference on Knowledge discovery and Data Mining (KDD ’08), pages

426–434, August 2008.

[Koren 2009] Yehuda Koren: Collaborative Filtering with Temporal Dynamics.

In: Proceedings of the 15th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining (KDD ’09), pages 447–456, June/July 2009.

[Le and Mikolov 2014] Quoc Le, and Tomas Mikolov: Distributed Represen-

tations of Sentences and Documents. In: Proceedings of the 31st International

83

Conference on International Conference on Machine Learning (ICML ’14), pages

1188–1196, June 2014.

[Lee and Seung 2000] Daniel D. Lee, and H. Sebastian Seung: Algorithms for

Non-negative Matrix Factorization. In: Proceedings of the 13th International

Conference on Neural Information Processing Systems (NIPS ’00), pages 556–

562, November 2000.

[Levy and Goldberg 2014] Omer Levy, and Yoav Goldberg: Neural Word Embed-

ding as Implicit Matrix Factorization. In: Proceedings of the 27th International

Conference on Neural Information Processing Systems (NIPS ’14), pages 2177–

2185, December 2014.

[Li et al. 2015a] Shaohua Li, Jun Zhu, and Chunyan Miao: A Generative Word

Embedding Model and its Low Rank Positive Semidefinite Solution. In: Proceed-

ings of the 2015 Conference on Empirical Methods in Natural Language Process-

ing (EMNLP ’15), pages 1599–1609, September 2015.

[Li et al. 2015b] Sheng Li, Jaya Kawale, and Yun Fu: Deep Collaborative Filter-

ing via Marginalized Denoising Auto-encoder. In: Proceedings of the 24th ACM

International on Conference on Information and Knowledge Management (CIKM

’15), pages 811–820, October 2015.

[Li and She 2017] Xiaopeng Li, and James She: Collaborative Variational Au-

toencoder for Recommender Systems. In: Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD ’17),

pages 305–314, August 2017.

[Liang et al. 2016] Dawen Liang, Jaan Altosaar, Laurent Charlin, and David M.

Blei: Factorization Meets the Item Embedding: Regularizing Matrix Factoriza-

tion with Item Co-occurrence. In: Proceedings of the 10th ACM Conference on

Recommender Systems (RecSys ’16), pages 59–66, September 2016.

[Linden et al. 2003] Greg Linden, Brent Smith, and Jeremy York: Amazon.Com

Recommendations: Item-to-Item Collaborative Filtering: In: IEEE Internet Com-

puting, Vol. 7, No. 1, pages 76–80, January 2003.

84

[Liu et al. 2010] Nathan N. Liu, Evan W. Xiang, Min Zhao, and Qiang Yang:

Unifying explicit and implicit feedback for collaborative filtering. In: Proceed-

ings of the 19th ACM international conference on Information and Knowledge

Management (CIKM ’10), pages 1445–1448, October 2010.

[Manning et al. 2008] Christopher D. Manning, Prabhakar Raghavan, and Hinrich

Schütze: Introduction to Information Retrieval. 2008.

[Mikolov et al. 2013a] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey

Dean: Efficient estimation of word representations in vector space. In: Pro-

ceedings of the 1st International Conference on Learning Representations (ICLR

’13), pages 1–12, May 2013.

[Mikolov et al. 2013b] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,

and Jeffrey Dean: Distributed Representations of Words and Phrases and Their

Compositionality. In: Proceedings of the 26th International Conference on Neural

Information Processing Systems (NIPS ’13), pages 3111–3119, December 2013.

[Nguyen et al. 2017] ThaiBinh Nguyen, Kenro Aihara, and Atsuhiro Takasu: Col-

laborative Item Embedding Model for Implicit Feedback Data. In: Proceedings

of the 17th International Conference on Web Engineering (ICWE ’17), pages

336–348, June 2017.

[Nguyen and Takasu 2017] ThaiBinh Nguyen, and Atsuhiro Takasu: A Proba-

bilistic Model for the Cold-Start Problem in Rating Prediction Using Click Data.

In: Proceeding of the 24th International Conference on Neural Information Pro-

cessing (ICONIP ’17), pages 196–205, November 2017.

[Ning et al. 2015] Xia Ning, Christian Desrosiers, and George Karypis: A Com-

prehensive Survey of Neighborhood-Based Recommendation Methods. In: Rec-

ommender Systems Handbook, pages 37–76, 2015.

[Ning and Karypis 2011] Xia Ning, and George Karypis: SLIM: Sparse Linear

Methods for Top-N Recommender Systems. In: Proceedings of the 2011 IEEE

11th International Conference on Data Mining (ICDM ’11), pages 497–506,

December 2011.

85

[Oord et al. 2013] Aäron van den Oord, Sander Dieleman, and Benjamin

Schrauwen: Deep Content-based Music Recommendation. In: Proceedings of the

26th International Conference on Neural Information Processing Systems (NIPS

’13), pages 2643–2651, December 2013.

[Pan et al. 2008] Rong Pan, Yunhong Zhou, Bin Cao, Nathan Nan Liu, Rajan M.

Lukose, Martin Scholz, and Qiang Yang: One-Class Collaborative Filtering. In:

Proceedings of the 8th IEEE International Conference on Data Mining (ICDM

’08), pages 502–511, December 2008.

[Pazzani and Billsus 2007] Michael J. Pazzani, and Daniel Billsus: Content-Based

Recommendation Systems. In: The Adaptive Web: Methods and Strategies of Web

Personalization, pages 325–341, 2007.

[Pennington et al. 2014] Jeffrey Pennington, Richard Socher, and Christopher D

Manning: Glove: Global Vectors for Word Representation. In: Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP ’14), pages 1532–1543, October 2014.

[Rendle et al. 2009] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and

Lars Schmidt-Thieme: BPR: Bayesian Personalized Ranking from Implicit Feed-

back. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelli-

gence (UAI ’09), pages 452–461, June 2009.

[Rendle et al. 2010] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-

Thieme: Factorizing Personalized Markov Chains for Next-basket Recommenda-

tion. In: Proceedings of the 19th International Conference on World Wide Web

(WWW ’10), pages 811–820, April 2010.

[Rudolph et al. 2016] Maja Rudolph, Francisco Ruiz, Stephan Mandt, and David

Blei: Exponential Family Embeddings. In: Proceedings of the 30th International

Conference on Neural Information Processing Systems (NIPS ’16), pages 478–

486, December 2016.

[Salakhutdinov and Mnih 2008] Ruslan Salakhutdinov, and Andriy Mnih: Prob-

abilistic Matrix Factorization. In: Proceedings of the 20th International Confer-

ence on Neural Information Processing Systems (NIPS ’07), pages 1257–1264,

December 2008.

86

[Sarwar et al. 2001] Badrul Sarwar, George Karypis, Joseph Konstan, and John

Riedl: Item-based Collaborative Filtering Recommendation Algorithms. In: Pro-

ceedings of the 10th International Conference on World Wide Web (WWW ’01),

pages 285–295, May 2001.

[Shani et al. 2005] Guy Shani, David Heckerman, and Ronen I. Brafman: An

MDP-Based Recommender System: In: Journal of Machine Learning Research,

Vol. 6, pages 1265–1295, December 2005.

[Singh and Gordon 2008] Ajit Paul Singh, and Geoffrey J. Gordon: Relational

learning via collective matrix factorization. In: Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD ’08), pages 650–658, August 2008.

[Srivastava et al. 2014] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov: Dropout: A Simple Way to Prevent Neu-

ral Networks from Overfitting: In: The Journal of Machine Learning Research

(JMLR), Vol. 15, No. 1, pages 1929–1958, January 2014.

[Tai et al. 2015] Kai Sheng Tai, Richard Socher, and Christopher D. Manning: Im-

proved Semantic Representations From Tree-Structured Long Short-Term Mem-

ory Networks. In: Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (ACL-IJCNLP 2015), pages 1556–1566, July 2015.

[Tang and Liu 2017] Lijun Tang, and Eric Yi Liu: Joint User-Entity Representa-

tion Learning for Event Recommendation in Social Network. In: Proceeding of

the 33rd IEEE International Conference on Data Engineering (ICDE ’17), pages

271–280, April 2017.

[Wang et al. 2012] Bin Wang, Mohammadreza Rahimi, Dequan Zhou, and Xin

Wang: Expectation-Maximization Collaborative Filtering with Explicit and Im-

plicit Feedback. In: Proceedings of the 16th Pacific-Asia Conference on Ad-

vances in Knowledge Discovery and Data Mining (PAKDD ’12), pages 604–616,

May/June 2012.

[Wang and Blei 2011] Chong Wang, and David M. Blei: Collaborative Topic

Modeling for Recommending Scientific Articles. In: Proceedings of the 17th ACM

87

SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD ’11), pages 448–456, August 2011.

[Wang et al. 2015a] Hao Wang, Naiyan Wang, and Dit-Yan Yeung: Collaborative

Deep Learning for Recommender Systems. In: Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD ’15), pages 1235–1244, August 2015.

[Wang et al. 2015b] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengx-

ian Wan, and Xueqi Cheng: Learning Hierarchical Representation Model for

NextBasket Recommendation. In: Proceedings of the 38th International ACM SI-

GIR Conference on Research and Development in Information Retrieval (SIGIR

’15), pages 403–412, August 2015.

[Weston et al. 2014] Jason Weston, Sumit Chopra, and Keith Adams: TagSpace:

Semantic Embeddings from Hashtags. In: Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP ’14), pages 1822–

1827, October 2014.

[Yu et al. 2016] Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan: A

Dynamic Recurrent Model for Next Basket Recommendation. In: Proceedings of

the 39th International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR ’16), pages 729–732, August 2016.

88

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions of This Work
	Organization of This Thesis

	Background and Related Work
	Recommender Systems
	Types of Recommender Systems
	Types of Feedback

	Related Work
	Collaborative filtering
	Sequential Recommendation
	Embedding Models
	Shopping Basket Analysis

	Implicit Feedback Embedding for Rating Prediction
	Introduction
	Preliminary
	Notation and Problem Formation
	Probabilistic Matrix Factorization

	Proposed method
	Item embedding model based on implicit feedback
	Generative collaborative item embedding model
	Parameter learning
	Rating prediction

	Empirical study
	Datasets
	Evaluation
	Competing methods
	Parameter settings
	Experimental results

	Chapter Summary

	NPE: Neural Personalized Embedding
	Introduction
	NPE: Neural Personalized Embedding
	Problem Formulation
	Model Formulation
	The Model Architecture
	Objective Function
	Model Training
	Connections with Previous Models

	Empirical Study
	Datasets
	Experiment Setup
	Implementation Details
	Experimental Results

	Chapter Summary

	Learning Product Representations from Shopping Transactions
	Introduction
	BASTEXT: The Shopping Basket Model
	Notations and Definitions
	Next Product Choice
	Dual Text Encoders for Shopping Basket Data
	Training Data Forming
	Model training

	Experiments
	Datasets
	Experimental Setup
	Implementation Detail
	Predictive Performance Comparison
	Product-based Recommendation
	Effectiveness of the Representations
	Hyper-parameter Sensitivity

	Chapter Summary

	Conclusion
	Contribution Summary
	Future Work
	References
	References

