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Abstract

In this thesis, we consider the problem of model selection, and in particular the situation
where modeling assumptions regarding exact zero partial correlations or exact zero regression
coefficients are violated. For the purpose of getting scientific insights, one is often interested in
model selection, i.e. choosing among two or more candidate models. In this thesis, we employ
the marginal likelihood for Bayesian model selection. The marginal likelihood can identify
the most plausible model, or a subset of plausible models, and this way can help the data
analyst to gain new insights. One advantage of the marginal likelihood is that it incorporates a
model complexity penalty that helps to prefer simpler models over complex models. In general,
due to the ease of interpretation, models with low complexity (small dimensional parameter
space) are preferred over complex ones. However, with small noise on the correlation between
variables, or small noise on linear regression coefficients, more complex models tend to be
selected independent of the effect size. This problem is especially pronounced by large sample
sizes. In this thesis, we address this problem by carefully designing priors that absorb overly
complex models with hyper-parameters that control the desirable effect size. In particular, we
address the problem of clustering variables in the Gaussian graphical model (Chapter 2) and
variable selection in linear regression (Chapter 3) under such small negligible noise.

In Chapter 2, we address the problem of clustering variables in the Gaussian graphical
model. Variable clustering is important for explanatory analysis. However, only few dedicated
methods for variable clustering with the Gaussian graphical model have been proposed. Even
more severe, small insignificant partial correlations due to noise can dramatically change the
clustering result when evaluating for example with the Bayesian information criterion (BIC).
We address this issue by proposing a Bayesian model that accounts for negligible small, but
not necessarily zero, partial correlations. To address the intractable calculation of the marginal
likelihood, we propose two solutions: one based on a variational approximation, and another
based on Markov Chain Monte Carlo (MCMC). Our variational approximation is based on
a convex optimization problem for finding the maximum a-posterior (MAP) estimate and a
low-dimensional non-convex optimization problem for identifying the variance around the MAP.
Although, the former is a convex optimization problem, the high dimension and positive-definite
constraint on the precision matrix are challenging for standard convex solvers. Therefore, we
adapt a recently proposed 3-block alternating direction method of multipliers (ADMM) to
our problem, which proves to be numerically stable and sufficiently precise. Experiments on
simulated data shows that, in the no-noise setting, our proposed performs similar accurate to
BIC in identifying the correct clusters, but is considerably more accurate when there are noisy
partial correlations. Furthermore, on real data the proposed method provides clustering results
that are intuitively sensible, which is not always the case when using BIC and its extensions.
Experimentally, we also confirm that the variational approximation is considerably faster than
MCMC while leading to similar accurate model selection.

In Chapter 3, we extend some of the ideas from Chapter 2 to variable selection under noise
in linear regression. Sparseness of the regression coefficient vector is often a desirable property,
since, among other benefits, sparseness improves interpretability. Therefore, in practice, we
may want to trade in a small reduction in prediction accuracy for an increase in sparseness. The
work in (Chipman et al., 2001) introduces two spike-and-slab priors that can potentially handle
such a trade-off between prediction accuracy and sparseness. For that purpose, they introduce
a threshold δ on the magnitude of each regression coefficient. Their first spike-and-slab model

i



ii

couples the response variance with the variance on the regression coefficients leading to a
closed-form analytic solution. However, as a result, their method is sensitive to the prior setting
of the response variance and cannot guarantee anymore that the true model is selected. Their
second spike-and-slab prior model solves the latter issue, but at the cost of losing conjugacy.
Another subtle issue common to these spike-and-slab priors is that they lead to inconsistent
Bayes factors. Due to the fact that their spike-and-slab priors have full support, the Bayes
factors of any two models is bounded in probability for increasingly large sample sizes. This
is an undesirable property for Bayesian hypotheses testing. Our proposed model decouples
the response noise prior variance from the regression coefficients’ prior variance, and thus
makes the threshold parameter δ more meaningful than previous work. For example, δ can
be set such that the Mean-Squared Error (MSE) of the prediction is only little influenced by
ignoring covariates with coefficients’ magnitude smaller than δ. In case where the specification
of δ is difficult, we show that automatic selection of δ via the estimation of MSE can be a
viable choice. Furthermore, by using disjunct support priors, our method guarantees consistent
Bayes factors in the sense that the ratio of the true model’s marginal likelihood to any other
models’ marginal likelihood converges to infinity for increasingly large sample sizes. Due to
the non-conjugacy of the priors proposed by our method, estimating the marginal likelihood
explicitly is computationally infeasible. Instead, we propose to estimate all model probabilities
by introducing a latent variable indicator vector and sampling from its posterior distribution
with an efficient Gibbs sampler. On several synthetic data sets, we evaluate our proposed
method in terms of the ability to identify the true model. Here, we define the true model as
the one correctly separating all variables into two sets S and C, where S contains all variables
that have non-negligible regression coefficients, and C contains all remaining variables. We
compare our method to the spike-and-slab priors as in EMVS (Ročková and George, 2014),
(Bayarri et al., 2012), thresholding the mean regression coefficient vector of an horseshoe prior
(Carvalho et al., 2010), and (penalized) maximum likelihood estimation combined with stability
selection, AIC, BIC, and its extensions. In various settings: with/without noise and low/high
dimensions the proposed method leads to consistently good model selection performance, which
was not the case for any other baseline method. Finally, we evaluated our method also on
three real data sets. Concerning the number of selected variables of our proposed method and
all previous methods, we observe a similar behavior as for the synthetic data set. Furthermore,
for δ = 0, our proposed method seems to roughly agree with various previous methods, while
the inspection of the results for δ = 0.5, allows us to draw conclusions about the practical
relevance of some of the selected variables.
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Chapter 1

Introduction

In this thesis, we consider the problem of model selection, and in particular the
situation where modeling assumptions regarding exact zero partial correlations
or exact zero regression coefficients are violated.

For the purpose of getting scientific insights, one is often interested in
choosing among two or more models.1 In most of the situations, the focus of
model selection is one the following three:

• Choice of the likelihood function. (Frequentist and Bayesian modeling)

• Choice of the relevant covariates or interactions. (Frequentist and Bayesian
modeling)

• Choice of the prior. (Only Bayesian modeling)

The choice of the likelihood function, for example, means to decide between
Gaussian noise and Student-t noise in the linear regression model, or the choice
between a poisson distribution and a negative binomial distribution to model
count data. Though, the choice of the likelihood can impact the final conclu-
sions2, the choice of the likelihood function is often fixed due to computational
convenience or strong prior beliefs about the data generation process.

The focus of this thesis in on the latter two. In Bayesian modeling, the
choice of the relevant covariates and the choice of the prior is often intertwined.
As a simple example, in linear regression, choosing as prior for a regression
coefficient the Dirac measure with point mass at zero, is equivalent to excluding
the corresponding covariate. The priors used in this thesis are of this type of
nature: deciding the prior for the partial correlation (Chapter 2) or regression
coefficient (Chapter 3) will correspond to the variable clustering (Chapter 2) and
choice of relevant covariates (Chapter 3), respectively.3 In frequentist modeling,

1If the focus is only on predictive performance, it is in general advisable to pursue model
averaging rather than model selection, see e.g. (Piironen and Vehtari, 2017).

2For example if the data contains outlier, a student t-distribution can be more robust.
3Of course, the choice of prior can also involve more subtle decisions, like setting the scale

parameter. However, these are often considered as nuisance parameters, that is parameters
which are not of primary interest.
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4 CHAPTER 1. INTRODUCTION

the choice of relevant covariates is restricted to the inclusion of covariates that
are used for the likelihood function.

For reasons, which we discuss in Sections 1.1 and 1.2, we prefer the Bayesian
paradigm to model selection over the frequentist one. In Bayesian model selection
the marginal likelihood is the key quantity. The marginal likelihood can identify
the most plausible model, or a subset of plausible models, and this way can help
the data analyst to gain new insights. In general, due to the ease of interpretation,
models with low complexity (small dimensional parameter space) are preferred
over complex ones. The marginal likelihood incorporates a model complexity
penalty that helps to prefer simpler models over complex models.

However, with small noise on the partial correlations between variables, or
small noise on regression coefficients, more complex models tend to be selected
independent of the effect size. This problem is especially pronounced by large
sample sizes.

In this thesis, we address this problem by carefully designing priors that
absorb overly complex models, and our hyper-parameters control the desirable
effect size. In particular, we address the problem of clustering variables in the
Gaussian graphical model (Chapter 2) and variable selection in linear regression
(Chapter 3) under small negligible noise.

We emphasize that in this thesis, we define robustness to noise as robustness
to the strict sparsity assumption. With strict sparsity assumption, we mean
the assumption that many partial correlations (Chapter 2) or many regression
coefficients (Chapter 3) are exactly zero. In that sense, robustness to noise
is similar to robustness to model misspecification as in (Miller and Dunson,
2018), and the small negligible noise assumption is also sometimes called quasi-
sparseness (Datta and Dunson, 2016).

In the remaining of this chapter, we discuss frequentists and Bayesian methods
to model selection with its origins in hypothesis testing. In Section 1.1, we discuss
major problems of classical and more recent methods for model selection that
are based on the frequentist paradigm. In Section 1.2, we explain how the
Bayesian paradigm to model selection can mitigate some of the problems, while
also introducing new challenges: the choice of priors and the calculation of the
marginal likelihood. The marginal likelihood is key to Bayesian model selection,
and is discussed in more detail in Section 1.2.1. Some other methods for Bayesian
model selection are discussed in Section 1.2.2.

1.1 Frequentist hypothesis testing and model se-
lection

The problem of selecting between two models can be addressed with classical
frequentist hypothesis testing. Traditionally, hypothesis testing defines the null
hypothesis H0 as the baseline, and the alternative hypothesis H1 as the claim
that one is hoping to prove. However, applying classical frequentist hypothesis
testing to model selection has several shortcomings (Lopes and Polson, 2018;
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Weakliem, 2016; Berger and Delampady, 1987):

(I) Asymmetry. The null hypothesis H0 can only be rejected. Not rejection of
H0, does not mean acceptance of H0. In other words, it is not possible to
express evidence in favor of H0. Therefore, the conclusions of hypothesis
testing depend on which model is set as H0 and which one is set as H1.

(II) Lindley’s paradox. Often H0 is not rejected simply due to the sample
size being too small. Conversely, with increasing sample size, H0 tends to
be rejected. In particular, testing for an exact value like H0 : β = 0, is
prone to be rejected for large sample sizes. In such situations Bayesian
hypothesis testing, often leads to a different conclusion, which is sometimes
referred to as Lindley’s paradox (Tsao, 2006).

(III) Only partial order. Performing a hypothesis test for all pairs of models,
does, in general, not lead to a full ranking of all models. In particular, it
can happen that testing model A (= H0) against model B (= H1), and
model B (= H0) against model A (= H1), are both rejected.

For theses reasons, penalized likelihood methods (Weakliem, 2016) are recently
the preferred model selection methods. Penalized likelihood methods like AIC
(Akaike, 1973), BIC (Schwarz, 1978) and EBIC (Chen and Chen, 2008) take the
following form:

−2 log p(y|θ̂) + penalty(n, d) ,

where p(y|θ̂) is the probability of the observed data y given the maximum
likelihood estimate θ̂, and penalty(n, d) is a penalty term that can depend on
the sample size n and the number of parameter values d. Such a criterion can
then be used to rank all methods to identify the best one. However, a major
problem is that they require the maximum likelihood estimate which might
not be defined, in particular in the setting d ≥ n (high-dimensional setting).
Therefore, for the high-dimensional setting, a different methodology, like stability
selection Meinshausen and Bühlmann (2010), is necessary.

1.2 Bayesian hypothesis testing and model selec-
tion

Bayesian methodology resolves some of the issues of frequentist hypothesis
testing. In particular, instead of requiring different approaches for different
problem settings4, Bayesian testing and model selection can both be addressed
with posterior model probabilities. Therefore, some consider the Bayesian
methodology as more coherent (Robert, 2007).

4For example, hypothesis testing using p-values, model selection for d < n using AIC, but
stability selection for model selection with d > p.
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The posterior probability for model M is given by the Bayes’ rule

p(M |y) =
p(y|M) · p(M)∑
M ′ p(y|M ′) · p(M ′)

. (1.1)

For Bayesian hypothesis testing (Kass and Raftery, 1995), we are only
interested in the odds of two models H1 and H0 after having observed data y:

p(H1|y)

p(H0|y)
=
p(y|H1) · p(H1)

p(y|H0) · p(H0)
. (1.2)

Assuming that both models are a-priori equally likely, we see that the right-hand
side reduces to just the posterior-odds between the marginal likelihood (see
Section 1.2.1) under model H1 and H0, which is called the Bayes factor, denoted
as B10. The magnitude of the Bayes factor denotes the amount of evidence for
H1 when compared against H0.

For model selection under 0/1 loss, the actual magnitude is irrelevant, and
we might just select

arg max
M ′

p(M ′|y) ,

which of course is equivalent to arg maxM ′ p(y|M ′) for uniform model priors.
Contrasting to the problems of frequentist hypothesis testing, we have

(I) Symmetry. By definition of the Bayes factor, the evidence in favor of H1

is just the reciprocal of the evidence in favor of H0.

(II) Lindley’s paradox. When testing for an exact value like H0 : β = 0 against
H1 : β 6= 0, the posterior probability now tends to be larger for H0 than
for H1. In settings where β = 0 corresponds to a simpler model, this can
be considered as a kind of Occam’s razor. However, this can also be a
problem. In general, for full support priors, the posterior odds for H0 are
still not much larger than 1, even if H0 is true and the sample size n is
large. In other words, even if H0 is true and n is large, the evidence for
H0 might be small. This problem has been pointed out in (Johnson and
Rossell, 2010), and might be resolved using non-local alternative priors. In
this example, if H1 uses a prior p(β) such that p(β) = 0 in some non-empty
interval around β = 0, the prior is called a non-local alternative prior
(Johnson and Rossell, 2010). The idea is related to disjunct support priors,
which we will introduce in Chapter 3.

(III) Total order. Every pair of model can be compared, and, in general, with
probability 1, we have either p(H1|y) > p(H0|y) or p(H1|y) < p(H0|y).

Therefore, we see that some of the problems in particular (I) and (III) are
resolved by the Bayesian paradigm to hypothesis testing (and model selection).
However, (II) Lindley’s paradox also exemplifies the problem of the dependence
on the prior probabilities that need to be defined over all parameters of interest.
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Compared to the frequentist paradigm, the d ≥ n setting does not require any
new methodology, though the final results are more sensitive to the choice of the
priors.

The Bayesian paradigm, also faces a computational problem. In Bayesian
hypothesis testing and model selection, the key quantity that needs to be
calculated is p(y|M) which is called the marginal likelihood. Except for over-
simplified models, calculation of p(y|M) is, in general, analytically intractable,
and computational methods are required.

1.2.1 Marginal likelihood
In this section, we review some of the properties of the marginal likelihood for
model selection. For illustration purposes, let us denote by y all observed data
and by θ all model parameters. Then the marginal likelihood of a model M is
defined as

p(y|M) =

∫
p(y|θ,M)p(θ|M)dθ . (1.3)

Furthermore, let us define

θ0,M := arg max
θ

p(y|θ,M) .

From the definition in (1.3), we see that the marginal likelihood is high if the
model explains the data well, i.e. high likelihood p(y|θ0,M ,M). Moreover,
assuming a proper prior, the marginal likelihood also punishes model complexity,
as we show in the following. We assume a proper prior, i.e.

1 =

∫
p(θ|M)dθ . (1.4)

Furthermore, let us assume two nested models M1 and M2, where M2 con-
tains model M1, i.e. the parameter space of M2 is larger than M1, but
p(y|θ0,M1

,M1) = p(y|θ0,M2
,M2). Furthermore, let us assume factorized priors

of the form

p(θ|M1) =

d1∏
i=1

p(θi) ,

and

p(θ|M2) =

d2∏
i=1

p(θi) ,

where d2 > d1. For illustration, let us also assume that the likelihood is roughly
constant in the vicinity of some non-empty open set A1 around θ0,M1 and A2

around θ0,M2
, i.e.

∀θ1 ∈ A1, θ2 ∈ A2 : p(y|θ1,M1) = p(y|θ2,M2) ≈ m,
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and negligible in all other parts of the parameter space. Although, these are
strong assumptions, they are actual guaranteed for large sample size n due to
the Bayesian Central limit theorem (subject to some smoothness conditions on
the likelihood and prior, see e.g. Ando (2010)). Then, the marginal likelihood
for M1 is given by

p(y|M1) =

∫
p(y|θ,M1)p(θ|M1)dθ

≈
∫
A1

p(y|θ,M1)p(θ|M1)dθ

≈ m ·
∫
A1

p(θ1)dθ1 .

Analogously, we have

p(y|M2) ≈ m ·
∫
A2

p(θ)dθ

= m ·
(∫

A1

p(θ1)dθ1

)
·
(∫

A3

p(θ3)dθ3

)
,

for some set A3 such that A2 = A1 × A3. Due to Equation (1.4), we have,
in general, that

∫
A3
p(θ3)dθ3 < 1 and therefore this implies that p(y|M2) <

p(y|M1). In plain words, the overly complex modelM2 has lower prior probability
around the optimal parameters than model M1, and therefore the marginal
likelihood is smaller for M2 than for M1. This property can also be expressed
in more general terms, and is often referred to as the Bayesian Occam’s razor
(Barber, 2012).

Even if there is nothing such that a true model, the marginal likelihood can
also indicate performance on held-out data (Kass and Raftery, 1995; van der
Wilk et al., 2018):

p(y|M) = p(yn|y1 . . . , yn−1,M) · p(yn−1|y1 . . . , yn−2,M) · . . . · p(y2|y1,M) · p(y1|M) ,

showing that the marginal likelihood will be high, if the model trained on one
part of the data predicts well other samples from the data.

Remark We remark that the above example of factorized priors is somehow
simplified. However, in many situations where there is no knowledge a-priori,
this is a reasonable and common choice. Indeed, for our proposed models in
Chapter 2 and 3, we will employ such factorized priors. Finally, we remark
that the fractional Bayes factor approach allows to generalize the concept of the
marginal likelihood to improper priors, e.g. (O’Hagan, 1995). Though, in this
thesis, all of our models described in Chapter 2 and 3 employ weakly informative
proper priors.
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1.2.2 Other Bayesian approaches to model selection
Cross-validation and related predictive evaluation criteria

Gelman et al. (2013) points out that the marginal likelihood can be very sensitive
to the choice of the prior, and therefore recommends the use of predictive
evaluation criteria. In particular, they recommend cross-validation (CV) and
less computationally expensive alternatives like the Akaike information criterion
(AIC) (Akaike, 1973), and the Watanabe-Akaike information criterion (WAIC)
(Watanabe, 2013). If increasing prediction accuracy is the sole objective, we agree
that cross-validation can be a better choice for model selection than the usage of
the marginal likelihood. However, cross-validation tends to prefer overly complex
models. For example, in linear regression, the horseshoe prior (Carvalho et al.,
2010) provides excellent performance in terms of mean-squared error on held-out
test data. However such modeling includes all variables and as such does not
provide any decision on the set of relevant and not-relevant variables. Although
our main focus is on model selection, we note that there is also some empirical
evidence that the marginal likelihood approach performs better than CV and
WAIC, in terms of selecting a sparse model with good predictive performance
(Piironen and Vehtari, 2017).

C-posterior

Instead of using model posterior probabilities (or the marginal likelihood), Miller
and Dunson (2018) proposes to use power posteriors for model selection. Power
posteriors are similar to ordinary posterior distributions, but with the difference
that the likelihood was raised to a power c. As such, power posteriors cannot be
interpreted as probabilities (or probability density functions) anymore. Their
motivation is similar to ours: making model selection robust to small deviations
from the model assumptions. One advantage of their method is that it is model
agnostic, in the sense that it can be used with any existing Bayesian model and no
explicit noise model needs to be defined. On the contrary, the hyper-parameter
c which provides a trade-off between model complexity and model fit, is difficult
to interpret, and needs to be manually calibrated. Furthermore, their method
does not allow anymore the computation of a marginal likelihood, but needs to
resort to specialized MCMC methods.

We note that our proposed methods in Chapter 2 and Chapter 3, are very
different from the approach taken by c-posteriors: we define explicit noise models
with priors that control the degree of misspecification that we are willing to
tolerate.
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Chapter 2

Robust Bayesian Model
Selection for Variable
Clustering with the Gaussian
Graphical Model

2.1 Introduction

The Gaussian graphical model (GGM) has become an invaluable tool for detecting
partial correlations between variables. Assuming the variables are jointly drawn
from a multivariate normal distribution, the sparsity pattern of the precision
matrix reveals which pairs of variables are independent given all other variables
(Anderson, 2004). In particular, we can find clusters of variables that are mutually
independent, by grouping the variables according their entries in the precision
matrix.

For example, in gene expression analysis, variable clustering is often con-
sidered to be helpful for data exploration (Palla et al., 2012; Tan et al., 2015).

However, in practice, it can be difficult to find a meaningful clustering due
to the noise of the entries in the partial correlations. The noise can be due to
the sampling, this is in particular the case when n the number of observations is
small, or due to small non-zero partial correlations in the true precision matrix
that might be considered as insignificant. Here in this work, we are particularly
interested in the latter type of noise. In the extreme, small partial correlations
might lead to a connected graph of variables, where no grouping of variables can
be identified. For an exploratory analysis such a result might not be desirable.

As an alternative, we propose to cluster variables, such that the partial
correlation between any two variables in different clusters is negligibly small,
but not necessarily zero. The open question, which we try to address here, is

11
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whether there is a principled model selection criteria for this scenario.
For example, the Bayesian Information Criteria (BIC) (Schwarz, 1978) is

a popular model selection criteria for the Gaussian graphical model. However,
in the noise setting it does not have any formal guarantees. As a solution,
we propose here a Bayesian model that explicitly accounts for small partial
correlations between variables in different clusters.

Under our proposed model, the marginal likelihood of the data can then be
used to identify the correct (if there is a ground truth in theory), or at least
a meaningful clustering (in practice) that helps analysis. Since the marginal
likelihood of our model does not have an analytic solution, we provide two
approximations. The first is a variational approximation, the second is based on
MCMC.

Experiments on simulated data show that the proposed method is similarly
accurate as BIC in the no noise setting, but considerably more accurate when
there are noisy partial correlations. The proposed method also compares favorably
to two previously proposed methods for variable clustering and model selection,
namely the Clustered Graphical Lasso (CGL) (Tan et al., 2015) and the Dirichlet
Process Variable Clustering (DPVC) (Palla et al., 2012) method.

Our paper is organized as follows. In Section 2.2, we discuss previous works
related to variable clustering and model selection. In Section 2.3, we introduce a
basic Bayesian model for evaluating variable clusterings, which we then extend
in Section 2.4.1 to handle noise on the precision matrix. For the proposed
model, the calculation of the marginal likelihood is infeasible and we describe
two approximation strategies in Section 2.4.2. Furthermore, since enumerating
all possible clusterings is also intractable, we describe in Section 2.4.3 an heuristic
based on spectral clustering to limit the number of candidate clusterings. We
evaluate the proposed method on synthetic and real data in Sections 2.5 and
2.6, respectively. Finally, we discuss our findings in Section 2.7.

2.2 Related work

Finding a clustering of variables is equivalent to finding an appropriate block
structure of the covariance matrix. Recently, Tan et al. (2015) and Devijver and
Gallopin (2018) suggested to detect block diagonal structure by thresholding the
absolute values of the covariance matrix. Their methods perform model selection
using the mean squared error of randomly left out elements of the covariance
matrix (Tan et al., 2015), and a slope heuristic (Devijver and Gallopin, 2018).

Also several Bayesian latent variable models have been proposed for this task
(Marlin and Murphy, 2009; Sun et al., 2014; Palla et al., 2012). Each clustering,
including the number of clusters, is either evaluated using the variational lower
bound (Marlin and Murphy, 2009), or by placing a Dirichlet Process prior over
clusterings (Palla et al., 2012; Sun et al., 2014). However, all of the above
methods assume that the partial correlations of variables across clusters are
exactly zero.

An exception is the work in (Marlin et al., 2009) which proposes to regularize
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the precision matrix such that partial correlations of variables that belong to
the same cluster are penalized less than those belonging to different clusters.
For that purpose they introduce three hyper-parameters, λ1 (for within cluster
penalty), λ0 (for across clusters), with λ0 > λ1, and λD for a penalty of the
diagonal elements. The clusters do not need to be known a-priori and are
estimated by optimizing a lower bound on the marginal likelihood. As such their
method can also find variable clusterings, even when the true partial correlation
of variables in different clusters is not exactly zero. However, the clustering
result is influenced by three hyperparameters λ0, λ1, and λD which have to be
determined using cross-validation.

Recently, the work in (Sun et al., 2015; Hosseini and Lee, 2016) relaxes the
assumption of a clean block structure by allowing some variables to correspond
to two clusters. The model selection issue, in particular, determining the number
of clusters, is either addressed with some heuristics (Sun et al., 2015) or cross-
validation (Hosseini and Lee, 2016).

2.3 The Bayesian Gaussian graphical model for
clustering

Our starting point for variable clustering is the following Bayesian Gaussian
graphical model. Let us denote by d the number of variables, and n the number
of observations. We assume that each observation x ∈ Rd is generated i.i.d. from
a multivariate normal distribution with zero mean and covariance matrix Σ.
Assuming that there are k groups of variables that are mutually independent, we
know that, after appropriate permutation of the variables, Σ has the following
block structure

Σ =

 Σ1 0 0

0
. . . 0

0 0 Σk

 ,

where Σj ∈ Rdj×dj , and dj is the number of variables in cluster j.
By placing an inverse Wishart prior over each block Σj , we arrive at the

following Bayesian model

p(x1, ...,xn,Σ|{νj}j , {Σj,0}j , C)

=

n∏
i=1

Normal(xi|0,Σ)

k∏
j=1

InvW(Σj |νj ,Σj,0) ,
(2.1)

where νj and Σj,0, are the degrees of freedom and the scale matrix, respectively.
We set νj = dj + 1,Σj = Idj leading to a non-informative prior on Σj . C denotes
the variable clustering which imposes the block structure on Σ. We will refer to
this model as the basic inverse Wishart prior model.

Assuming we are given a set of possible variable clusterings C , we can then
choose the clustering Ĉ that maximizes the posterior probability of the clustering,
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i.e.

Ĉ = arg max
C∈C

p(C|X ) = arg max
C∈C

p(X |C) · p(C) , (2.2)

where we denote by X the observations x1, ...,xn, and p(C) is a prior over the
clusterings which we assume to be uniform. Here, we refer to p(X |C) as the
marginal likelihood (given the clustering). For the basic inverse Wishart prior
model the marginal likelihood can be calculated analytically, see e.g. (Lenkoski
and Dobra, 2011).

2.4 Proposed method

In this section, we introduce our proposed method for finding variable clusters.
First, in Section 2.4.1, we extend the basic inverse Wishart prior model from

Equation (2.1) in order to account for non-zero partial correlations between
variables in different clusters. Given the proposed model, the marginal likelihood
p(X |C) does not have a closed form solution anymore. Therefore, in Sections
2.4.2 and 2.4.2, we discuss two different methods for approximating the marginal
likelihood. The first method is based on a variational approximation around
the maximum a posteriori (MAP) solution. The second method is an MCMC
method based on Chib’s method (Chib, 1995; Chib and Jeliazkov, 2001). The
latter has the advantage of being asymptotically correct for large number of
posterior samples, but at considerably high computational costs. The former is
considerably faster to evaluate and experimentally produces solutions similar to
the MCMC method (see comparison in Section 2.5.3).

Finally, in Section 2.4.3, we propose to use a spectral clustering method to
limit the clustering candidates to a set C ∗, where C ∗ ⊆ C . Based on this subset
C ∗, we can then select the model maximizing the posterior probability (as in
Equation (2.2)), or can also calculate approximate posterior distributions over
clusterings. We restrict the hypotheses space to C ∗, since even for a moderate
number of variables, say d = 40, the size of the hypotheses space |C | is > 1036.
Therefore, MCMC sampling over the hypotheses space could also only explore a
small subset of the whole hypotheses space, but at higher computational costs
(see also Hans et al. (2007); Scott and Carvalho (2008) for a discussion on related
high-dimensional problems).

2.4.1 A Bayesian Gaussian graphical model for clustering
under noisy conditions

In this section, we extend the Bayesian model from Equation (2.1) to account
for non-zero partial correlations between variables in different clusters. For
that purpose we introduce the matrix Σε ∈ Rd×d that models the noise on the
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precision matrix. The full joint probability of our model is given as follows:

p(x1, ...,xn,Σ,Σε|νε,Σε,0, {νj}j , {Σj,0}j , C)

=

n∏
i=1

Normal(xi|0,Ξ)

· InvW(Σε|νε,Σε,0)

k∏
j=1

InvW(Σj |νj ,Σj,0) ,

(2.3)

where Ξ := (Σ−1 + βΣ−1
ε )−1, and

Σ :=

 Σ1 0 0

0
. . . 0

0 0 Σk

 .

As before, the block structure of Σ is given by the clustering C. The proposed
model is the same model as in Equation (2.1), with the main difference that the
noise term βΣ−1

ε is added to the precision matrix of the normal distribution.
1 � β > 0 is a hyper-parameter that is fixed to a small positive value

accounting for the degree of noise on the precision matrix. Furthermore, we
assume non-informative priors on Σj and Σε by setting νj = dj + 1,Σj = Idj
and νε = d+ 1,Σε,0 = Id.

Remark on the parameterization We note that as an alternative param-
eterization, we could have defined Ξ := (Σ−1 + Σ−1

ε )−1, and instead place a
prior on Σε that encourages Σ−1

ε to be small in terms of some matrix norm.
For example, we could have set Σε,0 = 1

β Id. We chose the parameterization
Ξ := (Σ−1 + βΣ−1

ε )−1, since it allows us to set β to 0, which recovers the basic
inverse Wishart prior model.

2.4.2 Estimation of the marginal likelihood
The marginal likelihood of the data given our proposed model can be expressed
as follows:

p(x1, ...,xn|νε,Σε,0, {νj}j , {Σj,0}j , C)

=

∫
Normal(x1, ...,xn|0,Ξ)

·
k∏
j=1

InvW(Σj |νj ,Σj,0)d(Σj � 0)

· InvW(Σε|νε,Σε,0)d(Σε � 0) .

where Ξ := (Σ−1 + βΣ−1
ε )−1.

Clearly, if β = 0, we recover the basic inverse Wishart prior model, as
discussed in Section 2.3, and the marginal likelihood has a closed form solution due
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to the conjugacy of the covariance matrix of the Gaussian and the inverse Wishart
prior. However, if β > 0, there is no analytic solution anymore. Therefore, we
propose to either use an estimate based on a variational approximation (Section
2.4.2) or on MCMC (Section 2.4.2). Both of our estimates require the calculation
of the maximum a posterior (MAP) solution which we explain first in Section
2.4.2.

Remark on BIC type approximation of the marginal likelihood We
note that for our proposed model an approximation of the marginal likelihood
using BIC is not sensible. To see this, recall that BIC consists of two terms: the
data log-likelihood under the model with the maximum likelihood estimate, and
a penalty depending on the number of free parameters. The maximum likelihood
estimate is

Σ̂, Σ̂ε = arg max
Σ,Σε

n∑
i=1

logNormal(xi|0, (Σ−1 + βΣ−1
ε )−1) ,

where S is the sample covariance matrix. Note that without the specification
of a prior, it is valid that Σ̂, Σ̂ε are not positive definite as long as the matrix
Σ̂−1 + βΣ̂−1

ε is positive definite. Therefore Σ̂−1 + βΣ̂−1
ε = S−1, and the data

likelihood under the model with the maximum likelihood estimate is simply∑n
i=1 logNormal(xi|0, S), which is independent of the clustering. Furthermore,

the number of free parameters is (d2 − d)/2 which is also independent of the
clustering. That means, for any clustering we end up with the same BIC.

Furthermore, a Laplacian approximation as used in the generalized Bayesian
information criterion (Konishi et al., 2004) is also not suitable, since in our case
the parameter space is over the positive definite matrices.

Calculation of maximum a posterior solution

Finding the exact MAP is crucial for the quality of the marginal likelihood
approximation that we will describe later in Sections 2.4.2 and 2.4.2. In this
section, we explain in detail how the corresponding optimization problem can be
solved with a 3-block ADMM method, which is guaranteed to converge to the
global optimum.

First note that

p(Σ,Σε|x1, ...,xn, νε,Σε,0, {νj}j , {Σj,0}j , C)
∝ Normal(x1, ...,xn|0,Ξ)

·
k∏
j=1

InvW(Σj |νj ,Σj,0)

· InvW(Σε|νε,Σε,0)

where Ξ := (Σ−1 + βΣ−1
ε )−1.
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Therefore,

log p(Σ,Σε|x1, ...,xn, νε,Σε,0, {νj}j , {Σj,0}j , C) =

− n

2
log |Ξ| − n

2
trace(SΞ−1)

− νε + d+ 1

2
log |Σε| −

1

2
trace(Σε,0Σ−1

ε )

+

k∑
j=1

(
− νj + dj + 1

2
log |Σj | −

1

2
trace(Σj,0Σ−1

j )
)

+ const

=
1

2

(
n · log |Ξ−1| − n · trace(SΞ−1)

+ (νε + d+ 1) · log |Σ−1
ε | − trace(Σε,0Σ−1

ε )

+

k∑
j=1

(
(νj + dj + 1) · log |Σ−1

j | − trace(Σj,0Σ−1
j )
))

+ const ,

where the constant is with respect to Σε,Σ1, . . .Σk, and dj denotes the number
of variables in cluster j.

Solution using a 3-block ADMM Finding the MAP can be formulated as
a convex optimization problem by a change of parameterization: by defining
X := Σ−1, Xj := Σ−1

j , and Xε := Σ−1
ε , we get the following convex optimization

problem:

minimize
X�0,Xε�0

n · trace(S(X + βXε))− n · log |X + βXε|

+ trace(AεXε)− aε · log |Xε|

+

k∑
j=1

(
trace(AjXj)− aj · log |Xj |

)
,

(2.4)

where, for simplifying notation, we introduced the following constants:

Aε := Σε,0 ,

aε := νε + d+ 1 ,

Aj := Σj,0 ,

aj := νj + dj + 1 .

From this form, we see immediately that the problem is strictly convex jointly
in Xε and X.1

1Since −log|X| is a strictly convex function and trace(XS) is a linear function.
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We further reformulate the problem by introducing an additional variable Z:

minimize f(Xε, X1, . . . , Xk, Z)

subject to
Z = X + βXε ,

Xε, X1, . . . , Xk, Z � 0 ,

with

f(Xε, X1, . . . , Xk, Z) :=n · trace(SZ)− n · log |Z|
+ trace(AεXε)− aε · log |Xε|

+

k∑
j=1

(
trace(AjXj)− aj · log |Xj |

)
.

It is tempting to use a 2-Block ADMM algorithm, like e.g. in (Boyd et al.,
2011), which leads to two optimization problems: update of X,Xε and update
of Z. However, unfortunately, in our case the resulting optimization problem
for updating X,Xε does not have an analytic solution. Therefore, instead, we
suggest the use of a 3-Block ADMM, which updates the following sequence:

Xt+1 := arg min
X1,...,Xk�0

k∑
j=1

(
trace(AjXj)− aj · log |Xj |

)
+ trace(U t(X + βXt

ε − Zt))

+
ρ

2
||X + βXt

ε − Zt||2F ,

Xt+1
ε := arg min

Xε�0
trace(AεXε)− aε · log |Xε|

+ trace(U t(Xt+1 + βXε − Zt))

+
ρ

2
||Xt+1 + βXε − Zt||2F ,

Zt+1 := arg min
Z�0

n · trace(SZ)− n · log |Z|

+ trace(U t(Xt+1 + βXt+1
ε − Z))

+
ρ

2
||Xt+1 + βXt+1

ε − Z||2F ,

U t+1 :=ρ(Xt+1 + βXt+1
ε − Zt+1) + U t ,

where U is the Lagrange multiplier, and Xt, Zt, U t, denotes X,Z,U at iteration
t; ρ > 0 is the learning rate.2

Each of the above sub-optimization problem can be solved efficiently via the
following strategy. The zero gradient condition for the first optimization problem

2In our experiments, we set the learning rate ρ initially to 1.0, and increase it every 100
iterations by a factor of 1.1. We found experimentally that this speeds-up the convergence of
ADMM.
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with variable X is

−X−1
j +

ρ

aj
Xj = − 1

aj
(Aj + Uj + ρ(βXε,j − Zj)) .

The zero gradient condition for the second optimization problem with variable
Xε is

−X−1
ε +

ρβ2

aε
Xε = − 1

aε
(Aε + βU + ρβ(X − Z)) .

The zero gradient condition for the third optimization problem with variable
Z is

− Z−1 +
ρ

n
Z =

1

n
(U − nS + ρ(X + βXε)) .

Each of the above three optimization problem can be solved via an eigenvalue
decomposition as follows. We need to solve V such that it satisfies:

−V −1 + λV = R ∧ V � 0

Since R is a symmetric matrix (not necessarily positive or negative semi-definite),
we have the eigenvalue decomposition:

QLQT = R ,

where Q is an orthonormal matrix and L is a diagonal matrix with real values.
Denoting Y := QTV Q, we have

−Y −1 + λY = L , (2.5)

Since the solution Y must also be a diagonal matrix, we have Yij = 0, for j 6= i,
and we must have that

−(Yii)
−1 + λYii = Lii . (2.6)

Then, Equation (2.6) is equivalent to

λY 2
ii − LiiYii − 1 = 0 ,

and therefore one solution is

Yii =
Lii +

√
L2
ii + 4λ

2λ
.

Note that for λ > 0, we have that Yii > 0. Therefore, we have that the resulting
Y solves Equation (2.5) and moreover

V = QY QT � 0 .

That means, we can solve the semi-definite problem with only one eigenvalue
decomposition, and therefore is in O(d3).

Finally, we note that in contrast to the 2-block ADMM, a general 3-block
ADMM does not have a convergence guarantee for any ρ > 0. However, using a
recent result from (Lin et al., 2018), we can show in Appendix A.1 that in our
case the conditions for convergence are met for any ρ > 0.
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Variational approximation of the marginal likelihood

Here we explain our strategy for the calculation of a variational approximation of
the marginal likelihood. For simplicity, let θ denote the vector of all parameters,
X the observed data, and η the vector of all hyper-parameters.

Let θ̂ denote the posterior mode. Furthermore, let g(θ) be an approximation
of the posterior distribution p(θ|X ,η, C) that is accurate around the mode θ̂.

Then we have

p(X |η, C) =
p(θ,X |η, C)
p(θ|X ,η, C)

=
p(θ̂,X |η, C)
p(θ̂|X ,η, C)

≈ p(θ̂,X |η, C)
g(θ̂)

.

(2.7)

Note that for the Laplace approximation we would use g(θ) = N(θ|θ̂, V ),
where V is an appropriate covariance matrix. However, here the posterior
p(θ|X ,η, C) is a probability measure over the positive definite matrices and not
over Rd, which makes the Laplace approximation inappropriate.

Instead, we suggest to approximate the posterior distribution
p(Σε,Σ1, . . .Σk|x1, ...,xn, νε,Σε,0, {νj}j , {Σj,0}j , C) by the factorized distribution

g := gε(Σε) ·
k∏
j=1

gj(Σj) .

We define gε(Σε) and gj(Σj) as follows:

gε(Σε) := InvW(Σε|νg,ε,Σg,ε) ,

with

Σg,ε := (νg,ε + d+ 1) · Σ̂ε ,

where Σ̂ε is the mode of the posterior probability p(Σε|X ,η, C) (as calculated
in the previous section). Note that this choice ensures that the mode of gε is the
same as the mode of p(Σε|x1, ...,xn,η, C). Analogously, we set

gj(Σj) := InvW(Σj |νg,j ,Σg,j) ,

with

Σg,j := (νg,j + dj + 1) · Σ̂j ,

where Σ̂j is the mode of the posterior probability p(Σj |X ,η, C). The remain-
ing parameters νg,ε ∈ R and νg,j ∈ R are optimized by minimizing the KL-
divergence between the the factorized distribution g and the posterior distribu-
tion p(Σε,Σ1, . . .Σk|x1, ...,xn,η, C). The details of the following derivations are
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given in Appendix A.2. For simplicity let us denote gJ :=
∏k
j=1 gj , then we have

KL(g||p) = −
∫
gε(Σε) ·

k∏
j=1

gj(Σj)

log
p(Σε,Σ1, . . .Σk,x1, ...,xn|η, C)

gε(Σε) ·
∏k
j=1 gj(Σj)

dΣεdΣ

+ c

= −1

2
nEgJ ,gε [log |Σ−1 + βΣ−1

ε |]

+
1

2
(νε + d+ 1)Egε [log |Σε|]

+
1

2
trace((Σε,0 + βnS)Egε [Σ−1

ε ])

− Entropy[gε]

+
1

2

k∑
j=1

(νj + dj + 1)Egj [log |Σj |]

+
1

2

k∑
j=1

trace((Σj,0 + nSj)Egj [Σ
−1
j ])

−
k∑
j=1

Entropy[gj ] + c ,

where c is a constant with respect to gε and gj . However, the term EgJ ,gε [log |Σ−1+
βΣ−1

ε |] cannot be solved analytically, therefore we need to resort to some sort of
approximation.

We assume that EgJ ,gε [log |Σ−1 + βΣ−1
ε |]

≈ EgJ ,gε [log |Σ−1|]. This way, we get

KL(g||p) ≈ KL(gε || InvW(νε,Σε,0 + βnS))

+

k∑
j=1

KL(gj || InvW(νj + n,Σj,0 + nSj))

+ c′ ,

where we used that

EgJ ,gε [log |Σ−1|] = −
k∑
j=1

Egj [log |Σj |] ,

and c′ is a constant with respect to gε and gj .
From the above expression, we see that we can optimize the parameters of gε
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and gj independently from each other. The optimal parameter ν̂g,ε for gε is

ν̂g,ε = arg min
νg,ε

KL(gε || InvW(νε,Σε,0 + βnS))

= arg min
νg,ε

νg,ε
νg,ε + d+ 1

trace((Σε,0 + βnS)Σ̂−1
ε )

− 2 log Γd(
νg,ε
2

)− νg,εd+ dνε log(νg,ε + d+ 1)

+ (νg,ε − νε)
d∑
i=1

ψ
(νg,ε − d+ i

2

)
.

And analogously, we have

ν̂g,j = arg min
νg,j

νg,j
νg,j + dj + 1

trace((Σj,0 + nSj)Σ̂
−1
j )

− 2 log Γdj (
νg,j
2

)− νg,jdj

+ dj(νj + n) log(νg,j + dj + 1)

+ (νg,j − νj − n)

dj∑
i=1

ψ
(νg,j − dj + i

2

)
.

Each is a one dimensional non-convex optimization problem that we solve with
Brent’s method (Brent, 1971).

Discussion: advantages over full variational approaches We described
here an approximation to the marginal likelihood that can be considered as
a blending of the ideas of the Laplace approximation (using the MAP) and
a variational approximation where all parameters are learned by minimizing
the Kullback-Leibler divergence between a variational distribution and the true
posterior distribution. We refer to the latter as a full variational approximation.
For simplicity, here, let us denote by Σ the positive definite matrix for which we
seek the posterior distribution, and let Σg denote the parameter matrix of the
variational distribution.

An obvious limitation of the full variational approach is that the expectation
involving Σ cannot be calculated analytically anymore. As a solution, recent
works on black-box variational inference propose to use a Monte Carlo estimate
of the expectation of the gradient. In order to address high variance of the
estimator, several techniques have been proposed (e.g. control variates and Rao-
Blackwellization) among which the reparameterization trick appears to be the
most promising (Ranganath et al., 2014; Kingma and Welling, 2013; Kucukelbir
et al., 2017). In particular, Stan (Carpenter et al., 2017) provides a readily
available implementation of the reparameterization trick (Kucukelbir et al., 2017)
which is named automatic differentiation variational inference (ADVI). In ADVI,
the transformation is Σg := LTL with L being a triangular matrix where each
component is sampled from N(0, 1). And the matrix L is the parameter of



2.4. PROPOSED METHOD 23

the variational distribution that is optimized with stochastic gradient descent.
However, note that this optimization problem is a stochastic non-convex problem.
In contrast, finding the MAP is a non-stochastic convex optimization problem
and the proposed solution has a guarantee of converging to the global minima.
Apart from that, we note that a full variational approximation does not have any
theoretic quality guarantees, including the case where β → 0. In the general case,
our approach also does not have such guarantees. However, in the special case
where β → 0, we know that the true posterior distribution is an inverse Wishart
distribution and therefore matches our choice of the variational distribution.

MCMC estimation of marginal likelihood

As an alternative to the variational approximation, we investigate an MCMC
estimation based on Chib’s method (Chib, 1995; Chib and Jeliazkov, 2001).

To simplify the description, we introduction the following notations

θ1 := Σε ,

θ2, . . . ,θk+1 := Σ1, . . . ,Σk .

Furthermore, we define θ<i := {θ1, . . . ,θi−1} and θ>i := {θi+1, . . . ,θk+1}. For
simplicity, we also suppress in the notation the explicit conditioning on the
hyper-parameters η and the clustering C, which are both fixed.

Following the strategy of Chib (1995), the marginal likelihood can be ex-
pressed as

p(X ) =
p(θ̂1, . . . , θ̂k+1,X )

p(θ̂1, . . . , θ̂k+1|X )

=
p(θ̂1, . . . , θ̂k+1,X )∏k+1

i=1 p(θ̂i|X , θ̂1 . . . , θ̂i−1)
.

(2.8)

In order to approximate p(X ) with Equation (2.8), we need to estimate
p(θ̂i|X , θ̂1, . . . θ̂i−1). First, note that we can express the value of the conditional
posterior distribution at θ̂i, as follows (see Chib and Jeliazkov (2001), Section
2.3):

p(θ̂i|X , θ̂1, . . . θ̂i−1)

=
Eθ≥i∼p(θ≥i|X ,θ̂<i)

[α(θi, θ̂i|θ̂<i,θ>i)qi(θ̂i)]

Eθ≥i∼p(θ>i|X ,θ̂≤i)q(θi)
[α(θ̂i,θi|θ̂<i,θ>i)]

,
(2.9)

where qi(θi) is a proposal distribution for θi, and the acceptance probability of
moving from state θi to state θ′i, holding the other states fixed is defined as

α(θi,θ
′
i|θ<i,θ>i) := min{1, p(X ,θ<i,θ>i,θ

′
i) · qi(θi)

p(X ,θ<i,θ>i,θi) · qi(θ′i)
} . (2.10)
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Next, using Equation (2.9), we can estimate
p(θ̂i|X , θ̂1, . . . θ̂i−1) with a Monte Carlo approximation with M samples:

p(θ̂i|X , θ̂1, . . . θ̂i−1)

≈
1
M

∑M
m=1 α(θi,mi , θ̂i|θ̂<i,θi,m>i )qi(θ̂i)

1
M

∑M
m=1 α(θ̂i,θ

q,m
i |θ̂<i,θi+1,m

>i )

(2.11)

where θa,mi ∼ p(θi|X , θ̂<a), θa,m>i ∼ p(θ>i|X , θ̂<a), and θq,mi ∼ q(θi).
Finally, in order to sample from p(θ≥i|X , θ̂<i), we propose to use the

Metropolis-Hastings within Gibbs sampler as shown in Algorithm 1. MHj(θ
t
j ,ψ)

denotes the Metropolis-Hastings algorithm with current state θtj , and acceptance
probability α(θj ,θ

′
j |ψ), Equation (2.10), and θ0

≥i is a sample after the burn-in.
For the proposal distribution qi(θi), we use

qi :=


InvW(ν, Σ̂ε · (ν + d+ 1))
with ν = βκ · n+ νε if i = 1,

InvW(ν, Σ̂i−1 · (ν + di−1 + 1))
with ν = (1− β)κ · n+ νi−1 else.

(2.12)

Here κ > 0 is a hyper-parameter of the MCMC algorithm that is chosen to control
the acceptance probability. Note that if we choose κ = 1 and β is 0, then the
proposal distribution qi(θi) equals the posterior distribution p(θi|X , θ̂1, . . . θ̂i−1).
However, in practice, we found that the acceptance probabilities can be too small,
leading to unstable estimates and division by 0 in Equation (2.11). Therefore,
for our experiments we chose κ = 10.

Algorithm 1 Metropolis-Hastings within Gibbs sampler for sampling from
p(θ≥i|X , θ̂<i).
for t from 1 to M do
for j from i to k + 1 do
ψ := {θ̂<i,θti, . . . ,θ

t
j−1,θ

t−1
>j }

θtj := MHj(θ
t−1
j ,ψ)

end for
end for

2.4.3 Restricting the hypotheses space
The number of possible clusterings follow the Bell numbers, and therefore it is
infeasible to enumerate all possible clusterings, even if the number of variables d
is small. It is therefore crucial to restrict the hypotheses space to a subset of all
clusterings that are likely to contain the true clustering. We denote this subset
as C ∗.

We suggest to use spectral clustering on different estimates of the precision
matrix to acquire the set of clusterings C ∗. A motivation for this heuristic is
given in Appendix A.3.
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First, for an appropriate λ, we estimate the precision matrix using

X∗ := arg min
X�0

− log |X|+ trace(XS) + λ
∑
i 6=j

|Xij |q . (2.13)

In our experiments, we take q = 1, which is equivalent to the Graphical Lasso
(Friedman et al., 2008) with an `1-penalty on all entries of X except the diagonal.
In the next step, we then construct the Laplacian L as defined in the following.

Lii =
∑
k 6=i

|X∗ik|q ,

Lij = −|X∗ij |q for i 6= j .

(2.14)

Finally, we use k-means clustering on the eigenvectors of the Laplacian L. The
details of acquiring the set of clusterings C ∗ using the spectral clustering method
are summarized below:

Algorithm 2 Spectral Clustering for variable clustering with the Gaussian
graphical model.
J := set of regularization parameter values.
Kmax := maximum number of considered clusters.
C ∗ := {}
for λ ∈ J do
X∗ := solve optimization problem from Equation (2.13).
(e1, . . . , eKmax) := determine the eigenvectors corresponding to the Kmax

lowest eigenvalues of the Laplacian L as defined in Equations (2.14).
for k ∈ {2, . . . ,Kmax} do
Cλ,k := cluster all variables into k partitions using k-means with
(e1, . . . , ek).
C ∗ := C ∗ ∪ Cλ,k

end for
end for
return restricted hypotheses space C ∗

In Section 2.5.1 we confirm experimentally that, even in the presence of noise,
C ∗ often contains the true clustering, or clusterings that are close to the true
clustering.

Posterior distribution over number of clusters

In principle, the posterior distribution for the number of clusters can be calculated
using

p(k|X ) ∝
∑
C∈Ck

p(X |C) ,
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where Ck denotes the set of all clusterings with number of clusters being equal to
k. Since this is computationally infeasible, we use the following approximation

P (k|X) ∝
∑
C∈Ck

p(X|C) ≈
∑
C∈C∗k

p(X|C) ,

where C ∗k is the set of all clusterings with k clusters that are in the restricted
hypotheses space C ∗.

2.5 Simulation study

In this section, we evaluate the proposed method on simulated data for which
the ground truth is available. In sub-section 2.5.1, we evaluate the quality of the
restricted hypotheses space C ∗, followed by sub-section 2.5.2, where we evaluated
the proposed method’s ability to select the best clustering in C ∗.

For the number of clusters we consider the range from 2 to 15. For the set of
regularization parameters of the spectral clustering method we use J := {0.0001,
0.0005, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01} (see
Algorithm 2).

In all experiments the number of variables is d = 40, and the ground truth is
4 clusters with 10 variables each.

For generating positive-definite covariance matrices, we consider the following
two distributions: InvW(d+ 1, Id), and Uniformd, with dimension d. We denote
by U ∼ Uniformd the positive-definite matrix generated in the following way

U = A+ (0.001− λmin(A))Id ,

where λmin(A) is the smallest eigenvalue of A, and A is drawn as follows

Ai,j = Aj,i ∼ Uniform(−1, 1) , i 6= j

Ai,i = 0 .

For generating Σ, we either sample each block j from InvW(dj + 1, Idj ) or
from Uniformdj .

For generating the noise matrix Σε, we sample either from InvW(d+ 1, Id)
or from Uniformd. The final data is then sampled as follows

x ∼ N(0, (Σ−1 + ηΣ−1
ε )−1) ,

where η defines the noise level.
For evaluation we use the adjusted normalized mutual information (ANMI),

where 0.0 means that any correspondence with the true labels is at chance level,
and 1.0 means that a perfect one-to-one correspondence exists (Vinh et al., 2010).
We repeated all experiments 5 times and report the average ANMI score.
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2.5.1 Evaluation of the restricted hypotheses space

First, independent of any model selection criteria, we check here the quality
of the clusterings that are found with the spectral clustering algorithm from
Section 2.4.3. We also compare to single and average linkage clustering as used
in (Tan et al., 2015).

The set of all clusterings that are found is denoted by C ∗ (the restricted
hypotheses space).

In order to evaluate the quality of the restricted hypotheses space C ∗, we
report the oracle performance calculated by maxC∈C∗ ANMI(C, CT ), where CT
denotes the true clustering, and ANMI(C, CT ) denotes the ANMI score when
comparing clustering C with the true clustering. In particular, a score of 1.0
means that the true clustering is contained in C ∗.

The results of all experiments with noise level η ∈ {0.0, 0.01, 0.1} are shown
in Tables 2.1, for balanced clusters, and Table 2.2, for unbalanced clusters.

From these results we see that the restricted hypotheses space of spectral
clustering is around 100, considerably smaller than the number of all possible
clusterings. More importantly, we also see that that C ∗ acquired by spectral
clustering either contains the true clustering or a clustering that is close to the
truth. In contrast, the hypotheses space restricted by single and average linkage
is smaller, but more often misses the true clustering.

2.5.2 Evaluation of clustering selection criteria

Here, we evaluate the performance of our proposed method for selecting the
correct clustering in the restricted hypotheses space C ∗. We compare our
proposed method (variational) with several baselines and two previously proposed
methods (Tan et al., 2015; Palla et al., 2012). Except for the two previously
proposed methods, we created C ∗ with the spectral clustering algorithm from
Section 2.4.3.

As a cluster selection criteria, we compare our method to the Extended
Bayesian Information Criterion (EBIC) with γ ∈ {0, 0.5, 1} (Chen and Chen,
2008; Foygel and Drton, 2010), Akaike Information Criteria (Akaike, 1973),
and the Calinski-Harabasz Index (CHI) (Caliński and Harabasz, 1974). Note
that EBIC and AIC are calculated based on the basic Gaussian graphical
model (i.e. the model in Equation 2.1, but ignoring the prior specification).3
Furthermore, we note that EBIC is model consistent, and therefore, assuming
that the true precision matrix contains non-zero entries in each element, will
choose asymptotically the clustering that has only one cluster with all variables in
it. However, as an advantage for EBIC, we exclude that clustering. Furthermore,
we note that in contrast to EBIC and AIC, the Calinski-Harabasz Index is not
a model-based cluster evaluation criterion. The Calinski-Harabasz Index is an
heuristic that uses as clustering criterion the ratio of the variance within and
across clusters. As such it is expected to give reasonable clustering results if

3As discussed in Section 2.4.2, EBIC (and also AIC) cannot be used with our proposed
model.
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the noise is considerably smaller in magnitude than the within-cluster variable
partial correlations.

We remark that EBIC and AIC is not well defined if the sample covariance
matrix is singular, in particular if n < d or n ≈ d. As an ad-hoc remedy, which
works well in practice4, we always add 0.001 times the identity matrix to the
covariance matrix (see also Ledoit and Wolf (2004)).

Finally, we also compare the proposed method to two previous approaches
for variable clustering: the Clustered Graphical Lasso (CGL) as proposed in
(Tan et al., 2015), and the Dirichlet process variable clustering (DPVC) model as
proposed in (Palla et al., 2012), for which the implementation is available. DPVC
models the number of clusters using a Dirichlet process. CGL uses for model
selection the mean squared error for recovering randomly left-out elements of the
covariance matrix. CGL uses for clustering either the single linkage clustering
(SLC) or the average linkage clustering (ALC) method. For conciseness, we show
only the results for ALC, since they tended to be better than SLC.

A summary of the experiments, with noise level η ∈ {0.0, 0.01, 0.1}, limited to
the proposed method, basic inverse Wishart model, EBIC and Calinski-Harabasz
Index, is shown in Figure 2.1 and Figure 2.2, for balanced and unbalanced
clusters, respectively, and in Figure 2.3 for the high-dimensional setting (d = 200).
Detailed results of all experiments are shown in Tables 2.3 and 2.4, for balanced
clusters, and Tables 2.5 and 2.6, for unbalanced clusters, and Tables 2.7 and 2.8
for the high-dimensional setting. The tables also contain the performance of the
proposed method for β ∈ {0, 0.01, 0.02, 0.03}. Note that β = 0.0 corresponds to
the basic inverse Wishart prior model for which we can calculate the marginal
likelihood analytically.

Comparing the proposed method with different β, we see that β = 0.02
offers good clustering performance in the no noise and noisy setting. In contrast,
model selection with the basic inverse Wishart model, EBIC and AIC perform,
as expected, well in the no noise scenario, however, in the noisy setting they tend
to select incorrect clusterings. In particular, note that the basic inverse Wishart
model and EBIC are model consistent, that means that for large enough n they
are guaranteed to select the finest clustering such that there is no edge5 between
any two clusters. This is the reason why the basic inverse Wishart model and
EBIC are guaranteed, at least asymptotically, to fail to ignore noisy edges. This
is confirmed by our experiments in the noisy setting, showing that the basic
inverse Wishart model and EBIC fail to identify the correct clusterings, when
the number of samples n is large enough. On the other hand, if n ≤ d, then
the noise due to sampling, and the noise in the true precision matrix cannot be
distinguished, and the basic inverse Wishart model performs similarly to the
proposed method.

The Calinski-Harabasz Index performs well in the noisy settings, whereas
in the no noise setting it performs unsatisfactory. Furthermore, note that the

4In particular for the mutual funds data in the next section, where the covariance matrix
was bad conditioned.

5A non-zero entry in the precision matrix.
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Calinski-Harabasz Index itself can only be used to rank different clustering
results, but does not provide any probability estimates.

Finally, we show the posterior distribution of the number of clusters in Figures
2.4 and 2.5, with and without noise on the precision matrix, respectively.6 In
both cases, given that the sample size n is large enough, the proposed method is
able to estimate correctly the number of clusters. In contrast, the basic inverse
Wishart prior model underestimates the number of clusters for large n and
existence of noise in the precision matrix.

2.5.3 Comparison of variational and MCMC estimate

Here, we compare our variational approximation with MCMC on a small scale
simulated problem where it is computationally feasible to estimate the marginal
likelihood with MCMC. We generated synthetic data as in the previous section,
only with the difference that we set the number of variables d to 12.

The number of samples M for MCMC was set to 10000, where we used 10%
as burn in. For two randomly picked clusterings for n = 12, and n = 1200000, we
checked the acceptance rates and convergence using the multivariate extension
of the Gelman-Rubin diagnostic (Brooks and Gelman, 1998). The average
acceptance rates were around 80% and the potential scale reduction factor was
1.01.

The runtime of MCMC was around 40 minutes for evaluating one clustering,
whereas for the variational approximation the runtime was around 2 seconds.7
The results are shown in Table 2.9, suggesting that the quality of the selected
clusterings using the variational approximation is similar to MCMC.

2.6 Real data experiments

In this section, we investigate the properties of the proposed model selection
criterion on three real data sets. In all cases, we use the spectral clustering
algorithm from Appendix A.3 to create cluster candidates. All variables were
normalized to have mean 0 and variance 1. For all methods, except DPVC, the
number of clusters is considered to be in {2, 3, 4, . . . ,min(p − 1, 15)}. DPVC
automatically selects the number of clusters by assuming a Dirichlet process
prior. We evaluated the proposed method with β = 0.02 using the variational
approximation.

2.6.1 Mutual funds

Here we use the mutual funds data, which has been previously analyzed in (Scott
and Carvalho, 2008; Marlin et al., 2009). The data contains 59 mutual funds (d
=59) grouped into 4 clusters: U.S. bond funds, U.S. stock funds, balanced funds

6Same setting as before, d = 40, Σj ∼ InvW(dj +1, Idj ). Noise is Σε ∼ InvW(d+1, Id), η =
0.01. Proposed method β = 0.02.

7Runtime on one core of Intel(R) Xeon(R) CPU 2.30GHz.
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(containing U.S. stocks and bonds), and international stock funds. The number
of observations is 86.

The results of all methods are visualized in Table 2.10. It is difficult to
interpret the results produced by EBIC (γ = 1.0), AIC and the Calinski-Harabasz
Index. In contrast, the proposed method and EBIC (γ = 0.0) produce results
that are easier to interpret. In particular, our results suggest that there is a
considerable correlation between the balanced funds and the U.S. stock funds
which was also observed in Marlin et al. (2009).

In Figure 2.6 we show a two dimensional representation of the data, that
was found using Laplacian Eigenmaps (Belkin and Niyogi, 2003). The figure
supports the claim that balanced funds and the U.S. stock funds have similar
behavior.

2.6.2 Gene regulations

We tested our method also on the gene expression data that was analyzed in
(Hirose et al., 2017). The data consists of 11 genes with 445 gene expressions.
The true gene regularizations are known in this case and shown in Figure 2.7,
adapted from (Hirose et al., 2017). The most important fact is that there are
two independent groups of genes and any clustering that mixes these two can be
considered as wrong.

We show the results of all methods in Figure 2.8, where we mark each cluster
with a different color superimposed on the true regularization structure. Here
only the clustering selected by the proposed method, EBIC (γ = 1.0) and
Calinski-Harabasz correctly divide the two group of genes.

2.6.3 Aviation sensors

As a third data set, we use the flight aviation dataset from NASA8. The data
set contains sensor information sampled from airplanes during operation. We
extracted the information of 16 continuous-valued sensors that were recorded for
different flights with a total of 25032364 samples.

The clustering results are shown in Table 2.11. The data set does not have
any ground truth, but the clustering result of our proposed method is reasonable:
Cluster 9 groups sensors that measure or affect altitude9, Cluster 8 correctly
clusters the left and right sensors for measuring the rotation around the axis
pointing through the noise of the aircraft, in Cluster 2 all sensors that measure
the angle between chord and flight direction are grouped together. It also appears
reasonable that the yellow hydraulic system of the left part of the plane has little
direct interaction with the green hydraulic system of the right part (Cluster 1
and Cluster 4). And the sensor for the rudder, influencing the direction of the
plane, is mostly independent of the other sensors (Cluster 5).

8https://c3.nasa.gov/dashlink/projects/85/ where we use all records from Tail 687.
9The elevator position of an airplane influences the altitude, and the static pressure system

of an airplane measures the altitude.

https://c3.nasa.gov/dashlink/projects/85/
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In contrast, the clustering selected by the basic inverse Wishart prior, EBIC,
and AIC is difficult to interpret. We note that we did not compare to DPVC, since
the large number of samples made the MCMC algorithm of DPVC infeasible.

2.7 Discussion and conclusions
We have introduced a new method for evaluating variable clusterings based on
the marginal likelihood of a Bayesian model that takes into account noise on the
precision matrix. Since the calculation of the marginal likelihood is analytically
intractable, we proposed two approximations: a variational approximation and an
approximation based on MCMC. Experimentally, we found that the variational
approximation is considerably faster than MCMC and also leads to accurate
model selection.

We compared our proposed method to several standard model selection
criteria. In particular, we compared to BIC and extended BIC (EBIC) which
are often the method of choice for model selection in Gaussian graphical models.
However, we emphasize that EBIC was designed to handle the situation where d
is in the order of n, and has not been designed to handle noise. As a consequence,
our experiments showed that in practice its performance depends highly on
the choice of the γ parameter. In contrast, the proposed method, with fixed
hyper-parameters, shows better performance on various simulated and real data.

We also compared our method to other two previously proposed methods,
namely Cluster Graphical Lasso (CGL) (Tan et al., 2015), and Dirichlet Process
Variable Clustering (DPVC) (Palla et al., 2012) that performs jointly clustering
and model selection. However, it appears that in many situations the model
selection algorithm of CGL is not able to detect the true model, even if there
is no noise. On the other hand, the Dirichlet process assumption by DPVC
appears to be very restrictive, leading again to many situations where the true
model (clustering) is missed. Overall, our method performs better in terms of
selecting the correct clustering on synthetic data with ground truth, and selects
meaningful clusters on real data.

Apart from the differences in clustering performance, we note that our
proposed method is a full probabilistic model allowing to quantify the uncertainty
in all clustering results. This in contrast to using the Calinski-Harabasz Index
for variable clustering. On the other hand, in contrast to DPVC, the sufficient
statistic for our probabilistic model is the covariance matrix, whereas DPCV
requires access to all samples which is prohibitive for large n.10

The python source code for variable clustering and model selection with
the proposed method and all baselines is available at https://github.com/
andrade-stats/robustBayesClustering.

10In detail, DPVC formulates a probabilistic model with number of latent variables increasing
linearly in n.

https://github.com/andrade-stats/robustBayesClustering
https://github.com/andrade-stats/robustBayesClustering
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Table 2.1: Evaluation of restricted hypotheses space for d = 40, n ∈
{20, 40, 400, 4000, 40000, 4000000}. Ground truth contains 4 balanced clusters.
Shows the oracle performance measured by ANMI for spectral clustering, average
linkage and single linkage. Note that that an ANMI score of 1.0 means that
the true clustering is contained in the hypotheses space found by the clustering
method. The size of the hypotheses space restricted by each clustering method is
denoted by |C ∗|. Average results over 5 runs with standard deviation in brackets.

Σj ∼ InvW(dj + 1, Idj ), no noise

20 40 400 4000 40000 4000000

spectral ANMI 0.77 (0.14) 0.95 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
|C ∗| 140.8 (5.78) 139.0 (8.65) 112.8 (5.64) 99.8 (2.23) 101.4 (7.94) 98.4 (3.61)

average ANMI 0.38 (0.09) 0.38 (0.06) 0.45 (0.05) 0.45 (0.03) 0.45 (0.07) 0.45 (0.03)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

single ANMI 0.32 (0.08) 0.34 (0.09) 0.39 (0.08) 0.39 (0.08) 0.42 (0.14) 0.41 (0.08)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σj ∼ InvW(dj + 1, Idj ),Σε ∼ InvW(d+ 1, Id), η = 0.01

spectral ANMI 0.49 (0.03) 0.9 (0.03) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
|C ∗| 143.2 (7.25) 144.4 (3.32) 108.6 (9.89) 105.4 (9.79) 103.6 (5.0) 97.0 (6.57)

average ANMI 0.26 (0.05) 0.34 (0.04) 0.46 (0.07) 0.51 (0.08) 0.42 (0.09) 0.45 (0.06)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

single ANMI 0.16 (0.08) 0.25 (0.08) 0.37 (0.03) 0.4 (0.06) 0.3 (0.12) 0.32 (0.09)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σj ∼ InvW(dj + 1, Idj ),Σε ∼ InvW(d+ 1, Id), η = 0.1

spectral ANMI 0.34 (0.1) 0.87 (0.09) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
|C ∗| 121.4 (7.34) 106.4 (18.51) 35.4 (5.12) 33.2 (11.48) 37.4 (5.54) 31.0 (8.65)

average ANMI 0.1 (0.05) 0.15 (0.03) 0.34 (0.08) 0.37 (0.1) 0.26 (0.11) 0.28 (0.09)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

single ANMI 0.04 (0.03) 0.08 (0.04) 0.19 (0.11) 0.21 (0.06) 0.11 (0.03) 0.13 (0.02)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σj ∼ Uniformdj , no noise

spectral ANMI 0.34 (0.1) 0.87 (0.09) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
|C ∗| 121.4 (7.34) 106.4 (18.51) 35.4 (5.12) 33.2 (11.48) 37.4 (5.54) 31.0 (8.65)

average ANMI 0.1 (0.06) 0.26 (0.07) 0.92 (0.11) 1.0 (0.0) 1.0 (0.0) 0.99 (0.03)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

single ANMI 0.04 (0.02) 0.13 (0.08) 0.82 (0.25) 1.0 (0.0) 1.0 (0.0) 0.99 (0.03)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σj ∼ Uniformdj ,Σε ∼ Uniformd, η = 0.01

spectral ANMI 0.28 (0.06) 0.81 (0.1) 0.94 (0.06) 0.99 (0.03) 0.99 (0.03) 0.97 (0.03)
|C ∗| 127.2 (3.6) 106.0 (5.29) 48.2 (9.77) 50.2 (5.95) 51.0 (8.94) 48.0 (5.69)

average ANMI 0.14 (0.05) 0.22 (0.04) 0.81 (0.16) 0.89 (0.1) 0.87 (0.12) 0.94 (0.12)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

single ANMI 0.04 (0.02) 0.1 (0.04) 0.78 (0.13) 0.71 (0.23) 0.78 (0.11) 0.79 (0.17)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σj ∼ Uniformdj ,Σε ∼ Uniformd, η = 0.1

spectral ANMI 0.3 (0.03) 0.72 (0.08) 0.88 (0.07) 0.9 (0.07) 0.87 (0.11) 0.88 (0.04)
|C ∗| 126.2 (2.23) 120.4 (9.35) 74.4 (19.41) 87.2 (7.93) 79.2 (13.61) 77.0 (14.25)

average ANMI 0.08 (0.04) 0.26 (0.11) 0.83 (0.15) 0.88 (0.12) 0.87 (0.11) 0.94 (0.12)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

single ANMI 0.05 (0.03) 0.13 (0.07) 0.7 (0.14) 0.69 (0.15) 0.76 (0.12) 0.76 (0.14)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)
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Table 2.2: Same setting as in Table 2.1 but with unbalanced clusters. Ground
truth is 4 clusters with sizes 20, 10, 5, 5.

Σj ∼ InvW(dj + 1, Idj ), no noise

20 40 400 4000 40000 4000000

spectral ANMI 0.52 (0.13) 0.85 (0.11) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
|C ∗| 141.2 (6.62) 133.2 (8.03) 80.8 (8.21) 73.4 (8.89) 62.0 (7.38) 62.6 (7.23)

average ANMI 0.34 (0.06) 0.39 (0.05) 0.37 (0.04) 0.38 (0.07) 0.38 (0.06) 0.44 (0.09)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

single ANMI 0.33 (0.05) 0.35 (0.03) 0.32 (0.04) 0.32 (0.14) 0.27 (0.13) 0.39 (0.12)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σj ∼ InvW(dj + 1, Idj ),Σε ∼ InvW(d+ 1, Id), η = 0.01

spectral ANMI 0.55 (0.13) 0.81 (0.07) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
|C ∗| 148.8 (4.62) 136.0 (6.81) 80.4 (9.77) 68.8 (10.3) 67.0 (5.93) 63.0 (14.3)

average ANMI 0.34 (0.06) 0.37 (0.08) 0.53 (0.12) 0.5 (0.1) 0.46 (0.1) 0.52 (0.1)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

single ANMI 0.29 (0.07) 0.29 (0.08) 0.41 (0.17) 0.4 (0.14) 0.37 (0.11) 0.32 (0.12)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σj ∼ InvW(dj + 1, Idj ),Σε ∼ InvW(d+ 1, Id), η = 0.1

spectral ANMI 0.26 (0.04) 0.5 (0.06) 0.93 (0.07) 0.93 (0.07) 0.99 (0.02) 0.91 (0.08)
|C ∗| 144.4 (5.54) 159.2 (1.83) 121.0 (10.43) 120.2 (6.62) 117.0 (3.41) 113.2 (11.91)

average ANMI 0.2 (0.03) 0.22 (0.06) 0.37 (0.09) 0.36 (0.08) 0.41 (0.13) 0.44 (0.07)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

single ANMI 0.2 (0.08) 0.2 (0.07) 0.24 (0.04) 0.29 (0.05) 0.33 (0.07) 0.32 (0.05)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σj ∼ Uniformdj , no noise

spectral ANMI 0.36 (0.06) 0.72 (0.13) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
|C ∗| 124.0 (7.29) 115.8 (9.89) 40.8 (12.5) 39.4 (5.2) 33.2 (4.79) 38.6 (5.24)

average ANMI 0.09 (0.04) 0.05 (0.08) 0.12 (0.07) 0.29 (0.07) 0.37 (0.07) 0.34 (0.14)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

single ANMI 0.01 (0.04) 0.0 (0.0) 0.0 (0.01) 0.06 (0.1) 0.17 (0.19) 0.13 (0.12)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σj ∼ Uniformdj ,Σε ∼ Uniformd, η = 0.01

spectral ANMI 0.39 (0.04) 0.67 (0.11) 0.85 (0.05) 0.89 (0.07) 0.87 (0.07) 0.89 (0.06)
|C ∗| 125.6 (8.06) 115.0 (12.85) 42.6 (7.09) 59.2 (11.55) 53.2 (9.2) 54.0 (6.69)

average ANMI 0.04 (0.03) 0.06 (0.05) 0.12 (0.06) 0.21 (0.08) 0.18 (0.09) 0.21 (0.13)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

single ANMI 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.02) 0.01 (0.05) 0.02 (0.05)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

Σj ∼ Uniformdj ,Σε ∼ Uniformd, η = 0.1

spectral ANMI 0.32 (0.06) 0.68 (0.13) 0.8 (0.09) 0.81 (0.09) 0.79 (0.07) 0.78 (0.09)
|C ∗| 124.2 (9.33) 109.6 (12.63) 66.6 (10.71) 74.2 (7.14) 62.8 (5.11) 65.2 (13.85)

average ANMI 0.04 (0.03) 0.06 (0.05) 0.09 (0.05) 0.19 (0.05) 0.13 (0.06) 0.2 (0.13)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)

single ANMI 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.02)
|C ∗| 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0) 14.0 (0.0)
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Figure 2.1: Shows the ANMI scores of the clustering selected by the proposed
method (blue), basic inverse Wishart model (orange), EBIC (green), and Calinski-
Harabasz Index (red) on synthetic data sets with d = 40 and ground truth being 4
balanced clusters. Upper row and lower row shows results where the true precision
matrix was generated from an inverse Wishart distribution, and a uniform
distribution, respectively. No noise setting (left column), small noise (middle
column), large noise (right column). ANMI score of 0.0 means correspondence
with true clustering at pure chance level and 1.0 means perfect correspondence.
In both settings, with and without noise, the proposed method tends to be
among the best. In contrast, EBIC and the basic inverse Wishart prior tend
to suffer in the noise setting for large n, and Calinski-Harabasz Index performs
sub-optimal in the no noise setting.
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Figure 2.2: Same settings as in Figure 2.1, but ground truth being 4 unbalanced
clusters.
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Figure 2.3: Same settings as in Figure 2.1, but number of variables d = 200.
The proposed method, basic inverse Wishart prior, and the Calinski-Harabasz
Index perform best, while the latter has some advantage when the ground truth
is sampled from the uniform distribution.
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Table 2.3: Evaluation of clustering results for d = 40, n ∈
{20, 40, 400, 4000, 40000, 4000000}. Ground truth is 4 balanced clusters. Shows
the ANMI of the selected models (standard deviation in brackets). No noise is
added.

Σj ∼ InvW(dj + 1, Idj ), no noise

20 40 400 4000 40000 4000000

Proposed (β = 0.01) 0.76 (0.14) 0.93 (0.09) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Proposed (β = 0.02) 0.7 (0.2) 0.92 (0.08) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Proposed (β = 0.03) 0.67 (0.18) 0.88 (0.14) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
basic inverse Wishart prior 0.73 (0.17) 0.93 (0.09) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 0) 0.12 (0.15) 0.92 (0.08) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 0.5) 0.36 (0.03) 0.51 (0.04) 0.99 (0.03) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 1.0) 0.35 (0.02) 0.39 (0.05) 0.96 (0.05) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
AIC 0.12 (0.15) 0.6 (0.49) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Calinski-Harabasz Index 0.32 (0.03) 0.19 (0.16) 0.84 (0.13) 0.73 (0.0) 0.73 (0.0) 0.73 (0.0)
CGL (ALC) 0.06 (0.05) 0.03 (0.05) 0.11 (0.06) 0.04 (0.04) 0.06 (0.03) 0.06 (0.07)
DPVC 0.53 (0.07) 0.61 (0.17) 0.82 (0.06) 0.93 (0.09) NA NA

Σj ∼ Uniformdj , no noise

Proposed (β = 0.01) 0.12 (0.04) 0.48 (0.07) 0.94 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Proposed (β = 0.02) 0.12 (0.05) 0.4 (0.04) 0.93 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Proposed (β = 0.03) 0.12 (0.05) 0.39 (0.03) 0.93 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
basic inverse Wishart prior 0.14 (0.05) 0.76 (0.1) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 0) 0.07 (0.04) 0.87 (0.09) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 0.5) 0.11 (0.05) 0.48 (0.12) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 1.0) 0.11 (0.05) 0.38 (0.05) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
AIC 0.07 (0.04) 0.66 (0.34) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Calinski-Harabasz Index 0.15 (0.05) 0.66 (0.16) 0.79 (0.11) 0.46 (0.14) 0.65 (0.23) 0.59 (0.17)
CGL (ALC) 0.03 (0.02) 0.02 (0.02) 0.37 (0.03) 0.39 (0.0) 0.39 (0.0) 0.51 (0.25)
DPVC 0.01 (0.02) 0.03 (0.03) 0.4 (0.2) 0.51 (0.22) NA NA
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Figure 2.4: Posterior distribution of the number of clusters of the proposed
method (top row) and the basic inverse Wishart prior model (bottom row).
Ground truth is 4 clusters; there is no noise on the precision matrix.
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Table 2.4: Evaluation of clustering results with d = 40, n ∈
{20, 40, 400, 4000, 40000, 4000000}. Ground truth is 4 balanced clusters. Shows
the ANMI of the selected models (standard deviation in brackets). Noise is
added to the precision matrix.

Σj ∼ InvW(dj + 1, Idj ),Σε ∼ InvW(d+ 1, Id), η = 0.01

20 40 400 4000 40000 4000000

Proposed (β = 0.01) 0.44 (0.07) 0.86 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Proposed (β = 0.02) 0.41 (0.06) 0.86 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 0.99 (0.03)
Proposed (β = 0.03) 0.38 (0.06) 0.8 (0.06) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 0.99 (0.03)
basic inverse Wishart prior 0.45 (0.07) 0.89 (0.02) 1.0 (0.0) 1.0 (0.0) 0.41 (0.04) 0.39 (0.0)
EBIC (γ = 0) 0.02 (0.02) 0.82 (0.07) 1.0 (0.0) 1.0 (0.0) 0.41 (0.04) 0.39 (0.0)
EBIC (γ = 0.5) 0.25 (0.08) 0.32 (0.07) 0.98 (0.04) 1.0 (0.0) 0.48 (0.13) 0.39 (0.0)
EBIC (γ = 1.0) 0.23 (0.07) 0.32 (0.07) 0.96 (0.06) 1.0 (0.0) 0.66 (0.14) 0.39 (0.0)
AIC 0.0 (0.01) 0.54 (0.44) 1.0 (0.0) 0.39 (0.0) 0.41 (0.04) 0.39 (0.0)
Calinski-Harabasz Index 0.26 (0.09) 0.3 (0.16) 0.93 (0.1) 0.95 (0.11) 0.89 (0.13) 0.84 (0.13)
CGL (ALC) 0.01 (0.02) 0.02 (0.05) 0.04 (0.05) 0.03 (0.02) 0.05 (0.06) 0.02 (0.02)
DPVC 0.33 (0.07) 0.42 (0.08) 0.59 (0.16) 0.21 (0.18) NA NA

Σj ∼ InvW(dj + 1, Idj ),Σε ∼ InvW(d+ 1, Id), η = 0.1

Proposed (β = 0.01) 0.1 (0.1) 0.4 (0.09) 0.93 (0.1) 0.39 (0.0) 0.33 (0.17) 0.29 (0.15)
Proposed (β = 0.02) 0.13 (0.09) 0.41 (0.07) 0.97 (0.04) 0.95 (0.11) 1.0 (0.0) 0.99 (0.03)
Proposed (β = 0.03) 0.13 (0.09) 0.4 (0.09) 0.95 (0.04) 0.99 (0.03) 1.0 (0.0) 0.99 (0.03)
basic inverse Wishart prior 0.1 (0.1) 0.4 (0.09) 0.93 (0.1) 0.23 (0.19) 0.18 (0.21) 0.23 (0.19)
EBIC (γ = 0) 0.09 (0.09) 0.29 (0.06) 0.94 (0.05) 0.31 (0.15) 0.18 (0.21) 0.23 (0.19)
EBIC (γ = 0.5) 0.12 (0.05) 0.2 (0.02) 0.87 (0.02) 0.41 (0.04) 0.18 (0.21) 0.23 (0.19)
EBIC (γ = 1.0) 0.14 (0.06) 0.2 (0.02) 0.54 (0.07) 0.86 (0.24) 0.18 (0.21) 0.23 (0.19)
AIC 0.0 (0.0) 0.0 (0.01) 0.09 (0.15) 0.23 (0.19) 0.18 (0.21) 0.23 (0.19)
Calinski-Harabasz Index 0.11 (0.05) 0.15 (0.13) 0.94 (0.05) 0.99 (0.03) 1.0 (0.0) 0.99 (0.03)
CGL (ALC) 0.02 (0.03) 0.0 (0.01) 0.01 (0.01) 0.01 (0.02) 0.0 (0.0) 0.0 (0.0)
DPVC 0.11 (0.06) 0.16 (0.06) 0.27 (0.06) 0.04 (0.04) NA NA

Σj ∼ Uniformdj ,Σε ∼ Uniformd, η = 0.01

Proposed (β = 0.01) 0.1 (0.04) 0.45 (0.05) 0.92 (0.06) 0.99 (0.03) 0.99 (0.03) 0.93 (0.1)
Proposed (β = 0.02) 0.12 (0.03) 0.43 (0.06) 0.92 (0.06) 0.99 (0.03) 0.99 (0.03) 0.93 (0.1)
Proposed (β = 0.03) 0.13 (0.02) 0.39 (0.03) 0.89 (0.07) 0.99 (0.03) 0.99 (0.03) 0.93 (0.1)
basic inverse Wishart prior 0.11 (0.06) 0.65 (0.12) 0.94 (0.06) 0.88 (0.12) 0.3 (0.28) 0.46 (0.14)
EBIC (γ = 0) 0.06 (0.04) 0.78 (0.14) 0.92 (0.1) 0.81 (0.23) 0.3 (0.28) 0.46 (0.14)
EBIC (γ = 0.5) 0.1 (0.03) 0.44 (0.06) 0.94 (0.06) 0.99 (0.03) 0.3 (0.28) 0.46 (0.14)
EBIC (γ = 1.0) 0.1 (0.03) 0.39 (0.03) 0.94 (0.06) 0.99 (0.03) 0.3 (0.28) 0.46 (0.14)
AIC 0.06 (0.04) 0.24 (0.33) 0.35 (0.43) 0.44 (0.15) 0.3 (0.28) 0.46 (0.14)
Calinski-Harabasz Index 0.14 (0.06) 0.54 (0.33) 0.57 (0.35) 0.76 (0.21) 0.59 (0.29) 0.66 (0.14)
CGL (ALC) 0.0 (0.01) 0.01 (0.01) 0.24 (0.18) 0.39 (0.0) 0.35 (0.08) 0.39 (0.0)
DPVC 0.0 (0.01) 0.06 (0.07) 0.29 (0.22) 0.44 (0.2) NA NA

Σj ∼ Uniformdj ,Σε ∼ Uniformd, η = 0.1

Proposed (β = 0.01) 0.11 (0.02) 0.45 (0.05) 0.88 (0.07) 0.79 (0.21) 0.56 (0.34) 0.64 (0.22)
Proposed (β = 0.02) 0.14 (0.04) 0.4 (0.02) 0.86 (0.07) 0.9 (0.07) 0.56 (0.34) 0.64 (0.22)
Proposed (β = 0.03) 0.14 (0.04) 0.39 (0.03) 0.86 (0.07) 0.9 (0.07) 0.56 (0.34) 0.64 (0.22)
basic inverse Wishart prior 0.13 (0.04) 0.52 (0.07) 0.88 (0.07) 0.42 (0.33) 0.15 (0.19) 0.23 (0.19)
EBIC (γ = 0) 0.12 (0.06) 0.7 (0.1) 0.78 (0.22) 0.42 (0.33) 0.15 (0.19) 0.16 (0.19)
EBIC (γ = 0.5) 0.13 (0.04) 0.44 (0.05) 0.88 (0.07) 0.48 (0.26) 0.15 (0.19) 0.16 (0.19)
EBIC (γ = 1.0) 0.12 (0.05) 0.39 (0.03) 0.88 (0.07) 0.6 (0.3) 0.15 (0.19) 0.16 (0.19)
AIC 0.12 (0.06) 0.2 (0.17) 0.06 (0.12) 0.42 (0.33) 0.15 (0.19) 0.16 (0.19)
Calinski-Harabasz Index 0.17 (0.06) 0.48 (0.29) 0.28 (0.34) 0.9 (0.07) 0.49 (0.27) 0.63 (0.22)
CGL (ALC) 0.01 (0.01) 0.07 (0.08) 0.31 (0.15) 0.39 (0.0) 0.33 (0.11) 0.38 (0.02)
DPVC 0.0 (0.0) 0.1 (0.09) 0.35 (0.12) 0.19 (0.18) NA NA
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Table 2.5: Evaluation of clustering results for d = 40, n ∈
{20, 40, 400, 4000, 40000, 4000000}. Ground truth is 4 unbalanced clusters with
sizes 20, 10, 5, 5. Shows the ANMI of the selected models (standard deviation
in brackets). No noise is added.

Σj ∼ InvW(dj + 1, Idj ), no noise

20 40 400 4000 40000 4000000

Proposed (β = 0.01) 0.49 (0.15) 0.84 (0.11) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Proposed (β = 0.02) 0.47 (0.17) 0.84 (0.11) 0.99 (0.02) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Proposed (β = 0.03) 0.42 (0.19) 0.82 (0.13) 0.99 (0.02) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
basic inverse Wishart prior 0.5 (0.15) 0.84 (0.12) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 0) 0.2 (0.17) 0.8 (0.12) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 0.5) 0.24 (0.05) 0.37 (0.05) 0.99 (0.02) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 1.0) 0.23 (0.06) 0.32 (0.04) 0.99 (0.02) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
AIC 0.15 (0.19) 0.16 (0.12) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Calinski-Harabasz Index 0.17 (0.09) 0.17 (0.23) 0.46 (0.27) 0.45 (0.23) 0.47 (0.19) 0.4 (0.14)
CGL (ALC) 0.07 (0.11) 0.03 (0.04) 0.05 (0.07) 0.03 (0.03) 0.07 (0.07) 0.05 (0.06)
DPVC 0.57 (0.13) 0.66 (0.07) 0.64 (0.14) 0.87 (0.17) NA NA

Σj ∼ Uniformdj , no noise

Proposed (β = 0.01) 0.15 (0.03) 0.33 (0.03) 0.87 (0.1) 0.98 (0.03) 1.0 (0.0) 0.98 (0.03)
Proposed (β = 0.02) 0.15 (0.03) 0.33 (0.03) 0.87 (0.1) 0.97 (0.04) 1.0 (0.0) 0.97 (0.04)
Proposed (β = 0.03) 0.16 (0.03) 0.31 (0.03) 0.67 (0.18) 0.97 (0.04) 0.98 (0.03) 0.97 (0.04)
basic inverse Wishart prior 0.17 (0.05) 0.33 (0.02) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 0) 0.08 (0.09) 0.6 (0.23) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 0.5) 0.16 (0.03) 0.33 (0.04) 0.98 (0.03) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 1.0) 0.16 (0.03) 0.31 (0.03) 0.91 (0.12) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
AIC 0.08 (0.08) 0.52 (0.33) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Calinski-Harabasz Index 0.16 (0.06) 0.53 (0.3) 0.64 (0.15) 0.63 (0.28) 0.88 (0.17) 0.96 (0.08)
CGL (ALC) 0.0 (0.01) 0.0 (0.0) 0.0 (0.01) 0.15 (0.16) 0.15 (0.21) 0.12 (0.06)
DPVC 0.02 (0.01) 0.0 (0.04) 0.23 (0.14) 0.25 (0.13) NA NA
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Figure 2.5: Posterior distribution of the number of clusters of the proposed
method (top row) and the basic inverse Wishart prior model (bottom row).
Ground truth is 4 clusters; noise was added to the precision matrix.
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Table 2.6: Evaluation of clustering results with d = 40, n ∈
{20, 40, 400, 4000, 40000, 4000000}. Ground truth is 4 unbalanced clusters with
sizes 20, 10, 5, 5. Shows the ANMI of the selected models (standard deviation
in brackets). Noise is added to the precision matrix.

Σj ∼ InvW(dj + 1, Idj ),Σε ∼ InvW(d+ 1, Id), η = 0.01

20 40 400 4000 40000 4000000

Proposed (β = 0.01) 0.45 (0.14) 0.75 (0.15) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Proposed (β = 0.02) 0.39 (0.09) 0.75 (0.15) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 0.98 (0.03)
Proposed (β = 0.03) 0.39 (0.09) 0.7 (0.18) 1.0 (0.0) 0.97 (0.06) 1.0 (0.0) 0.98 (0.03)
basic inverse Wishart prior 0.48 (0.15) 0.8 (0.09) 1.0 (0.0) 0.91 (0.11) 0.39 (0.13) 0.42 (0.12)
EBIC (γ = 0) 0.12 (0.08) 0.67 (0.12) 1.0 (0.0) 0.91 (0.11) 0.48 (0.17) 0.42 (0.12)
EBIC (γ = 0.5) 0.19 (0.08) 0.32 (0.04) 0.97 (0.03) 1.0 (0.0) 0.54 (0.26) 0.42 (0.12)
EBIC (γ = 1.0) 0.17 (0.07) 0.28 (0.07) 0.96 (0.03) 1.0 (0.0) 0.68 (0.24) 0.42 (0.12)
AIC 0.06 (0.09) 0.3 (0.34) 1.0 (0.0) 0.4 (0.1) 0.39 (0.13) 0.42 (0.12)
Calinski-Harabasz Index 0.2 (0.06) 0.13 (0.2) 0.45 (0.27) 0.59 (0.17) 0.7 (0.21) 0.77 (0.03)
CGL (ALC) 0.08 (0.06) 0.05 (0.03) 0.04 (0.03) 0.03 (0.02) 0.03 (0.02) 0.04 (0.04)
DPVC 0.28 (0.04) 0.35 (0.07) 0.57 (0.08) 0.4 (0.12) NA NA

Σj ∼ InvW(dj + 1, Idj ),Σε ∼ InvW(d+ 1, Id), η = 0.1

Proposed (β = 0.01) 0.09 (0.11) 0.42 (0.12) 0.84 (0.1) 0.42 (0.16) 0.18 (0.22) 0.24 (0.18)
Proposed (β = 0.02) 0.09 (0.11) 0.42 (0.13) 0.88 (0.11) 0.85 (0.15) 0.99 (0.02) 0.9 (0.09)
Proposed (β = 0.03) 0.15 (0.06) 0.42 (0.13) 0.89 (0.09) 0.92 (0.07) 0.99 (0.02) 0.9 (0.09)
basic inverse Wishart prior 0.11 (0.14) 0.42 (0.13) 0.84 (0.1) 0.2 (0.2) 0.0 (0.01) 0.1 (0.17)
EBIC (γ = 0) 0.04 (0.05) 0.24 (0.06) 0.88 (0.11) 0.2 (0.2) 0.0 (0.01) 0.1 (0.17)
EBIC (γ = 0.5) 0.05 (0.02) 0.19 (0.04) 0.74 (0.19) 0.44 (0.17) 0.0 (0.01) 0.1 (0.17)
EBIC (γ = 1.0) 0.05 (0.02) 0.19 (0.04) 0.41 (0.06) 0.78 (0.12) 0.0 (0.01) 0.1 (0.17)
AIC 0.0 (0.01) 0.15 (0.21) 0.19 (0.2) 0.2 (0.2) 0.0 (0.01) 0.1 (0.17)
Calinski-Harabasz Index 0.06 (0.03) 0.17 (0.11) 0.68 (0.25) 0.67 (0.2) 0.83 (0.17) 0.76 (0.04)
CGL (ALC) 0.04 (0.04) 0.03 (0.02) 0.05 (0.06) 0.1 (0.11) 0.05 (0.07) 0.08 (0.09)
DPVC 0.13 (0.05) 0.16 (0.05) 0.3 (0.13) 0.07 (0.03) NA NA

Σj ∼ Uniformdj ,Σε ∼ Uniformd, η = 0.01

Proposed (β = 0.01) 0.11 (0.02) 0.32 (0.04) 0.74 (0.15) 0.83 (0.1) 0.59 (0.32) 0.5 (0.33)
Proposed (β = 0.02) 0.11 (0.02) 0.32 (0.04) 0.61 (0.17) 0.83 (0.1) 0.59 (0.32) 0.59 (0.32)
Proposed (β = 0.03) 0.11 (0.02) 0.32 (0.04) 0.43 (0.06) 0.83 (0.1) 0.59 (0.32) 0.59 (0.32)
basic inverse Wishart prior 0.11 (0.02) 0.32 (0.04) 0.84 (0.05) 0.28 (0.0) 0.11 (0.14) 0.17 (0.23)
EBIC (γ = 0) 0.18 (0.13) 0.43 (0.05) 0.76 (0.13) 0.22 (0.12) 0.11 (0.14) 0.06 (0.11)
EBIC (γ = 0.5) 0.11 (0.02) 0.32 (0.04) 0.84 (0.05) 0.51 (0.3) 0.11 (0.14) 0.06 (0.11)
EBIC (γ = 1.0) 0.11 (0.02) 0.32 (0.04) 0.79 (0.13) 0.67 (0.24) 0.11 (0.14) 0.06 (0.11)
AIC 0.14 (0.05) 0.16 (0.28) 0.17 (0.23) 0.22 (0.12) 0.09 (0.12) 0.06 (0.11)
Calinski-Harabasz Index 0.14 (0.08) 0.32 (0.3) 0.34 (0.33) 0.68 (0.22) 0.25 (0.27) 0.41 (0.32)
CGL (ALC) 0.0 (0.0) 0.0 (0.0) 0.01 (0.04) 0.0 (0.01) 0.02 (0.02) 0.01 (0.01)
DPVC 0.01 (0.01) 0.03 (0.06) 0.2 (0.05) 0.01 (0.02) NA NA

Σj ∼ Uniformdj ,Σε ∼ Uniformd, η = 0.1

Proposed (β = 0.01) 0.1 (0.02) 0.34 (0.07) 0.68 (0.18) 0.6 (0.31) 0.09 (0.12) 0.06 (0.11)
Proposed (β = 0.02) 0.11 (0.02) 0.34 (0.07) 0.65 (0.21) 0.7 (0.13) 0.21 (0.21) 0.28 (0.26)
Proposed (β = 0.03) 0.11 (0.02) 0.32 (0.06) 0.58 (0.2) 0.7 (0.13) 0.32 (0.22) 0.28 (0.26)
basic inverse Wishart prior 0.14 (0.03) 0.37 (0.08) 0.78 (0.1) 0.0 (0.02) 0.09 (0.12) 0.06 (0.11)
EBIC (γ = 0) 0.16 (0.05) 0.49 (0.21) 0.71 (0.14) 0.0 (0.02) 0.09 (0.12) 0.06 (0.11)
EBIC (γ = 0.5) 0.11 (0.01) 0.36 (0.08) 0.77 (0.13) 0.06 (0.11) 0.09 (0.12) 0.06 (0.11)
EBIC (γ = 1.0) 0.11 (0.01) 0.31 (0.05) 0.7 (0.16) 0.12 (0.14) 0.09 (0.12) 0.06 (0.11)
AIC 0.15 (0.05) 0.05 (0.12) 0.06 (0.11) 0.0 (0.02) 0.09 (0.12) 0.06 (0.11)
Calinski-Harabasz Index 0.16 (0.05) 0.29 (0.26) 0.42 (0.23) 0.45 (0.38) 0.09 (0.12) 0.33 (0.31)
CGL (ALC) 0.0 (0.01) 0.0 (0.01) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.01)
DPVC 0.0 (0.04) 0.03 (0.05) 0.11 (0.13) 0.02 (0.03) NA NA
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Table 2.7: Evaluation of clustering results for d = 200, n ∈ {50, 100, 150}.
Ground truth is 4 balanced clusters. Shows the ANMI of the selected models
(standard deviation in brackets).

Σj ∼ InvW(dj + 1, Idj ), no noise

50 100 150

Proposed (β = 0.02) 0.99 (0.01) 1.0 (0.0) 1.0 (0.0)
Inverse Wishart prior 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 0) 0.93 (0.06) 0.99 (0.02) 1.0 (0.0)
EBIC (γ = 0.5) 0.68 (0.06) 0.72 (0.02) 0.72 (0.03)
EBIC (γ = 1.0) 0.68 (0.06) 0.72 (0.02) 0.7 (0.02)
AIC 0.53 (0.09) 0.0 (0.0) 0.0 (0.0)
Calinski-Harabasz Index 0.98 (0.01) 1.0 (0.0) 1.0 (0.01)
CGL (ALC) 0.02 (0.02) 0.08 (0.04) 0.04 (0.06)
DPVC 0.61 (0.04) 0.63 (0.05) 0.7 (0.06)

Σj ∼ Uniformdj , no noise

Proposed (β = 0.02) 0.02 (0.01) 0.11 (0.06) 0.48 (0.01)
Inverse Wishart prior 0.0 (0.0) 0.11 (0.06) 0.48 (0.01)
EBIC (γ = 0) 0.02 (0.02) 0.0 (0.0) 0.48 (0.01)
EBIC (γ = 0.5) 0.02 (0.01) 0.11 (0.06) 0.48 (0.01)
EBIC (γ = 1.0) 0.02 (0.01) 0.11 (0.06) 0.48 (0.01)
AIC 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Calinski-Harabasz Index 0.04 (0.02) 0.15 (0.06) 0.52 (0.27)
CGL (ALC) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
DPVC 0.0 (0.0) 0.01 (0.01) 0.01 (0.02)
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Figure 2.6: Two dimensional representation of the mutual funds data suggesting
that balanced funds and U.S. stock funds are difficult to separate (one cluster),
whereas U.S. bond funds and international stock funds appear to form mostly
separate clusters.
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Table 2.8: Evaluation of clustering results for d = 200, n ∈ {50, 100, 150}.
Ground truth is 4 balanced clusters. Noise is added to the precision matrix.
Shows the ANMI of the selected models (standard deviation in brackets).

Σj ∼ InvW(dj + 1, Idj ),Σε ∼ InvW(d+ 1, Id), η = 0.01

50 100 150

Proposed (β = 0.02) 0.77 (0.04) 0.99 (0.01) 1.0 (0.0)
Inverse Wishart prior 0.8 (0.04) 0.99 (0.01) 1.0 (0.0)
EBIC (γ = 0) 0.73 (0.01) 0.73 (0.04) 0.86 (0.03)
EBIC (γ = 0.5) 0.6 (0.25) 0.72 (0.04) 0.72 (0.02)
EBIC (γ = 1.0) 0.6 (0.25) 0.72 (0.04) 0.72 (0.02)
AIC 0.54 (0.12) 0.0 (0.0) 0.0 (0.0)
Calinski-Harabasz Index 0.77 (0.05) 0.99 (0.01) 0.99 (0.01)
CGL (ALC) 0.0 (0.0) 0.01 (0.02) 0.0 (0.0)
DPVC 0.22 (0.01) 0.35 (0.03) 0.38 (0.0)

Σj ∼ Uniformdj ,Σε ∼ Uniformd, η = 0.01

Proposed (β = 0.02) 0.03 (0.01) 0.13 (0.03) 0.48 (0.06)
Inverse Wishart prior 0.0 (0.0) 0.13 (0.03) 0.48 (0.06)
EBIC (γ = 0) 0.01 (0.01) 0.0 (0.0) 0.48 (0.07)
EBIC (γ = 0.5) 0.02 (0.02) 0.13 (0.03) 0.48 (0.06)
EBIC (γ = 1.0) 0.01 (0.02) 0.13 (0.03) 0.48 (0.06)
AIC 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Calinski-Harabasz Index 0.02 (0.02) 0.21 (0.07) 0.66 (0.09)
CGL (ALC) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
DPVC 0.0 (0.0) 0.0 (0.01) 0.03 (0.01)

Σj ∼ InvW(dj + 1, Idj ),Σε ∼ InvW(d+ 1, Id), η = 0.1

Proposed (β = 0.02) 0.0 (0.0) 0.0 (0.0) 0.12 (0.07)
Inverse Wishart prior 0.0 (0.0) 0.0 (0.0) 0.04 (0.06)
EBIC (γ = 0) 0.06 (0.04) 0.06 (0.03) 0.09 (0.05)
EBIC (γ = 0.5) 0.06 (0.04) 0.06 (0.03) 0.09 (0.05)
EBIC (γ = 1.0) 0.06 (0.04) 0.06 (0.03) 0.09 (0.05)
AIC 0.03 (0.02) 0.01 (0.01) 0.0 (0.0)
Calinski-Harabasz Index 0.0 (0.0) 0.04 (0.04) 0.06 (0.06)
CGL (ALC) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
DPVC 0.03 (0.01) 0.09 (0.03) 0.12 (0.03)

Σj ∼ Uniformdj ,Σε ∼ Uniformd, η = 0.1

Proposed (β = 0.02) 0.02 (0.01) 0.11 (0.03) 0.42 (0.07)
Inverse Wishart prior 0.0 (0.0) 0.13 (0.03) 0.45 (0.07)
EBIC (γ = 0) 0.01 (0.01) 0.0 (0.0) 0.45 (0.07)
EBIC (γ = 0.5) 0.02 (0.01) 0.13 (0.03) 0.45 (0.07)
EBIC (γ = 1.0) 0.02 (0.01) 0.11 (0.03) 0.45 (0.07)
AIC 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Calinski-Harabasz Index 0.01 (0.01) 0.14 (0.04) 0.52 (0.27)
CGL (ALC) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
DPVC 0.0 (0.01) 0.0 (0.01) 0.01 (0.01)
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Table 2.9: Comparison of variational and MCMC estimate. Evaluation of
clustering results for d = 12, n ∈ {12, 120, 1200, 1200000}. Ground truth is 4
balanced clusters. β = 0.02. Shows the ANMI of the selected models (standard
deviation in brackets).

Σj ∼ InvW(dj + 1, Idj ), no noise

12 120 1200 1200000

Proposed, variational 0.39 (0.23) 0.89 (0.09) 0.96 (0.07) 0.82 (0.11)
Proposed, MCMC 0.37 (0.23) 0.89 (0.09) 0.96 (0.07) 0.9 (0.14)
basic inverse Wishart prior 0.39 (0.23) 0.89 (0.09) 1.0 (0.0) 1.0 (0.0)

Σj ∼ Uniformdj , no noise

Proposed, variational 0.76 (0.17) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Proposed, MCMC 0.66 (0.1) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
basic inverse Wishart prior 0.76 (0.17) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Σj ∼ InvW(dj + 1, Idj ),Σε ∼ InvW(d+ 1, Id), η = 0.01

Proposed, variational 0.42 (0.27) 0.8 (0.16) 1.0 (0.0) 0.96 (0.07)
Proposed, MCMC 0.17 (0.24) 0.8 (0.16) 1.0 (0.0) 0.96 (0.07)
basic inverse Wishart prior 0.42 (0.27) 0.94 (0.12) 0.93 (0.13) 0.34 (0.04)

Σj ∼ InvW(dj + 1, Idj ),Σε ∼ InvW(d+ 1, Id), η = 0.1

Proposed, variational 0.11 (0.16) 0.57 (0.07) 0.55 (0.26) 0.78 (0.2)
Proposed, MCMC 0.09 (0.06) 0.61 (0.13) 0.61 (0.23) 0.78 (0.2)
basic inverse Wishart prior 0.16 (0.15) 0.54 (0.1) 0.28 (0.15) 0.21 (0.18)

Σj ∼ Uniformdj ,Σε ∼ Uniformd, η = 0.01

Proposed, variational 0.79 (0.12) 0.82 (0.26) 0.73 (0.33) 0.96 (0.07)
Proposed, MCMC 0.82 (0.11) 0.96 (0.09) 0.75 (0.31) 0.96 (0.07)
basic inverse Wishart prior 0.79 (0.12) 0.48 (0.15) 0.28 (0.09) 0.28 (0.09)

Σj ∼ Uniformdj ,Σε ∼ Uniformd, η = 0.1

Proposed, variational 0.67 (0.22) 0.24 (0.24) 0.32 (0.0) 0.35 (0.18)
Proposed, MCMC 0.68 (0.17) 0.24 (0.24) 0.46 (0.27) 0.35 (0.18)
basic inverse Wishart prior 0.69 (0.21) 0.13 (0.11) 0.26 (0.13) 0.28 (0.09)
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Table 2.10: Evaluation of selected clusterings of the mutual funds data. Colors
highlight the type of fund. Numbers denote the cluster id assigned by the
respective method. Here the size of the restricted hypotheses space |C ∗| found
by spectral clustering was 128.

Proposed and EBIC (γ = 0.0) [number of clusters = 6, ANMI = 0.48]

U.S. bond funds 2 2 2 2 2 2 2 4 2 2 2 2 2
U.S. stock funds 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 4 6
balanced funds 1 1 1 1 1 1 1
international stock funds 1 3 1 1 3 1 3 3 1

basic inverse Wishart prior [number of clusters = 3, ANMI = 0.42]

U.S. bond funds 2 2 2 2 2 2 2 2 2 2 2 2 2
U.S. stock funds 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1
balanced funds 1 1 1 1 1 1 1
international stock funds 1 1 1 1 1 1 1 1 1

EBIC (γ = 0.5) [number of clusters = 11, ANMI = 0.32]

U.S. bond funds 2 9 2 9 2 2 2 1 10 9 2 2 2
U.S. stock funds 7 11 7 11 7 11 7 7 11 5 7 11 5 1 8 7 11 5 5 5 5 5 5 5 8 5 4 8 8 6
balanced funds 11 7 8 7 11 7 11
international stock funds 1 3 1 1 3 1 3 3 3

EBIC (γ = 1.0) [number of clusters = 14, ANMI = 0.25]

U.S. bond funds 2 9 2 9 2 14 2 1 14 9 10 10 10
U.S. stock funds 12 8 12 6 12 8 12 12 8 6 12 8 6 3 11 6 8 5 7 5 5 5 5 6 11 5 11 15 4 11
balanced funds 8 12 1 12 8 6 7
international stock funds 3 13 3 3 13 3 13 13 13

AIC and Calinski-Harabasz Index [number of clusters = 2, ANMI = 0]

U.S. bond funds 1 1 1 1 1 1 1 1 1 1 1 1 1
U.S. stock funds 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
balanced funds 1 1 1 1 1 1 1
international stock funds 1 1 1 1 1 1 1 1 1

CGL (ALC) [number of clusters = 3, ANMI = 0.36]

U.S. bond funds 1 1 1 1 1 1 1 3 1 1 1 1 1
U.S. stock funds 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3
balanced funds 2 2 2 2 3 2 2
international stock funds 2 2 2 2 2 2 2 3 2

DPVC [number of clusters = 2, ANMI = 0.35]

U.S. bond funds 1 1 1 1 1 1 1 2 1 1 1 1 1
U.S. stock funds 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
balanced funds 2 2 2 2 2 2 2
international stock funds 2 2 2 2 2 2 2 2 2
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Figure 2.7: Gene regulations of E. coli. as given in (Hirose et al., 2017; Alberts
et al., 2014) suggesting that the gene groups {lexA, uvrA, uvrB, uvrC, uvrD,
recA} and {crp, lacl, lacZ, lacY, lacA} should be separated.



46 CHAPTER 2. ROBUST VARIABLE CLUSTERING

Proposed and EBIC (γ = 1.0)


���
���
���

���
	��


��� 
��� 
��� �	�� 
���


��


EBIC (γ = 0.0), basic inverse
Wishart prior, AIC, CGL


���
���
���

���
	��


��� 
��� 
��� �	�� 
���


��


EBIC (γ = 0.5)


���
���
���

���
	��


��� 
��� 
��� �	�� 
���


��


Calinski-Harabasz Index


���
���
���

���
	��


��� 
��� 
��� �	�� 
���


��


DPVC


���
���
���

���
	��


��� 
��� 
��� �	�� 
���


��


Figure 2.8: Clusterings of gene regulations network of E. coli. The clustering
results are visualized by different colors. Here the size of the restricted hypotheses
space |C ∗| found by spectral clustering was 18. Only the proposed method,
EBIC (γ = 1.0) and Calinski-Harabasz correctly divide the gene groups {lexA,
uvrA, uvrB, uvrC, uvrD, recA} and {crp, lacl, lacZ, lacY, lacA}.
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Table 2.11: Evaluation of selected clusterings of the Aviation Sensor Data with
16 variables. Here the size of the restricted hypotheses space |C ∗| found by
spectral clustering was 28.

Proposed

Cluster 1 BRAKE PRESSURE LH YELLOW

Cluster 2 INDICATED ANGLE OF ATTACK, ANGLE OF ATTACK 2, ANGLE OF ATTACK 1

Cluster 3 ROLL SPOILER RIGHT

Cluster 4 BRAKE PRESSURE RH GREEN

Cluster 5 RUDDER POSITION

Cluster 6 AILERON POSITION RH, AILERON POSITION LH

Cluster 7 ROLL SPOILER LEFT

Cluster 8 PITCH TRIM POSITION

Cluster 9 STATIC PRESSURE LSP, TOTAL PRESSURE LSP, AVARAGE STATIC PRESSURE LSP,
ELEVATOR POSITION LEFT,ELEVATOR POSITION RIGHT

basic inverse Wishart prior, EBIC (γ ∈ {0.0, 0.5, 1.0}), AIC

Cluster 1 STATIC PRESSURE LSP, INDICATED ANGLE OF ATTACK, TOTAL PRESSURE LSP,
RUDDER POSITION, AILERON POSITION RH, AVARAGE STATIC PRESSURE LSP,
ELEVATOR POSITION LEFT, ELEVATOR POSITION RIGHT, PITCH TRIM POSITION,
ANGLE OF ATTACK 2, ANGLE OF ATTACK 1, AILERON POSITION LH, ROLL SPOILER LEFT,
BRAKE PRESSURE LH YELLOW, ROLL SPOILER RIGHT

Cluster 2 BRAKE PRESSURE RH GREEN

Calinski-Harabasz Index

Cluster 1 STATIC PRESSURE LSP, TOTAL PRESSURE LSP, AILERON POSITION RH,
AVARAGE STATIC PRESSURE LSP, ELEVATOR POSITION LEFT, ELEVATOR POSITION RIGHT,
BRAKE PRESSURE RH GREEN, AILERON POSITION LH, BRAKE PRESSURE LH YELLOW

Cluster 2 INDICATED ANGLE OF ATTACK, ANGLE OF ATTACK 2, ANGLE OF ATTACK 1

Cluster 3 RUDDER POSITION, PITCH TRIM POSITION, ROLL SPOILER LEFT, ROLL SPOILER RIGHT

CGL (ALC)

Cluster 1 STATIC PRESSURE LSP, TOTAL PRESSURE LSP, AVARAGE STATIC PRESSURE LSP,
ELEVATOR POSITION LEFT, ELEVATOR POSITION RIGHT, BRAKE PRESSURE LH YELLOW

Cluster 2 INDICATED ANGLE OF ATTACK, RUDDER POSITION, AILERON POSITION RH,
PITCH TRIM POSITION, BRAKE PRESSURE RH GREEN, ANGLE OF ATTACK 2,
ANGLE OF ATTACK 1, AILERON POSITION LH, ROLL SPOILER LEFT, ROLL SPOILER RIGHT
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Chapter 3

Disjunct Support Prior for
Variable Selection in
Regression

3.1 Introduction

In this chapter, we extend some of the ideas from the previous chapter to model
selection under noise for variable selection in regression.

Sparseness of the regression coefficient vector is often a desirable property,
since it (1) helps to improve interpretability, and (2) reduces the cost1 of
prediction. However, in practice, we may have to trade in a small reduction
in prediction accuracy for an increase in sparseness. Spike-and-slab priors,
as proposed by (Chipman et al., 2001), can potentially handle such a trade-
off between prediction accuracy and sparseness. Though, manual setting of
these priors is difficult, since they are either too restrictive, or depend on the
unknown noise variance of the response variable. The limitations of these previous
approaches are basically due to the desire for conjugate priors which results in
closed-form solutions for the marginal likelihood.

Here, in this work, we propose a hierarchical spike-and-slab prior for the linear
regression model that allows the user to explicitly specify the minimal magnitude
δ of the regression coefficients that is considered practically significant. The
proposed model decouples the response noise prior variance from the regression
coefficients’ prior variance, and thus making the threshold parameter δ more
meaningful than previous work (Chipman et al., 2001). For example, δ can be
set such that the Mean-Squared Error (MSE) of the prediction is only little
influenced by ignoring covariates with coefficients’ magnitude smaller than δ.

Our proposed method also resolves another subtle issue with previous spike-
and-slab priors, namely inconsistent Bayes factors (BF). Due to the fact that the

1In case where acquiring the value of a covariate incurs a cost.

49
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spike-and-slab priors of (Chipman et al., 2001) (and related work like (Ishwaran
et al., 2005)) have full support, the Bayes factors of any two models is bounded
in probability, for which we give a formal proof in Section 3.4. This is an
undesirable property for Bayesian hypothesis testing, since we would like that
the BF between the true and the wrong model grows with increasing sample
size. In order to resolve this issue, our proposed method uses disjunct support
priors, which allows us to guarantee consistent Bayes factors in the sense that
the ratio of the true model’s marginal likelihood to any other models’ marginal
likelihood converges to infinity for large sample sizes.

However, our choice of the prior does not enable the calculation of the
marginal likelihood in closed-form anymore. Therefore, we introduce a latent
variable indicator vector z, and propose an efficient Gibbs sampler to sample
from its posterior distribution. This allows us to estimate all model probabilities
p(S|y, X, δ), where S is a set of relevant variables.

The rest of this Chapter is organized as follows. In the next section, we
summarize the properties of spike-and-slab priors from previous work. In Section
3.3, we introduce our model for variable selection based on disjunct support
spike-and-slab priors. In Section 3.4, we prove that the disjunct support priors of
our proposed method allows us to guarantee consistent Bayes factors. In Section
3.5, we explain our MCMC sampling strategy for estimating model probabilities.
Since the elicitation of δ can be difficult, we discuss in Section 3.6 two strategies
for determining δ: (1) bounding the increase in mean squared error (MSE) for
prediction, and (2) estimating the expected MSE. We evaluate our proposed
method on several synthetic data sets in Section 3.7, and real data sets in Section
3.8. Finally, we summarize our findings in Section 3.9.

3.2 Related work

To the best of our knowledge, the only Bayesian framework that allows to
handle noise for variable selection are the spike-and-slab priors as proposed in
(Chipman et al., 2001). The basic idea is to model the coefficients of the relevant
and non-relevant variables by a normal distribution with variances σ2

1 and σ2
0 ,

respectively, and σ2
1 � σ2

0 . An example is shown in Figure 3.1.
The variance parameters σ2

1 and σ2
0 must be set manually. A difficulty of

spike-and-slab priors is the correct setting of these parameters, and therefore
(Ishwaran et al., 2005) proposed to place hyper-priors over these parameters
in a such way that the resulting marginal prior p(β) is little sensitive to the
hyper-parameter choice. However, their prior choice does not allow for a closed-
form marginal likelihood. Furthermore, their prior choice is only suitable for the
situation where there is no noise, i.e. a variable j is considered to be relevant if
and only if the true coefficient βj is not zero.

In contrast, the spike and slab priors proposed in (Chipman et al., 2001)
allow to specify practical significance (what we call here "relevance") by setting
σ2

1 to some large enough value (for example 100) and then set σ2
0 such that the

intersection points of the two priors occur at a pre-specified value δ (and −δ),
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Figure 3.1: Example of spike and slab prior as proposed in (Chipman et al.,
2001).

see Figure 3.1. However, their method has some drawbacks:

• Their conjugate prior formulation is sensitive to the prior for the response
variance, whereas their non-conjugate formulation is not sensitive to the
response variance, but has no closed-form solution anymore.

• For any δ > 0, the Bayes factors are not consistent in the following sense.
Let S be the true set of relevant variables and S′ any other set, then we
have

p(yn|Xn, S)

p(yn|Xn, S′)

P→ Op(1) ,

where yn := (y1, . . . yn) and Xn := (x1, . . . ,xn), are the observed responses
and covariates of n samples. This is due to the fact that the model
dimension of spike-and-slab priors is the same for model S and S′. As a
consequence, the influence of the prior can be ignored, in the sense that the
influence of the prior is asymptotically the same for model S and S′. Since
for both models β will concentrate around the true regression coefficient
vector, the marginal likelihood cannot be distinguished any more. A formal
proof, will be given in Section 3.4.

• It might be difficult to specify δ a-priori.

3.3 Proposed method
Let S be the indices of the selected covariates (i.e. the covariate that are
considered to be relevant), and C := {1, . . . , d} \S the set of irrelevant covariates.



52 CHAPTER 3. ROBUST VARIABLE SELECTION

0.0

0.1

0.2

0.3

0.4

spike N[ , ](0, 2
0)

slab C] , ] [ , [(0, 2)

Figure 3.2: Illustration of the proposed spike and slab prior. C]−∞,−δ]∪[δ,∞[(0, η
2)

denotes the Cauchy distribution with mean 0 and scale η2.

Furthermore, let s := |S| be the number of selected covariates. We consider the
following linear model for y ∈ R regressed on x ∈ Rd:

y = xTβ + ε ,

where

ε ∼ N(0, σ2
r) ,

σ2
r ∼ Inv-χ2(νr, η

2
r) ,

}
Prior for noise ε

s ∼ Multinomial(p, πrel) ,

πrel ∼ Beta(1, 1) ,

}
Prior for number of relevant covariates s

σ2
1 ∼ Inv-χ2(ν1, η

2
1) ,

for j ∈ {1, . . . , d}:
if j ∈ S, then
βj ∼ N]−∞,−δ]∪[δ,∞[(0, σ

2
1)

else

βj ∼ N[−δ,δ](0, σ
2
0) .


Prior for regression coefficients β

νr, η
2
r are set such that Inv-χ2(νr, η

2
r) is a weakly informative prior. Inv-χ2

denotes the scaled inverse chi-square distribution (see details below), where νr
can be interpreted as the number of a-priori observations. For our experiments,
we set νr and the prior variance σ2

r to 1.
N[−δ,δ] and N]−∞,−δ]∪[δ,∞[ denote the truncated normal distribution with

support [−δ, δ] and ]−∞,−δ] ∪ [δ,∞[ for the spike and slab prior, respectively.
The specification of σ0, and σ1 determines the shape of the spike and slab prior,
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respectively. For the slab prior, in order to allow for possibly large values of βj ,
we place a diffuse hyper-prior on σ2

1 . In particular, we set ν1 = 1, and η2
1 = 100

which corresponds to a truncated Cauchy distribution with mean zero and scale
η2

1 for p(βj |j ∈ S, ν1, η
2
1 , δ).

At the boundary βj = δ (and, due to symmetry βj = −δ) we want to be
indifferent about whether βj was sampled from the spike or slab prior. Therefore,
we set σ2

0 such that

p(βj = δ|j ∈ S, ν1, η
2
1 , δ) = p(βj = δ|j /∈ S, σ2

0 , δ) . (3.1)

The left hand side of Equation (3.1) does not have a closed-form solution.
However, note that

p(βj = δ|j ∈ S, ν1, η
2
1 , δ) =

∫
N]−∞,−δ]∪[δ,∞[(βj = δ|0, σ2

1)·Inv-χ2(σ2
1 |ν1, η

2
1)dσ2

1 ,

which we solve using numerical integration. Our proposed spike and slab prior
is illustrated in Figure 3.2.

Therefore, the remaining critical hyper-parameter is only the specification
of the threshold parameter δ. In Section 3.6, we discuss several methods for
specifying δ.

Note that the prior on the number of relevant variables s ensures multiplicity
control and has been extensively studied in (Scott et al., 2010; Scott and Berger,
2006). The probability of a variable being relevant πrel can be integrated out
leading to

p(s) =
1

d+ 1

(
d
s

)−1

. (3.2)

Note that the scaled inverse chi-square distribution is defined as follows (see
e.g. Gelman et al. (2013)):

Inv-χ2(σ2|ν, η2) = (η2)ν/2
(ν/2)ν/2

Γ(ν/2)
(σ2)−( ν2 +1)e−

1
2σ2

νη2 .
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Therefore, the joint probability density function is given by:

p(β, σ2
r , σ

2
1 ,y, S, |X) = p(s) · (2π)−

n
2 · (σ2

r)−
n
2 e
− 1

2σ2r
||y−Xβ||22

· (η2
r)νr/2

(νr/2)νr/2

Γ(νr/2)
· (σ2

r)−( νr2 +1)e
− 1

2σ2r
νrη

2
r

· (η2
1)ν1/2

(ν1/2)ν1/2

Γ(ν1/2)
· (σ2

1)−(
ν1
2 +1)e

− 1

2σ21
ν1η

2
1

·
(∏
j∈C

1N (βj) ·
1

ι(N , σ2
0)
· e
− 1

2σ20
β2
j
)

·
(∏
j∈S

1R(βj) ·
1

ι(R, σ2
1)
e
− 1

2σ21
β2
j
)

= C0 · p(s) · (σ2
r)−

n
2 e
− 1

2σ2r
||y−Xβ||22

· (σ2
r)−( νr2 +1)e

− 1
2σ2r

νrη
2
r

· (σ2
1)−(

ν1
2 +1)e

− 1

2σ21
ν1η

2
1

·
(∏
j∈C

1N (βj) ·
1

ι(N , σ2
0)
· e
− 1

2σ20
β2
j
)

·
(∏
j∈S

1R(βj) ·
1

ι(R, σ2
1)
e
− 1

2σ21
β2
j
)
,

where we defined N := [−δ, δ], and R :=]−∞,−δ] ∪ [δ,∞[, and

ι(A, σ2) :=

∫
1A(x)e−

1
2σ2

x2

dx

and

C0 := (2π)−
n
2 · (η2

r)νr/2
(νr/2)νr/2

Γ(νr/2)
· (η2

1)ν1/2
(ν1/2)ν1/2

Γ(ν1/2)
.

3.4 Asymptotic Bayes factors

In this section, we formally prove the asymptotic behavior of the Bayes factors
between the true model and any other model, first for our proposed method
(Theorem 1), and then for previously proposed spike and slab priors (Theorem
2).

In the following, we define the true set of variables S as

S :=
{
j ∈ {1, . . . , d}

∣∣∣ | βj,t| > δ
}
.

Furthermore, we denote convergence in probability by P→.
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Theorem 1. Let S be the true set of relevant variables and S′ any other set of
variables. For the proposed method with disjunct support priors (as defined in
Section 3.3), it holds that

p(yn|Xn, S)

p(yn|Xn, S′)

P→∞ ,

where Xn := (x1, . . . ,xn), are n samples drawn from a non-degenerated probabil-
ity distribution p(x) with finite covariance matrix, and yn := (y1, . . . , yn), where
yi ∼ p(y|xi, σ2

r,t,βt), for some true parameters σ2
r,t and βt. We assume that βt

is not on the boundary of the support of the prior p(β|S).

We note that the convergence to infinity in Theorem 1 is exponentially fast
in the number of samples n.

Proof. A general result in Bayesian hypothesis testing, as given in (Johnson
and Rossell, 2010; Walker, 1969), states that the Bayes factor will converge
exponentially fast favoring the alternative model, under the assumption that (1)
the alternative model is true, (2) the support of the priors of the alternative and
null model are disjunct, and (3) the models satisfy several regularity conditions.
We show here that important regularity conditions are satisfied by our model,
and complete the proof using some well-known asymptotic results.

First of all, let us do a change of variable using the one-to-one mapping
τ := σ−2

r . For simplicity, let us denote θ := (τ,β), and the true parameter vector
as θt.

Let us define the expected score function for a parameter vector θ as

g(θ) := Ey∼p(y|θ,x)

[
log p(y|θ,x)

]
.

First, we claim that the following function has a unique maximum

Ex

[
g(θ)

]
,

where x is distributed according to some non-degenerated distribution with mean
zero and positive definite covariance matrix C, and is such that we can exchange
differentiation and integral.

We have

log p(y|θ,x) =
1

2
log τ − 1

2
τ(y − xTβ)2 − 1

2
log 2π ,

and

Ex

[
g(θ)

]
= Ex,y

[
log p(y|θ,x)

]
=

1

2
log τ − 1

2
τ Ex,y

[
(y − xTβ)2

]
− 1

2
log 2π .
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Since C is positive definite, we have that Ex,y

[
(y−xTβ)2

]
has a unique minimum

at β = βt. To see this note that

Ex,y

[
(y − xTβ)2

]
= Ex,ε

[
(xTβt + ε− xTβ)2

]
= Ex,ε

[(
xT (βt − β) + ε

)2]
= Ex

[(
xT (βt − β)

)2]
+ 2Ex,ε

[
ε · xT (βt − β)

]
+ Eε

[
ε2
]

= (βt − β)T Ex

[
xxT

]
(βt − β) + 2Eε

[
ε
]
· Ex

[
xT
]
(βt − β) + Eε

[
ε2
]

= (βt − β)TC(βt − β) + σ2
r,t .

where we used that Ex

[
x
]

= 0, and C = Ex

[
xxT

]
. For β = βt, we have

Ex,y

[
(y − xTβ)2

]
= 1

τt
. Furthermore, since

Ex

[
g(τ,βt)

]
=

1

2
log τ − 1

2
τ

1

τt
− 1

2
log 2π

is strictly concave with respect to τ , with unique maximum at τr, we have
that the unique maximum of Ex

[
g(θ)

]
is given at (τt,βt). However, note that

Ex

[
g(θ)

]
is not jointly concave in τ and β.

In detail, we have

∂

∂τ
log p(y|θ,x) =

1

2

1

τ
− 1

2
(y − xTβ)2 ,

∂2

∂2τ
log p(y|θ,x) = −1

2

1

τ2
.

Furthermore, we have

∂

∂β
log p(y|θ,x) = τ(y − xTβ)xT ,

∂2

∂2β
log p(y|θ,x) = −τ · xxT ,

∂2

∂τ∂β
log p(y|θ,x) = (y − xTβ)xT .

And also note that

Ex,y

[ ∂2

∂τ∂β
log p(y|θ,x)

]
= Ex,y

[
yxT − βTxxT

]
= Ex

[
Ey∼p(y|θt,x)

[
y
]
xT
]
− βT Ex

[
xxT

]
= Ex

[
βTt xx

T
]
− βT Ex

[
xxT

]
= (βt − β)TC .
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Therefore, the Schur complement of the Hessian of Ex

[
g(θ)

]
is

w := Ex,y

[ ∂2

∂2τ
log p(y|θ,x)

]
− Ex,y

[ ∂2

∂τ∂β
log p(y|θ,x)

]
Ex,y

[ ∂2

∂2β
log p(y|θ,x)

]−1

Ex,y

[ ∂2

∂τ∂β
log p(y|θ,x)

]T
= −1

2

1

τ2
+

1

τ
(βt − β)TCC−1C(βt − β)

= −1

2

1

τ2
+

1

τ
(βt − β)TC(βt − β) .

Therefore, given that β is in a sufficiently small neighborhood around βt, we have
that w < 0. Combined with the fact that Ex,y

[
∂2

∂2β log p(y|θ,x)
]

= −τ · C ≺ 0

(definite negative), we have that Ex

[
g(θ)

]
is locally concave around the true

parameters θt = (τt,βt). In summary, we have2

−Ex,y

[ ∂2

∂2θ
log p(y|θt,x)

]
� 0 .

Asymptotic approximation of p(yn|Xn, S) Let us define

θ̂n := arg max
θ:p(θ|S)>0

p(yn|Xn,θ) .

Then for large enough n, we have θ̂n
P→ θt. Therefore, we have by the weak law

of large numbers that

Jn := − 1

n

∂

∂2θ
log p(yn|Xn, θ̂n)

P→ −Ex,y

[ ∂2

∂2θ
log p(y|θ̂n,x)

]
,

and by the continuous mapping theorem we have

−Ex,y

[ ∂2

∂2θ
log p(y|θ̂n,x)

]
P→ −Ex,y

[ ∂2

∂2θ
log p(y|θt,x)

]
� 0 .

That means, we have, in probability, for large enough n that Jn � 0. We can
now follow the derivation of BIC (see e.g. (Ando, 2010), Chapter 8, pages 235,
236) to get

log p(yn|Xn, S) = log p(yn|Xn, θ̂n) + log p(θ̂n|S)− d+ 1

2
log n− log |Jn|+Op(1)

= log p(yn|Xn, θ̂n)− d+ 1

2
log n+Op(1) . (3.3)

A more detailed derivation of Equation (3.3) is given in Appendix B.2.

2The expression ∂2

∂2θ
log p(y|θt,x) denotes the second derivative of log p(y|θ,x) evaluated

at θt.



58 CHAPTER 3. ROBUST VARIABLE SELECTION

Upper bound for p(yn|Xn, S
′) In the following, let us define

θ̂S′,n := arg max
θ:p(θ|S′)>0

p(yn|Xn,θ)

then we have

p(yn|Xn, S
′) =

∫
p(yn|Xn,θ)p(θ|S′)dθ ≤ p(yn|Xn, θ̂S′,n) . (3.4)

Lower bound on log p(yn|Xn,S)
p(yn|Xn,S′) Putting together the results from Equations

(3.3) and (3.4), we get

log
p(yn|Xn, S)

p(yn|Xn, S′)
≥ log p(yn|Xn, θ̂n)− d+ 1

2
log n+Op(1)− log p(yn|Xn, θ̂S′,n)

= n
( 1

n

n∑
i=1

log p(yi|xi, θ̂n)− 1

n

n∑
i=1

log p(yi|xi, θ̂S′,n)
)
− d+ 1

2
log n+Op(1)

P→ n
(
Ex

[
g(θt)

]
− Ex

[
g(θS′)

])
− d+ 1

2
log n+Op(1) ,

where θS′ := arg maxθ:p(θ|S′)>0 Ex

[
g(θ)

]
. Since θt is the unique global maxi-

mizer of Ex

[
g(θ)

]
and p(θt|S′) = 0, we have that

c∆ := Ex

[
g(θt)

]
− Ex

[
g(θS′)

]
> 0

and therefore

log
p(yn|Xn, S)

p(yn|Xn, S′)
≥ n · c∆ −

d+ 1

2
log n+Op(1)

P→∞ .

From the above line, we also see that the convergence of the Bayes factor
p(yn|Xn,S)
p(yn|Xn,S′) is exponential in n.

Next, let us investigate the Bayes factors for full support spike and slab
priors, as for example in (Chipman et al., 2001; Ishwaran et al., 2005).

Theorem 2. Under the same assumptions as in Theorem 1, but assuming
full support spike and slab priors for the evaluation of the marginal likelihoods
p(yn|Xn, S) and p(yn|Xn, S

′), we have the following result:

p(yn|Xn, S)

p(yn|Xn, S′)

P→ Op(1) .

Proof. Since the priors have full support, the posterior distribution also has
full support. Both posterior distributions contain the true regression coefficient
vector βt, i.e.

p(βt|yn, Xn, S
′) > 0,∀S′
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Furthermore, since the likelihood function is the same as before in Theorem 1, we
have, as was proven before, that Ex

[
g(θ)

]
has the unique maximizer (θt,βt) and

is locally concave around this maximum. Therefore, the regularity conditions for
the Bayesian central limit theorem are fulfilled for all models S′, and we have:

log p(yn|Xn, S
′)

P→ log p(yn|Xn, θ̂S′,n)− d+ 1

2
log n+Op(1)

P→ log p(yn|Xn,θt)−
d+ 1

2
log n+Op(1) .

And therefore

log
p(yn|Xn, S)

p(yn|Xn, S′)

P→ Op(1) .

3.5 Estimation of model probabilities
Calculating the marginal likelihood for each model explicitly is computationally
challenging, due to the disjunct support priors on β:

• A Laplace approximation is not valid anymore, since the true parameter
might not be contained in the support of the prior distribution.

• Chib’s method (Chib, 1995; Chib and Jeliazkov, 2001) is computationally
very expensive since, though we can sample, the normalization constants
of each conditional probability is not available.

Instead, we estimate p(S|y, X), by introducing a model indicator vector
z ∈ {0, 1}d, where zj indicates whether variable j should be included in S or
not. We sample M samples from the posterior distribution of z by using the
following MCMC algorithm:

Algorithm 3 Gibbs sampler for sampling from p(z|σ0,y, X).
for t from 1 to M do
for j from 1 to d do
p(zj) := sample from p(zj |β−j , z−j , σr, σ1, σ0,y, X)
p(βj) := sample from p(βj |β−j , z, σr, σ1, σ0,y, X)

end for
σ2
r := sample from p(σ2

r |β, z,y, X)
σ2

1 := sample from p(σ2
1 |β, z,y, X)

end for

Sampling from each of the conditional distributions in Algorithm (3) is
explained in the following. We note that all of the conditional distributions,
except p(σ2

1 |β, σ2
r , z,y, X), have an analytic solution that can be expressed by

standard distributions. Therefore, we find that even for high-dimensional spaces,
using Algorithm 3 is computationally feasible.



60 CHAPTER 3. ROBUST VARIABLE SELECTION

3.5.1 Analytic solution for p(zj|β−j, z−j, σr, σ1, σ0,y, X)

Let xj denote the j-th column of X, and X−j the matrix X where column j is
removed. Then we have

||y −Xβ||22 = ||y − (xjβj +X−jβ−j)||22 = ||ỹ − xjβj ||22 ,

with ỹ := y −X−jβ−j .

p(zj |β−j , z−j , σr, σ1, σ0,y, X) ∝
∫
p(β, z, σr, σ1,y|X,σ0)dβj

=

∫
p(z) · C0 · (σ2

r)−
n
2 e
− 1

2σ2r
||y−Xβ||22

· (σ2
r)−( νr2 +1)e

− 1
2σ2r

νrη
2
r

·
(∏
j∈C

1N (βj) ·
1

ι(N , σ2
0)
· e
− 1

2σ20
β2
j
)

·
(∏
j∈S

1R(βj) ·
1

ι(R, σ2
1)
e
− 1

2σ21
β2
j
)
dβj

∝ p(z)

ι(Azj , σ2
zj )
·
∫
e
− 1

2σ2r
||y−Xβ||22 · 1Azj (βj) · e

− 1
2σ2zj

β2
j

dβj

=
p(z)

ι(Azj , σ2
zj )
·
∫
e
− 1

2σ2r
(||ỹ||22−2ỹTxjβj+||xj ||22β

2
j ) · 1Azj (βj) · e

− 1
2σ2zj

β2
j

dβj

∝ p(z)

ι(Azj , σ2
zj )
·
∫
e
− 1

2σ2r
(−2ỹTxjβj+(||xj ||22+

σ2r
σ2zj

)β2
j )

· 1Azj (βj)dβj

=
p(z)

ι(Azj , σ2
zj )
·
∫
e−

1
2σ̃2

(βj−µ̃)2e
µ̃

2σ2r
ỹTxj · 1Azj (βj)dβj

= p(z) · e
µ̃

2σ2r
ỹTxj ·

ι(Azj , µ̃, σ̃2)

ι(Azj , σ2
zj )

,

where µ̃ :=
ỹTxj

||xj ||22+
σ2r
σ2zj

, and σ̃2 := ( 1
σ2
r
||xj ||22 + 1

σ2
zj

)−1, and ι(Azj , µ̃, σ̃2) is the

normalization constant of a truncated normal distribution given by

ι(Azj , µ̃, σ̃2) :=

∫
e−

1
2σ̃2

(βj−µ̃)2 · 1Azj (βj)dβj .

Case δ = 0.

In the case, where δ = 0, some care is needed. First, consider zj = 1, then we
can proceed as before

p(zj = 1|β−j , σr, σ0, σ1,y, X, z−j) = c · p(z) · e
µ̃

2σ2r
ỹTxj · ι(R, µ̃, σ̃

2)

ι(R, σ2
1)

,
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where c is a normalization constant. Second, for zj = 0, the prior p(βj) is a
Dirac measure with 1 at position 0, and otherwise 0. Therefore, we can use the
same calculation as before, but replacing βj by 0. This way, we get

p(zj = 0|β−j , σr, σ0, σ1,y, X, z−j) = c · p(z) .

Note that in both cases, we can integrate over βj , and therefore the reversible
jump MCMC methodology (Green, 1995; Green and Hastie, 2009) is not necessary
here.

3.5.2 Analytic solution for p(βj|β−j, z, σr, σ1, σ0,y, X)

For δ > 0, we have

p(βj |β−j , z, σr, σ1, σ0,y, X) ∝ p(β, z, σr, σ1,y|X,σ0)

= p(z) · C0 · (σ2
r)−

n
2 e
− 1

2σ2r
||y−Xβ||22

· (σ2
r)−( νr2 +1)e

− 1
2σ2r

νrη
2
r

·
(∏
j∈C

1N (βj) ·
1

ι(N , σ2
0)
· e
− 1

2σ20
β2
j
)

·
(∏
j∈S

1R(βj) ·
1

ι(R, σ2
1)
e
− 1

2σ21
β2
j
)

∝ e−
1

2σ2r
||y−Xβ||22 · 1Azj (βj) · e

− 1
2σ2zj

β2
j

= e
− 1

2σ2r
||ỹ−xjβj ||22 · 1Azj (βj) · e

− 1
2σ2zj

β2
j

= e
− 1

2σ2r
(||ỹ||22−2ỹTxjβj+||xj ||22β

2
j ) · 1Azj (βj) · e

− 1
2σ2zj

β2
j

∝ e
− 1

2σ2r
(−2ỹTxjβj+(||xj ||22+

σ2r
σ2zj

)β2
j )

· 1Azj (βj)

= e−
1

2σ̃2
(βj−µ̃)2e

µ̃

2σ2r
ỹTxj · 1Azj (βj)

∝ NAzj (βj |µ̃, σ̃2) .

Note that if δ = 0, then

p(βj |β−j , z, σr, σ1, σ0,y, X) =

{
N(βj |µ̃, σ̃2) if zj = 1 ,

1{0}(βj) if zj = 0 .
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3.5.3 Analytic solution for p(σ2
r |β, z,y, X)

For the conditional posterior p(σ2
r |β, z,y, X), we have a closed form solution

given by

p(σ2
r |β,y, z, X) ∝ p(β, σr,y, z|X)

= p(z) · C0 · (σ2
r)−

n
2 e
− 1

2σ2r
||y−Xβ||22

· (σ2
r)−( νr2 +1)e

− 1
2σ2r

νrη
2
r

·
(∏
j∈C

1N (βj) ·
1

ι(N , σ2
0)
· e
− 1

2σ20
β2
j
)

·
(∏
j∈S

1R(βj) ·
1

ι(R, σ2
1)
e
− 1

2σ21
β2
j
)

∝ (σ2
r)−

n
2 e
− 1

2σ2r
||y−Xβ||22 · (σ2

r)−( νr2 +1)e
− 1

2σ2r
νrη

2
r

∝ (σ2
r)−( νr+n2 +1)e

− 1
2σ2r

(||y−Xβ||22+νrη
2
r)

∝ (σ2
r)−( νr+n2 +1)e

− 1
2σ2r

(νr+n)
||y−Xβ||22+νrη

2
r

νr+n

∝ Inv-χ2(σ2
r | νr + n,

||y −Xβ||22 + νrη
2
r

νr + n
) .

3.5.4 Sampling from p(σ2
1|β, σ2

r , z,y, X)

For sampling from p(σ2
1 |β, σ2

r , z,y, X), we employ a Slice sampler as described
in the following. First note that

p(σ2
1 |β, σ2

r ,y, z, X) ∝ p(σ2
1 ,β, σ

2
r ,y, z|X)

= p(z) · C0 · (σ2
r)−

n
2 e
− 1

2σ2r
||y−Xβ||22

· (σ2
r)−( νr2 +1)e

− 1
2σ2r

νrη
2
r

·
(∏
j∈C

1N (βj) ·
1

ι(N , σ2
0)
· e
− 1

2σ20
β2
j
)

·
(∏
j∈S

1R(βj) ·
1

ι(R, σ2
1)
e
− 1

2σ21
β2
j
)

· (σ2
1)−(

ν1
2 +1)e

− 1

2σ21
ν1η

2
1

∝
(∏
j∈S

1R(βj) ·
1

ι(R, σ2
1)
· e
− 1

2σ21
β2
j
)

· (σ2
1)−(

ν1
2 +1)e

− 1

2σ21
ν1η

2
1

∝ 1

ι(R, σ2
1)s
· (σ2

1)−(
ν1
2 +1)e

− 1

2σ21
(ν1η

2
1+

∑
j∈S β

2
j )
.
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If σ2
1 >> 1, and δ << 1, we have approximately that

ι(R, σ2
1) ∝ ι(R, σ2

1) = (2πσ2
1)

1
2 , (3.5)

and we have exactly (not approximately) that

p(σ2
1 |β, σ2

r ,y, z, X) ∝
( (2πσ2

1)
s
2

ι(R, σ2
1)s

)
· (2πσ2

1)−
s
2 ·
(

(σ2
1)−(

ν1
2 +1)e

− 1

2σ21
(ν1η

2
1+

∑
j∈S β

2
j )
)

∝
( (2πσ2

1)
s
2

ι(R, σ2
1)s

)
·
(

(σ2
1)−(

ν1+s
2 +1)e

− 1

2σ21
(ν1η

2
1+

∑
j∈S β

2
j )
)

∝
( (2πσ2

1)
s
2

ι(R, σ2
1)s

)
·
(

(σ2
1)−(

ν1+s
2 +1)e

− 1

2σ21
(ν1+s)

(ν1η
2
1+

∑
j∈S β

2
j )

ν1+s

)
∝
( (2πσ2

1)
s
2

ι(R, σ2
1)s

)
· Inv-χ2(ν1 + s,

(ν1η
2
1 +

∑
j∈S β

2
j )

ν1 + s

)
.

That means we have that

p(σ2
1 |β, σ2

r ,y, X,S) ∝ h(σ2
1) · Inv-χ2(σ2

1 | ν̃, η̃2) ,

for ν̃ := ν1 + s, η̃2 :=
(ν1η

2
1+

∑
j∈S β

2
j )

ν1+s , and the function h(σ2
1) :=

(2πσ2
1)
s
2

ι(R,σ2
1)s

is
changing slowly with σ2

1 . Therefore, we use a slice sampler (see e.g. Carlin
and Louis (2008)) as follows. We start from the (approximate) mode given by
σ2

1 := ν̃η̃2

ν̃+2 , and then run the following two steps, until we retain a sample in the
second step:3

1. Sample U ∼ Uniform([0, h(σ2
1)]).

2. Sample σ2
1 ∼ Inv-χ2(ν̃, η̃2), and retain the sample if U < h(σ2

1).

Note that the sampling scheme is guaranteed to sample exactly from
p(σ2

1 |β, σ2
r ,y, X,S), independently of how well the approximation h(σ2

1) ∝ 1
holds. The correctness of the sampling scheme is shown in Appendix B.1.
However, of course, the efficiency (whether we accept the sample in step 2) will
depend on the closeness of the approximation in Equation (3.5). In practice, we
observe that the sampling method is efficient if s is small. In detail, for several
settings, for s = 1, and s = 10, the lowest acceptance rates were around 97%
and 67%, respectively, where we tested

∑
j∈S β

2
j ∈ {0.1, 1.0, 10.0, 100.0}, and

δ = {0.8, 0.05, 0.001}.

3.6 Specification of δ
In some situations, where prior knowledge is given in the form of similar regression
tasks from the past, it might possible to directly elicit a suitable threshold value
δ. However, such prior knowledge might not be available, and therefore, we
consider here two methods to specify δ.

3We assume that we started in a high probability region, and therefore use a burn-in of
only 10.
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3.6.1 Bounding influence on Mean Squared Error
The influence of ignoring small magnitude coefficients on the response variable
can be bounded according to Theorem 3.

Theorem 3. The increase in mean squared error (MSE) of the model selected
by ignoring regression coefficients in [−δ, δ] is upper bounded by

dδ2λmax ,

where λmax is the largest eigenvalue of the covariance matrix E[xxT ] (assuming
x is centered).

Proof. Let β ∈ Rd be the true regression coefficient vector and βδ ∈ Rd, be the
thresholded true regression coefficient vector with βδi = 0, if βi ∈ [−δ, δ]. The
mean squared error when using βδ is given by

Ey,x
[
(y − xTβδ)2

]
= Eε,x

[
(xTβ + ε− xTβδ)2

]
= Eε,x

[
(xT (β − βδ) + ε)2

]
= Eε,x

[
(β − βδ)TxxT (β − βδ) + 2ε · xT (β − βδ) + ε2

]
= (β − βδ)T Ex

[
xxT

]
(β − βδ) + σ2

r ,

where we used that ε ∼ N(0, σ2
r). Next, note that

||β − βδ||22 ≤ dδ2 ,

and

max
||z||22≤dδ2

zT Ex

[
xxT

]
z = max

||(dδ2)−
1
2 z||2≤1

zT Ex

[
xxT

]
z

= dδ2 max
||z||2≤1

zT Ex

[
xxT

]
z

= dδ2λmax ,

where λmax is the largest eigenvalue of E[xxT ]. Therefore,

Ey,x
[
(y − xTβδ)2

]
≤ dδ2λmax + σ2

r .

Since Ey,x
[
(y − xTβ)2

]
= σ2

r , we have the desired result.

3.6.2 Estimating expected increase of Mean Squared Er-
ror

The bound given in Theorem 3 can be too conservative. Furthermore, it only
makes a statement in absolute terms of increase in MSE. However, often we are
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interested in statements like "the selected model (with few variables) increases
the mean squared error by no more than 5% when compared to the best model
that can use all variables." (Piironen and Vehtari, 2017; Hahn and Carvalho,
2015).

For the "best model" we use the Bayesian model averaged (BMA) regression
model. The BMA regression model is often considered the gold standard due to
its good theoretic and practical performance (Fernandez et al., 2001; Piironen
and Vehtari, 2017). The BMA model for the prediction of a new datapoint (ỹ, x̃)
is defined as

p(ỹ|x̃) =
∑
z

∫
p(ỹ|x̃, z,θ)p(z,θ|y, X)dθ ,

where θ denotes all parameters. The BMA model is a meta-model since it
still requires the specification of the model for p(z,θ, y|X). Here, we use for
p(z,θ, y|X), our proposed model with δ = 0.

The expected mean squared error of BMA is therefore given by

MSEbma := Ez[Eσ2
r
[σ2
r |z,y, X]|y, X] ,

which we estimate from the samples of our MCMC algorithm in Algorithm 3.
Given a threshold δ∗, and the best subset of variables specified by z∗, we

estimate the MSE as follows

MSEδ∗ := Eσ2
r
[σ2
r |z∗,y, X|z∗ , δ∗] ,

where X|z∗ means that only the covariates index by z∗ are used, where

z∗ := arg max
z

p(z|y, X, δ∗) . (3.6)

We can now estimate for each threshold δ the expected increase in MSE when
compared to MSEbma, i.e.:

expected increase in MSE =
MSEδ∗
MSEbma

− 1.0 . (3.7)

We then select the most parsimonious model that has an expected increase
in MSE of less than 5%. We note that similar strategies for predictive model
selection have been proposed in (Piironen and Vehtari, 2017; Hahn and Carvalho,
2015), though, their models are different from ours, and they do not make use of
p(z|y, X, δ∗) as in Equation (3.6).

3.7 Evaluation on synthetic data

We study two settings, the low dimensional setting with d < n and the high
dimensional setting with d ≥ n.
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For the low dimensional experiments, we use the same regression setting as
in (Tibshirani, 1996), namely the regression coefficient vector is set to

βT = (3,1.5, 0.0, 0.0,2.0, 0.0, 0.0, 0.0)T ,

and the response noise is set to σr = 3.0. For each sample, we draw a covariate
vector x ∼ N(0,Σ), where Σij = 0.5|i−j|. The number of samples is varied from
n = 10 to n = 100000.

For the high dimensional experiments, we use the same setting as in (Ročková
and George, 2014), with d = 1000 and n ∈ {100, 1000}, where the first three
covariate are set to 3 ,2, and 1, and all others are set to zero. The covariate
vector is drawn from x ∼ N(0,Σ), where Σij = 0.6|i−j|.

Furthermore, in the noise setting, we replace each zero entry of the original
regression coefficient vector by a value sampled from Uniform([−η, η]), where
η ∈ {0.2, 0.5}. In particular, when η = 0.5, the new regression coefficient vector
for the low dimensional experiment becomes

βT = (3,1.5,−0.12,−0.35,2.0, 0.16, 0.26,−0.01)T ,

where the relevant variables are marked by bold font. The expected increase in
mean squared error (MSE) for choosing the parsimonious model without the
noise coefficients is about 0.4% and 2.8%, for η = 0.2, and η = 0.5, respectively.

In the high dimensional noise setting, we replace only 1% of the original zero
entries (following the largest entries 3,2,1). This leads to an expected increase
in mean squared error for choosing the parsimonious model of about 3.1% for
η = 0.2.4

We show the results for δ ∈ {0.8, 0.5, 0.05, 0.01, 0.001, 0.0}, and the results of
the most parsimonious model that is estimated to lead to an increase in MSE of
not more than 5%. For all methods based on MCMC we use 10000 samples, out
of which 10% are used for burn in.

As our first baseline, we use the robust objective prior proposed in (Bayarri
et al., 2012) together with a Gibbs sampler to explore the space of models, which
we denote as "GibbsBvs".5 Furthermore, we use the spike-and-slab prior and
EM-algorithm as proposed in (Ročková and George, 2014) which we denote as
"EMVS".6

The above two methods cannot account for negligible noise on the coefficient
vectors. Therefore, we introduce another baseline using the horseshoe prior
(Carvalho et al., 2010) as follows.7 First, using the horseshoe prior, we estimate
the mean coefficient vector β and the mean response variance σ2

r,full for the full
model. Then, for each δ, we hard threshold β, and this way get a model candidate
zδ. Finally, using again the horseshoe prior for the linear regression model but

4For the high-dimensional setting we do not consider η = 0.5, since this would correspond
to an expected increase of in MSE of 19.0%.

5Implemented in the R package ’BayesVarSel’. As suggested by the authors, we use the
g-Zellner prior (Zellner, 1986) in cases where the robust prior from (Bayarri et al., 2012) fails.

6Implemented in the R package ’EMVS’.
7Implemented in the R package ’horseshoe’.
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reduced to the covariates zδ, we estimate the mean response variance σ2
r,zδ

, and
then select the most parsimonious model that has lower expected increase in
MSE than 5%. To estimate the expected increase in MSE, we use Formula (3.7),
where we replace MSEδ∗ and MSEbma by σ2

r,zδ
and σ2

r,full, respectively.
Finally, we include also three frequentist methods for model search. As a first

frequentist method, we use the popular Least Angle Regression (LARS) method
(Efron et al., 2004) to get a set of candidate models. We then select the model
using the Extended Bayesian information criterion (EBIC) with γ ∈ {0, 0.5, 1}
(Chen and Chen, 2008; Foygel and Drton, 2010), or the Akaike information
criterion (AIC) (Akaike, 1973). Note that EBIC with γ = 0, is equal to the
Bayesian information criterion (BIC) (Schwarz, 1978). As a third frequentist
method, we use linear regression with Lasso (Tibshirani, 1996) combined with
stability selection (Meinshausen and Bühlmann, 2010). Stability selection has
two hyper-parameters that need to be specified: the "upper bound for the
per-family error rate" (PFER) and "the number of (unique) selected variables"
(denoted by q) as in the R package ’stabs’. For PFER we set always 1. However,
we found that stability selection can be sensitive to the choice of q, and therefore
show all results for three different values.

We evaluate all methods in terms of F1-Score. All experiments are repeated
5 times and we report average and standard deviations (shown in brackets).
For large n, GibbsBvs did not execute correctly, which we mark as "-". For
the high-dimensional setting GibbsBvs did not finish computation due to high
memory requirements. For the proposed method, we select the threshold value
δ, as described in Section 3.6.2, and for the horseshoe prior method as described
in the previous paragraph. We refer to this as "automatic". If not reported
otherwise, we use for all baselines the default settings.

Low dimensional setting The results for the low dimensional setting, with
and without noise, are shown in Tables 3.1, 3.2 and 3.3. Overall, we see that the
proposed method and the horseshoe prior method perform best.

GibbsBvs, EBIC and Stability selection (with q ≥ 4) perform good for no
noise or small noise. However, for η = 0.5, GibbsBvs, EBIC and Stability
Selection start to select more irrelevant variables with increasing sample size
n. Asymptotically, all three methods are expected to select all variables with
coefficient regressions βj 6= 0, no matter how small βj is. However, if the sample
size is small (n ≤ 100), then all three methods are not influenced by the noise,
i.e. they ignore the negligible small regression coefficients.

AIC performs similar to EBIC for n ≤ 100, but for larger sample sizes it
tends to select too many variables, even in the no-noise setting. This is not too
surprising, since it is well known that AIC is not model selection consistent (see
e.g. (Yang, 2005)).

Interestingly, in the noise setting (η = 0.2 and η = 0.5), even for large n,
EMVS finds the correct relevant variables. However, for small sample sizes
it tends to select too few variables. This suggests that EMVS has a strong
inductive bias for sparse models, which can be helpful in the noise setting, but
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is deteriorating performance for small to medium-sized n.

High dimensional setting The results for the high dimensional setting, with
and without noise, are shown in Tables 3.7, and 3.8. Overall, we see that the
proposed method, Stability selection (with q ≥ 50) and EMVS perform best. In
this setting the EMVS seems to profit from its inductive bias for sparse models.
On the other hand, the horseshoe prior method performs somehow unsatisfactory,
tending to select too many variables. AIC and EBIC performed very poorly
in this setting, selecting too many variables. One reason seems to stem from
the numerical instability of the maximum likelihood estimate for d ≤ n. As an
ad-hoc remedy we tried to combine it with a ridge estimate, but this did not
seem to help.

Analysis of different δ In Tables 3.4, 3.5, and 3.6, we show the results for
different fixed δ in the low-dimensional setting, and in Tables 3.9 and 3.10 for the
high-dimensional setting. The proposed method is less sensitive to the choice of δ
and tends to select sparse models even in the high-dimensional setting. However,
as expected, the horseshoe prior method is highly sensitive to the choice of δ.

3.8 Evaluation on real data

In this section, we compare the results of our proposed and all baselines on three
real data sets: crime data (Raftery et al., 1997; Liang et al., 2008), ozone data
(Garcia-Donato and Martinez-Beneito, 2013), and GDP growth data (SDM)
(Sala-i Martin et al., 2004). Details of the data sets are in Table 3.11; all
variables are described in Tables 3.12, 3.13 and Tables 3.14 and 3.15 . In order
to make the choice of all hyper-parameters invariant to the scale, we normalize
the observations to have roughly the same scale as for the synthetic data set.
In detail, we normalize the covariates to have mean 0 and variance 1, and the
response variable to have mean 0 and variance 30. Furthermore, we log-transform
the crime data as in (Liang et al., 2008).

For the experiments with the real data we use 100000 MCMC-samples for the
proposed method, GibbsBvs, and the horseshoe prior.8 Concerning the stability
selection method, based on our findings from the simulated data, we set q to the
values {0.1 · d, 0.5 · d, 0.8 · d}.

The results for ozone, crime and SDM are shown in Tables 3.16, 3.17 and
3.18, respectively.

We see that the horseshoe method and EMVS perform similar as for the
simulated data. The horseshoe prior with thresholding, finds models with
relatively many variables, whereas EMVS tends to select models with only very
few variables. In particular, EMVS suggests that in the ozone and SDM data,
none of the variables are relevant, which is quite a strong statement that is
contradicting the results from all other methods. The stability selection method

8Out of which 10% are used for burn in.
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appears to select too few variables, independent of the setting of q. We note
that for SDM, for q = 0.8 · d, the stability selection method did not terminate
correctly. The results for EBIC highlight the sensitivity to the hyper-parameter
γ.

Our proposed method shows similar results to GibbsBvs, except for SDM.
For SDM, our proposed model suggests that only EAST and MALFAL66 have
relatively high regression coefficients, but our method also shows that the
expected increase in mean-squared error is around 27% when compared to
the Bayesian averaged model that uses all variables. For ozone, our model
suggests that the model using x6.x7, x6.x8, x7.x7, and x6.x6, have relatively high
regression coefficients, but not all of them are together in one model, possibly
due to high correlation. For crime, our model suggests that all variables should
be considered as relevant, whereas in particular M, Ed, Po1, Ineq have high
regression coefficients.

To further analyze the results of our proposed method, we show the top 10
model probabilities and variable inclusion probabilities calculated for δ = 0 and
δ = 0.5. The model probabilities for ozone, crime and SDM are shown in Tables
3.19, 3.21, and 3.23, respectively. Considering the low model probabilities, it
is clear that there is no clearly winning model, and that care is needed when
drawing conclusions from only the top model.

In order to investigate the importance of each individual variable, we also
show the variable inclusion probabilities for ozone, crime and SDM in Tables
3.20, 3.22, and 3.24, respectively. In each of the Tables, we also show the results
that were reported in previous studies. From the difference in the probabilities
between previous studies, δ = 0 and δ = 0.5, we can draw some interesting
conclusions.

Ozone data In Table 3.20, we show the inclusion probabilities of the proposed
method together with the results reported in (Garcia-Donato and Martinez-
Beneito, 2013). Comparing those results to the result of the proposed method,
we find that the discrepancy between the results is not large, except in two cases:
First, the importance of the variable x9, including its interaction terms, is much
higher in (Garcia-Donato and Martinez-Beneito, 2013). Second, the squared
term x7.x7 is considered as relevant by the proposed method, even when δ = 0.5,
which is in contrast to (Garcia-Donato and Martinez-Beneito, 2013), where an
inclusion probability of only 45% is reported. Comparing the proposed method
between δ = 0.0 and δ = 0.5, we see that the interaction variable x6.x8 is the
most likely to be included for δ = 0.0, with probability around 70%. However,
looking at the result with δ = 0.5, the effect size of x7.x7 is likely to be larger
than x6.x8.

Crime data In Table 3.22, we show the inclusion probabilities of the proposed
method together with the results reported in (Liang et al., 2008). For the
proposed method with δ = 0, we see good agreement with the results in (Liang
et al., 2008). This is in particular true with respect to the median probability
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model that includes all variables with probability larger than or equal to 0.5.
However, inspecting the inclusion probabilities for δ = 0.5, there is not enough
evidence that the effect size of Po2 and U2 is high.

GDP growth data (SDM) In Table 3.24, we show the inclusion probabilities
of the proposed method together with the results reported in (Sala-i Martin
et al., 2004). We see that all the top 18 variables that have been considered
as significant by (Sala-i Martin et al., 2004) are also listed in the top 18 of
the proposed method (δ = 0). Moreover, the results of the proposed method
with δ = 0.5, suggest, that among those 18 variables, only 7 variables have
a probability of more than 20% of having a high effect size. In particular,
it appears that DENS65C (density of costal population) seems to have only
marginal influence on economic growth.

3.9 Conclusions

We proposed a new type of spike-and-slab prior that is particularly well suited for
the situation where there are small negligible, but non-zero regression coefficients.
These small negligible regression coefficients are considered as noise, since they
can lead to the selection of overly complex models (i.e. models with many
variables), although, only few variables should be considered as practically
relevant. For that purpose, we introduced a disjunct support prior with a
threshold parameter δ > 0 in order to ignore small coefficients. We proved that
for fixed δ, the proposed method leads to consistent Bayes factors, which is not
the case for full support priors as proposed in (Chipman et al., 2001).

Due to the non-conjugacy of the priors proposed by our method, estimating
the marginal likelihood explicitly is computationally infeasible. We therefore
introduced a latent variable indicator vector z, and proposed an efficient Gibbs
sampler to sample from its posterior distribution. This allows us to estimate all
model probabilities p(S|y, X, δ), where S is a set of relevant variables and δ is a
threshold parameter specifying practical relevance (effect size).

Since it can sometimes be difficult to specify δ explicitly, we showed how to
estimate the mean squared error (MSE) of the final model selected for a specific
δ. This way, for example, we can select the most parsimonious model that has
MSE that is not worse more than 5% of a reference model. As a reference model,
we suggest to use the Bayesian model averaged model that uses all variables.

For synthetic data with ground truth, we showed that the proposed method
leads to good model selection performance in various settings: with/without
noise and low/high dimensions. Furthermore, we compared our method to a
commonly used spike-and-slab prior (Chipman et al., 2001; Ročková and George,
2014) (EMVS), Gibbs sampling for the objective prior as proposed in (Bayarri
et al., 2012) (GibbsBvs), thresholding of the mean coefficient vector β estimated
with the horseshoe prior (Carvalho et al., 2010), and three frequentist methods
LARS + EBIC (Efron et al., 2004; Chen and Chen, 2008), LARS + AIC (Efron
et al., 2004; Akaike, 1973) and Lasso + stability selection (Tibshirani, 1996;
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Meinshausen and Bühlmann, 2010). The proposed method was always at par
with the best previously proposed method which was varying between EMVS,
GibbsBvs, stability selection and horseshoe prior with thresholding.

Finally, we evaluated our method also on three real data sets. Concerning the
number of selected variables of our proposed method and the previous methods,
we observed a similar behavior as for the synthetic data set. While for δ = 0,
our proposed method seems to roughly agree with various previous methods, the
inspection of the results for δ = 0.5, allowed us to draw conclusions about the
practical relevance of some of the selected variables.
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Table 3.1: Low-dimensional setting, d = 8 and n ∈ {10, 50, 100, 1000, 100000}.
Evaluation results with no noise on regression coefficients.

F1-Scores

10 50 100 1000 100000

proposed (automatic) 0.51 (0.03) 0.92 (0.1) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
GibbsBvs 0.53 (0.02) 0.92 (0.1) 0.92 (0.1) 1.0 (0.0) -
EMVS 0.5 (0.0) 0.16 (0.32) 0.0 (0.0) 1.0 (0.0) 1.0 (0.0)
horseshoe (automatic) 0.53 (0.07) 0.91 (0.18) 0.92 (0.1) 1.0 (0.0) 1.0 (0.0)
AIC 0.49 (0.07) 0.91 (0.07) 0.85 (0.13) 0.87 (0.11) 0.86 (0.08)
EBIC (γ = 0.0) 0.49 (0.07) 0.97 (0.06) 0.92 (0.1) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 0.5) 0.54 (0.04) 0.96 (0.08) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
EBIC (γ = 1.0) 0.53 (0.03) 0.96 (0.08) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
stability (q = 1) 0.3 (0.24) 0.2 (0.24) 0.3 (0.24) 0.5 (0.0) 0.5 (0.0)
stability (q = 4) 0.2 (0.24) 0.92 (0.1) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
stability (q = 6) 0.1 (0.2) 0.96 (0.08) 0.97 (0.06) 1.0 (0.0) 1.0 (0.0)

Average number of selected variables

10 50 100 1000 100000

proposed (automatic) 1.6 (1.2) 2.6 (0.49) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
GibbsBvs 5.2 (3.43) 2.6 (0.49) 3.6 (0.8) 3.0 (0.0) -
EMVS 1.0 (0.0) 0.4 (0.8) 0.0 (0.0) 3.0 (0.0) 3.0 (0.0)
horseshoe (automatic) 5.8 (2.4) 4.0 (2.0) 3.6 (0.8) 3.0 (0.0) 3.0 (0.0)
AIC 6.6 (2.33) 3.6 (0.49) 4.2 (1.17) 4.0 (0.89) 4.0 (0.63)
EBIC (γ = 0.0) 6.6 (2.33) 3.2 (0.4) 3.6 (0.8) 3.0 (0.0) 3.0 (0.0)
EBIC (γ = 0.5) 5.0 (3.29) 2.8 (0.4) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
EBIC (γ = 1.0) 4.4 (3.14) 2.8 (0.4) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
stability (q = 1) 0.6 (0.49) 0.4 (0.49) 0.6 (0.49) 1.0 (0.0) 1.0 (0.0)
stability (q = 4) 0.4 (0.49) 2.6 (0.49) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
stability (q = 6) 0.2 (0.4) 2.8 (0.4) 3.2 (0.4) 3.0 (0.0) 3.0 (0.0)
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Table 3.2: Low-dimensional setting, d = 8 and n ∈ {10, 50, 100, 1000, 100000}.
Evaluation results with noise on regression coefficients η = 0.2.

F1-Scores

10 50 100 1000 100000

proposed (automatic) 0.5 (0.06) 0.97 (0.06) 0.96 (0.08) 1.0 (0.0) 1.0 (0.0)
GibbsBvs 0.51 (0.06) 0.97 (0.06) 0.97 (0.06) 1.0 (0.0) -
EMVS 0.42 (0.21) 0.1 (0.2) 0.0 (0.0) 1.0 (0.0) 1.0 (0.0)
horseshoe (automatic) 0.64 (0.19) 0.91 (0.07) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
AIC 0.6 (0.1) 0.91 (0.07) 0.91 (0.07) 0.88 (0.12) 0.58 (0.03)
EBIC (γ = 0.0) 0.6 (0.1) 0.94 (0.07) 0.97 (0.06) 1.0 (0.0) 0.63 (0.03)
EBIC (γ = 0.5) 0.61 (0.11) 0.9 (0.13) 1.0 (0.0) 1.0 (0.0) 0.63 (0.03)
EBIC (γ = 1.0) 0.61 (0.11) 0.9 (0.13) 0.96 (0.08) 1.0 (0.0) 0.65 (0.03)
stability (q = 1) 0.2 (0.24) 0.2 (0.24) 0.5 (0.0) 0.5 (0.0) 0.5 (0.0)
stability (q = 4) 0.2 (0.24) 0.8 (0.22) 0.96 (0.08) 1.0 (0.0) 0.91 (0.07)
stability (q = 6) 0.0 (0.0) 0.83 (0.18) 1.0 (0.0) 1.0 (0.0) 0.67 (0.0)

Average number of selected variables

10 50 100 1000 100000

proposed (automatic) 3.2 (2.4) 3.2 (0.4) 2.8 (0.4) 3.0 (0.0) 3.0 (0.0)
GibbsBvs 5.4 (3.2) 3.2 (0.4) 3.2 (0.4) 3.0 (0.0) -
EMVS 2.0 (2.53) 0.2 (0.4) 0.0 (0.0) 3.0 (0.0) 3.0 (0.0)
horseshoe (automatic) 4.6 (2.15) 3.6 (0.49) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
AIC 6.8 (2.4) 3.6 (0.49) 3.6 (0.49) 4.0 (1.1) 7.4 (0.49)
EBIC (γ = 0.0) 6.8 (2.4) 3.4 (0.49) 3.2 (0.4) 3.0 (0.0) 6.6 (0.49)
EBIC (γ = 0.5) 4.4 (3.01) 3.2 (0.4) 3.0 (0.0) 3.0 (0.0) 6.6 (0.49)
EBIC (γ = 1.0) 4.4 (3.01) 3.2 (0.4) 2.8 (0.4) 3.0 (0.0) 6.2 (0.4)
stability (q = 1) 0.4 (0.49) 0.4 (0.49) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
stability (q = 4) 0.4 (0.49) 2.4 (0.49) 2.8 (0.4) 3.0 (0.0) 3.6 (0.49)
stability (q = 6) 0.0 (0.0) 2.6 (1.02) 3.0 (0.0) 3.0 (0.0) 6.0 (0.0)
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Table 3.3: Low-dimensional setting, d = 8 and n ∈ {10, 50, 100, 1000, 100000}.
Evaluation results with noise on regression coefficients η = 0.5.

F1-Scores

10 50 100 1000 100000

proposed (automatic) 0.55 (0.07) 0.97 (0.06) 0.96 (0.08) 1.0 (0.0) 1.0 (0.0)
GibbsBvs 0.52 (0.07) 0.94 (0.07) 0.94 (0.07) 0.75 (0.0) -
EMVS 0.42 (0.21) 0.1 (0.2) 0.0 (0.0) 1.0 (0.0) 1.0 (0.0)
horseshoe (automatic) 0.65 (0.17) 0.91 (0.07) 0.97 (0.06) 1.0 (0.0) 1.0 (0.0)
AIC 0.6 (0.1) 0.86 (0.0) 0.89 (0.06) 0.62 (0.05) 0.55 (0.0)
EBIC (γ = 0.0) 0.6 (0.1) 0.91 (0.07) 0.94 (0.07) 0.77 (0.14) 0.6 (0.0)
EBIC (γ = 0.5) 0.63 (0.1) 0.9 (0.13) 0.93 (0.09) 0.84 (0.15) 0.6 (0.0)
EBIC (γ = 1.0) 0.63 (0.1) 0.9 (0.13) 0.96 (0.08) 0.94 (0.07) 0.6 (0.0)
stability (q = 1) 0.2 (0.24) 0.2 (0.24) 0.5 (0.0) 0.5 (0.0) 0.5 (0.0)
stability (q = 4) 0.0 (0.0) 0.82 (0.18) 0.96 (0.08) 0.97 (0.06) 0.89 (0.06)
stability (q = 6) 0.0 (0.0) 0.83 (0.18) 1.0 (0.0) 0.91 (0.07) 0.67 (0.0)

Average number of selected variables

10 50 100 1000 100000

proposed (automatic) 3.4 (2.33) 3.2 (0.4) 2.8 (0.4) 3.0 (0.0) 3.0 (0.0)
GibbsBvs 5.2 (3.06) 3.4 (0.49) 3.4 (0.49) 5.0 (0.0) -
EMVS 2.0 (2.53) 0.2 (0.4) 0.0 (0.0) 3.0 (0.0) 3.0 (0.0)
horseshoe (automatic) 4.4 (2.33) 3.6 (0.49) 3.2 (0.4) 3.0 (0.0) 3.0 (0.0)
AIC 6.8 (2.4) 4.0 (0.0) 3.8 (0.4) 6.8 (0.75) 8.0 (0.0)
EBIC (γ = 0.0) 6.8 (2.4) 3.6 (0.49) 3.4 (0.49) 5.0 (1.26) 7.0 (0.0)
EBIC (γ = 0.5) 5.6 (2.58) 3.2 (0.4) 3.0 (0.63) 4.4 (1.36) 7.0 (0.0)
EBIC (γ = 1.0) 4.0 (2.53) 3.2 (0.4) 2.8 (0.4) 3.4 (0.49) 7.0 (0.0)
stability (q = 1) 0.4 (0.49) 0.4 (0.49) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
stability (q = 4) 0.0 (0.0) 2.2 (0.75) 2.8 (0.4) 3.2 (0.4) 3.8 (0.4)
stability (q = 6) 0.0 (0.0) 2.6 (1.02) 3.0 (0.0) 3.6 (0.49) 6.0 (0.0)
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Table 3.4: Low-dimensional setting, d = 8 and n ∈ {10, 50, 100, 1000, 100000}.
Evaluation results with no noise on regression coefficients. Comparison of the
proposed method and horseshoe for different δ.

F1-Scores

10 50 100 1000 100000

proposed (delta = 0.8) 0.5 (0.0) 0.92 (0.1) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
proposed (delta = 0.5) 0.51 (0.03) 0.92 (0.1) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
proposed (delta = 0.05) 0.51 (0.02) 0.92 (0.1) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
proposed (delta = 0.01) 0.51 (0.02) 0.92 (0.1) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
proposed (delta = 0.001) 0.51 (0.02) 0.92 (0.1) 0.95 (0.1) 1.0 (0.0) 1.0 (0.0)
proposed (delta = 0.0) 0.51 (0.02) 0.92 (0.1) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
proposed (automatic) 0.51 (0.03) 0.92 (0.1) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

horseshoe (delta = 0.8) 0.7 (0.16) 0.96 (0.08) 0.97 (0.06) 1.0 (0.0) 1.0 (0.0)
horseshoe (delta = 0.5) 0.77 (0.15) 0.9 (0.08) 0.92 (0.1) 1.0 (0.0) 1.0 (0.0)
horseshoe (delta = 0.05) 0.57 (0.03) 0.57 (0.03) 0.59 (0.04) 0.66 (0.06) 1.0 (0.0)
horseshoe (delta = 0.01) 0.55 (0.0) 0.56 (0.02) 0.56 (0.02) 0.57 (0.03) 0.86 (0.08)
horseshoe (delta = 0.001) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0) 0.56 (0.02)
horseshoe (delta = 0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0)
horseshoe (automatic) 0.53 (0.07) 0.91 (0.18) 0.92 (0.1) 1.0 (0.0) 1.0 (0.0)

Average number of selected variables

10 50 100 1000 100000

proposed (delta = 0.8) 1.8 (1.6) 2.6 (0.49) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
proposed (delta = 0.5) 1.6 (1.2) 2.6 (0.49) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
proposed (delta = 0.05) 2.4 (2.8) 2.6 (0.49) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
proposed (delta = 0.01) 2.4 (2.8) 2.6 (0.49) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
proposed (delta = 0.001) 2.4 (2.8) 2.6 (0.49) 3.4 (0.8) 3.0 (0.0) 3.0 (0.0)
proposed (delta = 0.0) 2.4 (2.8) 2.6 (0.49) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
proposed (automatic) 1.6 (1.2) 2.6 (0.49) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)

horseshoe (delta = 0.8) 2.6 (0.8) 2.8 (0.4) 3.2 (0.4) 3.0 (0.0) 3.0 (0.0)
horseshoe (delta = 0.5) 3.8 (0.75) 3.2 (0.75) 3.6 (0.8) 3.0 (0.0) 3.0 (0.0)
horseshoe (delta = 0.05) 7.6 (0.49) 7.6 (0.49) 7.2 (0.75) 6.2 (0.75) 3.0 (0.0)
horseshoe (delta = 0.01) 8.0 (0.0) 7.8 (0.4) 7.8 (0.4) 7.6 (0.49) 4.0 (0.63)
horseshoe (delta = 0.001) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0) 7.8 (0.4)
horseshoe (delta = 0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0)
horseshoe (automatic) 5.8 (2.4) 4.0 (2.0) 3.6 (0.8) 3.0 (0.0) 3.0 (0.0)
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Table 3.5: Low-dimensional setting, d = 8 and n ∈ {10, 50, 100, 1000, 100000}.
Evaluation results with noise on regression coefficients η = 0.2. Comparison of
the proposed method and horseshoe for different δ.

F1-Scores

10 50 100 1000 100000

proposed (delta = 0.8) 0.5 (0.06) 0.87 (0.19) 0.96 (0.08) 1.0 (0.0) 1.0 (0.0)
proposed (delta = 0.5) 0.5 (0.06) 0.97 (0.06) 0.96 (0.08) 1.0 (0.0) 1.0 (0.0)
proposed (delta = 0.05) 0.51 (0.07) 0.97 (0.06) 1.0 (0.0) 1.0 (0.0) 0.68 (0.03)
proposed (delta = 0.01) 0.5 (0.05) 0.97 (0.06) 1.0 (0.0) 1.0 (0.0) 0.61 (0.03)
proposed (delta = 0.001) 0.5 (0.05) 0.97 (0.06) 1.0 (0.0) 1.0 (0.0) 0.61 (0.03)
proposed (delta = 0.0) 0.52 (0.09) 0.97 (0.06) 1.0 (0.0) 1.0 (0.0) 0.61 (0.03)
proposed (automatic) 0.5 (0.06) 0.97 (0.06) 0.96 (0.08) 1.0 (0.0) 1.0 (0.0)

horseshoe (delta = 0.8) 0.73 (0.17) 0.93 (0.09) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
horseshoe (delta = 0.5) 0.7 (0.19) 0.91 (0.07) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
horseshoe (delta = 0.05) 0.63 (0.12) 0.62 (0.12) 0.65 (0.07) 0.64 (0.06) 0.68 (0.03)
horseshoe (delta = 0.01) 0.55 (0.0) 0.55 (0.0) 0.57 (0.03) 0.58 (0.03) 0.58 (0.03)
horseshoe (delta = 0.001) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0)
horseshoe (delta = 0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0)
horseshoe (automatic) 0.64 (0.19) 0.91 (0.07) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Average number of selected variables

10 50 100 1000 100000

proposed (delta = 0.8) 3.2 (2.4) 2.8 (0.98) 2.8 (0.4) 3.0 (0.0) 3.0 (0.0)
proposed (delta = 0.5) 3.2 (2.4) 3.2 (0.4) 2.8 (0.4) 3.0 (0.0) 3.0 (0.0)
proposed (delta = 0.05) 3.8 (3.06) 3.2 (0.4) 3.0 (0.0) 3.0 (0.0) 5.8 (0.4)
proposed (delta = 0.01) 4.0 (3.29) 3.2 (0.4) 3.0 (0.0) 3.0 (0.0) 6.8 (0.4)
proposed (delta = 0.001) 4.0 (3.29) 3.2 (0.4) 3.0 (0.0) 3.0 (0.0) 6.8 (0.4)
proposed (delta = 0.0) 3.6 (2.87) 3.2 (0.4) 3.0 (0.0) 3.0 (0.0) 6.8 (0.4)
proposed (automatic) 3.2 (2.4) 3.2 (0.4) 2.8 (0.4) 3.0 (0.0) 3.0 (0.0)

horseshoe (delta = 0.8) 3.4 (1.2) 3.0 (0.63) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
horseshoe (delta = 0.5) 3.8 (1.17) 3.6 (0.49) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
horseshoe (delta = 0.05) 6.8 (1.6) 7.0 (1.55) 6.4 (1.02) 6.4 (0.8) 5.8 (0.4)
horseshoe (delta = 0.01) 8.0 (0.0) 8.0 (0.0) 7.6 (0.49) 7.4 (0.49) 7.4 (0.49)
horseshoe (delta = 0.001) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0)
horseshoe (delta = 0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0)
horseshoe (automatic) 4.6 (2.15) 3.6 (0.49) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
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Table 3.6: Low-dimensional setting, d = 8 and n ∈ {10, 50, 100, 1000, 100000}.
Evaluation results with noise on regression coefficients η = 0.5. Comparison of
the proposed method and horseshoe for different δ.

F1-Scores

10 50 100 1000 100000

proposed (delta = 0.8) 0.55 (0.07) 0.83 (0.18) 0.96 (0.08) 1.0 (0.0) 1.0 (0.0)
proposed (delta = 0.5) 0.55 (0.07) 0.97 (0.06) 0.96 (0.08) 1.0 (0.0) 1.0 (0.0)
proposed (delta = 0.05) 0.49 (0.05) 0.97 (0.06) 0.93 (0.09) 0.8 (0.1) 0.6 (0.0)
proposed (delta = 0.01) 0.54 (0.06) 0.97 (0.06) 0.93 (0.09) 0.8 (0.1) 0.59 (0.02)
proposed (delta = 0.001) 0.54 (0.06) 0.97 (0.06) 0.93 (0.09) 0.8 (0.1) 0.59 (0.02)
proposed (delta = 0.0) 0.54 (0.06) 0.97 (0.06) 0.93 (0.09) 0.8 (0.1) 0.59 (0.02)
proposed (automatic) 0.55 (0.07) 0.97 (0.06) 0.96 (0.08) 1.0 (0.0) 1.0 (0.0)

horseshoe (delta = 0.8) 0.67 (0.19) 0.93 (0.09) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
horseshoe (delta = 0.5) 0.7 (0.19) 0.91 (0.07) 0.97 (0.06) 1.0 (0.0) 1.0 (0.0)
horseshoe (delta = 0.05) 0.63 (0.12) 0.6 (0.08) 0.63 (0.07) 0.59 (0.04) 0.6 (0.0)
horseshoe (delta = 0.01) 0.57 (0.05) 0.57 (0.03) 0.57 (0.03) 0.57 (0.03) 0.55 (0.0)
horseshoe (delta = 0.001) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0)
horseshoe (delta = 0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0) 0.55 (0.0)
horseshoe (automatic) 0.65 (0.17) 0.91 (0.07) 0.97 (0.06) 1.0 (0.0) 1.0 (0.0)

Average number of selected variables

10 50 100 1000 100000

proposed (delta = 0.8) 3.4 (2.33) 2.6 (1.02) 2.8 (0.4) 3.0 (0.0) 3.0 (0.0)
proposed (delta = 0.5) 3.4 (2.33) 3.2 (0.4) 2.8 (0.4) 3.0 (0.0) 3.0 (0.0)
proposed (delta = 0.05) 3.4 (2.73) 3.2 (0.4) 3.0 (0.63) 4.6 (0.8) 7.0 (0.0)
proposed (delta = 0.01) 3.6 (2.65) 3.2 (0.4) 3.0 (0.63) 4.6 (0.8) 7.2 (0.4)
proposed (delta = 0.001) 3.6 (2.65) 3.2 (0.4) 3.0 (0.63) 4.6 (0.8) 7.2 (0.4)
proposed (delta = 0.0) 3.6 (2.65) 3.2 (0.4) 3.0 (0.63) 4.6 (0.8) 7.2 (0.4)
proposed (automatic) 3.4 (2.33) 3.2 (0.4) 2.8 (0.4) 3.0 (0.0) 3.0 (0.0)

horseshoe (delta = 0.8) 3.2 (1.47) 3.0 (0.63) 3.0 (0.0) 3.0 (0.0) 3.0 (0.0)
horseshoe (delta = 0.5) 3.8 (1.17) 3.6 (0.49) 3.2 (0.4) 3.0 (0.0) 3.0 (0.0)
horseshoe (delta = 0.05) 6.8 (1.6) 7.2 (1.17) 6.6 (1.02) 7.2 (0.75) 7.0 (0.0)
horseshoe (delta = 0.01) 7.6 (0.8) 7.6 (0.49) 7.6 (0.49) 7.6 (0.49) 8.0 (0.0)
horseshoe (delta = 0.001) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0)
horseshoe (delta = 0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0) 8.0 (0.0)
horseshoe (automatic) 4.4 (2.33) 3.6 (0.49) 3.2 (0.4) 3.0 (0.0) 3.0 (0.0)
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Table 3.7: High-dimensional setting, d = 1000 and n ∈ {100, 1000}. Evaluation
results with no noise on regression coefficients.

F1-Scores

100 1000

proposed (automatic) 0.96 (0.08) 1.0 (0.0)
EMVS 0.96 (0.08) 1.0 (0.0)
horseshoe (automatic) 0.46 (0.24) 1.0 (0.0)
AIC 0.06 (0.0) 0.01 (0.0)
EBIC (γ = 0.0) 0.06 (0.0) 0.01 (0.0)
EBIC (γ = 0.5) 0.06 (0.0) 0.01 (0.0)
EBIC (γ = 1.0) 0.06 (0.0) 0.01 (0.0)
stability (q = 1) 0.2 (0.24) 0.5 (0.0)
stability (q = 50) 1.0 (0.0) 1.0 (0.0)
stability (q = 100) 0.84 (0.08) 1.0 (0.0)

Average number of selected variables

100 1000

proposed (automatic) 2.8 (0.4) 3.0 (0.0)
EMVS 2.8 (0.4) 3.0 (0.0)
horseshoe (automatic) 14.6 (9.16) 3.0 (0.0)
AIC 99.0 (0.0) 999.0 (0.0)
EBIC (γ = 0.0) 99.0 (0.0) 999.0 (0.0)
EBIC (γ = 0.5) 99.0 (0.0) 999.0 (0.0)
EBIC (γ = 1.0) 99.0 (0.0) 999.0 (0.0)
stability (q = 1) 0.4 (0.49) 1.0 (0.0)
stability (q = 50) 3.0 (0.0) 3.0 (0.0)
stability (q = 100) 2.2 (0.4) 3.0 (0.0)
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Table 3.8: High-dimensional setting, d = 1000 and n ∈ {100, 1000}. Evaluation
results with noise on regression coefficients η = 0.2.

F1-Scores

100 1000

proposed (automatic) 0.84 (0.08) 1.0 (0.0)
EMVS 0.88 (0.1) 0.96 (0.08)
horseshoe (automatic) 0.52 (0.17) 0.66 (0.2)
AIC 0.06 (0.0) 0.01 (0.0)
EBIC (γ = 0.0) 0.06 (0.0) 0.01 (0.0)
EBIC (γ = 0.5) 0.06 (0.0) 0.01 (0.0)
EBIC (γ = 1.0) 0.06 (0.0) 0.01 (0.0)
stability (q = 1) 0.4 (0.2) 0.5 (0.0)
stability (q = 50) 0.92 (0.1) 0.97 (0.06)
stability (q = 100) 0.88 (0.1) 1.0 (0.0)

Average number of selected variables

100 1000

proposed (automatic) 2.2 (0.4) 3.0 (0.0)
EMVS 2.4 (0.49) 2.8 (0.4)
horseshoe (automatic) 10.4 (8.45) 7.6 (5.24)
AIC 99.0 (0.0) 999.0 (0.0)
EBIC (γ = 0.0) 99.0 (0.0) 999.0 (0.0)
EBIC (γ = 0.5) 99.0 (0.0) 999.0 (0.0)
EBIC (γ = 1.0) 99.0 (0.0) 999.0 (0.0)
stability (q = 1) 0.8 (0.4) 1.0 (0.0)
stability (q = 50) 2.6 (0.49) 3.2 (0.4)
stability (q = 100) 2.4 (0.49) 3.0 (0.0)
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Table 3.9: High-dimensional setting, d = 1000 and n ∈ {100, 1000}. Evaluation
results with no noise on regression coefficients. Comparison of the proposed
method and horseshoe for different δ.

F1-Scores

100 1000

proposed (delta = 0.8) 0.5 (0.0) 0.8 (0.0)
proposed (delta = 0.5) 0.56 (0.12) 1.0 (0.0)
proposed (delta = 0.05) 0.96 (0.08) 1.0 (0.0)
proposed (delta = 0.01) 0.96 (0.08) 1.0 (0.0)
proposed (delta = 0.001) 0.96 (0.08) 1.0 (0.0)
proposed (delta = 0.0) 0.96 (0.08) 1.0 (0.0)
proposed (automatic) 0.96 (0.08) 1.0 (0.0)

horseshoe (delta = 0.8) 0.96 (0.08) 1.0 (0.0)
horseshoe (delta = 0.5) 0.96 (0.08) 1.0 (0.0)
horseshoe (delta = 0.05) 0.69 (0.16) 0.97 (0.06)
horseshoe (delta = 0.01) 0.2 (0.02) 0.34 (0.03)
horseshoe (delta = 0.001) 0.01 (0.0) 0.02 (0.0)
horseshoe (delta = 0.0) 0.01 (0.0) 0.01 (0.0)
horseshoe (automatic) 0.46 (0.24) 1.0 (0.0)

Average number of selected variables

100 1000

proposed (delta = 0.8) 1.0 (0.0) 2.0 (0.0)
proposed (delta = 0.5) 1.2 (0.4) 3.0 (0.0)
proposed (delta = 0.05) 2.8 (0.4) 3.0 (0.0)
proposed (delta = 0.01) 2.8 (0.4) 3.0 (0.0)
proposed (delta = 0.001) 2.8 (0.4) 3.0 (0.0)
proposed (delta = 0.0) 2.8 (0.4) 3.0 (0.0)
proposed (automatic) 2.8 (0.4) 3.0 (0.0)

horseshoe (delta = 0.8) 2.8 (0.4) 3.0 (0.0)
horseshoe (delta = 0.5) 2.8 (0.4) 3.0 (0.0)
horseshoe (delta = 0.05) 6.2 (2.4) 3.2 (0.4)
horseshoe (delta = 0.01) 27.2 (2.93) 15.0 (1.55)
horseshoe (delta = 0.001) 463.8 (23.79) 393.2 (8.84)
horseshoe (delta = 0.0) 1000.0 (0.0) 1000.0 (0.0)
horseshoe (automatic) 14.6 (9.16) 3.0 (0.0)
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Table 3.10: High-dimensional setting, d = 1000 and n ∈ {100, 1000}. Evaluation
results with noise on regression coefficients η = 0.2. Comparison of the proposed
method and horseshoe for different δ.

F1-Scores

100 1000

proposed (delta = 0.8) 0.5 (0.0) 0.8 (0.0)
proposed (delta = 0.5) 0.5 (0.0) 0.96 (0.08)
proposed (delta = 0.05) 0.84 (0.08) 0.97 (0.06)
proposed (delta = 0.01) 0.84 (0.08) 0.97 (0.06)
proposed (delta = 0.001) 0.84 (0.08) 0.97 (0.06)
proposed (delta = 0.0) 0.84 (0.08) 0.97 (0.06)
proposed (automatic) 0.84 (0.08) 1.0 (0.0)

horseshoe (delta = 0.8) 0.88 (0.1) 1.0 (0.0)
horseshoe (delta = 0.5) 0.92 (0.1) 1.0 (0.0)
horseshoe (delta = 0.05) 0.63 (0.09) 0.8 (0.11)
horseshoe (delta = 0.01) 0.18 (0.04) 0.3 (0.05)
horseshoe (delta = 0.001) 0.01 (0.0) 0.01 (0.0)
horseshoe (delta = 0.0) 0.01 (0.0) 0.01 (0.0)
horseshoe (automatic) 0.52 (0.17) 0.66 (0.2)

Average number of selected variables

100 1000

proposed (delta = 0.8) 1.0 (0.0) 2.0 (0.0)
proposed (delta = 0.5) 1.0 (0.0) 2.8 (0.4)
proposed (delta = 0.05) 2.2 (0.4) 3.2 (0.4)
proposed (delta = 0.01) 2.2 (0.4) 3.2 (0.4)
proposed (delta = 0.001) 2.2 (0.4) 3.2 (0.4)
proposed (delta = 0.0) 2.2 (0.4) 3.2 (0.4)
proposed (automatic) 2.2 (0.4) 3.0 (0.0)

horseshoe (delta = 0.8) 2.4 (0.49) 3.0 (0.0)
horseshoe (delta = 0.5) 2.6 (0.49) 3.0 (0.0)
horseshoe (delta = 0.05) 6.0 (1.67) 4.6 (1.02)
horseshoe (delta = 0.01) 32.8 (9.97) 17.8 (3.76)
horseshoe (delta = 0.001) 525.4 (54.5) 426.2 (10.4)
horseshoe (delta = 0.0) 1000.0 (0.0) 1000.0 (0.0)
horseshoe (automatic) 10.4 (8.45) 7.6 (5.24)

Table 3.11: Statistics of real data sets
ozone crime SDM

n 178 47 88
d 35 15 67
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Table 3.12: Response y and covariates of ozone data. The data set contains all
of the variables below, including all second-order terms and interactions. This
table is partly copied from Table 5 in the supplement material of (Garcia-Donato
and Martinez-Beneito, 2013).
y Daily maximum 1-hour-average ozone reading (ppm) at Upland, CA
x4 500-millibar pressure height (m) measured at Vandenberg AFB
x5 Wind speed (mph) at Los Angeles International Airport (LAX)
x6 Humidity (%) at LAX
x7 Temperature (Fahrenheit degrees) measured at Sandburg, CA
x8 Inversion base height (feet) at LAX
x9 Pressure gradient (mm Hg) from LAX to Daggett, CA
x10 Visibility (miles) measured at LAX

Table 3.13: Response y and covariates of crime data. This table is partly copied
from Table 4 in (Raftery et al., 1997).

y crime rate
M Percentage of males age 14-24
So Indicator variable for southern state
Ed Mean years of schooling
Po1 Police expenditure in 1960
Po2 Police expenditure in 1959
LF Labor force participation rate
M.F Number of males per 1,000 females
Pop State population
NW Number of nonwhites per 1,000 people
U1 Unemployment rate of urban males age 14-24
U2 Unemployment rate of urban males, age 35-39
GDP Wealth
Ineq Income inequality
Prob Probability of imprisonment
Time Average time served in state prisons
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Table 3.14: Response y and covariates (first part) of SDM data. This table is
copied from the description of R package ’BayesVarSel’.

y Growth of GDP per capita at purchasing power parities between 1960 and 1996.
ABSLATIT Absolute latitude.
AIRDIST Logarithm of minimal distance (in km) from New York, Rotterdam, or Tokyo.
AVELF Average of five different indices of ethnolinguistic fractionalization
BRIT Dummy for former British colony after 1776.
BUDDHA Fraction of population Buddhist in 1960.
CATH00 Fraction of population Catholic in 1960.
CIV72 Index of civil liberties index in 1972.
COLONY Dummy for former colony.
CONFUC Fraction of population Confucian.
DENS60 Population per area in 1960.
DENS65C Coastal (within 100 km of coastline) population per coastal area in 1965.
DENS65I Interior (more than 100 km from coastline) population per interior area in 1965.
DPOP6090 Average growth rate of population between 1960 and 1990.
EAST Dummy for East Asian countries.
ECORG Degree Capitalism index.
ENGFRAC Fraction of population speaking English.
EUROPE Dummy for European economies.
FERTLDC1 Fertility in 1960’s.
GDE1 Average share public expenditures on defense as fraction of GDP between 1960 and 1965.
GDPCH60L Logarithm of GDP per capita in 1960.
GEEREC1 Average share public expenditures on education as fraction of GDP between 1960 and 1965.
GGCFD3 Average share of expenditures on public investment as fraction of GDP between 1960 and 1965.
GOVNOM1 Average share of nominal government spending to nominal GDP between 1960 and 1964.
GOVSH61 Average share government spending to GDP between 1960 and 1964.
GVR61 Share of expenditures on government consumption to GDP in 1961.
H60 Enrollment rates in higher education.
HERF00 Religion measure.
HINDU00 Fraction of the population Hindu in 1960.
IPRICE1 Average investment price level between 1960 and 1964 on purchasing power parity basis.
LAAM Dummy for Latin American countries.
LANDAREA Area in km.
LANDLOCK Dummy for landlocked countries.
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Table 3.15: Covariates (second part) of SDM data. This table is copied from the
description of R package ’BayesVarSel’.

LHCPC Log of hydrocarbon deposits in 1993.
LIFE060 Life expectancy in 1960.
LT100CR Proportion of country’s land area within 100 km of ocean or ocean-navigable river.
MALFAL66 Index of malaria prevalence in 1966.
MINING Fraction of GDP in mining.
MUSLIM00 Fraction of population Muslim in 1960.
NEWSTATE National independence.
OIL Dummy for oil-producing country.
OPENDEC1 Ratio of exports plus imports to GDP, averaged over 1965 to 1974.
ORTH00 Fraction of population Orthodox in 1960.
OTHFRAC Fraction of population speaking foreign language.
P60 Enrollment rate in primary education in 1960.
PI6090 Average inflation rate between 1960 and 1990.
SQPI6090 Square of average inflation rate between 1960 and 1990.
PRIGHTS Political rights index.
POP1560 Fraction of population younger than 15 years in 1960.
POP60 Population in 1960
POP6560 Fraction of population older than 65 years in 1960.
PRIEXP70 Fraction of primary exports in total exports in 1970.
PROT00 Fraction of population Protestant in 1960.
RERD Real exchange rate distortions.
REVCOUP Number of revolutions and military coups.
SAFRICA Dummy for Sub-Saharan African countries.
SCOUT Measure of outward orientation.
SIZE60 Logarithm of aggregate GDP in 1960.
SOCIALIST Dummy for countries under Socialist rule for considerable time during 1950 to 1995.
SPAIN Dummy variable for former Spanish colonies.
TOT1DEC1 Growth of terms of trade in the 1960’s.
TOTIND Terms of trade ranking
TROPICAR Proportion of country’s land area within geographical tropics.
TROPPOP Proportion of country’s population living in geographical tropics.
WARTIME Fraction of time spent in war between 1960 and 1990.
WARTORN Indicator for countries that participated in external war between 1960 and 1990.
YRSOPEN Number of years economy has been open between 1950 and 1994.
ZTROPICS Fraction tropical climate zone.
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Table 3.16: Selected variables for the ozone data. For proposed method and
horseshoe method we denote by "MSE inc" expected increase in mean squared
error compared to choosing the full model.

method selected variables

proposed (delta = 0.8, MSE inc = 37.31%) x7.x7
proposed (delta = 0.5, MSE inc = 19.5%) x6.x6, x6.x7
proposed (delta = 0.05, MSE inc = 5.43%) x6.x7, x6.x8, x7.x7
proposed (delta = 0.01, MSE inc = 4.91%) x6.x6, x6.x7, x6.x8
proposed (delta = 0.001, MSE inc = 4.94%) x6.x6, x6.x7, x6.x8
proposed (delta = 0.0, MSE inc = 5.44% ) x6.x7, x6.x8, x7.x7

horseshoe (delta = 0.8, MSE inc = 15.47%) x6.x7, x7.x7, x7.x10
horseshoe (delta = 0.5, MSE inc = 5.11%) x6.x7, x6.x8, x7.x7, x7.x8, x7.x10
horseshoe (delta = 0.05, MSE inc = 0.0%) all except x5, x4.x5, x4.x8, x5.x8, x6.x9, x6.x10, x8.x8, x8.x9, x9.x10
horseshoe (delta = 0.01, MSE inc = 0.0%) all except x5.x8, x6.x9
horseshoe (delta = 0.001, MSE inc = 0.0%) all except x6.x9
horseshoe (delta = 0.0, MSE inc = 0.0%) all

GibbsBvs x6.x6, x6.x7, x6.x8
EMVS none
AIC x9, x4.x4, x6.x7, x6.x8, x7.x7, x7.x8, x7.x10, x8.x10, x9.x9
EBIC (γ = 0) x6.x7, x6.x8, x7.x7, x7.x8, x7.x10, x8.x10, x9.x9
EBIC (γ = 0.5) x6.x7, x7.x7, x7.x8, x7.x10, x9.x9
EBIC (γ = 1.0) x4.x8, x6.x7, x7.x7
stability (q = 0.1 · d) x7.x7
stability (q = 0.5 · d) x7.x10
stability (q = 0.8 · d) none
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Table 3.17: Selected variables for the crime data. For proposed method and
horseshoe method we denote by "MSE inc" expected increase in mean squared
error compared to choosing the full model.

method selected variables

proposed (delta = 0.8, MSE inc = 65.62%) Po1, Ineq
proposed (delta = 0.5, MSE inc = 21.97%) M, Ed, Po1, Ineq
proposed (delta = 0.05, MSE inc = 0.0%) all
proposed (delta = 0.01, MSE inc = 0.0%) all
proposed (delta = 0.001, MSE inc = 0.0%) all
proposed (delta = 0.0, MSE inc = 0.0%) all

horseshoe (delta = 0.8, MSE inc = 17.23%) M, Ed, Po1, Po2, NW, Ineq, Prob
horseshoe (delta = 0.5, MSE inc = 3.07%) all except So, LF, M.F, Pop, U1, Time
horseshoe (delta = 0.05, MSE inc = 0.0%) all except M.F
horseshoe (delta = 0.01, MSE inc = 0.0%) all except M.F
horseshoe (delta = 0.001, MSE inc = 0.0%) all
horseshoe (delta = 0.0, MSE inc = 0.0%) all

GibbsBvs all
EMVS Po1, Ineq
AIC all except So, Po2, M.F, U1
EBIC (γ = 0) all except So, Po2, LF, Pop, U1, GDP, Time
EBIC (γ = 0.5) M, Ed, Po1, M.F, NW, Ineq, Prob
EBIC (γ = 1.0) Po1, NW
stability (q = 0.1 · d) Po1
stability (q = 0.5 · d) NW
stability (q = 0.8 · d) none
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Table 3.18: Selected variables for the SDM data. For proposed method and
horseshoe method we denote by "MSE inc" expected increase in mean squared
error compared to choosing the full model.

method selected variables

proposed (delta = 0.8, MSE inc = 110.29%) EAST
proposed (delta = 0.5, MSE inc = 27.07%) EAST, MALFAL66
proposed (delta = 0.05, MSE inc = 27.25%) EAST, MALFAL66
proposed (delta = 0.01, MSE inc = 27.2%) EAST, MALFAL66
proposed (delta = 0.001, MSE inc = 27.14%) EAST, MALFAL66
proposed (delta = 0.0, MSE inc = 27.22%) EAST, MALFAL66

horseshoe (delta = 0.8, MSE inc = 69.31%) EAST, GDPCH60L, IPRICE1, P60
horseshoe (delta = 0.5, MSE inc = 20.16%) CONFUC, EAST, GDPCH60L, IPRICE1, LIFE060, P60, TROPICAR
horseshoe (delta = 0.05, MSE inc = 0.0%) all except DENS65I, DPOP6090, ECORG, EUROPE, HERF00,

LANDAREA, LANDLOCK, OIL, ORTH00, PI6090, SQPI6090,
POP6560, SIZE60, TOT1DEC1, TOTIND, WARTIME, WARTORN

horseshoe (delta = 0.01, MSE inc = 0.0%) all except DENS65I, ECORG, LANDAREA, SQPI6090, WARTIME
horseshoe (delta = 0.001, MSE inc = 0.0%) all
horseshoe (delta = 0.0, MSE inc = 0.0%) all

GibbsBvs DENS65C, EAST, GDPCH60L, IPRICE1, P60, TROPICAR
EMVS none
AIC AVELF, BUDDHA, CIV72, CONFUC, DENS65C, EAST, GDPCH60L, GGCFD3,

GOVNOM1, GVR61, HINDU00, IPRICE1, MALFAL66, MINING, MUSLIM00,
OPENDEC1, OTHFRAC, P60, POP60, RERD, REVCOUP, SAFRICA, SPAIN,
TROPICAR, TROPPOP, YRSOPEN

EBIC (γ = 0) CONFUC, EAST, MALFAL66, P60, TROPPOP, YRSOPEN
EBIC (γ = 0.5) EAST, TROPPOP, YRSOPEN
EBIC (γ = 1.0) EAST, TROPPOP, YRSOPEN
stability (q = 0.1 · d) EAST, YRSOPEN
stability (q = 0.5 · d) none
stability (q = 0.8 · d) - (did not terminate)
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Table 3.19: Top 10 selected models using the proposed method with δ = 0.0
and δ = 0.5 for the ozone data. Last column also shows the highest posterior
probability model reported in (Garcia-Donato and Martinez-Beneito, 2013) using
a g-prior where inclusion probabilities are calculated exactly (i.e. no MCMC).

model probability

δ = 0.5

x6.x6, x6.x7 0.066
x6.x7, x7.x7 0.034
x4.x10, x7.x7, x7.x10 0.027
x7.x7 0.026
x10, x4.x7, x7.x10 0.02
x4.x7, x4.x10, x7.x10 0.019
x10, x7.x7, x7.x10 0.019
x7, x6.x7, x7.x7 0.016
x7.x7, x7.x10 0.015
x6.x6, x6.x7, x7.x8 0.013

δ = 0.0

x6.x7, x6.x8, x7.x7 0.031
x6.x6, x6.x7, x6.x8 0.029
x10, x6.x7, x6.x8, x7.x7, x7.x10 0.018
x4.x10, x6.x7, x6.x8, x7.x7, x7.x10 0.018
x4.x6, x4.x10, x6.x8, x7.x7, x7.x10 0.016
x10, x4.x6, x6.x8, x7.x7, x7.x10 0.013
x6.x7, x7.x7, x7.x8 0.01
x6, x4.x10, x6.x8, x7.x7, x7.x10 0.01
x4.x6, x6.x8, x7.x7 0.009
x6, x6.x8, x7.x7 0.009

Gracia-Donato

x10, x4.x6, x6.x8, x7.x7, x7.x10 0.0009
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Table 3.20: All inclusion probabilities using the proposed method with δ = 0.0
and δ = 0.5 for the ozone data. Last column also shows the results reported
in (Garcia-Donato and Martinez-Beneito, 2013) using a g-prior where inclusion
probabilities are calculated exactly (i.e. no MCMC).

variable δ = 0.5 δ = 0.0 Gracia-Donato

x7.x7 0.58 0.67 0.450
x6.x7 0.568 0.603 0.636
x7.x10 0.5 0.649 0.743
x6.x6 0.313 0.245 0.532
x4.x10 0.233 0.334 0.361
x6.x8 0.226 0.702 0.560
x10 0.226 0.291 0.368
x4.x7 0.212 0.234 0.252
x7.x8 0.179 0.279 0.349
x4.x6 0.164 0.295 0.325
x6 0.139 0.246 0.297
x7 0.133 0.16 0.195
x7.x9 0.09 0.072 0.431
x8 0.076 0.139 0.200
x4.x9 0.064 0.059 0.301
x4.x8 0.064 0.132 0.208
x9.x9 0.059 0.156 0.434
x9 0.053 0.056 0.291
x8.x10 0.037 0.112 0.236
x10.x10 0.028 0.07 0.117
x8.x8 0.028 0.067 0.142
x8.x9 0.019 0.034 0.263
x5.x10 0.019 0.036 0.124
x6.x10 0.017 0.052 0.115
x6.x9 0.012 0.036 0.126
x4.x4 0.011 0.032 0.164
x5.x6 0.011 0.027 0.107
x4 0.011 0.031 0.164
x5.x8 0.009 0.031 0.098
x5.x5 0.008 0.024 0.124
x5.x7 0.008 0.025 0.094
x9.x10 0.007 0.024 0.103
x5 0.006 0.019 0.096
x4.x5 0.006 0.02 0.095
x5.x9 0.005 0.022 0.088
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Table 3.21: Top 10 selected models using the proposed method with δ = 0.0 and
δ = 0.5 for the crime data.

model probability

δ = 0.5

M, Ed, Po1, Ineq 0.021
M, Ed, Po1, NW, Ineq, Prob 0.017
Po1, Ineq 0.017
Ed, Po1, Ineq 0.016
M, Ed, Po1, NW, U2, Ineq, Prob 0.015
M, Ed, Po1, Ineq, Prob 0.015
Ed, Po1, NW, Ineq, Prob 0.013
M, Ed, Po1, U2, Ineq 0.011
M, Ed, Po1, U2, Ineq, Prob 0.011
M, Ed, Po1, NW, Ineq, Prob, Time 0.011

δ = 0.0

all 0.02
M, Ed, Po1, Ineq 0.01
M, Ed, Po1, NW, U2, Ineq, Prob 0.01
Ed, Po1, Ineq 0.008
M, Ed, Po1, NW, Ineq, Prob 0.008
all except So, Po2, LF, M.F, Pop, U1, GDP 0.008
Po1, Ineq 0.007
all except So, LF, M.F, Pop, U1, GDP, Time 0.007
M, Ed, Po1, NW, Ineq, Prob, Time 0.007
M, Ed, Po1, U2, Ineq, Prob 0.007
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Table 3.22: All inclusion probabilities using the proposed method with δ = 0.5
and δ = 0.0 for the crime data. Last column also shows the results reported
in (Liang et al., 2008) with the Zellner-Siow Prior with the null-model as the
reference model.

variable δ = 0.5 δ = 0.0 Liang

Ineq 0.993 0.995 1.0
Ed 0.906 0.943 0.97
Prob 0.758 0.833 0.90
Po1 0.742 0.792 0.67
M 0.731 0.808 0.85
NW 0.604 0.711 0.69
Po2 0.52 0.591 0.45
U2 0.425 0.557 0.61
GDP 0.381 0.481 0.36
Time 0.256 0.395 0.37
Pop 0.244 0.368 0.37
So 0.207 0.32 0.27
U1 0.134 0.269 0.25
M.F 0.12 0.238 0.20
LF 0.115 0.233 0.20
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Table 3.23: Top 10 selected models using the proposed method with δ = 0.0 and
δ = 0.5 for the SDM data.
model probability

δ = 0.5

EAST, MALFAL66 0.12
EAST, P60, TROPICAR 0.035
EAST, P60 0.034
EAST, MALFAL66, P60 0.026
EAST, TROPICAR 0.019
EAST, LIFE060 0.016
EAST, GDPCH60L, LIFE060, MALFAL66 0.012
EAST, IPRICE1, P60, TROPICAR 0.011
EAST, IPRICE1, P60 0.011
EAST, GDPCH60L, IPRICE1, LIFE060 0.01

δ = 0.0

EAST, MALFAL66 0.055
DENS65C, EAST, GDPCH60L, IPRICE1, P60, TROPICAR 0.02
EAST, MALFAL66, P60 0.015
EAST, P60, TROPICAR 0.012
EAST, MALFAL66, P60, SPAIN 0.007
EAST, MALFAL66, SPAIN 0.007
EAST, GVR61, MALFAL66 0.006
EAST, GDPCH60L, LIFE060, MALFAL66 0.006
EAST, LIFE060, MALFAL66 0.006
EAST, MALFAL66, YRSOPEN 0.006
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Table 3.24: Top 30 inclusion probabilities using the proposed method with
δ = 0.0 and δ = 0.5 for the SDM data. For reference, we also show the results
that were reported in (Sala-i Martin et al., 2004) using the BACE method.
Variables in bold mark the 18 variables that were considered as significant in
(Sala-i Martin et al., 2004).

variable δ = 0.5

EAST 0.892
P60 0.485
MALFAL66 0.341
GDPCH60L 0.34
IPRICE1 0.328
TROPICAR 0.285
LIFE060 0.253
CONFUC 0.113
YRSOPEN 0.085
SAFRICA 0.079
RERD 0.068
DENS65C 0.063
GVR61 0.055
LAAM 0.045
TROPPOP 0.045
AVELF 0.044
MUSLIM00 0.043
BUDDHA 0.042
MINING 0.04
OTHFRAC 0.034
SPAIN 0.032
OPENDEC1 0.031
ABSLATIT 0.029
PRIEXP70 0.028
H60 0.027
GOVSH61 0.024
DENS60 0.022
FERTLDC1 0.022
POP1560 0.018
PROT00 0.018

variable δ = 0.0

EAST 0.855
P60 0.623
IPRICE1 0.523
GDPCH60L 0.475
MALFAL66 0.434
TROPICAR 0.411
DENS65C 0.248
LIFE060 0.231
CONFUC 0.189
YRSOPEN 0.14
SAFRICA 0.136
LAAM 0.128
SPAIN 0.126
GVR61 0.109
MINING 0.097
MUSLIM00 0.093
BUDDHA 0.093
AVELF 0.089
RERD 0.086
TROPPOP 0.071
OPENDEC1 0.067
OTHFRAC 0.063
PRIEXP70 0.062
H60 0.061
GOVSH61 0.058
DENS60 0.055
PRIGHTS 0.053
ABSLATIT 0.052
PROT00 0.048
POP1560 0.046

variable BACE

EAST 0.823
P60 0.774
IPRICE1 0.774
GDPCH60L 0.685
TROPICAR 0.563
DENS65C 0.428
MALFAL66 0.252
LIFE060 0.209
CUNFUC 0.206
SAFRICA 0.154
LAAM 0.149
MINING 0.124
SPAIN 0.123
YRSOPEN 0.119
MUSLIM00 0.114
BUDDHA 0.108
AVELF 0.105
GVR61 0.104
DENS60 0.086
RERD 0.082
OTHFRAC 0.080
OPENDEC1 0.076
PRIGHTS 0.066
GOVSH61 0.063
H60 0.061
TROPPOP 0.058
PRIEXP70 0.053
GGCFD3 0.048
PROT00 0.046
HINDU00 0.045
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Chapter 4

Conclusions and Discussion

In this thesis, we proposed two new noise models and approximation methods
to the marginal likelihood. In particular, we concentrated on two common
assumptions, and its relaxations allowing for noise:

• Sparsity assumption of the precision matrix in the Gaussian graphical
model.

• Sparsity assumption of the coefficients in linear regression.

We relaxed these assumptions to allow for small negligible non-zero partial
correlations and regression coefficients, respectively. Efficient estimation of the
marginal likelihood and calibration to the actual degree of noise is key to our
methods, and we discuss these general issues in the following.

4.1 Methods for marginal likelihood estimation

Not only for the noise models that we proposed in Chapter 2 and 3, but for
most realistic Bayesian models, there is no closed-form analytic solution of the
marginal likelihood. Therefore, efficient method for calculating the marginal
likelihood are crucial. There are roughly five types of methods for the exact or
approximate calculation of the marginal likelihood.

• Numerical integration, like Bayesian Quadrature (e.g. Osborne et al.
(2012)).

• MCMC methods for explicit calculation, like Chib’s method (Chib, 1995;
Chib and Jeliazkov, 2001), CAME (Pajor et al., 2017), or SMC (Zhou
et al., 2016).

• MCMC methods for implicit calculation, that means only estimation
of marginal likelihood ratios (Bayes factors) through indicator variables
(Green, 1995; Green and Hastie, 2009).
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• Laplace approximation (e.g. Ando (2010)).

• Variational methods (Blei et al., 2017).

Numerical integration is only computationally feasible in low dimensions. On
the other hand, MCMC methods’ accuracy depend on the ability to guarantee
convergence to the stationary distribution, and thus the ability to acquire samples
from the true posterior distribution. However, in high dimensional parameter
spaces, guaranteeing convergence to the stationarity distribution is a formidable
task. Therefore, we think that in practice, MCMC methods can be considered
more an approximation rather than being exact methods.

In Chapter 3, we side-stepped the explicit calculation of marginal likelihoods,
and instead introduced a latent variable vector z ∈ {0, 1}p which indicates the
selected model. By sampling from the posterior distribution of z, we estimated
the posterior model probabilities. In this case efficient sampling of the posterior
distribution was possible, since we could integrate over the regression coefficients
βj , and therefore the reversible jump MCMC methodology Green (1995); Green
and Hastie (2009) was not necessary. Since, in most cases only the ratios of
marginal likelihoods (Bayes factors) are of interest, such implicit methods are
often sufficient.

In certain situations, the Laplace approximation can be a viable alternative to
exact methods, and enjoys asymptotic correctness, if certain regularity conditions
are met. However, for the disjunct support priors introduced in Chapter 3,
theses regularity conditions were not met. A Laplace approximation was also
not appropriate in Chapter 2, since the parameters were in the space of positive
definite matrices, whereas a Laplace approximation assumes the Euclidean space.

Variational methods are another alternative to MCMC methods. Variational
methods minimize the distance between a family of approximate distributions
and the target distribution (which is in most cases the posterior distribution).
As a (pseudo) distance measure, commonly the KL-divergence is used due to
computational convenience, leading to a lower bound (called evidence lower
bound, ELBO) on the marginal likelihood. However, there are no theoretic
guarantees on the tightness of this lower bound. Furthermore, the calculation of
the ELBO involves the calculation of an expectation which is also not analytically
tractable, in general, though Monte Carlo approximations can partly overcome
this limitation (Kucukelbir et al., 2017). In Chapter 2, we circumvented some
of the analytically intractable expectations that would have been needed for a
full variational approximation, by using a type of mode matching between the
approximate and target distribution.

4.2 Robustness to small negligible noise
Our experiments in Chapter 2, as well as Chapter 3, show that often the
performance differences between with and without noise models are most striking
for large n, and less important for small sample sizes. This is similar to the
findings in Miller and Dunson (2018), where they illustrate the phenomena with
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a simple Bernoulli example: let us assume, we want to test for the hypothesis
H0 : θ = 0.5, against the alternative H1 : θ 6= 0.5. Furthermore, assume that the
true value of θ is not exactly 0.5, but due to noise actually 0.51. Using standard
posteriors of the Bernoulli model1 with a uniform prior, for samples sizes n
roughly smaller or equal to 1000, the null hypothesis H0 is favored correctly (in
the sense that it is robust to noise). However, for large sample sizes n > 10000,
the alternative hypothesis H1 is going to be favored.

As a remedy to this problem, Miller and Dunson (2018) introduced an
approach which they call c-posterior. Our approach, as well as the c-posterior
approach, requires to specify a hyper-parameter controlling the robustness to
such noise. We showed that standard values, as in Chapter 2, or estimates on
performance (like mean squared error for regression tasks) as in Chapter 3, can
lead to reasonable choices: when there is no noise they lead to similar performance
as standard models, but in the case of noise, they can be considerably more
accurate. As such, our proposed methods come with some guidance on the
choice of hyper-parameters that proved to be useful. However, we admit that
there are situations where default/automatic choices of the hyper-parameters
are uncomfortable. But we note that this is similar to the specification of priors
in general, where truly objective prior specification can be difficult (Berger et al.,
2001). In such applications, it depends on the data analyst to strike a balance
between ease of interpretability (model complexity) and fit to the data, as also
suggested in (Miller and Dunson, 2018).

1That means not their proposed c-posteriors.
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Appendix A

Variable Clustering in the
Gaussian Graphical Model

A.1 Convergence of 3-block ADMM

We can write the optimization problem in (2.4) as

minimize f1(Xε) + f2(X1, . . . , Xk) + f3(Z)

subject to
−X − βXε + Z = 0 ,

Xε, X1, . . . , Xk � 0 ,

with

f1(Xε) := trace(AεXε)− aε · log |Xε| ,

f2(X1, . . . , Xk) :=

k∑
j=1

(
trace(AjXj)− aj · log |Xj |

)
,

f3(Z) := n · trace(SZ)− n · log |Z| .

First note that the functions f1, f2 and f3 are convex proper closed functions.
Since Xε, X1, . . . , Xk � 0, we have due to the equality constraint that Z � 0.
Assuming that the global minima is attained, we can assume that Z � σI,
for some large enough σ > 0. As a consequence, we have that ∇2f3(Z) =
Z−1 ⊗Z−1 � σ−2I, and therefore f3 is a strongly convex function. Analogously,
we have that f1 and f2 are strongly convex functions, and therefore also coercive.
This allows us to apply Theorem 3.2 in (Lin et al., 2018) which guarantees the
convergence of the 3-block ADMM.
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A.2 Derivation of variational approximation
Here, we give more details of the KL-divergence minimization from Section 2.4.2.
Recall, that the remaining parameters νg,ε ∈ R and νg,j ∈ R are optimized by
minimizing the KL-divergence between the the factorized distribution g and the
posterior distribution p(Σε,Σ1, . . .Σk|x1, ...,xn,η, C). We have

KL(g||p) = −
∫
gε(Σε) ·

k∏
j=1

gj(Σj)

log
p(Σε,Σ1, . . .Σk,x1, ...,xn|η, C)

gε(Σε) ·
∏k
j=1 gj(Σj)

dΣεdΣ

+ c

= −1

2
EgJ ,gε [n · log |(Σ−1 + βΣ−1

ε )|]

− 1

2
Egε [(νε + d+ 1) · log |Σ−1

ε |

− trace((Σε,0 + βnS)Σ−1
ε )]− Entropy[gε]

+

k∑
j=1

(
− 1

2
Egj [(νj + dj + 1) · log |Σ−1

j |

− trace((Σj,0 + nSj)Σ
−1
j )]− Entropy[gj ]

)
+ c

= −1

2
nEgJ ,gε [log |Σ−1 + βΣ−1

ε |]

+
1

2
(νε + d+ 1)Egε [log |Σε|]

+
1

2
trace((Σε,0 + βnS)Egε [Σ−1

ε ])− Entropy[gε]

+
1

2

k∑
j=1

(νj + dj + 1)Egj [log |Σj |]

+
1

2

k∑
j=1

trace((Σj,0 + nSj)Egj [Σ
−1
j ])

−
k∑
j=1

Entropy[gj ] + c ,

where c is a constant with respect to gε and gj . However, the term EgJ ,gε [log |Σ−1+
βΣ−1

ε |] cannot be solved analytically, therefore we need to resort to some sort of
approximation. Assuming that

EgJ ,gε [log |Σ−1 + βΣ−1
ε |] ≈ EgJ ,gε [log |Σ−1|] ,
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we get

KL(g||p) ≈ −1

2
nEgJ ,gε [log |Σ−1|]

+
1

2
(νε + d+ 1)Egε [log |Σε|]

+
1

2
trace((Σε,0 + βnS)Egε [Σ−1

ε ])− Entropy[gε]

+
1

2

k∑
j=1

(νj + dj + 1)Egj [log |Σj |]

+
1

2

k∑
j=1

trace((Σj,0 + nSj)Egj [Σ
−1
j ])

−
k∑
j=1

Entropy[gj ] + c

= −Egε [log
(
|Σε|−

1
2 (νε+d+1)

e−
1
2 trace((Σε,0+βnS)Σ−1

ε )
)

]

− Entropy[gε]−
k∑
j=1

Egj [log
(
|Σj |−

1
2 (νj+n+dj+1)

e−
1
2 trace((Σj,0+nSj)Σ

−1
j )
)

] + Entropy[gj ] + c

= −Egε [log InvW(νε,Σε,0 + βnS)]

− Entropy[gε]

−
k∑
j=1

Egj [log InvW(νj + n,Σj,0 + nSj)]

+ Entropy[gj ] + c′

= KL(gε || InvW(νε,Σε,0 + βnS))

+

k∑
j=1

KL(gj || InvW(νj + n,Σj,0 + nSj))

+ c′ ,

where we used that EgJ ,gε [log |Σ−1|]
= −

∑k
j=1 Egj [log |Σj |], and c′ is a constant with respect to gε and gj .

From the above expression, we see that we can optimize the parameters of gε
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and gj independently from each other. The optimal parameter ν̂g,ε for gε is

ν̂g,ε = arg min
νg,ε

KL(gε || InvW(νε,Σε,0 + βnS))

= arg min
νg,ε

(νε + d+ 1)Egε [log |Σε|]

+ trace((Σε,0 + βnS)Egε [Σ−1
ε ])− 2 · Entropy[gε]

= arg min
νg,ε

(νε + d+ 1)
(
− d log 2 + d log(νg,ε + d+ 1)

+ log |Σ̂ε| −
d∑
i=1

ψ
(νg,ε − d+ i

2

))
+

νg,ε
νg,ε + d+ 1

trace((Σε,0 + βnS)Σ̂−1
ε )

− 2 log Γd(
νg,ε
2

)− νg,εd− d(d+ 1) log(νg,ε + d+ 1)

+ (νg,ε + d+ 1)

d∑
i=1

ψ
(νg,ε − d+ i

2

)
= arg min

νg,ε

p(νε + d+ 1) log(νg,ε + d+ 1)

− (νε + d+ 1)

d∑
i=1

ψ
(νg,ε − d+ i

2

)
+

νg,ε
νg,ε + d+ 1

trace((Σε,0 + βnS)Σ̂−1
ε )

− 2 log Γd(
νg,ε
2

)− νg,εd− d(d+ 1) log(νg,ε + d+ 1)

+ (νg,ε + d+ 1)

d∑
i=1

ψ
(νg,ε − d+ i

2

)
= arg min

νg,ε

νg,ε
νg,ε + d+ 1

trace((Σε,0 + βnS)Σ̂−1
ε )

− 2 log Γd(
νg,ε
2

)− νg,εd+ dνε log(νg,ε + d+ 1)

+ (νg,ε − νε)
d∑
i=1

ψ
(νg,ε − d+ i

2

)
.
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And analogously, we have

ν̂g,j = arg min
νg,j

νg,j
νg,j + dj + 1

trace((Σj,0 + nSj)Σ̂
−1
j )

− 2 log Γdj (
νg,j
2

)− νg,jdj

+ dj(νj + n) log(νg,j + dj + 1)

+ (νg,j − νj − n)

dj∑
i=1

ψ
(νg,j − dj + i

2

)
.

A.3 Spectral clustering for variable clustering
Let S ∈ Rd×d denote the sample covariance matrix of the observed variables.
Under the assumption that the observations are drawn i.i.d. from a multivariate
normal distribution, with mean 0 and precision matrix X + βXε, the log-
likelihood1 of the data is given by

n

2
(log |X + βXε| − trace((X + βXε)S)) ,

where n is the number of observations. We assume that X is block sparse, i.e. a
permutation matrix P exists such that PTXP is block diagonal. If we knew the
number of blocks k, then we could estimate the block matrix X (and thus the
variable clustering) by the following optimization problem.

Optimization Problem 1:

minimize
X�0

− log |X + βXε|+ trace((X + βXε)S)

subject to
X is block sparse with exactly k blocks ,

where βXε is assumed to be a constant matrix with small entries. We claim that
this can be reformulated, for any q > 0, as following.

Optimization Problem 2:

minimize
X�0

− log |X + βXε|+ trace((X + βXε)S)

subject to

Lii =
∑
k 6=i

|Xik|q ,

Lij = −|Xij |q for i 6= j,

rank(L) = p− k .
1Up to a constant that does not depend on X.
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Proposition 1. Optimization problem 1 and 2 have the same solution. Moreover,
the k dimensional null space of L can be chosen such that each basis vector is
the indicator vector for one variable block of X.

Proof. First let us define the matrix X̃, by X̃ij := |Xij |q. Then clearly, iff X

is block sparse with k blocks, so is X̃. Furthermore, X̃ij ≥ 0, and L is the
unnormalized Laplacian as defined in (Von Luxburg, 2007). We can therefore
apply Proposition (2) of (Von Luxburg, 2007), to find that the dimension of the
eigenspace of L corresponding to eigenvalue 0, is exactly the number of blocks in
X̃. Also from Proposition (2) of (Von Luxburg, 2007) it follows that each such
eigenvector ek ∈ Rd can be chosen such that it indicates the variables belonging
to the same block, i.e. ek(i) 6= 0, iff variable i belongs to block k.

Using the nuclear norm as a convex relaxation for the rank constraint, we
have

minimize
X�0

− log |X + βXε|+ trace((X + βXε)S) + λk||L||∗

subject to

Lii =
∑
k 6=i

|Xik|q ,

Lij = −|Xij |q for i 6= j .

with an appropriately chosen λk. By the definition of L, we have that L is
positive semi-definite, and therefore ||L||∗ = trace(L). As a consequence, we can
rewrite the above problem as

X∗ := arg min
X�0

− log |X + βXε|+ trace((X + βXε)S)

+ λk
∑
i6=j

|Xij |q .

Finally, for the purpose of learning the Laplacian L, we ignore the term βXε

and set it to zero. This will necessarily lead to an estimate of X∗ that is not a
clean block matrix, but has small non-zero entries between blocks. Nevertheless,
spectral clustering is known to be robust to such violations (Ng et al., 2002).
This leads to Algorithm 2 in Section 2.4.3.
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Disjunct Support Prior for
Variable Selection in
Regression

B.1 Slice sampler
First, let us introduce the auxiliary random variable U , and the following joint
distribution:

p(U, σ2
1) =

{
1
L · Inv-χ

2(σ2
1 |ν̃, η̃2) if 0 < U < h(σ2

1),

0 else.
,

where L is an appropriate normalization constant. We then have that

p(σ2
1) =

∫ h(σ2
1)

0

p(u, σ2
1)du

=
1

L
· Inv-χ2(σ2

1 |ν̃, η̃2)

∫ h(σ2
1)

0

1du

=
1

L
· Inv-χ2(σ2

1 |ν̃, η̃2)
[
u
]h(σ2

1)

0

=
1

L
· h(σ2

1) · Inv-χ2(σ2
1 |ν̃, η̃2)

∝ h(σ2
1) · Inv-χ2(σ2

1 |ν̃, η̃2) .

In order to sample from the joint distribution p(U, σ2
1), we employ a Gibbs

sampler, where

p(U |σ2
1) = Uniform([0, h(σ2

1)]) ,

and
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p(σ2
1 |u) =

{
1
L̃
· Inv-χ2(σ2

1 |ν̃, η̃2) if h(σ2
1) > u,

0 else.
,

for an appropriate normalization constant L̃.

B.2 Asymptotic approximation of p(yn|Xn, S)

In order to approximate the marginal likelihood p(yn|Xn, S), we use the Laplace
approximation from Theorem 1 in (Kass et al., 1990). The likelihood function
of the normal linear model is Laplace regular (see proof in Kass et al. (1990)),
which means that the conditions on the likelihood function in Theorem 1 (Kass
et al., 1990) hold. Let us denote by ΘS the Cartesian product of the support of
the priors p(β|S) and p(σ2

r) (for technical reasons we may exclude the points
at δ and −δ to make ΘS an open subset of Rd+1). Since the densities of the
Cauchy distribution, the normal distribution, and the scaled inverse chi-square
distribution, are four times continuously differentiable, we have that the priors
p(β|S) and p(σ2

r) are four times continuously differentiable on its support.
Let θ̂n be the maximum likelihood estimate (MLE) for log p(yn|Xn,θ). Note

that by the consistency of the MLE, we have that θ̂n
p→ θt (see for example

Theorem 4.17. in Shao (2003)), therefore for any open ball around θt, denoted
by B(θt), we have P (θ̂n ∈ B(θt))→ 1, and therefore P (θ̂n ∈ ΘS)→ 1.

Therefore, all conditions of Theorem 1 (Kass et al., 1990) are met. Let us
define p(θ|S) := p(β|S) · p(σ2

r), and h(θ) := − 1
n log p(yn|Xn,θ). Next, applying

Theorem 7 and 1 from (Kass et al., 1990), we have almost surely that 1

p(yn|Xn, S) =

∫
ΘS

p(yn|Xn,θ)p(θ|S)dθ

= (2π)d+1 ·
[
det(n · ∂

2

∂2θ
h(θ̂n))

]− 1
2 · p(yn|Xn, θ̂n) · (p(θ̂n|S) +O(n−1)) .

Furthermore, we have that

∂2

∂2θ
h(θ̂n) = − 1

n

n∑
i=1

∂2

∂2θ
log p(yi|xi, θ̂n)

a.s.→ −Ex,y

[ ∂2

∂2θ
log p(y|x, θ̂n)

]
.

Since θ 7→ Ex,y

[
∂2

∂2θ log p(y|x,θ)
]
is a continuous function, and θ̂n

p→ θt, we
have by the continuous mapping theorem that

Ex,y

[ ∂2

∂2θ
log p(y|x, θ̂n)

]
p→ Ex,y

[ ∂2

∂2θ
log p(y|x,θt)

]
,

1We use here the notation det(X) for the determinant of a matrix X in order to avoid
confusion with the absolute value function.
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and since the matrix −Ex,y

[
∂2

∂2θ log p(y|x,θt)
]
is positive definite with every

entry in O(1), we have that log det( ∂2

∂2θh(θ̂n)) ∈ Op(1). In summary, we have

log p(yn|Xn, S) = (d+ 1) log(2π)− d+ 1

2
log n

− 1

2
log det(

∂2

∂2θ
h(θ̂n)) + log p(yn|Xn, θ̂n) + log(p(θ̂n|S) +O(n−1))

= −d+ 1

2
log n+ log p(yn|Xn, θ̂n) +Op(1) .
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