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Abstract

In multibunch circular colliders with small bunch spacing we have
to deal with parasitic collision points (PCPs) when the opposite bunches
interact outside the main interaction point (IP). The interactions in
PCPs may change the closed orbits and influence the luminosity. Here
we will study some of the coherent effects which may occur due to
PCPs. The study of this subject has just started and is far from com-
plete because the usual designs are done to minimize the effects of
PCPs as they are considered harmfull for beam dynamics. Due to in-
creasing luminosity in future designs this may change as the currents
become larger, bunch spacing smaller and the separation in PCPs de-
creases. As will be shown here, there are important effects under these
conditions which is not neccesserely harmfull but could be even benefe-
cial for beam dynamics. The high non-linearity of the interactions and
the large number of bunches in the model inevitably force extensive

computer simulations.
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1 Introduction

One of the most important parameters of colliders is the luminosity. It is
defined as particles’ production rate for a unit reaction cross section. The
highest possible value of the luminosity is one of the main goals of the collider
physics. For example for B-factories commissioned now at KEK [1] and SLAC
[2], the desired value of luminosity is approximately 10%* 1/[s cm?]. In the
simplest case of the head-on collision of two short bunches with a frequency

[v, the luminosity is defined by the following formula:

NN,

L=Ff 45 (1)

Here N, is the number of particles in the colliding bunches and S is the
effective transverse cross section of these bunches in the IP. Formula 1 is de-
rived assuming the lengths of the colliding bunches {¢,) are smaller than the
values of the S-functions at the IP (o, <« #). There are many factors that
may limit the luminosity of the collider. Most significant occur due to the
electromagnetic interaction of the colliding bunches at the IP. Electromag-
netic fields of one bunch deflect the particles of it’s counter moving partner,
which results in numerous perturbations of their orbits. This is a many fold
phenomenon which usually is called the beam-beam interaction. It may re-
sult in numerous instabilities of coherent and/or incoherent oscillations of
particles/bunches. Comprehensive description of this phenomenon as well

as the relevant limitations on the collider luminosity is a very complicated



problem. Its solution is far from the completion even now. For this reason,
the designers of the modern colliders typically use some simplified but well
tested criteria. One is that based on the assumption that the strength of the
beam-beam interaction can be described specifying the threshold value of the
so-called beam-beam parameter. The last is defined as the small amplitude
betatron oscillation tune shift per one IP. For example, for particles from the
beam 2 these tune shifts for vertical and horizontal oscillations read:

Nirofy _ Nyirofe

fy = O Ox > U-y- (2)
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Here o0,, are the horizontal and vertical r.m.s. widths of the first beam,
ro = e2/mec? is the classical radius of the electron, v is particles’ relativistic
factor, B;, are the horizontal and vertical -functions at the IP. From Eq.

(2) and assuming that &, is limited (£, < &) we find

N _ %y
Toy0:  ToBy (3)
or
L= fNy 2L (4)
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This formula clearly indicates that collider luminosity is proportional to the
beam current, threshold value £, and inversely proportional to the value of
B-function at the IP.

According to Eq. (4) the luminosity of a collider can be increased either




increasing a single bunch current or increasing the number of bunches in the
beam, i.e. increasing f,. For these reasons, an increase in the total beam
current inevitably causes a decrease in the longitudinal bunch to bunch spac-
ing in the beam. Typically, the lattice of the interaction region is designed
to separate colliding bunches transversally after the collision. However even
for a two-rings collider the sufficient electromagnetic separation can become
impossible if the bunch spacing become very small. In this case, one of the
problems arouses with parasitic collisions of bunches. Parasitic collisions
happen due to the small bunch spacing which is used to increase the full cur-
rent. In this work we discuss some of the coherent effects of PCPs. This is a
rather complicated matter in itself. So we do not discuss here non-coherent
effects due to interactions of colliding bunches at PCPs. There can be some
multipole oscillations, or changes in a bunch charge distribution, etc.

On the other hand numerous coherent effects provide a wide field for
study. In this work we focused on a consequence of PCP interaction: the
longitudinal coupling of transverse betatron oscillations. It means that one
bunch motion is influenced by other neighboring bunches. This is similar
to wake field but due to the configuration of PCP region the transverse
excitation of bunches propagates both ways - upstream and downstream from
the initially excited bunch. For an enumeration of the studied effects see Sec.
4. Also to limit the time of the numerical calculations to reasonable values
only transverse motion was studied. The longitudinal kick was not included

as the crossing angles are small in the model studied here. And as shown in



Ref.[5] in this case no significant synchro-betatron resonances can occur. On
the other hand, large crossing angles would reduce the longitudinal coupling
and deétroy the effect studied in the present work.

It was found that many coherent effects due to PCPs may have positive
influence on beam dynamics. That is clear because using the barycentric
model it is not easy to kick the whole rigid bunch out of the aperture, so
we could expecf only the luminosity loss due to bunch separation at the IP.
Many of the negative sides of PCPs come from incoherent effects such as loss
of the particles in “tails” (see Ref. [7]). So one should carefully consider both

coherent and incoherent effects in actual design.




2 Review of other works

A few studies have been done concerning PCP interaction. Most of them
concerning CESR as the PCPs or LRBBI (long range beam-beam interac-
tion) were found to be the reason of luminosity limitation (Refs. [7]-]10]).
Those works contain experimental results and simulations. However simula-
tion methods, that I encountered there, were weak-strong models for stability,
life-time and limiting current calculations. Also K. Hirata did some numer-
ical study of the barycentric model for KEKB and found that the design is
not critical within the framework of this model (Refs. [3]-[5]). Our results
are in general agreement with his study. In our work we would like to provide

more understanding of the coherent barycentric strong-strong interaction.




3 Barycentric Model

3.1 The model

So let us study the barycentric motion of bunches. The simple model is as
follows: the motion outside the interaction region is described using a linear
4x4 (z, pz, ¥, py) matrix transformation, we assume that the PCP region
is a straight section where bunches collide with an arbitrary crossing angle
(typical values are few milliradians). The number of PCPs can be varied,
in most calculation it was taken to be 3 PCPs (including IP). To model the
beam-beam interaction we use the rigid bunch gaussian model. It means that
the bunches are considered as rigid macroparticles with the gaussian charge
distribution. In that case the interaction between corresponding bunches is

described by the formula [4]:
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where D, , is the bunches’ separation as a function of n - PCP number and
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Here w is the complex error function, X, is the eflective beam size

D, is the orbit separation. This formula was used in numerical tracking for
both IP and PCP interactions.
So this model allows to study the coherent effects with dipole oscillations

of bunches and works when bunches’ sizes are not changed significantly.
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3.2 Code

To do the numerical tracking for this model a C++ code was written. It can
perform the tracking of bunches through arbitrary rings with linear param-
eters, the PCP region is a straight section with arbitrary number of PCPs.
The base parameters were taken from [3], see Table 1. Some external checks
for code consistency were done. For example the spectrum of the betatron
oscillation matches the expected tune shift due to beam-beam interactions
(Fig. 1}. Or comparison shown on Fig. 2.

The number of bunches in beams was chosen to be 200 which is much
smaller than in some colliders design. For KEKB it is desired to be few
thousands bunches. For the numerical calculations this number is too high
and is not necessary for the effects studied here for several reasons. Firstly the
description of the effects here is more qualitative then quantative, so they are
present in systems with arbitrary number of bunches. Secondly, these effects
will not change noticeably if we increase the number of bunches because
the strength of longitudinal coupling, which is responsible for them, falls
in geometrical progression with the number of bunches between the coupled
bunches. This happens because the number of PCPs is much smaller than the
total number of bunches in the beam. So when we are looking on the effects
observed here, the bunches, that are far in the train from the bunch of interest
can not influence the effects. This statement is supported by the results of
test simulations, which indicated that there is no correlation of transverse

bunch’s coordinates between bunches with large longitudinal separation in
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bunch train (except for the case of resonance trapping Sec. 4.7). So the
characteristic length of longitudinal coupling due to PCPs interactions is of

order of number of PCPs.

Parameter value I
bunch separation { 0.6m
emittances (e3¢5 ) (1.8-1078,1.8- 109 rad - m
beta-functions {8, ﬂ!ﬂ (1, 0.01)m
half-crossing angle o, (7, 0) mrad
orbit separation at IP DT Om
betatron tunes (vf, vf) (0.2, 0.15)
damping time T 500 turns
number of bunches N 200
coherent b-b parameter = 0.025 (£ = 0.05)

Table 1: Base tracking parameters

The damping time of transverse oscillations shown in the Table 1 seems
unrealistically short. We should remind the reader that we discuss the de-
velopment of the coherent oscillations of bunches. In high luminosity col-
liders the multibunch performance of the beam is provided by the system
of feedback damping of dipole oscillations. In this case the corresponding
decrements of coherent oscillations of bunches significantly exceed the decre-
ments of incoherent oscillations due to the synchrotron radiation damping.
For example, the fast feedback system at KEKB [1] will provide the damping
times of coherent oscillations in a range of 1-10ms. The revolution period in
KEKB is 10pus. These values correspond to the damping of coherent oscilla-

tions during 100-1000 turns. That indicates that the values of damping rates
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used in simulation (Table 1) are quite realistic.
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Figure 1: Spectra of X betatron oscillations.

The stable orbit distortion was evaluated for a range of betatron tune and
compared with analytical results (8) on Fig. 2. As the tune approaches the
integer resonance the orbit distortion grows as expected from (8): 5;: ~ L
We can see also that there is point out of range when v, = 0.45 that happens
because of half-integer resonance (v, + €, = 0.5) causes bunches separation
at IP and it has little to do with interaction at PCPs. Anyway in the usable
range the distortion is very small because the distance between opposite

bunches in the PCPs is the tens of the bunch size so the kick is too weak.
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Figure 2: X orbit distortion at PCP 1, comparison of analytical formula (8)
and numerical tracking.
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4 Effects of PCPs

The interaction in PCPs introduces some effects in beam dynamics. We
can divide them first on weak and strong. The “strength” of interaction is
defined by the kick in PCPs compared with the kick at the main IP. If the
kick (or tune shift) due to PCPs is much smaller than the main IP kick,
then the coupling between bunches due to PCPs is too weak to produce
noticeable effects. Weak effects happen with moderate beam currents and
large enough bunch separation in PCPs. They produce a small stable orbit
distortions which is insignificant as will be shown. It is also discussed in
Refs. [3]-[6]. In that case the longitudinal coupling is too small to have
noticeable dynamic effects. When the kicks at PCPs become large enough
some interesting effects may happen. The transverse betatron oscillations
then are coupled longitudinally between the successive bunches. That leads

to a few phenomena:

e Longitudinal waves of transverse oscillations, which spread from some
initial distortion and then damped completely because of synchrotron

damping,.
¢ Reduced damping time of a single excited bunch.

e Bunches near the gap (missing bunches in beam) have larger betatron

amplitudes.

¢ Betatron resonances trapping occurs in more ordered fashion due to
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longitudinal coupling,.

o Diffusion due to stochastic properties of nonlinear forces in IP com-
bined with longitudinal coupling. It leads to a growth of the bunches’

betatron amplitude. This is the so-called Arnold diffusion.

4.1 Closed Orbit Distortion

If a closed orbit exists it is obviously different from the designed closed orbit
without PCPs. Let us take the configuration with IP at a straight section,
the X-plane crossing angle has non-zero value, and the Y-plane crossing angle
is zero. Let us consider the X-plane orbit distortion caused by PCPs. First
we take 2 PCPs - one at each side of IP at the distance 1/2, where [ is the
longitudinal bunch separation. We also take that et and e~ rings have equal
parameters. In that case the orbit distortion is symmetric {Fig. 3). So we

can easily write the equation and obtain the orbit distortion. We denote

the orbit coordinates in corresponding PCP as Op, = , kick as a

Dz
function of distance B between bunches: ? (ﬁ) which can be calculated

using formula (5), I- bunch separation, a- half of the crossing angle, S; -
matrix of /-length straight section, T, is the turn matrix of the rings from

PCP; to PCP,. Using the symmetry condition (et « e7), so that kick in
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IP is zero we can write:

r

Isin (@)
—— —— 5 =
Opzzsl/g Opl-l-? +Opl—0p3
0
§ Op = $i20p, (7)
—Isin (&
on =T, |O7 + B @ 5 ion
0
\

As will be shown later with reasonable design parameters the orbit dis-
tortion is much smaller than the bunch size which in turn is smaller than

the distance between bunches in PCPs (~ Isin {a)), so we can take the kick

Isin {a [sin (&

0 0

at PCPs constant: R

= const. Then easily solving the system (7) we have:

isinv
— k| 1= ey
OP; _ E 2,6‘(1 cos /) (8)
8in i/
Bz{1—cosv)

There are some interesting dependencies, but as will be shown later this
distortion is too small to be important. See comparison of this formula with
numerical tracking results on Fig. 2. The similar results were obtained in

[6]. So in general the closed orbit distortion is too small to be worried about.
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Figure 3: Numbering of PCPs (PCP2 is IP)

4.2 Stability Threshold on ¢;

Here we try to evaluate analytically the maximum value of the beam-beam
parameter £, for which the motion is stable. Here by “stable” we mean that
there is no stochastic excitation of the bunches, which can happen when one
beam excites the other and vise-versa so the excitation never stops. Without
such an excitation they damp to some kind of closed orbits or “fixed points”
as will be shown later. So &,.. 1s the maximum available £, for the given
parameters, for which we don’t have yet a significant luminosity loss. For
optimistic estimates we take a model without resonant behavior. That means
that bunches don’t have “memory” so their positions in PCPs at each turn
are random and depend only on the average amplitude of the betatron oscil-
lations. This assumption is based on the high nonlinearity of IP interaction,
which at some time will produce the “decoherency” of successive bunches with

different betatron amplitudes. So the bunch at the PCP receives a random
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kick. The averaged value of this kick depends on the amplitude of the oscil-
lation of the opposite bunch. An instability will occur if one beam excites
the other to an amplitude equal or larger then itself; we then have a positive

feedback. The beam-beam kick can be linearly approximated:

AV —Qﬁ—fszz (9)

Then averaging Eq. (9) the threshold of instability for one PCP is when

2m
gy = ﬂ_fzau (10)

If we consider N PCPs with zero crossing angle and one-dimensional
motion (horizontal plane, we can do it because the vertical beam size is
much smaller than horizontal}, then all dependences vanish and we have the

surprisingly simple relation:

1
Emaz - m (11)

So this formula gives the maximum stability threshold on &, for the flat
beam with zero crossing angle. On Fig. 4 is the comparison of this formula
with simulation results. In simulations, &,., values were changed until the
luminosity fell a few times. This threshold is very abrupt. The closed orbits
for all bunches experience the transition from zero separation at the IP to

resonance trapping with opposite bunches separated in diagonal resonance
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Figure 4: £,q; tracking and using (11)
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islands as illustrated in 4.7. To avoid the influence of the resonance effects
the tunes were chosen close to zero. For one and three PCPs this model is
not very good, as could be expected because the decoherency is weak, but
otherwise we can see good agreement. The implication of formula (11) is
that the overall luminosity can not be increased by increasing the number of
IPs on the ring, it actually remains constant or even falls according to the
simulations (Fig. 4). Of course this is true only if the luminosity is limited
only by this coherent beam-beam instability and there isn’t any artificial
feedback damping etc.

Then we can calculate the optimal tunes regions for 1 PCP (Fig. 5).
The £q; Was taken so that luminosity falls by 50%. Actually this instability
pushes the bunches out of the head on collision so the separation at the IP
occurs and the above model does not work any longer. After this bunches are
captured in resonances as discussed in Sec. 4.7. We can see the best choice
for tunes, which happens to be well known. For 3 PCP we have Fig. 6. As
we can see additional stable regions appear near X quarter-integer tune. - It
is not significant for current designs, as the crossing angle is far from zero,

so traditional tunes should be used.
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Figure 6: &0, vs X and Y tunes with 3 PCP
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4.3 Longitudinal Waves

Let us see how the longitudinal coupling induced by PCP interaction first
reveals itself. The first noticeable phenomenon when we increase the strength
of PCP interactions is that some initial distortion of a given bunch spreads
longitudinally to the other bunches. So it looks like waves in a pool (Fig. 7).
These waves later damp (if PCP interaction is not strong enough - this is
discussed later) to the initial undisturbed state due to synchrotron damping.
For convenient visualization we will look now only at the horizontal motion.

Let us see how the speed of propagation of those waves depends on pa-
rameters. As would be expected the speed grows with number of PCPs (Fig.
8). The speed is defined by the largest number of bunch {(counting from ini-
tially excited bunch) which is involved in oscillations, divided by number of
turns it takes for the wave to reach it. The definition of speed is not so rigid
and measurements are based on figures like Fig. 7.

We can see that the speed increases vary rapidly with the number of

PCPs. There is a similar dependence on the beam-beam parameter £,
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Figure 7: Longitudinal waves and the corresponding tracking parameters. X-
axis - bunch number, Y- displacement at IP in ¢, units. The initial condition
was a displacement of 100th bunch of 0.30;.
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Figure 8: Propagation speed of longitudinal waves vs number of PCPs. The
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4.4 Qscillation modes

Longitudinal coupling should introduce new oscillation modes. Without
PCPs, the tunes split in 7 and ¢ modes. Those peaks split further apart
due to PCPs (Fig. 9). The distance between the new peaks is roughly pro-

portional to tune shift in PCPs, but the 7 mode splits a smaller distance.

But as the £, grows more modes appear, as a larger number of bunches
become effectively coupled (Fig. 10). The data for spectrums was taken on
2048 turns. If we increase the number of turns the split if spectrum will be
filled further with more modes. As can be expected from linear system 200

modes must be jammed there (Fig. 11).
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Figure 9: Spectrum of betatron osciliations. Both 7 and o tunes split to new
modes due to PCPs.
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101-th bunch speceum
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Figure 10: When £, grows even more modes become visible on the spectrum
(compare with Fig. 9).
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4.5 Damping of a single excited bunch

If a single bunch in this system is displaced, it returns to a closed orbit faster
than by synchrotron or feedback damping mechanism only. This is reasonable
as the excited bunch shares it’s oscillation energy with it’s neighbors and they
are also damped by themselves. Of course after the long enough time after
excitation the damping rate will fall back to normal since the neighboring
bunches become equally excited. But this time is long in terms of revolution
period. This increased damping rate can be quite useful for bunch injection
for instance, or for some coherent instability suppression (Fig. 12). Again,
this single bunch damping decrement changes in time from initial kick, and
eventually will decrease to the value of collective decrement when all bunches
become excited. But the time when it will happen is much larger then the
time of feedback damping.

The parameter that damps on Figure 12 is % + ff: The coeflicients for
the fits are Top=250 turns, which corresponds to a damping time of T=500
turns used for tracking and T3,,=130 turns, so the damping time decreases
almost by half. On figures 13, 14 the dependence of damping time on &, is
shown.

Let us analyze these figures (13, 14). We can see that we can not decrease
the damping time by more than 2-fold, if we increase longitudinal coupling
further. However the damping time goes to this limit rather rapidly, when
we increase £, or decrease the crossing angle. Apparently, the damping time

falls when the half-crossing angle is smaller than 2mrad with £, = 0.1. So
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Figure 12: Damping of the excited bunch with 3 PCPs and without. Selid
lines - exponential fit of tracking data. The damping times of fits are 250
turns and 170 turns. The axis are action vs turn number. &, = 0.05, a = 0.
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it looks like these effects can be observed and measured on some existing
accelerators. Such significant reduction of the single bunch damping time

can be quite beneficial to the beam dynamics.
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4.6 Missing Bunches

Of course during the injection process the bunch train is not filled completely.
Here we investigate what effects can be introduced by missing bunches. A
missing bunch produces an obstacle for propagation of longitudinal waves
because it reduces the longitudinal coupling abruptly. So let us look at a
train’s “free end” - the last bunch before the missing one. There can be
some danger that the free end bunch will be blown to the large betatron
amplitudes as the wave reflects from the missing bunch gap. On Fig. 15 the
difference of free end behavior is shown with and without the gap. The initial
condition was that of a few randomly excited bunches. The effect is that free
end bunch has a slightly larger amplitude in the presence of the gap. This
effect is small and seems to introduce no danger for beam dynamics. At least
nothing dangerous was found as we scanned parameter space.

It was noticed, that the effect is stronger when the distortion is close to

the gap.
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Figure 15: Influence of the gap in the bunch train. The parameter is the
same as on Fig. 2.3 vs number of turn.
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4.7 Resonance Trapping

In the case when &, is large enough bunches are trapped in resonance (“is-
lands” on phase plot). With no PCPs, longitudinal distribution of trapped
bunches depends entirely on the initial condition. But in the presence of
PCPs the longitudinal distribution becomes ordered (Fig. 16, 17) (&, = 0.11,

crossing angle is zero).
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Figure 16: Longitudinal distribution and phase plot of bunches trapped in
resonances without PCPs

Comparison of these figures shows that without PCPs bunches are trapped
in many different resonances, although most of them fail in the center of coor-
dinates. With 3 PCPs all bunches are trapped in a 4-th order resonance and

longitudinal distribution has a period of 4 turns and it is much more ordered
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than without PCPs. The smaller (higher order) resonance islands vanish in
the presence of longitudinal coupling and the beam becomes more ordered.
This may be an advantage from the point of view of feedback because the

longitudinal signal contains less high-frequency harmonics (compare Fig. 16

and 17).
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4.8 PCP Diffusion

Here we discuss the effect of beam stochastic heating due to PCPs interaction.
When we increase &, we can observe stochastic effects due to nonlinearity of
the beam-beam force. Let us switch off the damping in the tracking and look
the sum over all bunches of square of the normalized amplitude:

IRSE
2N Or Op

xr

In the absence of PCPs {i.e. only IP) we can see (Fig. 18) that the
amplitude may grow initially, but then reaches a plateau and keeps approx-
imately a constant value. Quite different is the behavior with 3 PCPs. In
that case the square of the amplitude grows linearly. That means that there
is a source of noise. This happens because non-linear resonances cause some
stochasticity in the bunches’ movement, so the position and phase of the suc-
cessive bunches is uncorrelated, so when a bunch passes through 3 PCPs it
experiences a random kick, which produce the observed noise. For electron
machines with ordinary parameters it is not significant because the syn-
chrotron damping is much stronger than diffusion, but for protons it should
be considered.

The Fig. 18 leads to a general hypothesis: the diffusion coeflicient in
average is constant for a given map, it does not depend on betatron ampli-
tudes. Strict linearity supports that hypothesis, as the amplitudes of bunches

grow significantly for upper plots on Fig. 18 the diffusion coefficient remains
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Figure 18: Averaged square of betatron amplitude vs turn number for differ-
ent values of §,, left half - with PCPs, right - without. The corresponding
diffusion coefficients (from linear fit shown as solid line) are (from top to
bottom) 4.6 - 1073, 2.5- 1073, 1. - 1073, 8.8-107°, 8.8- 1077 and ¢, is 0.4,
0.3, 0.2, 0.1, 0.05. The initial condition for all plots was the random bunches
distribution with ¢ = 30,.
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Figure 19: The diffusion coefficient vs £, the line is a fit.
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the same so that the square of the betatron amplitude continues to grow
linearly with the same coefficient. Of course the PCPs may be not the only
source of longitudinal coupling, wake fields may also contribute. So this ef-
fect should be seriously considered for proton machines because in general
the longitudinal coupling amplifies strongly the stochastic effects caused by
strong non-linearity at the IP. The diffusion coefficient grows rapidly with
the increase of £, as shown on Fig. 19. We can see that asymptotic behavior

of diffusion coefficient can be described well with the fit:
D =012

This is the so-called Arnold diffusion which happens in multi-dimensional
non-integrable systems. And the longitudinal coupling increases the dimen-
sion of the system by N - the number of bunches. It is necessary to note
that the diffusion appears only when the betatron amplitude of bunches is
large enough, so the nonlinearity of the interaction is significant. If we track
beams with small initial distortions, the interaction at the IP is almost linear

and the diffusion is not observed.
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Conclusion and Discussion

It was shown that strong PCP interactions introduce some significant co-

herent effects, a few of them could be useful to exploit for the enhancement

of beam dynamics stability. The effects studied here were consequences of

longitudinal coupling of transverse motion coming from the barycentric in-

teraction of bunches in PCPs. They are:

Longitudinal waves and new oscillation modes can be useful for diag-

nostics, for PCP region analysis and optics tuning.

Reduced damping time of a single excited bunch. Obviously could be
used to improve injection. May help to fight the coherent instabilities

caused by wake fields for example.

Bunches near the gap (missing bunches in beam) have larger betatron
amplitudes. Harmful effect but the increase of amplitude was shown to

be small for reasonable parameters.

Betatron resonances trapping occurs in more ordered fashion due to lon-
gitudinal coupling. In general this softens the requirements on feedback

systems, but this statement should be verified by more simulations.

Diffusion due to stochastic properties of nonlinear forces in IP com-
bined with longitudinal coupling. It leads to the growth of the bunches

betatron amplitude. This was shown to be not critical for electron col-
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liders because of the synchrotron damping, but should be concerned

for high-luminosity proton machines.

Some of the effects could be detected and would be interesting to observe on
modern multibunch colliders. The subject becomes more important with the
growing demands on luminosity. There are some experimental indications
from PEP-II commissioning that PCP effects improve the transverse bunch
stability [11].

There are some other interesting questions for further study within the
barycentric model approach. What effects may appear with consideration
of transverse betatron coupling, synchrotron motion, feedback system, wake
fields, etc? Also the diffusion mechanism requires more study, especially for

proton colliders.
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