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Abstract 

 

For more than two decades, cluster ions have attracted broad interest in the field of 

material science and technology. Their interactions with materials have unique features 

compared with single heavy ions. A typical unique feature is the cluster effect, which 

results from localized, high-intensity energy deposition in materials. Cluster ions have 

been used for surface modification of materials and improving secondary ion mass 

spectrometry analysis. The cluster effect is also useful in high-energy applications. 

High-energy cluster ions are expected to be used in mutating plants and microorganisms, 

novel material modification in deep, and inertial fusion. However, the energy of cluster 

ion acceleration, which has been performed by electrostatic accelerators, has a limitation. 

To overcome this limitation, a racetrack-shape fixed field induction acceleration 

(RAFFIA) was proposed at KEK, Japan, in 2015.  

The RAFFIA ring with two straight sections consists of four bending magnets, 

ramping quadrupole doublets, steering magnets, an electrostatic injection kicker, and 

induction cells. The bending magnet is a key component, which has the gradient field in 

the main pole region and the reverse field in the front. To investigate the orbit stability, 

a particle tracking code has been developed to simulate particle orbits through the 

acceleration cycle. A linear orbit theory has been established to determine the essential 

features of the RAFFIA, such as the lattice function, momentum dispersion function, 

closed-orbit distortion , and compaction factor. These features have some similarities to 

those in a synchrotron, although they vary with acceleration because the orbit gradually 

changes like that in a cyclotron. The non-uniformity of the magnetic field along the 

longitudinal direction of the bending magnet generates the intrinsic closed-orbit 

distortion. Ramped steering magnets are required for orbit stability as well as ramped 

quadrupole doublets. The beam stability is confirmed throughout an entire acceleration 

cycle by macroparticle tracking simulations. Longitudinal motion with a time-varying 



v 
 

transition energy, which is one of the characteristic features in the RAFFIA, has been 

studied using computer simulations. 

In this work, a nonlinear beam-core evolution equation approach is proposed to 

estimate the acceptable beam current, which is the space charge limit. The approach is 

justified by a macroparticle simulation over a wide beam current parameter region. The 

instability seen in the beam-core evolution is rigorously analyzed as an eigenvalue 

problem in the coupled linear system derived from the linearized beam-core evolution 

equations. Assuming a 𝐶଺଴
ଵ଴ା  beam with an injection energy of 10 MeV and rms 

emittance of 1  10–5 mrad, the beam current threshold in the RAFFIA is around 225 

A. 

A prototype of the RAFFIA bending magnet is manually assembled to demonstrate 

the properties of the real bending magnet. The idea that the change of the magnetic 

resistance in the magnetic flux circuits associated with excitation induces the reverse 

fields is confirmed.   
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Chapter 1 Introduction 

 

1.1. Cluster ion 

Clusters are ensembles of several atoms or molecules that may be bound together 

by various type of chemical bonds. The constituents of the clusters may be the same or 

different atoms or molecules, and the clusters may consist of up to several million 

constituents. Clusters are considered an intermediate type of matter between molecules 

and bulk solids because their size is in the range of that of molecules and bulk solids, 

and their properties are different from those of their constituents or the bulk solid. The 

properties of the bulk remain the same when some of its atoms are added or subtracted 

from the bulk. In contrast, the properties of the cluster may be gradually or abruptly 

modified by adding or subtracting its constituents [1]. Compared with molecules, which 

have definite composition and geometry, clusters may have many compositions and 

geometries; for example, argon clusters can have four geometries. Like atoms and 

molecules, clusters can be ionized to form cluster ions. Thus, cluster energy can be 

increased by acceleration. 

Ionizing cluster ions may produce high-charge cluster ions, like a single atom ion. 

However, Coulomb explosions are major concern for cluster ions. A highly charged C60 

ion has achieved a charge state of up to +12 with a lifetime of over 0.5 µs [2]. The decay 

of highly charged cluster ions may be caused by recombination due to residual gas 

interactions in beam collisions between cluster ions [3] and Coulomb interaction in the 

cluster ion itself. The Coulomb force will increase as the charge state increases. If the 

Coulomb force exceeds the binding force, the cluster ion will face Coulomb explosion 

and decays into smaller fragment. For the case C଺଴
ொା  ion, the Coulomb stability is 
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predicted to have a limit up to Q = 14 [4]. 

For acceleration, the purity of the cluster ion is important for analyzing the mass 

and charge state of the cluster using a magnet separator. Stable clusters formed by 

covalent bonding, such as C60 and Si100, are well known.  

1.2. Cluster ion sources 

There are several methods that have been used to produce cluster ions. Some 

methods start with cluster formation, in which the cluster source is evaporated by 

methods such as heating, bombardment with fast particles, and exposure to high-

intensity laser beams. The evaporating cluster sources form clusters via adiabatic 

expansion in the supersonic jet and cluster aggregation methods, and then the clusters 

are passed to the ionization chamber [1]. Another cluster ion method uses clusters 

directly. The clusters are evaporated and passed to the ionization chamber [3] where 

they are ionized by irradiation with fast highly charged particles, fast electrons, or high-

intensity short pulse lasers.  

1.2.1. Electron impact ionization 

The ionization of clusters by energetic electron impact has been demonstrated with 

fullerene cluster ions. The energetic electron beam hits effusing neutral fullerenes at 90° 

(Fig. 1.1) [6]. The maximum cross section is obtained in the electron energy range of 

100–300 eV and depends on the charge state. The charge states (Q) from 1 to 6, and 

even up to Q = 7 have been observed experimentally [7].  
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Figure 1.1: Schematic of fullerene ionization experiment using electron impact [6]. 

1.2.2. Ionization using highly charged heavy ion beam and laser pulse 

C଺଴
ଵ଴ା cluster ions have been ionized by 280 keV Xe25+ bombardment  [8] and by 

laser-induced dipole force  [2]. In laser ionization, the cluster ion is produced by 

irradiating C60 with intense (1015 W cm–2), short (70 fs), infrared (1800 nm) laser 

pulses [2]. Similar to electron impact ionization, the production of the C60 charge state 

by laser pulses and a Xe25+ beam spreads from the lower to higher charge state. So far, 

the 280 keV Xe25+ beam and laser ionization produce maximum charge states of Q = 10 

and 12, respectively. 

1.3. Existing accelerator for cluster ions 

There are several cluster ion accelerators that have produced energetic cluster ions. 

One is a gas cluster ion beam accelerator that is widely used for new surface 

modification processes. This kind of application does not need high-energy acceleration 

and the acceleration is usually achieved by using low DC voltages around 45 kV. Figure 

1.2 shows a schematic of this machine for 1 mA argon gas cluster ion production [9]. 

This type of acceleration system consists of a cluster source, ionization chamber, low-
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voltage acceleration electrode, optics lens, and target. For example, argon clusters are 

generated by adiabatic expansion of high-pressure gas through a nozzle, and then 

injected into the ionization chamber in a vacuum through the skimmer. The cluster ions 

are ionized by bombarding the clusters with electrons. Next, the cluster ions are 

extracted, accelerated by an electrostatic voltage, and transported to the target. 

 

Figure 1.2: Schematic of the argon gas cluster ion acceleration system [9].  

Another type of cluster ion acceleration system can provide a much higher final 

energy and uses an electrostatic tandem accelerator. This acceleration system was first 

demonstrated at the Institut de Physique Nucléaire (IPN) Orsay, France [5]. Heavy 

cluster ions, such as C60 and Au5 ions, have been accelerated by this tandem accelerator.  

In principle, a tandem accelerator has a two-stage acceleration system. The positive 

high voltage is generated in the terminal located in the middle of accelerator tank and 

the edges of the tank are grounded (Fig. 1.3). The two-stage acceleration is performed 

by injecting negative ions into one edge of the tank, so that the negative ions are 

accelerated toward the high-voltage terminal. When the negative ions reach the high-

voltage terminal, they are converted to positive ions by the stripper and accelerated again 

to the next grounded tank edge. 

Cluster ion acceleration using the IPN Orsay tandem accelerator is performed in 

two operation modes. The first mode is a standard operation mode, in which two-stage 

acceleration is used. The maximum acceleration voltage of this tandem accelerator is 15 

MV. C60 ions with Q = –1 are externally injected into the tandem accelerator and a 
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maximum of four electrons are stripped in the charge exchange region at the center. C60 

ions with Q = +3 are generated, eventually producing C60 ions with an energy of 60 MeV. 

The beam current is limited to a lower intensity due to the lower stripping cross section.  

The second mode is single-end acceleration, where the positive ion beam is 

generated in the high-voltage terminal region and accelerated in a single-stage 

acceleration. The Faraday cup measurement result shows that a beam current of 300 pA 

for 𝐴𝑢ଶ
ଵା, 110 pA for 𝐴𝑢ଷ

ଵା, and 30 pA for 𝐴𝑢ସ
ଵା can be obtained in the high-voltage 

terminal [10]. 

  

 (a) (b) 

Figure 1.3: Layout (a) and photograph (b) of the tandem accelerator at IPN Orsay. 

Since a successfully cluster ion acceleration using tandem accelerator and high 

potential for discovering a new phenomenon from cluster ion collision, cluster ion 

acceleration with a tandem accelerator has also been developed in Japan. The TIARA 

electrostatic accelerator facility at the QST-Takasaki Institute, Japan has demonstrated 

the acceleration of various cluster and molecular ions (B, C, O, Al, Si, Cu, Au, LiF, and 

AlO) using a 3 MV tandem accelerator [11]. 

Cluster ion acceleration using a tandem accelerator has several limitations, 

including high-voltage breakdown and the maximum beam current. In the two-stage 

acceleration mode, Q is limited and the cluster ion current is relatively small due to the 

stripping process. In the single-stage acceleration mode, the cluster ion source must be 
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embedded in the high-voltage terminal. Accommodating a cluster ion source capable of 

producing a high-intensity beam on a high-voltage platform of more than 10 MV is 

practically difficult owing to power flow. 

1.4. Possible accelerator for high-energy cluster ions 

1.4.1. Limitations of RF accelerators and how to overcome 

To obtain giant cluster ions with higher energy, circular acceleration is necessary. 

RF acceleration based on an RF system consisting of an RF cavity and RF source, such 

as a tetrode, is not suitable because of the bandwidth limitation of the RF devices. The 

revolution frequency of giant cluster ions, which have large mass-to-charge ratios (A/Q 

> 720), is too small (order of kilohertz) at injection and increases dynamically with 

acceleration. This dynamic change in revolution frequency can be followed by induction 

acceleration. After a slow-cycling induction synchrotron was demonstrated using the 

KEK proton synchrotron in 2007 [12], a fast-cycling induction synchrotron showed 

acceleration from 50 kHz to 1 MHz in 2013 [13]. Based on these results, a racetrack-

shape fixed field induction accelerator (RAFFIA) was proposed in 2015 as a unique 

solution to achieve repeated acceleration of giant cluster ions [14].  

1.4.2. Induction accelerators 

The concept of an accelerator based on induction acceleration was first proposed as 

the betatron by Widerøe in 1928 and realized by Kerst in the 1940s. The acceleration 

principle of the betatron is similar to the operational principle of a pulse transformer, 

where the flux change generated by the current in the primary coil induces the voltage 

through the secondary coil. The first betatron accelerated electrons up to 2.2 MeV [15]. 

Twenty years later, Christofilos and Veksler independently proposed a linear induction 

accelerator to generate an intense relativistic electron beam pulse. Its acceleration 

principle is the same as that of the betatron. However, the function of the magnetic core 
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in the linear accelerator is only as an acceleration voltage generator; therefore, the 

magnetic core is a toroid. The secondary winding is the outer metal case (Fig. 1.4). The 

induction cell can be arranged in series to obtain multiple accelerations. The first linear 

induction accelerator was the Astron injector, which began operating in 1963 and 

produced a 4 MeV electron beam with a current of 150 A and 250-ns-long pulse [16]. 

Subsequently, linear induction accelerators have been widely developed. In 1983, the 

Lawrence Livermore National Laboratory demonstrated the biggest induction 

accelerator, which had a 45 MeV beam with a current of 10 kA, called the Advance Test 

Accelerator [17]. 

 

Figure 1.4: Cross section of the induction cell [17]. 

To reduce the length, weight, and cost of high-energy induction accelerators, 

accelerator scientists designed a multiple pass or recirculation acceleration scheme [18]. 

Concepts have been proposed for electron accelerators, including a recirculating 

induction accelerator [19] and a spiral line induction accelerator [20]. An induction 

synchrotron for replacing an RF synchrotron was proposed by Takayama and Kishiro 

for proton acceleration [21]. In this induction synchrotron, the functional separation of 

Magnetic 
Core

Acceleration 
gap 

Pulse Power 
Feed 

Primary 
Winding 

Secondary 
Winding 
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acceleration and longitudinal confinement was introduced; thus, the beam handling in 

the longitudinal direction is flexible. The first demonstration of this induction 

synchrotron concept was performed with the KEK 12 GeV-PS [12]. Acceleration occurs 

in the acceleration gap of the induction cell (Fig. 1.4). When the beam passes through 

the induction cell, the return current, IB, flows in the opposite direction to the beam 

current from the chamber wall to the transmission line (Fig. 1.5). The return current 

becomes a load on the pulse power supply. The important part for generating the 

acceleration voltage of the induction cell is the magnetic core. The magnetic core must 

provide a relatively high impedance to the transmission line to minimize the 

magnetizing current, IC. This requirement can be satisfied by the choice of the magnetic 

material. The magnetic material should have high permeability, low coercive force, high 

flux density, and low loss at high-rate magnetization. The magnetic core material is 

usually ferrite or a ferromagnetic material. 

 

Figure 1.5: Beam loading in the induction cell. 

The acceleration voltage (VC) generation in the induction cell follows Faraday’s law, 

 𝑉௖ ൌ ௗథ

ௗ௧
 (1.1) 

where 𝑑𝜙 is magnetic flux difference during time difference (dt). The magnetic flux 

difference is created by magnetized the core material. The magnetization depends on 

the hysteresis curve of the magnetic material. As shown in the illustration, the hysteresis 
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shown in Fig. 1.6 is used to explain how induction voltage generate. Assuming a positive 

pulse VC is generated by driving the core from –Br toward +Br, the next positive VC can 

be generated after the magnetic field is reset from +Br to –Br. 

 

Figure 1.6: Example of a hysteresis curve of the magnetic material. 

The positive and negative pulse must be supplied to the primary winding. This pulse 

power is provided by a modulator. The modulator consists of switching devices and a 

transmission line, which is usually a coaxial cable. The characteristics of the modulator 

are determined by the capability of the switching device. A switching device with high 

voltage resistance and high carrying current, short turn on/off time, high repetition rate, 

and long lifetime is desirable. Many switching devices, such as thyristors, magnetic 

switches, Si-MOSFETs, insulated-gate bipolar transistors, and silicon carbide devices, 

are now available. However, they have advantages and disadvantages. Therefore, the 

choice of switching device depends on the requirements of the application. 

1.5. Applications of cluster ions 

1.5.1. General features of cluster ions interactions with materials 

The interaction of energetic cluster ions with a target material typically shows non-

linear effects during energy deposition in the target material, called cluster effects [22]. 

Because energy deposition by a cluster ion in the material is extremely localized, the 

stopping power is larger and the range is shorter than that of single atom or molecular 
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ions (Fig. 1.7). The density of the deposited energy is predicted to be huge. Material 

scientists expect that unknown non-equilibrium states may be generated in various 

materials and some states may survive beyond a transient time period as a result of 

quenching.   

 

Figure 1.7: Schematic of energy deposition of single Si atom and cluster ions in a 

material. 

1.5.2. Low energy cluster ions 

Low-energy (~25 keV) cluster ions can be used for low-energy processing, 

extremely smooth surface processing, and precise nanometer depth etch processing. 

Thus, they have been widely used in new surface modification processes and have 

played an important role in the development of nanotechnology, including 

semiconductor devices, data storage devices, sensors, and transducers. In biomaterial 

applications, cluster ion irradiation has been studied for surface modification of 
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implantable medical devices in the human body and for improving biocompatibility, 

bio-integration, cell attachment, and cell proliferation for implanted devices [22]. 

1.5.3. Medium energy cluster ions 

Cluster effects, such as the locally deposited energy density of fullerene ion of 5 

MeV to dozens of megaelectronvolts, have been revealed by the track formation and are 

comparable to the deposition energy of heavy ions of hundreds of 

megaelectronvolts [23–25]. These effects are useful for synthesizing nanostructures or 

structure modification. As an example of material modification, cluster ions were used 

to deposit energy in a ferromagnetic film to modify the film’s magnetic properties [26]. 

Energetic cluster ions can also can be used to increase secondary ion production in 

secondary ion mass spectrometry [27]. The cluster effects in the target material 

associated with the impact of a giant cluster ion bunch are expected to create new 

material phases that have never been observed under natural conditions on Earth. 

Cluster ions with energies higher than 1 MeV/u could be used for plant or 

microorganism mutation, such as for mutation breeding of oil production algae. Giant 

cluster ions have major advantages compared with other irradiation sources. The ultra 

large size of the projectiles efficiently dissociates DNA and triggers mutations (Fig. 

1.8) [28]. 

 

Figure 1.8: Comparison of DNA dissociation using different irradiation source. 

1.5.4. High energy cluster ions 
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High-energy cluster ions (~40 MeV/u) are being considered as a driver beam for 

inertial fusion. High-energy density deposition on the deuterium–tritium target appears 

attractive compared with single-ion deposition in the existing heavy ion inertial fusion 

scenario [29]. A scheme using a two-way multiplex induction synchrotron as the main 

driver of inertial fusion and integrated with the RAFFIA as an injector has been proposed 

by a collaboration between KEK and some Japanese universities. This induction 

synchrotron accelerates giant cluster ions, such as Si–100 or C–60, up to 100 GeV.  

1.6. Purpose of this study and thesis structure 

In this thesis, the feasibility of the RAFFIA is examined, the beam dynamics of the 

RAFFIA are determined, and the bending magnet with gradient and reverse field poles 

excited by a single set of coils is demonstrated. 

The thesis structure is as follows.  

Chapter 2 gives an overview of the RAFFIA, and the outline of the accelerator complex 

and its key devices are discussed. 

In Chapter 3, the particle tracking code, which plays a crucial role in developing the 

linear theory discussed in Chapter 4, is described. The basic theory of the Runge-Kutta 

method for solving the equation of motion is reviewed. The algorithms for particle 

tracking code are explained. 

In Chapter 4, the beam dynamics of the RAFFIA in the transverse and longitudinal 

direction are discussed. The linear optics approach is used to demonstrate the essential 

features of the RAFFIA lattice. Concepts, such as the betatron function, momentum 

dispersion function, closed-orbit distortion, and momentum compaction factor, are 

given, which can be defined for every turn. The multiparticle tracking simulation result 

through full induction acceleration is also described in this chapter. 
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In Chapter 5, a new approach based on the beam-core evolution equation to 

estimate the space charge effects in the RAFFIA is described. The approach is justified 

by a macroparticle tracking simulation and rigorous analytical theory. The approach is 

used to determine the beam current threshold in the RAFFIA. 

In Chapter 6, the specific features of the RAFFIA magnets, which are a key device, 

are described. In particular, the important properties of the fixed bending magnet are 

explained. The excitation of the quadrupole doublets and steering magnet by 

acceleration is described in detail. 

In Chapter 7, the prototype bending magnet is described. Its overall design, pole 

shape optimization, assembly process, and measurement results, such as the gap size, 

magnetic field excitation curve, and magnetic field profile, are discussed.  

In Chapter 8, the highlights of Chapters 3, 4, 5, and 7 are summarized. 
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Chapter 2 Overview of RAFFIA 
 

2.1. Outline of RAFFIA 

The RAFFIA for C60 (A = 720, Q = 10) cluster ions is used as an example [30], 

where the injection energy and extraction energy are 10 and 144 MeV, respectively, and 

the circumference gradually changes from 49.1 to 54.3 m. An induction acceleration 

voltage of 10 kV per turn requires a total turn number of 1339. The size of the RAFFIA 

has been chosen to fit the existing space for the KEK digital accelerator. 

The RAFFIA lattice consists of four 90° bending magnets (BMi, i = 1–4) and four 

doublet Q magnets (QFi/QDi, i = 1–4) occupying the upper and lower straight sections 

(Fig. 2.1). The injection system and induction acceleration system are also placed on the 

lower straight section. A giant cluster ion beam delivered from the ion source embedded 

in the high-voltage platform is accelerated using the 0.8 MV induction linac and injected 

into the RAFFIA ring. The injection/extraction (edge) angle of the bending magnet is 

45°. The orbit along the straight sections does not depend on the particle energy. Steering 

magnets are used for orbit correction and are placed on the straight sections, as described 

below. In addition, a kicker system for extraction is placed between bending magnets 

BM1 and BM2. The inward kick by the kicker gives a suitable extraction orbit from the 

RAFFIA ring at the downstream edge of BM2 [31], although its details are not described 

in this thesis. 
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Figure 2.1: Schematic of the RAFFIA. 

2.2. RAFFIA main components 

2.2.1. Ion source and 200 kV high-voltage platform 

The component that is most upstream of the accelerator complex is the ion source. 

The cluster ions are produced by electron impact ionization, which is currently being 

developed at Tokyo Institute of Technology [32]. A schematic and photograph of the ion 

source are shown in Fig. 2.2. Fullerene powders in the crucible are evaporated by the 

heater, and then passed to the ionization chamber. Simultaneously, electrons emitted 

from the filament are guided to the bias drift tube by an electric potential of up to 1 kV. 

The fullerenes are ionized along the electron path in the chamber. The solenoid is used 

to generate the focusing force for the electron and cluster ion beam. The cluster ion 

source is embedded in the 200 kV high-voltage platform to gain pre-acceleration. 
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Figure 2.2: Schematic (left) and photograph (right) of the electron fullerene cluster ion 

source [32]. 

2.2.2. 0.8 MeV induction linac injector 

The induction linac consists of four induction cells capable of generating a 200 kV 

acceleration voltage/cell. An induction cell with these specifications is currently 

operating in the Dual Axis Radiographic Hydrodynamic Test (DARHT) 2nd axis facility 

of Los Alamos National Laboratory as a radiographic facility (Fig. 2.3) [33]. The cell 

was assembled at the Lawrence Berkely National Laboratory in the early 2000s and can 

accelerate a 1.6-µs-long electron beam pulse. In the RAFFIA injector, this size of 

induction cell will be operated at 15 Hz. 

 

 

Crucible 
(graphite) 

Heater 

Filament 
Solenoid 

Ground cavity Biased 
drift tube 

Ceramic 
insulator



17 
 

   

Figure 2.3: Photograph (left) and pulse profile (right) of the DARHT induction 

cell [33]. 

2.2.3. Electrostatic injection kicker 

The cluster ion beam is injected horizontally to the RAFFIA by the electrostatic 

injection kicker (ES-Kicker) (Fig. 2.4). The bending angle (𝜃௜௡௝) given by the ES-Kicker 

is expressed as 

 𝜃௜௡௝ ൌ ொா௟

௣ఉ
, (2.1) 

where Q is the charge state, E is the electric field (V/m), l is the length of the ES-Kicker 

(m), p is the momentum (eV/c), and 𝛽  is the relativistic beta. 𝜃௜௡௝  is determined, 

considering a realistic electric field and available space. The gap size across the two 

electrodes (𝑤) must satisfy 

 𝑤 ൐
௟ఏ೔೙ೕ

ଶ
. (2.2) 

50 kV/div 
1µs/div 

1.6 µs/div
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Figure 2.4: Layout of the injection region. 

The ES-Kicker of the RAFFIA is similar to the existing one for the KEK-DA [34], where 

the field homogeneity in the kicker gap is secured by placing several intermediate 

electrodes between the ground and anode plates with the same distance and voltage 

difference (Fig. 2.5). The ES-Kicker is fully charged by a resonant charging power 

supply before the beam arrives and discharged before the head of the circulating beam 

completes the first turn. The specifications of the ES-Kicker being designed are listed 

in Table 2.1. 

Table 2.1: Specifications of the ES-Kicker. 

Parameters  

Beam kinetic energy 10 MeV (Z=10) 

Beam injection angle 12 deg 

Gap size between electrodes 200 mm 

Vertical aperture 100 mm 

Kicker length 1340 mm 

Kicker Voltage 60.7 kV (+/- 30 kV) 

 

ES-Kicker 

QF QD 
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 (a) (b) 

Figure 2.5: (a) Photograph of the KEK-DA ES-Kicker. (b) Equivalent circuit of the 

RAFFIA ES-Kicker. 

2.2.4. RAFFIA ring guiding system 

The racetrack-shape beam orbit of the RAFFIA is formed by four bending magnets. 

The bending magnets bend in the horizontal direction and focus in the vertical direction. 

The injection/extraction (edge) angle of 45° induces large edge defocusing in the vertical 

direction, which substantially affects beam motion, as discussed in Ref. [14]. The 

reverse field strip at the front edge and field gradient on the main pole are essential for 

compensating for this defocusing in the vertical direction and achieving orbit 

stability [14]. A schematic of the characteristics of focusing and defocusing in the 

vertical direction through the bending magnet region is shown in Fig. 2.6.   

The main bending field and reverse field are excited with the expected flux densities 

in the different gaps by a single pair of excitation coils. A fraction of the magnetic flux 

in the main gap returns to the core front rather than to the return yoke through two 

magnetic flux loops due to the difference in magnetic resistance. This idea has been 

confirmed experimentally using a prototype bending magnet, which is described in 
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Chapter 7. The bending magnet is designed by using ANSYS 3D. The magnetic flux 

density in the y direction By, 
ௗ஻೤

ௗ௑
, and 

ௗ஻೤

ௗ௓
 data on the median plane of the magnet gap 

are imported from the ANSYS 3D calculation result with a mesh size of 2 cm in the X-

Z plane for the beam tracking simulation and beam dynamics calculation. 

 
Figure 2.6: Vertical edge focusing in the bending magnet. 

The orbit stability is ensured by using four quadrupole doublets. Due to the energy 

dependence of the particle orbit in the fixed bending field with the gradient, the optical 

strength of the guiding field varies with the turn or time. Thus, the gradient fields of the 

quadrupole doublets must follow this variation. The orbit stability of the RAFFIA can 

be achieved by optimized ramping of the gradient fields of the quadrupole magnets. The 

other component related to the orbit stability is a steering magnet. The intrinsic magnetic 

field non-uniformity along the longitudinal direction of the bending magnet becomes 

the main source of closed-orbit distortion. Four steering magnets are required to 

minimize closed-orbit deformation. 

2.2.5. Induction acceleration system 
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The induction acceleration system of the RAFFIA is similar to that used in the KEK 

induction synchrotron. Two sets of induction cells are used for different purposes. The 

first set of induction cells provides a 10 kV acceleration voltage per turn and another set 

of induction cells generates a barrier voltage for beam confinement. These induction 

cells are energized by the switching power supply, where high-power solid-state 

switching elements are mounted.  

The core material of the induction cell is thin Finemet tape and the cell generates 

an output voltage of 3 kV. To obtain the acceleration voltage of 10 kV, four induction 

cells are required for the RAFFIA. One further cell is used for beam confinement. The 

compact switching power supply driving the induction cell, in which SiC-MOSFETs 

that can operate at 1 MHz are used as switching elements, is under development [35]. 

2.2.6. Extraction kicker 

To extract the cluster ion beam from the RAFFIA, a kicker located between BM1 

and BM2 is proposed. The orbit position at the beam extraction region shown in Fig. 2.7 

(a) shifts gradually outward as the energy increases. The x position of the beam centroid 

is shown as a function of the turn number in Fig. 2.7 (b). The extraction kicker is fired 

at the last turn.    

  

 (a) (b) 
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Figure 2.7: (a) Extraction kicker location and (b) orbits excursion in the region 

between BM1 and BM2. 

The orbit at the extraction energy that is inwardly kicked by the kicker with 0.32 T·m is 

shown in Fig. 2.8. The simulation result implies that the inward kick before entering 

BM2 is suitable to extract the beam at the exit of the BM2.  

   

Figure 2.8: The orbit at extraction energy with kicker. 

2.3. Induction acceleration system 

The main components of the induction acceleration system are an induction cell and 

modulator. The induction cell is excited by a pulse current supplied by the modulator 

and the pulse timing is synchronized with the particle revolution. The switching power 

supply has an H-bridge configuration like that of the modulator used in the KEK 

induction synchrotron. The positive pulse is generated by simultaneously turning on S1 

and S4 (Fig. 2.9), and the negative pulse is generated by simultaneously turning on S2 

and S3. 

ST2 

Zoom up

x (m) 

y 
(m

) 
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Figure 2.9: Equivalent circuit of the induction acceleration system. 

The acceleration voltage (Vac) and barrier voltage (Vbb) are generated across the 

acceleration gaps at every turn (Fig. 2.10). For confinement, two Vbb pulses of pulse 

length pulse are generated with a phase duration () between the negative pulse and 

positive pulse. The beam bunch must be confined between two barrier pulses, and then 

accelerated with Vac. The length of a beam bunch is varied by controlling the trigger 

signal of the barrier voltage pulses. This method should be effective for extracting 

bunches with the desired length by the kicker system at the end of acceleration, as 

described in the literature related to induction acceleration [17]. 

 

Figure 2.10: Pulse profiles of Vac and Vbb.  
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Chapter 3 Particle tracking code 

 

3.1. Equation of motion and Runge-Kutta method 

Particle motion under the influence of electromagnetic field follows the equation of 

motion,  

 
ௗ𝒑

ௗ௧
ൌ 𝑚𝛾 ௗమ𝒓

ௗ௧మ ൌ 𝑞 ቀ𝑬ሺ𝒓ሻ ൅ 𝒑ൈ𝑩ሺ𝒓ሻ

௠ఊ
ቁ (3.1) 

where  p is momentum, t is time, m is the particle mass,  is the Lorentz factor, r is the 

position vector, q is the particle charge, E is the electric field, and B is the magnetic 

field. The Lorentz equation is a second-order ordinary differential equation but we can 

write it in two stage first-order differential equation by introducing 

 
ௗ𝒓

ௗ௧
ൌ 𝒑

௠ఊ
. (3.2) 

Analytical solving of the equation of motion in three dimensions is complicated. Thus, 

a numerical method is used by solving Eq. (3.1) and Eq. (3.2). 

In general form, the first order differential equation can be written in this form 

 
ௗ௬

ௗ௧
ൌ 𝑓ሺ𝑡, 𝑦ሻ, (3.3) 

where 𝑓ሺ𝑡, 𝑦ሻ  is an arbitrary derivative function. The ordinary differential equation 

with a known initial condition can be solved numerically through an approximate value 

from its derivative function at small step size (h). The simple method to solve Eq. (3.3) 

is by Euler’s rule approximation as written in the following form, 

 𝑦ሺ𝑡௡ାଵሻ ൌ 𝑦ሺ𝑡௡ሻ ൅ ℎ𝑓ሺ𝑡, 𝑦ሻ, (3.4) 

where n is the step id and ℎ ൌ 𝑡௡ାଵ െ 𝑡௡. However, the Euler’s method still has a big 

error from the truncation of the Taylor series. As we know, the Taylor series is written 

in this form, 
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 𝑦ሺ𝑡௡ାଵሻ ൌ 𝑦ሺ𝑡௡ሻ ൅ ℎ𝑓൫𝑡௡, 𝑦ሺ𝑡௡ሻ൯ ൅ ଵ

ଶ!
ℎଶ𝑓ᇱ൫𝑡௡, 𝑦ሺ𝑡௡ሻ൯ ൅ ଵ

ଷ!
ℎଷ𝑓ᇱᇱ൫𝑡௡, 𝑦ሺ𝑡௡ሻ൯ ൅ ⋯, 

  (3.5) 

Here, the Euler’s method is truncated at the second term of right hand side (RHS). Thus, 

the error is function of h2 (O(h2)). 

Runge-Kutta (RK) method offers better truncation error correction than the Euler’s 

method. This truncation error depends on the order of RK method. The differential 

equation solution solved by RK method is based on the integral form of Eq. (3.3) which 

can be written in this   

 𝑦௡ାଵ ൌ 𝑦௡ ൅ ׬ 𝑓ሺ𝑡, 𝑦ሻ𝑑𝑡
௧೙శభ

௧೙
. (3.6) 

To make easier for understanding RK method, we derive RK2 (2nd order RK method) 

algorithms by expand 𝑓ሺ𝑡, 𝑦ሻ in Taylor series up to two terms at the midpoint of the 

integration limit, 

 𝑓ሺ𝑡, 𝑦ሻ ൌ 𝑓൫𝑡௡ାଵ ଶ⁄ , 𝑦௡ାଵ ଶ⁄ ൯ ൅ ൫𝑡 െ 𝑡௡ାଵ ଶ⁄ ൯ ௗ௙

ௗ௧
൫𝑡௡ାଵ ଶ⁄ ൯ ൅ 𝑂ሺℎଶሻ, (3.7) 

The term ൫𝑡 െ 𝑡௡ାଵ ଶ⁄ ൯ in the interval 𝑡௡ ൑ 𝑡 ൑ 𝑡௡ାଵ equals to positive or negative. 

Thus, this term will eliminate each other in the integration of 𝑓ሺ𝑡, 𝑦ሻ at that interval 

׬  𝑓ሺ𝑡, 𝑦ሻ𝑑𝑡
௧೙శభ

௧೙
≃ 𝑓൫𝑡௡ାଵ ଶ⁄ , 𝑦௡ାଵ ଶ⁄ ൯ℎ ൅ 𝑂ሺℎଷሻ, (3.8) 

and 

 𝑦௡ାଵ ≃ 𝑦௡ ൅ ℎ𝑓൫𝑡௡ାଵ ଶ⁄ , 𝑦௡ାଵ ଶ⁄ ൯ ൅ 𝑂ሺℎଷሻ. (3.9) 

As we can see the, the Euler’s rule and RK2 have the same number of terms but the RK2 

give better precision. In order to solve by RK2, the 𝑦௡ାଵ ଶ⁄   must be obtained. The 

following Euler’s rule 

 𝑦௡ାଵ ଶ⁄ ≃ 𝑦௡ ൅ ଵ

ଶ
ℎ ௗ௬

ௗ௧
ൌ 𝑦௡ ൅ ଵ

ଶ
ℎ𝑓ሺ𝑡௡, 𝑦௡ሻ. (3.10) 
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By using this definition, the RK2 can be written in this form 

 𝑦௡ାଵ ≃ 𝑦௡ ൅ 𝑘ଶ (3.11) 

where 𝑘ଶ ൌ ℎ𝑓 ቀ𝑡௡ ൅ ௛

ଶ
, 𝑦௡ ൅ ௞భ

ଶ
ቁ and 𝑘ଵ ൌ ℎ𝑓ሺ𝑡௡, 𝑦௡ሻ [36]. 

The fourth-order RK method (RK4) can be obtain by approximating y with Taylor 

series up to third terms or second order term. The RK4 equation can be written in the 

following form 

 𝑦௡ାଵ ൌ 𝑦௡ ൅ ଵ

଺
ሺ𝑘ଵ ൅ 2𝑘ଶ ൅ 2𝑘ଷ ൅ 𝑘ସሻ (3.12) 

where 𝑘ଵ ൌ ℎ𝑓ሺ𝑡௡, 𝑦௡ሻ , 𝑘ଶ ൌ ℎ𝑓 ቀ𝑡௡ ൅ ௛

ଶ
, 𝑦௡ ൅ ௞భ

ଶ
ቁ , 𝑘ଷ ൌ ℎ𝑓 ቀ𝑡௡ ൅ ௛

ଶ
, 𝑦௡ ൅ ௞మ

ଶ
ቁ , and 

𝑘ସ ൌ ℎ𝑓ሺ𝑡௡ ൅ ℎ, 𝑦௡ ൅ 𝑘ଷሻ. The RK4 will have smaller truncation error than RK2 in the 

order of 𝑂ሺℎହሻ. 

The RK derivation and its family are also can be obtained by using Butcher tableau. 

In this method, the RK is written in general form. 

 𝑦௡ାଵ ൌ 𝑦௡ ൅ ℎ ∑ 𝑏௜𝑘௜
௦
௜  (3.12) 

where 

𝑘ଵ ൌ 𝑓ሺ𝑡௡, 𝑦௡ሻ

𝑘ଶ ൌ 𝑓൫𝑡௡ ൅ 𝑐ଶℎ, 𝑦௡ ൅ ℎሺ𝑎ଶଵ𝑘ଵሻ൯

𝑘ଷ ൌ 𝑓൫𝑡௡ ൅ 𝑐ଷℎ, 𝑦௡ ൅ ℎሺ𝑎ଷଵ𝑘ଵ ൅ 𝑎ଷଶ𝑘ଶሻ൯
⋮

𝑘௦ ൌ 𝑓 ቀ𝑡௡ ൅ 𝑐௦ℎ, 𝑦௡ ൅ ℎ൫𝑎௦ଵ𝑘ଵ ൅ 𝑎௦ଶ𝑘ଶ ൅ ⋯ ൅ 𝑎௦,௦ିଵ𝑘௦ିଵ൯ቁ ,

 

s is the number of stage, 𝑎௜௝ is the Runge-Kutta matrix, 𝑏௜ and 𝑐௜ are known as the 

weights and the nodes. These data are written in the following Butcher tableau 
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0      

𝑐ଶ 𝑎ଶଵ     

𝑐ଷ 𝑎ଷଵ 𝑎ଷଶ    

⋮ ⋮  ⋱   

𝑐௦ 𝑎௦ଵ 𝑎௦ଶ … 𝑎௦,௦ିଵ  

 𝑏ଵ 𝑏ଶ … 𝑏௦ିଵ 𝑏௦. 

The RK method is consistent when ∑ 𝑎௜௝
௜ିଵ
௝ୀଵ ൌ 𝑐௜ for i= 2,…, s. The number of stage 

(s) is usually equal to the RK order (p) but for p  5, s may be larger than p [37]. The 

Butcher tableau of RK2 in Eq. (3.11) and RK4 are shown in Fig. 3.1.  

 

Figure 3.1: Butcher tableau for RK2 (left) and RK4(right) 

For particle tracking simulations, the equation of motion is evaluated by the RK4. 

The RK4 solution for Eq. (3.1) and (3.2) is shown in Appendix A.  

3.2. Algorithms of particle tracking code  

The flowchart of the particle tracking code is shown in Fig. 3.2. The RK method is 

only used in the bending magnets and quadrupole magnets section, whereas a kick 

approximation is used in the steering magnet and acceleration section. The magnetic 

field data in the quadrupole is assumed to be an ideal field that is determined by its field 

gradient. Meanwhile, the magnetic fields in the bending magnet are obtained from the 

expansion of a discreate magnetic field data on the median plane. Expansion of the 

magnetic fields beyond the grid points on the median plane are obtained in a way of 

linear interpolation between adjacent points. By in the upper and lower regions of the 

0   

1 2⁄  1 2⁄   

 0 1 

0     

1 2⁄ 1 2⁄    

1 2⁄ 0 1 2⁄   

1 0 0 1  

 1 6⁄ 1 3⁄ 1 3⁄  1 6⁄  
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median plane is assumed to be equal to By on the median plane. Meanwhile BX and BZ 

in the upper and lower regions of the median plane are expressed in the forms expanded 

to the first order of y. The reference orbit is calculated, assuming that the bending magnet 

fields are uniform along the Z-direction and the fields itself at the center of magnet 

(origin of Z direction) obtained from the ANSYS 3D calculation. The field is called an 

ideal field in the paper. The initial position of the particle is defined at the center of the 

lower straight section (Fig. 2.1). 

 

Figure 3.2: Flowchart of the particle tracking code. 
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Chapter 4 Beam dynamics of RAFFIA [38] 

 

4.1. Transverse motion 

4.1.1. Linear optics approach 

The transverse motion of the particles around the reference orbit, known as betatron 

motion, is defined by Hill’s equation 

  𝑌" ൅ 𝐾ሺ𝑠ሻ𝑌 ൌ 0, (4.1) 

where Y is the transverse coordinate, s is the longitudinal coordinate, and K(s) is the 

restoring force coefficient. Hill’s equation can be solved by a linear optics approach 

using a transfer matrix. In the transfer matrix form, the transverse motion calculation is 

defined by 

 𝑌ത௦భ
ൌ 𝑀௦బ→௦భ

∙ 𝑌ത௦బ
, (4.2) 

where 𝑌ത  is the vector for the transverse position in phase space and 𝑀  is a 2 × 2 

transfer matrix. For the orbit stability of the circular accelerator, a one-turn transfer 

matrix (MT), which is obtained by multiplying the sequence of M, must satisfy the stable 

condition where  

 ቚ்௥௔௖௘ ሺெ೅ሻ

ଶ
ቚ ൑ 1. (4.3) 

A stable orbit indicates that the particles motion in one turn is always confined around 

a closed orbit.  

The transfer matrix represents the optical properties of the devices around the 

reference orbit. Therefore, the reference orbits for the stable motion must be known to 

determine the transfer matrix. As the particle orbits in the RAFFIA gradually change 

with acceleration, the closed orbit must be found for every turn. 
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The reference orbit is calculated by applying ideal bending magnet data in the 

particle tracking code. The ideal bending magnet data is assumed to be uniform along 

the Z-direction and the fields itself at the center of magnet (origin of Z direction) 

obtained from the ANSYS 3D calculation as shown in Fig. 4.1. A stable orbit is obtained 

if the transfer matrix satisfies Eq. (4.3). The quadrupole doublets are the only parameter 

that can be adjusted to obtain stable closed orbits. 

   

(a) 

 

(b) 

Figure 4.1: (a) two-dimension bending magnet field data obtained from ANSYS 3D 

calculation and (b) ideal bending magnet field data which is extended from the data at 

the origin of Z direction. 

Reverse field
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Typical tracking results in the global coordinate system are shown in Fig. 4.2. One-

turn transfer matrices can be defined every turn by running N-particle tracking. By 

generating N-particles in the phase space, the elements of the transfer matrix are given 

in terms of the least squares fit by 

 ൬
𝑌௞

𝑌′௞
൰

௡ାଵ
ൌ 𝑀் ൬

𝑌௞

𝑌′௞
൰

௡
ൌ ቀ

𝑚ଵଵ 𝑚ଵଶ
𝑚ଶଵ 𝑚ଶଶ

ቁ ൬
𝑌௞

𝑌′௞
൰

௡
, (4.4.a) 

  𝜒ଶ ൌ ∑ ൜ቀ𝑌௞
ሺ௡ାଵሻ െ 𝑚ଵଵ𝑌௞

ሺ௡ሻ െ 𝑚ଵଶ𝑌ᇱ
௞
ሺ௡ሻቁ

ଶ
൅ ቀ𝑌ᇱ

௞
ሺ௡ାଵሻ െ 𝑚ଶଵ𝑌௞

ሺ௡ሻ െே
௞ୀଵ

𝑚ଶଶ𝑌ᇱ
௞
ሺ௡ሻቁ

ଶ
ൠ ൌ min ,   (4.4.b) 

where k is the particle number and n is the turn number. 

 

Figure 4.2: Typical tracking results. 

4.1.2. Beta function 

The beam size is important in designing an accelerator and one of the contributions 

to the beam size is defined by ሺ𝜀𝛽ሻଵ ଶ⁄ , where 𝜀 is the emittance and 𝛽 is the beta 

function. The beta function determines the beam envelope, which describes the 

outermost betatron motion of the beam. To be derived from Hill’s equation, β depends 

on the lattice of the machine.  and the other Twiss parameters ( and ) are calculated 

from the transfer matrix by 
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𝛽
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൱
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𝑚ଵଵ

ଶ െ2𝑚ଵଵ𝑚ଵଶ 𝑚ଵଵ
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𝑚ଶଵ
ଶ െ2𝑚ଶଶ𝑚ଶଵ 𝑚ଶଶ

ଶ
ቍ ൭

𝛽
𝛼
𝛾

൱

௦భ

,  (4.5) 

where m is the component of the 2 × 2 transfer matrix, M. 

The beta function of the RAFFIA at the injection and extraction energy are shown 

in Fig. 4.3. The vertical beam envelope (V) is much bigger than that for the horizontal 

beam envelope (H). The horizontal and vertical beam envelopes are maximum in the 

QF and QD, respectively. At the injection energy, the value of H maximum, H 

minimum, V maximum, and V minimum are 47.097 m, 0.038 m, 327.62 m, and 1.550 

m, respectively. Meanwhile, at the extraction energy, the value of H maximum, H 

minimum, V maximum, and V minimum are 15.515 m, 1.99 m, 305.481 m, and 1.752 

m. Fig. 4.3 also shows that the beam envelope at the extraction energy is smaller than 

the beam envelope at the injection energy. 
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Figure 4.3: Beta-function in the half lattice of the RAFFIA at injection (upper) and 

extraction energy (lower). 

4.1.3. Dispersion function 

The particles with ∆𝑝/𝑝 perform their horizontal betatron oscillations around a 

different orbit from the reference particle. This motion is described by Eq. (4.1) with 

additional ሺ∆𝑝/𝑝ሻ 𝜌⁄  in the right-hand side of the equation. With this additional term, 

Eq. (4.1) becomes an inhomogeneous differential equation. The general solution of the 

equation is 

 𝑥ሺ𝑠ሻ ൌ 𝑥ఉሺ𝑠ሻ ൅  𝑥௘௤ሺ𝑠ሻ, (4.6) 
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where 𝑥ఉ is the homogeneous solution that represents the betatron motion and 𝑥௘௤ is 

the particular solution that represents the displacement of the betatron oscillation center.  

The particular solution of the inhomogeneous equation is given by 

 𝐷ሺ𝑠ሻ ൌ ඥఉሺ௦ሻ

ଶ ୱ୧୬൫ఓ
ଶൗ ൯

׬ ቀ ଵ

ఘሺ௦ᇱሻ
ቁ ඥ𝛽ሺ𝑠′ሻ cosൣ𝜇

2ൗ െ |Ψሺ𝑠ሻ െ Ψሺ𝑠′ሻ|൧ 𝑑𝑠′
௦ା஼

௦ , (4.7) 

where dispersion function 𝐷 ൌ 𝑥௘௤ ሺ∆𝑝/𝑝ሻ⁄ ,  is the phase advance, and  is the 

betatron phase. The dispersion function can also be calculated with a 3 × 3 transfer 

matrix by 

 ൭
𝐷
𝐷′
1

൱
௦మ

ൌ ቆ
𝑚ଵଵ 𝑚ଵଶ 𝑚ଵଷ
𝑚ଶଵ 𝑚ଶଶ 𝑚ଶଷ

0 0 1
ቇ ൭

𝐷
𝐷′
1

൱
௦భ

, (4.8) 

where D′ is the derivative of D with respect to s, and 𝑚ଵଷ  and 𝑚ଶଷ  are matrix 

components from the particular solution. The dispersion function is calculated by Eq. 

(4.8) from the linear optics particle tracking. 

In the particle tracking simulation, the dispersion function can be approximated by 

comparing a reference particle orbit with an off-momentum particle orbit. Both particle 

orbits are obtained by running the particle tracking code. The distance between the 

reference orbit and off-momentum orbit is defined as 𝑥௘௤ . Multi-turn data without 

acceleration is used to correct the small residual oscillation. 

The dispersion functions of the RAFFIA at the injection and extraction energy are 

shown in Fig. 4.4. The dispersion functions from the linear optics and particle tracking 

simulations show almost consistent results. The discrepancy may come from the kick 

approach in the linear optics when calculating the H-V coupling, as discussed in the 

previous section. Fig. 4.3 shows that the dispersion function at the injection energy is 

much smaller than at the extraction energy. We previously obtained the maximum 

∆𝑝/𝑝 of 0.41% from injecting carbon ions into the fast-cycling induction synchrotron 

(KEK digital accelerator) [39]. Assuming the maximum ∆𝑝/𝑝 at the injection energy 
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is 0.41%, the maximum 𝑥௘௤ is 5.3 mm, which is still sufficient small. Even though the 

maximum dispersion function at the extraction energy is almost three times bigger than 

at the injection energy, ∆𝑝/𝑝  at the extraction energy may decrease due to the 

acceleration. The calculation result also shows that the location of the acceleration 

device in the straight section has a small dispersion function. Therefore, the emittance 

blows up caused by synchro-beta coupling can be avoided  [40]. 

 

 

Figure 4.4: Dispersion function of RAFFIA at injection (upper) and extraction (lower) 

energy. 

4.1.4. Closed orbit distortion 

The magnetic fields of the actual bending magnet may be different from the 

magnetic field that is used in the design. This difference is the magnetic field error (By), 

which generate closed orbit distortion (COD). In a usual synchrotron, the COD arose 

from any unpredicted magnetic field imperfections in the accelerator ring and can be 

minimized by the steering magnet (ST) system in the well-established manner. 

In the RAFFIA, an ideal magnetic field that is uniform along the longitudinal 
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direction of the magnet is used in the orbit design. As a matter of fact, a non-uniform 

magnetic field originated from the finite size of the bending magnet in Z direction is 

induced, as shown in the designed magnetic field in Fig. 4.5. Even though the bending 

magnet design has been optimized, the non-uniformity is still remained more or less. 

This non-uniform magnetic field is considered as the specific magnetic field error (By), 

which induces an intrinsic COD. As shown in Fig. 4.5, a particle experiences a different 

By for each turn because the particle orbit in the bending magnet varies with 

acceleration. Therefore, the COD can be considered as the predictable time-varying 

COD.  

 

Figure 4.5: Magnetic field contour and particle orbits in the bending magnet of the 

RAFFIA. 

In the linear optics approach, the COD can be calculated by the following equation 

 𝑋஼ை஽ሺ𝑠ሻ ൌ  ඥఉሺ௦ሻ

ଶ ୱ୧୬൫ఓ
ଶൗ ൯

∗ ׬ ቄെ
∆஻೤൫௦ᇲ൯

஻ఘ
ቅ ඥ𝛽ሺ𝑠ᇱሻ cosൣ𝜇

2ൗ െ |Ψሺ𝑠ሻ െ
௦ା஼

௦

Ψሺ𝑠ᇱሻ|൧ 𝑑𝑠ᇱ.  (4.9) 

On the other hand, the COD is obtained by subtracting that in the case of the ideal 

magnetic field from a closed orbit in the case of the non-uniform magnetic field. Both 

closed orbits are obtained by running the particle tracking code with zero emittance. The 

closed orbit is obtained by scanning the initial position in the phase-space. The resultant 

CODs of the RAFFIA at the injection energy are shown in Fig. 4.6. The results from the 
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linear optics approach and simulation are in good agreement with each other.  

To compensate for the COD, an additional magnetic field is applied by using four 

steering magnets. For the injection energy, the optimum correction is performed by 

setting the steering magnet field to 0.0277 T m. 

 

Figure 4.6: Bare COD at the injection energy and its corrected one. 

4.2. Analysis of tracking results 

In order to confirm the stable acceleration of cluster ion beams in the transverse 

direction, the macroparticle tracking of a gaussian beam over the entire acceleration 

cycle is carried out, assuming the discrete and constant step acceleration voltage. Here, 

we will show two tracking results using ideal bending magnet field data (Fig. 4.1 (b)) 

and using two-dimension bending magnet field data (Fig. 4.1 (a)). 

4.2.1. Tracking results using ideal bending magnet field data 

Figure 4.7 (a) and (b) show the temporal evolution of the beam sizes from injection 

to extraction, where the horizontal beam size changes with a typical adiabatic dumping 

associated with acceleration and the vertical beam size goes through blow-up in the 

several regions of turns. However, it is noted that any beam loss is not observed in the 

macroparticle tracking. 
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(a) 

 

(b) 

Figure 4.7: The beam size during acceleration in (a) Horizontal monitored at the QF 

and (b) vertical monitored at QD. 

To manifest what causes this beam size growth, the temporal evolution of betatron 

tunes and their foot-prints are evaluated from the tracking results and shown in Fig. 4.8. 

The vertical beam size growth observed around 26, 230, and 970 turns seems to be 

driven by the 4th-order nonlinear resonance, which is usually originated from the 

octupole magnetic component. This nonlinear component is likely in the bending 

magnet with gradient.  

One can conclude that the beam size blow-up is not fatal and still acceptable without 

introducing any countermeasure, although it is desired to further reduce the octupole 

component in the bending magnet design. 
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(a) 

 

(b) 

 

(c) 

Figure 4.8: (a) Horizontal tune vs. turn number, (b) vertical tune vs. turn number, and 

(c) tune foot-print 



40 
 

4.2.2. Tracking results using two-dimension bending magnet field data 

In this macroparticle tracking, the orbit stability is obtained by ramping the gradient 

field of the quadrupole doublets and the magnetic field of the steering magnets as shown 

in Fig. 4.9. Unlike the case of ideal bending magnet field data, the ramping steering 

magnets are required because the large COD is generated due to the field non-uniformity 

along the Z-direction of the bending magnet. 

 

(a) 

 

(b) 

Figure 4.9: Ramping pattern of quadrupole doublet (a) and steering magnet (b). 
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The temporal evolution of the beam sizes from injection to extraction are shown in 

Fig. 4.10 (a) and (b) where both the beam sizes blow-up in the horizontal and vertical 

direction are observed at the several regions of turns. The beam loss is not observed in 

the macroparticle tracking.  

 

(a) 

 

(b) 

Figure 4.10: The beam size during acceleration in (a) Horizontal direction monitored 

at the QF and (b) vertical direction monitored at QD. 

The beam size growths are analyzed from the temporal evolution of betatron tunes 

and their foot-prints which are evaluated from the tracking results and shown in Fig. 

4.11. The horizontal beam growth at 110 and 400 turns caused by crossing half integer 

resonance x = 5/2, and at 1100 turns caused by crossing third integer resonance x = 
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8/3. In the vertical direction, the beam growth at 120 and 300 turns may caused by 

crossing third integer resonance x = 1/3. Although the tunes pass the coupling 

resonance line at early stage of acceleration, the effects are not significant. The beam 

size growths may be attributed to the sextupole field components in the bending magnet.  

 

(a) 

 

(b) 
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(c) 

Figure 4.11: (a) Horizontal tune vs. turn number, (b) vertical tune vs. turn number, and 

(c) tune foot-print. 

4.3. Longitudinal motion 

4.3.1. Injected cluster bunch 

The motion of the particle in the longitudinal direction is mainly determined by the 

acceleration device. The particles continue to be accelerated and confined by the 

acceleration voltage (Vac) and barrier voltage (Vbb). The injected particles are usually 

distributed in the longitudinal direction with slightly different energy (E) and phase () 

to the synchronous particle. In this calculation, the energy of the injected particle is 

assumed to follow a normal distribution with some variance, whereas the initial phase 

of the particle follows a uniform distribution with a width of 50. 

4.3.2. Trapping and acceleration 

The longitudinal motion of the particles that are injected to the RAFFIA are defined 

by the acceleration equation for the induction accelerator  

 ൝
ሺ∆𝐸ሻ௡ାଵ ൌ ሺ∆𝐸ሻ௡ ൅ 𝑞ሾ𝑉௕௕ሺ𝜙௡ሻ െ 𝑉௔௖ሿ

𝜙௡ାଵ ൌ 𝜙௡ ൅ ଶగఎ೙శభ

൫ఉ೙శభ
ೞ ൯

మ
ா೙శభ

ೞ
ሺ∆𝐸ሻ௡ାଵ

,  (4.10) 

where 𝐸 is the particle energy, n is the turn number, q is the particle charge, 𝛽 is the 

relativistic beta, 𝜂 ൌ 𝛼 െ ଵ

ሺఊೞሻమ  is the slippage factor, 𝛾  is the Lorentz factor, 𝛼 ൌ

ଵ

஼
∮

஽ሺ௦ሻ

ఘ
𝑑𝑠 is the momentum compaction factor, and C is the circumference of the closed 

orbit. Superscript s denotes the synchronous particle. The calculation result shows that 

the momentum compaction factor of the RAFFIA increases with particle energy (Fig. 

4.12). This feature of the RAFFIA is different from a synchrotron, which has a constant 
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momentum compaction factor.  

 

Figure 4.12: Momentum compaction factor of the RAFFIA varying with acceleration. 

In this calculation, we set Vbb to be 1 kV, the phase of the beam center, pulse, to 12, 

and the phase distance between two barrier voltages, , to 24. An induction cell 

generates a 10 kV acceleration voltage between the two barrier voltage pulses. p/p and 

 of the injected particles are generated by following a normal distribution and a uniform 

distribution, respectively. The longitudinal motion is calculated from the injection 

energy to the extraction energy, and the phase space distributions at the beginning and 

extraction energy are shown in Fig. 4.13. The calculation result shows that the 

momentum deviation decreases at the extraction energy as expected and two barrier 

voltages confine the beam to a size of . The final longitudinal beam size can be varied 

by controlling . 

 
Figure 4.13: Longitudinal phase plot at injection and extraction. 
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4.3.3. Beam loss 

During acceleration, some particles with high p/p may not be confined. The 

unconfined particles are lost due to a finite momentum aperture of the RAFFIA ring. 

The maximum p/p of the particles that are confined depends on the barrier voltage 

according to 

 ቀ∆௣

௣
ቁ

௠௔௫
ൌ ଵ

ఉೞ ට
ଵ

|ఎ|
ቀ௤௏್್

ாೞ ቁ
ଶఛ೛ೠ೗ೞ೐

బ்
, (4.11) 

where 𝜏௣௨௟௦௘ is the barrier pulse width and T0 is the time period for a single turn. For a 

barrier voltage of 1 kV, ቀ∆௣

௣
ቁ

௠௔௫
 is obtained as 0.58 % at the injection energy. Fig. 4.14 

shows the survival rate of the particles when the standard deviation () of ∆𝑝/𝑝 is 

varied. Because ∆𝑝/𝑝 decreases at each turn, particle loss occurs only at the early stage 

of acceleration. At Vbb = 1 kV, a 100% survival rate can be achieved at a maximum of  

= 0.193 %. 

 

Figure 4.14: Survival rate of the ions as function of  at Vbb=1kV 
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Chapter 5 Space charge effects in the RAFFIA [41] 

 

5.1. Introduction 

Space-charge effects in circular accelerators have long been a major problem in 

synchrotron beam dynamics. In particular, space-charge effects are crucial in high-

intensity beam accelerators such as IFMIF drivers  [42], heavy ion inertial fusion 

drivers  [43], and neutron source drivers for nuclear waste transmutation  [44]. The 

space-charge effects primarily determine the acceptable beam current in circular 

induction accelerators, where extremely low-velocity injection is allowed due to the 

intrinsic nature of induction acceleration  [45], with no limitation on the revolution 

frequency. 

Space-charge effects on beam motion in various accelerators have been extensively 

studied by theoretical and numerical approaches assisted by computer simulations. A 

typical example of a numerical approach is the multi-particle simulation based on the 

particle-in-cell (PIC) scheme  [46]. This method mimics realistic beam motion; 

however, it usually requires an extremely long CPU time, proportional to the total 

number of macroparticles, beam guiding elements, and turn numbers. Other studies have 

used the beam-core envelope equation model (BCEEM). The BCEEM, which is derived 

from the betatron equation perturbed with the linearized space-charge forces, has been 

used to analyze the characteristics of halo formation in a uniform linear focusing 

channel [47,48]. When the global behavior of the beam is more important than the 

motion of individual particles, the BCEEM is suitable, for example, to discuss coherent 

motion, such as the beam-core breathing enhanced by the space-charge forces. The 

BCEEM produces results consistent with the multi-particle simulation results based on 

the PIC method [49]. The BCEEM has also been used to analyze the nonlinear resonance 

and chaotic behavior of intense charged-particle beams in the periodic solenoidal 

focusing channel [50]. However, most studies have discussed the evolution of beam 
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envelope through a uniform linear focusing channel where the beam shape is assumed 

to be cylindrical and a one-dimensional envelope equation is used.  

Recently, a three-dimensional envelope model has been developed to study beam 

halo formation [51] and the envelope instability of a bunched beam in the periodic 

focusing channel with RF focusing in the longitudinal direction [52]. The subject and 

approach discussed in Ref. 52 are close to those in the present study, although the 

discussion in the present study is limited to the transverse direction. The discussion in 

Ref. 52 is not generic due to the specific assumption that the focusing channel consists 

of 1-m-long cells with 0.2-m-long focusing and defocusing quadrupoles. From the 

results in Ref. 39, it is unclear how the beam-core evolves as it passes through the 

periodic cells, how this depends on the beam current, and whether the beam current 

threshold leading to the catastrophic beam-core instability can be predicted clearly.  

In this chapter, we focus on the evaluation of the space-charge effects in the 

transverse direction by using beam-core evolution equation. Coupled nonlinear beam-

core evolution equations are derived by linearizing the perturbed betatron equation, 

assuming the Gaussian beam distribution from injection to a certain time period. 

Justification of the coupled nonlinear beam-core evolution equation is performed by 

using proton acceleration in KEK DA lattice. Beam-core evolution predicted from the 

evaluated nonlinear beam-core evolution equations is justified by macroparticle tracking 

simulations through a long-term revolution for various beam currents. The results are 

presented visually by Poincaré mapping on the (, d/ds) space. Rapid change in the 

beam-core evolution is observed above a beam current threshold. The feature is 

confirmed by the rigorous stability analysis of the coupled and linearized beam-core 

evolution equations. We arrive at an important definition of the space-charge limit for 

the beam-core instability. It is theoretically shown that onset of this instability 

corresponds to period-doubling bifurcation of the elliptical point in the beam-core phase 

space. 
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5.2. Analytically evaluated beam-core evolution equation with space-

charge effects 

A beam model with an elliptic cross-section of the Gaussian distribution is assumed. 

The particle distribution is uniform in the longitudinal direction with a bunch length of 

L. The charge distribution is written as 

  𝜌ሺ𝒓ሻ ൌ ேொ௘

ଶగఙೣఙ೤௅
exp ൤െ ௫మ

ଶఙೣ
మ െ ௬మ

ଶఙ೤
మ൨, (5.1) 

where r is the vector position (x, y, z), x and y are the transverse coordinates, z is the 

longitudinal direction, N is the number of particles included in a bunch, Q is the charge 

state, e is the unit charge, and 𝜎௫ and 𝜎௬ are the standard deviations of the beam size 

in the x- and y-directions, respectively. The space-charge potential, , is analytically 

given in the mathematically closed form [53] by 
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where 𝜀଴ is the permittivity in a vacuum and t is the integration variable. Space-charge 

force F generated by the beam is given by 

 𝑭 ൌ 𝑄𝑒ሺ𝑬 ൅ 𝒗 ൈ 𝑩ሻ ൌ ொ௘𝑬

ఊమ ൌ െ ொ௘

ఊమ 𝛁𝜑, (5.3) 

where E is the space-charge electric field, v is the beam velocity, B is the beam current-

induced magnetic flux density, and  is the Lorentz factor. Thus, the particle motion 

affected by the space-charge forces is described by 

 ቐ

ௗమ௫

ௗ௦మ ൅ 𝐾௫ሺ𝑠ሻ𝑥 ൌ ிೣ
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, (5.4) 

where c is the speed of light,  is the relativistic factor, Kx(s) and Ky(s) are the restoring 

coefficients in the betatron motion in both directions, A is the mass number, and m is the 
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proton rest mass. Substituting Eq. (2) into (4) gives 
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቉

൫ଶఙೣ
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൫ଶఙ೤

మሺ௦ሻା௧൯
య మ⁄ ⋅ 𝑑𝑡

ஶ

଴

ൌ 0

,(5.5) 

where IB is the beam current and 𝐼଴ ൌ ቀ஺

ொ
ቁ ⋅ ସగఌబ௠௖య

௘
 is the Alfven current for an ion 

with mass number A and charge-state Q. Assuming that particles in the beam-core region 

performing small amplitude oscillation are exerted by the linearized space-charge forces, 

the equations of motion for those particles  are  

 ൞

ௗమ௫

ௗ௦మ ൅ ൤𝐾௫ሺ𝑠ሻ- ଶ

ఉయఊయ ⋅
ሺூಳ ூబ⁄ ሻ

ఙೣ൫ఙೣାఙ೤൯
 ൨ 𝑥 ൌ 0

ௗమ௬

ௗ௦మ ൅ ൤𝐾௬ሺ𝑠ሻ- ଶ

ఉయఊయ ⋅
ሺூಳ ூబ⁄ ሻ

ఙ೤൫ఙೣାఙ೤൯
 ൨ 𝑦 ൌ 0

. (5.6) 

The envelope equation that corresponds to Eq. (6) is written straightforwardly as  

 ൞
𝜌ᇳ

௫ ൅ ൤𝐾௫ሺ𝑠ሻ െ ௞

ඥఌೣ⋅ఘೣሺ௦ሻ⋅൛ඥఌೣఘೣሺ௦ሻାඥఌ೤ఘ೤ሺ௦ሻൟ
൨ ⋅ 𝜌௫ ൌ ଵ

ఘೣ
య

𝜌ᇳ
௬ ൅ ൤𝐾௬ሺ𝑠ሻ െ ௞

ඥఌ೤⋅ఘ೤ሺ௦ሻ⋅൛ඥఌೣఘೣሺ௦ሻାඥఌ೤ఘ೤ሺ௦ሻൟ
൨ ⋅ 𝜌௬ ൌ ଵ

ఘ೤
య

, (5.7) 

where 𝑘 ൌ ଶ

ఉయఊయ ⋅ ቀூಳ

ூబ
ቁ , 𝜎௫,௬ ൌ ඥ𝜀௫,௬ ⋅ 𝜌௫,௬ሺ𝑠ሻ , 𝜌௫,௬ ൌ ඥ𝛽௫,௬ , 𝛽௫,௬  is the beta 

function in the transverse direction, and 𝜀௫,௬ is the emittance in the transverse direction, 

corresponding to the 1 beam. Assuming that the beam-core size equals the standard 

deviation of the beam size, the coupled nonlinear beam-core evolution equations are 

derived straightforwardly from Eq. (5.7) as 

 ൞

ௗమఙೣ

ௗ௦మ ൅ 𝐾௫ሺ𝑠ሻ𝜎௫ሺ𝑠ሻ െ ௞

ఙೣሺ௦ሻାఙ೤ሺ௦ሻ
ൌ ఌೣ

మ

ఙೣሺ௦ሻయ

ௗమఙ೤

ௗ௦మ ൅ 𝐾௬ሺ𝑠ሻ𝜎௬ሺ𝑠ሻ െ ௞

ఙೣሺ௦ሻାఙ೤ሺ௦ሻ
ൌ

ఌ೤
మ

ఙ೤ሺ௦ሻయ

. (5.8) 
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The perturbing terms originating from the space charge effects are proportional to k, 

which is a function of IB and 𝛽ଷ. In the KEK-DA,  is very small at injection; therefore, 

the space charge effects are most significant at injection. The coupled nonlinear beam-

core evolution Eq. (5.8) can be easily solved by a numerical method, such as the Runge-

Kutta method. However, there is no proof whether Eq. (5.8) stands over a long period. 

First, we must confirm that the beam-core evolution can be followed by Eq. (5.8) over 

many turns. 

5.3. Justification of the nonlinear beam-core evolution equation by the 

macro particle tracking approach 

The KEK-DA synchrotron lattice with simple 8-fold symmetry that consists of eight 

combined function-type magnets is chosen in order to justify Eq. (5.8). Its parameters 

are given in Appendix A. First, the beam-core evolutions are obtained by solving Eq. 

(5.8) using the Runge-Kutta method, and then they are evaluated by statistically 

manipulating the result of the macroparticle tracking simulation, where 𝜎௫ ൌ ට∑ሺ௫೔ି௫̅ሻమ

ே
 

and 𝜎௬ ൌ ට∑ሺ௬೔ି௬തሻమ

ே
. In the macroparticle tracking simulation based on Eq. (5.6), the 

reference orbit, that is, the s-axis, is divided into segments 2 mm in size. The 4 × 4 

transfer matrix is calculated for every segment, refreshing the standard deviations of x 

and y in the restoring coefficient in Eq. (5.6) at the beginning of each segment, and the 

motions of individual particles are followed by the linear transformation method, 

 𝑋௝ାଵ
௜ ൌ  𝑀∗ ∙ 𝑋௝

௜ (5.9) 

where X is the transverse vector, j is the segment ID along orbit s, and i is the particle 

ID. We call this approach the renormalized space-charge matrix approach (RSMA). A 

Gaussian distribution is used to generate N = 104 macroparticles at the beginning, and 

vector Xi of each macroparticle is tracked by Eq. (5.9). The beam-core information of 

x, ’x, y, and ’y at the fixed observation point on the orbit axis is exported every turn 
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for Poincaré mapping.  

Two Poincaré maps over 300 turns that are obtained by the coupled nonlinear beam-

core evolution approach (CNBCEA) and the RSMA results are shown on the same phase 

space for the same initial conditions and different beam currents in Fig. 5.1. The initial 

beam-core vectors, (x, ’x) and (y, ’y), seem to deviate slightly from the matched 

beam-core vectors, which are defined as the center point of the ellipse. Even so, the two 

Poincaré maps are similar to each other for the assumed beam currents. Even at 300 A, 

the Poincaré maps suggest similar phase space structures. This fact indicates that the 

CNBCEA is justified by the macroparticle tracking. CNBCEA has a major advantage 

that the evaluation time is several seconds, whereas the evaluation time for RSMA is 

129 min on a normal PC.  

   

(a) 

 

(b) 
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 (c) 

 

(d) 

Figure 5.1: Poincaré map of the beam-core evolution evaluated by RSMA and 

CNBCEA for (a) IB = 50 A, (b) IB = 100 A, (c) IB = 200 A, and (d) IB = 300 A. 

5.4. Instability observed in the beam-core phase-space (,d/ds). 

As shown in Fig. 5.1, the beam-core size gradually increases with beam current, 

and the shape of the Poincaré map varies with beam current. The Poincaré maps at beam 

currents up to 200 A still appear elliptical, whereas a phase transition appears to occur 

above 200 A, resulting in a large change in beam-core size. It is interesting to focus 

our attention on the beam-core evolution and its behavior apparently depends on beam 

current. More Poincaré maps for different initial conditions are shown for beam currents 

over 240 A in Fig. 5.2. The mapping colors in Fig. 5.2 correspond to the different initial 

conditions. Resonant structures in the phase space appear above a beam current of 250 

A, indicating the lowest-order nonlinear resonance. The resonant structures become 

deformed as the beam current increases and the chaotic area increases.  
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From the perspective of nonlinear dynamics [54], this phenomenon can be 

explained by period-doubling bifurcation. In Fig. 5.2 (b), the elliptic fixed points 

denoted in red shown in Fig. 5.2 (a) lose stability when Ib ~ 250 A and produce two 

stable periods, resulting in new phase space structures in both directions. This period-

doubling bifurcation is justified by the tangent map in Section 5. The structures persist 

above Ib = 250 A and up to at least 400 A (Figs. 5.2 (b), (c), and (d)). The present 

nonlinear system Eq. (5.8) is coupled to two freedoms of beam-core motion. Diffusion 

of the phase point in the beam-core phase space due to Arnold diffusion may be 

predicted; however, we have no reliable way to verify this. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.2: Poincaré map of the beam-core evolution (colors represents different initial 

condition) evaluated by the CNBCEA for (a) IB = 240 A, (b) IB = 250 A, (c) IB = 

255 A, and (d) IB = 400 A. Plotting is done every 8 cells corresponding to 1 turn 

along the accelerator ring; in the other ward, this is even cell plotting. It is noted that 

Perio-doubling bifurcation becomes clear when including odd cell plotting. 

To understand how the beam-core size evolves quantitatively, the maximum beam-

core sizes of x and y under the initial conditions, which equals the nonperturbed 

matched beam-core (blue profile), are plotted as a function of beam current IB. They 

change from several millimeters to several centimeters (Fig. 5.3). There is a critical point 

around 250 A, suggesting that the nonlinear resonance is excited and the initial 

condition happens to be located in a chaotic region necklaced around the unstable fixed 

point. 
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(a) 

 

 (b) 

Figure 5.3: Maximum beam-core sizes during 300 turns versus the beam current. (a) 

Beam current range of 0 to 400 A and (b) magnification of (a). 

5.5. Stability analysis of the coupled linearized beam-core evolution 

equations 

5.5.1. Coupled linearized beam-core evolution equation 

Here, we solve the coupled nonlinear beam-core evolution equation analytically. 

First, let us look for periodic solutions x(s) and y(s) with a periodicity of the orbit 

circumference C that satisfy 𝜎௫
଴ ሺ0ሻ ൌ 𝜎௫

଴ ሺ𝐶ሻ,  𝜎ᇱ
௫
଴ ሺ0ሻ ൌ 𝜎ᇱ

௫
଴ሺ𝐶ሻ ൌ 0, and 

𝜎௬
଴ ሺ0ሻ ൌ 𝜎௬

଴ ሺ𝐶ሻ, 𝜎ᇱ
௬
଴  ሺ0ሻ ൌ 𝜎ᇱ

௬
଴ ሺ𝐶ሻ ൌ 0  using an approximation technique. Here, 

247 A 247 A 
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we call 𝜎௫
଴  and 𝜎௬

଴  the matched beam-cores with the space-charge perturbation. 

Introducing small deviations ux and uy from the matched beam-core 

 ቊ
𝑢௫ ൌ 𝜎௫ሺ𝑠ሻ െ 𝜎௫

଴ሺ𝑠ሻ
𝑢௬ ൌ 𝜎௬ሺ𝑠ሻ െ 𝜎௬

଴ሺ𝑠ሻ , (5.10) 

substituting 𝜎௫ሺ𝑠ሻ  and y(s) into Eq. (5.8), and leaving the first-order terms with 

respect to ux and uy, we obtain coupled linearized beam-core evolution equations 

 

⎩
⎪
⎨

⎪
⎧ 𝑢௫

ᇱᇱ ൅ ቈ𝐾௫ሺ𝑠ሻ ൅ ௞

൫ఙೣ
బାఙ೤

బ൯
మ ൅ ଷఌೣ

మ

൫ఙೣ
బ൯

ర቉ ⋅ 𝑢௫ ൅ ௞

൫ఙೣ
బାఙ೤

బ൯
మ ⋅ 𝑢௬ ൌ 0

𝑢௬
ᇱᇱ ൅ ௞

൫ఙೣ
బାఙ೤

బ൯
మ ⋅ 𝑢௫ ൅ ቈ𝐾௬ሺ𝑠ሻ ൅ ௞

൫ఙೣ
బାఙ೤

బ൯
మ ൅

ଷఌ೤
మ

൫ఙ೤
బ൯

ర቉ ⋅ 𝑢௬ ൌ 0 
. (5.11) 

Eq. (5.11) is the coupled linear equation with the restoring coefficients that are 

complicated periodic functions of s. We find that this periodicity has an important role 

when Eq. (5.11) is solved. 

5.5.2. Matched beam core 

The matched beam-core is solved with a linear approximation, assuming that the 

third term (space-charge term) on the left-hand side of Eq. (5.8) is smaller than the 

second and the right-hand term. We introduce small deviations 𝛿௫,௬൫≡ 𝜎௫,௬
଴ െ 𝜎௫,௬

ெ ൯ 

from the nonperturbed 𝜎௫,௬
ெ , which is the matched solution of 

 ൫𝜎௫,௬
ெ ൯

ᇱᇱ
൅ 𝐾௫,௬ሺ𝑠ሻ𝜎௫,௬

ெ ൌ
ఌೣ,೤

మ

൫ఙೣ,೤
ಾ ൯

య. (5.12) 

Substituting 𝜎௫,௬
଴  into Eq. (5.8) and leaving the first-order terms, we obtain 

 𝛿௫,௬
″ ൅ ൤𝐾௫,௬ሺ𝑠ሻ ൅ ଷ

൫ఉೣ,೤൯
మ൨ ⋅ 𝛿௫,௬ ൌ ௞

ఙೣ
ಾାఙ೤

ಾ (5.13) 

where 𝛽௫,௬ ൌ
൫ఙೣ,೤

ಾ ൯
మ

ఌೣ,೤
  is the beta function. Fortunately, second-order inhomogeneous 
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linear Eq. (5.13) has particular periodic solutions, 

 𝛿௫,௬ሺ𝑠ሻ ൌ
௞ටఉೣ,೤ሺ௦ሻ

ସ ௦௜௡ ఓೣ,೤
⋅ ׬

ටఉೣ,೤൫௦′൯

ఙೣ
ಾ൫௦′൯ାఙ೤

ಾ൫௦′൯

௦ା஼
௦ ⋅ 𝑐𝑜𝑠ൣ𝜇௫,௬ െ 2ห𝜓௫,௬ሺ𝑠ሻ െ 𝜓௫,௬൫𝑠 ′൯ห൧ 𝑑𝑠 ′ (5.14) 

where 𝜓௫,௬ሺ𝑠ሻ ൌ ׬
ௗ௦′

ఉೣ,೤൫௦′൯

௦
଴   are the betatron phases and 𝜇௫,௬ ൌ ׬

ௗ௦′

ఉೣ,೤൫௦′൯

஼
଴   are the 

betatron phase advances. Details of the derivation are given in Appendix B. 𝛿௫ and 𝛿௬ 

along orbit s at a beam current of 200 A are shown in Fig. 5.4. The matched beam-

cores with the space charge perturbation x,y(0) are compared with the numerically 

obtained matched beam-core in Fig. 5.5. The agreement is sufficient for the beam 

current of current concern.  

 

Figure 5.4: 𝛿௫,௬ at a beam current of 200 A in one sector of the KEK-DA lattice. 

 

Figure 5.5: Matched beam-cores obtained from the linearized beam-core evolution 

equations and numerically obtained matched beam-cores vs. beam current. 
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5.5.3. Transfer matrix per turn and eigenvalue equation 

It is important that all of the restoring coefficients in Eq. (5.11) are analytically 

determined in the previous subsection. If 𝑼 ൌ ൫𝑢௫, 𝑢′௫, 𝑢௬, 𝑢′௬൯
்
is defined, the solution 

of Eq. (5.11) can be written as 

 𝑼𝒏ା𝟏 ൌ 𝐌 ⋅ 𝑼𝒏 (5.15) 

where M is the 4 × 4 transfer matrix per turn. Thus, the stability problem of Eq. (5.11) 

is uniquely attributed to characteristics of transfer matrix M. Matrix elements of transfer 

matrix M are easily obtained by solving Eq. (5.11) up to one turn for four initial 

conditions by the numerical method. The four initial conditions are unit vectors, which 

are defined as 𝑼ሺ𝟏ሻ ൌ ቀ𝑢௫
ሺଵሻ, 𝑢′

௫
ሺଵሻ

, 𝑢௬
ሺଵሻ, 𝑢′

௬
ሺଵሻ

ቁ
்

ൌ ሺ1,0,0,0ሻ் , 𝑼ሺ𝟐ሻ ൌ

ቀ𝑢௫
ሺଶሻ, 𝑢′

௫
ሺଶሻ

, 𝑢௬
ሺଶሻ, 𝑢′

௬
ሺଶሻ

ቁ
்

ൌ ሺ0,1,0,0ሻ் , 𝑼ሺ𝟑ሻ ൌ ቀ𝑢௫
ሺଷሻ, 𝑢′

௫
ሺଷሻ

, 𝑢௬
ሺଷሻ, 𝑢′

௬
ሺଷሻ

ቁ
்

ൌ ሺ0,0,1,0ሻ் , 

and 𝑼ሺ𝟒ሻ ൌ ቀ𝑢௫
ሺସሻ, 𝑢′

௫
ሺସሻ

, 𝑢௬
ሺସሻ, 𝑢′

௬
ሺସሻ

ቁ
்

ൌ ሺ0,0,0,1ሻ் . From the output vector after one 

turn for each set of initial conditions, transfer matrix M is written as  

 𝐌 ൌ

⎝

⎜
⎛

𝑢௫
ሺଵሻሺ𝐶ሻ 𝑢௫

ሺଶሻሺ𝐶ሻ 𝑢௫
ሺଷሻሺ𝐶ሻ 𝑢௫

ሺସሻሺ𝐶ሻ

𝑢௫
ᇱ ሺଵሻሺ𝐶ሻ 𝑢௫

ᇱ ሺଶሻሺ𝐶ሻ 𝑢௫
ᇱ ሺଷሻሺ𝐶ሻ 𝑢௫

ᇱ ሺସሻሺ𝐶ሻ
𝑢௬

ሺଵሻሺ𝐶ሻ 𝑢௬
ሺଶሻሺ𝐶ሻ 𝑢௬

ሺଷሻሺ𝐶ሻ 𝑢௬
ሺସሻሺ𝐶ሻ

𝑢௬
ᇱ ሺଵሻሺ𝐶ሻ 𝑢௬

ᇱ ሺଶሻሺ𝐶ሻ 𝑢௬
ᇱ ሺଷሻሺ𝐶ሻ 𝑢௬

ᇱ ሺଷሻሺ𝐶ሻ⎠

⎟
⎞

 (5.16) 

The stability problem is attributed to the eigenvalue problem in Eq. (5.16). 

Eigenvalues i are solutions of the eigenvalue equation, 

 |𝐌 െ 𝜆𝐈| ൌ ሺ𝜆 െ 𝜆ଵሻ ⋅ ሺ𝜆 െ 𝜆ଶሻ ⋅ ሺ𝜆 െ 𝜆ଷሻ ⋅ ሺ𝜆 െ 𝜆ସሻ ൌ 0 (5.17) 

where I is the unit matrix. Because eigenvector 𝜉௜ corresponds to eigenvalue i with 

the characteristics M𝜉௜ =i𝜉௜, turn by turn evolution of the arbitrary beam-core vector, 

𝒖 ൌ ∑ 𝑐௜ ∙ 𝜉௜
ସ
௜ୀଵ  , is written as 𝑴 ∙ 𝒖 ൌ ∑ 𝑐௜ ∙ 𝑴 ∙ 𝜉௜

ସ
௜ୀଵ ൌ ∑ 𝑐௜ ∙ 𝜆𝒊 ∙ 𝜉௜

ସ
௜ୀଵ . Its evolution 

after the N-th turn is 
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 𝑴ே ∙ 𝒖 ൌ ∑ 𝑐௜ ∙ ሺ𝜆𝒊ሻே ∙ 𝜉௜
ସ
௜ୀଵ  (5.18) 

Eq. (5.18) implies that the stability condition is |𝜆௜| ൌ 1. 

This transfer matrix M is in fact the tangent map around the stable periodic 

solutions (x
0, 0) and (y

0, 0) for the periodic nonlinear coupling system Eq. (5.8). 

5.5.4. Stability diagram 

Eq. (5.17) can be expressed as  

 𝜆ସ െ 𝐶ଷ ⋅ 𝜆ଷ ൅ 𝐶ଶ ⋅ 𝜆ଶ െ 𝐶ଵ ⋅ 𝜆 ൅ 𝐶଴ ൌ 0 (5.19) 

where 

 𝑑𝑒𝑡 𝐌 ≡ 𝐶଴ ൌ 𝜆ଵ ⋅ 𝜆ଶ ⋅ 𝜆ଷ ⋅ 𝜆ସ =1 (5.20) 

 𝐶ଵ ൌ 𝜆ଵ ⋅ 𝜆ଶ ⋅ ሺ𝜆ଷ ൅ 𝜆ସሻ ൅ ሺ𝜆ଵ ൅ 𝜆ଶሻ ⋅ 𝜆ଷ ⋅ 𝜆ସ (5.21) 

  𝐶ଶ ൌ 𝜆ଵ ⋅ 𝜆ଶ ൅ ሺ𝜆ଵ ൅ 𝜆ଶሻ ⋅ ሺ𝜆ଷ ൅ 𝜆ସሻ ൅ 𝜆ଷ ⋅ 𝜆ସ (5.22) 

 Tr𝐌 ≡ 𝐶ଷ ൌ 𝜆ଵ ൅ 𝜆ଶ ൅ 𝜆ଷ ൅ 𝜆ସ (5.23) 

Ci (i = 1–4) are functions of the matrix elements of M. If the eigenvalues are two set 

complex conjugates 𝑟௔ 𝑒𝑥𝑝ሺേ𝑖𝜙௔ሻ  and 𝑟௕ ⋅ 𝑒𝑥𝑝ሺേ𝑖𝜙௕ሻ , 𝑟௔ ൌ 𝑟௕ ൌ 1  must be 

satisfied for stability from Eq. (5.20). In this case, Eqs. (5.22) and (5.23) are written as 

 𝑥 ൅ 𝑦 ൌ 𝐶ଷ (5.24) 

 𝑥 ⋅ 𝑦 ൌ 𝐶ଶ െ 2 (5.25) 

where 𝑥 ൌ 2 𝑐𝑜𝑠 𝜙௔  and 𝑦 ൌ 2 𝑐𝑜𝑠 𝜙௕ . Let us consider the quadratic equation and 

quadratic function with respect to z,  

 𝑧ଶ െ 𝐶ଷ ⋅ 𝑧 ൅ 𝐶ଶ െ 2 ൌ 0 (5.26) 

 𝑓ሺ𝑧ሻ ൌ 𝑧ଶ െ 𝐶ଷ ⋅ 𝑧 ൅ 𝐶ଶ െ 2 ൌ ቀ𝑧 െ ஼య

ଶ
ቁ

ଶ
൅ 𝐶ଶ െ 2 െ ቀ஼య

ଶ
ቁ

ଶ
 (5.27) 

Here, x and y are solutions of Eq. (5.26). For |𝑥| ൑ 2 and |𝑦| ൑ 2, function f(z) has to 
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satisfy relations 

 𝑓ሺെ2ሻ ൌ 2 ൅ 2 ⋅ 𝐶ଷ ൅ 𝐶ଶ ൒ 0 (5.28) 

 𝑓ሺ൅2ሻ ൌ 2 െ 2 ⋅ 𝐶ଷ ൅ 𝐶ଶ ൒ 0 (5.29) 

 𝑓 ቀ஼య

ଶ
ቁ ൌ 𝐶ଶ െ 2 െ ቀ஼య

ଶ
ቁ

ଶ
൑ 0. (5.30) 

When 𝐶ଷ ൒ 0, relations (5.28), (5.29), and (5.30) are consolidated into  

 2 ⋅ 𝐶ଷ െ 2 ൑ 𝐶ଶ ൑ ቀ஼య

ଶ
ቁ

ଶ
൅ 2. (5.31) 

In contrast, when 𝐶ଷ ൏ 0,  

 -2 ⋅ 𝐶ଷ െ 2 ൑ 𝐶ଶ ൑ ቀ஼య

ଶ
ቁ

ଶ
൅ 2. (5.32) 

Fig. 5.6 shows a schematic stability diagram for coefficients C2 and C3 as a function of 

IB. 

 

Figure 5.6: Stability diagram for C2 and C3. 

When the eigenvalues are two real values and one set complex conjugate 

ሺr 𝑒𝑥𝑝ሺേ𝑖ሻሻ, the stable condition implies that Eqs. (5.27) and (5.28) can be written as 

േ2 ⋅ 𝐶ଷ െ 𝐶ଶ 

 𝐶ଷ ൌ േ2 ൅ 2 𝑐𝑜𝑠 𝜙 (5.33) 
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 𝐶ଶ ൌ 2 േ 4 𝑐𝑜𝑠 𝜙. (5.34) 

When 𝜆ଵ ൌ 𝜆ଶ ൌ െ1, coefficients C2 and C3 must satisfy 𝐶ଶ ൌ െ2ሺ𝐶ଷ ൅ 1ሻ, whereas 

when 𝜆ଵ ൌ 𝜆ଶ ൌ 1, 𝐶ଶ ൌ 2ሺ𝐶ଷ െ 1ሻ.  

5.5.5. Stability threshold for the example 

Matrix elements of transfer matrix M for the current example are easily obtained as 

functions of the beam current. Eq. (5.32) is the stability condition because C3 is negative. 

In the other form, the stability condition becomes 

 ൝
𝐶ଶ ൅ 2 ⋅ 𝐶ଷ ൅ 2 ൒ 0

ቀ஼య

ଶ
ቁ

ଶ
൅ 2 െ 𝐶ଶ ൒ 0

. (5.35) 

The stability diagram for the proton beam in the KEK-DA lattice is shown in Fig. 5.7. 

The coefficient of 𝐶ଶ ൅ 2 ⋅ 𝐶ଷ ൅ 2 is less than zero at 253 A. In the range of 390–570 

A, stability condition (5.35) is also not satisfied. The eigenvalue of the matrix in 

Appendix C shows that the instability occurs above a beam current of 252 A. Thus, we 

conclude that the stability threshold is at 252 A. This value is close to the numerically 

obtained threshold of 247 A. The stability threshold is confirmed by analyzing the 

stability condition of the eigenvalue.  

 

Figure 5.7: Stability diagram and the beam current threshold of the proton beam in the 
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KEK-DA. 

As predicted, the stability threshold for the linearized system of the tangent map 

corresponds to the disappearance of stability in the matched solution, (x
0, 0) and (y

0, 

0), suggesting the onset of the lowest-order nonlinear resonance of the original coupled 

nonlinear beam-core evolution system.  

5.6. Scaling law 

As mentioned earlier, the KEK-DA is capable of accelerating any species of ion 

with its possible charge state, including giant cluster ions, such as C-60 or Si-100, where 

mass number A and charge-state Q vary over a wide range. The acceptable beam current 

determined by space charge effects should depend on A and Q. Fortunately, the beam 

current can be predicted from the proton threshold current that has been discussed here. 

As shown in Eq. (5.8), the space-charge effect contribution appears in the third term of 

the equation, which is proportional to parameter k. From the definition of k and I0, the 

beam current is written as 

 𝐼஻ ൌ ସగఌబ௠௖యఉయఊయ௞

ଶ௘
∙ ஺

ொ
. (5.36) 

When the term 
ସగఌబ௠௖య௞

ଶ௘
 is constant, then IB is proportional to 𝛽ଷ𝛾ଷ ஺

ொ
. Assuming the 

same injection energy and same actual emittance in the ring, the beam current threshold 

can be obtained from the threshold of the reference ion beam from scaling equation 

 𝐼஻ଶ
௧௛௥௘௦ ൌ ஺మ

ொమ
∙ ொభ

஺భ
∙ ఉమ

యఊమ
య

ఉభ
యఊభ

య 𝐼஻ଵ
௧௛௥௘௦ (5.37) 

When the reference is a proton beam, its threshold current is 247 A in the KEK-DA 

with an injection voltage of 0.2 MV. From Eq. (37), the threshold beam current for 𝐶଺଴
ାଵ଴ 

(A = 720) is estimated to be 29.5 A.  

Scaling for the emittance is quite clear from Eq. (5.6) in a case where there is no 



63 
 

excessive emittance unbalance between the horizontal and vertical directions; it should 

read 𝐼஻ଶ
௧௛௥௘௦ ൌ ఌమ

ఌభ
∙ 𝐼஻ଵ

௧௛௥௘௦. 

5.7. Space charge effects in the RAFFIA 

Space charge effects of C଺଴
ାଵ଴ acceleration in the RAFFIA are evaluated in order to 

know the beam current threshold. The CNBCEA which has been justified above is used 

for space charge evaluation by assuming the beam emittance 1×10-5 mrad. The Poincare 

maps for the beam core evolution over 300 turns are shown in Fig. 5.8. Up to a certain 

limit of the beam current, the beam core size slightly changes with the stable pattern. 

Beyond some beam current, the beam core evolution becomes chaotic. The maximum 

beam core sizes as a function of beam current are shown in Fig. 5.9, where the beam 

sizes drastically change beyond 225 A. This is the space charge limit. 

  

(a) 

  

(b) 
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(c) 

Figure 5.8: The Poincare map of the beam core evolution observed at the injection 

point for (a) IB = 50 A, (b) IB = 200 A, and (c) IB = 250 A. 

  

Figure 5.9: Maximum beam sizes vs. beam current. 
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Chapter 6 Beam guiding magnets for the RAFFIA 

 

6.1. Bending magnet 

The designed bending magnet and magnetic field distribution on the median plane 

are shown in Fig. 6.1. The important features of this bending magnet is two different 

magnetic field polarity that is generated in the front gap and the main bending regions 

by using single set of coils. The magnet field calculations indicate a peak flux density 

of 0.98 T in the front gap and -1.5 T in the main bending region. The magnet is 5.8 m 

long, 0.7 m high, and 2.8 m wide so as to cover the particle orbit up to the extraction 

energy. The weight of the magnet reaches 62.258 ton.  

 

Figure 6.1: Bending magnet and its magnetic field component By on the median plane. 

For beam stability, beam focusing in the bending magnet is provided by edge 

focusing at the edge of two poles and gradient field in the main magnet region. The 

gradient field in the main magnet can be seen in the Fig. 6.2 (a). As described in the 
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previous chapter, the beam stability of the RAFFIA is also related to the inherent COD. 

The source of COD in the bending magnet is reduced by minimizing the non-uniformity 

of the magnetic field in Z direction. The minimizing is performed by varying pole gap 

as a function of Z coordinate. As shown in Fig. 6.2 (b), the non-uniformity at the reverse 

field and gradient field are obtained with 175 and 250 gauss peak to peak, respectively. 

 

(a) 

 

(b) 

Figure 6.2: Line distribution of the magnetic field at center of longitudinal magnet (Z 
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= 0 m) (a), and near the center of the reverse field region (X = 1.1 m) and near the 

center of the main field region (X = 2 m) (b). 

6.2. Quadrupole magnet 

The quadrupole doublets of the RAFFIA have been known to be operated in the 

ramping pattern. The maximum of the gradient field of the quadrupole focusing and 

defocusing are obtained at 4.132 T/m and 4.461 T/m, respectively. These parameters are 

required in the designing of the quadrupole magnet. Since the quadrupole generates 

hyperbolic-shape flux in the x-y axis as shown in Fig. 6.3, the pole shape of the 

quadrupole is designed to follow the hyperbolic shape. Rogowski shape at the edge of 

the pole is applied to reduce local saturation which will generate eddy loss when 

operated in the ramping pattern.  

 

Figure 6.3: Quadrupole schematic and its cross section. 

The excitation current (I) of the quadrupole magnet is define by the following 

equation  

 𝑁𝐼 ൌ ௚௔మ

ଶఓబ
, (6.1) 

where N is the turn number per coil, g is the field gradient (T/m), a is the bore radius 
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y a
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(m), and 𝜇଴  is the permeability of free space. The inductance of the coils (LQ) is 

calculated by using the following equation [55] 

 𝐿ொ ൌ 8𝜇଴𝑁ଶ𝑦௠௔௫ሺ𝑦௠௔௫ ൅ 2𝑤௖/3ሻ ௟

௔మ, (6.2) 

where 𝑦௠௔௫ is the distance from the magnet center to the coil face (m), 𝑤௖ is the coil 

width (m), and l is the magnetic length (m). The design parameters of the quadrupole 

doublet are summarized in the following Table. 

Table 6.1: Quadrupole doublet parameters. 

Parameter QF QD 

Maximum field 4.132 T/m 4.461 T/m 

Magnetic length (l) 0.5 m 0.5 m 

Maximum aperture r < 0.07 m r < 0.07 m 

Gap height (rbore) 0.088 m 0.088 m 

Max Current 354 A 382 A 

Hollow conductor 7x7 mm
2
 (hole 4x4 mm

2
) 7x7 mm

2
 (hole 4x4 mm

2
) 

Coil Turn 36 turns/pole 36 turns/pole 

Inductance (LQ) 14.0 mH 14.0 mH 

Resistance 108 m 108 m 

 

6.3. Steering magnet 

Steering magnet is a dipole magnet which may be generated in a window frame or 

H-frame type. The excitation coil parameters are simply defined by 

 𝑁𝐼 ൌ ஻௛

ఓబ
, (6.3) 
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where B is the magnetic field (T) and h is the half gap size (m). The steering magnet of 

the RAFFIA ramps to a maximum field of 0.01141 Tm. By this parameter, the excitation 

coil parameters can be determined by Eq. (6.3), and the inductance of the coil is 

determined by [55], 

 𝐿஻ ൌ 𝜇଴
ଶேమሺ௪ೌାଶ௪೎/ଷሻ௟

௛
, (6.4) 

where 𝑤௔is aperture between coil. The design parameters of the steering magnet are 

summarized in the following Table. 

Table 6.2: Steering magnet parameters. 

Parameter Steering magnet 

Maximum field 0.01141 Tm 

Magnetic length (l) 0.3 m 

Maximum aperture |𝑥| < 0.03 m, |𝑦| < 0.06 m 

Gap height (2h) 0.12 m 

Max Current 429 A (bipolar) 

Hollow conductor 7x7 mm
2
 (hole 4x4 mm

2
) 

Coil Turn 11 turns/pole 

Inductance (LB) 0.20 mH 

Resistance 11.6 m 
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Chapter 7 Prototype bending magnet for the RAFFIA (1/8th size 

model) 

7.1. Design of the prototype bending magnet 

A small-scale prototype of the RAFFIA bending magnet with the reverse field strip 

is designed by using Tosca Opera 3D. This is a 1/8th size model of the designed 144 

MeV induction synchrotron 90° bending magnet. The main bending field is excited 

across the inner pole gap and the reverse field is excited across the outer pole gap. The 

shape and the size of the prototype magnet is shown in Fig. 7.1. 

 

Figure 7.1: Schematics of the prototype magnet shape and size. 

The uniformity of the magnetic field along the Z direction is important in the 

RAFFIA bending magnet, as discussed in Chapter 4. The magnet pole surface along the 

Z direction is optimized within a limited physical size, using the four-point spline 

technique to achieve uniformity. The curvature of the line is determined by the distance 

of each point (Fig. 7.2). From the Tosca calculation, the optimized curve is obtained by 

setting the distance of each spline point at the fixed coil current of 116 A (Table 7.1). 

Table 7.1. Optimized spline curve. 

Spline parameters Main field Reverse field 

a (mm) 370 370 
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b (mm) 0.067 0.154 

c (mm) 0.062 0.092 

d (mm) 337 335 

e (mm) 0.066 0.154 

f (mm) 175 175 

 

 

Figure 7.2: Curved pole shape determined by using the four points spline technique. 

It is difficult to reduce the non-uniformity, By, further using the four-point spline 

technique. Although it may be possible to use a multi-point spline containing many more 

points, the size of the reduction will be limited. In addition, highly accurate pole shaping, 

which is required for the multi-point spline technique, exceeds the capability of the 

available numerical control (NC) machine. By is sufficiently small compared with By 

(>100 G) used in the orbit calculation, as discussed in Section 6.1.  

The magnetic flux density profile, in which the peak-to-peak magnetic flux density 

in the y direction (By) is 6 G in the main field region and 8 G in the reverse field region, 

is achieved (Fig. 7.3). By for the optimized pole shape is much lower than that for the 

flat pole shape. 
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(a) 

 

(b) 

Figure 7.3: Relative profiles of magnetic fields along the Z direction in (a) the outer 

pole and (b) the inner pole. 

7.2. Manufacturing the magnet poles and excitation coil 

This prototype magnet was manufactured at KEK. The upper/lower iron cores were 

machined from low-carbon steel and the pole shape was finely processed by the KEK 

machine shop NC machine. The cores have seven bolt holes for bolt tightening (Fig. 

7.4), and the two poles were carefully fitted together with seven screw bolts installed 

using a torque tool.  
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Figure 7.4: Lower part of the iron core (left) and assembled iron core (right).  

Two racetrack-shape coils (Fig 7.5 (b)) were manufactured by a private company 

following our design. Each coil consists of 56 turns, comprising a solid square coil with 

four columns and 14 layers, and the plate with cooling pipes is placed in the middle of 

the coils (Fig. 7.5 (a). The specifications of the excitation coils are listed in Table 7.2. 

Two coils were mounted on the individual poles before they were combined. 

Table 7.2: Specifications of the coils. 

Parameters Unit 

Designed operation current 116 A 

Ampere turns 6494 ATurns/coil 

Coil resistant 0.197  

Operating voltage 27 V 

Water cooling flow rate 3.6 L/min 

Weight  25 kg/coil 

 

 

 (a) (b) 

Bolt holes 

Cooling pipe 

Coil
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Figure 5: (a) Cross-sectional configuration and (b) photograph of the coils. 

7.3. Gap size measurement. 

The KEK machine shop, where the pole surfaces were processed with the NC 

machine, measured the distance from the center of the gap, namely the median plane, to 

the pole surface separately for the upper and lower poles before the magnet was 

assembled. The gap size was determined by summing both measured values. Other gap 

measurements were obtained with a micrometer and a 3D gage (Gage-PLUS, FARO) 

tool after magnet assembly. The measurements were performed only for the outer pole 

gap; it was impossible to measure the inner pole gap size because the gap was too narrow. 

In the micrometer and FARO gage measurements, the measurement position along the 

Z direction was determined manually; thus, the accuracy was lower than that of the KEK 

machine workshop measurement. The gap size measurement results are shown in Fig. 

7.6.   

  

Figure 7.6: Gap size measurement results. 

The measured inner pole gap was apparently asymmetric along the Z direction and the 

gap size was smaller than the designed gap size. Although the gap size obtained by the 

KEK machine shop was slightly different from the micrometer and 3D gage 

measurements, the three gap size measurements were still consistent, suggesting that the 

inner gap size measured at the KEK machine shop was reliable. 

7.4. Gap size reduction associated with excitation 
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Deformation of the outer pole gap was observed when the excitation current was 

turned on. The gap deformation was caused by the magnetic attraction force between 

the two magnet poles. Fig. 7.7 shows the gap size reduction as a function of the 

excitation current. The gap size reduction depends on the clamping force between the 

upper and bottom cores. However, the clamping force was not the main source of the 

gap size reduction.  

 

Figure 7.7: Gap size reduction as a function of excitation current for different 

clamping forces. 

The magnetic field attraction force (F) is written as 

 𝐹 ൌ ஺஻మ

ଶఓబ
 (7.1) 

where A is the pole surface area, B is the magnetic flux density, and o is the permeability 

in a vacuum. By substituting the measured magnetic flux density into Eq. (7.1), F is 

obtained. The observed gap deformation with a clamping torque of 240 N·m is shown 

as a function of F in Fig. 7.8, and we can conclude that the gap deformation is simply 

caused by the magnetic attraction force. 
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Figure 7.8: Experimental gap deformation as a function of the magnetic attraction 

force. 

To minimize gap deformation during magnetization, non-magnetic spacers were 

inserted into the outer pole gap in the magnet edge. This simple counter measure reduced 

the gap deformation greatly; the outer pole gap size at the coil current of 123 A was 

reduced from 600 to 11 m. 

7.5. Magnet field measurement 

The magnetic field measurement was conducted on the median plane of the gap 

under a controlled environment temperature of 24 °C. The set-up of the magnetic field 

measurement using a two-dimensional mapping tool is shown in Fig. 7.9. The mapping 

tool was carefully aligned to the prototype magnet before measurement. The gaussmeter 

was calibrated with the 1000 G standard magnetic field. The magnetic field data was 

collected from the output voltage of the gaussmeter because the galvanometer of the 

gaussmeter has a large minimum scale. The output voltage was calibrated with the 

galvanometer. The relationship between the output voltage and the galvanometer was 

linear (Fig. 7.10). 
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Figure 7.9: Layout of the field measurement stands. 

 

Figure 7.10: Hall probe calibration data. 

7.6. Excitation curve of the magnetic field 

Excitation of the prototype magnet was observed at the central point on the median 

plane of the inner and outer pole gaps. The magnetic field excitation curve is shown 

together with the calculation result in Fig. 7.11. The excitation curve of the main 

magnetic field was different from that of a usual bending magnet; the magnetic field 

increased almost uniformly with the excitation current below 50 A and the gradient 

Vo = 3.1722B ‐ 0.0437
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changed beyond that, but did not achieve saturation. In addition, a unique excitation 

curve in the outer pole gap was observed, where the magnetic field was almost zero up 

to a current of several amperes, and then uniformly increased to saturation with 

increasing excitation current. The magnetic flux results in Fig. 7.12 can be explained as 

follows. 

(1) Most of the magnetic flux in the inner pole gap passes through the closed-return 

yoke at the low current. 

(2) When the excitation current is high enough to create similar magnetic resistance 

in the loop containing the inner pole gap and closed-return yoke and in the loop 

including the inner pole gap and outer pole gap, the magnetic flux passing through 

the outer gap begins to appear.  

(3) Above 100 A, the outer pole achieves saturation because of its small volume.  

The excitation curves obtained from the measurements and calculation are similar (Fig. 

7.11). This characteristic was predicted in the original design of RAFFIA, where the 

magnet is used with fixed maximum fields.  

 

Figure 7.11: Excitation curves of the reverse and main field. 
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Figure 7.12: Magnetic flux lines at different current in the prototype magnet. 

7.7. Magnetic field distribution 

7.7.1. Effects of pole gap deformation 

To determine the field characteristics of the prototype magnet, line mapping was 

performed in the X and Z direction near the peak fields. Mapping data in the X direction 

was taken at the middle of the longitudinal direction of the magnet (Z = 0). The mapping 

position and field data at the excitation current (I) of 123.2 A are shown in Fig. 7.13, 

where the mapping results with and without gap spacers are shown. The effects of gap 

modification, such as the gradient in the main fields and higher flux density in the outer 

pole gap, are clear.  

 

Figure 7.13: Magnetic field profile in the X direction 123.2 A. 

X

Z
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Line mapping in the Z direction was performed to clarify how the field uniformity 

along the Z is determined by the pole surface profile. The line mapping data measured 

at the center of the outer and inner poles at the fixed excitation current of 122.4 A are 

shown in Fig. 7.14. The uniformity along the Z direction is much poorer than that of the 

prototype design. Some of the discrepancies between the actual field and the design can 

be attributed to the difference in the pole gap size. 

 

Figure 7.14: Magnetic field profile along the Z direction at 122.4 A. 

7.7.2. Remaining non-uniformity along the Z direction 

To compare the Tosca calculation and the measurement results, the measured gap 

profile was imported into the Tosca calculation. Gap 1 is the gap size measurement 

obtained at the KEK machine shop and gap 2 is the micrometer measurement. 

Normalization field profiles are given for the inner and outer pole gaps in Fig. 7.15 to 
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show the non-uniformity in the Z direction. There were discrepancies between the actual 

field profile and the calculations. Fig. 7.15 shows that the magnetic field non-uniformity 

from the Tosca calculation is different from the measurements. The difference may be 

caused by a discrepancy between the prototype and simulation model gap size profile. 

This simulation model gap size profile was obtained by interpolating the prototype gap 

size measurement. The sample points for the gap size measurement from the KEK 

machine shop were small (Fig. 7.6), and there was a measurement error from several 

gap size measurements, which may contribute to the discrepancies in the gap size 

profiles. 

   

 (a) (b) 

Figure 7.15: Comparison of the non-uniformity of Tosca calculations and the 

measurements at (a) the inner pole and (b) the outer pole at 122.6 A. 

7.7.3. Explanation of the non-uniformity 

The inner gap size measurement data was not available after magnet assembly and 

at excitation and there was some ambiguity in the gap size profiles of the simulation 

model. Therefore, gap size profile fitting was introduced, where the gap size profiles in 

the simulation model were adjusted to reproduce the measured non-uniformity at a low 

current. The field data measured at 25 A was used for this purpose, where the effects 

induced by any difference in the assumed B-H curve should be negligible. Once the pole 

gap profile was determined at the low excitation current, it was used for the peak current 

excitation of 122.6 A. Calculated and measured fields profiles are compared in Fig. 7.16. 
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The field profile at the peak excitation current was reproduced well for the inner and 

outer poles. The fitted gap size profiles are compared with the measurements in Fig. 

7.17. There was no clear explanation for the discrepancy in the region from –370 to –

190 mm for the outer pole, which seems to be out of the range of measurement errors.    

   

 (a) (b) 

Figure 7.16: Non-uniformity of Tosca calculations and measurements after gap size 

fitting at (a) the inner pole and (b) the outer pole. 

   

 (a) (b) 

Figure 7.17: Fitted gap size profiles at (a) the inner pole and (b) the outer pole. 
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Chapter 8 Conclusion 

 

A standard orbit theory and particle tracking code based on the Runge-Kutta 

approach were established for calculating the generic properties of the RAFFIA. As a 

typical example, the RAFFIA that can accelerate 𝐶଺଴
ଵ଴ା ions from 10 to 144 MeV was 

discussed in detail. The RAFFIA is a unique accelerator designed to produce high-

energy giant cluster ions and is a synchrotron-cyclotron hybrid accelerator. The linear 

orbit theory was justified without loss of generality by the particle tracking code. The 

orbit stability was guaranteed by the properly optimized ramping of the quadrupole 

magnets. The intrinsic closed-orbit distortion caused by the physical limitation of the 

magnet size can be corrected by programmed ramping of a set of the steering magnets. 

The RAFFIA could be operated at 15 Hz. By using the maximum beam envelope, 

assuming a beam emittance of 1  10–5 mrad and a maximum deviation from the 

dispersion function of 5.3 mm, the beam size was calculated as around 6.5 cm and the 

maximum vacuum vessel size was determined as 10 cm. The macroparticle tracking 

result shows that the cluster ion beam remained within the vacuum vessel without 

significant loss and emittance degradation. 

The longitudinal motion in the RAFFIA, which is characterized by the inherent 

feature of variable transition energy, was evaluated by solving the induction acceleration 

equation. The longitudinal beam parameters of the cluster ion bunch were controlled by 

varying the phase distance between two barrier voltage pulses, as well as in an induction 

synchrotron. The acceptable momentum deviation of the injected particles depended on 

the barrier voltage pulse height, as expected. 
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The space charge effects on beam-core evolution and the beam current threshold 

were discussed. The beam-core evolution equation approach, which has the advantage 

of an extremely quick evaluation time, was justified by the macroparticle tracking 

simulation. The beam-core evolution equation is a powerful tool for clarifying what 

happens during high-intensity beam operation and for estimating the space-charge 

limited current for any accelerator ring. Poincaré mapping in the beam core phase space 

(, d/ds) clearly demonstrated how the beam core evolves, depending on the beam 

current parameters. Below the beam current threshold, the Poincaré map was stable 

around the matched beam-core phase point, which is called an elliptic point in nonlinear 

dynamics terminology. Beyond the threshold, the elliptic point disappeared and period-

doubling bifurcation occurred; the beam-core size became large. This beam-core 

instability was rigorously analyzed by using the linearized beam-core evolution 

equation and matrix theory (tangent map). A scaling law was evaluated to determine the 

stability threshold for a cluster ion with various A/Q or injection energy or emittance. A 

𝐶଺଴
ଵ଴ା beam with 10 MeV injection energy and 1  10–5 mrad beam emittance in the 

RAFFIA had a beam current threshold around 225 A. 

A unique feature of the RAFFIA bending magnet is an inverse field strip in the front 

side. This feature was justified by using a prototype bending magnet where the main 

bending field and the reverse field can be excited by a single pair of two coils. The 

magnetic attraction force caused a significant reduction of the gap size because of a long 

nose property in the pole face. The gap reduction must be considered in the design stage. 

Inserting pole gap supports into the gap may be another countermeasure. The non-

uniformity of the magnetic field in the longitudinal direction was minimized by 

designing the pole gap profile using the four-point spline approach. However, in 

manufacturing, the actual gap profile was slightly different from the design. Thus, the 

pole gap must be shaped carefully with a high-precision machine because the 

mechanical profile of the pole gap along the longitudinal direction significantly affects 
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the magnetic field profile. The remaining field non-uniformity due to the limitations of 

the precision machine can be corrected by adding correction coils. 

From this study, it can be concluded that this new accelerator, RAFFIA, can be 

constructed, although further design work on the 90° bending magnet is required.  
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Appendix 

A. Runge-Kutta Solution for Equation of Motion 

 

𝒓ሺ𝑡 ൅ ∆𝑡ሻ ൌ 𝒓ሺ𝑡ሻ ൅ ∆௧

଺
ሺ𝒌ଵ ൅ 2𝒌ଶ ൅ 2𝒌ଷ ൅ 𝒌ସሻ

𝒑ሺ𝑡 ൅ ∆𝑡ሻ ൌ 𝒑ሺ𝑡ሻ ൅ ∆௧

଺
ሺ𝒌ହ ൅ 2𝒌଺ ൅ 2𝒌଻ ൅ 𝒌଼ሻ

ቑ,  

where p, r, and k are vectors in the global cartesian coordinate.  

Here,  

𝒌ଵ ൌ 𝒑ଵ 𝑚𝛾⁄ , 𝒌ହ ൌ 𝑞 ቀ𝑬ሺ𝒓ଵሻ ൅ 𝒑భൈ𝑩ሺ𝒓భሻ

௠ఊ
ቁ, 

𝒌ଶ ൌ 𝒑ଶ 𝑚𝛾⁄ , 𝒌଺ ൌ 𝑞 ቀ𝑬ሺ𝒓ଶሻ ൅ 𝒑మൈ𝑩ሺ𝒓మሻ

௠ఊ
ቁ, 

𝒌ଷ ൌ 𝒑ଷ 𝑚𝛾⁄ , 𝒌଻ ൌ 𝑞 ቀ𝑬ሺ𝒓ଷሻ ൅ 𝒑మൈ𝑩ሺ𝒓యሻ

௠ఊ
ቁ, 

𝒌ସ ൌ 𝒑ସ 𝑚𝛾⁄ , 𝒌଼ ൌ 𝑞 ቀ𝑬ሺ𝒓ସሻ ൅ 𝒑రൈ𝑩ሺ𝒓రሻ

௠ఊ
ቁ, 

𝒑ଵ ൌ 𝒑ሺ𝑡ሻ, 𝒓ଵ ൌ 𝒓ሺ𝑡ሻ, 

𝒑ଶ ൌ ሺ𝒑ሺ𝑡ሻ ൅ 𝒌ହ ∆𝑡 2⁄ ሻ, 𝒓ଶ ൌ ሺ𝒓ሺ𝑡ሻ ൅ 𝒌ଵ ∆𝑡 2⁄ ሻ, 

𝒑ଷ ൌ ሺ𝒑ሺ𝑡ሻ ൅ 𝒌଺ ∆𝑡 2⁄ ሻ, 𝒓ଷ ൌ ሺ𝒓ሺ𝑡ሻ ൅ 𝒌ଶ ∆𝑡 2⁄ ሻ, 

𝒑ସ ൌ ሺ𝒑ሺ𝑡ሻ ൅ 𝒌଻∆𝑡ሻ, 𝒓ସ ൌ ሺ𝒓ሺ𝑡ሻ ൅ 𝒌ଷ∆𝑡ሻ. 
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B. KEK digital accelerator ring parameters 

The KEK-DA ring is shown in Fig. B1. The ring parameters are given in Table 

B1 and the beta function in one sector is shown in Fig. B2. 

Table B1. KEK-DA ring parameters 

Parameter  

Circumference (C) 37.71 m 

Curvature of the bending magnet 

() 

3.3 m 

Field gradient (B’/B) 3.664 m-1 

Bending angle per magnet () ଷ଺଴°

଼
ቀ గ

ଵ଼଴°
ቁ = 

గ

ସ
 

Lattice per sector O-F-D-F-O 

Magnet length 2.5918 m 

Length of the drift space 2.1206 m/sector 
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Figure B1: Layout of the KEK-DA ring. 

 

Figure B2: Beta functions in one cell of the KEK-DA lattice. 
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C. Derivation of the deviation  from the nonperturbed matched beam-

core 

 

The deviation  satisfies 

 𝛿" ൅ ቂ𝐾ሺ𝑠ሻ ൅ ଷ

ሺఉሻమቃ ⋅ 𝛿 ൌ ௞

ఙೣ
ಾାఙ೤

ಾ. (C.1) 

Two independent solutions for 𝛿" ൅ ቂ𝐾ሺ𝑠ሻ ൅ ଷ

ఘబ
రቃ ⋅ 𝛿 ൌ 0 are known to be 𝛿ଵሺ𝑠ሻ ൌ

𝜌଴ cos 2ψሺ𝑠ሻ and 𝛿ଶሺ𝑠ሻ ൌ 𝜌଴ sin 2ψሺ𝑠ሻ  [56], where 𝜓ሺ𝑠ሻ ൌ ׬
ௗ௦ᇲ

ఉሺ௦ᇲሻ

௦
଴  and 𝜌଴ ൌ

ඥ𝛽.  The general solution of Eq. (C.1) is written by 

 𝛿ሺ𝑠ሻ ൌ 𝑐ଵ𝛿ଵሺ𝑠ሻ ൅ 𝑐ଶ𝛿ଶሺ𝑠ሻ ൅ ׬ 𝑓ሺ𝑠′ሻ𝐺ሺ𝑠, 𝑠′ሻ𝑑𝑠′
௦

଴  (C.2) 

where 𝐺ሺ𝑠, 𝑠′ሻ ൌ ଵ

ௐ
ሾെ𝛿ଵሺ𝑠ሻ𝛿ଶሺ𝑠ᇱሻ ൅ 𝛿ଵሺ𝑠′ሻ𝛿ଶሺ𝑠ሻሿ, Wronskian 𝑊 ൌ ฬ

𝛿ଵ 𝛿ଶ

𝛿′ଵ 𝛿′ଶ
ฬ ൌ

𝛿ଵ𝛿′ଶ െ 𝛿ଶ𝛿′ଵ,  and 𝑓ሺ𝑠′ሻ ൌ ௞

ఙೣ
ಾାఙ೤

ಾ. We obtain 𝑊 ൌ 2 and 𝐺ሺ𝑠, 𝑠′ሻ ൌ

ଵ

ଶ
𝜌଴ሺ𝑠ሻ𝜌଴ሺ𝑠′ሻ sin 2ሾψሺ𝑠ሻ െ ψሺ𝑠′ሻሿ. 

Eq. (C.2) can be written in 

 

𝛿ሺ𝑠ሻ ൌ 𝑐ଵ ቀ𝜌଴
ᇱሺ௦ሻ ୡ୭ୱ ଶநሺ௦ሻ െ 2ψᇱሺ௦ሻఘబሺ௦ሻ ୱ୧୬ ଶநሺ௦ሻቁ

൅ 𝑐ଶ ቀ𝜌଴
ᇱሺ௦ሻ ୱ୧୬ ଶநሺ௦ሻ ൅ 2ψ′ሺ𝑠ሻ𝜌଴ሺ𝑠ሻ cos 2ψሺ𝑠ሻቁ

൅
1
2

𝜌଴′ሺ𝑠ሻ න 𝑓ሺ𝑠′ሻ𝜌଴ሺ𝑠′ሻ sin 2ሾψሺ𝑠ሻ െ ψሺ𝑠′ሻሿ 𝑑𝑠′
௦

଴

൅ ψ′ሺ𝑠ሻ𝜌଴ሺ𝑠ሻ න 𝑓ሺ𝑠′ሻ𝜌଴ሺ𝑠′ሻ cos 2ሾψሺ𝑠ሻ െ ψሺ𝑠′ሻሿ 𝑑𝑠′
௦

଴
 

(C.3)
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For periodic solution, then 𝛿 (0) = 𝛿 (C), 𝛿′ሺ0ሻ ൌ 𝛿′ሺ𝐶ሻ and 𝜌଴ሺ0ሻ ൌ 𝜌଴ሺ𝐶ሻ. From 

that condition and assuming 𝜌଴′ሺ0ሻ ൌ 0, we found 

 

𝑐ଵሺ𝜌଴ሺ0ሻ െ 𝜌଴ሺ𝐶ሻ cos 2ψሺ𝐶ሻሻ

ൌ 𝑐ଶ𝜌଴ሺ𝐶ሻ sin 2ψሺ𝐶ሻ

൅
1
2

𝜌଴ሺ𝐶ሻ න 𝑓ሺ𝑠′ሻ𝜌଴ሺ𝑠′ሻ sin 2ሾψሺ𝐶ሻ െ ψሺ𝑠′ሻሿ 𝑑𝑠′
஼

଴
 

(C.4)

 

 

𝑐ଵ

𝜌଴ሺ𝐶ሻ
sin 2ψሺ𝐶ሻ

ൌ 𝑐ଶ ൬
1

𝜌଴ሺ𝐶ሻ
cos 2ψሺ𝐶ሻ െ

1
𝜌଴ሺ0ሻ

൰

൅
1
2

1
𝜌଴ሺ𝐶ሻ

න 𝑓ሺ𝑠′ሻ𝜌଴ሺ𝑠′ሻ cos 2ሾψሺ𝑠ሻ െ ψሺ𝑠′ሻሿ 𝑑𝑠′
஼

଴
 

(C.5)

 

By elimination Eq. (C.4) with respect to Eq. (C.5), we obtain 

 𝑐ଵ  ൌ
1

4 sin 𝜇
ቆන 𝑓ሺ𝑠′ሻ𝜌଴ሺ𝑠′ሻ cosሾെ𝜇 ൅ 2ψሺ𝑠′ሻሿ 𝑑𝑠′

஼

଴
ቇ (C.6)

 

 𝑐ଶ  ൌ
1

4 sin 𝜇
ቆන 𝑓ሺ𝑠′ሻ𝜌଴ሺ𝑠′ሻ sinሾെ𝜇 ൅ 2ψሺ𝑠′ሻሿ 𝑑𝑠′

஼

଴
ቇ (C.7)

 

where ψሺ𝐶ሻ ൌ 𝜇. By substituting Eq. (C.6) and (C.7) into Eq. (C.3), we obtain the 

solution 

𝛿ሺ𝑠ሻ ൌ
𝜌଴ሺ𝑠ሻ

4 sin 𝜇
ቆන

𝑘
𝜎௫

ெ ൅ 𝜎௬
ெ ඥ𝛽ሺ𝑠′ሻ𝜌଴ሺ𝑠′ሻ cosሾ𝜇 െ 2|ψሺ𝑠ሻ െ ψሺ𝑠′ሻ|ሿ 𝑑𝑠′

௦ା஼

଴
ቇ 

. 
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D. The eigenvalue stability of the linearized core evolution equation 

solution 

The beam current threshold can be obtained from the eigenvalues of the transfer 

matrix of the linearized core evolution equation. The eigenvalues of the transfer matrix 

correspond to the beam current is shown in the following table, 

Table D1: Eigenvalues of the matrix corresponding to the beam current 

Ib (A) 
Eigenvalue 

1  2  3  4 

0  ‐ 0.9545 + 0.2980i      ‐ 0.9545 ‐ 0.2980i      ‐ 0.8732 + 0.4874i      ‐ 0.8732 ‐ 0.4874i 

50  ‐ 0.9687 + 0.2480i  ‐ 0.9687 ‐ 0.2480i  ‐ 0.8973 + 0.4415i  ‐ 0.8973 ‐ 0.4415i 

100  ‐ 0.9802 + 0.1980i  ‐ 0.9802 ‐ 0.1980i  ‐ 0.9179 + 0.3967i  ‐ 0.9179 ‐ 0.3967i 

200  ‐ 0.9956 + 0.0937i      ‐ 0.9956 ‐ 0.0937i      ‐ 0.9508 + 0.3098i      ‐ 0.9508 ‐ 0.3098i 

210  ‐ 0.9966 + 0.0821i      ‐ 0.9966 ‐ 0.0821i      ‐ 0.9536 + 0.3011i      ‐ 0.9536 ‐ 0.3011i 

220  ‐ 0.9976 + 0.0697i      ‐ 0.9976 ‐ 0.0697i      ‐ 0.9562 + 0.2925i      ‐ 0.9562 ‐ 0.2925i 

230  ‐ 0.9984 + 0.0562i      ‐ 0.9984 ‐ 0.0562i    ‐ 0.9588 + 0.2839i      ‐ 0.9588 ‐ 0.2839i 

240  ‐ 0.9992 + 0.0403i      ‐ 0.9992 ‐ 0.0403i      ‐ 0.9614 + 0.2752i      ‐ 0.9613 ‐ 0.2752i 

250  ‐ 0.9998 + 0.0165i      ‐ 0.9999 ‐ 0.0165i      ‐ 0.9638 + 0.2665i      ‐ 0.9638 ‐ 0.2665i 

251  ‐ 0.9999 + 0.0122i      ‐ 0.9999 ‐ 0.012i      ‐ 0.9641 + 0.2656i      ‐ 0.9641 ‐ 0.2656i 

252  ‐ 0.9999 + 0.0049i      ‐ 0.9999 ‐ 0.0049i      ‐ 0.9643 + 0.2648i      ‐ 0.9643 ‐ 0.2648i 

253  ‐1.0099547  ‐0.9901435      ‐ 0.9645 + 0.2639i      ‐ 0.9645 ‐ 0.2639i 

254  ‐1.0148944  ‐0.9853241      ‐ 0.9648 + 0.2630i      ‐ 0.9648 ‐ 0.2630i 

255  ‐1.0185351  ‐0.9818023      ‐ 0.9650 + 0.2621i      ‐ 0.9650 ‐ 0.2621i 

260  ‐1.0305284  ‐0.9703759      ‐ 0.9662 + 0.2577i      ‐ 0.9662 ‐ 0.2577i 

270  ‐1.0446169  ‐0.9572888      ‐ 0.9685 + 0.2489i      ‐ 0.9685 ‐ 0.2489i 

280  ‐ 0.9708 + 0.2399i      ‐ 0.9708 ‐ 0.2399i  ‐1.0536112  ‐0.9491168 

290  ‐ 0.9730 + 0.2307i      ‐ 0.9730 ‐ 0.2307i  ‐1.0597411  ‐0.9436267 

300  ‐ 0.9751 + 0.2214i      ‐ 0.9752 ‐ 0.2214i  ‐1.0637455  ‐0.9400739 

 

From Table D1, all the eigenvalues of the transfer matrix up to the beam current of 252 

A are complex conjugate and satisfy the stability condition. Meanwhile, beyond that 

current, one of the eigenvalue is a real and larger than one. Thus, we can conclude that 

the stability threshold is 252 A.   
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