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Abstract

This thesis focuses on a major yet unsolved machine translation difficulty called a word order-

ing problem. Since every language has its own word order, machine translation systems have to

translate one’s word order into another, in addition to translation of words. However, practical

machine translation systems do not translate most of word orders due to computational com-

plexity of the word ordering problem. This makes machine translation between distant language

pairs, such as English and Japanese, inaccurate, because they have exceptionally dissimilar word

orders as their nature. It is therefore the final goal of this study to establish a machine translation

system for distant language pairs, using a practical reordering model that can handle accurate

word ordering.

Our challenge primarily involves two types of obstacles we need to overcome. One obstacle

is the computational complexity of the word ordering problem that has given limits to practi-

cal machine translation systems. Another obstacle is the problem of exceptionally dissimilar

word orders in distant language pairs, such as English and Japanese, which has reduced machine

translation accuracy to date.

In order to tackle our challenges, we make use of a promising approach called syntax-based

preordering for statistical machine translation. In this approach, we use syntactic parsers that

automatically parse input texts and output parse trees. We then modify the parse trees so that

they represent much similar word orders to translation output than before. After that, the modi-

fied parse trees are used as input to a statistical machine translation system, which automatically

learns a machine translation model from large data sets as similar to real world applications.
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Since this approach effectively divides the problem of complex machine translation into a sepa-

rated reordering step and a translation step, we can fully focus on our challenges with two novel

proposals.

The first proposal is a rule-based approach. We present two rule-based preordering methods

named a two-stage method and a three-stage method. The two-stage method reorders a Japanese

parse tree as similar to English using deep syntax information obtained with a predicate-argument

structure analyzer. The three-stage method mimics the two-stage method by using little or

no syntax. We eventually demonstrate the state-of-the-art performance in Japanese-to-English

translation to date as a rule-based preordering approach.

The second proposal is a statistical approach. The statistical approach automatically learns

reordering rules, unlike the rule-based approach. We present a simple yet effective statistical

preordering method. In this method, we employ a greedy optimization strategy for modifying

parse trees so that the modified parse trees maximize our objective function for reordering. We

achieve the state-of-the-art accuracy in both English-to-Japanese and Japanese-to-English trans-

lation.
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Chapter 1

Introduction

At present, we live in a world with the largest human population over billions, where the Internet

enabled us to communicate directly with these billions of people all over the world, from the

Atlantic to the Pacific, even if you are in the Antarctic. At the same time, we live in a world with

various languages, such as Arabic, Chinese, English, French, Russian, and Spanish, which are

the official languages offered by the United Nations. Therefore, the majority of the population

may not be able to communicate directly with other people via different languages. As a result,

our broad communication suffers from the language barrier known as lost in translation that

caused miscommunications, misunderstandings, and ultimate mistakes in our history of war and

peace.

Breaking the language barrier has long been a hope of humanity, since the mysterious story

of the Tower of Babel. Currently, human translators and interpreters are making great efforts

and successes to provide high quality translation by translating one language into another on

their hands, whereas their expensive and time-consuming approaches would not be suitable for

all the translation needs that may involve everyday conversations in minor languages. In addi-

tion to human translators and interpreters, machine translation technology has become a new

hope in reality. Machine translation systems automatically translate one language into another

with moderate quality at a scale and speed impossible for humans. Nowadays, millions of text

1



CHAPTER 1. INTRODUCTION 2

chats and tweets of ordinary people are translated simultaneously by cloud machine translation

services.

However, current machine translation technology still suffers from the language barrier due

to a major yet unsolved difficulty called word ordering problem. The word ordering problem is

particularly problematic in translating dissimilar languages called distant language pairs, such

as English and Japanese. Therefore, people speaking these languages may not be able to com-

municate with each other, but sometimes they need machine translation the most.

Therefore, this study adventures the word ordering problem and establishes an accurate ma-

chine translation system for distant language pairs by solving it. We introduce the word ordering

problem from what it is, why it matters, and how to solve it.

1.1 Every Language Has Its Own Word Order

People who speak similar languages, such as English and French, are already enjoying practical

machine translation in various situations, from weather forecast manuscripts to parliament pro-

ceedings. On the other hand, current machine translation systems used in production essentially

have problems in translating dissimilar languages, such as English and Japanese, primarily be-

cause we need to consider big word order differences between these languages. Just as “Mary

killed John” is completely different from what “John killed Mary” means in English, every lan-

guage has its own word order. Therefore, in addition to translating each word into another, we

need to accurately translate the word order of one language into another.

Linguists categorize the word order of various languages so that they are mainly character-

ized by how a subject, a verb, and an object are placed in a sentence. For example, Chinese,

English, and French have the order of subject-verb-object (SVO), while Japanese and Korean

have the order of subject-object-verb (SOV). In that sense, although the vocabulary of Chinese

and Korean might be more common than that of English, we see Chinese and English are simi-

lar but Chinese and Korean are not. There are other types of word order in the world, but many

languages belong to either SVO or SOV.
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1.2 When We Need to Translate Word Order

When we translate one language into another, the word ordering problem becomes our headache.

If they contain the same word order, we can translate words in a sentence one by one, from left

to right. Otherwise, we need to translate the word order of one language into another at the same

time. Since every language has its own word order, it is more likely that we also need to translate

the word order.

That is exactly what happened to current machine translation technology. Since machine

translation of very similar language pairs, such as English-French and Japanese-Korean, is highly

accurate, we can translate them without difficulty. Meanwhile, there are distant language pairs,

such as English-Japanese, which suffer very low accuracy at present due to exceptionally dis-

similar word orders.

1.3 Reordering Methods for Machine Translation

In machine translation research, long-standing efforts to generate sentences with accurate word

ordering for any language pair are called reordering methods. The basic concept of reorder-

ing methods is that we learn word order differences between a language pair, then we transform

one’s word order into another for helping translation. For example, various syntax-based reorder-

ing approaches for statistical machine translation have been proposed over more than a decade:

syntax-based statistical machine translation (Yamada and Knight, 2001), preordering (Xia and

McCord, 2004; Collins et al., 2005), hierarchical phrase-based statistical machine translation

(Chiang, 2007), and postordering (Sudoh et al., 2011).

Among such approaches, preordering does not calculate everything at once when translating

a sentence, but performs reordering operations within a simple and independent preprocessing

step. Therefore, we can take advantage of it as opportunities for optimization (Oda et al., 2016)

and system change (Kawara et al., 2018). However, in practical statistical machine translation

systems, non syntax-based approaches such as lexicalized reordering (Tillman, 2004) are still

preferred because of simplicity.
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Therefore, in this study, we aim to build a practical machine translation system that can trans-

late distant language pairs accurately using simple yet effective preordering. In order to under-

stand why machine translation has become so difficult and complicated, we need to look back

on the history of machine translation.

1.4 Brief History of Machine Translation

In 1949, Warren Weaver wrote a famous memorandum to Norbert Wiener (Sergei Nirenburg

and Wilks, 2003), which reads as follows:

Also knowing nothing official about, but having guessed and inferred considerable

about, powerful new mechanized methods in cryptography — methods which I believe

succeed even when one does not know what language has been coded — one naturally

wonders if the problem of translation could conceivably be treated as a problem in

cryptography. When I look at an article in Russian, I say “This is really written in

English, but it has been coded in some strange symbols. I will now proceed to decode.

Even today, the basic idea of machine translation is this way of thinking machine translation

as a task of cryptography. Following this idea, we will examine a brief history of machine trans-

lation, from the initial implementation in the rule-based approach to the latest implementation

in deep neural networks.

1.4.1 Rule-based Machine Translation

The Weaver’s memorandum triggered the spread of machine translation research in the 1950s.

An example of this era is a rule-based machine translation system that Georgetown University

and IBM demonstrated in 1954, using “a very restricted vocabulary of 250 words and just six

grammar rules” to translate Russian sentences into English (Brown, 2005). Such a rule-based

machine translation system has the advantage of being perfectly understandable to details and

can be completely controlled by humans. On the other hand, it turned out that it is impossible
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for humans to describe all translation rules, and it is also difficult to maintain the consistency of

translation rules.

1.4.2 Example-based Machine Translation

Therefore, instead of manually describing the translation rules, a data-driven approach called

example-based machine translation (Nagao, 1984) was proposed and developed in the 1980s.

The example based machine translation searches example sentences similar to input sentences

from a corpus stored in advance, then obtains translated sentences by editing the retrieved exam-

ple sentences. For example, if the input sentence is “I have a pen” and there is a sentence “I have

an apple” in the corpus, we can output “I have a pen” by editing an apple to a pen. However, the

lower the similarity between languages, the greater the need for editing. After all, especially in

distant language pairs, we need to edit and reorder the entire input sentence instead of editing

parts of example sentences.

1.4.3 Statistical Machine Translation

For this reason, another data-driven approach called statistical machine translation (Brown et

al., 1990; Brown et al., 1993) was proposed in the 1990s. Returning to the idea of cryptology,

they formulated machine translation as an instance of the noisy channel model (Shannon, 1948).

In their formulation, the input sentence is considered to be encoded in a foreign language, and

translation is done by decoding the input sentence into a native language. For example, when

translating French into English, we can regard French as a foreign language and English as a

native language. They succeeded in formulating all components in detail using Bayesian statis-

tics as backbone. However, due to the detailed formulating, statistical machine translation has

problems in computational complexity, especially when also considering the word order prob-

lem for distant language pairs. In addition, it is difficult to understand all the components used

in statistical machine translation.
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1.4.4 Neural Machine Translation

In recent years, yet another data-driven approach called neural machine translation (Cho et al.,

2014; Sutskever et al., 2014; Bahdanau et al., 2015; Luong et al., 2015) that enables end-to-end

translation using deep neural networks has also been proposed in the 2010s. With this end-to-

end approach, machine translation is no longer a collection of components, but is regarded as a

single black box that does not fall under the word ordering problem. The flip side of the coin is

that neural machine translation suffers from the real word problems, such as poor performance

in treating small training data and rare words, most of which did not become a serious problem

in statistical machine translation (Koehn and Knowles, 2017). Therefore, neural machine trans-

lation is not yet realistic for critical applications, but it may be the closest to automatic machine

translation in the future.

1.5 Contributions of This Study

In this way, the formulation of machine translation has become complicated to achieve fully au-

tomated machine translation, but gradually becomes uncontrollable and difficult to understand.

Therefore, this study aims to establish a controllable and understandable yet accurate machine

translation system for distant language pairs. In order to establish such a system, we need to

address the following problems:

• Building a fully automatic machine translation system for distant language pairs

• Making the system controllable and easy to understand

• Improving accuracy while keeping the system controllable and understandable

In response to the problems listed above, we propose solutions using syntax-based preordering

for statistical machine translation based on two hypotheses.

The first hypothesis is that the use of syntax-based preordering can enhance the controlla-

bility of statistical machine translation. Since preordering performs reordering operations as a

preprocessing step, the use of preordering makes it possible to divide and conquer statistical
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machine translation using a separated preordering process and a translation process. Then, we

can concentrate on making accurate reordering for distant language pairs.

The second hypothesis is that the use of syntax-based preordering can reduce the difficulty

of statistical machine translation. Since syntax-based preordering methods output intermediate

representation in human-readable formats, we will be able to understand what is happening with

a complex statistical machine translation system and modify the system as needed.

We examine these two hypotheses throughout this study, and each method proposed in these

chapters corresponds to our contributions:

• In Chapter 2, we describe the overall picture of formulation in statistical machine transla-

tion.

• In Chapter 3, we present two types of fully controllable rule-based preordering methods,

where one method uses syntax extensively and the other uses little or no syntax. Both

methods address syntactic problems raised in previous studies on the task of rule-based

preordering for Japanese-to-English translation. We then explore roles of syntactic infor-

mation in rule-based preordering for distant language pairs by comparing the two methods

in Japanese-to-English translation.

• In Chapter 4, we present a statistical preordering method that overcomes the limit on accu-

racy in rule-based approaches. The method also addresses optimization problems found in

previous studies on statistical preordering. We then demonstrate effectiveness of syntactic

information in statistical preordering in the task of English-to-Japanese and Japanese-to-

English translations.

• Finally in Chapter 5, we draw our conclusions and future prospects.



Chapter 2

Background

Since this study involves various syntax-based methods for statistical machine translation, in

this chapter, we give an overview of technologies behind our methodology, such as tokenization,

syntax, statistical machine translation, and machine learning. We begin with tokenization, which

is a basic standard of how we treat our data. We then move to syntax, a concept that determines

the way how we look at the world of languages. Following syntax is the foundation of machine

translation, from the statistical machine translation onwards, which is a framework of automatic

translation from one language into another. In the meantime, we also stop by the field of machine

learning, which is a technology that enabled machine translation to automatically learn from and

make predictions on data, without being explicitly programmed, unlike the good old rule-based

machine translation systems.

2.1 Tokenization

The first step we need to make automatic machine translation happen is tokenization, which

transforms a sequence of characters into a sequence of words (one or more characters).

The tokenization becomes mandatory in preprocessing of multi-lingual machine translation,

because some languages, such as Chinese and Japanese, do not have practice of inserting space

between words in their writing system. For example, a Japanese sentence “吾輩は猫である”

meaning “I am a cat” does not have any white space characters at all. Therefore, we tokenize

8
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that sentence into “吾輩は猫である”, which is a more readable form for both non Japanese

speakers and machines.

Even in other languages such as English, it is usually better to have the tokenization step. For

example, you want to split “they’re” into the two words “they” and “are” instead of keeping them

as one word. Ultimately, one can define such a tokenization standard in a completely data-driven

fashion, by using subword units based on byte pair encoding (Gage, 1994; Sennrich et al., 2016)

and unigram language model (Kudo, 2018; Kudo and Richardson, 2018).

English tokenizer used in this study is the Moses tokenizer (Koehn et al., 2007). Japanese

tokenizers used in this study include MeCab (Kudo et al., 2004) and JUMAN (Kurohashi and

Kawahara, 2012).

2.2 Syntax

In this study, we borrow three types of syntactic structures from linguists: phrase structure,

dependency structure, and predicate-argument structure. Although they are roughly interex-

changeable, each of them has unique characteristics that cannot be directly and conveniently

represented in another framework. Therefore, we stick to different frameworks for different

purposes.

2.2.1 Phrase Structure

Let us think of some examples for linguistic analysis using syntactic structure. We say, “They

drink coffee” and “They drink a bottle of coke” as well as “They drink several cups of tea a

day”. Their meanings are all different, but we regard them as having a common meaning of

“They drink something”. Figure 2.1 shows such a syntactic structure in a linguistic framework

called phrase structure (also known as constituency).

This phrase structure indicates that the sentence has a hierarchical construction, which con-

tains a noun and a verb followed by another noun and a punctuation mark. Since this phrase

structure is a symbolic framework, we can easily modify a part of the sentence while keeping

its basic structure, as we replace “something” with “a cup of coffee” as shown in Figure 2.2.
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S

VP

NP

NN

something.

VBP

drink

NP

PRP

They

Figure 2.1: Example of phrase structure: the symbol S denotes a sentence, NP denotes a noun

phrase, VP denotes a verb phrase, PRP denotes a personal pronoun, VBP denotes a present verb,

and NN denotes a noun.

S

VP

NP

PP

NP

NN

coffee.

IN

of

NP

NN

cup

DT

a

VBP

drink

NP

PRP

They

Figure 2.2: Another example of phrase structure: the symbol PP denotes a prepositional phrase,

DT denotes a determiner, IN denotes a preposition.



CHAPTER 2. BACKGROUND 11

Japanese source sentence with

predicate-argument analysis:

(dependency arcs and labels)
図2において ガイドバー11と 22の 支持構造も 示す 。

In Fig.2 guide bar 11 and 22 for support structure also show .
Cood Cood V Punc

English reference: Fig.2 also shows support structures for the guide bar 11 and 22.

Figure 2.3: Example of predicate-argument structure in Japanese. Each box represents a chunk.

The labels Cood, V, and Punc denote a chunk coordination, a head verb, and a Japanese punc-

tuation mark, respectively.

Now this sentence represents a much more realistic object than just “something”, but, even

after changing the words, we can manipulate the whole structure as a variant of “They drink

something” just as before.

When we humans look at a sentence, we can automatically parse the sentence and get a syn-

tactic structure similar to this. In the case of computational linguistic analysis on a computer

like this study, we parse sentences automatically using a program called syntactic parser.

English constituency parsers used in this study include the Berkeley Parser (Petrov et al., 2006;

Petrov and Klein, 2007) and Enju (Miyao and Tsujii, 2005; Miyao and Tsujii, 2008), which are

trained on the Wall Street Journal section of the Penn Treebank (Marcus et al., 1993). The

Berkeley Parser can also be used for parsing Japanese input using the toolkit called Haruniwa

(Fang et al., 2014; Horn et al., 2017), which is trained on the Keyaki Treebank (Butler et al.,

2012; Horn et al., 2017).

2.2.2 Dependency Structure

Unlike phrase structure, the framework of dependency structure is historically developed in the

languages that have free word order, such as Japanesese. Nowadays, however, dependency is as

popular in English as constituency.

The upper half of Figure 2.3 shows dependency arcs annotated to a Japanese sentence. Typical

dependency structure in Japanese uses dependency on top of a chunk called bunsetsu, which is a
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grammatical and phonological unit consisting of noun, verb, or adverb followed by dependents

such as particles. The dependency arcs represent dependency relations to each head chunk from

its dependent child chunks, ending with a root chunk indicating the head of a sentence.

English dependency parsers used in this study include the Stanford Parser (Marneffe et al.,

2006) and MaltParser (Nivre et al., 2007), which are trained on the Penn Treebank converted

from constituency to dependency beforehand (Marneffe et al., 2006). Japanese dependency

parsers used in this study include CaboCha (Kudo and Matsumoto, 2002) and KNP (Kawahara

and Kurohashi, 2006b; Sasano and Kurohashi, 2011), which are trained on the Kyoto University

Text Corpus (Kawahara et al., 2002).

2.2.3 Predicate-Argument Structure in Japanese

There is another linguistic framework commonly used in both Japanese syntactic and semantic

parsing called predicate-argument structure. The bottom half of Figure 2.3 shows the predicate-

argument structure annotated as labels. The predicate-argument structure introduces relation-

ships between a predicate chunk and its argument chunks. Instead of introducing all the possible

predicate-argument relations, we simply introduce three commonly used “S”, “V”, and “O” la-

bels, which represent triples of subject, verb, and object:

• The “S” label represents a Japanese ga argument as a subject.

• The “V” label represents a Japanese predicate as a head verb.

• The “O” label represents Japanese wo or ni arguments as an object.

For instance, the chunk “⽰す show” from the same example is labeled “V”, indicating that

this chunk is a head verb.

There are some dependency relations that come up with dependency labels, such as a coordi-

nation label shown as “Cood” in this example. The coordination relation in Japanese dependency

indicates a coordination structure between head and dependent chunks, which often implicitly
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links two conjunct chunks without using a coordinating conjunction, unlike explicit use of co-

ordinating conjunction in English, such as “and”, “or”, and “but”. For instance, the two chunks

“ガイドバー11と guide bar 11 and” and “22の 22 for” in this example are coordinated, rep-

resenting a construction similar to “guide bar 11 and 22” in English.

Japanese predicate-argument structure analyzer used in this study include SynCha (Iida and

Poesio, 2011) and KNP (Kawahara and Kurohashi, 2006b; Sasano and Kurohashi, 2011), which

are trained on the NAIST Text Corpus (Iida et al., 2007), the Kyoto University Case Frame

(Kawahara and Kurohashi, 2006a), and the Kyoto University Noun Case Frame (Sasano and

Kurohashi, 2009). We did not use any English predicate-argument structure analyzers, but Enju

(Miyao and Tsujii, 2005; Miyao and Tsujii, 2008) can also output such information.

In this way, syntax provides an interpretable abstraction layer to natural language processing.

This interpretability is very important when we want to track of errors on complex systems, such

as statistical machine translation.

2.3 Formulation of Statistical Machine Translation

Statistical machine translation (Brown et al., 1990; Brown et al., 1993) has been used to automat-

ically translate one language into another all over the world, from daily conversations to official

documents of the United Nations. Statistical machine translation aims to formulate every single

piece of machine translation modules as statistical models, following corpus-driven approaches

in computational linguistics.

The basic assumption behind statistical machine translation is the noisy channel model (Shan-

non, 1948) used in cryptography. When we translate Russian into English, we treat our Russian

input as noisy English; it was once English input but was mistakenly encoded in Russian, thus

we will decode it into English. Therefore a complete statistical machine translation decodes

output from input.

We will see how this noisy channel model works with statistics. We begin with one of the

simplest yet most effective statistical modeling called language model.
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2.3.1 Language Model

The language model (Shannon, 1951; Brown et al., 1992b) measures how likely it is that a

sequence of words would be uttered by a native speaker in one language. For example in English,

this model should prefer correct word order to incorrect word order as follows:

P (the cat is small) > P (small the is cat).

In general a language model is a function that takes a monolingual sentence and returns the

probability that it was produced by a native speaker. It is more likely that an English speaker

would utter the sentence “the cat is small” than the sentence “small the is cat”. Therefore a good

language model assigns a higher probability to the former sentence than the latter.

N-Gram Language Model

The n-gram language model (Shannon, 1951; Brown et al., 1992b) is the most widely used

language modeling method that is based on statistics of how likely words are to follow each

other. Recall the last example, if we analyze a large amount of text, we will observe that the

word “cat” follows the word “the” more often than the word “is” does.

Formally we want to compute the probability of a sequence W = w1, w2, · · · , wn where

n ∈ N. Intuitively P (W ) is the probability when we pick a random sequence of words from

dictionaries and the sequence turns out to be W . Thus we only have to count how often W

occurs naturally.

It is, however, commonly known that many words and most long sequences of words will

not appear at all in the corpus we have. As a result we have to break down the computation of

P (W ) into smaller steps, for which we can collect sufficient statistics and estimate probability

distributions.

In that sense we introduce the Markov chain and predict one word at a time:

P (w3|w1, w2) =
count(w1, w2, w3)∑
w count(w1, w2, w)

,

where in the sequence, w1, w2 is followed by the word w3.
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The sequence used here containing three words are called 3-grams (trigrams). Language

models may also be estimated over 2-grams (bigrams), single words (unigrams), or any other

order of n-grams.

Kneser-Ney Smoothing

In order to estimate the probability of W , which may contain the words that do not appear in the

corpus but would appear in somewhere else, we employ smoothing methods for better counting.

The Kneser-Ney smoothing (Kneser and Ney, 1995; Chen and Goodman, 1996) is a smoothing

method that takes the diversity of histories into account. We define the count of histories for a

word w as:

N1+(w) = |{wi|count(wi, w) > 0}|,

where count(wi, w) is the number of occurrences that a word wi happened to be followed by the

word w.

Recall that a unigram language model can be estimated as:

P (w) =
count(w)∑
i count(wi)

.

In the Kneser-Ney smoothing, we simply replace the raw counts with the counts of histories

for a word as follows:
P (w) =

count(w)∑
i count(wi)

=
N1+(w)∑
wi
N1+(wi)

.

2.3.2 Noisy Channel Model

From now on we step into the world of statistical machine translation from the language model,

which still utilizes the language model as well as another component called translation model.

Essentially statistical machine translation considers automatic translation process of one sen-

tence at a time from the input called source language F to the output called target language E.

These symbols are named after the early French-to-English translation attempts in the 1990’s.
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Formally statistical machine translation from a source sentence f ∈ F to a target language

e ∈ E is formulated with the noisy channel model (Shannon, 1948):

ê = argmax
e

P (e|f),

where obtaining ê ∈ E that maximizes P (e|f) is our final goal.

We apply the Bayes’ theorem to this formula for transforming it into:

ê = argmax
e

P (e|f)

= argmax
e

P (f |e)P (e)

P (f)

= argmax
e

P (f |e)P (e),

where P (f) is a constant with respect to argmax
e

.

With this transformation we no longer directly estimate P (e|f), but instead we can sepa-

rately solve the statistical machine translation problem as a combination of the translation model

P (f |e) and the language model P (e) we already saw. We benefit from the last transformation

because monolingual resources required for the language model are usually far more obtainable

than bilingual or multilingual resources required for the translation model.

In order to generalize the variations of the statistical machine translation which we will in-

troduce and discuss later, we also model intermediate representations on top of the translation

model:
ê = argmax

e
P (f |e)P (e)

= argmax
e

∑
d∈D(f ,e)

P (f ,d|e)P (e),

where a latent variable d is the derivation that represents every possible intermediate represen-

tation, and D(f , e) represents a set of such derivations.

We then train our translation model Pθ with the maximum likelihood estimation of parameter

θ upon bilingual data ⟨F,E⟩:

θ̂ = argmax
θ

∏
⟨f ,e⟩∈⟨F,E⟩

Pθ(f |e),
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where θ̂ is a trained parameter. Training of the latent variable d is done subsequently. The

bilingual data is a clean set of parallel sentences created from bilingual or multilingual resources,

which usually contains more than million sentences in parallel.

Eventually we decode the combined translation and language models according to the already

trained parameter θ:
ê = argmax

e

∑
d

Pθ(f ,d|e)Pθ(e).

In order to find feasible derivations under limited computation time and space, we apply the

Viterbi approximation for changing our objective into:

⟨ê, d̂⟩ = argmax
⟨e,d⟩

Pθ(f ,d|e)Pθ(e).

Practically we will find the Viterbi translation ⟨ê, d̂⟩ with inexact search methods such as the

beam search (Koehn et al., 2003; Koehn, 2004a; Koehn et al., 2007).

2.3.3 IBM Models

The IBM models (Brown et al., 1993) are the series of statistical machine translation modeling

that introduced a concept called word alignment a as a derivation in the translation model:

ê = argmax
e

∑
a

Pθ(f ,a|e)Pθ(e).

The word alignment is a process and its output that finds bilingual relationships between words

in a pair of source and target sentences. For example in German and English:

Ich trinke einen Kaffee

I drink a cup of coffee,

we can find bilingual pairs such as ⟨I, Ich⟩ and ⟨coffee,Kaffee⟩ in this bilingual sentence pair.

In contrast words such as “of” are not aligned explicitly. The words that are considered to be

not aligned and remained alone are called null alignment or null words. For instance, English

articles and Japanese particles are usually null aligned.
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In this example, however, one might see that the pair of words ⟨a cup of coffee, einen Kaffee⟩

is properly aligned in spite of the null word existence. Later we introduce phrasal alignment that

also allows more than one word.

Formally word alignment a is defined as a set:

a = {· · · , (j, i), · · · },

such that a bilingual relationship pair ⟨fj, ei⟩ appears in the sentence pair ⟨f , e⟩ where fj ∈ f ,

ei ∈ e, i, j ∈ N, and (j, i) ∈ N× N.

For their further modeling, some IBM models also made the one-to-many alignment assump-

tion that a target word ei is aligned to the only one source word fj but source words can take

multiple target words at the same time. This one-to-many alignment can be simply defined as a

list:

a = a1, · · · , aj, · · · aJ ,

where aj = i, f = f1 · · · fj · · · fJ , e = e1 · · · ei · · · eI , and I, J ∈ N.

In addition, in order to estimate many-to-many alignment from the one-to-many alignment

estimated with the IBM models, we merge two instances of one-to-many alignment into a new

many-to-many instance, which are obtained from bidirectional alignment between source and

target languages:
â▷ = argmax

a▷
P (f ,a▷|e)

â◁ = argmax
a◁

P (f ,a◁|e),

where a▷ and a◁ are one-to-many alignment of target-to-source and source-to-target directions,

respectively.

We further calculate their intersection a∩ and union a∪ as:

a∩ = {(j, i)|a▷j = i ∧ a◁i = j}

a∪ = {(j, i)|a▷j = i ∨ a◁i = j},

where a▷ = a▷1 , · · · , a▷j , · · · , a▷J and a◁ = a◁1 , · · · , a◁i , · · · , a◁I .
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Then we finally generate our many-to-many alignment a◁▷ as a following set:

a◁▷ = {· · · , (j, i), · · · |(j, i)∈a∩∨

(j−1, i)∈a∩∧(j, i−1)∈a∩∧(j+1, i)∈a∩∧(j, i+1)∈a∩∧(j, i)∈a∪∨ grow

(j−1, i−1)∈a∩∧(j−1, i+1)∈a∩∧(j+1, i−1)∈a∩∧(j+1, i+1)∈a∩∧(j, i)∈a∪∨ diag

(j′, i)/∈a∧(j, i′)/∈a∧(j, i)∈a∪}, final-and

where 1 ≤ j′ ≤ J and 1 ≤ i′ ≤ I . This is called “grow-diag-final-and” heuristic (Koehn et al.,

2003) and shown empirically effective (Och and Ney, 2003).

2.3.4 Phrase-Based Machine Translation

The modeling we studied so far regarded a sentence as a composition of words and no more

than that. It is, however, more realistic that we consider the multi word expressions that hap-

pen to have more than one word in both source and target languages, such as the previous

⟨a cup of coffee, einen Kaffee⟩ pair.

For this purpose, the phrase-based machine translation model (Koehn et al., 2003) extended

word-based models with phrasal alignment α and phrase pairs ϕ defined as:

α = {α1, · · · , αL}

f̄ = f̄1, · · · , f̄L

ē = ē1, · · · , ēL

ϕ = {· · · , ⟨f̄αk
, ēk⟩, · · · },

where f̄ ∈ F , ē ∈ E, 1 ≤ k ≤ L, L ∈ N.

Then we replace the former word alignment a in the IBM models with this phrasal alignment

α and phrase pairs ϕ as follows:

ê = argmax
e

P (f |e)P (e)

= argmax
e

∑
ϕ,α

P (f ,ϕ,α|e)P (e),

where P (f ,ϕ,α|e) represents the phrasal translation model.
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2.4 Machine Learning for Statistical Machine Translation

After speculating various statistical machine translation models, we will study how to learn such

a complex model from data automatically. That approach is called machine learning, where

machines automatically learn to predict in a specific task given data. The machine learning

tasks include classification and regression. In the classification task, we are given a fixed set

of discrete labels called classes, and a learned model assigns one or more of these classes to

its input. The regression task, in contrast to the classification, assigns a continuous value to its

input.

When we have observed data x and classes y as a labeled data set D = {(y,x)}, where (y,x)

represents a pair of a class and an observed instance, we want to know how to predict y from x.

This learning process can be defined as a conditional probability P (y|x).

After finishing the learning process we predict unknown classes y from observed data x. We

define our prediction of classes ŷ as:

ŷ = argmax
y

P (y|x).

We apply the Bayes’ theorem to the conditional probability P (y|x):

ŷ = argmax
y

P (y|x)

= argmax
y

P (x|y)P (y)

P (x)

= argmax
y

P (x|y)P (y),

where P (x) is a constant with respect to argmax
y

. With this formulation we can make use of the

additional prior information P (y).

In machine learning, the methods with the former formulation are called discriminative mod-

els. In contrast, the methods with the latter Bayesian formulation are called generative models.

Nevertheless the methods of both models that learn D are called supervised methods, other-

wise we predict unknown data x from unlabeled data x alone as unsupervised methods. Super-
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vised methods with an assumption that the inner product ⟨x,w⟩ of observed data x and a weight

vector w is predictable of y are called linear models.

2.4.1 Linear Classifications

In this study we mainly focus on application of such linear models. For the data set D we define:

y ≡


y1
...

yN

 , w ≡


w1

...

wK

 , X ≡


x⊤
1

...

x⊤
N

 ≡


x11 · · · x1K

... . . . ...

xN1 · · · xNK

 ,

where N ∈ N is the data size and K ∈ N is the data rank.

For unknown data x we defined a classifier y(x) as:

y(x) = ⟨x, ŵ⟩,

where ŵ is a learned weight vector for this classifier. When we classify whether y(x) ≥ 0, this

classifier returns only two types of classes and called binary classifications. Other types of the

classifier are called multi class classifications.

In order to prevent our classifier from overfitting to our training data D alone, we learn the

weight vector ŵ from the squared loss L and the regularization term R(w) as:

ŵ = argmin
w

(L(w,D) + λR(w))

= argmin
w

(
N∑

n=1

(yn − ⟨xn,w⟩)2 + λR(w)

)
,

where λ is the parameter that weights the regularization term.

We then introduce two types of regularization as follows:

R(w) = ∥w∥22 = w⊤w L2 regularization

R(w) = ∥w∥1 =
K∑
k=1

|wk|, L1 regularization

where either L2 or L1 regularizations are employed in actual task of regression and classification.
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2.4.2 Expectation-Maximization Algorithm

When we consider various statistical machine translation models as a machine learning task,

the task would be different from other tasks as it involves the derivation d as a latent variable

in the course of the maximum likelihood estimation. In that case we apply the expectation-

maximization algorithm (Dempster et al., 1977), EM algorithm in short, which is the iterative

method consists of expectation and maximization steps.

Formally we have an observed data set D = {xn|n = 1, · · · , N}, and its latent variable z

where zn corresponds to xn. We estimate the likelihood L as:

logL(x, z|θ) =
N∑

n=1

logP (xn, zn|θ),

where θ represents a parameter vector. We then estimate the maximum likelihood as:

θ = argmax
θ

logL(x, z|θ).

However, we cannot directly estimate θ due to the latent variable z. Instead we apply the

iterative EM algorithm to the optimization of P (x|θ) as we update θ(t+1) from θ(t) within the

t ∈ N-th iteration, considering the following facts:

P (x, z|θ)
P (z|x,θ(t))

=
P (z|x,θ)P (x|θ)

P (z|x,θ(t))

log
P (x, z|θ)
P (z|x,θ(t))

= log
P (z|x,θ)
P (z|x,θ(t))

+ logP (x|θ)

logP (x|θ) = log
P (x, z|θ)
P (z|x,θ(t))

− log
P (z|x,θ)
P (z|x,θ(t))

logP (x|θ)− logP (x|θ(t)) = logP (x, z|θ)− logP (x, z|θ(t))− log
P (z|x,θ)
P (z|x,θ(t))

,

where θ(t) represents the current parameter vector and θ(t+1) represents the next parameter vec-

tor.

We now maximize P (x|θ) by maximizing logP (x, z|θ) iteratively as follows:

θ(t+1) = argmax
θ

∑
z∈Z

P (z|x,θ(t)) logP (x, z|θ).
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In an actual iteration for the EM algorithm, we estimate P (x, z|θ) in the expectation step then

update θ(t+1) in the maximization step. We randomly initialize the value of θ(1) beforehand.

2.4.3 Tuning

After training our translation model with the EM algorithm, we would like to combine it with

the language model and keep balance between them. Therefore we apply the log linear model

for tuning our system (Och, 2003):

⟨ê, d̂⟩ = argmax
⟨e,d⟩

P (e,d|f)

= argmax
⟨e,d⟩

w⊤h(e,d,f),

where h(·) is a feature vector and w is its weight vector. We usually optimize this model with

evaluation criteria such as BLEU, as we discuss in the following section.

2.5 Evaluation of Statistical Machine Translation

After developing a machine translation system, we would like to evaluate its output so that we can

get to know relative improvement from a previous version and overall quality when compared

to other systems including human translators. Evaluation on machine translation is conducted

by human or machine. The former is called manual evaluation and the latter is called automatic

evaluation. We also conduct meta evaluation between manual and automatic evaluations as there

is a huge gap between them. In general manual evaluation is more acceptable, interpretable,

and reasonable while automatic evaluation offers better cost-performance, reproducibility, and

speed.

2.5.1 Manual Evaluation

Even manual evaluation of translation quality is far from a trivial problem, as there are many

ways to translate a part of a sentence or just one word. For example, the English word “I” has

various counter parts in Japanese such as “私”, “俺”, “吾輩”, and so on.
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In widely used subjective evaluation, human evaluators who are native or very fluent speakers

of the target language are asked to rate a translated sentence called hypothesis. Rating is given

on a fixed measure like a scale of one to ten in terms of evaluation criterion such as adequacy

and fluency. Adequacy focuses on expressiveness and faithfulness of translation. Fluency, in

contrast, focuses on grammatical correctness and natural soundness of translated sentence.

However, even the criteria of adequacy and fluency may not be sufficient as human evaluators

tend to be unreliable when they met ambiguous cases where evaluation criteria are indistinguish-

able to them. Therefore subjective evaluation usually involves two or more human evaluators

who try to seek agreement on ambiguous cases as much as possible and normalize overall score

afterward. In addition to the normalization process, reference translation made by professional

human translators beforehand would be given as a reference, which may cause reference bias

where human evaluators prefer a reference to a translated sentence for no reason.

When we need to analyze what kind of errors impacted adequacy and fluency, more complex

criteria such as HTER (Snover et al., 2006) and a detailed analysis framework (Vilar et al.,

2006) are used. While this human-in-the-loop evaluation process is regarded as the most reliable

evaluation method to date, it is time consuming, extremely expensive, and usually unstable as

the process involves human evaluators.

2.5.2 Automatic Evaluation

Therefore we instead utilize fully automatic evaluation methods for reducing overall turn around

time especially during development. Automatic evaluation makes an assumption that translated

sentences that are similar to reference translation are better translation. In order to reduce refer-

ence bias in that situation, some methods utilize more than one reference translation as multiple

references.

Automatic evaluation methods differ in how to define such a similarity measure. We will see

two widely used yet different measures: BLEU and RIBES.
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BLEU

BLEU (Papineni et al., 2002) is the most popular measure that utilizes word n-gram based pre-

cision matches between hypothesis and reference, as hypothesis that matches to reference is

regarded as similar.

Formally the BLEU measure is defined as:

BLEU-n = exp
n∑

i=1

log precisioni

n
× BP

precisioni =
matched i-gram length

hypothesis i-gram length

BP = min
(
1, exp

(
1− reference length

hypothesis length

))
,

where the brevity penalty (BP) reduces the score if hypothesis is too short. The maximum order

n ∈ N for n-grams to be matched is typically set to 4. This setting is called BLEU-4.

We show how to calculate the score of BLEU-4 using the following example, which consists of

an input sentence, its reference translation, and a hypothesis generated by a machine translation

system:
Input: あなたと私は昨⽇ピザを⾷べました。

Reference: You and I ate a pizza yesterday .

Hypothesis: I ate a pizza today .

In this example, our hypothesis mistranslated the word “yesterday” in the reference as “today”,

and, at the same time, it lacks the translation of “You and”, which appeared in the input as

“あなたと”. In other words, the hypothesis correctly translated 5 words out of the 8 words

in the reference, including a comma counted as a word. Therefore, we calculate our unigram

precision (precision1) as:

precision1 =
matched unigram length

hypothesis unigram length
=

5
6
.

Please note that we do not use the number of words in the reference explicitly, because we do

calculate precision instead of recall.
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We further calculate our bigram precision (precision2), the matching between the bigram of

the reference (“You and”, “and I”, ...) and that of the hypothesis (“I ate”, “ate a”, ...), as follow:

precision2 =
matched bigram length

hypothesis bigram length
=

3
5
.

Furthermore, we calculate our trigram precision (precision3) and 4-gram precision (precision4)

as:
precision3 =

matched trigram length
hypothesis trigram length

=
2
4

precision4 =
matched 4-gram length

hypothesis 4-gram length
=

1
3
.

In order to calculate the score of BLEU, we need to calculate BP, in addition to the calculation

of precision, as follow:

BP = min
(
1, exp

(
1− reference length

hypothesis length

))
= min

(
1, exp

(
1− 8

6

))
= exp

(
−1

3

)
≈ 0.717

After that, we can finally calculate the score of BLEU-4:

BLEU-4 = exp
4∑

i=1

log precisioni

4
× BP

= exp
(
1

4
log

5

6
+

1

4
log

3

5
+

1

4
log

2

4
+

1

4
log

1

3

)
× exp

(
−1

3

)
≈ 0.3850 = 38.50%.

RIBES

Of many variations and extensions that have been proposed to the BLEU measure, the RIBES

measure (Isozaki et al., 2010a) focuses more on word order differences between hypothesis and

reference. Thus hypothesis that matches to reference’s word order is regarded as similar even

when only a few words matches to reference, as opposed to BLEU. As a result this measure
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correlates more to human subjective evaluation than the BLEU measure (Goto et al., 2011; Goto

et al., 2013) on distant language pairs where word order extremely differs.

Given a word order list of the n words output list, this method utilizes the Kendall’s rank

correlation coefficient (Kendall, 1938), Kendall’s τ , as follows:

RIBES =
Kendall’s τ + 1

2
× precisionα

1 × BPβ

Kendall’s τ =
count(ascending pairs)

count(all pairs)
× 2− 1

count(ascending pairs) =
∑

i,j∈[1,n],i<j

δ(listi < listj)

count(all pairs) =
(
n

2

)
,

where 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, and δ(listi < listj) is the Kronecker’s delta function that returns

1 if listi < listj and 0 otherwise. The hyperparameters α and β are typically set to α = 0.25 and

β = 0.10.

We show how to calculate RIBES by recalling the “pizza” example as:

Reference: You1 and2 I3 ate4 a5 pizza6 yesterday7 .8

Hypothesis: I3 ate4 a5 pizza6 .8

where we iteratively assigned integer to each word in the reference and the hypothesis, while

eliminating the word “today” that did not appear in the reference.

In order to calculate the score of RIBES, we calculate Kendall’s τ , by counting the number

of ascending pairs in the hypothesis, as follow:

Kendall’s τ =
count(ascending pairs)

count(all pairs)
× 2− 1

=
20

20
× 2− 1 = 1.0.
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After that, we calculate the score of RIBES using Kendall’s τ , our unigram precision, and BP:

RIBES =
Kendall’s τ + 1

2
× precisionα

1 × BPβ

= 1.0×
(
5

6

)0.25

×
(
−1

3

)0.10

≈ 0.9241 = 92.41%.



Chapter 3

Exploring Roles of Syntactic Information
in Rule-based Preordering

In this chapter, we explore roles of syntactic information in rule-based preordering, by present-

ing two rule-based preordering methods for Japanese-to-English statistical machine translation,

where the two-stage method (Hoshino et al., 2013) described in Section 3.2 uses syntax exten-

sively and the three-stage method (Hoshino et al., 2014) described in Section 3.5 uses little or

no syntax. Our methods addressed syntactic problems raised in previous studies (Komachi et

al., 2006; Katz-Brown and Collins, 2008) on the task of rule-based preordering for Japanese-to-

English translation. These problems have prevented rule-based methods from achieving accu-

rate reordering and translation. By solving them, both methods outperformed previous methods,

and as a result, we achieved the state-of-the-art performance in Japanese-to-English translation

to date using a rule-based preordering method.

3.1 Motivation of Rule-based Preordering

The task of preordering, and natural language processing in general, has been divided into two

major paradigms: a rule-based approach and a statistical approach. The rule-based approach

(Collins et al., 2005) has many advantages, such as being easy to understand from a traditional

point of view and not requiring training data. Yet the effort required for its development makes

29
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it less appealing than the statistical approach (Xia and McCord, 2004) in terms of cost perfor-

mance. The latter is easy to maintain, robust, and, more importantly, ready to scale with big

data. That is why statistical methods dominate natural language processing today.

However, our data size is not always large enough. Or even worse, the data we want for a

particular task may not be obtainable due to copyright issues. In that case, we have to come

up with the old-school rule-based approach that does not require training data. Nonetheless, it

is fully possible to achieve high accuracy comparable with statistical methods using rule-based

methods.

As such, we demonstrate various techniques to improve rule-based preordering methods for

Japanese-to-English statistical machine translation, which is one of the most difficult translation

direction in the world in terms of word ordering. We first address problems raised in the previous

studies (Komachi et al., 2006; Katz-Brown and Collins, 2008) on the task of rule-based predering

for the Japanese-to-English translation with the syntax-based two-stage method (Hoshino et al.,

2013). We then address the robustness of the two-stage method with the three-stage method that

uses little or no syntax (Hoshino et al., 2014).

3.2 Two-Stage Preordering with Predicate-Argument Structure

We improve previous rule-based preordering methods (Komachi et al., 2006; Katz-Brown and

Collins, 2008) by combining dependency structure with predicate-argument structure. This can

be easily done as most predicate-argument analyzers take dependency structure as input and

annotate predicate-argument structure on top of the dependency as output, as shown in our ex-

ample in Figure 3.1. Then, by using our combined predicate-argument structure, we reorganized

preordering rules and apply them in two-stages: an inter-chunk stage and an intra-chunk stage.

Operations in the inter-chunk stage are responsible for the orders of chunks, whereas operations

in the intra-chunk stage focus on the word orders inside chunks.

Let us explain the notations used in our explanations before we offer detailed explanation

of the rules. The “→” symbol in (L → R) represents a rewrite operation over a head and its
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Japanese source sentence with

predicate-argument analysis:

(dependency arcs and labels)
図2において ガイドバー11と 22の 支持構造も 示す 。

In Fig.2 guide bar 11 and 22 for support structure also show .
Cood Cood V Punc

English reference: Fig.2 also shows support structures for the guide bar 11 and 22.

Rule 1-1 pseudo head initialization: 示す 。 図2において 支持構造も 22の ガイドバー11と

show . in Fig.2 support structure also 22 for guide bar 11 and
V Punc Cood Cood

Rule 1-2 inter-chunk reordering:
図2において 示す 。 支持構造も 22の ガイドバー11と

in Fig.2 show . support structure also 22 for guide bar 11 and
V Punc Cood Cood

Rule 1-3 inter-chunk normalization:
図2において 示す 支持構造も ガイドバー11と 22の 。

in Fig.2 show support structure also guide bar 11 and 22 for .

Rule 2 intra-chunk reordering: において 図2 示す も 支持構造 と ガイドバー11 の 22 。

In Fig.2 show also support structure and guide bar 11 for 22 .

Komachi et al. (2006):
図2において ガイドバー11と 22の 支持構造も 示す 。

In Fig.2 guide bar 11 and 22 for support structures also show .
V

CABOCHA (Katz-Brown and Collins, 2008):
示す において 図2 も 支持構造 の 22 と 11 ガイドバー 。

show In Fig.2 also support structure for 22 and guide bar 11 .

REV (Katz-Brown and Collins, 2008): 示す も 支持構造 の 22 と ガイドバー11 において 図2 。

show also support structures for 22 and guide bar 11 in Fig.2 .

Figure 3.1: Preordering example along with predicate-argument structure in Japanese, compar-

ing the two-stage method with the previous methods. Each box represents a chunk. The labels

Cood, V, and Punc denote a chunk coordination, a head verb, and a Japanese punctuation mark,

respectively.
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dependency, indicating symbols on the left hand side (L) are converted to symbols on the right

hand side (R). We apply pattern matching to both left and right hand sides. Each symbol in the

rules including x, y, and z represents a chunk. The Kleene star such as x⋆ represents zero or

more chunks. Below are the main preordering rules in our system:

3.2.1 Rule 1-1 Pseudo Head Initialization

In order to convert the SOV word order in Japanese into the head-initial word order similar

to English, this rule applies pseudo head-initialization sorting to the hierarchical dependency

structure in the predicate-argument structure, resulting in yielding the VSO word order. After

parsing an input sentence with a predicate-argument analyzer, the rule modifies the order of

chunks as each head chunk is always followed by its dependent child chunks. That reordering

operation is specifically done by traversing the dependency tree inside the predicate-argument

structure analyzed for the input sentence in pre-order1.

For instance, the head verb “⽰す show(s)” in our example is relocated to the leftmost position

after applying this rule.

3.2.2 Rule 1-2 Inter-chunk Reordering

If there is a head verb represented with the V label in a sentence, we then apply this rule after

Rule 1-1. This rule coverts the SOV word order into the SVO word order in English, even when

no explicit subject or object is placed in a sentence. That happens as a result of a parsing error,

or a correct analysis of a pro-drop construction that is often the case in the pro-drop Japanese

language.

Basically we move the head verb V instead of the subject S or the object O, as we already have

the head-initial VSO word order generated by Rule 1-1. Specifically we relocate V immediately

after S (Vx⋆Sy⋆ → x⋆SVy⋆) or immediately before O in case no subject is found (Vx⋆Oy⋆ →

x⋆VOy⋆).

Instead, when we only have the head verb V without the subject S and the object O, we relocate
1Do not confuse with preordering. This is a way to traverse a tree structure.
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V immediately before the rightmost chunk (Vx⋆y → x⋆Vy) to avoid yielding the VSO word

order directly.

For instance, the head verb “⽰す show(s)” in our example is relocated to next to the leftmost

position after applying this rule, generating a pseudo SVO construction regardless of no sub-

ject chunk in the sentence. In contrast, when tested within the previous methods (Komachi et

al., 2006; Katz-Brown and Collins, 2008), the V is incorrectly relocated to the leftmost or the

rightmost, resulted in yielding incorrect VSO or SOV word orders.

3.2.3 Rule 1-3 Inter-chunk Normalization

If there are coordinated chunks or punctuation in a sentence, we apply this rule after Rule 1-1

and Rule 1-2. This rule fixes incorrect shuffling of coordinated chunks or punctuation often

generated by pseudo head-initializing sorting in Rule 1-1. Basically we keep these chunks un-

changed from their original positions, specifically by relocating the coordinated chunks to the

leftmost position (x⋆Cood⋆y⋆ → Cood⋆x⋆y⋆) where Cood in the right hand side represents the

coordinated chunks sorted in the original order, and the punctuation to the rightmost position

(x⋆Punc⋆y⋆ → x⋆y⋆Punc⋆) where Punc represents one of the Japanese punctuation “、” and

“。”. An exceptional case is when we have the comma “、” followed by the period “。” after

the above. In that case we remove all commas immediately before the period.

For instance, the period “。” in our example sentence is relocated to the rightmost position,

unlike Komachi et al. (2006). And the coordinated chunks “ガイドバー11と22の the guide

bar 11 and 22” restored their original order during the reordering operations. Neither Komachi

et al. (2006) or Katz-Brown and Collins (2008) comes with such a rule for handling coordinated

chunks.

3.2.4 Rule 2 Intra-chunk Reordering

We apply this rule after Rule 1-1, Rule 1-2, and Rule 1-3. This rule converts postpositional

phrases in Japanese into prepositional phrases in English. Specifically we swap function words

and content words in each chunk (Content Function → Function Content) where both Content
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and Function labels are given to every word by the predicate-argument analyzer, indicating a

content word and a function word, respectively.

For instance, the chunk “ガイドバー11と the guide bar 11 AND” in our example has three

words: the two content words “ガイドバー11 the guide bar 11” and the function word “と

AND”. Thus the words in the chunk are reordered as “とガイドバー11 AND the guide bar

11”. In contrast, Katz-Brown and Collins (2008) naively reversed all the three words, yielding

“と 11 ガイドバー AND 11 the guide bar”.

3.3 Experimental Settings of Two-Stage Preordering

In order to test the two-stage method by comparing it with previous methods in the same set-

tings, we conduct several Japanese-to-English statistical machine translation experiments. For

all these experiments, we set up a standard statistical machine translation system that consists

of SRILM 1.7.0 (Stolcke, 2002) for 6-gram language modeling, MGIZA 0.7.3 (Gao and Vo-

gel, 2008) with the grow-diag-final-and heuristic for obtaining many-to-many word alignment,

and Moses 0.91 (Koehn et al., 2007) with the minimum error rate training (Och, 2003), and the

lexicalized reordering model (Tillman, 2004) for tuning and decoding.

We train a standard statistical machine translation system with two different corpora: one in

the patent domain and another in the news domain. It is the first one that we used mainly. For

the patent domain we utilize several English-Japanese portions of NTCIR patent corpora. They

contain in total more than 3.2 million parallel sentences in English and Japanese, making a rea-

sonably large parallel corpus for our experiments. Basically following the NTCIR-9 (Goto et

al., 2011) workshop configuration, we employed the NTCIR-7 and NTCIR-8 training sets, the

NTCIR-8 development set, and the NTCIR-9 test set (test9) in our experiments. We utilized all

sentences from the training and test data, while we only used the first 500 sentences from the

development set for faster development. For the news domain we utilize the relatively small

JENAAD corpus (Utiyama and Isahara, 2003), which consists of exactly 150,000 parallel sen-

tences in English and Japanese. We split the corpus into three parts: the first 1,000 sentences
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for testing, the following 1,500 sentences for development, and the remaining 148,500 sentences

for training, respectively.

To evaluate our system outputs, we judge the quality of global word ordering in RIBES

(Isozaki et al., 2010a) and local word ordering in BLEU (Papineni et al., 2002).2 Both met-

rics represent the similarity between system outputs and human reference translations as a score

range between [0, 100]% where a high score indicates similarity and a low score indicates dis-

similarity.

We explored two parser configurations for parsing Japanese sentences:

1. The CaboCha+SynCha configuration employed MeCab 0.994 (Kudo et al., 2004) within

the default IPA dictionary for tokenization, CaboCha 0.65 (Kudo and Matsumoto, 2002) for

dependency parsing, and SynCha 0.3 (Iida and Poesio, 2011) for predicate-argument structure

analysis on top of the CaboCha output.

2. The KNP configuration employed JUMAN 7.0 within the default JUMAN dictionary for

tokenization and KNP 4.01 (Kawahara and Kurohashi, 2006b; Sasano and Kurohashi, 2011)

for combined dependency parsing and predicate-argument structure analysis. The tokenization

standard for this configuration is slightly different from that of the CaboCha+SynCha configu-

ration.

In a preprocessing step prior to statistical machine translation training or decoding, we to-

kenized and parsed all the Japanese sentences with both parser configurations. Then we ran

preordering methods by feeding the parsed sentences. We employed our rule-based method, an

implementation of the statistical method proposed by Neubig et al. (2012) called lader 0.1.33,

and faithful implementations of previous rule-based methods including Komachi et al. (2006),

CABOCHA (Katz-Brown and Collins, 2008), and REV (Katz-Brown and Collins, 2008), ex-

cept that we relocated V instead of S and O in the case of Komachi et al. (2006). We basically

applied the CaboCha+SynCha configuration for all the preordering methods and our baseline
2We ran the Travatar toolkit (Neubig, 2013) in default settings for both evaluation metrics and their statistical testings.
3Only 10,000 lines sampled from a training data set are used for training when applying this statistical method due to its

computational complexity that consumed 120 GB of memory space for almost an entire month.
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Table 3.1: Results in the Japanese-to-English patent translation. Bold text denotes either the

highest score or the insignificance from the highest (p < 0.01) in bootstrap resampling (Koehn,

2004b).

test9

Method DL RIBES BLEU

Moses (our baseline without preordering) 20 68.48 29.19

CABOCHA (Katz-Brown and Collins, 2008) 20 66.15 27.74

Komachi et al. (2006) 10 69.10 29.58

lader (Neubig et al., 2012) with 10k data 10 70.15 29.93

REV (Katz-Brown and Collins, 2008) 10 72.34 30.39

Two-stage method with CaboCha+SynCha 10 72.35 30.01

Two-stage method with KNP 10 72.26 30.65

Two-stage method with KNP and refinements 10 72.05 31.49

without applying any preordering methods. We also applied the KNP configuration only for the

two-stage method.

3.4 Experimental Results of Two-Stage Preordering

Table 3.1 shows a comparison of translation accuracy in the patent domain obtained before and

after applying the following preordering methods: Komachi et al. (2006), CABOCHA and REV

proposed by Katz-Brown and Collins (2008), Neubig et al. (2012), and our two-stage method

Hoshino et al. (2013). Moses indicates our baseline results attained without applying any pre-

ordering methods. Refinements for the two-stage method indicate the results obtained after fixing

a bug in detecting predicate-argument structure.

The two-stage method (Hoshino et al., 2013) with refinements outperformed all the other pre-

ordering methods in terms of local word ordering in BLEU, whereas it outperformed all the

previous methods except the REV (Katz-Brown and Collins, 2008) in terms of global word or-
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Table 3.2: Ablation tests of the two-stage method (Hoshino et al., 2013) with the KNP configura-

tion. Bold text denotes either the highest score or the insignificance from the highest (p < 0.01)

in bootstrap resampling (Koehn, 2004b).
Rule 1-2 Rule 1-3 Rule 2 RIBES BLEU

68.48 29.19
√

71.00 29.76
√

69.50 27.71
√

65.61 28.29
√ √

70.40 28.84
√ √

71.34 30.94
√ √

71.74 30.41
√ √ √ 72.26 30.65

dering in RIBES. These very strong results suggest that our proposed method achieved the most

accurate word ordering along with syntactic structure than the previous methods with syntax

(Komachi et al., 2006; Katz-Brown and Collins, 2008) and little or no syntax (Katz-Brown and

Collins, 2008).

As shown in 3.2, we also conduct ablation tests of our preordering rules with the KNP con-

figuration to check contributions of each rule, which compared all the possible combinations of

Rule 1-2, Rule 1-3, and Rule 2 in terms of translation accuracy for the same Japanese-to-English

patent translation. From these tests we observed incremental performance gain when adding any

rules or a combination of rules, combining all the rules performed the best. An exceptional case

is only when adding Rule 2 to the barebone baseline, which is intuitively a straightforward phe-

nomenon as swapping content words and function words without any chunk reordering makes

no sense.

In addition to the translation accuracy, we conducted an intrinsic evaluation of the two-stage

method with the Kendall’s τ distribution (Isozaki et al., 2010a), which represents the mono-



CHAPTER 3. EXPLORING ROLES OF SYNTAX IN RULE-BASED PREORDERING 38

0

5

10

15

20

25

30

35

40

45

50

-1

-0
.9

-0
.8

-0
.7

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

Fr
e

q
u

e
n

cy
 [

%
]

Figure 3.2: The development data in the

patent domain before applying preordering:

average τ = 0.391

0

5

10

15

20

25

30

35

40

45

50

-1

-0
.9

-0
.8

-0
.7

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

Fr
e

q
u

e
n

cy
 [

%
]

Figure 3.3: The development data after ap-

plying the two-stage method with KNP: av-

erage τ = 0.575

Table 3.3: Experiment results in the Japanese-to-English news translation. Bold text denotes

either the highest score or the insignificance from the highest (p < 0.01) in bootstrap resampling

(Koehn, 2004b).

Method DL RIBES BLEU

Moses 20 62.71 15.03

Two-stage method with KNP 10 69.30 16.12

tonicity of sentences as a graph that has values of the Kendall’s τ measure in the x-axis and

percent ratios of every sentence in the y-axis, with the averaged Kendall’s τ of all sentences,

shown in Figure 3.2 and 3.3. This evaluation suggests that our method generated much more

monotonic sentences (Figure 3.3) than the baseline without preordering (Figure 3.2), and most

of our reordering operations resulted in positive improvement of word ordering.

Table 3.3 shows experiment results in the news domain that compare translation accuracy

obtained before and after applying the two-stage method (Hoshino et al., 2013) with the KNP

configuration. Similar to the results in the patent domain, our method slightly improved trans-

lation accuracy in both RIBES and BLEU in the news domain, indicating that our rule-based

method works robustly in any domains regardless of the relatively small data used for training the
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statistical machine translation system. We can largely benefit from this robustness as practical

statistical machine translation systems often involve small data in various domains.

3.5 Three-Stage Preordering without Predicate-Argument Structure

Since previous rule-based preordering methods for Japanese-to-English statistical machine trans-

lation (Komachi et al., 2006; Hoshino et al., 2013) heavily depend on the accuracy of complex

predicate-argument structure analysis, parsing errors often become the direct cause of reordering

errors.

To address this, Katz-Brown and Collins (2008) proposed the REV preordering method that

naively reverses parts of Japanese sentences by using little or no syntax information, making

it immune to parsing errors. This method, however, mistakenly reverses word orders of com-

pound nouns and coordinations as the method lacks any clues about these syntactic constructions.

Isozaki (2013) slightly improved the REV’s shortcoming on compound nouns by labeling them

with part-of-speech tags, yet the problem with coordination still remains.

We therefore propose a new set of preordering rules for Japanese-to-English statistical ma-

chine translation. Our idea is that we mimic the fully syntax-based two-stage method (Hoshino

et al., 2013) by using little or no syntax information as Katz-Brown and Collins (2008) did,

while we keep track of problematic coordination structures. As shown in Figure 3.4, we apply

our rules in three-stages: In the first stage, we split a sentence into several chunks while keeping

track of coordination; In the second stage we reorder the chunks; and in the final third stage we

reorder the words inside the chunks. We make our system immune to parsing errors by utilizing

syntactic information only at the first stage.

Before we offer detailed explanation of the rules, let us explain the notations used in our

explanations. Our input sentence, called input, consists of l ∈ N chunks (input = c1...cl); each

chunk cx (1 ≤ x ≤ l) consists of q ∈ N words (c = w1...wq); and the “→” symbol in (L → R)

represents a rewrite operation, indicating symbols on the left hand side (L) are converted to

symbols on the right hand side (R).
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Japanese source sentence with

predicate-argument analysis:

(dependency arcs and labels) ここで、 表1、 図7に 示す 各記号は 次のものを 表している。

Here , Table 1 and Fig.7 in show each symbol followings represent .
Cood Cood V S O V

English reference: Here, symbols shown in Table 1 and Figure 7 represent the following items.

Stage 1 segmentation:
ここで 、 表1、図7に 示す 各記号は 次のものを 表している 。

Here , Table 1 and Fig.7 in show each symbol followings represent .
Punc Cood Punc

Stage 2 inter-chunk: ここで ∥、 ∥ 各記号 示す 表1、図7に は ∥ 表している 次のものを ∥。
Here , each symbol show Table 1 and Fig.7 in represent followings .

Stage 3 intra-chunk: で ここ 、 各記号 示す に 表1、図7 は いる 表して 次のものを 。

Here , each symbol shown in Table 1 and Fig.7 represent followings .

REV (Katz-Brown and Collins, 2008): でここ 、 表1 、 は各記号 示す に図7 いる表して 次のものを 。

Here , Table 1 , each symbol shown in Fig.7 represent followings .

Hoshino et al. (2013):
でここ、 は各記号 示す 表1 に図7 、 いる表して 次のものを 。

Here , each symbol show Table 1 in Fig.7 , represent followings .
S V Cood Cood Punc V O Punc

Figure 3.4: Another preordering example along with predicate argument structure, comparing

the three-stage method and the previous methods including the two-stage method. The labels

Cood, V, S, O, and Punc denote a chunk coordination, a head verb, a subject, an object, and

a Japanese punctuation mark, respectively. Each symbol ∥ represents a boundary between two

segments of chunks.
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3.5.1 Stage 1 Segmentation

This rule splits a Japanese sentence into several chunks using syntactic information. To keep

track of coordination in latter stages, we regard all the sequential chunks in input that are linked

together within coordination as one chunk (input = c1...cl → c1...cm). Thus number of chunks

in input is reduced from l to m where 1 ≤ m ≤ l.

After that we separate punctuation from each chunk as an individual chunk, preventing it

from being shuffled with other chunks in the next inter-chunk reordering stage. Specifically we

separate u ∈ N punctuation from these chunks, making each punctuation a new chunk (input =

c1...cm → c1...cn). The number of chunks in input is increased from m to n where n = m+ u

as long as any punctuation exist.

For instance, the two coordinated chunks “表1、 Table 1 ,” and “図7に Fig.7 in” in our ex-

ample are merged into the one chunk “表1、図7に Table 1 and Fig.7 in”. Also two punctuation

chunks “、 ,” and “。 .” are separated from other chunks. These operations make reordering of

chunks much easier and more accurate than previous works (Komachi et al., 2006; Katz-Brown

and Collins, 2008; Hoshino et al., 2013).

Nonetheless, in the case of any coordinated chunks cx where 1 ≤ x ≤ m, we apply the fol-

lowing three exceptional rules for balancing the segmentation between coordination and punc-

tuation:

1. If a noun, the word that predicate-argument analysis tagged as the part-of-speech “NN”, is

followed by punctuation in cx, we do not split this chunk at that punctuation. For instance, we

do not split the merged coordinated chunk “表1、図7に Table 1 and Fig.7 in” at punctuation

following this exception.

2. If the first exception is applied and the chunk cx ends with one of the Japanese topic words

“は” or “が”, we regard the rightmost punctuation in the chunk as a new chunk, splitting the

chunk cx into three chunks at that punctuation, regardless of the first exception. For instance,

when we happened to have a coordinated chunk like “表1、図7は Table 1 and Fig.7”, we split

this chunk at punctuation, making the last fragment more similar to an individual subject chunk
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than a coordinated noun clause.

3. If this chunk cx ends with one of the Japanese punctuation “、” and “。”, we split the

chunk only at that punctuation, making it into two chunks regardless of the first and second

exceptions. For instance, when we happened to have a coordinated chunk like “表1、図7、

Table 1 and Fig.7 ,”, we split this chunk only at the last punctuation, leaving the former part

including a punctuation mark as a merged coordinated chunk.

3.5.2 Stage 2 Inter-Chunk Reordering

This rule reorders each chunk segment surrounded by punctuation from the SOV word order

to the SVO word order similar to English with a hard assumption that a subject always ends

with a Japanese topic word, keeping punctuation left untouched. From the chunks we have

c1...cn, we scan a chunk segment surrounded by punctuation ci...cj where 1 ≤ i ≤ j ≤ n,

ci−1 = Punc ⇐⇒ 1 < i, and cj+1 = Punc ⇐⇒ j < n. We find a chunk ct = w1...wq

(i ≤ t ≤ j) that ends with one of the Japanese topic words “は” or “が” from each segment

ci...cj .

After that we reorder each segment ci...cj , specifically by reversing ci...ct and ct+1...cj sepa-

rately (ci...cj → ct...cicj...ct+1). We then separate the topic word wq from the chunk ct, placing

it between the two reversed fragments (ct...cicj...ct+1 → w1...wq−1ct−1...ciwqcj...ct+1).

For instance, we regard the three chunks “表1、図7に Table 1 and Fig.7 in”, “⽰す show”,

and “各記号は each symbol” in our example as one segment, because this segment ends with

the topic word “は”. We then reverse the order of these chunks while leaving the topic word in

the end, yielding the chunk sequence of “各記号 each symbol”, “⽰す show”, “表1、図7に

Table 1 and Fig.7 in”, and “は”.

3.5.3 Stage 3 Intra-Chunk Reordering

This rule converts postpositional phrases in Japanese into prepositional phrases similar to En-

glish. We split each chunk ck = w1...wq from all the segments ci...ck...cj into content words

w1...wp and function words wp+1...wq where 0 ≤ p ≤ q. We then swap the two fragments and
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concatenate the two fragments while reversing the function words (c = w1...wq → wq...wp+1w1...wp).

For instance, the chunk “ここで” in our example is split into the content word “ここ” and

the function word “で”. We therefore swap the two words, yielding the sequence “でここ”. If

there are more than one function word such as a chunk “ここではね” containing two function

words “では” and “ね”, we also reverse the order of function words during the swap operation,

yielding the final sequence of “ねではここ”.

3.6 Experimental Settings of Three-Stage Preordering

In a similar way as the previous experimental settings for the two-stage preordering method,

we conduct Japanese-to-English statistical machine translation experiments for comparing the

three-stage method with previous methods. We basically follow the same settings used in the

previous patent domain experiments. Some of the tools we use are updated (Moses 1.0 and

KNP 4.1 beta). We also do some training data filtering this time. We set up a standard statistical

machine translation system that consists of SRILM 1.7.0 (Stolcke, 2002) for 6-gram language

modeling, MGIZA 0.7.3 (Gao and Vogel, 2008) with the grow-diag-final-and heuristic for ob-

taining many-to-many word alignment, and Moses 1.0 (Koehn et al., 2007) with the minimum

error rate training (Och, 2003), and the lexicalized reordering model (Tillman, 2004) for tuning

and decoding.

We trained the standard statistical machine translation system only with several English-

Japanese portions of NTCIR patent corpora. They contain in total more than 3.2 million parallel

sentences in English and Japanese. We employed the NTCIR-7 and NTCIR-8 training sets, the

NTCIR-8 development set, and the NTCIR-9 test set (test9). We utilized all sentences from the

training and test data, while we only used the first 500 sentences from the development set for

faster development. We also filtered out training sentences that are longer than 64 words.

To evaluate our system outputs, we judge the quality of global word ordering in RIBES

(Isozaki et al., 2010a) and local word ordering in BLEU (Papineni et al., 2002).4 Both met-
4We ran the Travatar toolkit (Neubig, 2013) in default settings for both evaluation metrics and their statistical testings.
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Table 3.4: Results in the Japanese-to-English patent translation. Bold text denotes either the

highest score or the insignificance from the highest (p < 0.01) in bootstrap resampling (Koehn,

2004b).

test9

Method DL RIBES BLEU τ

Moses 10 68.08 27.57 0.3935

REV (Katz-Brown and Collins, 2008) 10 73.10 29.87 0.5186

Two-stage method 10 72.37 30.56 0.5829

Three-stage method 10 74.14 31.14 0.6091

rics represent the similarity between system outputs and human reference translations as a score

range between [0, 100]% where a high score indicates similarity and a low score indicates dis-

similarity.

In all these experiments, we stick to the same parser configuration: JUMAN 7.0 with KNP 4.1

beta (Kawahara and Kurohashi, 2006b; Sasano and Kurohashi, 2011) for combined dependency

parsing and predicate-argument structure analysis.

3.7 Experimental Results of Three-Stage Preordering

Table 3.4 shows a comparison of translation accuracy obtained before and after applying the

following preordering methods: the REV method (Katz-Brown and Collins, 2008), the two-

stage method (Hoshino et al., 2013), and the three-stage method (Hoshino et al., 2014). Moses

indicates our baseline results attained without applying any preordering methods.

The three-stage method outperformed all the other methods including the two-stage method

(Hoshino et al., 2013) in both RIBES and BLEU as well as the averaged Kendall’s τ , indicating

that we achieved the most accurate word ordering in terms of both global and local word orders.

These substantial results suggest that we achieved the state-of-the-art translation accuracy with

a rule-based preordering method to date.
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Japanese input · · · |エネルギーが | 240keV、 |ドーズ量が | 4×1012/cm2 | · · ·

Ideal reordering · · · |エネルギーが240 keV |、 |ドーズ量が4×1012/cm2 | · · ·

English reference · · · the energy of 240 keV, the dose of 4×1012/cm2 · · ·

Hoshino et al. (2014)

Stage 1 · · · |エネルギーが | 240 keV、ドーズ量が | 4×1012/cm2 | · · ·

Stage 2 · · · | 4×1012/cm2 | 240keV、ドーズ量が |エネルギーが | · · ·

Stage 3 · · · | 4×1012/cm2 |が 240 keV 、 ドーズ量 |がエネルギー | · · ·

Figure 3.5: Typical reordering errors generated from applying the three-stage method. Each

symbol | represents a boundary between chunks.

Nevertheless, we are still far from achieving perfect reordering in the Japanese-to-English pre-

ordering task, as our averaged Kendall’s τ shows the value around 0.6 instead of 1.0. Therefore

we conducted detailed analysis of reordered sentences for finding what is the cause of typical

reordering errors from our actual mistakes.

3.8 Analysis of Typical Reordering Errors in Three-Stage Preordering

Figure 3.5 shows a typical cause of reordering errors that was found harmful to all the three-

stages we have. This example sentence is full of coordinated chunks containing one punctuation

mark in the middle, which corresponds to the English conjunct “and”. Our segmentation rules

in the first stage, however, failed to split these coordinated chunks into the two chunks bridged

by the punctuation as similar to English. Instead our rules split these chunk at wrong points

following the first exception rule, turning them into the three chunks. Both the second and

third stages suffered from that mistake in the aftermath, by mistakenly shuffling the chunks in

the second inter-chunk reordering stage and the words in the third intra-chunk reordering stage,

respectively.

Now we face a serious problem in handling complex reordering errors of this kind within the

rule-based approach. We have to add tons of rules to fix all these reordering errors, but adding
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more and more rules rapidly increases complexity of our method. As history shows, we will

eventually lose this fight long before we can achieve the perfect accuracy.

Alternatively one can actually attribute the cause of this problem to parsing errors, because the

problem we have is how to obtain the ideal structure for reordering than just how to manipulate

such a structure. To this end, we pose a following question: Can we parse a sentence in a way

suitable for reordering? We will study such a research question within the statistical approach

to overcome the difficulty of the rule-based approach in the next chapter.

3.9 Related Work

The first set of rules for the Japanese-to-English preordering task is proposed by Komachi et

al. (2006). They employed predicate-argument structure on top of chunks to determine subject,

verb, and object in the first place for effectively reordering the subject-object-verb (SOV) word

order in Japanese into the subject-verb-object (SVO) word order in English in their method,

specifically by relocating the subject before the verb and the object after the verb. While their

linguistic typology motivated method works pretty well for simple matrix sentences where the

triples of subject, verb, and object appear sequentially, it loses its charms when we happened

to have a more complex construction such as coordination or subordinate clause as the method

heavily relies on the relocations around the single verb. For instance, their method does not

relocate chunks in our example sentence at all, because the sentence has no subject or object.

That is often the case as Japanese is a pro-drop language.

After that Katz-Brown and Collins (2008) proposed another set of rules for the Japanese-

to-English preordering task called CABOCHA. These rules reorder sentences along with hier-

archical dependency structure on top of chunks. Basically they relocate head verbs instead of

subjects and objects unlike Komachi et al. (2006), specifically by relocating a head verb after the

rightmost subject or before the leftmost object, making the whole structure similar to the subject-

verb-object construction. Otherwise they relocate a head before its all dependent child chunks

for yielding head-initial sequences. In addition to reordering of chunks, they reverse the word
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order within each chunk. Punctuation is left untouched from its original position. For instance,

their rules successfully relocated the verb chunk from the rightmost position to the leftmost po-

sition in our example sentence. That leftmost position is still not perfect as the sentence lacks

an explicit subject to the method. Another shortcoming of their method is that they determine

which word is the head verb, the subject, and the object based on surface forms, instead of using

more reliable predicate-argument analyzer as Komachi et al. (2006) did.

In addition to CABOCHA, Katz-Brown and Collins (2008) proposed yet another set of rules

called REV. They took an unique approach that utilizes little or no syntactic information during

reordering operations. Basically this method converts the SOV sequence into the SVO sequence

by reversing the former S part and the latter OV part separately. Specifically this method takes

three steps: we split a Japanese sentence into segments at punctuation; again we split each seg-

ment into new two segments at a Japanese topic marker “は”; and we naively reverse the word

orders of each segment separately, regardless of what is inside. For instance, their rules naively

reversed the word order of our example sentence including the coordinated chunk except the last

punctuation, as the sentence lacks any topic markers.

3.10 Summary

We presented two rule-based preordering methods (Hoshino et al., 2013; Hoshino et al., 2014)

for the Japanese-to-English statistical machine translation. We addressed major syntactic prob-

lems raised in previous studies, which involved accurate reordering of coordinated chunks along

with predicate-argument structure in Japanese. We changed our strategy in the course of our de-

velopment, from completely relying on reordering operations over syntactic input in retrospect,

to minimal syntactic operations that abstract the information we needed for our reordering task.

We eventually developed a rule-based preordering method that demonstrated the state-of-the-art

performance for the Japanese-to-English preordering task to date.

Our finding is that syntactic information plays an important role in effectively generalizing our

rules, as one of our methods showed robustness in domain difference while handling relatively
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small data for training a statistical machine translation system. We are still curious how far we

can go forward within this syntax-based direction beyond the rule-based approach. We will see

what happens with the statistical approach in the following chapter.



Chapter 4

Statistical Preordering with Inversion
Transduction Grammar

In this chapter, we propose a simple yet effective syntax-based preordering method, which im-

proves a previously proposed preordering method (Li et al., 2007) that uses binary parse trees

as a source-side syntactic structure. That is, we parse an input sentence into a binary constituent

tree using an off-the-shelf source-side constituent parser. Each node in the binary parse tree is

then binary classified, i.e., either monotone or reversed, using a linear support vector machine

as a binary classifier. The tree reordered according to the classified labels is used to yield a

reordered source sentence, which is fed to a standard statistical machine translation system to

generate translation.

Our proposal improves the previous method (Li et al., 2007) in two ways: the use of theoreti-

cally grounded oracle reordering labels and effective features. Specifically, we introduce a novel

procedure to obtain oracle reordering labels so as to maximize Kendall’s τ (Kendall, 1938), as

an alternative to a heuristic procedure used in the previous method. In particular, we show that

oracle reordering labels obtained with the proposed procedure will lead to optimal sentence-wise

reordering judged by Kendall’s τ , owing to its compositional property previously discussed in

Yang et al. (2012) and Neubig et al. (2012). Another improvement is a novel set of features that

directly captures the syntactic relation in each node, which is obtained as a result of our feature

49
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Figure 4.1: Overview of the proposed method at training and runtime.

engineering focused on improving binary classification accuracy.

In English-to-Japanese and Japanese-to-English patent translation experiments, our method

leads substantial improvements in translation accuracy measured by RIBES (Isozaki et al., 2010a)

and BLEU (Papineni et al., 2002), although we only need a simple preprocessing implementa-

tion using a binary classifier and a source-side constituent parser. In particular, when compared

with the baseline preordering method of Li et al. (2007), the proposed method substantially out-

performs the baseline for both English-to-Japanese and Japanese-to-English translations. We

also show that our simple preordering method can obtain performance superior to, or at least

close to state-of-the-art syntax-based reordering methods in terms of translation accuracy.

4.1 Syntax-based Preordering Method

Figure 4.1 shows an overview of our syntax-based preordering method using a binary classifier,

which describes essentially the same steps as the previous method of Li et al. (2007) and only

differs in how to train a binary classifier. This framework has two different pipelines for training
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and runtime.

At training, we first run a word aligner and obtain word alignment between source and target

sentences from the aligner. We then parse and binarize the source sentence using a source-side

constituent parser and obtain a source-side binary parse tree. After that, we assign each node an

oracle reordering label, either monotone or reversed, using word alignment information. Finally,

we extract features from the source-side tree and train a binary classifier using the extracted

features and assigned oracle reordering labels.

At runtime, we parse and binarize an input sentence again using a source-side constituent

parser and obtain a source-side binary parse tree. Each node in the binary parse tree is then

binary classified, i.e. either monotone or reversed, using the trained binary classifier. The tree

reordered according to the classified labels is used to yield a reordered source sentence, which

is fed to a standard statistical machine translation system.

4.1.1 Syntax-based Preordering using Binary Classifier

Followings describe the binary tree version1 of the previous method (Li et al., 2007), as we fit it

as basis of our proposal using alternative notation.

For a binary tree that corresponds to a sentence with n words, a binary node in the tree is

expressed as:

v(i, p, j),

where 1 ≤ i ≤ p < p + 1 ≤ j ≤ n. This formula indicates that the binary node takes a span

(i, j) from the i-th to j-th words, and the entire span can be divided into the left span (i, p) from

the i-th to p-th words and the right span (p+ 1, j) from the (p+ 1)-th to j-th words.

We then make a reordering decision as to whether a node should be reversed as:

P (x | θ(v(i, p, j))),
1Their original paper also discussed an extension to the 3-ary node reordering by replacing binary classifications with multi-

class classifications of six candidates. For the sake of simplicity, however, our proposal is rather based on the binary tree version.
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Figure 4.2: Each node is assigned a binary reordering label. The label R indicates reversed and

the label M indicates monotone.
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Figure 4.3: The tree reordered according to the assigned labels, which resembles the reordered

sentence: Reordering binary classification is

where x ∈ {R,M}.2 The label R indicates reversed (reverse the order of its child nodes), the

label M indicates monotone (do not reverse the order of its child nodes), and θ is a feature

function that takes the node as input. We describe the feature templates used in the function in

Section 4.1.4.

For instance, Figure 4.2 shows a sentence (n = 4) that has three binary nodes, S, VP, and NP,

which are our reordering candidates. We examine the NP node v(3, 3, 4), which has a left span
2We actually used a linear support vector machine as a binary classifier as mentioned in Section 4.2.1, because we need to

run it on a large amount of training data made out of millions of sentences. The proposed method is, however, not limited to a
specific classifier. For example, Li et al. (2007) used a maximum entropy classifier.
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(3, 3) that covers the word binary3 and a right span (4, 4) that covers the word classification4.

The reordering decision of the NP node is determined by P (x | θ(v(3, 3, 4))), and is classified

as x = M in this example. The actions for the VP node v(2, 2, 4) and the S root node v(1, 1, 4)

are determined in a similar fashion.

Once all reordering decisions along a binary constituent tree are made, only the children of

the nodes that are labeled R are reversed. For example, this reordering process produces a new

tree shown in Figure 4.3 from the tree shown in Figure 4.2. The new tree represents a reordered

sentence: Reordering binary classification is, which has word order that is similar to Japanese

word order. The reordered sentence is fed to a statistical machine translation system.

4.1.2 Obtaining Oracle Reordering Labels so as to Maximize Kendall’s Tau

In order to get the most from this framework, we need to train a binary classifier using oracle

reordering labels, which represent the best combination of reordering labels for an entire sen-

tence. Since there exists no such label data and manually annotating all training data is expensive

and may cause inconsistency, we instead introduce a systematic procedure to obtain oracle re-

ordering labels using word alignment information, similar to those of previous studies (Yang et

al., 2012; Neubig et al., 2012).3 The obtained reordering labels are used for training a binary

classifier as well as evaluating the trained classifier.

The principal concept of our procedure is to assign each binary node v(i, p, j) an oracle re-

ordering label so that Kendall’s τ (Kendall, 1938) is maximized for the node’s span (i, j). Given

the task of preordering is to generate a source word sequence whose word ordering correlates

with its translation, we employed Kendall’s τ as our objective, since that metric is extensively

exploited in the context of statistical machine translation research, such as evaluation metric

(Birch and Osborne, 2010; Isozaki et al., 2010a; Talbot et al., 2011) and optimization criterion

(Yang et al., 2012; Neubig et al., 2012).
3We explore the degree to which the actual word alignment accuracy affects the reordering accuracy in Section 4.2.2. In

general, the word alignment accuracy and reordering accuracy depend on each other. For instance, Ding et al. (2015) improved
word alignment accuracy for distant language pairs by applying a reordering method.
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Given a number list x = x1, . . . , xn, Kendall’s τ measures the similarity between x and sorted

x as:

τ(x) = 4c(x)
n(n− 1)

− 1,

where c(x) is the number of concordant pairs between x and sorted x, which is defined as:

c(x) =
∑

i,j∈[1,n],i<j

δ(xi < xj),

where δ(xi < xj) is the Kronecker’s delta function that returns 1 if xi < xj and 0 otherwise.

The τ function indicates that x is completely monotonic when τ(x) = 1, and in contrast, x is

completely reversed when τ(x) = −1.

For the task of reordering, we instead use word alignment a as the number list x as in the form

a = a1, . . . , an, where ax = y indicates that the x-th word in a source sentence corresponds to

the y-th word in a target sentence.4 Moreover, we define the limited word alignment for a span

(i, j) as a(i, j) = {ak | i ≤ k ≤ j}, which corresponds to each binary node in a given binary

constituent tree.

We then determine a reordering decision for each binary node v(i, p, j) according to a local

score for the node’s span (i, j), which is defined as:

s(v(i, p, j)) = τ(a(i, p) · a(p+ 1, j))

−τ(a(p+ 1, j) · a(i, p)),

where · indicates a concatenation of word alignment. This formula compares the number of con-

cordant pairs in the left-to-right perspective τ(a(i, p) ·a(p+1, j)) and the number of concordant

pairs in the right-to-left perspective τ(a(p + 1, j) · a(i, p)). We then assign the oracle label R

to nodes for which s(v(i, p, j)) < 0 and the oracle label M to nodes for which s(v(i, p, j)) > 0.

All other nodes for which s = 0 are excluded from the binary classifier’s training data, because
4Since word alignment is usually given as many-to-many representation using the grow-diag-final-and heuristic, we convert

many-to-many word alignment into the ax = y indices by selecting median values in advance.
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they are noisy and ambiguous samples in terms of the binary classification task.5

When there exists a node that has two words and the two words happened to share the same

word alignment ax = y, the node always has the score of zero and is excluded from training

data. This is because we are not sure whether the node should be reversed, and the reordered

result would not be affected by the reordering decision of the node anyway.

This procedure determines an oracle reordering label for each node locally. Now, the following

question arises: Can oracle reordering labels determined by making local decisions achieve the

best overall reordering for a sentence?

4.1.3 Proof: Decomposition of Kendall’s Tau Computation

This hypothesis is shown to be true, because Kendall’s τ at the sentence level can be decomposed

in a recursive manner over a hierarchical syntactic structure (Yang et al., 2012; Neubig et al.,

2012). As a proof, we present a similar decomposition in the same recursive manner. Please

note that the idea of the decomposition of Kendall’s τ is not new (Yang et al., 2012; Neubig et

al., 2012), while we apply this observation to obtaining of the oracle reordering labels by making

local decisions.

Let c(a(i, j)) be decomposed as:

c(a(i, j)) = c(a(i, p)) + c(a(p+ 1, j))

+
∑

k∈[i,p],l∈[p+1,j]

δ(ak < al).

The three terms in this formula are mutually independent. That is, any reordering of a(i, p)
changes only the first term, and all other terms remain unchanged. The same goes for the second

and third terms.

We can maximize c(a(i, j)) by maximizing each term. Since the first and second terms can be

maximized in a recursive manner, we only need to maximize the third term, which corresponds
5The number of each labeled node varies in data. In Section 4.2.2 we obtained the following numbers out of the 8,000

sampled sentences that are used to train binary classifiers. The Giza data: 69,178 nodes were labeled R, 102,916 nodes were
labeled M , and 43,896 nodes were excluded. The Nile data: 90,724 nodes were labeled R, 70,583 nodes were labeled M , and
54,683 nodes are excluded.
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Figure 4.4: Rare case of τ(a) < 1 under tree structure: Dashed lines represent word alignment

between the English parse tree and its translation in Japanese.

to the local score s(v(i, p, j)) of the proposed procedure. Therefore, our attempt to maximizing

the local score of the proposed procedure leads to the maximization of c(a(i, j)). Since τ(x) is

proportional to c(x), the maximization of τ(x) and hence the global maximization of Kendall’s

τ are achieved in the course of maximizing c(x).
Please note that oracle reordering labels guarantee τ(a) ≥ 0, but τ(a) = 1 is not guaranteed

under syntactic constituent trees. For example, Figure 4.4 shows such a rare case, where we

cannot make τ(a) = 1 from reversing any binary nodes, as discussed in Section 4.3.

4.1.4 Features

We introduce a new feature function that is used for training a binary classifier. Previous stud-

ies explored such a feature function, which is designed specifically for the task of reordering

in a similar but different fashion. For the task of preordering using BTG, Neubig et al. (2012)

used syntactic information such as a node’s span length and its balance in subnodes, word sur-

face forms, non-terminals, word classes obtained with Giza, and a phrase table as a dictionary.
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Nakagawa (2015) extended the BTG prediction feature function with more feature combinations,

using word classes obtained with the Brown clustering (Brown et al., 1992a). For the task of pre-

ordering using binary classifier, Li et al. (2007) proposed the use of head words, non-terminals,

and words that surround a node’s span, which is derived from the literature on conventional

parsing.

Based on these previous studies, we propose a new set of features that improves the binary

classification accuracy of the previous method of Li et al. (2007). Our feature function consists of

word surface forms and non-terminals, including pre-terminals, as in the form of string features

similar to previous studies. In contrast to previous studies, our feature function captures syntactic

contiguous sequences that contribute to our reordering decisions without using a phrase table

dictionary in order to speed up binary classifications.

One might argue that structured learning with dynamic features, such as the use of parent

node type feature (Nakagawa, 2015), will provide better classification accuracy than the static

features we propose. However, we could not find any effective dynamic features that provide

significant improvement of classification accuracy. Our interpretation of the observation is that

the discrimination we need might be less dynamic than that of BTG methods, because, unlike

the proposed method, oracle BTG trees have many ambiguities, including the differences in

left-branching and right-branching.

Table 4.1 lists two types of feature templates used in our feature function θ given the binary

node v(i, p, j) in Section 4.1.1, namely span features and tree features. In order to identify

the differences between a left span (i, p) and a right span (p + 1, j), such as whether the head

word of the node is on the left or the right, we introduce the span features for individual indices

x:y that denote a span from the x-th to y-th words, where tx:y represents a pre-terminal, wx:y

represents a word surface form, and ◦ represents a feature combination. In addition, we also

introduce features that use the iteratively generated left and right sub-spans, because we intend

to exhaustively cover all the possible lengths of spans. We call them a left sub-span (l, p) and

a right sub-span (p + 1, r), where integers d, l, and r satisfy d ≥ 0 ∧ l = max(i, p − d) ∧ r =
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Table 4.1: Feature templates for the node v(i, p, j), where integers d, l, and r satisfy d ≥ 0∧ l =

max(i, p− d) ∧ r = min(p+ 1 + d, j).
Span Features Tree Features

ti:p, tp+1:j, wi:p, wp+1:j, σ(v(i, p, j)),

ti:p ◦ tp+1:j, wi:p ◦ wp+1:j, σr(v(i, p, j)),

ti:p ◦ tp+1:j ◦ wi:p ◦ wp+1:j, σt(v(i, p, j)),

tl:p, tp+1:r, wl:p, wp+1:r, σw(v(i, p, j))

tl:p ◦ tp+1:r, wl:p ◦ wp+1:r,

tl:p ◦ tp+1:r ◦ wl:p ◦ wp+1:r,

min(p + 1 + d, j). The left sub-span is a subset of the entire left span but always ending with

the same rightmost index p. Similarly, the right sub-span is a subset of the entire right span but

always starting with the same leftmost index p+1. The integer d is generated sequentially from

0 up to the maximum length of sub-spans in order to generate all the possible sub-spans. We

found that these sub-spans are also helpful to learn the differences between the left and right

spans.

The tree features directly represent the shape of trees by combining the S-expression nota-

tion of trees and the indexed non-terminals, where σ(v(i, p, j)) represents a tree structure under

node v(i, p, j), σr(v(i, p, j)) represents all the non-terminals of the node and their combinations

between parent and child non-terminals, each annotated with an integer prefix that denotes a

depth from the span’s root node, where each combination separated by a white space boundary

become a feature, σt(v(i, p, j)) represents the tree structure including only the non-terminals,

and σw(v(i, p, j)) represents the tree structure including only the word surface forms.

Table 4.2 shows instances of features for the VP node v(2, 2, 4) in Figure 4.2, which has left

(is2) and right (binary3classification4) spans. Individual templates represent string features,

such as the template t2:2 instantiates the pre-terminal VBZ. In addition to these individual in-

stances, many feature combinations that consist of pre-terminals and word surface forms are used
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Table 4.2: Feature instance examples for the VP node v(2, 2, 4) in Figure 4.2.
Feature Template Instance

t2:2 VBZ

t3:4 JJ_NN

t3:3 JJ

w2:2 is

w3:4 binary_classification

w3:3 binary

σ(v(2, 2, 4)) (VP(VBZis)(NP(JJbinary)(NNclassification)))

σr(v(2, 2, 4)) 0VP 1VBZ 1NP 2JJ 2NN 0VP_VBZ 0VP_NP 1NP_JJ 1NP_NN

σt(v(2, 2, 4)) (VP(VBZ)(NP(JJ)(NN)))

σw(v(2, 2, 4)) ((is)((binary)(classification)))

in actual classifications, such as the combination of VBZ and JJ_NN (the instance of t2:2 ◦ t3:4)

as shown in each row in the span features.

4.2 Experiment

In order to assess various aspects of the proposed method, we conduct a series of experiments

on the English-Japanese language pair, which is known to be a challenging task for translation,

especially in terms of reordering, in the following order:

• We first investigate the amount and quality of word alignment data needed for training a

binary classifier that assigns reordering labels, by comparing unsupervised and supervised

word aligners (Section 4.2.2).

• We then study feature ablation for the purpose of evaluating the contribution of each feature

template used in the proposed method (Section 4.2.3).

• After that, we validate how much does the use of binarized syntactic trees, instead of n-ary
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Table 4.3: Data Splitting: Both the 8,000 manually annotated sentences and one million unan-

notated sentences are used to train binary classifier.

Training Development Test

Source NTCIR-7/8 NTCIR-8 NTCIR-9/10

Label training unused tuning dev test9 test10

manually unannotated manually

annotated random sample annotated

#sentences 8,000 1,000,000 1,908,615 1,000 1,000

Total 2,916,615 269,669 2,000 2,000 2,300

trees, affect to the performance of the proposed method (Section 4.2.4).

• Finally, we compare the proposed method with state-of-the-art reordering methods (Section

4.2.5).

4.2.1 Experimental Settings

We conducted the experiments using the several English-Japanese portions of NTCIR patent cor-

pora, which in total consist of more than three million parallel sentences in English and Japanese.

Following the NTCIR-9 (Goto et al., 2011) and NTCIR-10 (Goto et al., 2013) workshop config-

urations, we used the NTCIR-7 and NTCIR-8 training sets, the NTCIR-8 development set, and

the NTCIR-9 and NTCIR-10 test sets (test9 and test10). Table 4.3 summarizes our data splitting.

We removed 269,669 sentences from the training data due to parsing errors. We then separately

sampled 8,000 sentences and one million sentences from the training data. We divided the

2,000 sentences from the development data into two parts: the first 1,000 sentences were used

for tuning the machine translation system, and the second 1,000 sentences (dev) were used for

evaluating the system during development. Both the second set of sentences (dev) and the 8,000

sentences sampled from the training data were manually annotated with word alignment.

We used a standard phrase-based statistical machine translation system built on top of Moses
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3 (Koehn et al., 2007). In all experiments, they share the following settings: 6-gram language

model is trained by SRILM 1.7.0 (Stolcke, 2002). Word alignment is automatically annotated

by MGIZA (Gao and Vogel, 2008) using the grow-diag-final-and heuristic. The system is tuned

using the minimum error rate training method (Och, 2003), the lexicalized reordering model

(Tillman, 2004), and distortion limit hyperparameter. Preordering methods are deployed as a

preprocessing step to the statistical machine translation system.

In order to evaluate the system output, RIBES (Isozaki et al., 2010a) and BLEU (Papineni et

al., 2002) in the default settings were used to judge the quality of the global word ordering in

RIBES and the local word ordering in BLEU.6 Both metrics represent the similarity between the

system output and human reference translations as a score range in [0, 100]%, where higher the

score the higher the similarity.

For preordering data preprocessing, we generated binary constituent trees of the NTCIR par-

allel sentences in English and Japanese by applying the Berkeley Parser 1.7 (Petrov et al., 2006;

Petrov and Klein, 2007). In order to parse Japanese sentences using the Berkeley Parser, we

setup virtually a Japanese version of the parser using the binary branching model of Haruniwa

(Fang et al., 2014; Horn et al., 2017), Comainu 0.7.0 (Kozawa et al., 2014), MeCab 0.996 (Kudo

et al., 2004), and UniDic 2.1.2 (Den et al., 2008). In their parsing accuracy studies, the Berkeley

Parser achieved a score of F1 90.2 in English, whereas Haruniwa reported a relatively lower

score of F1 80.29 in Japanese.

As a binary classifier, we used LIBLINEAR 1.96 (Fan et al., 2008) to perform binary classi-

fications within a linear support vector machine, where the parameter C is fixed to 1.0 and no

bias term is added. In addition, the string features we introduced in Section 4.1.4 are converted

into unsigned 30-bit integers using the feature hashing technique (Shi et al., 2009) in order to

achieve faster learning and smaller memory consumption for the linear support vector machine.
6We ran the Travatar toolkit (Neubig, 2013) for both evaluation metrics and their statistical testings.
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4.2.2 Comparison of Word Aligners

We explore two types of word alignment data for training a binary classifier used in the proposed

method. The first data set (Giza) is created by running the unsupervised aligner Giza (Och and

Ney, 2003) on the training data (three million sentences). The second data set (Nile) is generated

by training the supervised aligner Nile (Riesa et al., 2011) on the 8,000 manually annotated

sentences sampled from the training data. The trained Nile aligner was then used to annotate

remaining training data. We also evaluated the word alignment accuracy of the two aligners

using the manually annotated development data (dev). In the evaluation Giza achieved a score

of F1 50.1, whereas Nile achieved a score of F1 86.9.

We then trained two binary classifiers, i.e., Giza and Nile classifiers, which were named after

the two respective data types, using the obtained training data, which consist of the fixed number

(8,000) of manually annotated sentences and one million additional unannotated sentences that

were randomly sampled from the remaining training data. We conducted an intrinsic evaluation

of the two classifiers using Kendall’s τ distribution (Isozaki et al., 2010a), which is a graphical

representation of the distribution of the monotonicity of sentences in terms of Kendall’s τ mea-

sure on the x-axis and the percent ratios of sentence on the y-axis, with the averaged Kendall’s τ

of all sentences. Again both the Giza and Nile classifiers are evaluated using manually annotated

development data (dev).

Figure 4.5 shows the Kendall’s τ distribution of the development data (dev) before apply-

ing the preordering step. The value of 0.4 in the averaged Kendall’s τ , which indicates a weak

correlation to monotone word order, suggests the difficulty of the task of reordering for the

English-Japanese language pair. In contrast, Figure 4.6 shows the development data after ap-

plying the proposed procedure to obtain oracle reordering labels so as to maximize Kendall’s τ .

The value of 0.9 indicates a very strong correlation to the monotone word order. The differences

between Figures 4.5 and 4.6 clearly shows the effects of the proposed procedure to obtain oracle

reordering labels.

Figures 4.7 and 4.8 show the Kendall’s τ distributions created by applying the trained Giza and
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Figure 4.5: Japanese-to-English develop-

ment data (dev): average τ = 0.4172
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Figure 4.6: Development data (dev) after

applying the proposed procedure to obtain

oracle reordering labels so as to maximize

Kendall’s τ : average τ = 0.9091

0

5

10

15

20

25

30

35

40

45

50

-1

-0
.9

-0
.8

-0
.7

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

Fr
e

q
u

e
n

cy
 [

%
] 

Figure 4.7: Development data (dev) re-

ordered by the Giza classifier: average τ =

0.7320

0

5

10

15

20

25

30

35

40

45

50

-1

-0
.9

-0
.8

-0
.7

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

Fr
e

q
u

e
n

cy
 [

%
] 

Figure 4.8: Development data (dev) re-

ordered by the Nile classifier: average τ =

0.7478
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Figure 4.9: Binary classification accuracy of the learning curves of the Giza and Nile

classifiers for the development data (dev)

Nile classifiers, respectively, to the development data (dev). Comparison of these distributions

revealed that the Nile classifier provided a greater number of completely monotonic sentences,

where τ(x) = 1, as compared to the Giza classifier.

Figure 4.9 shows the learning curves of the Giza and Nile binary classifiers in terms of accu-

racy for the development data (dev). Since the training data set consists of the 8,000 manually

annotated sentences and one million unannotated sentences, we varied the number of annotated

sentences from 125 to 8,000 using the power of 2. Then, in addition to the 8,000 annotated sen-

tences, we also varied the additional amount of unannotated sentences from 10 to one million

using the power of 10. As indicated by the figure, the Nile classifier has higher accuracy than

the Giza classifier.

Table 4.4 shows extrinsic evaluation of the proposed method in terms of the translation accu-

racy for the development data (dev), where we compared the differences between the use of the

Giza and Nile classifiers, as well as 3 types of distortion limit settings (DL). We enlisted 0, 10,

and 20 as our distortion limit candidates because they are usually set to a value from a range of

0 to 20. These results suggest that the Nile classifier with a distortion limit of 10 was the best
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Table 4.4: Results of the Giza and Nile classifiers for the Japanese-to-English translation of the

development data (dev). Bold text denotes either the highest score or the insignificance from the

highest (p < 0.01) obtained within bootstrap resampling (Koehn, 2004b).
dev

Classifier DL Accuracy RIBES BLEU

Giza 0 82.60 76.72 31.38
Giza 10 82.60 76.71 31.64
Giza 20 82.60 76.22 31.11

Nile 0 90.36 76.80 31.45
Nile 10 90.36 76.89 31.81
Nile 20 90.36 76.32 31.77

configuration. As such, we choose the same settings for later experiments in the development

process.

4.2.3 Feature Ablation Tests

Table 4.5 shows a comparison of binary classification accuracy and translation accuracy for the

development data (dev) between the proposed feature templates with ablation and the previous

feature template used by Li et al. (2007). The results of the comparison suggest that the full use

of the proposed feature templates is the best setting. They also suggest that the span features

contributed more than any of the tree features. It is likely that combinations of word surface

forms and non-terminals are strong enough signals as our non-terminals include syntactic phrase

labels. The differences from the previous feature template demonstrate the importance of the

empirical contributions of the proposed feature templates.

4.2.4 Comparisons of Predicted and Oracle Preordering Output

In order to evaluate the validity of the proposed method based on binary classifications, we

conducted another set of experiments that show the effects of binary classification errors and
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Table 4.5: Ablation tests in the Japanese-to-English translation of the development data (dev).

Bold text denotes either the highest score or the insignificance from the highest (p < 0.01)

obtained within bootstrap resampling (Koehn, 2004b).
dev

Feature Template DL Accuracy RIBES BLEU

Full features 10 90.36 76.89 31.81
Without the span features 10 86.97 73.02 30.26

Without σ(v(i, p, j)) 10 90.18 76.83 31.71
Without σr(v(i, p, j)) 10 90.29 76.28 31.67

Without σt(v(i, p, j)) 10 90.33 76.73 31.91
Without σw(v(i, p, j)) 10 90.31 76.94 31.62
Li et al. (2007) 10 84.38 66.59 27.39

binary tree constraints in terms of translation accuracy for the development data (dev).

For the binary classification errors, we compare the predicted preordering output (Nile) and

oracle preordering output (Oracle with binary tree constraints) obtained so as to maximize

Kendall’s τ in Section 4.1.2, in order to show the distance from the current prediction level

to the upper bound of the proposed preordering method. For the binary tree constraints, we

compare the oracle preordering output (Oracle with binary tree constraints) and the oracle pre-

ordering output without binary tree constraints (Oracle without binary tree constraints) obtained

by applying a stable sort to word alignment as described by Tromble and Eisner (2009). We then

directly reordered sentences according to the sorted word alignment.

Table 4.6 shows the results of the predicted preordering, the oracle preordering with binary

tree constraints, and the oracle preordering without binary tree constraints in terms of translation

accuracy for the development data (dev). The translation accuracy differences between the pre-

dicted and oracle classifiers suggest that there are still numerous binary classification errors that

caused a significant degradation in translation accuracy. The results also indicate that the use
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Table 4.6: Results of predicted and oracle classifiers for the Japanese-to-English translation of

the development data (dev). Bold text either denotes the highest score or the insignificance from

the highest (p < 0.01) obtained within bootstrap resampling (Koehn, 2004b).
dev

Classifier DL Accuracy RIBES BLEU

Nile 10 90.36 76.89 31.81

Oracle with binary tree constraints 10 100 82.36 33.58

Oracle without binary tree constraints 10 84.65 36.62

of binary tree constraints caused additional degradation in translation accuracy. Therefore, it is

possible to further improve the proposed method by improving either the binary classification

accuracy or the use of the binary tree constraints in the future.

4.2.5 Comparison with State-of-the-Art Methods

Tables 4.7 and 4.8 show the final performance of the proposed method for the test data sets for

English-to-Japanese and Japanese-to-English translations, respectively. These results indicate

that the proposed preordering method significantly improved translation accuracy in terms of

both RIBES and BLEU scores, as compared to the baseline results attained by Moses without

preordering. In particular, the proposed preordering method trained using the Giza data revealed

a substantial improvement, whereas the use of the Nile data further improved translation accu-

racy. This suggests that the proposed method is particularly effective when high-accuracy word

alignment is obtained. In addition, we achieved modest improvements even when no distortions

are allowed (DL = 0), which indicates the monotonicity of the output of the proposed system.

Table 4.9 and the upper half of Table 4.10 show a comparison of the proposed method with

the previous method of Li et al. (2007) and the rule-based preordering method of Isozaki et al.

(2010b). The proposed method outperformed the previous methods for both English-to-Japanese

and Japanese-to-English translations, especially when the previous method of Li et al. (2007)
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Table 4.7: Final testing results for the English-to-Japanese translation. Bold text denotes either

the highest score or an insignificant difference (p < 0.01) from the highest obtained within

bootstrap resampling (Koehn, 2004b).
test9 test10

Classifier DL RIBES BLEU RIBES BLEU

Baseline without preordering

Moses 0 64.91 25.83 65.16 27.64

Moses 10 69.40 31.34 69.33 32.57

Moses 20 70.74 32.05 70.82 32.91

Proposed preordering

Giza 0 78.68 34.62 78.75 35.61

Giza 10 78.72 34.82 78.88 36.28
Nile 0 79.05 35.03 79.11 36.25
Nile 10 79.04 35.42 79.29 36.59
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Table 4.8: Final testing results for the Japanese-to-English translation. Bold text denotes either

the highest score or the insignificant difference (p < 0.01) from the highest obtained within

bootstrap resampling (Koehn, 2004b).
test9 test10

Method DL RIBES BLEU RIBES BLEU

Baseline without preordering

Moses 0 66.95 26.36 67.50 27.17

Moses 10 68.95 29.41 69.64 30.20

Moses 20 69.88 30.12 70.22 30.51

Proposed preordering

Giza 0 77.49 33.08 77.49 33.65

Giza 10 77.44 33.28 77.42 33.77

Nile 0 77.74 32.97 77.89 33.91
Nile 10 77.97 33.55 78.07 34.13

Table 4.9: Results of the proposed method and previous methods for the English-to-Japanese

translation. Bold text denotes either the highest score or the insignificance from the highest

(p < 0.01) obtained within bootstrap resampling (Koehn, 2004b).

test9 test10

Method DL RIBES BLEU RIBES BLEU Training Time

Moses without preordering 20 70.74 32.05 70.82 32.91

Isozaki et al. (2010b) 10 75.39 34.08 75.68 34.69

Li et al. (2007) 10 77.04 34.29 77.21 35.48 1 day

Proposed procedure 10 76.88 34.13 77.20 35.64 1 day

Proposed features 10 78.82 35.29 78.94 36.58 1 day

Proposed procedure and features 10 79.04 35.42 79.29 36.59 1 day
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Table 4.10: Results of the proposed and previous methods for the Japanese-to-English transla-

tion. Bold text denotes either the highest score or the insignificance from the highest (p < 0.01)

obtained within bootstrap resampling (Koehn, 2004b).

test9 test10

Method DL RIBES BLEU RIBES BLEU Training Time

Moses without preordering 20 69.88 30.12 70.22 30.51

Li et al. (2007) 10 68.37 29.13 69.34 30.09 1 day

Proposed procedure 10 66.24 28.46 65.88 29.00 1 day

Proposed features 10 77.49 33.25 77.77 34.31 1 day

Proposed procedure and features 10 77.97 33.55 78.07 34.13 1 day

Preordering methods trained with the 8,000 manually annotated sentences

Yang et al. (2012)’s ranking 10 72.96 30.63 73.19 31.17 8 minutes

lader + chunk fragmentation 10 73.13 32.00 72.29 32.37 15 days

lader + Kendall’s τ 10 75.16 32.45 75.31 32.47 8 days

Proposed procedure and features 10 76.96 33.15 77.10 33.70 8 minutes
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exhibited poor performance in the more difficult Japanese-to-English translation.

In addition to this comparison, we conducted another comparison to order to clarify the differ-

ences between the proposed procedure based on Kendall’s τ and previous optimization strategies

(Yang et al., 2012; Neubig et al., 2012). When using Kendall’s τ , these previous studies apply

the CKY algorithm to n-ary or binary tree structures in the O(n3) fashion, whereas the pro-

posed procedure makes local reordering decisions so as to maximize Kendall’s τ over binary

tree structures in the O(n) fashion, rather than n-ary tree structures. This difference in com-

putational complexity can be observed in practice by comparing training time of the proposed

method with the previous methods. In this comparison, we reduced the size of the preordering

training data set from three million sentences to the 8,000 manually annotated sentences due to

the expected high cost for training those models. The experimental settings were left unchanged

unless otherwise noted, and we used Moses without preordering as our baseline. The proposed

method with the 8,000 training data was based on the Nile classifier in Section 4.2.2. We then

compared the results of the proposed method with those two previous methods (Yang et al.,

2012; Neubig et al., 2012), under the following settings:

• While Yang et al. (2012) applied the CKY algorithm ton-ary dependency with their original

feature set, we could not follow their methodology because only a source-side constituent

parser and its binary parse trees were available in the present study. Instead, we used an

extended version of LIBLINEAR (Lee and Lin, 2014) as a linear ranking support vector

machine and defined a combination of parent and child non-terminals (denoted as ht ◦ ct

in their original feature template) as a feature given a binary constituent tree (similar to

the proposed method). While this modification may greatly reduce accuracy as well as

computational complexity, we focus on reproducing their ranking support vector machine

settings.

• For the method of Neubig et al. (2012), we used lader 1.6 with the cube growing extension

(Na and Lee, 2013) in order to speed up computation. The objective function is set to either
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chunk fragmentation or Kendall’s τ . We reduced the number of iterations from the default

value of 500 to 200, because the former setting took 19 days in total, even in the case of the

faster Kendall’s τ objective function, although there were no significant updates between

the 200th and 500th iterations. Moreover, due to this required classifier training time, the

default configuration of the use of basic features were applied instead of fully syntactic

features.

The bottom half of Table 4.10 shows the performance of the compared preordering methods,

including training time, for the Japanese-to-English translation. We did not compare runtime,

because we can distribute the computation of reordering as well as parsing at runtime, in paral-

lel, but we cannot easily distribute classifier training. The proposed method exhibited the best

performance, whereas the proposed method using Yang et al. (2012)’s ranking and Neubig et al.

(2012)’s lader showed rather modest improvements. In terms of training time, no difference was

caused by the use of the Yang et al. (2012)’s ranking. The two lader setups, however, took much

longer than others due to their computational complexity. Although we did not reproduce Yang

et al. (2012)’s method using dependency and the settings we used for Neubig et al. (2012)’s lader

have room for improvement7, the results showed the effectiveness of the proposed method from

a practical standpoint.

Table 4.11 lists the scores obtained using the proposed system and those obtained using state-

of-the-art systems published in the literature (Hoshino et al., 2014; Hayashi et al., 2013; Goto

et al., 2015), which include a rule-based preordering method (Hoshino et al., 2013), two pos-

tordering methods (Goto et al., 2012; Hayashi et al., 2013), conventional syntax-based statistical

machine translation and preordering methods (Chiang, 2007; Hoang et al., 2009; Genzel, 2010;

Neubig et al., 2012), and a syntax-based preordering method that projects a target-side con-

stituent tree into a source-side tree (Goto et al., 2015).8 One complication of these concrete
7Also, Nakagawa (2015) proposed a much faster method using different formulation, which has a computational complexity

of O(n2)
8Although Neubig and Duh (2014) reported that RIBES +6.19 (75.94) and BLEU +2.93 (33.70) improvements were ob-

tained with their forest-to-string system on the same corpus, we cannot include their results because of the unfortunate test data
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Table 4.11: Published state-of-the-art system scores for the Japanese-to-English translation. The

symbol ∆ denotes the difference in the score from its baseline Moses without preordering. Bold

text indicates the highest score and difference.
test9 test10

Method DL RIBES ∆ BLEU ∆ RIBES ∆ BLEU ∆

Moses 20 69.88 30.12 70.22 30.51

Li et al. (2007) 10 68.37 -1.51 29.13 -0.99 69.34 -0.88 30.09 -0.42

Proposed method 10 77.97 +8.09 33.55 +3.43 78.07 +7.85 34.13 +3.62

Published by Hoshino et al. (2014)

Moses 10 68.08 27.57

Hoshino et al. (2013) 10 72.37 +4.29 30.56 +2.99

Published by Goto et al. (2012)

Moses 20 68.28 30.20

Goto et al. (2012) 75.48 +7.20 33.04 +2.84

Published by Hayashi et al. (2013)

Moses 20 69.31 29.43 68.90 29.99

Hayashi et al. (2013) 0 76.46 +7.15 32.59 +3.16 76.76 +7.86 33.14 +3.15

Published by Goto et al. (2015)

Moses 20 68.79 30.92 68.30 31.07

Chiang (2007) 70.11 +1.32 30.29 -0.63 69.69 +1.39 30.77 -0.30

Hoang et al. (2009) 72.54 +3.75 31.94 +1.02 71.32 +3.02 32.40 +1.33

Genzel (2010) 6 71.88 +3.09 29.23 -1.69 71.20 +2.90 29.40 -1.67

Neubig et al. (2012) 6 74.31 +5.52 32.98 +2.06 73.98 +5.68 33.90 +2.83

Goto et al. (2015) 6 76.35 +7.56 33.83 +2.91 75.81 +7.51 34.90 +3.83
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comparisons is that each study reports a different baseline accuracy, although Moses is shared

as a baseline, because these systems differ in various settings in data preprocessing, tokenization

criteria, etc. Since this makes a fair direct comparison difficult, we include the score difference

(∆) for each system from its own baseline.

The proposed method showed the high performance that is comparable to, or superior to, the

compared state-of-the-art methods, including the latest preordering method (Goto et al., 2015).

More precisely, the proposed method exhibited the best or the second best performance for all

evaluation criteria, even though the proposed method is kept simpler than other syntax-based

methods while achieving state-of-the-art performance. This highlights the effectiveness and

importance of the proposed method using binary classifications.

In contrast to the substantial gain for RIBES, however, we attained somewhat comparable

gain for BLEU. The investigation of the output of the proposed system for the Japanese-to-

English translation suggests that insufficient generations of English articles caused significant

degradation of the local word ordering quality in BLEU. The postordering systems listed in Table

4.11 incorporated article generation techniques and demonstrated their positive effects (Goto

et al., 2012; Hayashi et al., 2013). While we achieved state-of-the-art performance without

using such a language-specific technique, integration of the proposed preordering method with

language-specific article generation and null subject generation (Kudo et al., 2014) is a promising

future direction.

4.3 Analysis of Typical Reordering Errors

In search of the major cause of reordering errors in the proposed method, Table 4.12 lists 10

typical pre-terminals with their binary classification accuracy for the development data (dev) in

English and Japanese. These pre-terminals used in English and Japanese are mostly different,

where QP in English is similar to NUMCLP in Japanese, but S, SBAR, and NX in English

and CP-QUE, IP-EMB and IP-MAT in Japanese have no counterpart. Still we can compare the

mismatching between our test9/10 and their test7.
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Table 4.12: Binary classification accuracy for the node v(i, p, j) in the development data (dev):

the English symbol QP denotes a quantifier phrase, ADJP denotes an adjective phrase, SBAR

denotes a subordinating conjunction, ADVP denotes an adverb phrase, PRN denotes a paren-

thetical, and NX denotes a head of NP, where the Japanese symbol CP-QUE denotes a question,

IP-EMB denotes a gapless noun-modifying clause, PP denotes a particle phrase (in contrast

to English prepositional phrase), IP-MAT denotes a matrix clause, and NUMCLP denotes a

numeral-classifier phrase.
English Japanese

Pre-terminal Accuracy Pre-terminal Accuracy

QP 76.9231% (10/13) CP-QUE 63.6364% (7/11)

VP 89.9674% (2206/2452) IP-EMB 78.2796% (364/465)

NP 91.9967% (4414/4798) VP 81.9434% (2260/2758)

ADJP 92.0455% (243/264) ADVP 90.0000% (36/40)

PP 93.2560% (2572/2758) NP 91.5311% (4669/5101)

S 93.5727% (1616/1727) ADJP 92.3077% (12/13)

SBAR 96.7320% (296/306) PP 94.2336% (2582/2740)

ADVP 96.8750% (31/32) IP-MAT 95.6961% (2179/2277)

PRN 99.0991% (220/222) PRN 96.4912% (550/570)

NX 100.0000% (18/18) NUMCLP 97.9167% (282/288)

Overall 92.9142% (16391/17641) Overall 90.3627% (15096/16706)
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shared per-terminals such as NP and VP.

We can see from the table that the overall binary classification accuracy in English is much

better than that of Japanese, which explains why the English-to-Japanese translation was more

accurate than the Japanese-to-English translation. Measured by the number of occurrences, we

found that VP was the major cause of the difference: the accuracy in English is roughly 90% but

the accuracy in Japanese is only 82%. Since VP plays one of the most important roles in syntax,

we attribute the major cause of our reordering errors to the moderate classification accuracy of

VP.

In addition to searching the major cause in binary classification errors, we figured that another

type of errors is caused by the use of binary parse trees. Although most of the errors can be

attributed to parsing errors, what we found was a problematic example shown in Figure 4.10. To

our contrary, this complex yet realistic example has no parsing errors at all, but we cannot yield

a correctly reordered tree.

Specifically, in this example, the Japanese phrase “次に (next)” is aligned with the English

word “now” and is supposed to be inserted between the long noun phrase “the target ... TF-

BYA” and the verb “described”, generating “the target ... TFBYA will now be described”. That

insertion is, however, impossible using either the English or Japanese trees.

This type of errors can be regarded as an instance of inside-out matching (Wu, 1997) and a

similar instance has been reported for English-to-English alignment (Wellington et al., 2006).

4.4 Related Work

4.4.1 Preordering based on Constituency Parsing

Li et al. (2007) proposed a simple preordering method along the constituent tree described in

Section 4.1.1. Since their method was lacking oracle reordering labels for an entire sentence at

that time, they instead provided a heuristic procedure for obtaining reordering labels to train their

method, although its effectiveness was unknown. Their procedure used Giza to align their train-

ing sentences, and source words were then sorted to resemble target word indices. The sorted
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source sentences without the overlap of word alignment were then used to train binary classifier,

as either reversed or monotone reordering labels, according to the given word alignment. They

gained a BLEU +1.54 improvement in the Chinese-to-English translation evaluation.

In terms of the formulation of the proposed method using Kendall’s τ , their heuristic selects

training instances, where τ(a) = 1 or τ(a) = −1, in order to compensate for the loss of oracle

reordering labels. Thus, their procedure is effective but is not likely to be optimal for an entire

sentence. The proposed proposed follows their framework, whereas we do not rely on their

procedure for preparing its training data. Instead, we introduced the novel procedure to obtain

oracle reordering labels so as to maximize Kendall’s τ in Section 4.1.2.

4.4.2 Preordering based on Dependency Parsing

Yang et al. (2012) proposed a learning-to-rank method to produce oracle reordering decisions in

another preordering method along a dependency tree. Their idea is to minimize the alignment

crossing-link number recursively, as discussed in Section 4.4.6. Since they targeted the com-

plex n-ary node dependency tree instead of a simple binary tree, their method only calculates

approximated oracle reordering decisions in practice by the ranking principle. We did not take

the n-ary dependency tree into consideration in order to follow Li et al. (2007)’s preordering

method along a constituent tree, whereas the use of the binary tree enabled us to produce the

strict oracle reordering decisions as a secondary effect.

Lerner and Petrov (2013) proposed yet another preordering method along a dependency tree,

which classifies whether the parent of each node should be the head in a target language. They

reported a BLEU +3.7 improvement in English-to-Japanese translation. Hoshino et al. (2013)

proposed a similar but rule-based approach for the Japanese-to-English dependency preordering.

4.4.3 Preordering based on Child Swapping

Jehl et al. (2014) proposed a preordering method that implementedn-ary child swapping (Tromble

and Eisner, 2009) along a dependency tree with a logistic regression. Similar to the Yang et al.

(2012)’s method, they converted a pseudo constituent tree from the dependency tree and then
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reordered the converted tree by minimizing the alignment crossing-link number. Their method

provided a BLEU +1.47 improvement for English-to-Japanese translation. Its extension to neural

networks (de Gispert et al., 2015), and similar approaches for hierarchical phrase-based statisti-

cal machine translation (Hayashi et al., 2010; Feng and Cohn, 2013; Zhang et al., 2015) are also

available.

4.4.4 Head Finalization for HPSG Preordering

Isozaki et al. (2010b) proposed another rule-based preordering approach called head finalization

that uses a head-driven phrase structure grammar (HPSG) (Pollard and Sag, 1994; Sag and

Wasow, 1999), which has head and non-head annotations for every binary node in a syntactic

constituent tree. Such a HPSG derivation can be obtained by using the Enju parser in English

(Miyao and Tsujii, 2005; Miyao and Tsujii, 2008) or in Chinese (Yu et al., 2010).

With a linguistic observation that the Japanese language has exceptionally head-final word

order, their method improved English-to-Japanese translation by reversing the non head-final

nodes in an English HPSG tree into head-final word order. They also introduced two language-

specific rules that delete English articles (a, an, and the) and add virtual Japanese particles. Han

et al. (2012) applied this method into Chinese-to-Japanese translation by adding more language-

specific rules.

4.4.5 BTG and ITG Preordering

There have been several syntax-based preordering approaches that use inversion transduction

grammars (ITGs) (Wu, 1997) for reordering. An ITG that expresses simple word reordering in

one language is defined as follows:

A → ⟨BC⟩

A → [BC]

A → w,
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where A, B, and C belong to syntactic non-terminals such as phrase labels and pre-terminals;

w denotes a word surface form; and the binary rules ⟨BC⟩, and [BC] denote the same actions

as the reversed and monotone reordering labels defined in Section 4.1.1, respectively.

In contrast to the ITG, its minimal set, which only has one non-terminal symbol X , is called

a bracketing transduction grammar (BTG) (Wu, 1997):

X → ⟨XX⟩

X → [XX]

X → w,

where the symbol X is no longer a syntactic non-terminal unlike the ITG. Therefore a BTG

derivation tree is not equal to a syntactic constituent tree, and it can be made out of source words

and word alignment in either bottom-up (Huang et al., 2009) or top-down (Nakagawa, 2015).

In addition, it is not always possible to form both ITG and BTG trees given word alignment,

because of inside-out matching (Wu, 1997). In other words, an ITG or BTG tree is said to be sat-

isfying ITG constraint if one can successfully form a tree from word alignment (it indicates that

τ(a) = 1). Na and Lee (2014) showed that the English-Japanese language pair has an exception-

ally high percentage (10%) of inside-out sentences, which is a slightly different situation from

other language pairs (Wellington et al., 2006) including English-Chinese and English-Korean.

DeNero and Uszkoreit (2011) proposed a BTG preordering method with a three-step approach

in order to induce the BTG derivation. Neubig et al. (2012) improved the BTG induction steps as

a joint step considering a latent variable BTG derivation. Nakagawa (2015) further improved the

joint step with an incremental top-down BTG parsing approach, which uses the latent variable

structured perceptron (Sun et al., 2009) in combination with the early update technique (Collins

and Roark, 2004) and the inexact beam search (Collins and Roark, 2004; Huang et al., 2012)

for the perceptron. As a result, the top-down BTG approach achieved a very fast parsing speed,

which enabled the further use of variable features. Since these BTG preordering methods are

applicable to any language pair, they have an advantage over the ITG preordering approach,
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which requires a source-side or target-side constituent parser.

The formulation of Nakagawa (2015) introduced the ITG constraint as criterion called ITG

violation constraint, unlike other BTG methods. The formulation defined a BTG tree invalid if it

violates the ITG constraint and valid otherwise. The training algorithm of Nakagawa (2015) then

updates the perceptron based on whether a BTG hypothesis matches to a valid BTG. Therefore,

in contrast to the proposed method that maximizes Kendall’s τ (hence τ(a) ≥ 0), Nakagawa

(2015) used valid BTG trees (hence τ(a) = 1) as gold standards.

Goto et al. (2015) took a unique ITG preordering approach that projects a syntactic constituent

tree in the target English language obtained by the Enju parser into the source Japanese language.

They induced a special ITG parser from the projected tree, which is annotated with oracle re-

ordering labels after the projection and then trained with the Berkeley Parser. The induced ITG

parser for the source language is then used to reorder the source input in statistical machine trans-

lation. Although their method was proposed earlier than the proposal of Hoshino et al. (2015),

a part of their procedure is sharing essentially the same process for obtaining oracle reordering

labels as in Section 4.1.2.

4.4.6 Kendall’s τ Optimization for Preordering

Kendall’s rank correlation coefficient (Kendall, 1938), which is referred to as Kendall’s τ and

is defined in Section 4.1.2, has been widely used as an automatic evaluation metric in statisti-

cal machine translation research (Birch and Osborne, 2010; Isozaki et al., 2010a; Talbot et al.,

2011) because this metric is suitable for measuring the word order similarity. Moreover, another

metric called the alignment crossing-link number (Genzel, 2010) is equivalent to Kendall’s τ

when normalized (Nakagawa, 2015). Talbot et al. (2011) showed that Kendall’s τ correlates

to subjective translation evaluation even at the sentence level (0.371 in Pearson’s r and 0.450

in Spearman’s ρ). Therefore, optimization of these metrics will lead to improved translation

accuracy.

Since Kendall’s τ requires combinatorial optimization, efforts have been made to enable op-
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timization of Kendall’s τ at the sentence level by incorporating tree constraints in the following

reordering studies. Yang et al. (2012) showed that the alignment crossing-link number for an

n-ary node dependency tree can be expressed in a recursive formula, although they targeted per-

mutation of n-ary node subtrees instead of binary subtrees. In addition, Neubig et al. (2012)

formulated Kendall’s τ as a sentence-level loss function for a BTG derivation subtree, which

consists of a loss for its left subtree, a loss for its right subtree, and an additional loss between

both subtrees. We introduced the novel procedure to obtain oracle reordering labels in Section

4.1.2, based on these previous studies, which showed that Kendall’s τ at the sentence level can

be computed in a recursive manner, as described in Section 4.1.3.

Other metrics, such as the fuzzy reordering score (Talbot et al., 2011), its modified version

called chunk fragmentation (Neubig et al., 2012), and ITG violation constraint (Nakagawa,

2015), have also been used in previous studies. However, we found that, unlike Kendall’s τ ,

these alternative metrics cannot be applied to the proposed procedure, because these alternative

metrics are not decomposable in a similar way to the proposed formulation. The two metrics

based on the fuzzy reordering score are formulated as precision of word bigrams, hence they

are not directly decomposable. In addition, the ITG violation constraint makes an assumption

that every valid hypothesis satisfies the ITG constraint (τ(a) = 1), but it is not guaranteed in

the proposed formulation (τ(a) ≥ 0). Thus, we need another optimization strategy for these

metrics, such as the cube pruning (Neubig et al., 2012) and the beam search (Nakagawa, 2015).

A different step we can take is to use a more relaxed framework than ITGs, such as permu-

tations trees (Stanojević and Sima’an, 2015). Permutation trees can also be used as evaluation

metric and is as effective as the fuzzy reordering score and Kendall’s τ (Stanojević and Sima’an,

2016).

4.4.7 Postordering

Another technique called postordering (Sudoh et al., 2011; Goto et al., 2012; Hayashi et al.,

2013) is developed for Japanese-to-English translation by applying a preordering method devel-
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oped for opposite English-to-Japanese translation. Given a reordered English constituent tree as

input, which is obtained by applying the head finalization preordering (Isozaki et al., 2010b) to

an English tree, they conducted a roughly monotonic translation from the Japanese source input

into reordered English using an statistical machine translation system. The translated output in

English are then reordered to the original English word order using another statistical machine

translation system. Goto et al. (2012) improved the latter reordering step by replacing the statis-

tical machine translation system with ITG preordering using the Berkeley Parser. Hayashi et al.

(2013) further improved translation accuracy by developing a syntactic ITG parser specifically

trained for the latter step.

4.5 Summary

We proposed a simple yet effective syntax-based preordering method for statistical machine

translation based on the method of Li et al. (2007). We introduce a new procedure to obtain re-

ordering labels that are used to train a binary classifier of the previous method, which determines

our binary reordering decisions, either monotone or reversed. We showed that oracle reordering

labels obtained with the proposed procedure, so as to maximize Kendall’s τ , will lead to optimal

sentence-wise reordering judged by Kendall’s τ owing to its compositional property, as shown in

previous studies. We also explored a suitable feature function for the proposed method in order

to improve binary classification accuracy. The proposed method is applicable to any language

pair that has a source-side constituent parser.

The proposed method is kept simple, but outperformed significantly the previous method in

terms of translation accuracy in English-to-Japanese and Japanese-to-English machine transla-

tion experiments with a large amount of parallel sentences in the patent domain. In comparison

with state-of-the-art reordering methods, the proposed simple method exhibited the best or the

second best performance for all evaluation criteria. Such a high performance obtained without

language-specific techniques for the distant English-Japanese language pair indicates the impor-

tance and effectiveness of the proposed simple method.



Chapter 5

Conclusion

In this thesis, we explored the fundamental problem of machine translation called word order-

ing, which originates in word order differences between our languages. We empirically studied

the problem through experiments with real world large-scale data sets and practical statistical

machine translation settings. Two types of solutions were provided in our study: the rule-based

preordering approach and the statistical preordering approach.

In the rule-based preordering approach, we proposed a two-stage preordering method and

a three-stage preordering method. These methods reorder our input to resemble the order of

our target language, by taking manually designed rules into account. Therefore, the rule-based

approach is especially useful when we have little or no training data. Nonetheless, using this

kind of approach, we showed that it is possible to achieve the state-of-the-art performance in the

task of Japanese-to-English translation to date.

In the statistical preordering approach, we proposed a syntax-based preordering method that

uses a power of machine learning as a binary classifier of the reordering labels, either monotone

or reversed, assigned to each node of binary parse trees. By providing the combination of a

novel procedure to obtain oracle reordering labels and a novel set of features to train the binary

classifier, the proposed method achieved performance superior to, or at least close to state-of-the-

art syntax-based preordering methods to date in the task of English-to-Japanese and Japanese-

84



CHAPTER 5. CONCLUSION 85

to-English patent translation.

The following sections summarize the contributions of the each of approaches and then de-

scribe our future work.

5.1 Rule-based Preordering Approach

Both the two-stage method and three-stage method we proposed rely on the linguistic catego-

rization that English has the order of subject-verb-object (SVO), while Japanese has the order of

subject-object-verb (SOV). After identifying each of these labels, we can easily construct a set

of rules that converts the SOV order of Japanese input into the SVO order of English. Our hy-

pothesis in this rules-based preordering approach was that syntax information plays an important

role in generalizing our rules.

With that hypothesis in mind, the two-stage method uses deep syntax information obtained

with a predicate-argument structure analyzer. Specifically, we parse an input sentence into

predicate-argument structure, using a predicate-argument structure analyzer that can label sub-

ject (S), verb (V), and object (O) in the sentence. The labeled sentence is then reordered from the

SOV word order to the SVO word order, while the order of coordinated chunks and punctuation

was left unchanged. In addition, in order to mitigate the problem of converting postpositional

phrases in Japanese into prepositional phrases in English, we swap the order of function words

and content words. After that, the reordered Japanese input is fed to a statistical machine trans-

lation system to generate its English translation.

In contrast to the two-stage method that heavily depends on predicate-argument structure,

the three-stage method uses little or no syntax, making it immune to parsing errors caused by

predicate-argument structure analyzer. The three-stage method is designed to mimic the two-

stage method by using little or no syntax information, while keeping track of problematic coor-

dination structure in our input as processed in a newly added preliminary stage. After finishing

conversion of the SOV order into the SVO order and swapping function words and content words,

similar to the two-stage method, again the reordered Japanese is fed to a statistical machine trans-
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lation system to generate translation.

By carefuly addressing the problems in existing rule-based preordering methods used in the

task of Japanese-to-English translation, such as the handling of coordination structure, the three-

stage method achieved the state-of-the-art performance to date in the task using the rule-based

preordering approach.

5.2 Statistical Preordering Approach

Knowing the limit of the rule-based approach, we proposed a statistical preordering method

based on a syntax framework called inversion transduction grammar (ITG). Specifically, we

parse an input sentence into a binary constituent tree using a source-side constituent parser.

Each node in the binary parse tree is then binary classified, i.e., either monotone or reversed,

using a binary classifier. The tree reordered according to the classified labels is used to yield a

reordered source sentence, which is fed to a standard statistical machine translation system to

generate translation.

In the course of replacing an exising heuristic procedure to obtain oracle reordering labels

with theoretically grounded labels, we introduced a novel procedure to obtain oracle reordering

labels so as to maximize Kendall’s τ . We showed that our procedure can achieve the global

optimization of Kendall’s τ , unlike the heuristic procedure. We also introduced novel set of

features that directly captures the syntactic relation in each node, which is obtained as a result

of our feature engineering focused on improving binary classification accuracy.

5.3 Future Work

Future work of this study can be easily extended to cover more syntactic structures such as a

bracketing transduction grammar, with various parsing techniques including advances in struc-

tural learning. Since parsing and reordering improvements always make machine translation

accuracy better, the best of the both worlds would contribute well in the future.

To conclude, our approaches employed syntax-based preordering for statistical machine trans-

lation that utilizes syntactic information obtained with syntactic parsers. We showed that syntax-
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based preordering approaches can maintain the simplicity of our entire system with tree struc-

tures, while we effectively manipulate word orders by simply modifying the same tree structures.

Such simpleness and effectiveness of syntax-based preordering enabled us to overcome the main

difficulties of the word ordering problem.

As a result, we eventually achieved translation accuracy comparable, or superior to, state-of-

the-art methods with a simple preordering method without language-specific techniques in the

tasks of English-to-Japanese and Japanese-to-English translations, while they are regarded as

one of the most difficult language pairs in the world in terms of word ordering. Our success

prospects possibilities of much better practical machine translation systems in reality.
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