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Abstract

In the last few decades, we have witnessed an enormous increase in social robotics. In
addition to industrial robots that work in factories, social robots are expected to be
employed in a variety of applications such as education, health care, public service, and
domestic uses, where communicating and interacting with humans are a necessary.
However, a large number of robots currently in use are neither anthropomorphic nor
zoomorphic. When we �rst encounter such robots, the lack of appropriate mental
models and knowledge with regard to these robots can lead to unsmooth or even failed
interaction. In addition, such robots are generally constrained in appearance, meaning
that they are designed to be functional and lack expressive faces and bodies. Therefore,
there is a signi�cant challenge in �nding e�ective ways for these robots to successfully
interact with human users.

To design e�ective expressions for appearance-constrained robots, I probe non-
verbal cues include expressive lights, motion, sound, and vibration. I consider the
four modalities are particularly suitable for appearance-constrained robot as they
do not require human-like features such as face and hand. Besides, because these
modalities are neither anthropomorphic nor zoomorphic, they would not cause people’s
expectations of the appearance-constrained robots to exceed the real capabilities of the
robots and result in a negative HRI experience. However, there is much unknown with
regard to how the non-verbal expressions can be implemented to facilitate interactions
between robots and humans. Theories and knowledge are needed to form valid
assumptions for establishing and formalizing e�ective designs.

Therefore, to address the challenges mentioned above, I perform a series of
studies with a focus on three key research questions: (1) How do people perceive
and interpret non-verbal expressions from a robot and what are the in�uences of the
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expressions on people’s decision-making and behavior? (2) How to design non-verbal
expressions for an appearance-constrained robot to show a�ect? (3) How to design
non-verbal expressions for an appearance-constrained robot to communicate its
intent? By answering the three questions, this dissertation contributes to providing
fundamental knowledge and building blocks to the design of non-verbal expressions
for appearance-constrained robots and opening up possibilities for future related
research in HRI.
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1
Introduction

This chapter introduces the topic of this doctoral dissertation and provides an overview
of it. Section 1.1 introduces the research background and section 1.2 describes the
motivation and research questions of the study. Section 1.3 presents the research
approach. Section 1.4 discusses some important experimental and data analysis methods
and techniques used in this dissertation. Section 1.5 reviews existing literatures that
relevant to the general topic of human-robot interaction, particularly with a focus on
appearance-constrained robots. Section 1.6 summarizes the contributions of the study,
and section 1.7 gives the structure of the dissertation.
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1.1 Background

In the last few years, we have witnessed an enormous increase in social robots.
Di�ering from industrial robots, social robots are expected to be employed in a variety
of applications, e.g. education [2, 3], health care [4, 5], public service [6, 7], and
domestic uses[8, 9], where communicating and interacting with humans are a necessity.
For instance, regarding education, social robots may assist with teaching classes
or motivating students to achieve better learning performance; regarding health
care, social robots may monitor patients’ health conditions, companion them and
remind them of taking medicines; regarding public service, social robots may provide
information to travelers, guide people in shopping malls or assist with check in/out
services in hotels; regarding domestic uses, social robots may assist with human daily
lives or secure the house. In such application scenarios, it is necessarily important for
the robots to communicate a�ect and intent to achieve natural and smooth interaction
experiences.

As Donald Norman said, “People are explanatory creatures." Due to our tendency to
form explanations of things, we build mental models, our conceptual models of the
ways objects work or people behave, of those things and use the models to help us
understand our experiences and handle unexpected occurrences [10]. Therefore, we
naturally adapt our social skills and perform similar social behavior when we �rst
meet a human-shaped robot, e.g., Aldebaran’s Nao (Figure 1.1(a)). Similarly, we assume
an animal-shaped robot will behave like a real animal, e.g., Sony’s robot dog AIBO
(Figure 1.1(b)) and Ugobe’s robot dinosaur Pleo (Figure 1.1(c)). Social robot designers,
thus, tend to add anthropomorphic or zoomorphic features to the robots, aiming at
achieving natural and believable human-robot interaction experiences. They consider
morphology factors, facial expressions, natural languages, eye gaze, and body gestures
essential [11].

Unfortunately, a large number of robots currently in use for applications such
as law enforcement (e.g. Figure 1.1(d)), search are rescue (e.g. Figure 1.1(e)), and
domestic uses (such as cleaning robots; Figure 1.1(f)) are neither anthropomorphic
nor zoomorphic. Such robots are generally constrained in appearance, meaning that
they are designed to be functional and lack expressive faces and bodies. Therefore,
when we �rst encounter these robots, the lack of appropriate mental models and
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(a) Nao (b) AIBO (c) Pleo

(d) Law enforcement robot (e) Rescue robot (KOHGA3) (f) Cleaning robot (Roomba)

Figure 1.1: Examples of existing robots

knowledge with regard to the robots can lead to unsmooth or even failed interaction.
In other words, it is particularly di�cult for naïve users to correctly interpret these
robots’ behaviors due to the lack of natural and informative communication cues
from the robots. Thus, there is an eager need for e�ective methods for such robots to
successfully communicate and interact with humans.

However, �nding such methods is not easy. Due to their lack of natural and
expressive interaction methods, robots that constrained in appearance have to make use
of their physical bodies and mobility to communicate with people. Existing approaches
focus mainly on motion cues [12, 13] or body posture [14, 15, 16]. For instance, previous
work found evidence of relationship between motion parameters (acceleration and
curvature) and attribution of a�ect [13]. Speci�cally, it was discovered that the level of
acceleration can be associated with perceived arousal and that valence information is
partly encoded in combinations of acceleration and curvature. Unfortunately, such
approaches su�er from low expressibility and are hard, if not impossible, to apply in
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many application scenarios. For example, in a scenario where space is limited, e.g., a
crowded room or a narrow corridor, big movements such as those made through
accelerating and moving in an arc can be impossible to employ. Therefore, there
remains signi�cant challenges with regard to such topics.

To face these challenges, I explore the design of e�ective expressions for appearance-
constrained robots to communicate a�ect and intent. Basically, appearance-constrained
robots are generally functional robots that are not engineered to be anthropomorphic
or zoomorphic and do not have the ability to exhibit facial expressions, make eye
contact, or perform gestures. Thus, this dissertation is titled, Designing non-verbal
Expressions for Appearance-Constrained Robots. The dissertation particularly focuses on
non-verbal expressions which include expressive lights, sound, motion, and vibration.
For the robots that are equipped with mechanical arms, the e�ects of motions or
gestures of such arms are not considered in this thesis research.

1.2 Motivation

The above challenges attracted me when I had read through a number of literatures
related to social interactions in human-robot interaction (HRI). Many studies seemed to
rely on human-like features for their robots to communicate and interact with humans.
Such a way of thinking made sense because social cues in humans are indeed powerful.
However, human-like features can hardly be applied to and may be inappropriate for
appearance-constrained robots. Firstly, most appearance-constrained robots have
limited ways of social communication. They are not able to show facial expressions and
perform body gestures. Secondly, because of an adaptation gap [17], it is considered
that applying human-like features, including natural language communication, would
cause humans’ expectations of the appearance-constrained robots to exceed the
real capabilities of the robots and result in a negative HRI experience. For instance,
a person may expect a cleaning robot, which can only perform cleaning tasks, to
behave intelligently and perform more complex tasks if the robot is programmed to
communicate to its users using natural languages.

Therefore, I considered non-verbal expressions suitable for appearance-constrained
robots, and importantly, such non-verbal expressions shall not introduce unnecessarily
high level of anthropomorphism to the robots. I, then, asked myself the following
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question: If I focused on non-verbal expressions, what could I do with them? In other
words, what were the purposes of using non-verbal expressions for an appearance-
constrained robot? Indeed, it is particularly important for a robot to communicate its
internal states to avoid confusion and misunderstanding of humans [18]. However,
internal states could refer to di�erent categories of information, including function-
related states, a�ect or emotion, intent and so on. I realized that I was not able to cover
all the internal states in my research. Instead, I shall address the essential points which
were particularly important for appearance-constrained robots with regard to social
communication and interaction with humans. Thus, I decided to concentrate on a�ect
and intent.

I started to look for theories and methods that could be used to design e�ective
non-verbal expressions which could be appropriate for appearance-constrained
robots to communicate a�ect and intent. Unfortunately, there were only a handful
of literatures addressed on such topics. At that time, HRI researchers just began
to realize the importance for functional robots (appearance-constrained robots) to
communicate a�ect. Due to practical reasons, designing new robots or making
physical modi�cations on the robots were not preferred [19]. Therefore, researchers
tried to �nd e�ective non-verbal modalities which could be easily implemented to
the appearance-constrained robots, that were currently-in-use, without physical
modi�cations. With such considerations, previous work remained in the exploratory
stage of investigating relationship between non-verbal expressions and perceived
emotions [20]. Thus, I wished my research could deepen our understandings on the
design of non-verbal expressions and push the research to a next stage in which we
could use a systematic framework to study the e�ects of the non-verbal expressions on
humans’ behavior.

1.2.1 Research Question

Therefore, I decided the following primary research question:

How to design e�ective non-verbal expressionswhich allow an appearance-
constrained robot to communicate a�ect and intent to humans?
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This research question is broad. It could cover a range of challenges within
HRI. Basically, there was yet no established ground knowledge with regard to the
relationship between non-verbal expressions of a robot and human perception and
interpretation. Besides, there lacked knowledge on the topic of communicating a�ect
and intent using non-verbal modalities (other than facial expression and gesture). Thus,
to address di�erent aspects of the general research question, three speci�c questions
were decided as follows:

• RQ1: How do people perceive and interpret non-verbal expressions from a robot
and what are the in�uences of the expressions on people’s decision-making and
behavior?
Because humans are social beings, we are good at interpreting others’ behaviors.
For instance, we can understand what others said and read their facial expressions
and gestures. HRI researchers have been making use of such capabilities of
humans to design natural interaction experiences for human-shaped robots.
However, with regard to appearance-constrained robots, we, as naïve users, do
not know how to interact with them since we do not have mental models and
knowledge of such robots. Therefore, the non-verbal expressions shown from
these robots are not intuitive and can be very di�cult to understand. Hence, to
design e�ective non-verbal expressions for appearance-constrained robots, I
need to �rst understand how do people perceive and interpret the non-verbal
expressions from appearance-constrained robots.

Besides, a further question that closely related is asked: what are the in�uences
of the expressions on people’s decision-making and behavior? Basically, people
make decisions on the basis of their knowledge and understanding of what is
happening at the time and what may be the consequences of the decision in the
future. Therefore, their perception and interpretation of a robot’s expression and
behavior can in�uence their decisions of interaction behavior e.g. response
behavior to the robot. Hence, �ndings from this research question can provide
HRI researchers with important knowledge of how to design robot expressions
and behaviors to a�ect human decision-making and behavior and thus achieve
desired interaction goals.

• RQ2: How to design non-verbal expressions for an appearance-constrained
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robot to show a�ect?
To achieve certain level of social interaction to humans, robots need to express
their a�ect to their interlocutors. Such a task is much easier for a robot if it has
the ability to communicate human-like expressions, e.g. facial expression, as such
human-like expressions are intuitive to us and can be well understood. However,
a�ective expression can be a very di�cult task for appearance-constrained robot
since such robots lack methods of social interaction. Therefore, an appearance-
constrained robot has to consider alternative non-verbal modalities, e.g. light,
sound, and motion. With such constrains, it is challenging to �nd e�ective
designs for appearance-constrained robots to communicate a�ect using these
modalities. A di�cult point is that there is yet no established theories with
regard to people’s attribution of a�ect of the non-verbal expressions using light,
sound, or motion. Hence, I hope that �ndings observed from this research
question would o�er useful knowledge as building blocks and contribute to
future research in a�ective HRI.

• RQ3: How to design non-verbal expressions for an appearance-constrained
robot to communicate its intent?
In addition to emotions, it is also important for appearance-constrained robots to
communicate their intent. It is because that humans are able to better coordinate
their behavior and response to the robot if they understand what it is doing and
what it wants to do. Particularly, in contexts such as human-robot co-work, it
can signi�cantly improve task performance if a robot is able to communicate its
intent to its partners. However, similar as a�ective HRI, it is challenging for
appearance-constrained robots to convey intent as such robots lack e�ective
communication methods. Therefore, in this dissertation, I explore alternative
ways that I make use of lights for a robot to show gaze information. Findings
from this research question provide design implications that can be bene�cial to
HRI researchers.

Particularly, I consider RQ1 an essential question since understandings of people’s
perception and interpretation of the non-verbal expressions could be served as
ground knowledge for further investigation on RQ2 and RQ3.
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1.3 Research Approach

There was huge design space to explore with regard to �nding good designs of
non-verbal expressions. For each non-verbal modality, it was essential to reduce the
parameter space by focusing on a set of core parameters instead of trying to touch
each possible parameter. I referred to the typical design thinking approach which
suggests a �ve-stage model: emphasis, de�ne, ideate, prototype, and test 1. To me, I did
not need to strictly follow this �ve-stage model since my work was not positioned as
application-oriented and my experimental participants were not necessarily to be
actual users. However, the design thinking approach o�ered me a powerful guide to
e�ciently explore and reduce the parameter spaces so that I could �nd good designs
of non-verbal expressions without spending much time on testing out too many
unnecessary design alternatives.

In general, I began with reading through related literatures. Such literatures came
from multiple disciplines, including human-computer interaction (HRI), psychology,
social science, cognitive science, a�ective computing, HRI, and so on. The reason
for this was simple: HRI, as a general �eld, was multi-disciplinary and lacking of
fundamental theories and methods. Theories and knowledge were needed to form valid
assumptions for establishing and formalizing e�cient design spaces. Other methods,
in addition, were also considered at this stage such as performing brainstorms and
discussions among group of designers. When design space was decided, I started to
build (robotic) systems with prototypic non-verbal expressions, followed with an
evaluation stage in which human participants were recruited and tested on with
the prototypic expressions. On the basis of the observations and analyses from the
evaluation tests, I further improved my designs and/or reported my �ndings.

1Five Stages in the Design Thinking Process. https://www.interaction-design.org/literature/article/
5-stages-in-the-design-thinking-process, (Accessed November 5, 2018).

https://www.interaction-design.org/literature/article/5-stages-in-the-design-thinking-process
https://www.interaction-design.org/literature/article/5-stages-in-the-design-thinking-process
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1.4 Research Methods and Techniques

1.4.1 Live vs. Video-Based HRI

User test is considered an essential part of a typical HRI study. Because most HRI
research aims at practical applications, it is particularly important for researchers to
test their hypotheses and systems on potential human users. Hence, user study is used
as an experimental method in this dissertation. However, with regard to user study in
HRI, it can be categorized into two di�erent approaches: live HRI and video-based HRI
[21].

Live HRI refers to the HRI studies in which a human participant is actually
interacting with a robot, meaning that both the participant and the robot are spatially
located at a same place. In a video-based HRI study, however, a participant does
not spatially share a same place with a robot. The robot’s behavior and actions are
pre-recoded and saved as video �les. The participant is, thus, usually required to watch
the videos and give his or her impressions of the robot. Both of the two approaches are
considered having their own merits. A Live HRI test can well simulate a practical HRI
scenario and allows its participants to interact with the robot via di�erent means such
as verbal communication and physical contact. However, such experiment settings
require the development of reliable and safe robot systems, which can cost much time
and money. With regard to this point, video-based HRI is considered a methodology in
place where low cost trial studies could be piloted and tested.

Therefore, here comes a question: Is �ndings from studies that results obtained
from the same HRI scenarios in trials using live and video-based HRI approaches
comparable? If the answer is yes, then I can use video-based HRI method to conduct
low cost and fast trail tests without the need of developing and executing full live
experiments. Fortunately, Woods et al., [21] provided the answer, showing that
video-based methods can provide comparable results, compared to live HRI, in contexts
such as a robot approaches a person. They suggested that HRI studies could use
videotaped scenarios as opposed to live interactions for new exploratory studies.

In accordance to such �ndings, I often prefer to rely on video-based HRI and use it
as an exploratory approach to investigate research problems in which physical contact
with robots are not necessary. To conduct a video-based HRI study, there are two ways
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of choice: o�ine and online. An o�ine study refers to a traditional HRI experiment
where human participants are recruited and invited to visit the research lab. This
approach allows researchers to supervise and observe the participants’ behaviors
and reactions, leading to more reliable experimental results. However, this approach
is not appropriate if researchers wish to obtain data from a large sample pool in a
short time period with low cost. In such situations, researchers, instead, can employ
online approaches such as crowdsourcing. Although data obtained from online studies
lack reliability, low reliable results could be screened using several reliability-check
methods [22, 23].

1.4.2 Quantitative vs. Qualitative Approaches

There exists two types if data that fundamentally distinct from each other: qualitative
and quantitative. With regard to data analysis approaches in HRI (as well as in other
�elds, e.g. HCI and psychology), qualitative and quantitative methods are often
discussed and both their advantaged and disadvantages are compared. Basically,
quantitative data refers to numbers (data in numerical form) whereas qualitative
data refers to the data in other forms, such as words, text, photographs, and sound
recordings. It is generally considered that quantitative data is hard, rigorous, credible,
and scienti�c, whereas qualitative data is sensitive, nuanced, detailed, and contextual 2.

It is suggested that a number of important questions should be considered before
making decision of choosing between quantitative and qualitative approaches [24]:

• Do you want to generate new theories or hypotheses?
By doing qualitative research, researchers are able to become more experienced
and obtain more knowledge and understandings with the research problem. With
regard to the research problems in which ground theories and knowledge are not
well established, qualitative approach can help a researcher with jumping into
the real phenomenon and getting direct experience. By doing so, the researcher
is able to formulate his or her own perspectives on the research questions. This,
hence, contributes to the originate of new theories and hypotheses. However,

2Qualitative vs. quantitative research. https://www.simplypsychology.org/qualitative-quantitative.
html, (Accessed November 5, 2018).

https://www.simplypsychology.org/qualitative-quantitative.html
https://www.simplypsychology.org/qualitative-quantitative.html
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when tentative theories and hypotheses are formulated, quantitative approach
can be then applied to test on them.

• Do you need to achieve a deep understanding of the issues?
It is suggested that qualitative research is particularly important for investigating
complex problems. Qualitative approach allows a researcher to deeply understand
how people think about these issues because qualitative methods such as
interview and dairy are able to acquire detailed information with regard to
people’s subjective opinions and experience.

• Are you willing to trade detail for generalizability?
As discussed above, qualitative research helps a researcher to get detailed
information with regard to a research problem. However, such data is raw
and seldom pre-categorized. Particularly, the data obtained from qualitative
approaches is very subjective, meaning that �ndings from the results can highly
depend on the participants recruited for the experiment. Since the sample size
of a qualitative research is usually small, the experimental �ndings are not
very reliable and can hardly be generalized to common cases. To the contrary,
quantitative research can be used to obtain general �ndings, although it has to
trade detail for generalizability.

In this dissertation, I applied both of the two analysis methods. In some cases, my
hypotheses are formalized on the basis of previous literatures and existing theories.
Hence, quantitative research is used to test the hypotheses as well as check whether
the hypotheses can be generalized to common cases in HRI. However, in some other
cases where ground knowledge is lacked, qualitative research is applied to explore the
research problems and seek deep understandings of the phenomenons. Besides, in
some studies, both quantitative and qualitative approaches are combined. This allows
me to take advantage of the both methods and obtain a holistic understandings of the
research issues.
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1.5 Related Work

1.5.1 Human-Robot Interaction (HRI)

The word of “robot" originates from the Czechoslovakian word robota which has
the meaning of work [25]. In early history of human beings, such as ancient Egypt,
Greece, and China, people made automatic mechanical creatures to assist in wars
and manufacturing [26]. More recently, Azimov’s Laws of Robotics, mentioned in
his science �ction literature, has been considered as the �rst design guidelines for
HRI. Basically, early robot implementations were aimed at replacing human works to
perform tasks in dangerous scenarios. Till now, most robots exist are deployed in
industries to improve production e�ciency and reduce labor cost.

However, in the last decade, we have witnessed an enormous increase in social
robots. Di�ering from those industry robots, social robots are expected to be used in
applications, such as education, health care, public service, and domestic uses, in which
humans will have direct contact with the robots. Therefore, it is becoming important
to understand how do people perceive and interact with robots and how can we design
e�ective methods of communication to facilitate the interaction between humans and
robots. According to Goodrich et al., [26], human-robot interaction is:

... a �eld of study dedicated to understanding, designing, and evaluating
robotic systems for use by or with humans.

As de�ned by the authors, the HRI problem is to understand and shape the interactions
between one or more humans and one or more robots. Particularly, evaluating the
capabilities of humans and robots and designing the technologies which lead to
desirable interactions are essential. With regard to problem domains in HRI, Goodrich
et al. [26] summarized six major application areas [see Figure 1.2(a)–(f)]:

1 Search and rescue.
A search as rescue robot is a robot that has been designed for the purpose
of rescuing people in situations such as mining accidents, urban disasters,
hostage situations, and explosions. The bene�ts of such robots include reduced
personnel requirements, reduced fatigue, and access to otherwise unreachable
areas. Example literatures can be referred to [27, 20, 19, 28].
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2 Assistive and educational robotics.
This application domain often places the robot in a peer-like or mentoring
role with the human in practice. The robots are designed and used to assist in
human’s daily lives, such as taking care of elder people or patients, or applied in
schools to assist teachers with lectures and programming practices. Related
studies can be referred to [29, 30, 31, 32, 33].

3 Entertainment.
There have been many examples of entertainment robots such as Sony’s AIBO
[34] and Ugobe’s robot dinosaur Pleo [35]. Such robots are expected to play
the role of pets to accompany humans. Other HRI-related studies in the use
of robots for entertainment include robot dance partners [36] and robot story
tellers [37, 38].

4 Military and police.
Robots belong to this category are autonomous robots or remote-controlled
mobile robots particularly designed for military and police applications. Example
application scenarios include transport, detect, and attack. These robots can be
used to improve the e�ciency of task execution and reduce casualties. Some
relevant literatures can be referred to [39, 40, 41, 42].

5 Space exploration.
Space exploration is also considered a promising research topic for HRI. We have
seen highly intelligent robots (such as popular robots R2D2 and WALL-E) that
used in space travels in various science �ction literature and movies. In practice,
robots are expected to have certain communication and social interaction
capabilities to assist astronauts with space exploration tasks and accompany
them during the long and boring period of space �ight. Related work can be
referred to [43, 44, 45].

6 UAV Reconnaissance and UUV Application.
Unmanned Air Vehicles (UAV) and Unmanned Underwater Vehicles (UUV) are
becoming to attract attention for HRI applications. They can be employed to
public uses or assist in underwater construction and maintenance [12, 46, 47].
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Besides the six domains discussed by Goodrich, there are recently other promising
applications that rapidly attracting attention from HRI researchers and practitioners
[see Figure 1.2(g)–(i)]:

7 Public service.
One of a highest pro�le HRI research recently is employing social robots to
public uses. Speci�cally, social robots are expected to be deployed to public areas,
such as shopping malls, transportation stations (e.g. train stations and airports),
and hotels, to provide information or guidance services. Previous work also
suggested that robot can attract people’s attention and curiosity [48, 32]. Many
studies can be found with regard to this research domain [33, 49, 50, 51].

8 Domestic use.
A domestic robot is a type of autonomous service robot that is particularly
used for household chores as well as health care and security. Typical examples
of such robots are Roomba (a series of cleaning robots) and Jibo (a prototype
robot which can talk with people, deliver forecasts and emails, manage calendar,
and do many things else). This is a promising application domain with a lot of
challenges as domestic robots need to share the same living space with people
and direct contact with them. Therefore, safety and privacy problems have to be
carefully addressed. Example literatures can be referred to [52, 53, 54, 55].

9 Co-working.
Di�ering from traditional industrial robots that repeatedly performing the same
programmed tasks, emerging co-working robots need to co-operate with human
workers. Hence, communication and interaction capabilities become essential.
Baxter provided an inspiring way of thinking with regard to how to design social
cues for the co-working robots [56]. Existing studies investigated how do human
workers perceive such robots and how to improve task e�ciency by shaping
social behaviors of the robots [57, 58, 59, 60].

Nonetheless, HRI, as a multi-disciplinary �eld, is still in its infancy. Ground
knowledge, including theories, empirical experience, and research methods, are
lacked. Therefore, HRI researchers are looking for theories and methodologies from
neighboring �elds such as HCI, psychology, arti�cial intelligence, cognitive science,
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(a) Search and rescue (b) Education (c) Entertainment

(d) Military (e) Space exploration (f) UAV

(g) Public service (h) Domestic (i) Co-working

Figure 1.2: Application areas of HRI

and social science. It may be potentially dangerous to directly apply other �elds’
method to HRI research as HRI studies focus on robots which are essentially di�erent
from a computer, a machine, or a person. People’s perception and attitude towards
robots can di�er, depending on their experience, culture, and beliefs. Hence, HRI
researchers have to face unique challenges like “Shall we design the robots to be
human-like or not?", “Will people treat robots as alive or just pure machinery?" and
“Can robots achieve natural communication and interaction with people?"

1.5.2 Non-verbal expressions in HRI

Nonverbal communication between people is communication through sending and
receiving wordless cues. Previous research suggested that about 80% of human
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communication is encoded in facial expressions and body movements [61]. With
regard to HRI research, many studies explored the role of non-verbal cues for a robot
to communicate internal states (e.g. intent or a�ect). As natural language processing
and related technologies are still not reliable in practical uses, non-verbal methods are
becoming to attract attention for HRI projects. Major non-verbal modalities used in
HRI (and HCI) related literatures can be summarized in the following:

• Facial expression
Facial expression is essential to social communication between humans. It
plays an vital role in interpersonal relationships as it puts verbal utterances in
context and also tells a lot about how the interlocutors feel about each other
[62]. With regard to HRI, facial expression is important for a social robot to
express emotions. Emotion recognition, expression, and emotionally enriched
communication have been intensively discussed in HRI research. Researchers
often build human-like robot faces or use embedded screens to display animated
face expressions. Related studies can be referred to [63, 64, 65, 66].

• Gesture
Gesture has been studied throughout centuries from di�erent perspectives
such as culture communication and performance studies. Basically, gestures
allow humans to communicate of a variety of feelings and thoughts, from
contempt and hostility to approval and a�ection. Therefore, gesture expressions
for human-shaped robots have received a considerable amount of attention in
HRI research. According to previous research [67], gestures can be categorized
into four kinds: iconic, metaphoric, deictic, and beat gestures. Particularly in
HRI, deictic gestures, also referred to as “pointing gestures", have been used to
shape referential communication and improve task performance [68, 60, 69].
Other work applied gestures for their robots to communicate a�ect or achieve
believable social interaction [70, 71, 72].

• Eye gaze
Eye gaze is considered a particularly important non-verbal signal, compared with
pointing, body posture, and other behaviors, because evidence from psychology
suggests that eyes are a cognitively special stimulus, with unique “hard-wired"
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pathways in the brain dedicated to their interpretation [73]. Research on gaze in
HRI generally focuses on four types of gaze behavior: mutual gaze, referential
(deictic) gaze, joint attention and gaze aversions [73]. Example literatures can be
referred to [74, 75, 76, 77].

• Expressive lights
Expressive lights, as an explicit way of communication, have been discussed
in studies across various �elds such as psychology [78, 79], human-computer
interaction (HCI) [22, 80, 81, 82], and human-robot interaction [83, 84, 85].
With regard to HRI scenarios, a majority of work focuses on human-oriented
applications because one fundamental goal of social robots is to serve people.
Expressive lights have been considered as an e�ective approach for non-verbal
communication, and such an approach is considered to be particularly useful for
appearance-constrained robots, as such robots generally have very low social
expressivity [27]. Several studies have investigated potential functional uses of
lights for robots. Related work can be referred to [83, 18, 85, 86, 87].

• Motion
Motion is considered a powerful non-verbal behavior as it can reveal details on a
person’s current physical and mental state [13]. With regard to HRI research,
motion cues are widely investigated for a robot to communicate a�ect and
intent [13, 88, 89]. In addition, motions are suggested particularly e�ective for
appearance-constrained robots to communicate social cues as such robots lack
expressive faces and bodies [27]. Other related literatures can be referred to
[90, 91, 92].

• Arti�cial sound
Depending on the di�erences in the underlying nature and the usage in HRI
research, arti�cial sounds, or semantic-free utterances, can be categorized into
four types: gibberish speech (GS), non-linguistic utterances (NLU), musical
utterances (MU), and paralinguistic utterances (PU) [93]. Arti�cial sounds can be
applied for social robots to facilitate rich communication and expression during
HRI. Example studies with regard to the use of arti�cial sound for HRI can be
referred to [94, 95, 96, 14].
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• Vibration
Vibration is mostly investigated in CHI related studies. For instance, it can be used
to convey level of con�dence of a system [97] or embedded into wearable devices
as part of navigation systems [98] or as an auxiliary modality for communicating
a�ect [99, 100]. To our knowledge, no study uses vibration as a single modality
to express emotions. The use of vibration in HRI research has received very little
attention in comparison to other modalities. Some other related literatures can
be referred to [101, 102, 103].

In this dissertation, I particularly investigate four non-verbal modalities, expressive
lights (color), motion, sound, and vibration, with a focus on expressive lights. Because
my research questions address design issues with regard to e�ective expressions for
appearance-constrained robots, anthropomorphic methods, such as facial expression
and gesture, are inappropriate. Besides, I consider the four modalities intuitive,
expressive, and could be easily implemented to most robots regardless of the shape of
the robot.

1.5.3 Interact with Appearance-Constrained Robots

Although a�ective interaction has become an active research topic in social robotics
and human-robot interaction (HRI) [15], major studies on it have been focused on
human- and animal-like robots [15, 11]. Such anthropomorphic or zoomorphic robots
are considered to have natural advantages in interacting with humans since human
users can intuitively form conceptual (or mental) models of these robots and thus
easily adapt their interactive behaviors. As a result, plenty of literature can be found
on investigating a�ective interaction modalities such as facial expressions [62, 64]),
gestures [70, 104], posture [15, 16], and gaze [105, 106].

However, there is a lack of methods that can enable appearance-constrained robots
to express a�ect and intent. Such methods are in eager need, as many currently-in-use
robots are restricted in appearance, while there is a need for them to be capable
of a�ective interaction [19]. C. Bethel et al. [19, 28, 27, 20] have been very active
regarding this issue and performed a series studies regarding non-facial/non-verbal
a�ective expressions for appearance-constrained robots. They claimed that appearance-
constrained robots are not engineered to be anthropomorphic and do not have the
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ability to exhibit facial expressions or make eye contact. It is either the limitation of
the application or cost-saving reasons that lead to such appearance constraints. They
documented the need for a�ective interaction abilities for such robots across many
di�erent �elds. For instance, [107] describe how rescue workers expected a small
tank-like robot to follow social conventions. Work by [108] provide an example of
using man-packable robots to act as a surrogate presence for doctors tending to trapped
victims. They found that the robots were perceived as “creepy" and not reassuring
when they were operated close to simulated victims. To address such issues, [20]
investigated �ve methods of non-facial and non-verbal a�ective expression: body
movement, posture, orientation, color, and sound. As evidenced by their results, they
claimed that humans were calmer with robots that exhibited non-facial and non-verbal
a�ective expressions for social human-robot interaction in urban search and rescue
applications.

Although C. Bethel et al.’s studies provide insights and a valuable mechanism for
naturalistic social interaction between humans and appearance-constrained robots,
there are several limitations, and therefore, a huge amount of work remains to be
carried out by researchers in HRI and related �elds. Their focus was mainly restricted
to application scenarios of victim assessment in the aftermath of a disaster. Accordingly,
their experimental �ndings are majorly based on human simulated victims interacting
with two types of search and rescue robots: the Inuktun Extreme-VGTV and the iRobot
Packet Scout [20]. Robots such as these two share similar features, and thus, it is hard to
say that their a�ective interaction methods can be generalized to other types of robots
such as the domestic-use cleaning robot, the Roomba. Since appearance-constrained
robots are varied in embodiment, some of the interaction methods, such as body
movement and posture, may not be applicable to some of these robots. In addition,
C. Bethel et al. did not investigate the use of color and sound to express a�ect in
depth. In their experiments, they used only blue light as an auxiliary expression to
elicit a calming response. They therefore indicated several open research questions
including “Can illuminated colored lighting e�ects be used e�ectively to convey a�ect
and for naturalistic social human-robot interactions" and “Can the use of non-verbal
sounds, tones, and/or music be used as an e�ective method of a�ect expression for a
naturalistic human-robot social interaction" [20]. These questions are explored in this
dissertation.
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In addition to C. Bethel et al.’s work, a handful of other literature has explored
the use of color and/or sound stimuli as a�ective interaction methods for di�erent
kinds of robots. [109] used colored lights for their robot WAMOEBA-1R to express
a�ect. However, no statistical data is presented in their report. [110] utilized a red
LED screen for their Sony AIBO to display a�ective expressions. [86] investigated
a novel method of expressing emotions for a simply shaped robot by dynamically
changing the color luminosity of its body. Their work addressed the e�ect of both
color and its temporal change on the emotion expression of a robot. A special example
is Kismet, developed by Breazeal [15]. Although Kismet is an anthropomorphic robot,
it employs non-facial/non-verbal a�ective expression methods for redundancy in social
interactions. For instance, it uses a vocal response to reinforce its emotional display,
such as surprise.

1.6 Contribution

Most approaches in HRI focus on anthropomorphic or zoomorphic features. It is yet
unclear how can an appearance-constrained robot communicate and interact with
humans in a social manner. Because communication cues, such as natural language an
facial expression, are considered not appropriate for appearance-constrained robots, a
handful of studies explored alternative non-verbal expressions such as expressive light,
motion, and sound. However, their �ndings remain at an exploratory stage. Hence, this
work focuses on a systematic investigation on designing and evaluating non-verbal
expressions for appearance-constrained robots. The dissertation can be served as
important groundwork for designing communicative non-verbal expressions especially
for (but not limited to) appearance-constrained robots which lack expressivity.

Many other studies only investigated e�ects of single modality, whereas I assume
that better performance might be achieved if multiple modalities are used. In this work,
I investigate four di�erent communication cues, light, motion, sound, and vibration,
among which I consider expressive lights is a preliminary one. However, particularly
with regard to a�ective HRI, I decide to evaluate and compare the performance among
di�erent combinations of multiple modalities. Findings from the experiments o�er
evidence that multi-modal expressions could achieve an overall better performance of
communicating emotions, and this contribution could provide �exibility with regard to
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choosing appropriate non-verbal cues in accordance with the hardware con�guration
of a robot.

Besides, it is suggested that the goals of using non-verbal expressions on social
robots can be summarized by the three I’s: Inform, In�uence, and Interact [18].
However, existing literatures mainly touched on the �rst component only, and the other
two components, in�uence and interact, have seldom been investigated. Therefore, I
found it important to investigate how do humans perceive and interpret di�erent
non-verbal expressions from an appearance-constrained robot, and moreover, how will
the expressions in�uence people’s decision-making and behavior. This dissertation,
hence, provides both theoretical and empirical knowledge as building blocks for more
sophisticated and interaction-oriented HRI.

1.6.1 Papers Included in the Dissertation

Below is a list of articles that jointly answer the research questions. I have marked
which papers refer to research questions RQ1, RQ2 and RQ3.

• Paper 1: Sichao Song and Seiji Yamada. Ambient Lights In�uence Perception
and Decision-Making. (RQ1)

• Paper 2: Sichao Song and Seiji Yamada. 2018. Bioluminescence-Inspired Human-
Robot Interaction: Designing Expressive Lights that A�ect Human’s Willingness
to Interact with a Robot. In Proceedings of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction (HRI ’18). ACM, New York, NY, USA,
224-232. (RQ1)

• Paper 3: Sichao Song and Seiji Yamada. Narrative Frame Impacts Perception
and Interpretation of Expressive Lights Shown By a Robot. (RQ1)

• Paper 4: Sichao Song and Seiji Yamada. 2017. Expressing Emotions through
Color, Sound, and Vibration with an Appearance-Constrained Social Robot. In
Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction (HRI ’17). ACM, New York, NY, USA, 2–11. (RQ2)

• Paper 5: Sichao Song and Seiji Yamada. 2018. Designing Expressive Lights and
In-Situ Motions for Robots to Express Emotions. In 6th International Conference
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on Human-Agent Interaction (HAI ’18), December 15–18, 2018, Southampton,
United Kingdom. ACM, New York, NY, USA, 7 pages. (RQ2)

• Paper 6: Sichao Song and Seiji Yamada. 2018. Designing LED Lights for a Robot
to Communicate Gaze. (RQ3)

1.7 Outline

This dissertation is organized as follows:
Chapter 2: Perception, interpretation and decision-making. This chapter presents

three studies that investigate human perception and interpretation of non-verbal
expressions as well as how will these expressions in�uence people’s behavior and
decision-making.

Chapter 3: Communicating a�ect. This chapter describes two studies that explore
how to design non-verbal expressions for an appearance-constrained robot to commu-
nicate a�ect. The two studies, together, cover four non-verbal modalities, including
light, sound, vibration, and motion. Both single- and multi-modal expressions are
evaluated and discussed.

Chapter 4: Designing communication cues. This chapter presents one study that
investigates the design of communication cues, with a focus on LED-based gaze
behavior design.

Chapter 5: Conclusion. This chapter discusses the studies presented in previous
chapters, highlights the contributions of this dissertation and recommends areas for
future research.
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2
Perception, Interpretation and

Decision-Making

This chapter reports how non-verbal expressions, particularly expressive lights,
in�uence people’s perception and behavior. Section 4.1 gives an overview of the
studies reported in this chapter. In section 2.2, I performed three experiments using a
ping-pong game, Ultimatum game, and Give-Some game. Evaluation of the results
suggested that expressive lights do a�ect human perception and decision-making.
Section 2.3 introduces a study in which I work through a structured approach to
determine the best light expression designs for a Roomba robot to show attractiveness
and hostility. In section 2.4, I conduct a mixed-methods exploration into the research
question: how naïve users perceive and interpret the meaning of expressive lights
in various scenarios? A thematic analysis reveals important �ndings that people’s
perception and interpretation of a robot’s behavior are in�uenced by three factors:
design of light expression, type of robot, and context. Section 4.3 summaries this
chapter.
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2.1 Overview

This chapter reports �ndings from three studies related to the research question
that how do expressive lights in�uence people’s perception, interpretation, and
decision-making.

The �rst study shows evidence that ambient lights in�uences people’s perception
and decision-making. Previous studies explored the design of ambient light displays
and suggested that such systems can convey information to people in the periphery of
their attention without distracting them from their primary work. However, they
mainly focused on using ambient lights to convey certain information. It is still unclear
whether and how the lights can in�uence people’s perception and decision-making. To
explore this, I perform three experiments using a ping-pong game, Ultimatum game,
and Give-Some game, in which I attach an LED strip to the front-bottom of a computer
monitor and had it display a set of light expressions. Evaluation of the results suggests
that expressive lights do a�ect human perception and decision-making. Participants
liked and anthropomorphized the computer more when it displayed light animations.
Particularly, they perceived the computer as positive and friendlier when it displayed
green and low intensity light animation, while red and high intensity light animation
was perceived as negative and more hostile. They consequently behaved with more
tolerance and cooperation to the computer when it was positive compared with when
it was negative. The �ndings can open up possibilities for the design of ambient light
systems for various applications where human-machine interaction is needed.

The second study discusses the idea of bioluminescence-inspired human-robot
interaction. Bioluminescence is the production and emission of light by a living
organism. It, as a means of communication, is of importance for the survival of various
creatures. Inspired by bioluminescent light behaviors, I explore the design of expressive
lights and evaluate the e�ect of such expressions on a human’s perception of and
attitude toward an appearance-constrained robot. Such robots are in urgent need of
�nding e�ective ways to present themselves and communicate their intentions due to
a lack of social expressivity. I particularly focus on the expression of attractiveness and
hostility because a robot would need to be able to attract or keep away human users
in practical human-robot interaction (HRI) scenarios. In this study, I install an LED
lighting system on a Roomba robot and conducted a series of two experiments. I �rst
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work through a structured approach to determine the best light expression designs for
the robot to show attractiveness and hostility. This results in four recommended light
expressions. Further, I perform a veri�cation study to examine the e�ectiveness of
such light expressions in a typical HRI context. On the basis of the �ndings, I o�er
design guidelines for expressive lights that HRI researchers and practitioners could
readily employ.

Findings of the third study reveal deep understandings and indicate that narrative
frame do impact people’s perception and interpretation. Previous studies suggested
that expressive lights, as a dynamic vision cue, can be used for appearance-constrained
robots to communicate their intent and make their behaviors explainable. However,
they focused on speci�c tasks and goals, leaving it still unknown with regard to how
naïve users perceive and interpret the meaning of expressive lights in various scenarios.
In this work, I conduct a mixed-methods exploration into this research question. The
initial exploration study suggests e�ects of light expressions on people’s valence
perception of a robot’s behavior. The results also provide empirical evidence on the
impact of narrative frame on people’s behavior interpretations. By applying a thematic
analysis, the second experiment reveals important �ndings that people’s perception
and interpretation of a robot’s behavior are in�uenced by three factors: design of
light expression, type of robot, and context. In particular, design of light expression
signi�cantly impacts valence perception while context has a powerful in�uence on
the diversity of behavior interpretation. On the basis of the �ndings, I o�er design
implications on expressive lights for HRI researchers and designers.

2.2 Ambient Lights In�uences Perception andDecision-

Making

2.2.1 Introduction

Electronic devices such as computers are widely used in our daily lives, either personally
or publicly. They are used in various applications such as education, entertainment,
and information services. In all cases, it is important for such devices to guarantee
their users a pleasant and natural interaction experience. Such an objective has become
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an important research topic in human-computer interaction (HCI) and human-machine
interaction (HMI) in general.

Many factors are related to this goal. Among them, anthropomorphism has been
considered as one key factor for interaction design as it can in�uence a user’s perception
of a device substantially. According to [111], people interact with new media in much
the same way as they interact with other people. Moreover, [112] and [113] well
demonstrated the intrinsic mechanism of humans to anthropomorphize objects. For
this reason, various studies tried to reach a more natural interaction design by using
anthropomorphism methods such as adding human-like eyes and body parts to a
device [114] or providing human-like body movements [115].

Unfortunately, these methods are not applicable to many currently-in-use devices
such as personal computers as most PCs at present use a keyboard, a mouse, and/or
a touchpad as input modalities and a display (monitor) and/or a speaker as output
modalities. It can be complex or even impractical to apply human-like design methods
to such PCs. Thus, it is important to investigate new methods that can improve a user’s
interaction experience while being simple and adequate to apply.

To address this problem, we probe an alternative modality: expressive light.
Light, as an interaction modality, has been widely studied in di�erent �elds. Many
previous studies in �elds such as psychology, HCI, and human-robot interaction (HRI)
have investigated the e�ect of light and color on human perception. For instance, a
number of researchers used expressive lights for their systems to either express a�ect
[116, 117, 118] or convey certain information [22, 18, 85]; a handful of papers discussed
a�ective modulation using light and color [117, 119].

Particularly with regard to HRI related studies, expressive lights have been
considered as e�ective dynamic vision cues for appearance-constrained robots to
communicate internal states and intent. Similar to a computer, such robots are neither
anthropomorphic nor zoomorphic. The lack of expressiveness makes these robots’
behaviors hard for people to understand. Therefore, HRI researchers explored the use
of expressive lights in various contexts to indicate internal states [18], communicate
intent [85], and express emotion [120].

In addition, expressive lights can be seen as a calming technology [121]. Systems
that use light to convey information on the periphery of human vision are de�ned as
ambient light systems [81]. Users of such systems can perceive information encoded
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in the lights while maintaining focus on main tasks. Basically, it is suggested that
expressive lights can be used to convey the information of four classes: progress, status,
spatial, and noti�cation [81]. In particular, [122] designed an ambient light display
system named “Lighten Up." They built a four-side frame equipped with individually
controllable LEDs and mounted it to the back of a computer monitor. Further, they
explored the design space with 42 light patterns and found that users prefer their
ambient light system over an on-screen display.

Despite the promising results, previous work mainly focused on informing users
of certain information, e.g., progress on tasks or noti�cations. It is still unclear
whether and how expressive lights can in�uence people’s perception, behavior, and
decision-making. This is important as today’s computers are becoming more versatile
in various applications, such as for entertainment, education, business, and even social
interactions. As a result, ambient light display systems used for di�erent applications
may have the potential to a�ect their users’ psychological functioning and behaviors,
either explicitly or implicitly. This will push forward the design of the systems toward
a more ambitious goal: interacting with users.

To explore this, in this work, we attached a programmable LED strip to the
front-bottom of a monitor [123]. On the basis of previous work [124], we assumed that
such a monitor placement is within a user’s peripheral visual �eld and thus will not
distract him or her. Figure 2.1 shows an overview of our system. We worked through a
structured process to investigate our research question: whether and how expressive
lights can a�ect people’s perception and behavior towards a computer.

We divided our approach into two parts. In study 1, we developed a PingPong
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game for carrying out an experiment. We designed a set of LED light animations for
various events that happen during the game, e.g., the racket hitting the ball, the racket
hitting the walls, and game over. We collected experiment data by using a post-game
questionnaire and game log data. The goal of this study was to observe whether adding
expressive lights to game playing can in�uence people’s attitude and performance of
the game. Moreover, we were interested in whether such lights can further impact
people’s perception of the computer itself. Results of study 1 was reported in [123].

To further investigate e�ects of expressive lights on people’s perception and
decision-making, we performed a series of two more studies. In study 2, we introduced
two games, the Ultimatum game and Give-Some game. Di�ering from the PingPong
game, these two games require people to make economic decisions and thus can be
used to measure human altruistic behavior [125]. During each game, the LED strip
displayed pre-designed light animations together with the proposals o�ered by the
computer. We collected experiment data by using post-game questionnaires and game
logs. The goal of this study was to explore whether and how expressive lights can
in�uence people’s decision making toward the computer.

Findings from both studies together will contribute to deeper understanding of the
e�ects that expressive lights have on humans and further open up possibilities for the
design of ambient light systems for various applications.

2.2.2 LED Strip Light Animation

[18] used expressive lights to reveal their mobile service robot’s states. As we used the
same LED strip, an Adafruit NeoPixel strip with 144 programmable LED pixels per
meter, we adapted the light animation pattern de�nitions from their work. In order to
�t the width restriction of our monitor, we used a half meter of the LED strip (72
pixels) [123].

We de�ne an animation A(t) of 72 pixels as a time-varying 72 × 3 matrix of color
intensities:
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A(t) =
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(2.1)

,
where the rows represent the indices of pixels and the columns represent the three

color channels r , д, and b. The intensity values are the values of the three channels,
respectively:

∀ : 0 ≤ ijck ≤ 255j = 1, · · · , 72; ck = r ,д,b (2.2)

2.2.3 Study 1

Method

Experiment Design We developed the ping-pong game using Processing. Figure 2.2
shows di�erent game screens: an initial screen, ready-to-start screen, in-game screen,
and game-over screen. We set the goal of the game as to bounce the ball (moving
the racket by mouse) to reach a high score. Four di�culty levels were designed by
setting di�erent racket lengths and horizontal forces on the ball when it hits the racket
to meet the participants’ di�erent gaming abilities. Basically, we designed di�erent
scoring metrics with regard to the di�culty levels, where a player get 1 point each
time the ball hits the racket in the easy mode, 2 points in the medium mode, 5 in the
hard mode, and 10 in the hell mode. We observed �ve events in the ping-pong game:
waiting for game to start, ball hits racket, ball hits wall, playing, and game over. Each
event was coded uniquely, and the corresponding code was sent to an Arduino board
to control the LED strip to display event-triggered light animations on-the-�y.

Figure 2.3 illustrates the setting of the experiment environment. Basically, a
notebook PC was used to run the ping-pong game software developed in Processing. A
monitor was connected to the notebook PC to display the game. During the experiment,
the notebook PC’s cover was kept closed, and the game was played via the monitor in
full-screen mode. A NeoPixel LED strip was attached to the bottom side of the monitor.
The LED strip was controlled by an Arduino UNO board and powered by a 5-V, 10-A
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Figure 2.2: Four screen shots of ping pong game

AC adaptor. It needs to be clari�ed that the image in Figure 2.3 was taken in a dark
environment for the purpose of showing the light e�ect clearly. The actual experiment
was done in a bright environment.

Design of Light Expressions On the basis of the de�ned animation space 2.1, we
designed a set of four parameterized light animation patterns: sinusoidal, triangle,
swipe, and random (see Figure 2.4). Patterns (a)(b) consist of two basic periodic
waveforms, sinusoidal and triangle, and (c)(d) are patterns based on the whole LED
strip. The parameters Imin and Imax are the minimum and maximum intensity values
for the RGB color channels, and duty ratio D is the ratio of the rise time to period T.
Table 2.1 demonstrates the set of light animations for each game event. Particularly,
the light animation for the game-over event consists of both a sinusoidal pattern (�rst)
and random pattern (after).

We tried to design the light animations to match with their corresponding events.
For instance, we assumed that people would be calm when they were waiting for the
game to start. Therefore, we chose a sinusoidal waveform with low intensity (2-second
period) to match with this event. Oppositely, we presumed that people would be
aroused and probably be upset and annoyed when they missed the ball (the goal was to
bounce the ball by moving the racket). We thus used high intensity lights (0.2-second



2.2 Ambient Lights In�uences Perception and Decision-Making 31

NeoPixel LED strip

note PC

5V 10A AC adapter

Arduino board

Figure 2.3: Setting of experiment environment

Table 2.1: Set of light animations for each game event

Light Ani-
mation

Period (T,
second)

Duty
Ratio (D) Imin Imax Event

sinusoidal 2 − RGB: 0,0,0 RGB:
255,255,255

waiting for game
to start

0.2 − RGB: 0,0,0 RGB: 255,0,0 game over

triangle 0.6 60% RGB: 0,0,0 RGB: 0,255,0 ball hits racket
0.6 60% RGB: 0,0,0 RGB: 0,0,255 ball hits wall

swipe − −
RGB:

255,255,255
RGB:

255,255,255 playing

random − −
RGB:

100,100,100
RGB:

255,255,255 game over

period) to match with this event.

Procedure We recruited twenty-two Japanese in total (9 males) for the experiment.
Their ages ranged from 20 to 38 years old (M = 28.09, SD = 6.23). We designed two
between-subject conditions: one with light animation and one without light animation.

Basically, the experiment was designed in two phases: a practice phase and a
compete phase. In the practice phase, each participant practiced the game freely with
access to all four di�culty levels. No time limit was given, so they were able to end the
practice phase at any time when they felt comfortable with playing the game. In the
compete phase, each participant selected one di�culty level only and played three
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Figure 2.4: Set of light patterns we designed for ping pong game

rounds with regard to this di�culty level. His or her �nal score was decided as the
highest score among the three rounds.

The participants were �rst welcomed by an experimenter and asked to sign some
administrative documents. After this, the experimenter explained the ping pong game
to the participants. They were asked to practice the game freely with no time limit
before they were ready to “compete" with the others. When the participants thought
that they had su�cient practice, they were then required to choose one di�culty mode
and play three rounds in the same mode.

Measurement We carefully designed our post-questionnaire on the basis of [60, 126,
127]. It consisted of 22/21 items in total regarding the two experiment conditions
with/without LED light animation. The questionnaire used for the with-LED condition
contained one more question, “Did you notice the LED light animation?", to check for
manipulation. Each questionnaire had three types of items: yes/no questions, 7-point
Likert-scale questions, and open questions, where 7-point Likert-scale questions were
used the most (18 items). The yes/no questions were used to check for manipulation
and for participant-related information.

In particular, the 7-point Likert-scale questions were designed with four main
categories: Participant’s

• perception of game - included questions such as “Do you like this game?" and
“Have you enjoyed playing the game?"
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• perception of computer - included questions such as “How much fun did you
have using this computer?", “Do you feel close to the computer?", and “Do you
think the computer is alive?"

• rate of his or her gaming performance - included questions such as “Do you
think you are good at this game?" and “How competitive do you think your
score is compared with others?"

• rate of his or her perceived workload - included questions such as “Did you
feel tired when playing the game?" and “Did you feel pressure during the game?"

Results

We checked if the participants were familiar with the game. Half of the participants
(11 out of 22) answered that they had played similar games before the experiment.
However, this would not a�ect the experiment results as we asked the participants to
freely practice the game with no time limit before the formal test. We also checked
if the participants perceived the game to be di�cult by using a Mann-Whitney U
test. No signi�cant di�erence was found between the two experiment conditions
with/without LED light animation (with light animation: 5.45; without light animation:
5; Z = 0.37; n.s.). Besides, we checked if the selected di�culty level of game impacted
the results. Most of the participants chose easy and medium mode and only 3 of them
chose hard and hell mode. No evidence was found that selected di�culty level a�ected
the experiment results. In addition, no signi�cant di�erence was found between the
two conditions with regard to average practice time (with light animation: 1m 46.5 s;
without light animation: 1m 39.5 s; Z = 0.24; n.s.).

Table 2.2 summarizes the evaluation results. The participants in the with-light-
animation condition liked playing the game signi�cantly more than those in the
without-light-animation condition. They also liked and anthropomorphized the
computer more. However, there was no signi�cant di�erence between the two
experiment conditions in terms of subjectively rated performance and perceived
workload. Therefore, there is no evidence suggesting that using light animation would
a�ect the participants’ subjective ratings of their gaming performance and cause
them extra frustration and stress. The �nal score also shows no signi�cant di�erence
between the two conditions.
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Table 2.2: Summary of evaluation results
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Discussion

The results suggest that using light animations to improve a user’s experience with
using a computer is promising. Speci�cally, we show that light animations can have
a positive e�ect on a user’s perception of a computer. This method is simple and
therefore can be readily used to currently-in-use devices, e.g., computers, as lighting
components such as LEDs can be easily embedded to them.

Our results reveal the interesting phenomenon that people anthropomorphize
devices more when they include light animations. Although the link between light
animation and anthropomorphism is unclear, we envision that expressive lights can be
applied to intelligent devices and machines that require a�ective interaction abilities.
This would not only improve the user experience with such devices but also facilitate
in achieving more harmonious interactions with people.

In this work, we mounted an LED strip to the front-bottom of a monitor on the
basis of previous studies on peripheral cognition technology [124]. Our results indicate
that setting an LED strip in such a way may not have a negative e�ect on a user’s task
performance and lead to an increase in workload. Thus, such a setting is recommended.
However, other settings such as the positions and number of LED strips used to display
light animations need to be further explored.

2.2.4 Study 2

Design of Light Expressions

Previous research [128] claimed that color meanings can be grounded in two sources:
learned associations that develop from repeated pairings of colors with particular
concepts or experiences and biologically based proclivities to respond to particular
colors in particular ways in particular situations. For instance, a speci�c red-danger
association can be generated from experiences with regard to (life-threatening)
situations such as viewing blood, an angry face, tra�c lights, and/or warning signals
and sirens [129]. Similarly, green can be associated with positive meanings, e.g.,
approach and pleasure, due to experiences with green tra�c lights and the general
image of being the color of the natural. Besides, [86] studied color and dynamic
parameters for representing emotions. They found that a rectangular waveform with a
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high frequency represents intense emotions, while a sinusoidal waveform with a low
frequency represents weak (low intensity) emotions.

In this study, we chose two colors: green and red. They are able to produce opposite
e�ects on human psychological functioning. In general, green can be associated with
positive perception, while red can be associated with negative perception. Further, we
combined a sinusoidal waveform and a low frequency with green to enhance the
e�ect of the color green. Similarly, we combined a rectangular waveform and a high
frequency with red to enhance the e�ect of the color red. As a result, we design two
light expressions: GL (green, low frequency, and sinusoidal waveform) and RH (red,
high frequency, and rectangular waveform). Table 2.3 lists the two expressive lights.

Method: Ultimatum Game

Experiment Design There are two players in the Ultimatum game [130, 131]: a
proposer and a receiver. They are given the opportunity to split an amount of money.
The proposer makes an o�er as to how this money should be divided. The receiver can
choose to either accept or reject this o�er. If the receiver accepts the o�er, the money is
split according to the proposal. If the receiver rejects, neither player receives any
money. In either case, the game is over.

Conventional human decision-making theories suggest that most humans, as
rational agents, would accept any non-zero o�er to maximize the bene�t. However,
recent research has revealed that people tend to reject lower o�ers (p<30% of the
amount of money) [130, 131]. It appears that people perceive such o�ers as unfair, and
the negative emotions evoked by the unfair o�ers can lead people to sacri�ce �nancial
gain in order to punish their partner. In this work, we applied the Ultimatum game to
observe the behavior of human players towards non-human–i.e., computer–opponents.
Speci�cally, we wanted to see how their tolerance to unfair o�ers changed when the
computer showed di�erent light animations.

Procedure Twenty Japanese individuals (10 males, 10 females) ranging from 21 to 38
years old (M = 28.9, SD = 4.66) were recruited for the experiment. The experiment had
a 3 (Light Animation: GL vs. RH vs. without light animation) × 4 (O�er: 50%50% vs.
70%30% vs. 80%20% vs. 90%10%) within-participant design.
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Table 2.3: Set of light animations for each game event

Light Ani-
mation

Period (T,
second)

Duty
Ratio (D) Imin Imax Expected E�ect

sinusoidal 1 − RGB: 0,0,0 RGB: 0,255,0 induce positive
perception

rectangle 0.2 50% RGB: 0,0,0 RGB: 255,0,0 induce negative
perception

The experimenter welcomed the participants, explained the game, and gave
instructions. Each participant completed a total of 36 rounds (each combination of the
levels of the two factors was repeatedly shown three times within the 36 rounds).
Since the rounds were presented randomly, there was almost no learning e�ect. The
computer showed a black screen for four seconds after each round, and the participants
were asked to treat each round as an independent game. The total amount of money
was set to 1000 Japanese yen, which is roughly equal to 10 US dollars.

Results We checked if the participants were familiar with the game. None of the
participants answered that they had played similar games before the experiment.

An aligned rank transform (ART) for nonparametric factorial data analysis was
conducted to determine the e�ect of two independent factors (light animation vs. o�er)
on the acceptance rate as a dependent factor. Signi�cant di�erence was found in the
main e�ect of the type of o�er [F(3, 209) = 128.25, p<0.001, η2p = 0.57]; see Fig. 2.5(b).
This is expected, as previous studies have indicated that the lower the o�er, the lower
the acceptance rate [130]. Signi�cant di�erence was also found in the main e�ect
of type of light animation [F(2, 209) = 4.57, p<0.05, η2p = 0.02]; see Fig. 2.5(a). The
Tukey least-squares-means test showed that participants accepted o�ers made when
the computer displayed GL more than when it displayed RH (p=0.0623, marginally
signi�cant) or no light animation (p<0.05), but no signi�cant di�erence was found
between when the computer displayed RH and no light animation. No signi�cant
di�erence was found in the interaction e�ect.
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Figure 2.5: Results of the Ultimatum game

Method: Give-Some Game

Experiment Design In the Give-Some game, each participant is given four tokens,
each worth a certain amount of money to the participant if he or she keeps it, but more
if given to the partner. Therefore, maximal cooperation and communal gain occur if
each participant gives all four tokens to his or her partner, while maximal individual
gain accrues to someone who keeps all four tokens to him- or herself and receives all
four tokens from his or her partner [132].

In this work, we applied the Give-Some game to observe the behavior of human
players towards non-human opponents (i.e., computers). We adapted the original
game to our study. Speci�cally, maximal cooperation (i.e., trustworthy) behavior is
observed if a participant gives all four tokens to the computer, while maximal sel�sh
(i.e., untrustworthy) behavior is observed if a participant keeps all four tokens to his-
or herself [132].

Procedure The same twenty Japanese who were recruited for the Ultimatum game
experiment also participated in this experiment (after a short break). The experiment
had a 3 (Light Animation: GL vs. RH vs. without light animation) within-participant
design.

Each participant completed three rounds (each level of the light animation factor),
and the rounds were presented randomly. The computer showed a black screen for
four seconds after each round, and the participants were asked to treat each round as
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Figure 2.6: Results of Give-Some game

an independent game. Each token was set to be worth 100 Japanese yen, which is
roughly equal to 1 US dollar.

We also designed a post-game questionnaire to investigate the subjective perception
of the participants on the LED light animations. The questionnaire contained both
yes/no questions and open questions. The yes/no questions, such as “Have you played
this kind of games before?", were mainly used to �nd out about the manipulation. The
open questions include questions such as “How did you think of the computer when it
showed green/red light?" and “Please write down your comments on this game."

Results We checked if the participants were familiar with the game. None of the
participants answered that they had played similar games before the experiment.

Non-parametric Friedman tests were conducted to determine the e�ect of the
independent factors (light animation) on the two dependent factors (number of tokens
given to the computer and number of tokens expected from the computer). Light
animation had a signi�cant e�ect on the number of tokens given to the computer
(Chi-square = 16.21, p<0.001, η2p = 0.11); see Fig. 2.6(a). Wilcoxon signed-rank test
with Holm’s correction posthoc analysis showed that participants gave tokens to
the computer when it displayed GL more than when it displayed RH (p<0.05). We
also found that light animation had a signi�cant e�ect on the number of tokens
expected from the computer (Chi-square = 7.32, p<0.05, η2p = 0.07); see Fig. 2.6(b).
Wilcoxon signed-rank test with Holm’s correction posthoc analysis also showed that
the participants expected more tokens from the computer when it displayed GL than
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Table 2.4: List of adjectives used by participants to describe the light animations.
Numbers in parenthesis indicate number of participants who gave comments.

Green & low
intensive Red & high intensive No light animation

Description

friendly (12), calm
(9), gentle (6),

smiling (1), beautiful
(1), kind (5), alive (2)

angry (14),
oppressive (6),

feeling of tension (2),
warning (7),

challenging (3),
dangerous (3)

normal (20)

when it displayed RH (p<0.05) or no light animation (p=0.0845, marginally signi�cant).

Post-Game Questionnaire

Analysis of the post-game questionnaire showed that 17 out of 20 participants used
contrasting descriptions for the two light animations, as listed in Table 2.4. Two
participants said that they did not notice any di�erence and one indicated that the LED
lights reminded him of gambling machines.

Discussion

The results indicate that the participants anthropomorphized the computer and treated
it as a social agent, although such a process may be unconscious. They used adjectives
such as “friendly" and “angry" to describe the computer, where such descriptions are
generally applied to humans. Interestingly, the participants were more willing to
accept unfair o�ers (the Ultimatum game) and were more cooperative (the Give-Some
game) when they formed positive impressions of the computer compared with negative
ones. This shows strong evidence that expressive lights a�ected the participants’
perception of the computer and, more importantly, in�uenced their decision-making
towards the computer’s o�ers.

2.2.5 Discussion

The two studies reveal signi�cant results regarding the e�ect of expressive lights
on human perception and behavior. The results of the PingPong game experiment



2.2 Ambient Lights In�uences Perception and Decision-Making 41

showed that the participants preferred the computer displaying event-driven light
animations and anthropomorphized it more, although the light animations were
not exactly designed to express a�ect. However, it was not clear whether and how
such a variation in perception can actually change people’s attitude and behavior
towards the computer. Therefore, we performed two more experiments, the Ultimatum
game and the Give-Some game (both widely used in many �elds to study human
decision-making mechanisms). We found that the participants had positive impressions
of the computer when it displayed green and low intensity light animation but negative
impressions when it displayed red and high intensity light animation. Speci�cally, the
participants were more willing to accept unfair o�ers (the Ultimatum game) and were
more cooperative (the Give-Some game) when they formed positive impressions of
the computer compared with negative ones. Our analysis of the post-experiment
questionnaires con�rmed these �ndings, as indicated by the participants using positive
adjectives such as “friendly" and “kind" to describe the computer when it displayed
GL and negative adjectives such as “angry" and “oppressive" when it displayed
RH. We conclude that expressive lights can be an e�ective modality that facilitates
human-machine interaction.

Our results suggest that color has strong e�ect on people’s perception and decision-
making. Basically, color psychologists have being focusing on red and green since
such colors have been considered to be special and have positive links in the natural
realm. [128] claimed that each color activities associations that contain psychologically
relevant messages. Therefore, viewing a color can in�uence psychological functioning
and foster motivational and behavioral process such as approach and avoidance. Red
can be associated with danger and anger and further induce avoidance-like behavior in
people, whereas green carries positive meanings and can further induce approach-like
behaviors.

We summarize our �ndings as three general design implications:

I. Event-driven light displays can increase people’s experience of using a computer.

II. People have positive impressions of and further act approach-like behavior to a
computer when it shows green light (combined with a sinusoidal waveform and
a low frequency).

III. People have negative impressions of and further act avoidance-like behavior to a
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computer when it shows red light (combined with a rectangular waveform and a
high frequency).

It should be noted, however, that such design implications, especially II and III, may
depend on people’s attribution of a computer. Although most participants in our
experiments attributed agency to the computer when it showed light displays, a few of
them did not perceive any di�erences. E�ect sizes of signi�cant results of study 1
are fairly large, suggesting that event-driven light animations can have strong and
positive in�uence to people’s experience of using a computer. However, e�ect sizes of
signi�cant results of study 2 are overall small, indicating that e�ects of light animations
on people’s decision-making may not be very strong and reliable. Therefore, future
research and applications may take user’s personality into account.

The �ndings can open up possibilities for the design of ambient light systems
for various applications. Previous studies with regard to ambient light displays
mainly focused on informing users of certain information, e.g., progress on tasks
and noti�cations. In this work, we show that LED lights can be applied to in�uence
people’s perception and decision-making. This e�ect can be used to support the design
of ambient light systems for di�erent applications. An ambient light system mounted
to a computer monitor can be e�ective in scenarios such as entertainment, education,
and social interaction. For instance, light animations can be designed to improve
gaming experiences and make the computer more attractive, help people to relax
and concentrate on study-related tasks, support in communicating social cues, and
in�uence people’s behavior and decision-making.

To achieve such goals, it is thus important to design appropriate expressive lights for
speci�c applications and purposes. We, in this work, mainly focused on the exploration
of the e�ects that expressive lights have on people. Therefore, we pre-designed our
light animations on the basis of the �ndings from previous work [18, 86]. We did not
intend to treat the parameters, e.g., color, waveform, and intensity, as independent
factors as this would unnecessarily increase the complexity of our studies and make
experimental results hard to explain. However, there may inevitably be concerns
about an interaction e�ect among the factors, making it di�cult to understand if the
e�ects of expressive lights are to be attributed more to a particular parameter. Thus,
future work can investigate the e�ects of individual parameters to contribute to better
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understanding of the design of e�ective light expressions.
Besides the design of expressive lights, further exploration into other factors, e.g.,

where and how to mount the LEDs, can reveal interesting �ndings and practical design
implications of ambient light systems. In this work, we mounted a programmable LED
strip to the front-bottom of a computer monitor as we assumed that such a place was
within a user’s peripheral visual �eld and thus would not distract him or her. However,
other places of the monitor and more LED strips can be investigated as well. Such
�ndings can be obtained to support the general design of ambient light systems for
various other devices such as smart home devices and robots.

Compared with on-screen displays, ambient light systems have advantages in
that they communicate in the periphery of people’s attention without distracting
them from their primary task. Previous work [122] also suggested that people would
prefer ambient light systems over on-screen displays. [81] described four information
classes, progress, status, spatial, and noti�cation, that an ambient light system can
convey. However, our �ndings show evidence that expressive light animations can be
designed to achieve more functionalities, e.g., in�uencing people’s perception and
decision-making. Therefore, future work should explore more application scenarios for
the use of ambient light systems.

2.3 Bioluminescence-InspiredHuman-Robot Interac-

tion

2.3.1 Introduction

Bioluminescence is the production and emission of light by a living organism [133]. The
majority of bioluminescent organisms reside in the ocean as about 80% of the genera
known to contain luminous species are marine, including, for instance, luminescent
�sh, e.g., mycophids and hatchet�sh, and crustaceans, e.g., copepods and krill) [134]. In
addition, bioluminescence occurs in some fungi and terrestrial invertebrates, such
as �re�ies, as well (Figure 2.7). A large number of organisms retain functional eyes
to detect bioluminescence in dark environments, which suggests the importance of
bioluminescence as a means of communication for the survival of a vast variety of
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creatures [134].
Appearance-constrained robots, in comparison, reside in a similar situation as

bioluminescent organisms. These robots are designed to be functional and lack
expressive faces [27]. Although they primarily work in bright places, their lack of social
expressivity makes it hard for them to be perceived and understood by humans. As a
result, people are in a way “blind” to appearance-constrained robots. In human-robot
interaction (HRI) scenarios, this can lead to unsmooth or even failed interaction [20].
As if they were bioluminescent organisms in the dark, appearance-constrained robots
are in urgent need of �nding e�ective ways to present themselves and communicate
their intentions.

Because of the restricted interaction modality of appearance-constrained robots,
current approaches rely mainly on motion cues [13, 12, 135, 88, 8]. Unfortunately,
these approaches are limited in expressivity and are hard to apply in many practical
scenarios. For instance, it can be impossible for a robot to use big movements, e.g.,
acceleration and moving in an arc, to interact with human users when situated in a
crowded room. To address such limitations, we investigate expressive lights as an
alternative interaction modality. By using expressive lights, we are enabling a robot to
modify its appearance as a means of communicating with humans.

Expressive lights as a dynamic visual cue have been explored for HRI applications.
For instance, Sony’s robot dog AIBO and Aldebaran’s NAO use LED lights to assist in
a�ective expression. In general, expressive lights have been shown to be e�ective in
various HRI contexts such as indicating internal states [84], communicating intent [85],
and expressing emotion [120]. The goals of using expressive lights on a social robot
could be summarized by the three I’s: Inform, In�uence, and Interact [84]. Speci�cally,
Inform is about showing a robot’s internal state, In�uence is about changing human
behavior to a robot’s advantage, and Interact is about a�ective communication and
interaction. Most current research has mainly been relevant to Inform, and the other
two components, In�uence and Interact, have seldom been touched upon. It is therefore
important to encourage further exploration on the use of expressive lights.

Bioluminescence provides good inspiration. Basically, luminescence can serve three
purposes within a single organism: o�ense, e.g., attracting prey, defense, e.g., warning
a predator, and mate attraction [1]. With regard to HRI, we think that a robot may
need to possess two general social abilities: initialize or escape from an interaction.
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Figure 2.7: Examples of bioluminescent organisms

The importance of a robot initializing an interaction is evident in the vast applications
of social robots. For instance, a service/guide robot needs to proactively approach
customers/visitors to promote successful interactions as previous research suggests
that potential interaction opportunities, e.g., with people that hesitate about whether
or not they will engage a robot, may be missed if the robot is inactive [136, 49]. In
addition, a robot needs to escape from a potentially harmful interaction as well. As
reported by a few pieces of literature, robots may physically get abused by humans
[137, 138, 139]. In such cases, we compare a potential target human to prey when a
robot approaches him or her proactively. Similarly, we compare a potentially dangerous
human to a predator when he or she approaches the robot. Inspired by the functions of
bioluminescence, we accordingly consider that such a robot needs to either attract its
target humans (o�ense) or warn the dangerous ones to keep their distance (defense).

In this work, we primarily explore the design of expressive lights to achieve such
goals. Speci�cally, we aim at designing expressive lights that are either perceived as
attractive or hostile. We presume that a robot that is perceived as attractive may do a
better job at initializing an interaction, whereas a robot that is perceived as hostile may
reduce a human’s willingness to interact with it. On the basis of inspiration from
bioluminescence and color psychology theories, we work through a structured process
to determine a set of e�ective light expressions. A follow-up video-based validation
study is then performed to verify the e�ectiveness of the light expressions in practical
HRI scenarios. Our work can serve as an extension of [85, 84] and suggests potential
e�ects of expressive lights on in�uencing people’s perception and behavior, therefore
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increasing exploration on the use of expressive lights in HRI.

2.3.2 Background

Appearance-Constrained Robot

A�ective interaction has become an active topic in social robotics and HRI [14].
However, major studies on it have been focused on human- and animal-like robots
[14, 11]. There is a lack of methods that appearance-constrained robots can use to
express a�ect. Such methods are in eager need, as many currently-in-use robots are
restricted in appearance, while there is a need for them to be capable of a�ective
interaction [19].

A number of studies have been carried out to explore the design of non-facial/non-
verbal a�ective expressions [28, 27, 19, 20]. The authors claimed that appearance-
constrained robots are not engineered to be anthropomorphic due to either there being
limited applications or for cost-saving reasons. They highlighted the importance for
such robots to express emotions. For instance, rescue workers were found to expect a
small tank-like robot to follow social conventions [107]; man-packable robots were
observed to be perceived as “creepy” and not reassuring when they were operated
close to simulated victims [108].

Although these pieces of work provide insights into a�ective social interaction
between humans and appearance-constrained robots, there are several limitations with
regard to the generality of their �ndings. As they focused on application scenarios
involving assessing victims in the aftermath of a disaster, their results were majorly
based on simulated human victims interacting with two types of search and rescue
robots [20]. Therefore, their methods can be hard to generalize to other types of
robots, e.g., Roomba, and practical scenarios. In addition, since they used only blue
light as an auxiliary expression to elicit a calming response, they thus o�ered open
research questions such as “Can illuminated colored lighting e�ects be used e�ectively
to convey a�ect and for naturalistic social human robot interactions?” [20]. These
questions are ones that we try to solve.
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Initialize or Escape from Interaction

We think that a social robot needs to have two basic social abilities: to initialize or
escape from a potential interaction. How a robot should approach humans and try to
successfully establish an interaction has been an active topic. Scenarios involving
public service, e.g., an information center in a shopping mall, have been particularly
researched [136, 49]. In many cases, if a robot only passively waits for a human user to
initiate an interaction with it, people who are hesitating or unsure of how to interact
would be not served [136]. Thus, it is of importance to allow a robot to proactively
approach target humans. To achieve such a goal, the robot needs methods to attract
target people so as to increase the possibility of successfully establishing interactions
with them.

In addition, a handful of studies have investigated robot abuse [137, 138, 139]. It is
reported that people, children in particular, tend to react to robots with high curiosity
and often treat them aggressively [137, 138]. Abuse behaviors include saying bad
things to the robots and sometimes even kicking or punching them [137]. Therefore,
robots in such situations need to be able to escape from human abuse.

Bioluminescence Functions

The many functions of bioluminescence re�ect the unique nature of the environment in
which a vast variety of bioluminescent organisms have evolved [134]. Basically, lumi-
nescence can serve three purposes within a single organism: o�ense, e.g., attract prey,
defense, e.g., warning predators, and mate attraction [1]. For example, bioluminescent
creatures, e.g., dino�agellates and squid, use light to startle a predator in order to defend
themselves from being preyed upon. Some predators, e.g., angler�sh, use light to lure
their prey. Many creatures, e.g., ostracodes and �ashlight �sh, rely on bioluminescent
light to attract and recognize their mates [1]. In general, bioluminescence functions
can be summarized into two kinds: those that attract or keep others away (Figure 2.8).

With regard to the two HRI scenarios we focus on in this work, that is, initialize
and escape from an interaction, we think that a robot, similarly, should be able to
attract or keep humans away. To be speci�c, a robot needs to attract human users to
successfully establish an interaction, whereas it needs to keep unfriendly people away
to escape from abuse.
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Figure 2.8: Two general functions of bioluminescence: attraction and keeping away
(adapted from [1])

Expressive Lights for Robots

Expressive lights, as an explicit way of communication, have been discussed in studies
across various �elds such as psychology [78, 79], human-computer interaction (HCI)
[22, 80, 81, 82], and human-robot interaction [83, 84, 85]. To be speci�c, it is suggested
that even simple light expressions can be highly expressive [22] and are able to evoke
high-level social and emotional content [80, 82]. Such arti�cial lights in di�erent colors
can implicitly a�ect human perception and psychological functioning and therefore
may in�uence human behavior [78, 79].

With regard to HRI scenarios, a majority of work focuses on human-oriented
applications because one fundamental goal of social robots is to serve people. Expressive
lights have been considered as an e�ective approach for non-verbal communication,
and such an approach is considered to be particularly useful for appearance-constrained
robots, as such robots generally have very low social expressivity [27]. Several studies
have investigated potential functional uses of lights for robots. For instance, expressive
light animations were applied to visualize a mobile service robot’s internal state [84].
The authors designed di�erent light patterns to indicate that the robot is waiting for
human input, is being blocked by a human, or is showing task progress. Another
work [85] explored design constrains to robot �ight behaviors. Their designed light



2.3 Bioluminescence-Inspired Human-Robot Interaction 49

expressions were able to signi�cantly improve people’s response time and accuracy for
predicting the �ying direction of the robot.

Research on expressive lights for HRI is still in its infancy. It is suggested that the
goals of using expressive lights on social robots can be summarized by the three I’s:
Inform, In�uence, and Interact [84]. Despite the many promising studies that have
been done in this area, they mainly touched on the �rst component only. Therefore,
both theoretical and empirical work regarding the design of expressive lights are
needed to provide building blocks for more sophisticated and interaction-oriented HRI.

2.3.3 Expressive Light Design

Exploring Design Space

Color Although the RGB color space contains tens of thousands of colors, we
only consider categorical colors, e.g., green and red, due to their simplicity and
representativeness. In addition, this is valid as the human color vision system
processes color signals in a categorically driven manner [140]. Color psychologists
have intensively investigated various aspects of color, including color vision, color
symbolism and association, and the e�ects of color on psychological and biological
functioning [140]. Basically, their work primarily focuses on red, blue, and green since
such colors (especially red) have been considered to be special and have positive links
to the natural realm.

On one hand, associative learning theory provides a promising explanation of color-
emotion associations [128]. According to this theory, color meanings are grounded in
two basic sources: learned associations that develop from repeated pairings of colors
with particular messages, concepts, or experiences and biologically based proclivities
to respond to particular colors in particular ways in particular situations [128]. For
example, red carries the meaning of danger and anger in life-threatening situations,
such as when viewing blood, an angry face, tra�c lights, and/or warning signals and
sirens [129]. Similarly, green can be associated with positive meanings due to tra�c
lights (green light indicates “go”) and an image of being the color of nature. Blue can
be associated with sadness due to the saying “I feel blue” [129].

On the other hand, mental alertness theory suggests that color can a�ect a person’s
level of mental alertness and therefore in�uence his or her psychological functioning
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static/blinking
/breathing circle split random

Figure 2.9: Demonstrations of candidate expressive light patterns. All, except static,
were periodic. Each periodic expressive light pattern consisted of �ve periods. For
random pattern, singular random pixels in the LED strip were turned on and o�
throughout the given time period

[141]. Previous work indicates that red makes people more alert and risk averse,
whereas blue encourages people to take risks and perform exploratory behaviors [78].
In addition, blue light is able to elicit pleasure [79] and creativity [142]. These �ndings
indicate that the color blue can be attractive to humans.

In addition, previous studies observed that exposure to green and blue evokes
lower feelings of anxiety and greater feelings of calmness [143]. It has long been
proposed that being exposed to colors with longer wavelengths such as red and yellow
is stimulating and arousing, whereas shorter wavelength colors, such as green and
blue, tend to evoke feelings of calmness and tranquility [143].

Patterns Due to the shape of the LED strip, the design space of a light expression
pattern is restricted to one dimension. However, because each LED pixel can be
individually controlled, �nding desirable designs is still challenging. To cover a wide
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range of possible light expressions, we primarily investigated two types of patterns:
strip-based patterns and pixel-based ones. The former includes light expressions that
make use of all LED pixels as a whole (the entire LED strip), whereas the latter consists
of light expressions that take advantage of individual LED pixel expressions.

During her speech at TED20111, Edith Widder demonstrated plenty of biolu-
minescent light behaviors performed by sea creatures. Inspired by such natural
bioluminescent lights, we designed a set of representative light patterns. To be speci�c,
a pattern can have two parameters: waveform and intensity (frequency). Existing
�ndings suggest that a rectangular waveform and high intensity represent intense
emotions, while a sinusoidal waveform and low intensity represent weak emotions
[86]. Therefore, with regard to strip-based patterns, we explored both rectangular
(named blinking) and sinusoidal (named breathing) waveforms with low and high
frequencies, respectively. In addition, a static pattern, in which the entire LED strip
is always lit, was also chosen. With regard to pixel-based patterns, the waveform
parameters for individual LED pixels were not considered. We chose three patterns:
circle, split, and random. It is notable that, for the random pattern, singular random
pixels in the LED strip were turned on and o� throughout the given time period.

Candidate Expressive Lights

We decided on 44 light expressions in total as our expressive light candidates (Figure 2.9).
In summary, they made use of four colors (red, green, blue, white), �ve patterns
(blinking, breathing, circle, split, random) with two intensities (low, high), and one
special pattern (static). All light expressions, except static, were periodic, and each
corresponding expressive light contained �ve periods. We designed a large number
of expressive light patterns in the hope of covering a wide range of potential light
expressions.

Roomba Lighting System

We installed an LED lighting system on an iRobot Create 2 robot. Roomba is a series of
indoor autonomous robotic vacuum cleaners. All Roomba robots are disc-shaped,

1The Weird and Wonderful World of Bioluminescence. https://www.ted.com/talks/edith_widder_
the_weird_and_wonderful_world_of_bioluminescence#t-112245, (Accessed November 5, 2018).

https://www.ted.com/talks/edith_widder_the_weird_and_wonderful_world_of_bioluminescence#t-112245
https://www.ted.com/talks/edith_widder_the_weird_and_wonderful_world_of_bioluminescence#t-112245
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Figure 2.10: Con�guration of Roomba robot with LED lighting system

34 cm in diameter, and less than 9 cm in height. iRobot Create 2 is a programmable
Roomba robot for educators, students, and developers. Therefore, it allows for a variety
of programming methods and can be connected to a microcontroller. We think that
such a robot perfectly meets the de�nition of an appearance-constrained robot, and in
addition, has limited methods of expressing a�ect, e.g., moving forward/backward and
spinning.

Figure 3.10 illustrates the con�guration of the Roomba robot with the LED strip.
Following the design of [85], we attached a NeoPixel LED strip (1 meter, 60 pixels) to
the body of the robot in a ring. The strip was controlled by an Arduino Uno R3 board,
where the data pin of the strip was connected to the digital output pin of the Arduino
board. Both the strip and board were powered by a 5-V, 3-A portable powerbank. In
addition, the same board was used to control the movements of the Roomba robot as
well. iRobot Create 2 provides the Roomba Open Interface (OI) which is a software
interface for controlling and manipulating Roomba’s behavior.
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2.3.4 Experiment

Procedure

We aimed at �nding a set of appropriate expressive lights that can allow the Roomba
robot to be perceived as either attractive or hostile by humans. To ensure the generality
of the experimental results, having a large and diverse set of participants was important.
Therefore, we employed a Japanese online crowdsourcing platform Fastask to recruit
participants for the experiment. Recent studies, e.g., [22, 23], have shown the validity
and power of crowd-sourced approaches. It allowed us to rapidly and inexpensively
gather data from many more participants than would have been practical with other
approaches. Data integrity was guaranteed by dropping participants whose answers had
near-zero variances, e.g., all 3’s. As a result, a total of 27 of them were discarded, leaving
data from 73 participants (23 females, Maдe =48.04, SDaдe =14.12). All participants were
native Japanese speakers.

We used video recordings to demonstrate all the candidate expressive lights. For
each video, we provided two statements to evaluate the participants’ perception of the
robot: “This robot looks attractive” and “This robot looks hostile.” A �ve-point Likert
scale was used for the statements (ranging from 1, strongly disagree, up to 5, strongly
agree). Each participant in the study viewed all 44 videos and rated them one at a time
(within-participant design), and the order of the videos was randomized.

Criteria

We analyzed the candidate expressive lights with regard to the two perceptions,
attractive and hostile, separately. For the evaluation, we introduced two criteria
(adapted from [22]) to select good light expressions: 1) an expression must have
a strong interpretation with regard to a perception (mean Likert rating in the top
quartile) and 2) an expression must be iconic, meaning that it has only one dominant
perception among the two (an expression should not be perceived as both attractive
and hostile). We assessed the iconic-ness of each candidate expression that meets
criteria 1.
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Table 1

Code Mean Origin Std Pattern

split_blue_low e35 3.51 3.71 0.68 split_blue_low

circle_blue_low e30 3.48 3.68 0.7 circle_blue_low

split_green_low e14 3.36 3.66 0.69 split_green_low

split_green_high e23 3.28 3.48 0.73 split_green_high

split_blue_high e12 3.25 3.45 0.74 split_blue_high

split_white_low e32 3.14 3.34 0.71 split_white_low

circle_white_low e13 3.11 3.21 0.75 circle_white_low

random_blue_high e9 3.05 3.1 0.78 random_blue_high

split_red_low e37 3.01 3.06 0.78 split_red_low

circle_blue_high e40 2.96 2.96 0.66 circle_blue_high

random_blue_low e6 2.95 2.95 0.75 random_blue_low

circle_white_high e11 2.93 2.93 0.8

breathing_green_low e20 2.9 2.9 0.76

circle_green_high e41 2.88 2.88 0.74

circle_green_low e1 2.85 2.85 0.73

split_white_high e19 2.85 2.85 0.74

random_white_low e34 2.84 2.84 0.78

breathing_green_high e7 2.83 2.83 0.82

breathing_blue_low e16 2.83 2.83 0.78

blinking_white_low e21 2.81 2.81 0.79

static_white e10 2.8 2.8 0.79

blinking_blue_low e22 2.8 2.8 0.71

breathing_blue_high e28 2.79 2.79 0.7

random_green_high e17 2.78 2.78 0.82

circle_red_low e25 2.75 2.75 0.76

circle_red_high e4 2.74 2.74 0.83

blinking_green_low e43 2.72 2.72 0.75

random_red_low e15 2.7 2.7 0.82

random_white_high e36 2.68 2.68 0.75

split_red_high e5 2.66 2.66 0.75

breathing_white_low e18 2.63 2.63 0.79

breathing_red_low e39 2.6 2.6 0.77

random_red_high e42 2.58 2.58 0.75

breathing_white_high e27 2.56 2.56 0.72

static_blue e29 2.54 2.54 0.78

random_green_low e2 2.51 2.51 0.72

static_green e33 2.48 2.48 0.72

blinking_green_high e3 2.41 2.41 0.74

blinking_blue_high e26 2.38 2.38 0.68

breathing_red_high e44 2.32 2.32 0.8

blinking_red_low e38 2.28 2.28 0.69

blinking_white_high e24 2.25 2.25 0.77

blinking_red_high e31 2.17 2.17 0.72

static_red e8 2.06 2.06 0.69

split_blue_low
circle_blue_low
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Figure 2.11: Mean Likert ratings for attractive perception.

Results

We summarized the ratings from all 73 participants. Figures 2.11 and 2.12 show
the mean Likert ratings for attractive and hostile, respectively. Because we used a
single Likert term rather than constructed scales to assess human perception, statistic
measures, such as ANOVA, were not appropriate. Instead, we characterized the main
trends observed in the data and reported on them with regard to each perception.

Attractive: We recommend split_blue_low (a low-intensity blue split pattern)
and circle_blue_low (a low-intensity blue circle pattern) for showing attractiveness.
These are iconic and the top two highest-rated light expressions (see Fig. 2.11). The
commonality between the two light expressions is straightforward in that they both
feature the color blue and have a low intensity. In general, it can be observed that
expressive lights with one or more of the following three features received high ratings
from the participants: 1) blue, 2) low intensity, 3) pixel-based patterns (particularly
split and circle ones). On the other hand, expressive lights with one or more of the
following three features received low ratings for attractiveness: 1) red, 2) high intensity,
3) strip-based patterns.

Hostile: We recommend blinking_red_high (a high-intensity red blinking pattern)
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Table 1

Code Mean Std Pattern

blinking_red_high e31 4.02 0.65 blinking_red_high

breathing_red_high e44 3.98 0.68 breathing_red_high

blinking_red_low e38 3.68 0.66 blinking_red_low

blinking_white_high e24 3.65 0.7 blinking_white_high

breathing_white_high e27 3.54 0.66 breathing_white_high

circle_red_high e4 3.47 0.73 circle_red_high

blinking_blue_high e26 3.33 0.68 blinking_blue_high

random_white_high e36 3.22 0.7 random_white_high

blinking_green_high e3 3.18 0.73 blinking_green_high

random_red_high e42 3.13 0.73 random_red_high

random_white_low e34 3.09 0.7 random_white_low

random_red_low e15 3.07 0.72 random_red_low

breathing_red_low e39 3.01 0.75

static_red e8 2.96 0.7

blinking_white_low e21 2.95 0.72

split_red_high e5 2.92 0.75

breathing_blue_high e28 2.84 0.69

random_green_low e2 2.83 0.71

breathing_green_high e7 2.81 0.75

random_green_high e17 2.81 0.73

blinking_blue_low e22 2.77 0.76

random_blue_high e9 2.76 0.73

random_blue_low e6 2.75 0.73

blinking_green_low e43 2.73 0.78

breathing_blue_low e16 2.69 0.73

split_red_low e37 2.68 0.71

breathing_green_low e20 2.66 0.76

breathing_white_low e18 2.65 0.75

split_green_high e23 2.62 0.75

circle_blue_high e40 2.61 0.72

circle_red_low e25 2.57 0.74

circle_green_high e41 2.56 0.72

static_green e33 2.52 0.69

static_white e10 2.49 0.77

split_white_high e19 2.43 0.76

circle_green_low e1 2.39 0.74

split_white_low e32 2.32 0.7

static_blue e29 2.28 0.71

circle_white_high e11 2.21 0.68

split_blue_high e12 2.16 0.72

split_blue_low e35 2.11 0.7

split_green_low e14 2.08 0.69

circle_blue_low e30 1.96 0.71

circle_white_low e13 1.87 0.68
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Figure 2.12: Mean Likert ratings for hostile perception.

and breathing_red_high (a high-intensity red breathing pattern) for showing hostility.
These are iconic and the top two highest-rated light expressions (see Fig. 2.12). The
commonality between the two light expressions is clear in that they both feature the
color red and have a high intensity. In general, several trends can be observed that
show that expressive lights with one or more of the following features received high
ratings: 1) red, 2) high intensity, 3) strip-based patterns (particularly blinking and
breathing). Oppositely, expressive lights with one or more of the following features
received low ratings for hostility: 1) low intensity, 2) pixel-based patterns (particularly
split and circle ones).

Discussion

Four expressive lights were selected as e�ective expressions for the Roomba robot to
show either attractiveness or hostility. The results o�er strong evidence, indicating
that expressive lights can e�ectively a�ect a human’s perception of a robot. To be
speci�c, we found that the robot was particularly attractive when showing blue
light at a low intensity. In addition, the split and circle patterns turned out to be
more absorbing compared with the other patterns. We also found that the robot was
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perceived as particularly hostile when showing red light at a high intensity. Both
blinking (rectangular) and breathing (sinusoidal) patterns were selected, suggesting that
waveform was a less important factor compared with color and intensity (frequency).
However, it is noticeable that the two patterns are strip-based patterns. This indicates
that high luminance may be of importance for showing hostility as well.

Interestingly, features of these four expressive lights can be observed in a variety of
bioluminescent ocean creatures. Edith Widder demonstrated plenty of bioluminescent
light behaviors performed by sea creatures, where many of them showed similar
patterns. This indicates that bioluminescent lights used by natural creatures may have
analogous e�ects on human perception and psychological functioning. In addition, the
results are in line with color psychology theories. As suggested by color psychology
literature [78, 142], red carries the meaning of danger and hostility and moreover
makes people more alert and risk averse, whereas blue elicits pleasure and encourages
people to take risks. Therefore, it can be presumed that blue light, in many situations,
is more attractive than other colors, while red light conveys a negative e�ect.

2.3.5 Follow-Up Veri�cation Study

As we worked through a structured process for designing a�ective expressive lights,
we were able to o�er a set of four light expressions that can well show attractiveness
and hostility. However, the e�ectiveness of such lights had not yet been examined in
practical HRI scenarios. Therefore, we further conducted a veri�cation experiment
in which the same Roomba robot with LED lighting system was employed. In the
follow-up study, we evaluated the e�ectiveness of the recommended light expressions
by observing whether people would be willing to approach and interact with the robot
when it showed attractiveness and whether they would consider keeping away from it
when it showed hostility.

Procedure

We designed two HRI scenarios: robot approaches human (RH) and human approaches
robot (HR). To be speci�c, in RH, the Roomba robot moved toward a person (experi-
menter) proactively, whereas, in HR, the person moved toward the robot. Particularly
in HR, the robot started to show expressive lights when the person was within about
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(a) RH_none (b) RH_split (c) RH_blinking

(d) HR_none (e) HR_split (f) HR_blinking

Figure 2.13: Screenshots of each video clip (condition)

2 m. RH was designed to simulate a scenario in which a robot tries to initiate an
interaction with a person, and HR was to simulate a scenario in which a robot is
approached by an unwanted person.

We employed the same Japanese online crowdsourcing platform to recruit partici-
pants for this study. Video recordings were used to demonstrate the two HRI scenarios
via an online survey. For each scenario, we provided one synthetic video involving
three conditions: the robot showing attractiveness, the robot showing hostility, and the
robot not showing any expressive light. With regard to the attractiveness condition,
we picked split_blue_low as the representative light expression. Similarly, we chose
blinking_red_high as the representative light expression for the hostility condition.
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Figure 2.13 shows screenshots of each video clip. It is notable that although the
screenshots show a large di�erence in distance between the camera and the robot
regarding the two scenarios (RH and HR), this was due to the di�erent timings of
taking these screenshots. In RH, the robot is close to the person, which shows the
e�ect of the robot’s approach behavior (the robot has moved a long distance from its
original position). Similarly in HR, the person is seen standing close to the robot, which
indicates the person’s approach behavior (the person has moved a long distance from
his original position). The order of the three clips for each scenario was randomized.
Participants whose responses had near-zero variances were removed from the results
evaluation. In total, 16 of them were discarded, leaving data from 205 participants (68
female, Maдe =50.97, SDaдe =13.03). All the participants were Japanese.

With regard to each synthetic video, we prepared four statements to evaluate
the participants’ perception of and attitude toward the robot: 1) “This robot looks
attractive,” 2) “This robot looks hostile,” 3) “I like this robot,” 4a) “I want to play with
this robot” (RH scenario), and 4b) “I want to keep away from this robot” (HR scenario).
For each statement, the participants were asked to choose the robot presented in
one of the three conditions that best �t the statements. The selection rate (SR) was
counted for each condition. The SR number, ranging from 0 to 205 (total amount of
participants), indicated how many participants chose a robot for a particular statement.
Similar approaches were used in other studies, e.g., [84].

Results

We applied Pearson’s chi-square test to evaluate the e�ect of the independent factor
(expressive light) on the �ve statements as dependent factors. A post-hoc binomial
test with Holm’s correction was further applied if a signi�cant di�erence was found.
Because of the three conditions, the hypothesized probability that each condition
would be chosen at random with regard to a statement was set to one-third (33.33%,
which is the probability of a random guess).

Figure 2.14 shows the selection rates with regard to the participants’ perception of
the robot. For each statement, a signi�cant di�erence was found for both the RH
scenario (attractive: χ 2(2) = 157.09,p < 0.001; hostile: χ 2(2) = 203.01,p < 0.001;
likeable: χ 2(2) = 123.11,p < 0.001; want-to-interact: χ 2(2) = 113.98,p < 0.001) and
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Table 1

noLED split blinking

attractive 37 136 32

hostile 12 29 164

like 36 143 26

want-to-interact 39 140 26

attractive 30 145 30

hostile 11 28 166

like 26 159 20

want-to-keep-distance 45 35 125

0

45

90

135

180

RH scenario
attractive hostile likeable want-to-interact

none split blinking
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180

HR scenario
attractive hostile likeable want-to-keep-distance

�1

Figure 2.14: Selection rates for each statement for RH scenario (above) and HR scenario
(below)

the HR scenario (attractive: χ 2(2) = 129.02,p < 0.001; hostile: χ 2(2) = 211.5,p < 0.001;
likeable: χ 2(2) = 180.71,p < 0.001; want-to-interact: χ 2(2) = 71.22,p < 0.001). The
post-hoc tests suggest that the conditions with the top SR, e.g., split_blue_low for
attractive and blinking_red_high for hostile, were selected as the ones that most �t the
corresponding statements (signi�cantly above 33.33%, p < 0.001), while the SRs for the
other conditions were all signi�cantly below 33.33% (p < 0.001).

Discussion

The results verify the e�ectiveness of our recommended expressive lights on people’s
perception of a robot. The robot showed that split_blue_low was particularly perceived
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as attractive and preferred by the participants, while it was perceived as hostile
when showing blinking_red_high. This meets our expectation as expressive light
split_blue_low was recommended to show attractiveness and blinking_red_high was
recommended to show hostility. Moreover, the participants’ attitudes toward the
robot was in�uenced as they preferred to play/interact with the robot when it showed
split_blue_low, whereas they considered keeping their distance from the robot when it
showed blinking_red_high.

2.3.6 Discussion

This work explored the design of expressive lights for a Roomba robot to in�uence
humans’ willingness to interact with it. The goal was to allow robots to either attract
people so that they can more easily initialize an interaction with them, or keep people
away so that they can escape from a potentially harmful interaction. Our work
expands on previous studies [85, 84] in terms of the following three points. First, we
took inspiration from bioluminescence and showed that LED lights that simulate
communication cues used by living creatures may have analogous e�ects on human
perception and psychological functioning. Second, we proved that �ndings from color
science and color psychology can be referred to as theoretical groundings by HRI
researchers to design e�ective light expressions. Third, we tested a large design space
that contained 44 candidate light expression combinations from a possibility of four
colors, six patterns, and two levels of intensity. This allowed us to observe common
trends for the e�ects of the features of expressive lights (color, pattern, and intensity)
regarding two perceptions: attractiveness and hostility. To summarize, our �ndings
suggest that there are potential e�ects of expressive lights on in�uencing people’s
perception and behavior, therefore we intend to delve further into the exploration of
the use of expressive lights in HRI.

On the basis of the results, we o�er �ve design guidelines for the design of a�ective
expressive lights:

I. Blue light is recommended to show attractiveness in a robot;

II. Red light is recommended to show hostility in a robot;

III. Patterns such as split and circle can be attractive to humans;
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IV. A low intensity (frequency) can be used to support the expression of attractiveness,
while a high one can be used to support the expression of hostility;

V. With regard to expressing strong or weak emotions, the type of waveform, e.g.
rectangular or sinusoidal, is less important compared with color and intensity.

2.3.7 Limitations and Future Work

Several limitations of this work should be recognized. First of all, the e�ects of
expressive lights on human behavior (in practical HRI contexts) remain purely potential
as we did not explicitly investigate dynamic human interaction behavior. In this
study, we employed a video-based HRI method because such a crowd-sourcing-based
approach enabled us to access a large and diverse set of participants. Compared
with a live HRI method, previous studies (e.g., [21]) have shown that a video-based
method can provide comparable results in certain contexts, such as when a robot
approaches a person (similar contexts are used in this work). However, people’s
perception and especially their behavior would possibly di�er in contexts where s/he
were a participant of an interaction or were simply an onlooker. Therefore, future
work needs to apply live HRI to reveal direct evidence for the in�uence of expressive
lights on human behavior.

It should also be noted that the results of the �rst experiment seemed to have fairly
small e�ect sizes. With regard to the analyses of both attractive and hostile perceptions,
the majority of ratings were given within the range of two to four. Therefore, the fact
that the e�ect on people was not so large means that this work may not be able to
support strong recommendations for using the four expressive lights. However, since
both the trends observed in the �rst experiment and the results of the validation study
support our �ndings, we consider our proposed general design guidelines to be valid
and useful.

Besides, due to the fact that color carries di�erent meanings in di�erent contexts
[140], the generality of this work may be limited. Therefore, research on expressive
lights needs to be explored with various HRI contexts. Moreover, since the e�ects of
color on humans may depend on culture (in particular cases, for example, red has
positive meanings in Chinese culture) [140], it is also of importance to test our �ndings
(obtained with Japanese participants) on people with di�erent cultural backgrounds.
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This work can be further explored. We decided upon our 44 candidate expressive
light patterns by referring to color psychology theories and bioluminescent light
patterns in nature. Di�erent design approaches (e.g., [8, 86, 144, 145]) can be applied
to the early design stage to guarantee that a set of highly representative candidate
light patterns are prepared for the later experiments and analysis. With regard to
evaluation, interaction attributes [144, 145], as a set of vocabulary for describing
interaction experience, may be useful for investigating people’s subjective experience
of perceiving and interacting with the robot. We also suggest applying constructed
scales rather than single terms (attractiveness and hostility) to investigate people’s
perception. In addition, future work is required to investigate more design factors (e.g.,
a robot’s shape and arrangement of LEDs). Results from such studies would provide
further insights and be more generalized to various types of robots.

2.4 Narrative Frame Impacts Perception and Interpre-

tation

2.4.1 Introduction

Recently, robots are becoming a part of human society. As a consequence, these robots
need to be capable of interacting with people. This requires an adequate level of
transparency of the robots’ internal state and ease of understanding of their intent and
behavior for naïve users [11].

Because people are explanatory creatures, we build mental models, our conceptual
models of the way objects work or people behave, of things and use the models to help
us understand our experiences and handle unexpected occurrences [10]. Therefore,
when we encounter a human-shaped robot, we naturally adapt our knowledge and
social skills and form mental models in order to facilitate our interaction with it [11].
Similar process happens when we meet an animal-shaped robot.

However, a large number of robots currently in use for applications such as search
and rescue and domestic cleaning which are neither anthropomorphic nor zoomorphic.
When we �rst encounter such robots, the lack of appropriate knowledge and mental
models with regard to these robots can lead to unsmooth or even failed interaction
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[19]. Bethel et al. [20] indicated that these appearance-constrained robots do have an
urgent need for certain social abilities. Therefore, there is a signi�cant challenge in
�nding e�ective ways for these robots to successfully interact with humans.

Due to the e�ect of adaptation gap [17], interaction modalities such as natural
language are not appropriate for the appearance-constrained robots as they may
unnecessarily raise the expectations of these robots’ functional and social capabilities
from the users. Existing approaches, therefore, mainly focus on nonverbal cues such as
motion [88, 12, 13, 8]. Unfortunately, such methods su�er from low expressibility and
are hard, if not impossible, to be applied in many scenarios such as places that have
restricted space.

Alternatively, previous research showed that expressive lights, as a dynamic vision
cue, can be used for robots to communicate their intent and make explainable behavior.
For instance, Sony’s robot dog AIBO and Aldebaran’s NAO use LED lights to assist in
a�ective social interaction. Basically, expressive lights has been shown to be e�ective
in various human-robot interaction (HRI) contexts such as indicating internal states
[18], communicating intent [85], and expressing emotion [120]. The goals of using
expressive lights on a social robot can be summarized by the three I’s: inform, In�uence,
and Interact [84].

To be speci�c, several studies have explored various functional uses of lights for
robots. For instance, Baraka et at. [18] applied expressive lights to visualize their
mobile service robot’s internal state. They designed di�erent light expressions to
indicate that the robot is waiting for human input, is being blocked by a human, or
is showing task progress. Sza�r et al. [85] investigated design constrains to robot
�ight behaviors. They demonstrated that their designed light patterns were able
to greatly improve people’s response time and accuracy for predicting the �ying
direction of the robot. Song and Yamada [146] explored the design of a�ective light
expressions inspired by bioluminescent light behaviors. Their robot was able to show
either attractiveness or hostility by displaying particular light expressions.

Despite the many promising results, a commonality with regard to the previous
studies is that they focused on speci�c tasks or goals, such as conveying internal
states of a service robot or expression emotions. An essential limitation of their
methodologies is that assumptions were made, either consciously or unconsciously,
with regard to the functionality and meaning of the lights shown by their robots. To be
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speci�c, expressive lights were pre-assumed to be with the functionality of convey
information of internal state, intent, or pure emotion, where such assumptions were
formed to serve the researchers’ objectives. These assumptions were further delivered
to the participants, either explicitly or implicitly, during the experiment stage.

We argue that such limitation of methodology is essentially dangerous as naïve
users would not be able to identify the particular functionality of a light expression
shown by a robot (Is the robot unhappy or is it just needed to be charged?). They,
instead, would make subjective interpretations with regard to the meaning of the light
expression on the basis of their knowledge of the light expression itself (e.g. color and
pattern), their knowledge of the robot (e.g. type and embodiment), and the context they
are in. And in particular, they build up narratives and make interpretations accordingly.

In this work, we conducted a mixed-methods exploration into our hypothesis
and argument on how naïve users perceive and interpret the meanings of expressive
lights shown by a robot, appearance-constrained robot in particular. To be speci�c,
we hypothesize that people build narratives of the robot and their perception and
interpretation of the robot’s behavior are heavily impacted by their narrative framing.
In other words, we argue that people’s perception and interpretation of the robot’s
behavior are in�uenced by mainly three factors: design of light expression, type of robot,
and context (e.g. when and where). We prepared in total 20 scenarios (2 expressive
lights × 10 contexts) and listened to participants’ free descriptions of what they thought
the robot was doing. Further using both quantitative (independent samples t-test) and
qualitative (thematic analysis [147]) analysis, we con�rmed that the narrative frame
that participants built into the robot heavily impacted valence perception (positive vs.
negative) and interpretation of the robot’s behaviors. In particular, design of light
expression signi�cantly impacted valence perception while context has a powerful
in�uence on behavior interpretation. In general, all the three factors contribute to the
perception and interpretation of the robot’s behavior.

Rational and Contributions

Bucci et al. [148] has shown the powerful impact of narrative frame on people’s
perception of a simple furry robot’s emotion. In their work, they designed eighteen
breathing behaviors, di�ering in complexity of patterns, for a furry robot toy. Their
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objective was to investigate into how the complexity and variability of a simple
robot’s breathing behaviors impact its perception as emotionally valenced (positive vs.
negative). A key �nding reveals that participants formed various stories of the robot’s
behaviors and the narrative frame that they built into the robot heavily impacted
valence perception.

An important point of such methodology is to ensure participants’ freedom
of imagination. In practical HRI scenarios, a naïve user normally possesses little
knowledge of the robot he or she is interacting with. This is particularly true if the
robot is constrained in appearance. Therefore, any assumption that be delivered to
participants (e.g. the expressive lights shown by the robot are expressions of emotions)
may lead to biased experimental results.

Therefore, similar as Bucci et al’s approach, we, in this work, did not control
narrative frame as an experimental variable. We let participants freely imagine what
was happening in a scenario and what the robot was doing in the scenario, and we
listened to their descriptions of their imagination. We believe that this is an adequate
approach to discover what and how are naïve users perceive and interpret a robot’s
behavior in an interaction.

Other than Bucci et al’s approach, we controlled context as a main variable. The
control of context can inevitably constrain participants’ narrative framing. However,
we consider this is necessary. Due to the nature of HRI, context is indispensable
to any practical interaction. In other words, every HRI takes place in some kind of
context. This promotes context as an important factor in many HRI studies [149, 34].
Consequently, by controlling the context of interaction, we are able to achieve deep
understandings of whether and how people’s perception and interpretation of a robot’s
behavior are context-depended, and such �ndings can o�er signi�cant contributions to
HRI and related research.

Our main contribution is that we show people’s narrative framing has powerful
in�uence on both valence perception and interpretation of a robot’s behaviors.
Particularly, we suggest design of light expression (e.g. color and intensity) strongly
impact valence perception and context has a powerful in�uence on the diversity of
behavior interpretation.
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2.4.2 Expressive Lights Design and Robot System

Design Expressive Lights

Color is one of the most ubiquitous phenomena in human experience as it is perceived
on essentially every object that we view. Although research on color psychology is still
at a nascent stage, color psychologists have intensively investigated various aspects of
color, including color vision, color symbolism and association, and color e�ects on
psychological and biological functioning [140]. Elliot and Maier [129] reviewed both
theoretical and empirical work that investigated the e�ects of perceiving color on
psychological functioning in humans. Their work clearly shows that color can carry
important meaning and can have a signi�cant impact on people’s a�ect, cognition, and
behavior.

Red has been shown to be critical color and has thus garnered the majority of
research attention. Many things in biology, culture, and language point to the poignancy
and prominence of red [129]. Red is the color of blood, and dynamic variations in
visible blood �ow on the face and body can indicate fear, arousal, anger, and aggression
[150]. Red is used in aposematic (warning) signals by many poisonous insects and
reptiles [151]. Red is also a term that appears in almost all lexicons and, moreover, in
many sayings such as “in the red." Besides red, a few other colors, particularly green
and blue, have been intensively studied as well. They both have positive links in the
natural realm, for example, green foliage and vegetation and blue sky and ocean [129].

Hue emotion associations have been an active research topic in psychology [140].
The associative learning theory suggests that the formation and activation of color
associations can be understood through models of semantic memory, and a number of
previous studies have provided empirical evidence of color-emotion associations and
psychological functioning [152]. Speci�cally, color meanings can be grounded in
two basic sources: learned associations that develop from repeated pairings of colors
with particular concepts or experiences and biologically based proclivities to respond
to particular colors in particular ways in particular situations [128]. For instance, a
speci�c red-danger association can be generated from experiences with regard to
(life-threatening) situations such as viewing blood, an angry face, tra�c lights, and/or
warning signals and sirens [129]. Similarly, green can be associated with positive
meanings, e.g., approach and pleasure, due to experiences with green tra�c lights
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Table 2.5: Two expressive lights designed in this work

Light Color Waveform Period (ms) Expected E�ect

GL RGB: 0,255,0 sinusoid 1000 induce positive
perception

RH RGB: 255,0,0 rectangle 200 induce negative
perception

and the general image of being the color of natural, and blue can be associated with
sadness due to the say “I feel blue."

On the basis of the above short survey on color psychology and related work,
we decided to focus mainly on two colors: green and red. They are two intensively
studied colors and, moreover, they produce opposite e�ects on human psychological
functioning. In general, green can be associated with positive perception, while red can
be associated with negative perception.

Besides color, two more parameters, waveform and intensity (frequency), needed
to be decided to design expressive light patterns. In particular, Terada et al. [86]
studied color and dynamic parameters for representing emotions. They found that a
rectangular waveform with a high frequency represents intense emotions, while a
sinusoidal waveform with a low frequency represents weak (low intensity) emotion.
On the basis of their work, we decided to combine a sinusoidal waveform and a low
frequency with green to enhance the e�ect of the color green. Similarly, we combined
a rectangular waveform and a high frequency with red to enhance the e�ect of the
color red. Table 2.5 lists the two expressive lights.

Design Rational We did not treat expressive lights parameters (color, waveform,
and intensity) independently. Instead, we referred to related literatures and theories
and pre-assigned typical values to them. This resulted in two light expressions, GL and
RH, which could be associated with opposite valence perceptions. We consider this
approach is valid due to the objective of this study. There may be concerns about
an interaction e�ect among color, waveform, and intensity, making it di�cult to
understand if the perceptions of the robot’s behavior are to be attributed more to
which parameter. However, since we set our focus on the impact of narrative frame
on people’s perception and interpretation of expressive lights of a robot, we mainly
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controlled context as an important variable to the building of narrative frame of the
participants. Therefore, we wanted to reduce the complexity of the other variables so
that we could reach a clear and deep understanding of our research question, although
such understanding may hardly be complete. We were afraid that introducing too many
variables (including levels of a variable) would make the analysis hard and unreliable.

The designed two light expressions were used as a manipulation of the participants’
valence perception of the robot’s behavior because valence can contribute to the
building of narrative frame. By investigating on two expressive lights that had opposite
psychological e�ects, we were able to discover how the participants’ narratives were
related to their valence perceptions. Such �ndings can contribute to design implications
for the design of e�ective light expressions for robots.

Roomba Lighting System

We installed an LED lighting system on an iRobot Create 2 robot, which is a Roomba
robot. Roomba is a series of autonomous robotic vacuum cleaners used in in door
environments. It perfectly �ts the de�nition of an appearance-constrained robot and
has very limited ways to express itself, e.g., moving forward/backward and spinning.
Figure 2.15 shows the con�guration of the robot with LED lighting. We used one
meter of a NeoPixel LED strip (60 pixels). The LED strip was controlled by an Arduino
Uno R3 board, and both the strip and the board were powered by a 5-V, 3-A portable
powerbank. The same board was also used to control the movements of the robot.

By using expressive lights, we are e�ectively enabling the robot to modify its
appearance as a method of communicating with humans. It provides additional cues to
assist in interpreting the robot’s behavior and intent. We expect that the expressive
lights can facilitate people to construct rich and complex interpretations.

2.4.3 Exploration

We worked through a structured process to investigate how do people perceive and
interpret expressive lights shown by a robot. To explore this question, we �rst took
advantage of the knowledge and opinions of groups of people to ground and enrich our
understanding from a naïve user’s angle of view. By using online crowdsourcing, we
were able to rapidly and inexpensively gather information from many more participants
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Figure 2.15: Con�guration of Roomba robot with LED lighting system

than would have been practical using other approaches [22]. The crowded-sourced
approach has been shown e�ective and powerful by previous studies [153, 23].

We �rst performed an initial exploration to uncover people’s perception of a robot
showing expressive lights when they were not informed with the functionality of the
lights. We asked the participants simple open-ended questions such as “What was
the robot doing?" to avoid delivering implicit assumptions (e.g. the robot is showing
an emotion or a task-related state) to them. We then worked on establishing a list
of contexts that are most familiar to naïve people. An example of such context can
be home. Finally, we consolidate the �ndings from the two exploration studies and
decided upon a set of scenarios in which expressive lights were used by a robot as a
method of communication to humans in di�erent contexts.

Initial Exploration

The initial exploration mainly serves as two purposes. Firstly, we wanted to a�rm the
e�ects of our designed light expressions, GL and RH. We would like to see if they
indeed had positive (for GL) or negative (for RH) bias on the participants’ valence
perception. Secondly, we wished to investigate if the participants indeed made various
interpretations of the robot’s behavior. In other words, we wanted to have a preliminary
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(a) corridor_none (b) corridor_GL (c) corridor_RH

(d) corner_none (e) corner_GL (f) corner_RH

Figure 2.16: Screenshots of each video clip (condition)

understanding on whether narrative frame has impact on the participants’ valence
perception and behavior interpretation of the robot.

The �ndings can be then used as empirical evidence and theoretical groundings for
our formative exploration study. It can help us to achieve a more focused thematic
analysis.

Procedure We considered two similar practical HRI contexts, corridor and corner,
which are common for indoor autonomous robot [84]. Speci�cally, the Roomba robot
moved along a narrow corridor (corridor context) or approached a corner of the
corridor (corner scenario). In the two cases, the robot encountered a person and
stopped before it ran into the person. While stopped, the robot further showed GL, RH,
or simply no lights (see Figure 2.16). We presumed that the robot’s intent, i.e., what it
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wanted to do, in such contexts would be ambiguous and thus could be interpreted in
various ways. We presumed that the added expressive lights could signi�cantly a�ect
and bias people’s perception and interpretation of the robot’s behavior.

The experiment had a between-participant design, where each person viewed
two videos belonging to the same condition (GL, RH, or None). A Japanese online
crowdsourcing platform (Fastask) was employed to recruit participants. We initially
hired 180 participants, 60 for each condition. In a questionnaire, we asked three
open-ended questions: 1) What was the robot doing? 2) Did the robot want to
communicate something to the person? If yes, what information did the robot want to
communicate? 3) Do you think that the robot was friendly?

Results After �ltering out unreliable data, we had 40 participants from the None
condition (11 females, Maдe = 39.9, SDaдe = 7.6), 40 participants from the GL condition
(14 females, Maдe = 42.3, SDaдe = 9.3), and 40 participants from the RH condition
(14 females, Maдe = 43.6, SDaдe = 8.6). We analyzed all their answers and observed
interesting �ndings. We summarize the key �ndings below.

I In the RH condition, 15 out of 37 participants (41%) used negative words, such as
warning or hostile, to describe the robot and its behavior. No participants (0 out
of 40, 0%) in the None condition and only 1 participant (1 out of 42, 2%) in the GL
condition used such descriptions.

II In the RH condition, only 8 out of 37 (22%) participants described the robot as a
cleaning robot. However, half of the participants (20 out of 40, 50%) in the None
condition and almost the same number of participants (20 out of 42, 48%) in the
GL condition explicitly described the robot as a cleaning robot.

III In the GL condition, a majority of the participants (32 out of 42, 76%) perceived
the robot as friendly. In comparison, half of the participants (19 out of 40, 48%) in
the None condition, and, in particular, only 12 participants (12 out of 37, 32%) in
the RH condition perceived the robot in the same way.

IV Participants showed di�erent levels of imagination when explaining what was
happening in the videos. Speci�cally, participants in the None condition showed
a low level of imagination. They generally described the robot’s behavior in three
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di�erent ways: the robot was cleaning, moving (tele-operated), and approaching
the person (intended). However, participants in both the GL and RH conditions
showed a high level of imagination (described the robot’s behavior in 5 and 6
ways, respectively). People in the GL condition described the robot as cleaning,
moving (tele-operated), approaching the person (intended), communicating
to the person, and playing; people in the RH condition thought the robot was
cleaning, moving (tele-operated), approaching the person (intended), warning
the person, patrolling, and malfunctioning.

V On average, participants used less words to answer the three open-ended
questions in the None condition (83.9 words/person). In comparison, participants
in the GL and RH conditions used 91.7 w/p and 90.9 w/p, respectively.

Preliminary Findings The �ndings show that RH expressive lights can have a
particularly strong negative bias on people’s perception of a robot. People tend to
interpret the robot’s behavior in a negative way. In comparison, GL expressive lights
can have a positive bias on people’s perception of a robot. Interestingly, in general,
people tended to interpret the robot’s behavior as goal-directed when it showed
either GL or RH. This indicates that they perceived the robot as having intent (beliefs
and desires). As summarized in �nding II, far fewer participants, especially in the
RH condition, described the Roomba robot as a cleaning robot, suggesting that they
anthropomorphized the robot in both the GL and RH conditions more than in the None
condition. Therefore, we infer that social HRI is more likely to be established when a
robot shows expressive lights as a means of communication.

Further, we found that expressive lights can a�ect how a person perceives the
friendliness of a robot. Summarized in �nding III, most participants perceived the
Roomba robot as friendly in the GL condition, and on the contrary, the lowest number
of participants thought so in the RH condition. This can be explained by referring
to �ndings I and IV. Finding IV particularly lists how participants imagined and
interpreted the scenarios in the videos. Besides the common interpretation that the
robot was cleaning, moving (tele-operated), and approaching the person (intended),
participants in the GL condition additionally imagined that the robot was either trying
to communicate to the person or playing. These interpretations are positive in general,
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which is probably why people interpreted the robot as friendly. On the contrary, both
�ndings I and IV clearly suggest that participants in the RH condition thought that the
robot was giving warnings and was hostile. It is thus not surprising that they treated
the robot as less friendly.

Contexts: Where Could This Take Place?

Next, we created a second online survey to gather information on where HRI scenes
(e.g. a robot approach a person and shows an expressive light) could take place.

Procedure A Japanese online crowdsourcing platform (Yahoo crowdsourcing) was
employed to recruit participants. We initially hired 50 participants. In the survey, we
provided a �gure of example HRI scene to help the participants frame their ideas with
constrains such as robot type (disc-shaped robot) and robot’s behavior (showing an
expressive light). This was necessary as we did not want the participants to provide
ideas that were our of the focus of this work. Besides the �gure, we provided a brief
explanation of the scene, saying that “In a corridor of a research institute, a robot
approaches a person and tries to communicate via LED lights." We instructed the
participants to imagine how could a similar interaction take place in other contexts.
Each participant was asked to list 3 contexts.

Results Due to technical issues, we had the participants who viewed the survey on
mobile phones reported that the example image could not be displayed. Therefore,
their responses were not included in the analysis. In addition, we �ltered out unreliable
responses that were clearly inappropriate (e.g. meaningless numbers). We eventually
had 21 participants (16 females, Maдe = 42.7, SDaдe = 11.6).

We then coded their responses and grouped the similar codes into same contexts.
For instance, codes such as“living room", “bath", and “kitchen" were grouped into the
context home. As a result, we grouped in total 109 codes into 23 distinct contexts. A
summarization of the contexts is shown in Figure 2.17.

Findings The results demonstrated the breath of possible HRI contexts. However,
some of the contexts showed higher popularity than the others. The top 10 most
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表1
No. Code Frequency Subcode/remark Function

1 Home 18 living room, bath, kitchen.. 
2 School 12 classroom, teacher’s room..
3 At work 10 company, factory, office..
4 Corridor 8 corridor from different places..
5 Road 7
6 Entrance 7 from different places..
7 Shopping 6 convenience store, shopping mall, super market..
8 In the dark 6 related to security and safety
9 Hospital 5
10 Event 5 exhibition, conference..
11 Restaurant 4
12 Travel 4
13 Hotel 3 front, room..
14 Meeting Room 3 company, school..
15 Stair 2
16 Subway 2
17 Toilet 1
18 Airport 1
19 Locker Room 1
20 Sports Center 1
21 Rest Home 1
22 Disaster 1
23 Underwater 1

Home
School
At work
Corridor
Road

Entrance
Shopping
In the dark
Hospital
Event

Restaurant
Travel
Hotel

Meeting Room
Stair

Subway
Toilet
Airport

Locker Room
Sports Center
Rest Home
Disaster 

Underwater
0 4 8 12 16 20

 1

Figure 2.17: Summary of contexts collected

mentioned contexts were home (18), school (12), at work (10), corridor (8), road (7),
entrance (7), shopping (7), in the dark (6), hospital (5), and event (5).

Consolidation

The initial exploration revealed the e�ects of our designed expressive lights (GL and
RH) on people’s valence perception, and the second survey demonstrated a list of
most popular contexts at where HRI scenes could take place. Using data from the two
studies, we formulated a vocabulary of HRI scenarios on the basis of the three factors:
design of light expression, type of robot, and context.

Particularly, we manipulated the values of each factor and created in total 20
scenarios (2 design of light expression × 1 type of robot × 10 contexts):

1a/b: The robot approaches a person and shows GL/RH when at home.

2a/b: The robot approaches a person and shows GL/RH when at school.

3a/b: The robot approaches a person and shows GL/RH when at work.

4a/b: The robot approaches a person and shows GL/RH when in a corridor.
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5a/b: The robot approaches a person and shows GL/RH when along a road.

6a/b: The robot approaches a person and shows GL/RH when at an entrance.

7a/b: The robot approaches a person and shows GL/RH when at a shopping
center.

8a/b: The robot approaches a person and shows GL/RH when in a building at
night.

9a/b: The robot approaches a person and shows GL/RH when in a hospital

10a/b: The robot approaches a person and shows GL/RH when at an exhibition.

Note that we used concrete contexts to replace the ones that were too abstract (e.g.
event were replaced by exhibition).

2.4.4 Experiment: Narrative Framing

The explorations provided a list of 20 HRI scenarios. What was unknown was how
people perceive and interpret the robot’s behavior with regard to each scenario. As
�ndings from the initial exploration provided empirical evidence on the impact of
narrative frame, we, in this study, sought for deeper understandings with regard to the
research question. Therefore, we listened to the participants’ free descriptions of what
they thought the robot was doing and further applied thematic analysis in a deductive
way. This means that the coding of the data from the experiment was driven by our
analytic interest (e.g. hypothesizes).

Procedure

The experiment had a within-participant design, where we conducted a mixed-methods
study to evaluate the participants perception and behavior interpretation of the robot
with regard to the 20 HRI scenarios. Ten Japanese (3 females, Maдe = 25.9, SDaдe = 8.7)
were recruited from the University of Tokyo. We considered the participants as naïve
users as none of them had experience in using or working with a robot before the
experiment.
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The participants were �rst greeted and explained about the general instructions
of the experiment. Then, they were asked to get ready for the main tasks. In this
study, the main tasks were divided into 10 sections, each section represented a context.
Moreover, each section consisted of two subsections, each subsection represented one
expressive light (GL or RH). For each subsection, participants were asked to watch a
short video clip (screenshots see Figure 2.18) demonstrating a HRI scenario in which a
same robot approached a same person and displayed one expressive light (GL or RH).
After watching the video, participants were instructed to think about what if such a
scenario took plade in the context which represented the current subsection. They
were then asked to rate the valence of their perception of the robot’s behavior using a
�ve-point Likert scale (ranging from 1, negative, to 5, positive) and to provided a brief
description of the robot’s behavior. This was iterated until all sections were �nished.
To summarize, the �ow of performing the entire main tasks can be considered as 1a
(home, GL) -> 1b (home, RH) -> 2a (school, GL) -> 2b (school, RH) -> ... -> 10a (exhibition,
GL) -> 10b (exhibition, RH). After then main tasks, participants were presented a
post-questionnaire in which they had to give free comments to questions such as “What
kind of activity was the robot doing and why?" Finally, participants were thanked and
compensated 1500 Japanese yen (about 14 dollar).

Measurement

To investigate the participants’ perceived valence of the robot’s behavior, we used a
�ve-point Likert scale (ranging from 1, negative, to 5, positive) and asked the question
“Please rate how positive or negative the robot’s behavior seemed to you." To uncover
their narratives on the robot’s behavior, we used open-ended question such as “Please
brie�y describe the robot’s behavior."

2.4.5 Experiment Design Rationale

In the experiment, we instructed the participants to imagine about the robot’s behavior
in di�erent contexts. We did not provide them video clips of real contexts as we were
afraid such videos would suppress the participants’ power of free imagination. For
instance, we would only be able to demonstrate concrete instances, such as a living
room, to represent the home concept. This would inevitably set constrains to the
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(a) corridor_none (b) corridor_GL (c) corridor_RH

(d) corner_none (e) corner_GL (f) corner_RH

Figure 2.18: Screenshots of each video clip: GL (left) and RH (right)

generality of the concepts. Instead, by showing the participants video clips with
su�cient information of robot’s behavior but minimum information of context, we
allowed them to build opinions and narratives largely on the basis of their experience,
knowledge, and understanding. Therefore, we were more likely to uncover the true
mechanism behind the participants’ perception and interpretation of the expressive
lights shown by the robot.

2.4.6 Results

We �rst describe the results of the participants’ valence ratings on the robot’s behavior.
In general, we found they perceived the robot’s behavior positive when it showed GL
and negative when it showed RH. Then, we report the qualitative results, which were
obtained from a thematic analysis, and highlight the in�uence of narrative frame on
valence perception and behavior interpretation.
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Table 2.6: Summary of results of hypothesis tests on valence rating

Context GL RH df t pMean SD Mean SD
home 4.2 0.63 1.7 0.48 18 9.93

<0.001

school 3.9 0.57 1.1 0.32 18 13.63
work 3.3 0.67 1.5 0.97 18 4.81

corridor 3.6 0.97 1.6 0.97 18 4.63
road 4 0.67 1.5 0.97 18 6.71

entrance 4.3 0.82 1.2 0.42 18 10.6
shopping center 4.4 0.52 1.6 0.97 18 8.08
building at night 4.3 0.48 1.3 0.95 18 8.91

hospital 4 0.47 1.7 0.95 18 6.87
exhibition 4.5 0.53 1.4 0.97 18 8.91

Valence Rating

Inter-rater reliability Because we used an ordinal scale for the valence rating, we
applied Krippendorf’s alpha [154] to determine inter-rater reliability. The Krippendorf’s
alpha is a rater-reliability measure that accounts for the order of the scale items.

We computed the Krippendorf’s alpha for ratings with regard to expressive lights
GL (contexts from 1a to 10a) and RH (contexts from 1b to 10b), respectively. It produced
α = 0.15 for GL and α = 0.03 for RH, both indicating slight agreement. Particularly,
the valence ratings of RH showed less consistency among the participants compared to
the ratings of GL.

Hypothesis test For each context, we applied independent samples t-test to evaluate
the e�ect of the independent factor (expressive light) on the participants’ valence
ratings. We summarize the analysis results in Table 2.6. Basically, signi�cant di�erences
were found with regard to all the ten contexts. The results suggested a strong fact that
the participants perceived the robot’s behavior signi�cantly more positive when it
showed GL than RH.

A Special Participant The hypothesis tests suggested that the participants, in
general, had positive perceptions of the robot’s behavior when it showed GL and
negative perceptions when it showed RH. However, interestingly, we found one
participant (female, 50 years old) attributed overall positive perceptions when the
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robot showed RH (average rating over 3). A close examination on her comments to the
open-ended questions revealed that she had a special angle of view when judging on
the robot’s behavior. For instance, she had a similar opinion on the robot’s behavior in
context 5b (RH, road) as some other participants that the robot was sort of informing
of danger to pedestrians. While the others showed negative perception due to the
relationship with danger, she interpreted this positively as she thought that such a
robot’s behavior actually contributed to the safety of the pedestrians.

Narrative Analysis

We performed a thematic analysis on the participants’ descriptions of the robot’s
behavior. This allowed us to analyze their experience (although imagined) and
understand their thinkings. The participants’ comments were open-coded and themes
were developed. Basically, we discovered four themes which demonstrated the powerful
impact of narrative frame on people’s perception and behavior interpretation of a
robot.

In general, the participants described the robot as having agency and was performing
tasks. The tasks they thought the robot was doing were highly related to the contexts.
Universally, they considered the robot as something other than a cleaning robot.
This was true even for the participants who recognized that it was a Roomba robot
demonstrated in the video clips. However, the participants in this experiment seemed
to attribute less anthropomorphism to the robot compared to the participants who
attended the initial exploration study.

Theme 1: The robot has agency Most participants described the robot as it had
certain levels of agency, and their perceptions of agency were framed by the scenarios.
For instance, the robot was described as welcoming and greeting at people in the home
context (Participant 1, Scenario 1a) but as warning people for danger or accidents in the
road context (P4-S5b). For many scenarios, the participants perceived the robot as
having power and authority. For example, they described the robot as it recognizes
relevant people and give them permissions for entering the building (P4-S6a) and it
requires people to leave the place (P2-S10b). This was true particularly for the scenarios
in which the robot showed RH. Such a bias was expect as the �ndings from the initial
exploration suggested strong negative perception bias of the RH expressive light. In



80 Chapter 2. Perception, Interpretation and Decision-Making

addition, some participants interpreted the robot as having desires and goals as well
such as it demands for friendship (P2-S1a).

Theme 2: Narrative frame in�uenced behavior interpretation The partici-
pants’ interpretations of the robot’s behavior highly depended on their narratives of
the robot, and such narratives were strongly linked to the contexts. Context played an
essential role in creating stories and opinions of the robot by o�ering groundings of
where the scenes took place, what were happening, who were involved and when
(e.g. at daytime or night). By combining this process with their own knowledge and
experience, the participants were then able to make inferences on explanations of what
the robot was likely doing. As a consequence, the descriptions of the robot’s behavior
were diverse as di�erent people had di�erent stories. For instance, a same participant
(P7) made di�erent interpretations of the robot’s behavior with regard to di�erent
scenarios: the robot informs a person that another person is looking for him (S3a) and
the robot gives permission to a person for entering a shop (S6a). Moreover, di�erent
participants made di�erent descriptions of the robot’s behavior with regard to a same
scenario (9b): the robot informs a patient about abnormal status of his body (P6) and the
robot patrols the hospital and warns people for suspicious behaviors (P7).

Theme 3: Robot type in�uenced behavior interpretation A cleaning robot
Roomba was used in the study. It was disc-shaped, 34 cm in diameter, and less
than 9 cm in height. Such features with regard to the type of robot showed impact on
the participants’ behavior interpretation of the robot. Due to its shape and small size,
one participant described the robot as it warn people not to tread on itself (P5-1b).
Besides, we found that participants’ generally saw the robot as it was performing tasks,
although in some scenarios the robot was described as greeting to people (e.g. P4-1a and
P6-2a). The robot was often described as informing or warning people about something
or patrolling. For example, the robot’s behavior was interpreted as informing about
someone is visiting the house (P1-1a) or warning about forbidding entry (P9-8b).

Theme 4: Valence rating depended on subjective angle of view In general, the
participants showed agreement on perceived valence with regard to the expressive
lights shown by the robot. However, their individual angle of view in�uenced their
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interpretations of the robot’s behavior, which lead to di�erent levels of perceived
valence. For instance, with regard to a same scenario (4a), P4 described the robot as
guiding people to their destinations and rated it highly positive (rating of 5) while P7
interpreted it as informing people to step aside and rated it somewhat negative (rating
of 2). Particularly, one participant, P2, demonstrated unique valence perceptions with
regard to the scenarios in which the robot showed RH. For example (5b), di�ering from
the other participants, she rated the robot’s behavior as positive even if she described
the robot as informing of danger to pedestrians. While the others showed negative
perception due to the negative meaning of danger, she explained this positively as she
saw the robot as caring about people’s safety.

Post-Questionnaire

The participants were asked to answer a post-questionnaire after the main session of
the experiment. We wanted to have a deeper understanding of how they built their
narratives. Speci�cally, we sought for detailed information behind the narratives. Such
information of interest included what did the participants actually recognize the robot
as, what and why they thought the robot was doing in general, and particularly, how
did they make judgements on whether the robot’s behavior was positive or negative.

Basically, the participants reported that they thought the robot was a cleaning
robot or a guard robot. Three participants (P1, P8, and P10) even recognized the robot
was a Roomba robot. Two participant (P3 and P6) associated the robot to either a
cleaning robot or a guard robot in accordance with the contexts: “I think it depends on
contexts. In most contexts I imagined the robot as a guard robot. However, in the home
context, I saw it as a cleaning robot" (P3).

The participants described the robot’s behavior as patrolling, guarding, monitoring,
or cleaning, in general. They seemed to judged the robot’s behaviors by relying on
its movements and light expressions. Some participants reported that they thought
the robot was patrolling or guarding as the robot was approaching people and
communicating by lights (P1, P3, P4, and P10).

With regard to valence perception, all the participants explained that they judged
the valence of the robot’s behavior on the basis of the color of lights shown by the
robot. Besides, �ve of them (P3, P4, P6, P9, and P10) mentioned one more factor of
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intensity (frequency), for instance “I judged [the valence of the robot’s behavior] by
the color of the lights and their blinking speed. Green indicated normal situations
while red indicated emergent events. Besides, the lights with high blinking speed also
reminded me about emergent events" (P4). These results are in consistent with the
�ndings of the initial exploration.

2.4.7 Discussion

Narrative Frame Matters

The �ndings of this work suggest strong impact of narrative frame on people’s valence
perception and interpretation of expressive lights shown by a robot. Despite of the
non-anthropomorphic shape of the robot and the simple light expressions it displayed,
people are able to build rich narratives of the robot on the basis of their knowledge and
experience. Such narratives play an important role in forming subjective interpretations.
Therefore, di�erent people make di�erent explanations, even for the same expressive
light shown by the robot.

We observed that the participants of the second experiment seemed to attribute
less anthropomorphism to the robot compared to the ones of the initial exploration
study. In the initial exploration, some participants interpreted the robot as seeking to
play with the person (in GL condition) or hostile (in RH condition), indicating that they
responded highly emotionally to the robot’s behavior. However, we did not observe
similar interpretations from the participants of the second experiment. We speculate
that concrete contexts that introduced to the second study imposed restrictions on the
participants’ imaginations of the robot’s behaviors. These concrete contexts facilitated
the participants to build their narratives within the frame of their knowledge and past
experience of such contexts. As a consequence, the participants of the second study
probably created less imaginative but more practical points of views of the robot’s
behaviors, which leaded them to attribute less anthropomorphism to the robot.

Bias of Robot Type

Previous work in HRI (e.g. [155, 156]) has stressed the impact of embodiment and
shape of a robot. In this work, we show evidence that such factors, with regard to the
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type of a robot, have in�uences on how people build narratives of the robot. When
people �rst encounter a robot, we build mental models of the robot to facilitate us in
interacting with it. Such mental models are our conceptual models of the way objects
work. We use our knowledge and experience as theoretic groundings to build the
models, and the particular knowledge and experience related to the interaction of the
robot can be retrieved according to the explicit information provided by the robot, for
instance its embodiment and shape. Therefore, when people build narratives of the
robot, they likely to consider the type of the robot as an important cue. In other words,
they would make stories that are appropriate to the practical applications of the robot.
For example, people may be more likely to interpret a Nao robot (human-like robot)
as expressing emotions when its eyes display lights compared to a Roomba robot
(disc-shaped robot) that shows similar light expressions.

Design Implication

There are mainly three factors, design of light expression, type of robot, and context,
that contribute to the processing of building narratives. Therefore, we suggest design
implications with regard to each factor, respectively.

Design of Light Expression We found that people mainly rely on color to judge of
a light expression. As claimed by previous studies in color psychology (e.g. [140]),
color can carry important meaning and show a signi�cant impact on people’s a�ect,
psychological functioning, and behavior. Especially, theories and empirical �ndings
on hue emotion associations can o�er useful basis for expressive light designers to
assign meanings to their lights via color. Besides, intensity of a light expression a�ects
people’s perception of lights as well, and such impact seems to be more related to
arousal perception. For example, one participants of the second experiment commented
on intensity of the expressive lights: “... the lights with high blinking speed also
reminded me about emergent events." Therefore, we, as designers, need to carefully
manipulate the factors, such as color and intensity, so as to design the light expressions
that are appropriate to the application purposes.

Type of Robot Results from the second experiment suggest an interesting fact that
while they had practical knowledge on the robot itself (many of them recognized the
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robot as a cleaning robot), the participants made out-of-the-box imaginations of the
robot’s behaviors and responded emotionally to them. Bucci et al. [148] reported
similar �ndings in their work. Their participants acted and responded emotionally to
their simple fairy robot as it was alive in spite of the fact that no one ever believed
it was. Therefore, they suggested that, instead of attempting to make robots more
biomimetic, we may act more like writers and design the robots to perform in their
narratives so that we can leverage the power of human imagination. We believe that
such a design idea can be introduced to interaction design for functional robots as well,
especially since biomimicry in robot bodies and behaviors is considered inappropriate
[19].

Context Compared to the other factors, context has strong impact on the diversity
of people’s behavior interpretation of a robot. It frames people’s narratives by de�ning
key story elements such as when and where, and such narratives play an essential role
in forming subjective interpretations. Therefore, with regard to the meaning of a
same expressive light shown by a same robot, even a same person would give distinct
explanations in accordance with the context he or she is in. We, thus, need to fully take
the application contexts into account when we design expressive lights for robots as
the robots can be applied for entirely di�erent purposes, for example search and rescue,
public use, or cleaning at home. Behaviors of these robots, such as light expressions
to be displayed, should ideally be context-adaptable so that the possibilities of miss
interpreting and understanding their meanings could be minimized.

Limitations and Future Work

Several limitations of this work should be recognized. To explore the participants
narratives, we relied on their imaginations of the robot’s behaviors. We chose this
method instead of providing them video clips of real contexts as we wanted to ensure
the participants’ power of free imagination. However, the quality of stories received
from the participants inevitably lied on their capability of imagination. Besides, we
only prepared two expressive lights and did not treat their parameters, such as color
and intensity, independently. Interaction e�ects among the parameters may existed,
making it hard to understand if the participants’ perceptions were to be attributed
more to which parameter.
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Therefore, future work should investigate expressive lights in real HRI scenarios,
and more complex behaviors from robots, compared to the simple approaching behavior
used in this work, can be considered. With regard to the design of expressive lights,
the parameters should be evaluated independently. It will also be interesting if we can
explore more light expressions with di�erent patterns. Besides, since color perception
can be culture-dependent, it is important to study narratives of expressive lights of
people from di�erent countries and with di�erent culture backgrounds.

2.5 Summary

This chapter discusses how do expressive lights in�uence people’s perception and
interpretation of a robot’s behavior and further a�ect the people’s behavior and
decision-making. Findings from the three studies can open up possibilities for future
HRI research. Researchers may pay attention to designing e�ective non-verbal cues for
social robots, especially appearance-constrained robots, to in�uence people’s behavior,
either explicitly or implicitly. Such designs can be used in applications such as sales,
education, and persuasive robots.
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3
Communicating A�ect

This chapter introduces two studies which investigate how an appearance-constrained
robot could communicate a�ect using non-verbal cues such as color (light), sound,
vibration, and motion. Section 4.1 provides an overview of the studies. In section 3.2, I
probe three modalities, color, sound, and vibration, for a simple-shaped robot “Maru"
to express emotions. The result suggests nine best expressions that can well convey
relaxed, sad, and angry emotions but not happy. Section 3.3 presents a series of three
studies to explore how a utility robot might express emotions via expressive lights and
in-situ motions. Section 4.3 summaries the studies.
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3.1 Overview

This chapter discusses �ndings from two studies related to the research question that
how an appearance-constrained robot could communicate a�ect using non-verbal cues.

The �rst study explores e�ective designs to express emotions through color
(light), sound, and vibration. Many researchers are now dedicating their e�orts
to studying human-like interactive modalities such as facial expressions, gestures,
and gaze. Unfortunately, many robots currently in use are restricted in appearance
and therefore not able to perform such interaction methods. There are signi�cant
challenges in �nding e�ective emotional expressions for appearance-constrained
robots. To address this, I probe three alternative modalities, namely, color, sound,
and vibration. I conduct a well-structured approach to evaluate the e�ects of the
three modalities on a human’s emotional perception towards our simple-shaped robot
“Maru." Twenty-four native Japanese participants were recruited in the experiment.
They were asked to match Maru’s expressions with a particular emotion. The result
suggests, in total, nine best expressions that can well convey relaxed, sad, and angry
emotions; however, no expression can be recommended for the happy emotion. The
�ndings o�er insights into human-robot a�ective interaction, which can be particularly
bene�cial for appearance-constrained robots.

In the second study, I explore how a utility robot might express emotions via
expressive lights and in-situ motions. In most previous work, methods for either
modality were investigated alone, leaving a huge potential to improve the expression
of emotions by combining the two modalities. I present a series of three studies, one
for investigating how well people might recognize emotions on the basis of expressive
light cues alone, one for exploring how people might perceive a�ect towards in-situ
motion characteristics, and one for further combining the two modalities and studying
whether multi-modal expressions could be better recognized by people. Results from
the �rst study show participants were not able to recognize target emotions with high
accuracy. Results from the second suggest a relationship between the in-situ motion
characteristics of a robot and perceived a�ect. Results from the third suggest that
expressions that combine in-situ motions with expressive lights were better able to
convey many emotions but not all. I conclude that adding in-situ motions to a�ective
expressive lights appears to be better able to help convey emotions. These �ndings
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are important for designing a�ective behaviors for future utility robots that need to
possess certain social abilities.

3.2 Expressing Emotions through Color, Sound, and

Vibration

3.2.1 Introduction

In the last few decades, we have witnessed an enormous increase in social robotics [14].
In addition to industrial robots that work in factories, social robots are expected to be
employed in a variety of applications, for instance, education [2, 3], health care [4, 5],
public service [6, 7], and domestic uses [8, 9], where communicating and interacting
with humans are a necessity. Therefore, it is increasingly important for such robots to
be able to express a�ect.

As Cynthia Breazeal 1 claimed, robots are actually a really intriguing social
technology and have the ability to “push our social buttons." People respond to social
media, robots in particular, similar to how they respond to people, especially if the
robots communicate with people using the same body language and other nonverbal
cues that people use. As a result, more and more researchers are now dedicating
their e�orts to studying human-like robots. Some famous examples of such robots
are Aldebaran’s NAO, MIT Media Lab’s Nexi, and Hiroshi Ishiguro’s androids and
geminoids [157]. Accordingly, the research themes on a�ective expression and social
interaction are mainly focused on facial expressions, gestures, and gaze.

Unfortunately, a large number of robots currently in use for applications such as
law enforcement, search and rescue, and domestic uses (such as cleaning robots) are
not anthropomorphic, do not have any way of showing facial expressions and are
basically designed not to support a�ective expression, e.g., [19, 28]. In other words, the
abilities of these appearance-constrained [designed to be functional and lack expressive
faces [19] robots in a�ective expression are highly restricted. In addition, although
such robots may not require rich expressivity, they do need to have certain abilities to
show a�ect. For example, [108] found that victims may perceive a rescue robot as

1The Rise of Personal Robots. https://www.ted.com/talks/cynthia_breazeal_the_rise_of_personal_
robots, (Accessed November 5, 2018).

https://www.ted.com/talks/cynthia_breazeal_the_rise_of_personal_robots
https://www.ted.com/talks/cynthia_breazeal_the_rise_of_personal_robots
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“creepy" and not reassuring. They thus suggested that such a robot needs to convey a
certain a�ect to reduce intense emotions in victims.

There is a signi�cant challenge in �nding e�ective emotional interaction modalities
for appearance-constrained robots. Basically, they lack natural interaction methods, so
they have to make use of their physical bodies and mobility. Existing approaches
mainly focus on motion cues [13, 12], or body posture [15, 14, 16]. However, such
approaches lack expressibility and are hard, if not impossible, to apply in many
application scenarios. For instance, in a scenario where space is limited (a crowded
room), big movements such as those made through accelerating and moving in an arc
can be impossible to apply.

To address this issue and make interaction design simple and intuitive, we probe
three alternative modalities: color, sound, and vibration. Speci�cally, we treat color
as the primary modality and sound and vibration as auxiliary modalities. This is
because color, among the three modalities, has been widely studied in various �elds
and centuries since long ago [140]. Color psychologists and scientists intensively
investigated various aspects of color, including color vision, color emotion, and color
e�ects on psychological and biological functioning [140]. Their work primarily focused
on categorical colors, for instance, red, blue, and green. Unfortunately, their research
has not yet established a rigid framework for color design, and many research sub�elds
are still in the nascent stages. Nonetheless, we are able to take advantage of their
�ndings and make reasonable assumptions on color-emotion associations.

Fewer studies have been carried out to examine sound and vibration cues and
their associated emotional expressions, so it is hard to make sound assumptions
for sound- and vibration-emotion associations. However, there is a handful of
literature in human-computer interaction (HCI) and related �elds that explored and
employed sound and vibration cues for a�ective and/or cognitive interaction design
[96, 158, 159, 93, 160, 99, 100]. According to their �ndings, humans have di�erent
perceptions, such as positive/negative and high/low arousal, with regard to di�erent
sound and vibration stimuli. Therefore, sound and vibration can be utilized as auxiliary
modalities to improve multi-model emotional expression as a whole.

However, it is notable that such a three-modality approach may have practical
limitations. Although using more modalities may lead to higher reliability, it is
unfortunately easier to meet the physical constraints of many appearance-constrained
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robots currently in for the reason that many of the robots have been designed not
to be capable of using all three modalities. They cannot be equipped with LED
lights, speakers, and/or vibration motors. As a result, it is also essential to explore
both two-modality and single-modality expressions in addition to three-modality
expressions.

On the basis of the above discussion, in this work, we work through a structured
process to reach our design of emotional expressions for appearance-constrained
robots through three modalities: color, sound, and vibration. [22] reported exploring
various light behaviors, for a single LED, as a means of expressing a mobile phone
system’s states (such as incoming call and low battery) to a user. Our approach is
adapted and improved from their well-structured design process. Speci�cally, we begin
with a survey of a number of pieces of literature to form our fundamental assumptions
on expression-emotion associations, and we further build our prototypical social robot,
“Maru," to test our designs. We present both quantitative and qualitative results of our
experiment and provide preliminary design guidelines. On the basis of the results, we
recommend a set of nine expressions that can well express a�ect.

3.2.2 Color-, Sound-, and Vibration-Emotion Associations

Color-, sound-, and vibration-emotion associations have been widely investigated in
many �elds, particularly in psychology and HCI. We survey a number of related pieces
of literature to gain insight into basic mappings between each single modality and
emotions. In particular, we see color as the primary modality and sound and vibration
as the auxiliary modalities.

Color

Color is one of the most ubiquitous, and often least-well-understood, phenomena in
human experience. Nonetheless, color psychologists have intensively investigated
various aspects of color, including color vision, color symbolism and association,
and color e�ects on psychological and biological functioning [140]. Basically, their
work primarily focuses on red, blue, and green since such colors (especially red)
have been considered to be special and have positive links in the natural realm. [128]
claim that each color activates associations that contain psychologically relevant
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messages. Therefore, viewing a color can in�uence psychological functioning and
foster motivational and behavioral processes such as approach and avoidance.

Although the e�ects of colors on motivational and behavioral processes are not
evaluated in this paper, associative learning theory [128, 161] is closely related to and
well explains color-emotion associations. To be speci�c, color meanings are grounded
in two basic sources: learned associations that develop from repeated pairings of colors
with particular messages, concepts, or experiences, and biologically based proclivities
to respond to particular colors in particular ways in particular situations [128]. For
example, red can be associated with danger and anger. One possible source is biological
in nature, such as gelada baboons and mandrills displaying red on the body to indicate
dominance, aggressiveness, or attack readiness toward an opponent. In addition
and more generally, red carries the meaning of danger and anger in life-threatening
situations, such as when viewing blood, an angry face, tra�c lights, and/or warning
signals and sirens [161]. Similarly, blue can be associated with sadness due to the
English idiom “I feel blue." Green can be associated with positive meanings due to
tra�c lights and a general image of being natural.

More explicit studies on color-emotion mappings have been carried out by a
number of researchers. [162] indicate that green is perceived as the most positive
emotion. [163] claim that a strong color (especially red) puts the brain into a highly
excited state and might induce a bad mood. In addition, [117] discuss various studies
on color-emotion mapping. The authors suggest that white means peaceful, blue
means depressed, and red means angry.

It is notable that there are yet no exact color-emotion mappings. This is probably
due to context and culture factors as [128] claim that the same color can carry di�erent
meanings with regard to di�erent contexts. Nevertheless, we select color-emotion
mappings that are supported by the literature in general.

Sound

Sound stimuli, compared with color, are considered to have vague associations with
emotions [10] and thus can be associated with positive/negative states in general. A
handful of studies have explored using arti�cial sounds, especially non-linguistic
utterances (NLUs), to express a�ect. In particular, [96] suggests that, when beep sounds
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with upward slopes (increasing intonation) are presented from a computer, people
perceive the computer’s attitude as showing “disagreement" regardless of the duration
of the beeps and that, when slower downward slopes (decreasing intonation) with a
longer duration are presented, the computer’s attitude is interpreted as “hesitation." We
think that “disagreement" can be interpreted as an emotion consisting of a negative
a�ect and a high level of arousal, while “hesitation" consists of a negative emotion
with a low level of arousal. Therefore, we believe that both suggestions also hold if
“disagreement" and “hesitation" are replaced by the emotions “angry" and “sad."

Vibration

Vibration stimuli are mostly investigated as an auxiliary modality for conveying a�ect
in many HCI related studies. To our knowledge, no study uses vibration as a single
modality to express emotions. [99, 100] explored vibration cues in their series of
studies with regard to vibrotactile emotions on mobile phones. They suggest that
levels of vibration intensity are associated with di�erent emotions, particularly the
arousal levels of the emotions.

3.2.3 Expression Design

Circumplex Model of A�ect

In accordance with most related literature, we focus on categorical emotions, such as
happy and angry. We use the circumplex model of a�ect [164] as a two-dimensional
model of emotion to map categorical emotions onto a valence-arousal space (see
Figure 3.1). This model can o�er bene�ts to maximize diversity if four particular
emotions are to be evaluated: relaxed, happy, sad, and angry. This is because each of
the emotions can be mapped onto a di�erent quadrant of the valence-arousal space.
To be speci�c, relaxed is of positive and low arousal, happy is of positive and high
arousal, sad is of negative and low arousal, and angry is of negative and high arousal.
Although one can argue about the selection of these four emotions, we believe that
such a choice is valid. Basically, most emotions belonging to the same quadrant of the
valence-arousal space are similar to each other but quite di�erent from emotions
belonging to the other quadrants. For instance, calm and serene are close to relaxed
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positive valence
high arousal

positive valence
low arousal

negative valence
high arousal

negative valence
low arousal

Figure 3.1: Circumplex model of a�ect

but distinct from happy. Therefore, we claim that the four emotions we chose can
represent people’s perceptions to the greatest extent without introducing additional
complexity if more emotions are introduced.

Candidate Expressions

We designed a set of candidate expressions that consisted of both basic expressions
(expressions through one single modality) and mixed-modality expressions (expressions
through multiple modalities). We �rst decided on a set of basic expressions that
represent the mappings between each single modality and the emotions. Further,
mixed-modality expressions were built upon these basic expressions.

On the basis of the survey in section 3.2.2, we determined our assumptions on
single modality-emotion mappings. Speci�cally, for the color modality, we associated
relaxed with white, happy with green, sad with blue, and angry with red. For the sound
modality, we associated a falling beep sound with sad and a rising beep sound with
angry. For the vibration modality, we associated relaxed with a mildly intense vibration,
happy with highly intense vibration (lower than that for angry), sad with a low intense
vibration, and angry with a highly intense vibration. However, the mappings between
sound stimuli and relaxed and happy emotions remained unclear. Therefore, we further
organized a pre-design session to particularly address this issue. We would like to note
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Table 3.1: Assumptions of mappings between single modality and emotion, forming 12
basic expressions.

Emotion Color (c) Sound (s) Vibration (v)

relaxed white c1 �at beep sound s1
mildly intense

vibration
v1

happy green c2
�at beep sound
(louder than s1)

s2
highly intense

vibration (lower
than v4)

v2

sad blue c3
falling beep

sound
s3

low intense
vibration

v3

angry red c4
rising beep

sound
s4

highly intense
vibration

v4

that we are aware of the bias we introduce when such modality-emotion associations
are made. However, since we do not take them as a ground truth for participants, we
believe that such a bias is insigni�cant as the validity of our assumed modality-emotion
associations will be evaluated in a participant experiment.

We asked a panel of �ve researchers (members of our research group; one female)
to discuss the so-far decided candidate expressions. None of them were familiar with
our project before joining the session. The pre-design session lasted for about 30
minutes. We asked them to comment on the expressions we currently decided on and
give suggestions on expressing relaxed and happy through sound modality. Basically,
they all agreed with the expression designs. In addition, they suggested using a �at
beep sound to express both relaxed and happy emotions. To di�erentiate between the
two, the beep sound associated with happy was made louder since happy is of higher
arousal than relaxation.

All of the basic expressions were thus determined. Table 3.1 shows 12 basic
expressions. Basically, each of them was assigned with a unique code, for example, a
white color expression was assigned with “c1," and a falling beep sound was assigned
with “s3." On the basis of them, we further designed 16 mixed-modality expressions.
Speci�cally, each mixed-modality expression was a combination of two or three basic
expressions from the same emotion category. Their names were decided by mixing
codes of combined modalities followed by a number indicating which emotion category
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Table 3.2: List of all 28 candidate expressions; 1 - 12 are basic expressions, 13 - 28 are
mixed-modality expressions.

1 c1 15 cs3
2 c2 16 cs4
3 c3 17 cv1
4 c4 18 cv2
5 s1 19 cv3
6 s2 20 cv4
7 s3 21 vs1
8 s4 22 vs2
9 v1 23 vs3
10 v2 24 vs4
11 v3 25 cvs1
12 v4 26 cvs2
13 cs1 27 cvs3
14 cs2 28 cvs4

of the basic expressions they belonged to. For instance, “cvs1" is a mixed-modality
expression that consists of three basic expressions, “c1," “s1," and “v1." Table 3.2
demonstrates all of the candidate expressions, where Nos. 1 to 12 are basic expressions,
and Nos. 13 to 18 are mixed-modality expressions.

Maru the Robot

We built Maru 3.2 as a prototypical social robot to carry out the participant experiment.
We applied a minimum design and intentionally made Maru’s embodiment and appear-
ance simple while still having the attribute of anthropomorphism. This is important as
we wanted to reduce the bias caused by Maru’s appearance while appropriately using a
certain amount of anthropomorphism to facilitate social interaction between Maru and
the participants.

Maru is made of two pieces of hollow, semi-spherical Styrofoam (diameter= 15cm).
Four LEDs (white, green, blue, and red) are assembled behind each of its eyes. In
addition, a speaker is used to generate beep sound stimuli, and a vibration motor is
attached to the inner body to produce vibration stimuli. An Arduino Uno R3 board is



3.2 Expressing Emotions through Color, Sound, and Vibration 97

Color

Vibration

Sound

• Diameter: 15cm 
• Controller: Arduino Uno R3 
• LED: white×2, green×2, blue×2, red×2 
• Speaker: piezo speaker×1  
• Vibration motor: vibration motor module×1

Figure 3.2: Maru and its expressions made through color, sound, and vibration.

programmed to control the robot. Figure 3.2 shows Maru and how it expresses emotions
through the three modalities of color, sound, and vibration and their combinations.
Information regarding Maru’s hardware is also listed.

3.2.4 Experiment

Participant

Twenty-four Japanese in total (12 males, 12 females) ranging from 20 to 39 years old
(M = 29.09, SD = 5.90) were recruited for the experiment. All of them were native
Japanese speakers with a certain amount of knowledge on English. In addition, none of
them had experience in using or working with a robot.

Procedure

Maru was placed in front of the participants at a distance of about 50 cm. Figure 3.3
shows both the experiment setting and a real scene of a participant experiment.
The Arduino UNO board inside its body controlled all of its expressions. Before the
experiment started, the experimenter welcomed the participants and brie�y explained
the purpose and setting of the study. The participants were required to complete a short
pre-questionnaire consisting of demographic information and questions regarding
experience with robots. After �nishing the pre-questionnaire, the experimenter started
the experiment and left the room. In total, 28 trials were conducted for each participant,
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questionnaire

power supply
Maru

participant

50
cm

Figure 3.3: Experimental setting. Wires shown in right �gure were hidden during
actual experiment.

where in each trial, Maru repeatedly performed a single expression (1-second-long
expression followed by a 1-second pause; all modalities were synchronized) from the
candidate set.

The expressions were randomized across participants. Each trial lasted for 10
seconds, and between each of two trials, the participants had a 20-second pause to
select one emotion out of the four (relaxed, happy, sad, and angry) that they believed
Maru had just expressed. After all of the trials were completed, the participants were
asked to give free comments on Maru’s expressions. Last, the experimenter ended the
experiment and thanked the participants. All of the participants received �ve thousand
Japanese yen (about 45 dollars) as a reward.

3.2.5 Results

Figure 3.4 gives an overview of the experimental results. For each candidate expression,
the selection rate (SR), indicating how many participants perceived an expression as a
particular emotion, was counted with regard to each of the four emotions. Because the
total number of participants was 24 in this experiment, the value of the selection rate
ranged from 0 to 24. For instance, c2 has a SR of 0 regarding the emotion of anger as no
participant perceived c2 as angry when Maru expressed it, but it has SRs of 11, 11, and
2 with regard to relaxed, happy, and sad, respectively.
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Table 1

modality relaxed happy sad angry

c2 11 11 2 0

c3 9 4 11 1

c4 1 6 1 16

v1 10 3 4 7

v2 2 3 5 12

v3 10 1 7 8

v4 0 3 1 20

s1 6 1 13 4

s2 4 1 16 3

s4 4 5 7 8

cv1 12 5 4 3

cv2 6 8 3 6

cv3 10 0 12 2

cs1 10 6 7 1

cs2 12 5 5 2

vs1 6 1 7 9

vs2 3 2 4 14

cvs1 10 4 6 3

cvs2 4 8 6 5

c1 15 7 2 0

cvs3 1 2 19 2

vs3 1 1 19 3

cs3 2 3 19 0

s3 1 5 16 2

cvs4 0 1 0 23

cv4 0 0 2 22

vs4 0 1 3 20

cs4 0 6 1 17

c2

c3

c4

v1

v2

v3

v4

s1

s2

s4

cv1

cv2

cv3

cs1

cs2

vs1

vs2

cvs1

cvs2

c1

cvs3

vs3

cs3

s3

cvs4

cv4

vs4

cs4

Selection Rate (SR)
0 6 12 18 24

relaxed happy sad angry

�1

Figure 3.4: Overview of our results. Selection rate (SR), ranging from 0 to 24, indicates
how many participants mapped expressions onto emotions; shaded area shows nine
recommended expressions.
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Table 3.3: Summary of representative comments from participants. Numbers in
parenthesis indicate number of participants who gave comments.

(a) It was di�cult to recognize the happy emotion. (7)
(b) Color is the most important modality for expressing a�ection. (8)
(c) Using vibration alone was confusing. (4)

(d)
Vibration conveys negative emotions, and a highly intense vibration espe-
cially conveys angry. (6)

(e)
Rising/falling sounds were easily recognized as angry/sad, but �at sounds
were di�cult to interpret. (7)

(f) It was di�cult to recognize the relaxed emotion when sound was used. (3)

(g)
Using multiple modalities is more understandable than using a single modal-
ity alone. (6)

Criteria for Selecting Expressions

[22] presented their study on single LED light behaviors as a means of expressing a
mobile phone system’s states, such as incoming call and low battery. Our approach is
adapted and improved from their well-structured design process. In this experiment,
we analyzed the candidate expressions with regard to the four emotions separately. For
the evaluation, we �rst introduced two criteria for selecting good expressions: (1) an
expression must have a strong interpretation regarding an emotion (selection rate in
the top quartile, or in other words, above the third quartile), and (2) an expression must
be iconic, meaning that it has only one dominant perception among the four emotions.
For instance, an expression is ambiguous and not desirable if the participants perceive
it as more than one emotion. We assessed the iconic-ness for each candidate expression
that meets criteria (1). For evaluation, we used one-sample tests of proportions with a
multinomial test. For each test that was signi�cant, we further conducted post-hoc
multinomial tests with Bonferroni correction for multiple comparisons. Because of the
four emotion categories, the hypothesized probability that each emotion would be
chosen at random regarding an expression was set to one-fourth (25%, which is the
probability of a random guess).

In addition to the selection rates, we also gathered the participants’ subjective
comments on our expression design through open questions in post-questionnaires.
We believed that linguistic feedback from users would be essential to the selection of
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expressions as such qualitative information can provide more detailed understandings
with regards to the participants’ subjective perceptions and can be used to validate
the quantitative �ndings. Table 3.3 summarizes the representative viewpoints that
were given by at least three participants. Basically, after a selection based on the
above-mentioned two criteria, we further discarded expressions that were not in
line with the comments since we believed that the collected comments revealed the
participants’ perceptions and interpretations of our design.

Recommended Expressions

Nine expressions (Figure 3.4, shaded area) were selected as our recommended set of
emotional expressions made through color, sound, and vibration. We now describe
them with regard to each emotion category.

Table 1

Modality sum

c1 15

cv1 12

cs2 12

c2 11

cv3 10

v1 10

v3 10

cs1 10

cvs1 10

c3 9

s1 6

cv2 6

vs1 6

s2 4

s4 4

cvs2 4

vs2 3

v2 2

cs3 2

c4 1

s3 1

cvs3 1

v4 0

cv4 0

cs4 0

vs3 0

vs4 0

cvs4 0

0
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16
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Figure 3.5: Selection rates (SR) for relaxed emotion category

Relaxed We recommend c1 for expressing a relaxed emotion. It also has the highest
selection rate with regard to relaxed emotion (see Figure 3.5). Although both cv1
and cs2 also met criteria (1) and (2), they were discarded because of the participants’
comments [(d) and (f)] (see Table 3.3).

A multinomial test indicated a signi�cant di�erence in c1 (p < 0.01). Post-hoc tests
with Bonferroni correction suggest that the result for relaxed was signi�cant [see
Figure 3.9(a), signi�cantly above 25%, p < 0.001], while results for the other three
emotions were not (happy: n.s.; sad: n.s.; angry: signi�cantly under 25%, p < 0.01). In
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addition, the selection of c1 met our assumptions as we assumed the mapping between
the color white and relaxed emotion.

Table 1

Modality sum

c2 11

cv2 8

cvs2 8

c1 7

c4 6

cs1 6

cs4 6

cv1 5

cs2 5

s4 5

s3 5

cvs1 4

c3 4

v1 3

cs3 3

v4 3

vs2 2

cvs3 2

s1 1

vs1 1
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Figure 3.6: Selection rates for happy emotion category

Happy No expressions met our selection criteria with regard to the happy emotion
(see Figure 3.6). Although the four expressions had SRs above the third quartile,
post-hoc tests showed that none of the four expressions were iconic. This meets
comment (a) suggesting the di�culty of recognizing the happy emotion.

Table 1

Modality sum

cvs3 19

vs3 19

cs3 19

s2 16

s3 16

s1 13

cv3 12

c3 11

cs1 7

s4 7

v3 7

vs1 7

cvs1 6

cvs2 6
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Figure 3.7: Selection rates for sad emotion category

Sad We recommend cvs3, vs3, cs3, and s3 for expressing a sad emotion. They had the
top �ve selection rates with regard to the sad emotion except for s2 (see Figure 3.7). We
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conducted multinomial tests for the top six expressions that met criteria (1). Post-hoc
tests with Bonferroni correction indicates that all six expressions also met criteria (2)
[see Figure 3.9(c)].

We further discarded s2 and s1 due to comment (e). All of the remaining four
expressions formed our recommended expressions for sad, which consist of basic
expressions that are mapped to the sad emotion (c3: blue color; v3: low intense
vibration; s3: falling beep sound). This also met our assumptions.

Table 1

Modality sum

cvs4 23

cv4 22

v4 20

vs4 18

cs4 17

c4 16

vs2 14

v2 12

vs1 9

s4 8

v3 8
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s2 3
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Figure 3.8: Selection rates for angry emotion category

Angry Four expressions, cvs4, cv4, vs4, and cs4, are recommended for expressing an
angry emotion. They had the top �ve scores with regard to the angry emotion except
for v4 (see Figure 3.8). Similar with the sad emotion, all of the top six expressions were
iconic in the angry category [see Figure 3.9(d)].

Further, we discarded v4 and c4 because of comments (c) and (g). All of the four
recommended expressions consisted of basic expressions that were mapped to the
angry emotion (c4: red color; v4: highly intense vibration; s4: rising beep sound),
which again met our assumptions.

3.2.6 Discussion

As we worked through a well-structured process for designing a�ective expressions
through color, sound, and vibration modalities, we were able to o�er a set of nine
expressions that can well convey a�ect. Speci�cally, for a relaxed emotion (or in
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Figure 9. Selection rates vs. emotions regarding each expression. All expressions except for four under happy emotion category are 
recommended.
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Figure 3.9: Selection rates vs. emotions regarding each expression. All expressions
except for four under happy emotion category are recommended.
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general, a positive-valence-low-arousal emotion), we recommend c1. For sad (a
negative-valence-low-arousal emotion), we recommend four expressions, cvs3, vs3,
cs3, and s3. For angry (a negative-valence-high-arousal emotion), we suggest four
expressions, cvs4, cv4, vs4, and cs4.

On Expression for Happy

Unfortunately, we are not able to o�er any good expressions for happy (a positive-
valence-high-arousal emotion). One plausible explanation is that humans tend to
perceive a highly intense expression as a negative emotion rather than a positive one.
In particular, negative emotions are key to our wellbeing and are more noticeable than
positive ones since attending to negative events can be more important for survival
than attending to positive events ([165]). Accordingly, the participants might have
had a bias toward perceiving and interpreting an expression as a negative emotion,
especially for highly intense expressions, since they can be considered as being linked
to highly dynamic activities that may be associated with danger. Evidence can be found
in the experimental results, where the expressions for negative emotions (sad and
angry), compared with positive emotions (relaxed and happy), were well recognized
with much less ambiguity (see Figure 3.9). Another possible reason is that the number
of participants recruited in our experiment may have been relatively small. Although
we conducted the within-participant experiment with 24 people, a larger number
of participants may be able to reveal a more powerful statistical signi�cance. To
be able to conduct experiments with a large number of participants, we had to use
online crowdsourcing as an economical means to get experimental data. However,
the expressions we studied, especially those that contained the vibration modality,
were not able to be explicitly conveyed through an online investigation. Thus, as
a compromise, we recruited a relatively small but reasonably su�cient number of
participants.

Importance of Each Modality

On the basis of the participants’ comments, we con�rmed that color is the most
important modality for expressing emotions among the three. Color is one of the most
ubiquitous phenomena in human experience and has been intensively explored by
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psychologists and designers. In addition to the wide use of color among animals and
plants, humans have made use of it throughout a long part of history. We associate
color with symbolic meanings and emotions. Just as Don Norman put it, color o�ers
good natural mappings [see [10]. This is why we employed color as the primary
modality for expressing a�ect.

In contrast, sound- and vibration-emotion associations are in general considered to
be more vague. Expressions through either modality alone may probably not be able to
convey explicit emotions. However, these modalities are expressive with regard to
particular emotions. Sound stimuli can well convey sad and angry emotions, while
vibration stimuli can convey di�erent levels of arousal. According to our experimental
results, most of the recommended expressions for a sad emotion consist of a falling
beep sound and/or low intense vibration, while most of the expressions for an angry
emotion consist of a rising beep sound and/or highly intense vibration. Therefore,
we considered utilizing sound and vibration as auxiliary modalities. In addition, the
results also indicate that �at beep sounds (regardless of volume) can be too ambiguous
to be interpreted as a particular emotion.

A few more implications can also be drawn from the experimental results. Since
the participants were strongly biased toward negative emotions when perceiving
expressions that consisted of sound and/or vibration modalities, the consideration
of involving such modalities in designing positive expressions needs to be made
with caution. In addition, if applicable, using multi-modality expressions can reduce
ambiguity in recognizing certain emotions (such as sad and angry) compared with
using single-modality expressions.

Design Guideline

On the basis of our �ndings, we o�er six suggestions as general design guidelines:

I. It is suggested to use expressions that contain the color modality;

II. When expressing sadness, a falling sound is strongly recommended;

III. When expressing anger, a rising sound and highly intense vibration are strongly
recommended;

IV. Use multiple modalities rather than a single modality, if applicable;
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V. It is better not to use vibrations for positive emotions.

VI. It is much easier to express negative expressions rather than positive expressions.

We note that we selected all of the expressions that met our criteria rather than
pick only the best one. This is because there might not be one best expression that
holds for everyone. Instead, we o�er a set of good expressions so that variety and
�exibility are promised. Basically, a practical issue could be the various designs of
robotic platforms. A robot may not be able to perform expressions through all of the
three modalities, especially vibration. Therefore, for designers who would apply our
�ndings to their projects, we suggest that they start with choosing the expressions that
have the highest selection rates while meeting their hardware con�gurations and that
they further adjust their choices on the basis of the performance.

Inevitably, this work has certain �aws. The generality of our �ndings may be
restricted due to the appearance of our robot Maru. Maru was built to have two eyes to
gain the attribute of anthropomorphism, and LEDs are attached behind the eyes. As a
result, expression through color modality is achieved by Maru “blinking" in the eyes.
There is thus the possibility that our results depend on the face-like appearance of
the robot. However, as [112] claim that humans’ have an intrinsic mechanism for
anthropomorphizing things, we argue that the generality of our �ndings is minimally
a�ected.

Future Work

Future work can further explore certain directions. For example, we restricted our
set of candidate expressions to avoid too large a design space. To be speci�c, we
�rst made our assumptions on single modality-emotion mappings, and we further
designed mixed-modality expressions on the basis of these assumptions. As a result,
we intentionally discarded many other combinations that we considered not valid
(we successfully cut down the number of candidate expressions from 124 to 28).
Nevertheless, further investigation on those con�icting mixed-modality expressions
may reveal interesting �ndings.

We did not consider many parameters that can be important for designing expres-
sions through the three modalities, such as duration, brightness of colored LED lights,
and volume of sound. Therefore, it is important to carry out follow-up studies to
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explore the setting of those parameters that may a�ect emotional expression and
perception.

In addition, further tests on di�erent robotic platforms (such as the iRobot cleaning
robot, the Roomba) are needed to evaluate the generality of the �ndings reported in
this work.

3.3 Designing Expressive Lights and In-Situ Motions

for Robots to Express Emotions

3.3.1 Introduction

There is an increasing need for utility robots to express emotions. People often expect
such robots to act socially [19]. For instance, in previous work, it was found that
rescue workers expect a small tank-like robot to follow social conventions [107];
man-packable robots were perceived as “creepy" and not reassuring when they were
operated close to simulated victims [108]. However, because utility robots are, in
general, restricted in appearance, there is a lack of methods that can be used for these
robots to express a�ect and intent.

Due to the restricted interaction methods available to utility robots, human-
robot interaction (HRI) approaches rely mainly on motion cues [13, 166, 88, 113].
Strong relationships between motion parameters, e.g., acceleration, curvature, and
trajectory, were found, and the type of body that a robot has did not seem to a�ect
such relationships [13]. Nevertheless, motion alone was not able to convey emotions
precisely, although motion parameters might be used to predict the perceived arousal
and valence. Moreover, current methods regarding robot motion can be hard to apply
in many practical scenarios. For instance, it can be impossible for a robot to use big
movements to interact with people when situated in a narrow corridor or a crowded
room. In addition, making big movements takes a rather long time, which would likely
result in users becoming frustrated as it would take a long time to understand what a
robot is expressing.

In addition to motion, using expressive lights as dynamic visual cues has been
explored for designing a�ective HRI as well [86, 116]. Researchers found that a
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robot is able to convey emotions by showing expressive lights that dynamically
change in color luminosity [86]. Parameters such as color, period, and waveform
contribute to the perception of emotions. In particular, color is considered to be
a strong cue for predicting perceived a�ect. Color psychologists have intensively
investigated various aspects of color, including the e�ects of color on psychological
and biological functioning [140]. However, using expressive lights alone did not
increase the recognition accuracy as well, although doing so seemed to lead to better
performance than using robot motion alone. In addition, approaches using expressive
lights are inappropriate if a user has a color-vision disorder.

Contribution

In this work, we explore whether multi-model expressions that combine motion and
expressive light cues might better convey target emotions. Particularly, we investigate
and apply in-situ motions, rather than the motion patterns studied in previous work, in
the hope of allowing a robot to express a�ect in a rather short time frame without
making big movements. Our �rst experiment was performed to evaluate how well a
robot might convey emotions on the basis of expressive lights alone. The design of the
lights was adapted from previous work [86]. A second experiment was performed to
explore how people might perceive a�ect towards in-situ motions since this was not
clear due to lack of related literature. On the basis of the results of the two studies, a
third experiment was performed to further investigate whether combining motion and
expressive lights modalities might better convey emotions. In this paper, we use the
Circumplex Model [167], a two-dimensional space, to investigate the design space. On
the basis of participants’ ratings of perceived emotions using the Self-Assessment
Mannequin (SAM) method [168], we found that adding in-situ motions to expressive
light cues helped with more precisely expressing emotions for happiness, sadness,
disgust, and surprise. With this work, we hope to suggest an e�ective method for
evaluating and comparing the emotional responses of users to robot expressions via
di�erent modalities and to further provide insights into designing a�ective expressions
for utility robots.
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3.3.2 Related Work

Emotional expressions based on motion cues have been investigated in many studies.
Tremoulet and Feldman [113] demonstrated that even a single moving object can be
perceived as alive. They discovered that people’s ratings of animacy were heavily
in�uenced by the changes in speed and direction of an object. Particularly, in HRI,
Saerbeck and Bartneck [13] explored the relationship between the motion features of a
robot and the attribution of a�ect. They found a strong relationship between motion
parameters and perceived a�ect, while the type of body that a robot has had no e�ect.
Speci�cally, their results indicated that the level of acceleration can be used to predict
the perceived arousal and that an interaction e�ect between acceleration and curvature
existed with regards to valence information. Syrdal et al. [169] performed a video
human-robot interaction study in which participants viewed a video in which an
appearance-constrained robot used dog-inspired a�ective cues to communicate a�nity.
They suggested that such cues be e�ective for non-verbal a�ective communication.
Cauchard et al. [88] explored how personality traits and emotional attributes can be
encoded in drones via their �ight paths. They found that drone movements, such as
speed, altitude, and orientation, were important for designing a�ective expressions.

Expressive lights used as dynamic visual cues have also been explored for HRI
research and applications. For instance, both Sony’s robot dog AIBO and Aldebaran’s
Nao use LED lights to assist in a�ective expression. Terada et al. [86] studied how a
robot might convey emotions by dynamically changing the color luminosity of its
body. Their �ndings suggest a relationship between hue value and basic types of
emotion and that duration and waveform represent the intensity of emotion. Rea et al.
[87] mounted multi-color LEDs on an iRobot Roomba robot to broadcast ambient
information in the form of a colored halo. They investigated how a robot with an
ambient light display may integrate into a daily environment. Song and Yamada [116]
evaluated the e�ects of three modalities, color, sound, and vibration, on a human’s
emotional perception of a simple-shaped robot. Their results indicate that color can be
an important cue for people to recognize emotions.

Besides, few studies explored design for multi-modal emotion expression for
social robots in which both color and motion cues were employed. Häring et al. [170]
designed eight expressions for a Nao robot for the emotions anger, sadness, fear, and
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joy, consisting of body movements, Sounds and Eye Colors. Their analysis suggested
that body movements were appropriate for their target emotion but colors were
unreliable. Lö�er et al. [94] built a simple movable robot and designed a set of 28 uni-
and multi- modal expressions for conveying four basic emotions joy, sadness, fear, and
anger. They found that planar motions were the most e�ective uni-modal expressions
but multi-modal expressions that used both color and motion o�ered overall best
performance.

3.3.3 Methodology

3.3.4 Emotional Model

Among a number of proposed psychological models for the cognitive structure of
emotions, two of them are widely accepted and supported by empirical evidence.
Ekman and Friesen [171] suggested a set of basic emotions based on human facial
expressions. Their set consists of anger, disgust, fear, joy, sadness, and surprise. Others
evaluated facial expressions for the mental states of boredom, confusion, happiness,
interest, and surprise [172] or anger, fear, happiness, sadness, and surprise [173]. To
not view emotions as categories, Russell [167] introduced the Circumplex Model of
A�ect, in which emotions are mapped to a two-dimensional space: the arousal of an
emotion and the valence of an experience. In previous studies [166] in which this
emotional model was applied, it was found that the model was useful with regards to
designing a�ective expressions, and it was suggested that it a more precise tool for
evaluating the accuracy of emotion perception.

3.3.5 Robot Con�guration

We used an iRobot Create 2 robot. Roomba is a series of autonomous robotic vacuum
cleaners used in indoor environments. All Roomba robots are disc-shaped, 34 cm in
diameter, and less than 9 cm in height. This robot perfectly �ts the de�nition of a utility
robot and, due to its constrained appearance, has very limited ways of expressing
a�ect, e.g., moving forward/backward and spinning.

Figure 3.10 shows the con�guration of the Roomba robot with an LED lighting
system installed on it. We used one meter of a NeoPixel LED strip (60 pixels). The LED
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Figure 3.10: Con�guration of Roomba robot with LED lighting system.

strip was controlled by an Arduino Uno R3 board, and both the strip and board were
powered by a 5-V, 3-A portable power-bank. The same board was also used to control
the movements of the robot. iRobot Create 2 robot provides the Roomba Open Interface
(OI), which is a software interface for controlling and manipulating Roomba’s behavior.

Procedure

In this work, we evaluated the e�ectiveness of expressions for seven emotions: anger,
surprise, disgust, sadness, happiness, fear, and calm. These emotions were chosen on
the basis of a model by Ekman and Friesen [171] and from similar studies [86]. To
investigate how well these emotions might be recognized, we used the Circumplex
Model. Basically, all seven emotions are featured in the model, covering the whole
two-dimensional space (a broad spectrum of valence and arousal levels). For evaluation,
we applied the SAM method. Participants rated emotions on a �ve-point valence scale
(from very negative to very positive) as well as a �ve-point arousal scale (from very
low to very high). The validity of using SAM scales to rate perceived emotions has
already been shown in previous work [166, 168].

We performed three studies, where we designed the third study on the basis of
the �ndings from the �rst two. Particularly, in study I, we asked participants to
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rate the seven emotions by using the SAM scales. This procedure was also taken by
Strohmeier et al. [166] to account for potential individual variance in the interpretation
of emotions. We used the results from this test as referential ratings of the seven
emotions and to further obtain distance measures between the reference points and
other ratings of perceived emotions. To be speci�c, with regards to each emotion,
we obtained a referential (X ,Y ) coordinate on the Circumplex Model. For further
evaluations, e.g., emotional perception towards expressions based on expressive lights
alone and expressions that combined in-situ motions and expressive lights, we then
calculated the Euclidian distance between the response emotion and the references.
Note that all distances were measured on a �ve-point SAM scale.

Hypothesis

We hypothesized that emotional expressions based on expressive lights alone would not
able to be recognized with high accuracy. This would be revealed in study I by obtaining
distance measures between ratings of such expressions and corresponding referential
ratings. We also hypothesized that a strong relationship between in-situ motion
parameters, e.g., speed and pattern, and participants’ ratings of perceived emotions
would be observed. This would be evaluated in study 2. Further, we hypothesized that
multi-modal expressions that appropriately combine in-situ motions and expressive
lights were better able to be recognized. Study III would test such a hypothesis.

3.3.6 Study 1: Emotional Expression via Expressive Lights

In this study, we evaluated how well our Roomba robot might convey emotions on the
basis of expressive lights alone. We also asked participants to rate the seven emotions
by using the SAM scales, where the results were used as referential ratings of the
emotions in both studies I and III.

Method

Our design of expressive lights was mainly adapted from Terada et al. [86]. Table 3.4
demonstrates the parameter settings used in our experiment. Note that we converted
their hue values to RGB values to �t our LED lighting system. In addition, we also
converted their mixed waveforms by simply applying the following rules; if the mix
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Table 3.4: Parameter settings for design of expressive light expressions.

Emotion RGB Period[ms] Waveform
Anger 255, 17, 0 896 square

Surprise 255, 132, 0 747 square
Disgust 255, 0, 179 1645 square
Sadness 21, 0, 255 3310 sinusoid

Happiness 255, 157, 0 1123 square
Fear 166, 0, 255 1377 square
Calm 255, 255, 255 2000 sinusoid

ratio is less than 0.5, use a square waveform; if the mix ratio is greater than 0.5, use a
sinusoidal waveform.

Participants

Eighteen Japanese in total (12 males and 6 females) ranging from 22 to 50 years old
(M = 29.44, SD = 9.31) were recruited for the experiment. None of them had any
color-vision disorders. Participants rated the seven emotions (used as referential
ratings) before they rated the perceived emotions of expressions based on expressive
lights. The order in which the seven expressions were shown was randomized.

Results

Figure 3.11(a) shows the referential ratings of the seven emotions. ◦ indicates the mean
valence and arousal values for the emotions, where ellipses represent the standard
deviation. In general, our results had a similar distribution to that reported by Russell
[167] and Strohmeier et al. [166]. However, our participants rated happy, fear, and
anger to be more positive (greater valence value). This might be due to cultural factors
as participants from both of their two studies were from Western countries, while our
participants were from Eastern countries (Japan).

Figure 3.11(b) shows the ratings of the expressions based on expressive lights. Mean
distances between response emotions (◦) and referential emotions (+) are illustrated as
line segments. It is clearly revealed that participants perceived emotions with quite
di�erent levels of valence and arousal compared with the corresponding referential
emotions shown in Fig. 3.11(a). Such results were expected since previous studies
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Figure 3.11: Circumplex Model of A�ect. ◦ shows mean valence and arousal ratings of
emotions, where ellipses show area encompassing one standard deviation. Figure (a)
shows referential ratings of seven emotions. Figure (b) shows ratings of expressions
based on expressive lights. Particularly, with regards to Figure (b), line segments show
mean distances between response emotions (◦) and referential emotions (+).

suggested that correctly conveying emotions via expressive light cues alone is di�cult.

3.3.7 Study 2: Emotional Expression via Motion

In this study, we explored how people might perceive a�ect towards in-situ motions.

Method

Due to the nature of the Roomba robot, we found two parameters that can well
represent the characteristics of its in-situ motions: pattern and speed. To be speci�c, we
designed two in-situ motion patterns, circle and shake, to �t the mobility of the Roomba.
For the circle pattern, the robot simply spins 360 degrees clockwise and stops at the
initial orientation. For the shake pattern, the robot �rst turns 45 degrees clockwise and
then turns 90 degrees counterclockwise. It then turns 90 degrees clockwise and 90
degrees counterclockwise. Last, it turns 45 degrees clockwise to return to the initial
orientation. This pattern design was inspired by both human and animal behaviors.
Many people and animals, e.g., dogs, might move similarly in a circle when they
have positive feelings and might shake their heads (similar to shake) when they have
negative feelings, e.g., expressing disagreement.

We also designed three levels of speed for the robot’s in-situ motion: low, medium,



116 Chapter 3. Communicating A�ect

Valence

Ar
ou

sa
l

1 2 3 4 5

1
2

3
4

5

Arousal

Va
le

nc
e

circle_low

circle_medium

circle_high

shake_low

shake_medium

shake_highhigh

low

shake

circle

Figure 3.12: Ratings of expressions based on in-situ motions.

and high. According to previous work [13], the use of three levels can su�ciently
represent the design space of speed.

Participants

The same eighteen Japanese participants took part in the experiment. They were asked
to rate the perceived emotions of expressions based on in-situ motions. The order
in which the six expressions were shown was randomized. The experiment had a 2
(pattern: circle vs. shake) × 3 (speed: low, medium, high) within-participant design.

Results

Figure 3.12 shows the ratings of the expressions based on in-situ motions. The results
indicate an interesting relationship between in-situ motion parameters and attribution
of a�ect.

We ran a factorial repeated measures ANOVA to test the ratings for valence and
arousal separately. With regards to valence, it showed a signi�cant main e�ect for both
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pattern [F (1, 17) = 7.59,p < 0.05] and speed [F (2, 34) = 5.72,p < 0.05]. No interaction
e�ect was found. We further conducted post-hoc tests with Holm’s correction. The
analysis revealed two important points. One, when speed was high, the circle pattern
was perceived as signi�cantly more positive than the shake pattern (p < 0.05). Two,
when the pattern was the circle, the high speed was perceived as signi�cantly more
positive than the low speed. Such �ndings are in line with our hypothesis that humans
and animals perform movements similar to the circle pattern to express positive
feelings.

With regards to arousal, we found both a signi�cant main e�ect for pattern
[F (1, 17) = 5.35,p < 0.05] and speed [F (2, 34) = 76.24,p < 0.001] and a signi�cant
interaction e�ect [F (2, 34) = 5.52,p < 0.05]. This e�ect might indicate that the shake
pattern, compared with the circle one, was particularly strong in conveying emotions
with high arousal levels. We conducted post-hoc tests with Holm’s correction as well.
The �ndings suggested that, one, when the speed was high, the shake pattern was
perceived as signi�cantly more intense than the circle pattern (p < 0.05), and, two, for
both patterns, a higher level of speed was perceived as signi�cantly more intense than
a lower level of speed.

3.3.8 Combining Expressive Lights and Motion

On the basis of the �ndings from studies I and II, in this study, we investigated whether
the robot could better convey emotions by combining in-situ motions and expressive
lights.

Method

To evaluate how precisely an expression conveyed a target emotion, we calculated
the Euclidian distance between the rating of an expression and its corresponding
referential rating. By doing this, we were able to obtain two sets of distances: mean
distances between ratings of expressions based on expressive lights alone and the
referential ratings and mean distances between ratings of multi-modal expressions and
the referential ratings.

The results of study II provided insights into the relationship between in-situ
motion characteristics and the attribution of a�ect. Basically, the speed of motion had a
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Table 3.5: Parameter settings for design of multi-modal expressions.

Emotion RGB Period[ms] Waveform Pattern Speed
Anger 255, 17, 0 896 square shake high

Surprise 255, 132, 0 747 square shake high
Disgust 255, 0, 179 1645 square shake low
Sadness 21, 0, 255 3310 sinusoid shake low

Happiness 255, 157, 0 1123 square circle high
Fear 166, 0, 255 1377 square shake high
Calm 255, 255, 255 2000 sinusoid circle low

strong and positive relationship with the perceived arousal level. Moreover, the shake
pattern was overall perceived to be more negative than the circle pattern, especially
when the speed level was high. On the basis of these �ndings, we hypothesized that
multi-modal expressions that appropriately combine in-situ motions and expressive
lights were better able to be recognized. In other words, we intuitively assumed that
adding appropriate in-situ motions might help to decrease the distances between
the ratings of expressions based on expressive lights alone and their corresponding
referential ratings. For instance, since the rating for happiness (shown in Figure 3.11)
had both lower valence and arousal levels compared with its referential rating, a
reasonable combination was to add in-situ motion with the circle pattern and the high
speed level to the corresponding expressive light expressions. Table 3.5 shows all the
combinations for the seven emotions.

Participants

Eleven Japanese in total (8 males and 3 females) ranging from 22 to 50 years old
(M = 27.91, SD = 8.14) were recruited for the experiment. None of them had any
color-vision disorders. Participants were asked to rate the perceived emotions of
expressions based on multi-modal expressions that combine in-situ motions and
expressive lights. The order in which six expressions were shown was randomized (due
to technical problems during the experiment, we failed to show the expression for fear).
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Figure 3.13: Ratings of multi-modal expressions that combine in-situ motions and
expressive lights. ◦ indicates mean valence and arousal values for ratings of multi-modal
expressions, × indicates mean valence and arousal values for ratings of expressions
based on expressive lights alone, and + indicates referential ratings.

Results

Figure 3.13 shows the ratings of the expressions. ◦ indicates the mean valence and
arousal values for the ratings of the multi-modal expressions, × indicates the mean
valence and arousal values for the ratings of the expressions based on expressive lights
alone, and + indicates referential ratings. Mean distances between response emotions
(◦) and referential emotions (+) are illustrated as line segments, and mean distances
between response emotions (×) and referential emotions (+) are shown as dashed line
segments.

Table 3.6 shows the mean distances (computed in the Circumplex Model) of emotion
attributes in studies I and study III. The column Distance_I represents the mean
distances between the referential ratings of emotions and the ratings of the expressions
based on expressive lights alone. Distance_III represents the mean distances between
the referential ratings and the ratings of the multi-modal expressions that combine
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Table 3.6: Mean distances in Circumplex Model of emotion attributes in studies I and
III.

Emotion Distance_I Distance_III Di�erence
Anger 0.58 0.79 0.21

Surprise 0.77 0.59 -0.18
Disgust 1.13 0.74 -0.39
Sadness 1.17 0.71 -0.46

Happiness 1.05 0.50 -0.54
Calm 1.02 1.05 0.03

in-situ motions and expressive lights. Di�erence demonstrates the di�erences between
Distance_I and Distance_III (Distance_I − Distance_I I I ). Each di�erence re�ects how
much an added in-situ motion helped a corresponding expressive light expression with
conveying a target emotion. A minus value of di�erence indicates that the in-situ
motion had a positive contribution to the expression of a target emotion, and a larger
value suggests a greater amount of contribution.

3.3.9 Discussion

In general, the experimental results show strong support for our three hypotheses (see
3.3.5). Study I was done to re-examine designs for emotions expressed via expressive
lights. The �ndings reveal that expressions based on expressive lights alone are not
able to convey target emotions precisely. The distances between the ratings of response
emotions (expressed via expressive lights) and ratings of referential emotions were
quite large. Study II was done to explore emotions expressed via in-situ motions. The
results suggest a strong relationship between in-situ motion parameters, pattern and
speed, and perceived a�ect. Speci�cally, the speed factor contributed heavily to the
intensity (arousal level) of an emotion, while the pattern factor contributed to the
perceived valence level of an emotion. Study III was done to investigate multi-modal
expressions that combine in-situ motions and expressive lights. The results show that
adding in-situ motion to expressive lights improves a�ective expression for some
emotions but not all.

We found that an in-situ motion seems to act as an “ampli�er" to its corresponding
expressive lights. For instance, when an in-situ motion with the circle pattern and high
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level of speed was added to the expressive light expression for happiness (see Table 3.5),
the ratings for this emotion had both higher levels of valence and arousal, and the
mean distance between the response emotion and referential emotion was decreased by
0.54 (see Figure 3.13 and Table 3.6). Similarly, when an in-situ motion with the shake
pattern and low level of speed was added to the expressive light expression for sadness
(see Table 3.5), the ratings for this emotion had both lower levels of valence and arousal,
and the mean distance was decreased by 0.46 (see Figure 3.13 and Table 3.6). However,
the ampli�er e�ect might have negatively in�uenced the emotional expression for
some emotions. For instance, when an in-situ motion with the shake pattern and high
level of speed was added to the expressive light expression for anger (see Table 3.5), the
ratings for this emotion had a lower valence and higher arousal, but the mean distance
was increased by 0.21 (see Figure 3.13 and Table 3.6). In other words, the in-situ motion
with the shake pattern and high level of speed made the perceived anger emotion too
negative.

Limitations

Our �ndings were mainly limited in terms of three points. To combine in-situ motions
with expressive lights, we assumed that these two modalities were independent of each
other. In other words, we ignored that there might be interaction e�ects between the
two modalities. Although our results suggest an improvement in emotion recognition
for most emotions, future work still needs to be done to carefully investigate such
interaction e�ects. A second limitation is that we designed only six expressions (2
patterns × 3 speed levels) for testing the in-situ motions. In study II, we successfully
discovered the relationship between in-situ motion characteristics and attribution of
a�ect based on the six expressions. However, the �ndings were not su�cient enough
to give any suggestion on how to �ne-tune the in-situ motions (speed in particular)
to make optimal multi-modal expressions. A third limitation is that, in this work,
we did not test gender e�ects since people of di�erent sexes might have di�erent
levels of sensitivity with regards to emotional perception. In their work, Saerbeck
and Bartneck [13] found no signi�cant e�ects or signi�cant interactions for gender
on any combination of their motion characteristics. Therefore, we might assume
that there is also no signi�cant e�ects for gender on any combination of our in-situ
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motion characteristics. However, there might still be gender e�ects on the perception
of expressive lights, especially on the color factor. We suggest that future work need to
take the three limitations into account to achieve more precise design guidelines for
designing emotional expressions via in-situ motion cues and expressive light cues.

3.4 Summary

This chapter discusses how to design non-verbal expressions for an appearance-
constrained robot to communicate a�ect. Findings from the two studies give evidence
that multi-modal expressions may achieve better performance compared to single-
modal expressions. Therefore, further research may investigate e�ective combinations
of di�erent non-verbal cues. However, good balance needs to be considered between
number of modalities and availability of a robotic system. In addition, since it is
becoming more and more important for functional robots, in many application
scenarios, to communicate a�ect and other social cues, future studies in HRI may
explore more e�ective modalities.
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4
Designing Communication Cues

This chapter discusses how to design LED-based gaze behavior for an appearance-
constrained robot to communicate intent. Section 4.1 gives an overview of the study
presented in this chapter. Section 4.2 reports a study which investigates how to
implement gaze behavior in functional robots to assist humans in reading their intent.
Section 4.3 summaries this work.



124 Chapter 4. Designing Communication Cues

4.1 Overview

Eye gaze is considered to be a particularly important non-verbal communication
cue. Gaze research is also becoming a hot topic in human-robot interaction (HRI).
However, research on social eye gaze for HRI focuses mainly on human-like robots.
There remains a lack of methods for functional robots, which are constrained in
appearance, to show gaze-like behavior. In this chapter, I investigate how to implement
gaze behavior in functional robots to assist humans in reading their intent. I explore
design implications based on LED lights as I consider LEDs to be easily installed in
most robots while not introducing features that are too human-like (to prevent users
from having high expectations towards the robots). In this study, I �rst develop a
design interface that allows designers to freely test di�erent parameter settings for an
LED-based gaze display for a Roomba robot. I summary design principles for well
simulating LED-based gazes. The suggested design is further evaluated by a large
group of participants with regard to their perception and interpretation of the robot’s
behaviors. On the basis of the �ndings, I o�er a set of design implications that can be
bene�cial to HRI and CHI researchers.

4.2 Designing LED Lights for Communicating Gaze

4.2.1 Introduction

Functional robots are becoming more involved in our society. A real live example is the
Roomba robot, a series of autonomous robotic vacuum cleaners that are becoming
increasingly popular nowadays. However, due to the nature of the tasks such robots
perform, they are generally restricted in appearance, making it hard for them to express
their intent [20]. With regard to the Roomba robot, while it uses an LED display
and beep sounds to indicate some of its internal states, e.g., cleaning or charging, its
behavior can still be mysterious to many users. Since more and more functional robots
are required to interact with, communicate to, and/or cooperate with human users, it is
essential for such appearance-constrained robots to explicitly express their intent [85].

Unfortunately, there is a lack of methods that can enable appearance-constrained
robots to express intent. C. Bethel et al. [28, 27, 19] have been very active regarding
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this issue and have performed a series of studies regarding non-facial/non-verbal
a�ective expressions for appearance-constrained robots. They claim that functional
robots are not engineered to be anthropomorphic and do not have the ability to exhibit
facial expressions or make eye contact. It is either the limitation of the application or
cost-saving reasons that lead to such appearance constraints. They documented the
need for such robots to have a�ective interaction abilities across many di�erent �elds.
For example, Fincannon et al. [107] described how rescue workers expected a small
tank-like robot to follow social conventions. Work by Murphy et al. [108] provided
an example of using man-packable robots to act as a surrogate presence for doctors
tending to trapped victims. They found that the robots were perceived as “creepy" and
not reassuring when they were operated close to simulated victims. To address such
issues, Bethel [20] investigated �ve methods of non-facial and non-verbal a�ective
expression: body movement, posture, orientation, color, and sound. As evidenced
by their results, they claimed that humans were calmer with robots that exhibited
non-facial and non-verbal a�ective expressions for social human-robot interaction in
urban search and rescue applications.

Although C. Bethel et al.’s studies provide insights and a valuable mechanism for
naturalistic social interaction between humans and appearance-constrained robots,
there are several limitations, and therefore, a huge amount of work remains to be
carried out by researchers in human-robot interaction (HRI) and related �elds. The
focus of these studies was restricted mainly to application scenarios involving victim
assessment in the aftermath of a disaster. Accordingly, the experimental �ndings
of the studies are majorly based on humans who are simulating victims interacting
with two types of search and rescue robots: the Inuktun Extreme-VGTV and iRobot
Packet Scout [20]. Robots such as these two share similar features, and thus, it is
hard to say that their methods can be generalized to other types of robots such as the
domestic-use cleaning robot, the Roomba. Since appearance-constrained robots are
varied in embodiment, some interaction methods, such as body movement and posture,
may not be applicable to some of these robots.

Besides body movement and posture, eye gaze is considered to be a particularly
important non-verbal communication cue. Findings from psychology suggest that eyes
are a cognitively special stimulus. There are special “hard-wired" pathways in the
brain dedicated to vision interpretation [174]. In HRI, many researchers are trying to
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incorporate gaze into human-robot interactions. Admoni and Scassellati [73] provided
an extensive review on social eye gaze in human-robot interaction. Basically, they
summarized four types of eye gaze by using established terminology: mutual gaze,
referential gaze or deictic gaze, joint attention, and gaze aversion. To be speci�c, mutual
gaze can be referred to as “eye contact," referential or deictic gaze is gaze directed at an
object or location in space, joint attention is two or more people (agents) sharing
attentional focus on a common object, and gaze aversion refers to behaviors that shift
gaze away from the main direction of gaze.

In human-human interaction, gaze has been suggested as important for providing
information, expressing intimacy, and regulating interaction [75]. Due to its e�ec-
tiveness, many researchers have tried to employ gaze as an interaction modality
for social robots. Plenty of research has been done to evaluate the functionality
and design principles of gaze behavior for HRI [175, 176, 177]. However, most of it
focused on human-like robots or virtual human agents. Because of an adaptation gap
[178], applying human-like eye gaze to functional robots, which are constrained in
appearance, may cause users’ expectations of such robots to exceed the real capabilities
of the robots and result in a negative HRI experience. Therefore, the appropriateness of
applying anthropomorphic eyes to functional robots is questionable. There is a lack of
knowledge with regard to how we can design eye gaze for appearance-constrained
robots.

To address this question, light-based methods were investigated in a handful of
previous work [85, 18]. Lights, as an explicit way of communication, have been studied
in various �elds such as psychology [78, 79] and human-computer interaction (HCI)
[22, 82, 81, 81]. With regard to HRI, some researchers have explored the use of lights
for their robots to show internal states [18], express a�ect [116], or communicate
intent [85]. Particularly, Sza�r et al. [85] explored the design space regarding robots
explicitly communicating their �ight intentions with LED lights. They tested their
four signal designs (blinker, thruster, beacon, and gaze) and found that three of them
(blinker, thruster, and gaze) were e�ective. In particular, they reported that their
participants appreciated the greater precision o�ered by the gaze design. Therefore,
their work showed that it can be potentially e�ective and precise to simulate gaze
communication with LED lights.

However, their work leads to several unsolved design issues. Because they did
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not focus on gaze signals alone, the design principles regarding how “eyes" can be
simulated by LED lights were not discussed in detail. As they mentioned in the paper,
they designed the signals by using measurements of the human eye. However, due to
the huge di�erence in shape and the many other features between human eyes and
LEDs, the appropriateness of such an approach can be questioned. A better method
could be o�ering a design interface to allow designers to freely explore a design space
(di�erent combinations of parameters). In addition, color, as a key feature, can be
better investigated. To be speci�c, di�erent colors can be used for di�erent parts of the
eye (pupil and sclera). This allows the pupil part to be made prominent, which could
lead to a better resolution regarding the recognition of directionality.

In this work, we �rst examined parameter settings for simulating a gaze signal.
We �rst developed an interface that allows designers to freely investigate di�erent
gaze designs. On the basis of the data and comments from volunteer designers, we
summarized a set of design recommendations that can be employed as a reference for
both HRI and HCI researchers. Then, we further hired a large sample of participants via
an online survey platform to evaluate our gaze design. The participants’ comments to
open-ended questions o�ered valuable insights into how our designed gaze signal can
be perceived and interpreted by humans. We suggest that, particularly for functional
robots, LED-based eye gaze can be e�ective when applied as referential (or deictic)
gaze or joint attention but less e�ective when applied as mutual gaze or gaze aversion.

4.2.2 Robot System

Our study is aimed at exploring the design space with regard to simulating gaze by
using LED lights. We installed an LED lighting system (NeoPixel LED strip) on an
iRobot Create 2 robot, which is a Roomba robot. In consideration of the disc-shaped
embodiment of the Roomba robot, we attached the LED strip to the body of the robot
in a ring [87, 146]. Figure 4.1 shows the front side of the robot and the con�guration of
its LED lighting. To be speci�c, we used one meter of a NeoPixel LED strip (60 pixels).
The LED strip was controlled by an Arduino Uno R3 board, and both the strip and the
board were powered by a 5-V, 3-A portable battery bank. The same board was also
used to control the movements of the robot.

By employing LED lights, we enable the Roomba robot to modify its appearance as
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Figure 4.1: Con�guration of Roomba robot with LED lighting system

a way of communicating with people. This provides an additional communication cue
that can assist in interpreting the robot’s behavior and intent.

4.2.3 Gaze Design

Design Interface

We developed a design interface by using Processing. As shown in Figure 4.2, the
interface allows designers to explore a set of parameters regarding gaze simulation.
Speci�cally, the associated parameters include color of pupil, width of pupil, color of
sclera, width of sclera, and interocular distance.

The image in the upper left shows the front side of the Roomba robot with LED
lighting. It provides an intuitive idea of what the robot looks like and can, explicitly
or implicitly, help designers keep a correct mental model of the robot while setting
parameters. The right hand side panel allows designers to interact with the interface.
Designers can freely try out di�erent combinations of parameter values by setting the
corresponding parameters. Particularly, the interface provides a candidate set of basic
colors in the lower right side for the designers to select. The design interface can be
connected to our Roomba robot equipped with an LED lighting system. By clicking on



4.2 Designing LED Lights for Communicating Gaze 129

Figure 4.2: Screenshot of design interface

the “Con�rm" button, the interface sends the current parameter values to the Roomba
(to the Arduino Uno board attached to it), which then displays the corresponding gaze
signal. Designers can iterate over and optimize their gaze designs. If they �nally decide
on a set of parameters, they can click on the “Save & Quit" button to quit the design
interface. The �nal parameter values will be saved to a local �le, allowing for later
analysis.

Design Rationale Although the appropriateness of applying anthropomorphic gaze
design to appearance-constrained robots can be questioned, we still used human eyes
as a fundamental design reference for designing LED-based gaze behavior. Speci�cally,
we borrowed the basic features, e.g., two eye balls and concepts of pupil and sclera,
from human eyes to guide people with their design. There are several reasons for
doing so. Firstly, our design interface was applied as a method to explore the potential
designs for LED-based gaze behavior. Almost no existing �ndings can be used as



130 Chapter 4. Designing Communication Cues

ground knowledge. Therefore, features from human eyes can be treated as a starting
point of the exploration study. Besides, features from human eyes can be intuitive to
the designers as they may probably no familiar with designing gaze-like behavior
using LEDs. Secondly, some features from human eyes, e.g., the form of pupil and
sclera and the distribution of two eye balls, have the advantage of clearly indicating
gaze direction and focus compared to other types of gaze such as using only one eye
ball. In addition, it should be realized that the design of LED-based gaze depends on
the embodiment of a robot since the robot’s shape decides the distribution of LED
pixels. Since a LED strip was attached to the Roomba robot in a ring, we were able to
apply human eye features to our design. However, such design may be not applicable
for some other types of robot.

Procedure

We organized a design session in which we invited six designers (one female) to join an
experiment. At the beginning of the session, we showed a demo video as a tutorial
regarding how to use the design interface. Later, the participants were assigned to
individual design trials without any time restriction. At the end of the trials, they were
asked to provide comments and opinions in a free manner.

Results

We recorded the designers’ choices of parameter values during the design session.
Table 4.1 shows these values (“Black" means an LED pixel does not display any light;
“gray" refers to white light in low brightness). For color of pupil, we found that the
choices of color varied from each other. Colors, such as blue, yellow, and green, were
selected. For width of pupil, the choices were consistent with each other. Four of the
designers selected 4 LED pixels as the most appropriate, while two of them preferred 3
LED pixels. The median value of their choices was 2. For color of sclera, we also found
an overall agreement of choices of color among the designers. Most of them agreed
that white (or white light in low brightness) was the most suitable for the color of the
sclera. For width of sclera, we saw some divergence among the designers. However,
their choices were mostly around the median values, which were 2 or 3 LED pixels. For
interorbital distance, a half of the designers chose 4 LED pixels as the most appropriate
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Table 4.1: Parameter values chosen by six designers

P1 P2 P3 P4 P5 P6 Median
Color of pupil blue green yellow dark blue orange green -
Width of pupil 2 2 2 3 2 3 2
Color of sclera black white gray white white blue -
Width of sclera 0 3 2 2 3 3 2 or 3

Interorbital distance 4 4 2 4 6 6 4

setting, while two of them selected 6 and one selected 2. The median value was 4.
We also gathered free comments from the designers with regard to their choices

of parameter settings by using open-ended questions. In general, the designers
seemed to refer to the human eye at the beginning stage of the design session. This
was not surprising as eye gaze is a very important non-verbal signal with regard to
human-human communication. However, after some trials, they found that it might be
inappropriate to use human eye gaze as a reference to design LED-based gaze behavior,
e.g., “Mimicking the human eye looked weird" (P3) and “I found it hard to �gure out
an adequate pattern when I tried to imagine human eye gaze" (P5). Therefore, the
designers then tried di�erent parameter settings to make the pupil part stand out, e.g.,
“... it looked better if only the pupil part was lighted up" (P1) and “It was better if the
pupil part could be seen clearly" (P2), or just make the lights look beautiful [“I just
tried di�erent combinations of colors that seemed beautiful to me" (P6)]. An important
point was pointed out by the designers that the brightness of the sclera part should be
much lower than the pupil part, e.g., “It looked weird if the sclera part was set to
be too bright" (P3) and “It would look closer to an eye if the sclera part were set to
low brightness and the pupil part were set to high brightness" (P4). In addition, one
designer particularly mentioned that red was not an adequate color for the pupil [“Red
may be inappropriate for the pupil part" (P1)].

Design Principle

We summarized a set of design principles based on the �ndings from this design
session:

I The pupil part should be clearly identi�able. To ensure this, it is suggested that
the width of the pupil be more than 1 LED pixel. In addition, the color of the
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pupil should contrast highly with the color of the sclera.

II The brightness of the sclera part should be much lower than the pupil part to
look natural1. This also helps the pupil to stand out.

III The width of the sclera should be su�ciently long so that the directionality of
gaze, e.g., left, normal, and right, can be well recognized.

IV The interocular distance should be su�ciently long so that the two eyes can be
well distinguished.

Particularly, principle II provides partial evidence of the inappropriateness of using
measurements of the human eye in gaze signal design because the sclera of a human
eye is, in general, much brighter than the pupil. The description of “look natural"
means something di�erent, depending on the design space to be referred to. If the task
is to design an anthropomorphic eye, it could be preferable to imitate a human eye.
However, with regard to designing a gaze signal with LED lights, di�erent design
principles should be relied on.

4.2.4 Evaluation

On the basis of the �ndings from the design session, we decided on an example of a
gaze signal that well followed the �ve principles. Speci�cally, we set the color of the
pupil to bright green and the color of the sclera to dim gray. We set the width of the
pupil to 2 LED pixels and the width of the sclera to 3 LED pixels. In addition, we set
the interocular distance to 4 LED pixels.

We prepared two demo videos in which the Roomba robot was displaying a “scan"
behavior (gazing from left to right regularly in two cycles). In one demo (a screenshot
is shown in Figure 4.3, demo 1), the robot was the only object in the video. There was
nothing in front of it while it was scanning. However, in the other demo (a screenshot
is shown in Figure 4.3, demo 2), three objects were put in front of the robot. The goal of
the evaluation was to �nd out how people would perceive and interpret our designed

1The meaning of “look natural" does not suggest that it looks more similar to the human eye. We
prefer to interpret this as a lower brightness of the sclera part that makes people more easily perceive
LED lights as a gaze signal.
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(a) Demo1: without object. (b) Demo2: with object. 

Figure 4.3: Screenshots of two demos: without and with object.

gaze signal that uses LED lights. Due to the mechanic embodiment of the Roomba
robot and neutral shape of the LED strip, we hypothesized that people’s perception
of the robot would be that it is hardly anthropomorphic. As a result, it would be
hard for them to interpret the light expressions as gaze signals in general. However,
we hypothesized that when reference objects, or additional cues, are provided (the
three objects in the second demo), people would then understand the gaze signals
and attribute more agency to the robot. This actually meets a key design goal; gaze
design should not introduce too much anthropomorphism as it otherwise could cause
human’s expectations of a robot to exceed its real capabilities.

Procedure

We performed the evaluation by using online surveys. A Japanese online crowdsourcing
platform, Fastask (https://www.fast-ask.com), was employed to recruit participants. We
hired 120 participants, 60 of them for each condition (demo video). In a questionnaire,
we asked two open-ended questions: 1) “What was the robot doing?" and 2) “Is it easy
to understand the robot’s intent?"

Results

Participants’ comments to the open-ended questions were coded into two categories:
gaze-related perception and gaze-unrelated perception:

• Gaze-related perception: A participant’s descriptions of the robot’s behavior
were coded into this category if he or she used indicator words such as detect,
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Figure 4.4: Coding results with regard to two demos: with and without object.

perceive, judge, recognize, observe, and con�rm. These words give the impression
that the robot might have been perceived as seeing things, therefore suggesting
that the LED light displayed by the robot was interpreted as gaze.

• Gaze-unrelated perception: A participant’s descriptions of the robot’s behavior
were coded into this category if he or she did not use the indicator words
mentioned above. Examples of descriptions are “The robot is charging" or “The
robot is currently cleaning the �oor." Such descriptions suggest that the LED
light displayed by the robot was not interpreted as gaze.

Figure 4.4 shows the result. Basically, most participants (55 out of 60) that watched
demo 1 interpreted the LED light displayed by the robot as gaze-related behavior,
whereas only less than a half of the participants (25 out of 60) that watched demo 2
made similar interpretations. A Mann-Whitney U test was conducted to determine
the e�ect of the independent factor (demo: without object vs. with object) on the
dependent factor (coding: gaze-related perception vs. gaze-unrelated perception).
Demo had a signi�cant e�ect on coding (z = 5.7852, p<0.001, η2 = 0.28).

Interestingly, some of the participants (8 out of 60) that watched demo 1 described
the robot as standing by and charging.
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Discussion

The results con�rmed our hypotheses. In general, participants who viewed the
demo showing the robot alone found it hard to understand the robot’s intent. Their
perceptions and interpretations regarding the robot’s behavior were highly biased by
the type of robot: cleaning robot. To be speci�c, many participants described the robot
as “searching for garbage" or “cleaning (its current place)." Other participants thought
that the robot was charging or waiting for commands. Such descriptions indicate that
participants did not attribute agency to the robot. This suggests that, without hints
regarding the functionality of the light expressions, it can be di�cult for people to
perceive them as gaze signals.

However, participants who viewed the demo showing objects in front of the robot
found it easy to understand the robot’s intent. This is not surprising since the provided
objects, as an additional cue, allowed them to dramatically reduce the number of
potential scenarios for guessing. An analysis on the participants’ descriptions of the
robot’s behavior clearly showed that they attributed a certain level of agency to the
robot. Speci�cally, many participants used anthropomorphic descriptions such as
“observing the objects" or “choosing among the objects." Such descriptions suggest
that they interpreted the light expressions as gaze signals (scanning the objects).
Importantly, almost none of the participants explicitly described the light expressions
as eye-like or gaze-like, suggesting that they did not attribute too high a level of agency
to the robot.

In addition, we found that some participants described the robot as standing by and
charging. Since conveying a robot’s internal states is becoming an important research
topic in HRI, this �nding may provide inspiration to researchers and designers who
aim at designing e�ective light displays for robots to communicate their states.

4.2.5 Design Implications

On the basis of our �ndings with regard to both light expression design and light-based
gaze evaluation, we o�er several important design implications that can be bene�cial
to HRI and CHI researchers:

• Light-based gaze signals may not be explicit cues that indicate directionality.
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However, when a reference (object) is provided, people can easily learn or
recognize the functionality of the light expressions, similar to gaze. To be general,
such reference information does not necessarily need to be an object. A robot’s
motion, for instance, that is coordinated to light expressions could probably help
people to recognize a gaze signal too.

• Light-based gaze signals should be designed by using measurements of the
human eye with caution. Some features (parameter settings) that �t the design of
anthropomorphic gaze may not be appropriate for light-based gaze signals.

• Light-based gaze signals can be suitable for functional robots as they will not
introduce too much anthropomorphism, which biases people to have expectations
that exceed a robot’s real capabilities.

4.3 Summary

This chapter reports design implications for well simulating LED-based gaze behavior.
Future work may be to evaluate the e�ect of light-based gaze signals in real HRI
contexts. Because gaze can be used to indicate a robot’s intent and direct people’s
attention [75], it is important to examine whether light-based gaze signals possess
such functionality. I would consider several evaluation methods to be applied for
this purpose. Typical human-robot cooperation contexts can be designed in which
task performance can be improved if a human is able to read a robot’s intent (next
move). Video-recorded data is needed to analyze how humans behave when reacting
to a robot’s gaze signals. Importantly, I may consider using a wearable eye-tracker
device (Tobii Pro Glasses 2) to track people’s corresponding gaze behavior on-the-�y.
This would allow me to easily identify the joint-attention behavior of a person. In
addition, future work could also involve gaze animation design. Gaze animations may
cause people to attribute more agency to a robot. In addition, other robot shapes and
arrangements of LEDs should be investigated.
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5
Conclusion

This chapter concludes this dissertation. Section 5.1 provides a general discussion on
the �ndings presented in this dissertation. Section 5.2 summarizes this thesis work and
section 5.3 recommends future research directions.
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5.1 Discussion

5.1.1 The Power of Color

With regard to the non-verbal expressions studied in this work, I particularly treat
expressive lights as a primary modality. This is because that color, as a core element of
expressive lights, has been widely studied in various �elds and centuries since long
ago. Color psychologists and scientists intensively investigated di�erent aspects of
color, including color vision, color emotion, and color e�ects on psychological and
biological functioning. Their work primarily focused on categorical colors such as red,
blue, and green.

Speci�cally, red has been shown to be a critical color and has thus garnered the
majority of research attention. Many things in biology, culture, and language points
to the poignancy and prominence of red. Red is the color of blood, and dynamic
variations in visible blood �ow on the face and body can indicate fear, arousal, anger
and aggression. Red is used in warning signals by many poisonous insects and reptiles.
Red is also a term that appears in almost all lexicons and, moreover, in many sayings
such as “in the red."

Besides red, green and blue have been intensively studied as well. They both have
positive links in the natural realm, for instance, green foliage and vegetation and blue
sky and ocean. In general, although existing research on color has not yet formalized a
rigid framework for color related design and many research sub�elds are still in the
nascent stages, we are still able to use the �ndings as theoretical groundings and
application guidelines to explore e�ective designs in HRI scenarios.

On the basis of the �ndings presented in this thesis, I summarize three merits of
expressive lights as a powerful non-verbal modality:

1 Intuitive
The perception and interpretation of expressive lights can be intuitive as color is
one of the most ubiquitous phenomena in human experience. Interpretation
of the meanings of di�erent colors are most learnt implicitly from repeated
pairings of colors with particular concepts or experiences and biologically
based proclivities to respond to particular colors in particular ways in particular
situations. Therefore, expressive lights, as a non-verbal communication cue,
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would not cost much cognitive load from humans.

2 E�ective
Expressive lights, as a dynamic vision cue, can be e�ective to communicate
various information, including a�ect and intent. Besides, it has the potential to
in�uence a person’s behavior and decision-making, either explicitly or implicitly.
For instance, �ndings presented in section 2.2 reveal that red can be associated
with danger and anger and further induce avoidance-like behavior in people,
whereas green carries positive meanings and can further induce approach-like
behaviors.

3 Simple
It only needs programmable RGB LEDs to display various patterns of expressive
lights. Such LEDs are easy to control, cheap, and most importantly, simple to be
embedded to most robot systems. In other words, it would not cost much e�ort
and money to enable a functional robot, which is constrained in appearance, to
communicate in LED lights. Therefore, this makes expressive lights a promising
approach that can be applied to most currently-in-use robots.

5.1.2 Single Modality vs. Multiple Modality

Particularly in chapter 3, I discussed about how to design e�ective non-verbal
expressions via modalities–expressive lights (color), sound, vibration, and motion–for
an appearance-constrained robot to communicate a�ect. Findings from a series of two
studies reveal that non-verbal expressions using multiple modalities may perform better
than those using only one modality. People often feel confused and lack of con�dence
when they are asked to guess a robot’s emotion when single-modal expressions are
used. For instance, participants from the �rst study (section 3.2) gave comments like
“Using multiple modalities is more understandable than using a single modality alone."
The use of multiple modalities o�er redundant information on the a�ect-expression
associations so that people can cross-con�rm their perception and interpretation over
di�erent modalities. This is particularly useful as existing research lack theoretical
groundings with regard to the design of a�ective communications via expressive lights,
sound, vibration, and motion.
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Besides, it gives �exibility with regard to choosing appropriate non-verbal cues
in accordance with the hardware con�guration of a robot. Because di�erent robot
systems probably have di�erent physical con�gurations, the four non-verbal cues
investigated in this work, especially vibration, may be not applicable to each of the
robots. Therefore, for designers who would apply the design implications to their
projects, I suggest that they start with choosing the expressions that have the highest
recognition rate while meeting their hardware con�gurations and that they further
adjust their choices on the basis of the performance.

5.1.3 From Inform to Interact

In this thesis, I work through structured processes to explore the e�ects and design
of non-verbal expressions. Till now, research on designing e�ective non-verbal
expressions for appearance-constrained robots is still in its infancy. A systematic
exploration in this area seems to be missing. It is mentioned that the goals of using
expressive lights on social robots can be summarized by the three I’s: Inform, In�uence,
and Interact [84]. However, I suggest that this three I’s approach can be extended to
the design of non-verbal expressions in general. I propose that:

• Inform: is about conveying certain information to humans. It is uni-directional
(from a robot to a person) and mainly explicit.

• In�uence: is about changing certain behaviors of humans. it is uni-directional
(from a robot to a person) and mainly implicit.

• Interact: is about communicating with humans. It is bi-directional.

Each component can be particularly important for certain applications. Hence, it
may not be appropriate to identify Interact as an ultimate goal. However, Interact can
be the most complex component which requires contributions from the other two,
Inform and In�uence, as interactions between robots and humans can be long-term
and require mutual adaption between both parties. The three I’s approach is useful as
it can help researchers and practitioners to focus on application scenarios and design
non-verbal expressions in a goal-driven way. For instance, an autonomous task robot
may mainly need to inform its task-related states (e.g. in progress or low battery) to its
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users whereas a personal training couch robot shall in�uence its users’ behavior and
habit.

Most of the studies presented in this dissertation only focus on the �rst component,
Inform, by investigating e�ective expressions for a robot to communicate a�ect or
intent. Other studies (see sections 2.2 and 2.3) touch on the In�uence component,
in which potential in�uence of non-verbal expressions on people’s perception and
behavior are discussed. Unfortunately, e�ects of the proposed designs of non-verbal
expressions have not yet been evaluated in a bi-directional human-robot interaction
fashion. Therefore, future research can follow this direction on the basis of the theoretic
groundings and empirical knowledge provided by this work.

5.1.4 Generalization of Findings

Most studies discussed in this dissertation focus on simply shaped robots like a
Roomba. A Roomba robot is disc-shaped, without additional features such as a
mechanical arm. In addition, it only has limited methods of action such as moving
forward/backward and spinning. These simply shaped robots perfectly meet the
de�nition of appearance-constrained robots. Hence, �ndings from the studies could be
generalized to many other functional robots which are constrained in appearance.

With regard to interaction methods, the non-verbal modalities, including LED
light, arti�cial sound, and motion, could be easily applied to most embodied robots.
For instance, it only needs programmable LEDs and speakers to display LED light
animations and sounds. Many functional robots used in applications, such as search
and rescue and cleaning, are autonomous robots, meaning that they already equipped
with wheels or tracks to perform motions. Saerbeck and Bartneck [13] suggested that
e�ects of motion seem not depend on the shape of robots. Besides, this work also
investigate non-verbal expressions on di�erent platforms, including a monitor, the
Maru robot, and a Roomba. Therefore, I would suggest that the designs of non-verbal
expressions recommended in this thesis could be also applied to other robotic platforms.
However, I would like to say that �ndings from this work may not be applicable
for human-like robots. Basically, humanoid robots can use more anthropomorphic
interaction method such as natural languages, facial expressions, or gestures. Such
interaction modalities are more human-like, and thus, more natural to humans.
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Culture di�erence should be considered as a potentially important factor which
may restrict the generalization of the �ndings. To be speci�c, culture di�erence refers
to the fact that people from di�erent regions with di�erent culture backgrounds may
have di�erent understanding and interpretation of a same phenomenon. Particularly
with regard to HRI, people from di�erent cultures may di�er in the perception and
interpretation of a same behavior shown by a robot. In this thesis, I investigated
non-verbal expressions using light, sound, motion, and vibration. People’s perception
and interpretation of non-verbal features, e.g., color, tune, pitch, and motion, may
be in�uenced by their cultures. For instance, people from many regions interpret
red as dangerous and aggressive whereas Chinese people treat red as a color of luck
and happiness. The �ndings presented in this dissertation were observed only from
Japanese participants. Therefore, I would suggest that such �ndings shall be applied to
people from other countries with caution.

Another potentially important factor is gender di�erence since males and females
may have di�erent interpretation and level of sensitivity of a same a�ective expression.
For instance, females may be considered as more sensitive to emotional cues compared
to males, and both males and females may show di�erent attitudes toward their
interlocutors, depending on the sexes of the interlocutors. According to previous work
[13], the authors did not �nd signi�cant e�ects for gender on any combination of their
motion characteristics. However, I would say that there may still be gender e�ects on
the perception of lights and sound, especially of color.

5.2 Conclusion

Because a large number of robots currently in use are neither anthropomorphic nor
zoomorphic, the lack of appropriate mental models and knowledge with regard to
these robots can lead to unsmooth or even failed interaction. Besides, such robots are
generally constrained in appearance, meaning that they are designed to be functional
and lack expressive faces and bodies. Therefore, there is a signi�cant challenge in
�nding ways for the appearance-constrained robots to successfully interact with
people. To address the challenge, this dissertation aims at �nding e�ective designs of
expressions that allow an appearance-constrained robot to communicate a�ect and
intent.
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To design e�ective expressions for appearance-constrained robots, I probe non-
verbal modalities include expressive lights (color), motion, sound, and vibration.
These modalities have been explored by researchers from di�erent �elds such as
human-computer interaction, psychology, and cognitive science. However, there is still
much unknown with regard to how the non-verbal expressions can be implemented to
facilitate interactions between robots and humans.

In this thesis, I particularly treat expressive lights as a primary modality and the
others, motion, sound, and vibration, as auxiliary ones. It is because that color, as a
core element of expressive lights, has been widely studied in various �elds. Although
existing research has not yet established a rigid framework for expressive lights design,
I am still able to use the �ndings as theoretical groundings and application guidelines
to explore their validity and e�ectiveness in the HRI scenarios. On the other hand, due
to the lack of theoretical groundings with regard to the other three modalities, it is
hard to make valid assumptions for motion-, sound-, and vibration-a�ect associations.
However, such modalities can be used as auxiliary modalities to form multi-modal
expressions so that performance and e�ectiveness may be improved.

Speci�cally, this work focuses on three aspects of the research challenge on
designing e�ective non-verbal expressions for appearance-constrained robots: (1)
in�uence of non-verbal expressions on people’s perception, interpretation, and decision-
making, (2) communicating a�ect via non-verbal expressions, and (3) communicating
intent via non-verbal expressions. Findings from this thesis work, with regard to the
�rst research question, suggest that non-verbal expressions, especially expressive
lights, can in�uence a person’s perception and interpretation of a robot’s behavior and
further change his or her behavior (decision-making). With regard to the second
question, a series of two studies reveal evidence that multi-modal expressions may
achieve better performance on a�ect communication compared to single-modal ones.
For the third question, a study particularly investigates the design of LED-based gaze
behaviors for an appearance-constrained robot to express intent. Detailed design
implications are provided which can be bene�cial to HRI and CHI researchers.
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5.3 Future Work

This dissertation can open up possibilities for future research. Research on the design
of e�ective HRI for appearance-constrained robots is still in its infancy. It is because
that researchers are focusing too much on anthropomorphic or zoomorphic robots,
neglecting the importance for functional robots to communicate social cues. Therefore,
this work o�ers both theoretical �ndings and empirical knowledge as building blocks
for further investigation on the design of e�ective non-verbal expressions for functional
robots, which are constrained in appearance, to communicate a�ect and intent and
in�uence people’s behavior.

Future work can test the e�ect of the suggested design implications on other robot
platforms because the embodiment (e.g. shape) of a robot may have strong in�uence to
the e�ect of non-verbal expressions. Therefore, such studies can reveal important
�ndings which can be applied to wider range of robots. Future research shall also
test the designs in live HRI scenarios. By doing so, researchers are able to observe
direct responses from participants that can well simulate real HRI applications. In
addition, culture factors need to be considered in future investigations. People from
di�erent regions and with di�erent culture background may have diverse perception
and interpretations of a same non-verbal expression.
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