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Bayesian Model Selection under Noise — From Statistical to
Practical Significance
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Significance

In this thesis, wé consider the problem of model selection, and in particular the
situation where modeling assunﬁptions regarding exact zero partial correlations or
exact zero regression coefficients are violated. For the purpose of getting scientific
insights, one is often interested in model selection, i.e. choosing among two or more
candidate models. In this thesis we employ the marginal likelihood for Bayesian model
selection. The marginal likelihood can identify the most plausible model, or a subset of
plausible models, and this way can help the data analyst to gain new insights. One
advantage of the marginal likelihood is that it incorporates a model complexity penalty
that helps to prefer simpler models over complex models. In general, due to the ease of
interpretation, models with low complexity (small dimensional parameter space) are
preferred over complex ones.

However, with smal_l noise on the correlation between variables, or small noise on
linear regression _coefficienté, more complex models tend to be selected independent of
the effect size. This problem is especially pronounced by large sample sizes. In this
thesis, we address this problem by carefully designing priors that absorb overly
complex models with hyper-parameters that control the desirable effect size. In
particular, we address the problem of clustering variables in the Gaussian graphical
model (Chapter 2) and variable selection in linear regression (Chapter 3) under such
small negligible noise. .
In Chapter 2, we address the pioblem of clustering variables in the Gaussian graphical
model. Variable clustering is important for explanatory analysis. However, only few
dedicated methods for variable clustering with the Gaussian graphical model have been
proposed. Even more severe, small insignificant partial correlations due to noise can
dramatically change the clustering result when evaluating for example with the
Bayesian Information Criteria (BIC). We address this issue by proposing a Bayesian
model that accounts for negligible small, but not necessarily zero, partial correlations.
To address the intractable calculation of the marginal likelihood, we propose two
solutions: one based on a variational approxzimation, and another based on Markov
Chain Monte Carlo (MCMC).

Our variational approximation is based on a convex optimization problem for finding

the maximum a-posterior (MAP) estimate and a low-dimensional non-convex

‘optimization problem for identifying the variance around the MAP. Although, the
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former is a convex optimization problem, the high dimension and ﬁositive-definite
constraint on the precision matrix are challenging for standard convex solvers.
Therefore, we adapt a recently proposed 3-block alternating direction method of
multipliers (ADMM) to our problem, which proves to be numerically stable and
sufficiently precise.

Experiments on simulated data shows that, in the no-noise setting, our proposed
performs similar accurate to BIC in identifying the correct clusters, but is considerably
more accurate when there are noisy partial correlations. Furthermore, on real data the
proposed method provides clustering results that are intuitively sensible, which is not
always the case when using BIC and its extensions. Experimentally, we also confirm
that the variational approximation is considerably faster than MCMC while leading to
similar accurate model selections. ‘

In Chapter 3, we extend some of the ideas from Chapter 2 to variable selection under

noise in linear regression. Sparseness of the regression coefficient vector is often a

‘desirable property, since, among other benefits, sparseness improves interpretability.

Therefore, in practice, we may want to trade in a small reduction in prediction accuracy
for an increase in sparseness. The work in (Chipman et al., 2001) introduces two spike-
and-slab priors that can potentially handle such a trade-off between prediction
accuracy and sparseness. For that purpose, they introduce a threshold & on the
magnitude of each regression coefficient. Their first spike-and-slab model couples the

“response variance with the variance on the regression coefficients leading to a closed-

form analytic solution. However, as a result, their method is sensitive to the prior
setting of the response variance and cannot guarantee anymore that the true model is
selected. Their second spike-and-slab prior model solves the latter issue, but at the
cost of losing conjugacy. Another subtle issue common to these spike-and-slab priors is
that they lead to inconsistent Bayes factors. Due to the fact that their spike-and-slab
priors have full support, the Bayes factors of any two models is bounded in probability
for increasingly large sample sizes., This is an undesirable property for Bayesian
hypotheses testing.

Our proposed model decouples the response noise prior variance from the regression
coefficients' prior variance, and thus makes the threshold parameter & more
meaningful than previous work. For example, 5 can be set such that the Mean-Squared
Error (MSE) of the prediction is only little influenced by ignoring covariates with
coefficients’' magnitude smaller than &. In case where the specification of § is difficult,
we show that automatic selection of § via the estimation of MSE can be a viable choice.
Furthermore, by using disjunct support priors, our method guarantees consistent
Bayes factors in the sense that the ratio of the true model's marginal likelihood to any
other models' marginal likelihood converges to infinity for increasingly large sample

sizes. Due to the non-conjugacy of the priors proposed by our method, estimating the

'marginal likelihood explicitly is computationally infeasible. Instead, we propose to
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estimate all model probabilities by introducing a latent variable indicator vector and
sampling from its posterior distribution with an efficient Gibbs sampler.

On several synthetic data sets, we evaluate our proposed method in terms of the ability
to identify the true model. Here, we define the true model as the one correctly
separating all variables into two sets S and C, where § contains all variables that
have non-negligible regression coefficients, and € contains all remaining variables.
We compare our method to the spike-and-slab priors as in EMVS (Rockova and George,
2014), GibbsBvs (Bayarri et al., 2012), thresholding the mean regression coefficient
vector of an horseshoe prior (Carvalho et al., 2010), and (penalized) maximum
likelihood estimation combined with stability selection, AIC, BIC, and its extensions.
In various settings: with/without noise and low/high dimensions the proposed method
leads to consistently good model selection performance, which was not the case for any
other baseline method.

Finally, we evaluated our method also on three real data sets. Concerning the number
of selected variables of our proposed method and all previous methods, we observe a

similar behavior as for the synthetic data set. Furthermore, for § =0, our proposed

- method seems to roughly agree with various previous methods, while the inspection of

the results for § = 0.5, allows us to draw conclusions about the practical relevance of

some of the selected variables.
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