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Abstract

The goal of group testing is to identify a few specific items satisfying a specific

property in a large population of items at the lowest cost in terms of time and

money. These specific items are referred to as defective items, and the other items

are referred to as negative items. To achieve this goal, the population of items

is grouped into (overlapping) subsets. A test is performed on each subset is to

determine whether it satisfies the property. A test outcome is positive if the

property holds and negative otherwise.

Defective items in a subset tend to make the outcome of the test positive.

Recent advances in the definition of group testing have added a new type of item:

inhibitors. An item in a subset is considered to be an inhibitor if it interferes with

the identification of defective items; i.e., it tends to make the outcome of the test

negative.

In this thesis, we consider the non-adaptive design approach to group testing in

which all tests are independent and designed in advance. The central contributions

of this thesis are in two tracks: efficient testing designs for minimizing the number

of tests and low-complexity decoding schemes for efficiently identifying specific

items.
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1.1 Basics of Group Testing

1.1.1 Overview

Infectious diseases have been a lethal threat to communities throughout history.

Robert Dorfman, an economist, solved the problem of identifying which draftees

had syphilis in World War II [1]. The initial assumption was that the number

of infected draftees was much smaller than the number of disinfected draftees.

This was thus the problem of identifying a small group of items satisfying specific

properties in a large group of items. Such items are usually referred to as defective

items, and the other items are usually referred to as negative items. In the

infectious disease scenario, defective items were infected draftees, and negative

items were disinfected draftees.

Testing items one by one is costly in terms of time and money. It is possible to

reduce this Herculean task by combining items into groups and then testing the

groups, i.e., group testing (GT). Testing design is diverse and depends on the

classification of defective items. There are two approaches to designing such tests.

The first is adaptive design in which there are several testing stages, and the design

of each stage depends on the designs of the previous stages [2–4]. This design is

time-consuming in practice. The second is non-adaptive design in which all tests

are designed in advance, and the tests are performed in parallel [5]. Because the

non-adaptive design saves time and is efficient with a parallel architecture, the

focus of this thesis is on non-adaptive design.

Suppose that there are n items indexed from 1 to n and that defective set

D ⊂ [n] = {1, . . . , n}, where |D| ≤ d � n. A test on a subset of n items is

designed to determine whether the subset satisfies the specific properties. If the

properties are satisfied, the test outcome is positive. Otherwise, the test outcome

is negative. In general, the manner in which D is determined to be a defective set

and the manner in which the members of D are presented in a test define the test

outcome. The main goal of group testing is to efficiently classify all items.

The paradigm of group testing is illustrated in Figure 1.1 in terms of the

theoretical and practical models. The group testing paradigm encompasses two

procedures: encoding and decoding. In the theoretical model, encoding is used to
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Figure 1.1: Group testing paradigm.

create a pooling design and then use it to perform tests to get outcomes. Decoding

is used to classify the items from the outcomes. There are nine steps in the

practical model, with steps 4 to 6 corresponding to one step in the theoretical

model.

Feasibility of group testing: In the practical model, a set of items might

consist of various types of items. The first step in implementing the theoretical

model in practice is to determine what the items are and what the specific items

are. Next, Steps 1 to 3 in the theoretical model are mapped to those steps in the

practical model. In Steps 4 to 7 in the practical model, the items are divided

into (overlapping) subsets so that the data gathered from the tests textitcan be

converted into a binary vector. Finally, after the outcomes are obtained, all items

can be classified by using the decoding algorithm in the theoretical model (Steps 7

to 9). The most important issue in this testing is deciding the items and the

specific items. The next most important one is deciding how to design the tests

so that the data gathered can be converted into a binary vector. This issue is

the basic difference between the theoretical model and the practical one, and it

naturally leads to the realization that the overall cost largely depends on the cost

of processing each item. Therefore, minimizing the number of items in each test is
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1943 200319991997 20112006 2018

Item
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Figure 1.2: History of group testing.

important.

There are various models of group testing, and they heavily depend on the

types of items. Note that types of items and their relationships to the test outcome

are intertwined. A broad view of group testing models is shown in Figure 1.2.

Four types of items have been defined so far: defectives, inhibitors, hybrids, and

negatives. Negatives always make the outcome of a test negative. Defectives tend

to make the outcome of a test positive. Inhibitors tend to make the outcome of a

test negative. Hybrids combine the properties of both defectives and inhibitors. In

addition, each item type has sub-types. The history of group testing based on item

classification is illustrated in Figure 1.2.

The genesis of group testing which was sparked by the introduction of classical

defectives was described by Dorfman [1] in 1943. More than a half century later,

in 1997, new types of items began to proliferate. The classical inhibitor item

was introduced [6] in 1997. Two years later, Torney [7] presented the concept of

complex defectives, a generalization of classical defectives. Threshold inhibitors [8],

threshold defectives [9], and complex inhibitors [10] were defined to solve specific

problems in biology and computer networking. Recently, Bui et al. [11] introduced

hybrid items for matching the model in neuroscience. Since this thesis focuses on

classical defectives, classical inhibitors, and threshold defectives, we define them

precisely and illustrate their relationships in Figure 1.3.

In classical group testing (CGT), the outcome of a test on a subset of items is

positive if the subset has at least one item in D, and negative otherwise. CGT

has been intensively studied since its inception [1] and has a wide range of its

applications such as DNA library screening [12–16], data forensics [17], data

streaming [18], high speed computer networks [19], multiaccess channels [8, 20–23],

multilabel classification [24], compressed sensing [25,26], similarity searching [27],

traitor tracing [28], pay-tv [29], cryptography [30], sparse recovery [31], database
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defectives + negatives inhibitors

Classical GT

Threshold GT

GT with 
inhibitors

+

generalize generalize

Figure 1.3: Group testing classification.

system [32], and cyber security [33–35].

In threshold group testing (TGT), given two integer parameters 0 ≤ ` < u ≤ d,

the outcome of a test on a subset of items is negative if the subset has up to

` items in D, is positive if the subset has at least u items in D, and arbitrary

otherwise. TGT reduces to CGT when u = 1. There is a sparsity of work and

applications related to TGT [9,36–39]. Learning a hidden graph is a promising

application of TGT [40–44].

With the development of molecular biology [6], inhibitor items were adaptively

introduced. An item is considered to be an inhibitor if it interferes with the

identification of defective items in a test [45–50]. In this case, group testing is

called GT with inhibitors (GTI).

Because non-adaptive design is exclusively considered here, each model of

group testing described above is treated under the non-adaptive design regime.

Specifically, non-adaptive CGT (NACGT), non-adaptive TGT (NATGT), and

non-adaptive GTI (NAGTI) are the focus throughout this thesis.

1.1.2 Main challenges

There are two main challenges in group testing: designing tests and creating

efficient decoding schemes for classifying items. Since CGT has had solid foundation

since its inception, these challenges have mostly been overcome for CGT. However,

nonrandom design has not been investigated well, though it plays a crucial role in

practice. It is thus important to improve nonrandom design.
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In contrast to the situation with CGT, these challenges have not been addressed

well for the other group testing models, i.e., non-classical group testing, such as

TGT and GTI. Prior to our work, the decoding time for non-classical group testing

is linear or exponential wrt the number of items. Therefore, non-adaptive group

testing is impractical. As a consequence, test designs in the encoding procedure

are needed that are practical for application and decoding schemes are needed for

efficiently classifying items.

1.2 Contributions

The central contributions of this thesis are in two tracks: efficient testing

designs for the non-adaptive approach and low-complexity decoding schemes.

1.2.1 Non-adaptive classical group testing

If there are t tests, they can be represented as a t× n measurement matrix.

We have answered the question of whether there exists a scheme such that a larger

measurement matrix, built from a given t× n measurement matrix, can be used

to identify up to d defective items in time O(t log2 n). In the meantime, a t× n
nonrandom measurement matrix with t = O

(
d2 log22 n

(log2(d log2 n)−log2 log2(d log2 n))2

)
can be

obtained to identify up to d defective items in time poly(t) (polynomial of t). This

is much better than the best well-known bound, t = O
(
d2 log2

2 n
)
. For the special

case d = 2, there exists an efficient nonrandom construction in which at most two

defective items can be identified in time 4 log2
2 n using t = 4 log2

2 n tests. Numerical

results show that our proposed scheme is more practical than existing ones, and

experimental results confirm our theoretical analysis. In particular, up to 27 = 128

defective items can be identified in less than 16s even for n = 2100.

This work was done jointly with Isao Echizen, Minoru Kuribayashi, Tetsuya

Kojima, and Roghayyeh Haghvirdinezhad, and was published at Journal of

Information Processing [51].



1.2 Contributions 7

1.2.2 Non-adaptive threshold group testing

We consider non-adaptive threshold group testing for identification of up to

d defective items in a set of n items, where a test is positive if it contains at

least 2 ≤ u ≤ d defective items, and negative otherwise. The defective items

can be identified using t = O
((

d
u

)u ( d
d−u

)d−u (
u log d

u
+ log 1

ε

)
· d2 log n

)
tests with

probability at least 1 − ε for any ε > 0 or t = O
((

d
u

)u ( d
d−u

)d−u
d3 log n · log n

d

)
tests with probability 1, where log is the logarithm of base 2. The decoding time is

t× poly(d2 log n). This result significantly improves the best known results for

decoding non-adaptive threshold group testing: O(n log n+n log 1
ε
) for probabilistic

decoding [38], where ε > 0, and O(nu log n) for deterministic decoding [39].

This work was done jointly with Isao Echizen, Minoru Kuribayashi, and

Mahdi Cheraghchi, and was published at 2018 IEEE International Symposium

on Information Theory (ISIT) as well as in IEEE Transactions on Information

Theory [52].

1.2.3 Non-adaptive group testing with inhibitors

Identification of up to d defective items and up to h inhibitors in a set of

n items is the main task of non-adaptive group testing with inhibitors. A test

outcome on a subset of items is positive if the subset contains at least one defective

item and no inhibitors, and negative otherwise. We present two decoding schemes

for efficiently identifying the defective items and the inhibitors in the presence of e

erroneous outcomes in time poly(d, h, e, log2 n), which is sublinear to the number of

items. This decoding complexity significantly improves the state-of-the-art schemes

in which the decoding time is linear to the number of items, i.e., poly(d, h, e, n).

Moreover, each column of the measurement matrices associated with the proposed

schemes can be nonrandomly generated in polynomial order of the number of rows.

As a result, one can save space for storing them. Simulation results confirm our

theoretical analysis. When the number of items is sufficiently large, the decoding

time in our proposed scheme is smallest in comparison with existing work. In

addition, when some erroneous outcomes are allowed, the number of tests in the

proposed scheme is often smaller than the number of tests in existing work.
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defectives + negatives inhibitors

NACGT

NATGT

NAGTI

+

Chap. 3

Chap. 4

Chap. 5generalize

generalize

Figure 1.4: Thesis outline.

This work was done jointly with Isao Echizen, Minoru Kuribayashi, and Tetsuya

Kojima, and was published at 2019 International Conference on Theory and

Applications of Models of Computation (TAMC) [53].

1.3 Organization of the thesis

The basic organization of this thesis is illustrated in Figure 1.4. We start with

the preliminaries in Chapter 2. In Chapter 3, we present an improved nonrandom

design and efficient decoding schemes for NACGT. The generalization of NACGT,

i.e., NATGT, is addressed in Chapter 4 in which an efficient decoding algorithm is

proposed. With inhibitor items added to NACGT, a new model of group testing is

formed with the moniker NAGTI and addressed in Chapter 5. Finally, we conclude

in Chapter 6 with the major open questions.



“What we know is a drop,
what we don’t know is an ocean.”

– Isaac Newton.

2
Preliminaries

9
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2.1 Notation

A multiset, denoted with a capital letter with an “?,” is a set that allows

multiple instances of its elements. For example, A? = {1, 2, 2} is a multiset.

The union of l vectors is defined as follows. Given l binary vectors yw =

(y1w, y2w, . . . , yuw)T for w = 1, . . . , l and some integer u ≥ 1, their union is

defined as vector y = ∨li=1yi = (∨li=1y1i, . . . ,∨li=1yui)
T , where ∨ is the OR

operator. The intersection of l columns of a t × n matrix T is defined as∧l
i=1 Tji =

(∧l
i=1m1ji , . . . ,

∧l
i=1mtji

)T
. Notation [m] represents set {1, 2, . . . ,m}.

For consistency, we use capital calligraphic letters for matrices, non-capital

letters for scalars, capital letters for sets, and bold letters for vectors. All matrices

here are binary. Following are several notations used throughout this thesis:

• n; d; x = (x1, . . . , xn)T ; y: number of items; maximum number of defective

items; representation vector of n items; representation vector of outcomes.

For simplicity, suppose that n is the power of 2.

• | · |: weight; i.e, number of non-zero entries of input vector or cardinality of

input set.

• �;⊗;}: operation for NACGT; operation for NATGT; tensor product.

• S;B: k × n measurement matrices used to identify at most one defective

item, where k = 2 log2 n.

• Sj;Bj;Mj;Mi,∗; Ti,∗; Tj;Gi,∗: column j of matrix S; column j of matrix B;

column j of matrix M; row i of matrix M; row i of matrix T ; column j of

matrix T ; row i of matrix G.

• diag(·): diagonal matrix constructed by input vector.

• supp(v): support set for vector v = (v1, . . . , vw), where supp(v) = {j | vj 6= 0}.
For example, the support vector for v = (1, 0, 0,−∞) is supp(v) = {1, 4}.

• e, log, ln, exp(·): base of natural logarithm, logarithm of base 2, natural

logarithm, exponential function.
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• dxe, bxc: ceiling and floor functions of x.

• W(x): the Lambert W function in which W(x)eW(x) = x and W(x) =

O(lnx− ln lnx).

Specific notations or other meanings of the notations above are specifically

declared case by case.

2.2 Measurement matrix

For vector x = (x1, . . . , xn)T , xj = 0 means that item j is negative, and xj 6= 0

means that item xj is defective. For a t× n binary measurement matrix T = (tij),

item j is represented by column Tj and test i is represented by row Ti,∗; tij = 1 if

item j belongs to test i, and tij = 0 otherwise.

Let test(S) be the test on subset S ⊆ [n]. The outcome of the test is either

positive (1) or negative (0) and depends on the definition of D and S. The

non-adaptive tests on n items using T are defined as

y = T • x =


test (supp(T1,∗) ∩ supp(x))

...

test (supp(Tt,∗) ∩ supp(x))

 =


y1
...

yt

 , (2.1)

where yi = test (supp(Ti,∗) ∩ supp(x)) is the outcome of test i corresponding to row

Ti,∗, and • is the test operator. The procedure to obtain y is called encoding. The

procedure to recover x from y and T is called decoding.

For CGT and TGT, notation • can be explicitly defined and vector x is viewed

as a binary vector in which xj = 1 (resp., xj = 0) means item j is defective (resp.,

negative). With CGT, to avoid ambiguity, we change notation • to � and use a

k × n measurement matrix M instead of the t× n matrix T . The outcome vector

y in (2.1) is equal to

y =M� x =


M1,∗ � x

...

Mk,∗ � x

 =


∨n
j=1m1j ∧ xj

...∨n
j=1mkj ∧ xj

 =
n∨

j=1,xj=1

Mj =


y1
...

yk

 , (2.2)
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where yi =Mi,∗ � x =
∨n
j=1 xj ∧mij =

∨n
j=1,xj=1mij for i = 1, . . . , k.

With u-TGT, to avoid ambiguity, we change notation • to ⊗. Outcome vector

y in (2.1) is equal to

y = T ⊗ x =


T1,∗ ⊗ x

...

Tt,∗ ⊗ x

 =


y1
...

yt

 , (2.3)

where yi = Ti,∗ ⊗ x = 1 if
∑n

j=1 tijxj ≥ u, and yi = Ti,∗ ⊗ x = 0 otherwise for

i ∈ [t].

2.3 Disjunct matrices

2.3.1 General case

Disjunct matrices were first introduced by Kautz and Singleton [54] as

superimposed codes and then generalized by Stinson and Wei [55] and D’yachkov et

al. [56]. The formal definition of a disjunct matrix is as follows.

Definition 1 An m× n binary matrix T is called a (d, r; z]-disjunct matrix if,

for any two disjoint subsets S1, S2 ⊂ [n] such that |S1| = d and |S2| = r, there

exists at least z rows in which there are all 1’s among the columns in S2 while all

the columns in S1 have 0’s; i.e.,
∣∣∣⋂j∈S2

supp (Tj)
∖⋃

j∈S1
supp (Tj)

∣∣∣ ≥ z.

Matrix M is usually referred to as a (d, r; z]-disjunct matrix. Parameter

e = b(z − 1)/2c is referred to as the error tolerance of a disjunct matrix. It is

clear that for any d′ ≤ d, r′ ≤ r, and z′ ≤ z, a (d, r; z]-disjunct matrix is also a

(d′, r′; z′]-disjunct matrix. An illustration of M is as follows.
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M =



. . .

. . .

. . .

. . .

. . .

. . .

r︷ ︸︸ ︷
. . . . . .

1 1

. . . . . .

1 1

. . . . . .

. . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

d︷ ︸︸ ︷
. . . . . . . . .

0 0 0

. . . . . . . . .

0 0 0

. . . . . . . . .

. . . . . . . . .

. . .

. . .

. . .

. . .

. . .

. . .



row 1

row z

Chen et al. [57] gave an upper bound on the number of rows for (d, r; z]-disjunct

matrices as follows.

Theorem 2.1 [57, Theorem 3.2] For any positive integers d, r, z, and n with p =

d+r ≤ n, there exists a t×n (d, r; z]-disjunct matrix with t = O
(
z
(
p
r

)r (p
d

)d
p ln n

p

)
.

Cheraghchi [36] proposed a nonrandom construction for (d, r; z]-disjunct

matrices in which the number of tests becomes larger than those of constructions

as d or r increases.

Theorem 2.2 [36, Lemma 29] For any positive integers d, r, z and n with

d + r ≤ n, there exists an m × n nonrandom (d, r; z]-disjunct matrix where

m = O ((rd lnn+ z)r+1). Moreover, each column of the matrix can be generated in

time poly(m).

2.3.2 Special case

We now consider the special case of a (d, r; z]-disjunct matrix in which r = z = 1.

In this case, the (d, r; z]-disjunct matrix is called a d-disjunct matrix. To gain

insight into d-disjunct matrices, we present the concept of an identity matrix

inside a set of vectors.

Definition 2 Any c column vectors with the same size contain a c× c identity

matrix if a c× c identity matrix could be obtained by placing those columns in an

appropriate order.
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Note that there may be more than one identity matrix inside those c vectors.

For example, let b1,b2, and b3 be vectors of size 4× 1:

b1 =


1

0

0

1

 ,b2 =


1

1

0

0

 ,b3 =


1

0

1

1

 . (2.4)

Then, (b1,b2) and (b2,b3) contain 2× 2 identify matrices, whereas (b1,b3) does

not.

[
b1 b2

]
=


1 1

0 1

0 0

1 0

 ,
[
b2 b3

]
=


1 1

1 0

0 1

0 1

 ,=


1 1

1 0

0 1

0 1

 .

Definition 1 is then restated for r = z = 1 as follows.

Definition 3 A binary t× n matrix is called a d-disjunct matrix iff there exists a

(d+ 1)× (d+ 1) identity matrix in a set of (d+ 1) columns arbitrarily selected

from the matrix.

If M is d-disjunct, a vector x can be recovered from y =M� x. With naive

decoding, all items belonging to tests with negative outcomes are removed; the

items remaining are considered to be defective. The decoding complexity of this

approach is O(tn), which is fairly high and not preferable in practice.

A matrix is said to be nonrandom if its columns are deterministically generated

without using randomness. In contrast, a matrix is said to be random if its

columns are randomly generated. We thus classify construction types on the basis

of the time it takes to generate a matrix entry. A t× n matrix is said to be weakly

explicit if each of its columns is generated in time (and space) O(tn). It is said to

be strongly explicit if each of its columns is generated in time (and space) poly(t).

We first present a weakly explicit construction of a d-disjunct matrix.

Theorem 2.3 [58, Theorem 1] Given 1 ≤ d < n, there exists a nonrandom t× n
d-disjunct matrix that can be constructed in time O(tn), where t = O(d2 log n).
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Moreover, the decoding time is O(tn), and each column is generated in time (and

space) O(tn).

The second construction is strongly explicit.

Theorem 2.4 [59, Corollary 5.1] Given 1 ≤ d < n, there exists a random t× n
d-disjunct matrix that can be decoded in time poly(t) = O(d11 log17 n), where

t = 4800d2 log n = O(d2 log n). Each column can be generated in time O(t2 log n)

and space O(t log n). There also exists a matrix that can be nonrandomly constructed

in time poly(t, n) and space poly(t) while the construction time and space for each

column of the matrix remain the same.

Theorem 2.5 [60, Theorem 16] Let 1 ≤ d ≤ n. There exists a strongly explicit

k × n d-disjunct matrix with k = O(d2 log n) such that for any k × 1 input vector,

the decoding procedure returns the set of defective items if the input vector is the

union of up to d columns of the matrix in poly(k) time. Moreover, each column of

M can be generated in time O(k2 log n).

Finally, the last construction is nonrandom. We analyze this construction in

detail for later comparison. Although the precise formulas were not explicitly

given in [59], they can be derived.

Theorem 2.6 [59, Corollary C.1] Given 1 ≤ d < n, a nonrandom t×n d-disjunct

matrix can be decoded in time O
(

d9(logn)16+1/3

(log(d logn))7+1/3

)
= poly(t), where t = O(d2 log2 n).

Moreover, each entry (column) can be generated in time (and space) O(t) (O(t3/2)).

When d = 2, the number of tests is 2 log n× (2 log n− 1), the decoding time is

longer than 29(logn)16+1/3

(log(2 logn))7+1/3 , and each entry is generated in time log2 n and space

log n.

The procedure for obtaining x from y is denoted as supp(x) = decode(M,y).

Since y may not be M� x, the function decode(M,y) may produce an empty set

or a subset that is not equal to supp(x) for y 6=M� x.

2.4 Reed-Solomon codes

In this subsection, we first review the concept of (η, r, ϕ)q code C:
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Definition 4 Let η, r, ϕ, q be positive integers. An (η, r, ϕ)q code is a subset of Ση

such that

1. Σ is a finite field and is called the alphabet of the code: |Σ| = q. Here we set

Σ = Fq.

2. Each codeword is considered to be a vector of Fη×1q .

3. ϕ = min
x,y∈C

∆(x,y), where ∆(x,y) is the number of positions in which the

corresponding entries of x and y differ.

4. The cardinality of C, i.e., |C|, is at least qr.

Parameters η, r, ϕ, and q are the block length, dimension, minimum distance,

and alphabet size of C. If the minimum distance is not considered, we refer to C

as (η, r)q. Given a full-rank η × r matrix G ∈ Fη×rq , suppose that, for any y ∈ C,

there exists a message x ∈ Frq such that y = Gx. In this case, C is called a linear

code and denoted as [v, r, ϕ]q. Let MC denote an η × qr matrix in which the

columns are the codewords in C.

Reed-Solomon (RS) codes [61] are constructed by applying a polynomial

method to a finite field Fq. Here we review a common and widely used RS code,

an [η, r, ϕ]q-code C in which |C| = qr and ϕ = η − r + 1. Since ϕ is determined

from η and r, we refer to [η, r, ϕ]q-RS code as [η, r]q-RS code.

2.5 Tensor product

Given an f × n matrix A and an s× n matrix S, their tensor product } is

defined as

R = A} S =


S × diag(A1,∗)

...

S × diag(Af,∗)

 =


a11S1 . . . a1nSn

...
. . .

...

af1S1 . . . afnSn

 , (2.5)

where diag(.) is the diagonal matrix constructed by the input vector, Ah,∗ =

(ah1, . . . , ahn) is the hth row of A for h = 1, . . . , f , and Sj is the jth column of

S for j = 1, . . . , n. The size of R is r × n, where r = fs. One can imagine that
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an entry ahj of matrix A would be replaced by the vector ahjSj after the tensor

product is used. For instance, suppose that f = 2, s = 3, and n = 4. Matrices A
and S are defined as

A =

[
1 0 1 0

0 1 1 1

]
, S =

0 1 0 0

1 0 1 1

0 0 1 0

 . (2.6)

Then R = A} S is

R = A} S =

[
1 0 1 0

0 1 1 1

]
}

0 1 0 0

1 0 1 1

0 0 1 0

 (2.7)

=



1×

0

1

0

 0×

1

0

0

 1×

0

1

1

 0×

0

1

0



0×

0

1

0

 1×

1

0

0

 1×

0

1

1

 1×

0

1

0




=



0 0 0 0

1 0 1 0

0 0 1 0

0 1 0 0

0 0 1 1

0 0 1 0


.





“We want peace, total peace and
nothing but peace, and even if

we have to fight the bloodiest battle,
we are going to get it.”

– Anonymous.
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3.1 Introduction

If t tests are needed to identify up to d defective items among n items, they can

be seen as a t× n measurement matrix. The procedure to get the matrix is called

construction, the procedure to get the outcome of t tests using the measurement

matrix is called encoding, and the procedure to get the defective items from

t outcomes is called decoding. Note that the encoding procedure includes the

construction procedure. The objective of NAGT is to design a scheme such that

all defective items are “efficiently” identified from the encoding and decoding

procedures. Six criteria determine the efficiency of a scheme: measurement matrix

construction type, number of tests needed, decoding time, time needed to generate

an entry for the measurement matrix, space needed to generate a measurement

matrix entry, and probability of successful decoding. The last criterion reduces the

number of tests and/or the decoding complexity. With high probability, Cai et

al. [62] and Lee et al. [63] achieved a low number of tests and decoding complexity,

namely O(t), where t = O(d log d · log n). However, the construction type is

random, and the whole measurement matrix must be stored for implementation,

so it is limited to real-time applications. For example, in a data stream [18],

routers have limited resources and need to be able to access the column in the

measurement matrix assigned to an IP address as quickly as possible to perform

their functions. The schemes proposed by Cai et al. [62] and Lee et al. [63],

therefore, are inadequate for this application.

For exact identification of defective items, there are four main criteria to

be considered: measurement matrix construction type, number of tests needed,

decoding time, and time needed to generate measurement matrix entry. The

measurement matrix is nonrandom if it always satisfies the preconditions after

the construction procedure with probability 1. It is random if it satisfies the

preconditions after the construction procedure with some probability. A t× n
measurement matrix is more practical if it is nonrandom, t is small, the decoding

time is a polynomial of t (poly(t)), and the time to generate its entry is also poly(t).

However, there is always a trade-off between these criteria.

Kautz and Singleton [54] proposed a scheme in which each entry in a t× n
measurement matrix can be generated in poly(t), where t = O(d2 log2 n). However,
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the decoding time is O(tn). Indyk et al. [59] reduced the decoding time to poly(t)

while maintaining the order of the number of tests and the time to generate the

entries. However, the number of tests in a nonrandom measurement matrix is not

optimal.

In term of the pessimum number of tests, Guruswami and Indyk [64] proposed a

linear-time decoding scheme in accordance with the number of tests of O(d4 log n).

To achieve an optimal bound on the number of tests, i.e., O(d2 log n), while

maintaining a decoding time of poly(t) and keeping the entry computation time

within poly(t), Indyk et al. [59] proposed a random construction. Although they

tried to derandomize their schemes, it takes poly(t, n) time to construct such

matrices, which is impractical when d and n are sufficiently large.

Cheraghchi [65] achieved similar results. However, his proposed scheme can

deal with the presence of noise in the test outcomes. Porat and Rothschild [58]

showed that it is possible to construct a nonrandom t× n measurement matrix in

time O(tn) while maintaining the order of the number of tests, i.e., O(d2 log n).

However, each entry in the resulting matrix is identified after the construction is

completed. This is equivalent to each entry being generated in time O(tn). If we

reduce the number of tests, the nonrandom construction proposed by Indyk et

al. [59] is the most practical.

3.2 Contributions

3.2.1 Overview

There are two main contributions in this work. First, we have answered the

question of whether there exists a scheme such that a larger measurement matrix,

built from a given t × n measurement matrix, can be used to identify up to

d defective items in time O(t log n). Second, a t× n nonrandom measurement

matrix with t = O
(

d2 log2 n
(log(d logn)−log log(d logn))2

)
can be obtained to identify up to d

defective items in time poly(t). This is much better than the best well-known

bound t = O
(
d2 log2 n

)
. There is a special case for d = 2 in which there exists a

4 log2 n×n nonrandom measurement matrix such that it can be used to identify up

to two defective items in time 4 log2 n. Numerical results show that our proposed
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scheme is the most practical and experimental results confirm our theoretical

analysis. For instance, at most 27 = 128 defective items can be identified in less

than 16s even for n = 2100.

3.2.2 Comparison

We compare variants of our proposed scheme with existing schemes in Table 3.1.

As mentioned above, six criteria determine the efficiency of a scheme: measurement

matrix construction type, number of tests needed, decoding time, time needed to

generate measurement matrix entry, space needed to generate a measurement

matrix entry, and probability of successful decoding. Since the last criterion is only

used to reduce the number of tests, it is not shown in the table. If the number of

tests and the decoding time are the top priorities, the construction in 〈11〉 is the

best choice. However, since the probability of successful decoding is at least 1− ε
for any ε > 0, some defective items may not be identified.

From here on, we assume that the probability of successful decoding is 1; i.e.,

all defective items are identified. There are trade-offs among the first five criteria.

When d = 2, the number of tests with our proposed scheme (〈8〉) is slightly larger

than that with 〈7〉, although our proposed scheme has the best performance for

the remaining criteria. When d > 2, the comparisons are as follows. First, if

the generation of a measurement matrix must be certain, the best choices are

〈1〉, 〈2〉, 〈3〉, 〈4〉, 〈5〉, and 〈6〉. Second, if the number of tests must be as low as

possible, the best choices are 〈2〉, 〈5〉, and 〈9〉. Third, if the decoding time is most

important, the best choices are three variations of our proposed scheme: 〈4〉, 〈6〉,
and 〈10〉. Fourth, if the time needed to generate a measurement matrix entry is

most important, the best choices are 〈1〉, 〈3〉, 〈4〉, 〈7〉, 〈9〉 and 〈10〉. Finally, if the

space needed to generate a measurement matrix entry is most important, the best

choices are 〈1〉, 〈2〉, 〈3〉, 〈4〉, 〈7〉, 〈9〉 and 〈10〉.
For real-time applications, because “defective items” are usually considered to

be abnormal system activities [18], they should be identified as quickly as possible.

It is thus acceptable to use extra tests to speed up their identification. Moreover,

the measurement matrix deployed in the system should not be stored in the system

because of saving space. Therefore, the construction type should be nonrandom,
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Table 3.1: Comparison with existing schemes.

No. Scheme
Construction

type
Number of tests

t
Decoding time

Time to
generate
an entry

Space to
generate
an entry

〈1〉 Indyk et al. [59]
(Theorem 2.6)

Nonrandom O(d2 log2 n) O
(

d9(logn)16+1/3

(log(d logn))7+1/3

)
O(t) O(t)

〈2〉 Indyk et al. [59]
(Theorem 2.4)

Nonrandom O(d2 log n) poly(t) = O
(
d11 log17 n

)
poly(t, n) poly(t)

〈3〉 Proposed
(Theorem 3.5)

Nonrandom O
(

d2 log2 n
(log(d logn)−log log(d logn))2

) O
(

d3.57 log6.26 n
(log(d logn)−log log(d logn))6.26

)
+O

(
d6 log4 n

(log(d logn)−log log(d logn))4

) O(t) O(t)

〈4〉 Proposed
(Corollary 3)

Nonrandom O
(

d2 log3 n
(log(d logn)−log log(d logn))2

)
O(t) O(t) O(t)

〈5〉 Porat-Rothschild [58]
(Theorem 2.3)

Nonrandom O(d2 log n) O(tn) = O(d2 log n× n) O(tn) O(tn)

〈6〉 Proposed
(Corollary 2)

Nonrandom O(d2 log2 n) O(t) = O(d2 log2 n) O(tn) O(tn)

〈7〉 Indyk et al. [59]
(Theorem 2.6)

Nonrandom
d = 2

2 log n(2 log n− 1) 29(logn)16+1/3

(log(2 logn))7+1/3 log2 n log n

〈8〉 Proposed
(Theorem 3.4)

Nonrandom
d = 2

4 log2 n 4 log2 n 4
2 log n

+ log(2 log n)

〈9〉 Indyk et al. [59]
(Theorem 2.4)

Random O(d2 log n) poly(t) = O
(
d11 log17 n

)
O(t2 log n) O(t log n)

〈10〉 Proposed
(Corollary 1)

Random O(d2 log2 n) O(t) = O(d2 log2 n) O(t2) O(t log n)

〈11〉 Proposed
(Corollary 4)

Random O(d log n · log d
ε
) O(d log n · log d

ε
) O(tn) O(tn)

and the time and space needed to generate an entry should be within poly(t).

Thus, the best choice is 〈4〉 and the second best choice is 〈3〉.

3.3 Preliminaries

The frequently used notations are as follows:

• ◦: concatenation operator (to be defined later).

• S,B: k × n measurement matrices used to identify at most one defective

item, where k = 2 log n.

• M = (mij): t× n d-disjunct matrix, where integer t ≥ 1 is number of tests.

• T = (tij): ᵀ× n measurement matrix used to identify at most d defective

items, where integer ᵀ ≥ 1 is number of tests.



3.3 Preliminaries 24

3.3.1 List recoverable codes

There may be occasions in the physical world where a person might want to

recover a similar codeword from a given codeword. For example, a person searching

on a website such as Google might be searching using the word “intercept”.

However, mistyping results in the input word being “inrercep”. The website should

suggest a list of similar words that are “close” to the input word such as “intercept”

and “intercede”. This observation leads to the concept of list-recoverable codes.

The basic idea of list-recoverable codes is that, given a list of subsets in which

each subset contains at most ` symbols in a given alphabet Σ (a finite field), the

decoder of the list-recoverable codes produces at most Γ codewords from the list.

Formally, this can be defined as follows.

Definition 5 [66, Definition 2.2] Given integers 1 ≤ ` ≤ Γ, a code C ⊆ Σn is

said to be (`,Γ)-list-recoverable if for all sequences of subsets S1, S2, . . . , Sn with

each Sa ⊂ Σ satisfying |Sa| ≤ `, there are at most Γ codewords c = (c1, . . . , cv) ∈ C
with the property that ca ∈ Sa for a ∈ {1, 2, . . . , v}. The value ` is referred to as

the input list size.

Note that for any `′ ≤ `, an (`,Γ)-list-recoverable code is also an (`′,Γ)-list-

recoverable code. For example, if we set Σ = {a, b, . . . , z}, ` = 2, v = 9, and Γ = 2,

we have the following input and output:

S1 = {e, g}
S2 = {r, x}
S3 = {o, q}
S4 = {t, u}
S5 = {e, i}
S6 = {s}
S7 = {i, q}
S8 = {t, u}
S9 = {e}



decode
===⇒ c =





e

x

q

u

i

s

i

t

e


,



g

r

o

t

e

s

q

u

e





.

Guruswami [66] (Section 4.4.1) showed that any [v, r]q-RS code (defined in

Section 2.4) is also an
(⌈

v
r

⌉
− 1, O

(
v4

r2

))
-list-recoverable code. To efficiently
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decode RS code, Chowdhury et al. [67] proposed an efficient scheme, which they

summarized in Table 1 of their paper with ω < 2.38, as follows:

Theorem 3.1 [67, Corollary 18] Let 1 ≤ r ≤ v ≤ q be integers. Then, any [v, r]q-

RS code, which is also
(⌈

v
r

⌉
− 1, O

(
v4

r2

))
-list-recoverable code, can be decoded in

time O(v3.57r2.69).

A codeword of the [v, r]q-RS code can be computed in time O(r2 log log r) ≈ O(r2)

and space O(r log q/ log2 r) [68].

3.3.2 Concatenated codes

Concatenated codes C are constructed by using an (v1, k1)q outer code Cout,

where q = 2k2 (in general, q = pk2 where p is a prime number), and an (v2, k2)2

binary inner code Cin, denoted as C = Cout ◦ Cin.

Given a message m ∈ Fk1q , let Cout(m) = (x1, . . . , xv1) ∈ Fv1q . Then Cout ◦
Cin(m) = (Cin(x1), Cin(x2), . . . , Cin(xv1)) ∈ ({0, 1}v2)v1. Note that C is an

(v1v2, k1k2)2 code.

Using a suitable outer code and a suitable inner code, d-disjunct matrices

can be generated. For example, let Cout and Cin be (3, 1)8 and (3, 3)2 codes,

where |Cout| = 12 and |Cin| = 8. The corresponding matrices are H =MCout and

K =MCin
as follows:

H =

 1 1 1 2 2 2 4 4 4 7 0 0

1 2 4 1 2 4 1 2 4 0 7 0

1 4 2 4 2 1 2 1 4 0 0 7

 ,

K =

 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

 ,
If we concatenate each element of H with its 3-bit binary representation such
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as matrix K, we get a 2-disjunct matrix:

M = H ◦ K =



0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 1 1 1 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 1 0 0

0 0 1 0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0 0 1 0

0 1 0 1 0 0 0 0 1 0 0 1

0 0 1 0 1 0 1 0 0 0 0 1

1 0 0 0 0 1 0 1 0 0 0 1


From this discussion, we can draw an important conclusion about decoding

schemes using concatenation codes and list-recoverable codes.

Theorem 3.2 (Simplified version of Theorem 4.1 [59]) Let d,Γ ≥ 1 be in-

tegers. Let Cout be an (v1, k1)2k2 code that can be (d,Γ)-list recovered in time

α1(v1, d,Γ, k1, k2). Let Cin be (v2, k2)2 codes such that MCin
is a d-disjunct matrix

that can be decoded in time α2(v2, d, k2). Suppose that matrix M = MCout◦Cin

is d-disjunct. Note that M is a t × n matrix where t = v1v2 and n = 2k1k2.

Further, suppose that any arbitrary position in any codeword in Cout and Cin can

be computed in space p1(v1, d,Γ, k1, k2) and p2(v2, d, k2), respectively. Then:

1. given any outcome produced by at most d positives, the positive positions can

be recovered in time v1α2(v2, d, k2)+α1(v1, d,Γ, k1, k2)+2Γt = v1α2(v2, d, k2)+

α1(v1, d,Γ, k1, k2) +O(Γt); and

2. any entry in M can be computed in log t + log n + p1(v1, d,Γ, k1, k2) +

p2(v2, d, k2) = O(log t+log n)+O (max{p1(v1, d,Γ, k1, k2), p2(v2, d, k2)}) space.

Since the decoding scheme requires knowledge from several fields that are

beyond the scope of this work, we do not discuss it here. Readers are encouraged

to refer to [59] for further reading.
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3.3.3 Review of Bui et al.’s scheme

A scheme proposed by Bui et al. [69] plays an important role for constructions

in later sections. It is used to identify at most one defective item while never

producing a false positive. The technical details are as follows.

Encoding procedure: Lee et al. [63] proposed a k × n measurement matrix S
that uses log n-bit representation of an integer, to detect at most one defective

item:

S :=

[
b1 b2 . . .bn

b1 b2 . . .bn

]
=
[
S1 . . .Sn

]
, (3.1)

where k = 2 log n, bj is the log n-bit binary representation of integer j − 1, bj is

bj’s complement, and Sj :=

[
bj

bj

]
for j = 1, 2, . . . , n. The weight of every column

in S is k/2 = log n.

Given an input vector g = (g1, . . . , gn) ∈ {0, 1}n, measurement matrix S is

generalized:

B := S × diag(g) =
[
g1S1 . . . gnSn

]
, (3.2)

where diag(g) = diag(g1, . . . , gn) is the diagonal matrix constructed by input

vector g, and Bj = gjSj for j = 1, . . . , n. It is obvious that B = S when g is a

vector of all ones; i.e., g = 1 = (1, 1, . . . , 1) ∈ {1}n. Moreover, the column weight

of B is either k/2 = log n or 0.

For example, consider the case n = 8, k = 2 log n = 6, and g = (1, 0, 1, 0, 1, 1, 1, 1).

Measurement matrices S and B are

S =



0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0


, (3.3)
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B = S × diag(g) = S × diag(1, 0, 1, 0, 1, 1, 1, 1)

= [1× S1 0× S2 1× S3 0× S4 1× S5 1× S6 1× S7 1× S8]

=



0 0 0 0 1 1 1 1

0 0 1 0 0 0 1 1

0 0 0 0 0 1 0 1

1 0 1 0 0 0 0 0

1 0 0 0 1 1 0 0

1 0 1 0 1 0 1 0


. (3.4)

Then, given a representation vector of n items x = (x1, . . . , xn)T ∈ {0, 1}n, the

outcome vector is

y′ = B � x =
n∨
j=1

xjBj (3.5)

=
n∨
j=1

xjgjSj =
n∨
j=1

xjgj=1

Sj. (3.6)

Note that, even if there is only one entry xj0 = 1 in x, index j0 cannot be recovered

if gj0 = 0.

Decoding procedure: From (3.6), the outcome y′ is the union of at most |x|
columns in S. Because the weight of each column in S is log n, if the weight of y′

is log n, the index of one non-zero entry in x is recovered by checking the first half

of y′. On the other hand, if y′ is the union of at least two columns in S or zero

vector, the weight of y′ is not equal to log n. This case is considered here as a

defective item is not identified. Therefore, given a k× 1 input vector, we can either

identify one defective item or no defective item in time k = 2 log n = O(log n).

Moreover, the decoding procedure does not produce a false positive.

For example, given x1 = (0, 1, 0, 0, 0, 0, 0, 0)T ,x2 = (0, 1, 1, 0, 0, 0, 0, 0)T , and

x3 = (0, 1, 1, 1, 0, 0, 0, 0)T , their corresponding outcomes using the measurement

matrix B in (3.4) are y′1 = (0, 0, 0, 0, 0, 0)T ,y′2 = (0, 1, 0, 1, 0, 1)T , and y′3 =

(0, 1, 0, 1, 0, 1)T . Since |y′1| = 0, there is no defective item identified. Since
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|y′2| = |y′3| = 3 = log n, the only defective item identified from the first half of y′2

or y′3, i.e., (0, 1, 0) is 3. Note that, even if |x1| 6= |x2|, the same defective item is

identified.

3.4 Efficient decoding scheme using a given mea-

surement matrix

In this section, we present a simple but powerful tool for identifying defective

items using a given measurement matrix. We thereby answer the question of

whether there exists a scheme such that a larger ᵀ× n measurement matrix built

from a given t× n measurement matrix, can be used to identify up to d defective

items in time poly(t) = t× log n = ᵀ. It can be summarized as follows:

Theorem 3.3 For any ε ≥ 0, suppose each set of d columns in a given t × n
matrix M contains a d× d identity matrix with probability at least 1− ε. Then

there exists a ᵀ× n matrix T constructed from M that can be used to identify at

most d defective items in time ᵀ = t×2 log n with probability at least 1− ε. Further,

suppose that any entry ofM can be computed in time β and space γ, so every entry

of T can be computed in time O(β log n) and space O(log ᵀ + log n) +O(γ log n).

Proof. Suppose M = (mij) ∈ {0, 1}t×n. Then the ᵀ× n measurement matrix T
is generated by using the tensor product of M and S in (3.1):

T =M} S =


S × diag(M1,∗)

...

S × diag(Mt,∗)

 =


B1

...

Bt

 =


m11S1 . . . m1nSn

...
. . .

...

mt1S1 . . . mtnSn

 ,(3.7)

where ᵀ = t× k = t× 2 log n and Bi = S × diag(Mi,∗) for i = 1, . . . , t. Note that

Bi is an instantiation of B when g is set to Mi,∗ in (3.2). Then, for any n × 1

representation vector x = (x1, . . . , xn) ∈ {0, 1}n, the outcome vector is

y? = T � x =


B1 � x

...

Bt � x

 =


y′1
...

y′t

 , (3.8)
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where y′i = Bi � x for i = 1, . . . , t; y′i is obtained by replacing B by Bi in (3.5).

By using the decoding procedure in section 3.3.3, the decoding procedure

is simply to scan all y′i for i = 1, . . . , t. If |y′i| = log n, we take the first

half of y′i to calculate the defective item. Thus, the decoding complexity is

ᵀ = t× 2 log n = O(ᵀ).

Our task now is to prove that the decoding procedure above can identify

all defective items with probability at least 1− ε. Let D = {j1, . . . , j|D|} be the

defective set, where |D| = g ≤ d. We will prove that there exists y′i1 , . . . ,y
′
ig such

that ja can be recovered from y′ia for a = 1, . . . , g. Because any set of d columns in

M contains a d× d identity matrix with probability at least 1− ε, any set of g ≤ d

columns j1, . . . , jg in M also contains a g × g identity matrix with probability

at least 1 − ε. Let i1, . . . , ig be the row indexes of M such that miaja = 1 and

miajb = 0, where a, b ∈ {1, 2, . . . , g} and a 6= b. Then the probability that rows

i1, . . . , ig coexist is at least 1− ε.
For any outcome y′ia , where a = 1, . . . , g, by using (3.6), we have

y′ia = Bia � x =
n∨
j=1

xjmiaj=1

Sj =
∨
j∈D

xjmiaj=1

Sj = Sja , (3.9)

because there are only g non-zero entries xj1 , . . . , xjg in x. Thus, all defective

items j1, . . . , jg can be identified by checking the first half of each corresponding

y′i1 , . . . ,y
′
ig . Since the probability that rows i1, . . . , ig coexist is at least 1− ε, the

probability that defective items j1, . . . , jg are identified is also at least 1− ε.
We next estimate the computational complexity of computing an entry in T . An

entry in row 1 ≤ i ≤ ᵀ and column 1 ≤ j ≤ n needs log ᵀ+ log n bits (space) to be

indexed. It belongs to vector mi0jSj, where i0 = i/(2 log n) if i mod (2 log n) ≡ 0

and i0 = bi/(2 log n)c if i mod (2 log n) 6≡ 0. Since each entry inM needs γ space

to compute, every entry in T can be computed in space O(log ᵀ+log n)+O(γ log n)

after mapping it to the corresponding column of S. The time to generate an entry

for T is straightforwardly obtained as β log n = O(β log n). ut

To have a better understanding, the decoding procedure in Theorem 3.3 is

summarized as in Algorithm 3.1.
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Algorithm 3.1 GetDefectives(y, n): detection of up to d defective items.

Input: number of items n; outcome vector y
Output: defective items

1: s = 2 log n.
2: S = ∅.
3: Divide y into m = t/s smaller vectors y1, . . . ,ym such that y = (yT1 , . . . ,y

T
m)T

and their size are equal to s, where t is the number of entries in y.
4: for i = 1 to m do
5: if wt(yi) = log n then
6: Get defective item d0 by checking first half of y.
7: S = S ∪ {d0}.
8: end if
9: end for

10: return S.

Part of Theorem 3.3 is implicit in other papers (e.g., [51], [52], [62], [63]).

However, the authors of those papers only considered cases specific to their

problems. They mainly focused on how to generate matrixM by using complicated

techniques and a non-constructive method, i.e., random construction (e.g., [62], [63]).

As a result, their decoding schemes are randomized. Moreover, they did not

consider the cost of computing an entry in M. In two of the papers [51,52], the

decoding time was not scaled to t× log n for deterministic decoding, i.e., ε = 0.

Our contribution is to generalize their ideas into the framework of non-adaptive

group testing. We next instantiate Theorem 3.3 in the broad range of measurement

matrix construction.

3.4.1 Case of ε = 0

We consider the case in which ε = 0; i.e., a given matrix M is always (d− 1)-

disjunct. There are three metrics for evaluating an instantiation: number of

tests, construction type, and time to generate an entry for T . We first present

an instantiation of a strongly explicit construction. Let M be a measurement

matrix generated from Theorem 2.4. Then t = O(d2 log n), β = O(t2 log n), and

γ = O(t log n). Thus, we obtain efficient NAGT where the number of tests and the

decoding time are O(d2 log2 n).
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Corollary 1 Let 1 ≤ d ≤ n be integers. There exists a random ᵀ×n measurement

matrix T with ᵀ = O(d2 log2 n) such that at most d defective items can be identified

in time O(ᵀ). Moreover, each entry in T can be computed in time O(ᵀ2) and space

O(ᵀ log n).

It is also possible to construct T deterministically. However, it would take

poly(t, n) time and poly(t) space, which are too long and too much for practical

applications. Therefore, we should increase the time needed to generate an entry

for T in order to achieve nonrandom construction with the same number of tests

ᵀ = O(d2 log2 n) and a short construction time. The following theorem is based on

the weakly explicit construction of a given measurement matrix as in Theorem 2.3;

i.e., t = O(d2 log n), β = O(tn), and γ = O(tn).

Corollary 2 Let 1 ≤ d ≤ n be integers. There exists a nonrandom ᵀ × n

measurement matrix T with ᵀ = O(d2 log2 n) that can be used to identify at most d

defective items in time O(ᵀ). Moreover, each entry in T can be computed in time

(and space) O(ᵀn).

Although the number of tests is low and the construction type is nonrandom,

the time to generate an entry for T is long. If we increase the number of tests, one

can achieve both nonrandom construction and low generating time for an entry as

follows:

Corollary 3 Let 1 ≤ d ≤ n be integers. There exists a nonrandom ᵀ × n

measurement matrix T with ᵀ = O
(

d2 log3 n
(log(d logn)−log log(d logn))2

)
that can be used to

identify at most d defective items in time O(ᵀ). Moreover, each entry in T can be

computed in time (and space) O(ᵀ).

The above corollary is obtained by choosing a measurement matrix as a

d-disjunct matrix in Theorem 3.5 (Section 3.5): t = O
(

d2 log2 n
(log(d logn)−log log(d logn))2

)
,

β = O(t), and γ = O(t).

3.4.2 Case of ε > 0

To reduce the number of tests and the decoding complexity, the construction

process of the given measurement matrix must be randomized. We construct the
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matrix as follows. A given t× n matrix M = (mij) is generated randomly, where

Pr(mij = 1) = 1
d

and Pr(mij = 0) = 1− 1
d

for i = 1, . . . , t and j = 1, . . . , n. The

value of t is set to ed ln d
ε
. Then, for each set of d columns in M, the probability

that a set does not contain a d× d identity matrix is at most

(
d

1

)(
1− 1

d

(
1− 1

d

)d−1)t

≤ d · exp

(
− 1

d− 1

(
1− 1

d

)d
t

)
(3.10)

≤ d · exp

(
− t

d− 1
· e−1

(
1− 1

d

))
(3.11)

≤ d · exp

(
− t

ed

)
= d · exp

(
− ln

d

ε

)
(3.12)

≤ ε. (3.13)

Expression (3.10) is obtained because (1 + x)y ≤ exp(xy) for all |x| ≤ 1 and

y ≥ 1. Expression (3.11) is obtained because
(
1 + x

n

)n ≥ ex
(

1− x2

n

)
for n > 1

and |x| < v. Therefore, there exists a t× n matrix M with t = O
(
d log d

ε

)
such

that each set of d columns contains a d× d identity matrix with probability at least

1− ε, for any ε > 0. Since β = γ = O(tn), W can derive the following corollary.

Corollary 4 Given integers 1 ≤ d ≤ n and a scalar ε > 0, there exists a random

ᵀ×n measurement matrix T with ᵀ = O
(
d log n · log d

ε

)
that can be used to identify

at most d defective items in time O(ᵀ) with probability at least 1− ε. Furthermore,

each entry in T can be computed in time (and space) O(ᵀn).

While the result in Corollary 4 is similar to previously reported ones [62], [63],

construction of matrix M is much simpler. It is possible to achieve the number

of tests t = O
(
d log d

ε
· log n

)
when each set of d columns in M contains a d× d

identity matrix with probability at least 1 − ε for any ε > 0. However, it is

impossible to achieve this number for every set of d columns that contains a

d × d identity matrix with probability at least 1 − ε. In this case, by using

the same procedure used for generating random matrix M and by resolving(
n
d

)(
d
1

) (
1− 1

d

(
1− 1

d

)d−1)t ≤ ε, the number of tests needed is determined to be

t = O
(
d2 log n+ d log 1

ε

)
. Since this number is greater than that when ε = 0

(O(d2 log n)), it is not beneficial to consider the case that every set of d columns

that contains a d× d identity matrix with probability at least 1− ε.
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3.5 Nonrandom disjunct matrices

It is extremely important to have nonrandom constructions for measurement

matrices in real-time applications. Therefore, we now focus on nonrandom

constructions. We have shown that the well-known barrier on the number of tests

O(d2 log2 n) for constructing a d-disjunct matrix can be overcome.

3.5.1 Case of d = 2

When d = 2, the measurement matrix is T = S } S, where S is given by (3.1).

Note that the size of S is k × n, where k = 2 log n, and T is not a 2-disjunct

matrix. We start by proving that any two columns in S contain a 2× 2 identity

matrix. Indeed, suppose bw = (b1w, . . . , b(k/2)w)T , which is a log n-bit binary

representation of 0 ≤ w − 1 ≤ n − 1. For any two vectors bw1 and bw2, there

exists a position i0 such that bi0w1 = 0 and bi0w2 = 1, or bi0w1 = 1 and bi0w2 = 0

for any 1 ≤ w1 6= w2 ≤ n. Then their corresponding complementary vectors

bw1 = (b1w1 , . . . , b(k/2)w1)
T and bw2 = (b1w2 , . . . , b(k/2)w2)

T satisfy: bi0w1 = 0 and

bi0w2 = 1 when bi0w1 = 0 and bi0w2 = 1, or bi0w1 = 1 and bi0w2 = 0 when bi0w1 = 1

and bi0w2 = 0. Thus, any two columns w1 and w2 in S always contain a 2 × 2

identity matrix. From Theorem 3.3 (set M = S), we obtain the following theorem.

Theorem 3.4 Let 2 ≤ n be an integer. A 4 log2 n× n nonrandom measurement

matrix T can be used to identify at most two defective items in time 4 log2 n.

Moreover, each entry in T can be computed in space 2 log n+ log(2 log n) with four

operations.

Proof. It takes γ = 2 log n+log(2 log n) bits to index an entry in row i and column

j. Only two shift operations and a mod operation are needed to exactly locate the

position of the entry in column Sj . Therefore, at most four operations (β = 4) and

2 log n+ log(2 log n) bits are needed to locate an entry in matrix T . The decoding

time is straightforwardly obtained from Theorem 3.3 (t = k = 2 log n). ut
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3.5.2 General case

Indyk et al. [59] used Theorem 3.2 and Parvaresh-Vardy (PV) codes [70] to come

up with Theorem 2.6. Since they wanted to convert RS code into list-recoverable

code, they instantiated PV code into RS code. However, because PV code is

powerful in terms of solving general problems, its decoding complexity is high.

Therefore, the decoding complexity in Theorem 2.6 is relatively high. Here, by

converting RS code into list-recoverable code using Theorem 3.1, we carefully use

Theorem 3.2 to construct and decode disjunct matrices. As a result, the number of

tests and the decoding time for a nonrandom disjunct matrix are significantly

reduced.

Let W (x) be a Lambert W function in which W (x)eW (x) = x for any x ≥ −1
e
.

When x > 0, W (x) is an increasing function. One useful bound [71] for a Lambert

W function is lnx− ln lnx ≤ W (x) ≤ lnx− 1
2

ln lnx for any x ≥ e. Theorem 3.2

is used to achieve the following theorem with careful setting of Cout and Cin

Theorem 3.5 Let 1 ≤ d ≤ n be integers. Then there exists a nonrandom d-

disjunct matrix M with t = O
(

d2 ln2 n
(W (d lnn))2

)
= O

(
d2 log2 n

(log(d logn)−log log(d logn))2

)
. Each

entry (column) inM can be computed in time (and space) O(t) (O(t3/2)). Moreover,

M can be used to identify up to d′ defective items, where d′ ≥
⌊
d
2

⌋
+ 1, in time

O

(
d3.57 log6.26 n

(log(d log n)− log log(d log n))6.26

)
+O

(
d6 log4 n

(log(d log n)− log log(d log n))4

)
.

When d is the power of 2, d′ = d− 1.

Proof. Construction: We use the classical method proposed by Kautz and

Singleton [54] to construct a d-disjunct matrix. Let η be an integer satisfying

2η < 2eW ( 1
2
d lnn) < 2η+1. Choose Cout as an [v = q − 1, r]q-RS code, where

q =

2eW ( 1
2
d lnn) = d lnn

W( 1
2
d lnn)

if 2eW ( 1
2
d lnn) is the power of 2.

2η+1, otherwise.
(3.14)

Set r =
⌈
q−2
d

⌉
, and let Cin be a q × q identity matrix. The complexity of q is
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Θ
(
eW (d lnn)

)
= Θ

(
d lnn

W (d lnn)

)
in both cases because

2eW ( 1
2
d lnn) =

d lnn

W
(
1
2
d lnn

) ≤ q < 2 · 2eW ( 1
2
d lnn) =

2d lnn

W
(
1
2
d lnn

) .
Let C = Cout ◦Cin. We are going to prove thatM =MC is d-disjunct for such

q and r. It is well known [54] that if d ≤ q−1−1
r−1 , M is d-disjunct with t = q(q − 1)

tests. Indeed, we have

q − 1− 1

r − 1
=

q − 2

d q−2
d
e − 1

≥ q − 2
q−2
d

+ 1− 1
= d. (3.15)

Since q = O
(

d lnn
W (d lnn)

)
, the number of tests in M is

t = q(q − 1) = O

(
d2 ln2 n

(W (d lnn))2

)
= O

(
d2 ln2 n

(ln(d lnn)− ln ln(d lnn))2

)
= O

(
d2 log2 n

(log(d log n)− log log(d log n))2

)
,

because lnx − ln lnx ≤ W (x) ≤ lnx − 1
2

ln lnx for any x ≥ e. Since Cout is an

[v, r]q-RS code, each of its codewords can be computed [68] in time

O(r2) = O

((
lnn

ln (d lnn)− ln ln (d lnn)

)2
)

= O

(
t

d2

)
= O(t),

and space

p1 = O(r log q/ log2 r) = O(q log q) = O (d lnn) = O(t). (3.16)

Our task is now to prove that the number of columns in MC , i.e., qr, is at

least n. The range of d lnn

W( 1
2
d lnn)

≤ q < 2d lnn

W( 1
2
d lnn)

is:

d+ 2 <
d lnn

ln
(
1
2
d lnn

)
− 1

2
ln ln

(
1
2
d lnn

) ≤ q ≤ 2d lnn

ln
(
1
2
d lnn

)
− ln ln

(
1
2
d lnn

) < 2d lnn.(3.17)

These inequalities were obtained because lnx− ln lnx ≤ W (x) ≤ lnx− 1
2

ln lnx
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for any x ≥ e. Then we have:

q(q−2)/d =

(
qq

q2

)1/d

≥
(

1

q2
×
(

2eW ( 1
2
d lnn)

)q)1/d

≥
(

2q

q2
×
(

eW ( 1
2
d lnn)

)q)1/d

≥
(

2q

q2
×
(

eW ( 1
2
d lnn)×2eW ( 12 d lnn)

))1/d

≥
(

2q

q2
× e2×

1
2
d lnn

)1/d

(3.18)

≥ n×
(

2q

q2

)1/d

> n. (3.19)

Equation (3.18) is achieved because W (x)eW (x) = x. Equation (3.19) is obtained

because
(

2q

q2

)1/d
≥ 1 for any q ≥ 5. Since q−2

d
≤ r = d q−2

d
e < q−2

d
+ 1, the number

of codewords in Cout is:

n < q(q−2)/d ≤ qr < q(q−2)/d+1 = q × q(q−2)/d (3.20)

<
d lnn

W
(
1
2
d lnn

) (2q

q2

)1/d

× n. (3.21)

Equation (3.20) indicates that the number of columns in MC is more than n.

To obtain a t × n matrix, one simply removes qr − n columns from MC . The

maximum number of columns that can be removed is O(d lnn × n2) because

of (3.21).

Decoding: Consider the ratio q−1
r

implied by list size d′ =
⌈
q−1
r

⌉
− 1 =⌈

q−1
d(q−2)/de

⌉
− 1 of [q − 1, r]q-RS code. Parameter d′ is also the maximum number of

defective items that M can be used to identify because of Theorem 3.2. We thus

have

d′ =

⌈
q − 1

d(q − 2)/de

⌉
− 1 ≥ d

(
1− d− 1

q + d− 2

)
>
d

2
,

because q + d− 2 ≥ 2d > 2(d− 1). Since d′ is an integer, d′ ≥
⌊
d
2

⌋
+ 1.

Next we prove that d′ = d− 1 when d is the power of 2, e.g., d = 2x for some

positive integer x. Since q is also the power of 2 as shown by (3.14), suppose

that q = 2y for some positive integer y. Because q > d in (3.17), 2y > 2x. Then



3.5 Nonrandom disjunct matrices 38

r = d q−1
d
e = 2y−x. Therefore, d′ =

⌈
q−1
r

⌉
− 1 = 2x − 1 = d− 1.

The decoding complexity of our proposed scheme is analyzed here. We have:

• Code Cout is an (d′ =
⌈

q−1
d(q−2)/de

⌉
− 1,Γ = O

(
n4

r2

)
= O(q2d2))-list recoverable

code as in Theorem 3.1. It can be decoded in time

α1 = O(n3.57r2.69) = O

(
d3.57 log6.26 n

(log(d log n)− log log(d log n))6.26

)
.

Moreover, any codeword in Cout can be computed in time O(r2) = O
(
t
d2

)
and space p1 = O(t) as in (3.16).

• Cin is a q × q identity matrix. Then MCin
is a q-disjunct matrix. Since

d′ ≤ d < q, MCin
is also a d′-disjunct matrix. It can be decoded in time

α2 = d′q and each codeword can be computed in space p2 = log q.

From Theorem 3.2, given any outcome produced by at most d′ defective items,

those items can be identified in time

vα2 + α1 +O(Γt)

= vd′q +O

(
d3.57 log6.26 n

(log(d log n)− log log(d log n))6.26

)
+O

(
d6 log4 n

(log(d log n)− log log(d log n))4

)
= O

(
d3.57 log6.26 n

(log(d log n)− log log(d log n))6.26

)
+O

(
d6 log4 n

(log(d log n)− log log(d log n))4

)
.

Moreover, each entry (column) in M can be computed in time O(t) (O(tq) =

O(t3/2)) and space O(log t+ log n) +O(max{p1, p2}) = O (d log n) = O(t) (O(tq) =

O(t3/2)). ut

If we substitute d by 2blog dc+1 in the theorem above, the measurement matrix is

2blog dc+1-disjunct. Therefore, it can be used to identify at most d′ = 2blog dc+1−1 ≥ d

defective items. The number of tests and the decoding complexity in the theorem

remain unchanged because d < 2blog dc+1 ≤ 2d.
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3.6 Evaluation

We evaluated variations of our proposed scheme by simulation using d =

2, 23, 27, 210, 212 and n = 220, 240, 260, 280, 2100 in Matlab R2015a on an HP Compaq

Pro 8300SF desktop PC with a 3.4-GHz Intel Core i7-3770 processor and 16-GB

memory.

3.6.1 Numerical settings for n, d, and q

We focused on nonrandom construction of a t×n d-disjunct matrixM for which

the time to generate an entry is poly(t). Given integers d and n, an [v = q − 1, r]q

code Cout and a q×q identity matrix Cin were set up to createM =MCout◦Cin
. The

precise formulas for q, r, t are q = 2eW ( 1
2
d lnn) or q = 2η+1 as in (3.14), r = d q−2

d
e,

and t = q(q − 1). Note that the integer q is the power of 2. Moreover, n′ = qr is

the maximum number of items such that the resulting t×n′ matrix generated from

this RS code was still d-disjunct. Parameter d′ =
⌈
q−1
r

⌉
− 1 =

⌈
q−1

d(q−2)/de

⌉
− 1 is the

maximum number of defective items that matrixM could be used to identify. The

parameters t2 = 4800d2 log n and t1 = d log n(d log n− 1) are the number of tests

from Theorems 2.4 and 2.6. The numerical results are shown in Table 3.2.

Since the number of tests from Theorem 2.4 is O(d2 log n), it should be

smaller than the number of tests in Theorem 2.6, which is t = O(d2 log2 n), and

Theorem 3.5, which is t = O
(

d2 log2 n
(log(d logn)−log log(d logn))2

)
. However, the numerical

results in Table 3.2 show the opposite. Even when d = 212 ≈ 0.4% of n, the

number of tests from Theorem 2.4 was the largest. Moreover, there was no efficient

construction scheme associated with it. The main reason is that the multiplicity

of O(d2 log n) is 4, 800, which is quite large. Figure 3.1 shows the ratio between

the number of tests from Theorem 2.4 and the number from Theorem 3.5 (our

proposed scheme) and between the number from Theorem 2.6 and the number

from Theorem 3.5 (our proposed scheme). The number of tests with our proposed

scheme was clearly smaller than with the existing schemes, even when n = 2100.

This indicates that the matrices generated from Theorem 2.4 and Theorem 2.6 are

good in theoretical analysis but bad in practice.
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Table 3.2: Parameter settings for [q − 1, r]q-RS code and resulting q(q − 1)× n
d-disjunct matrix: number of items n, maximum number of defective items d,
alphabet size q as in (3.14), number of tests t = q(q − 1), dimension r = d q−2

d
e.

Parameter d′ =
⌈

q−1
d(q−2)/de

⌉
− 1 is the maximum number of defective items that the

t× n resulting matrix can be used to identify. Parameter n′ = qr is maximum
number of items such that resulting q(q − 1)× n′ matrix generated from this RS
code is still d-disjunct. Parameters t2 = 4800d2 log n and t1 = d log n(d log n− 1)
are number of tests from Theorems 2.4 and 2.6.

d n q t = q(q − 1) r d′ n′
t1 =

d log n(d log n− 1)
t2 = 4800d2 log n

23 = 8

220 26 = 64 4, 032 8 d− 1 248 25, 440 6, 144, 000
240 27 = 128 16, 256 16 d− 1 2102 102, 080 12, 288, 000
260 27 = 128 16, 256 16 d− 1 2102 229, 920 18, 432, 000
280 27 = 128 16, 256 16 d− 1 2102 408, 960 24, 576, 000
2100 28 = 256 65, 280 32 d− 1 2256 639, 200 30, 720, 000

27 = 128

220 29 = 512 261, 632 4 d− 1 236 6, 551, 040 1, 572, 864, 000
240 210 = 1, 024 1, 047, 552 8 d− 1 280 26, 209, 280 3, 145, 728, 000
260 210 = 1, 024 1, 047, 552 8 d− 1 280 58, 974, 720 4, 718, 592, 000
280 211 = 2, 048 4, 192, 256 16 d− 1 2176 104, 847, 360 6, 291, 456, 000
2100 211 = 2, 048 4, 192, 256 16 d− 1 2176 163, 827, 200 7, 864, 320, 000

210 = 1, 024

220 211 = 2, 048 4, 192, 256 2 d− 1 222 419, 409, 920 100, 663, 296, 000
240 212 = 4, 096 16, 773, 120 4 d− 1 248 1, 677, 680, 640 201, 326, 592, 000
260 213 = 8, 192 67, 100, 672 8 d− 1 2104 3, 774, 812, 160 301, 989, 888, 000
280 213 = 8, 192 67, 100, 672 8 d− 1 2104 6, 710, 804, 480 402, 653, 184, 000
2100 214 = 16, 384 268, 419, 072 16 d− 1 2224 10, 485, 657, 600 503, 316, 480, 000

212 = 4, 096

220 213 = 8, 192 67, 100, 672 2 d− 1 226 6, 710, 804, 480 1, 610, 612, 736, 000
240 214 = 16, 384 268, 419, 072 4 d− 1 256 26, 843, 381, 760 3, 221, 225, 472, 000
260 215 = 32, 768 1, 072, 398, 336 8 d− 1 2120 60, 397, 731, 840 4, 831, 838, 208, 000
280 215 = 32, 768 1, 072, 398, 336 8 d− 1 2120 107, 373, 854, 720 6, 442, 450, 944, 000
2100 215 = 32, 768 1, 072, 398, 336 8 d− 1 2120 167, 771, 750, 400 8, 053, 063, 680, 000

In contrast, a nonrandom d-disjunct matrix is easily generated from Theorem 3.5.

It also can be used to identify at most d− 1 defective items. If we want to identify

up to d defective items, we must generate a nonrandom (d+ 1)-disjunct matrix in

which the number of tests is still smaller than t1 and t2. Since the number of tests

from Theorem 3.5 is the lowest, its decoding time is the shortest. In short, for

implementation, we recommend using the nonrandom construction in Theorem 3.5.

3.6.2 Experimental results

Since the time to generate a measurement matrix entry would be too long

if it were O(tn), we focus on implementing the methods for which the time

to generate a measurement matrix entry is poly(t), i.e., 〈3〉, 〈4〉, 〈8〉, 〈9〉, 〈10〉 in
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Logarithm of base 2 of number of items (log
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Figure 3.1: Ratio of number of tests from Theorem 2.4 and number from
Theorem 2.6 to number with proposed scheme (Theorem 3.5) for d = 23, 212 and
n = 220, 240, 260, 280, 2100. Ratio was always larger than 1; i.e., the number of tests
in the proposed scheme is smaller than the compared one.

Table 3.1. However, to incorporate a measurement matrix into applications,

random constructions are not preferable. Therefore, we focus on nonrandom

constructions. Since we are unable to program decoding of list-recoverable codes

because it requires knowledge of algebra, finite field, linear algebra, and probability.

We therefore tested our proposed scheme by implementing 〈4〉 (Theorem 3.4)

and 〈8〉 (Corollary 3). This is reasonable because, as analyzed in section 3.6.1,

the number of tests in Theorem 3.5 is the best for implementing nonrandom

constructions. Since Corollary 3 is derived from Theorem 3.5, its decoding time

should be the best for implementation.

We ran experiments for d = 2 from Theorem 3.4 and d = 23, 27 from Corollary 3.

We did not run any for d = 210, 212 because there was not enough memory in our

set up (more than 100 GB of RAM is needed). The decoding time was calculated

in seconds and averaged over 100 runs. When d = 2, the decoding time was less

than 1ms. As shown in Figure 3.2, the decoding time was linearly related to the

number of tests, which confirms our theoretical analysis. Moreover, defective items
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Figure 3.2: Decoding time for d = 23 and d = 27 from Theorem 3.4. Number of
items n was {220, 240, 260, 280, or 2100}.

were identified extremely quickly (less than 16s) even when n = 2100. The accuracy

was always 1; i.e., all defective items were identified.

3.7 Conclusion

We have presented a scheme that enables a larger measurement matrix built from

a given t×n measurement matrix to be decoded in time O(t log n) and a construction

of a nonrandom d-disjunct matrix with t = O
(

d2 log2 n
(log(d logn)−log log(d logn))2

)
tests. This

number of tests indicates that the upper bound for nonrandom construction is no

longer O(d2 log2 n). Although the number of tests with our proposed schemes is

not optimal in term of theoretical analysis, it is good enough for implementation.

In particular, the decoding time is less than 16 seconds even when d = 27 = 128

and n = 2100. Moreover, in nonrandom constructions, there is no need to store

a measurement matrix because each column in the matrix can be generated

efficiently.

Open problem: Our finding that n becomes much smaller than n′ as q increases

(Table 3.2) is quite interesting. Our hypothesis is that the number of tests needed
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may be smaller than 2eW ( 1
2
d lnn)

(
2eW ( 1

2
d lnn) − 1

)
. If this is indeed true, it paves

the way toward achieving a very efficient construction and a shorter decoding time

without using randomness. An interesting question is to answer the question that

whether there exists a t×n d-disjunct matrix with t ≤ 2eW ( 1
2
d lnn)

(
2eW ( 1

2
d lnn) − 1

)
that can be constructed in time O(tn) with each entry generated in time (and

space) poly(t) and with a decoding time of O(t2).





“Unity makes strength.”
– Anonymous.
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4.1 Introduction

Consider a set of n items with up to d defective items. In Chapter 3, we have

studied the classical non-adaptive group testing (NACGT) in which the outcome of

a test on a subset of items is positive if the subset contains at least one defective

item, and is negative otherwise. Damaschke [9] introduced a generalization of

classical group testing known as threshold group testing (TGT). In this variation,

the outcome of a test on a subset of items is positive if the subset contains at least

u defective items, where u is a parameter, is negative if the subset contains no

more than ` defective items, where 0 ≤ ` < u, and is arbitrary otherwise. When

u = 1 and ` = 0, threshold group testing reduces to classical group testing. We

note that ` is always smaller than the number of defective items. Otherwise, every

test would yield a negative outcome and no information can be extracted from the

test outcomes. Most of the previous work in this area, such as [9,36–39], dealt

with g = u− `− 1 ≥ 0. When g = 0, i.e., ` = u− 1, TGT is called TGT with

threshold u and denoted as u-TGT. The focus here is on non-adaptive threshold

group testing (NATGT) with threshold u, i.e., u-TGT with non-adaptive design

and all our comparisons consider this regime.

In threshold group testing, Damaschke [9] showed that the set of positive

items can be identified with
(
n
u

)
tests with up to g false positives and g false

negatives, where g = u− `− 1 is the gap parameter. Cheraghchi [36] showed that

it is possible to find the defective items with O(dg+2 log d · log n
d
· 8uuu) tests, and

that this trade-off is essentially optimal when u is constant. Recently, De Marco et

al. [37] improved this bound to O
(
d3/2 log n

d

)
tests under the extra assumption

that the number of defective items is exactly d, which is rather restrictive in

application. Although the number of tests has been extensively studied, there

have been few reports that focus on the decoding algorithm as well. Chen and

Fu [39] proposed schemes based on NACGT for when g = 0 that can find the

defective items using O
((

d
u

)u ( d
d−u

)d−u
d log n

d

)
tests in time O(nu log n). Chan et

al. [38] presented a randomized algorithm with O
(
log 1

ε
· d
√
u log n

)
tests to find

the defective items in time O(n log n+ n log 1
ε
) given that the number of defective

items is exactly d, g = 0, and u = o(d). The cost of these decoding schemes

increases with n. Our objective is to find an efficient decoding scheme to identify
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up to d defective items in NATGT when g = 0.

4.2 Contributions

We consider the case where g = 0, i.e., ` = u− 1 (u ≥ 2), and call this model

u-NATGT. We first propose an efficient scheme for identifying up to d defective

items in NATGT in time t× poly(d2 log n), where t is the number of tests. Our

main idea is to create at least a specified number of rows in the test matrix such

that the corresponding test in each row contains exactly u defective items and

such that the defective items in the rows are the defective items to be identified.

We “map” these rows using a special matrix constructed from a disjunct matrix

(defined later) and its complementary matrix, thereby converting the outcome in

NATGT to the outcome in NACGT. The defective items in each row can then be

efficiently identified.

Although Cheraghchi [36], De Marco et al. [37], and D’yachkov et al. [72]

proposed nearly optimal bounds on the number of tests, there are no decoding

algorithms associated with their schemes. Note that the number of tests is optimal

in [72] and [36], i.e., O(d2 log n), when the threshold u is a fixed constant. On the

other hand, the scheme of Chen et al. [39] requires a smaller number of tests

compared with our scheme. However, the decoding complexity of their scheme

is exponential in the number of items n, which is impractical. Chan et al. [38]

proposed a probabilistic approach to achieve a small number of tests, which

combinatorially can be better than our scheme. However, their scheme is only

applicable when the number of defective items is exactly d, the threshold u is much

smaller than d (u = o(d)), and the decoding complexity remains high, namely

O(n log n+ n log 1
ε
), where ε > 0 is the precision parameter.

We present a test scheme that can be instantiated via either deterministic or

randomized decoding. The deterministic decoding scheme identifies all defectives

(in the worst case). On the other hand, randomized decoding reduces the number

of tests; all defective items can be found with probability at least 1− ε for any

ε > 0. The decoding time is t× poly(d2 log n). A comparison with existing work is

given in Table 4.1.
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Table 4.1: Comparison with existing work.

Scheme
Number of

defective items
Number of tests

t
Decoding complexity Decoding type

Cheraghchi [36] ≤ d O(d2 log d · log n
d
· 8uuu) × ×

De Marco et al. [37] d O
(
d2 ·

√
d−u
du
· log n

d

)
× ×

D’yachkov et al. [72] ≤ d O
(
d2 log n · (u−1)!4u

(u−2)u(ln 2)u

)
× ×

Chen et al. [39] ≤ d O
((

d
u

)u ( d
d−u

)d−u
d log n

d

)
O(nu log n) Deterministic

Deterministic decoding ≤ d O
((

d
u

)u ( d
d−u

)d−u
d3 log n · log n

d

)
t× poly(d2 log n) Deterministic

Chan et al. [38] d O
(
log 1

ε
· d
√
u log n

)
O(n log n+ n log 1

ε
) Random

Randomized decoding ≤ d O
((

d
u

)u ( d
d−u

)d−u (
u log d

u
+ log 1

ε

)
· d2 log n

)
t× poly(d2 log n) Random

4.3 Preliminaries

Here are some of the notations used:

1. T : t× n measurement matrix used to identify up to d defective items in

u-NATGT, where integer t ≥ 1 is the number of tests.

2. G = (gij): h× n matrix, where h ≥ 1.

3. M = (mij): k × n d-disjunct matrix used to identify up to u defective items

in u-NATGT and d defective items in NACGT, where integer k ≥ 1 is the

number of tests.

4. M = (mij): the k × n complementary matrix of M; mij = 1−mij.

5. xi = (xi1, . . . , xin)T , Di: binary representation of items and set of indices of

defective items in row Gi,∗. For example, if n = 6, the defective items are 1,

2, 3, and G1,∗ = (1, 0, 1, 0, 1, 1), then x1 = (1, 0, 1, 0, 0, 0) and D1 = {1, 3}.

4.3.1 Problem definition

We index the population of n items from 1 to n. Let [n] = {1, 2, . . . , n} and D

be the defective set, where |D| ≤ d. A test is defined by a subset of items P ⊆ [n].

(d, u, n)-NATGT is a problem in which there are up to d defective items among n

items. A test consisting of a subset of n items is positive if there are at least u
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defective items in the test, and each test is designed in advance. Formally, the test

outcome is positive if |P ∩D| ≥ u and negative if |P ∩D| < u.

We can model (d, u, n)-NATGT as follows: A t× n binary matrix T = (tij) is

defined as a measurement matrix, where n is the number of items and t is the

number of tests. A vector x = (x1, . . . , xn)T is the binary representation vector of

n items, where |x| ≤ d. An entry xj = 1 indicates that item j is defective, and

xj = 0 indicates otherwise. The jth item corresponds to the jth column of the

matrix. An entry tij = 1 naturally means that item j belongs to test i, and tij = 0

means otherwise. The outcome of all tests is y = (y1, . . . , yt)
T , where yi = 1 if test

i is positive and yi = 0 otherwise. The procedure to get the outcome vector y is

called the encoding procedure. The procedure used to identify defective items from

y is called the decoding procedure. Outcome vector y is

y = T ⊗ x =


T1,∗ ⊗ x

...

Tt,∗ ⊗ x

 =


y1
...

yt

 (4.1)

where ⊗ is a notation for the test operation in u-NATGT; namely, yi = Ti,∗⊗x = 1

if
∑n

j=1 tijxj ≥ u, and yi = Ti,∗ ⊗ x = 0 if
∑n

j=1 tijxj < u for i = 1, . . . , t. Our

objective is to find an efficient decoding scheme to identify up to d defective items

in (d, u, n)-NATGT.

4.3.2 Completely separating matrix

We now introduce the notion of completely separating matrices which are used

to get efficient decoding algorithms for (d, u, n)-NATGT. A (u,w)-completely

separating matrix is defined as follows:

Definition 6 Let u,w, h, and n be positive integers. An h × n matrix G =

(gij)1≤i≤h,1≤j≤n is called a (u,w)-completely separating matrix if for any pair of

subsets I, J ⊂ [n] such that |I| = u, |J | = w, and I ∩ J = ∅, there exists row l such

that glr = 1 for any r ∈ I and gls = 0 for any s ∈ J . Row l is called a singular row

to subsets I and J . When u = 1, the matrix G is called a w-disjunct matrix.

This definition is slightly different from the one described by D’yachkov et
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al. [56]. It is easy to verify that, if a matrix is a (u,w)-completely separating

matrix, it is also a (u, v)-completely separating matrix for any v ≤ w. Below we

present the existence of such matrices.

Theorem 4.1 Given integers 1 ≤ u+ w < n and uw > 0, there exists a (u,w)-

completely separating matrix of size h× n, where

h =

⌈
(u+ w)u+w

uuww

(
(u+ w) log

en

u+ w
+ u log

e(u+ w)

u

)⌉
+ 1

and e is base of the natural logarithm.

Proof. Consider a randomly generated h×n matrix G = (gij)1≤i≤h,1≤j≤n in which

each entry gij is assigned to 1 with probability p and to 0 with probability 1− p.
For any pair of subsets I, J ⊂ [n] such that |I| = u, |J | = w, the probability that a

row is not singular is

1− pu(1− p)w. (4.2)

Subsequently, the probability that there is no singular row to subsets I and J is

f(p) = (1− pu(1− p)w)h . (4.3)

Using a union bound, the probability that any pair of subsets I, J ⊂ [n], where

|I| = u, |J | = w, does not have a singular row; i.e., the probability that G is not a

(u,w)-separating matrix, is

g(p, h, u, w, n) =

(
n

u+ w

)(
u+ w

u

)
f(p) =

(
n

u+ w

)(
u+ w

u

)
(1− pu(1− p)w)h .

To ensure that there exists a (u,w)-separating matrix G, one needs to find p

and h such that g(p, h, u, w, n) < 1. Choosing p = u
u+w

, we have:

f(p) = (1− pu(1− p)w)h =

(
1−

(
u

u+ w

)u(
1− u

u+ w

)w)h
≤ exp

(
−h · uuww

(u+ w)u+w

)
, (4.4)
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where (4.4) holds because 1− x ≤ e−x for any x > 0. Thus we have

g(p, h, u, w, n) =

(
n

u+ w

)(
u+ w

u

)
f(p) ≤

(
en

u+ w

)u+w (
e(u+ w)

u

)u
f(p)

(4.5)

≤
(

en

u+ w

)u+w (
e(u+ w)

u

)u
exp

(
−h · uuww

(u+ w)u+w

)
(4.6)

< 1

⇐⇒
(

en

u+ w

)u+w (
e(u+ w)

u

)u
< exp

(
h · uuww

(u+ w)u+w

)
⇐⇒ h >

(u+ w)u+w

uuww

(
(u+ w) log

en

u+ w
+ u log

e(u+ w)

u

)
(4.7)

In the above, we have (4.5) because
(
a
b

)
≤
(
ea
b

)b
and (4.6) by using (4.4). From

(4.7), if we choose

h =

⌈
(u+ w)u+w

uuww

(
(u+ w) log

en

u+ w
+ u log

e(u+ w)

u

)⌉
+ 1

= O

(
eu+w(u+ w) log

n

u+ w

)
, because u+ w < n,

then g(p, h, u, w, n) < 1; i.e., there exists a (u,w)-completely separating matrix of

size h× n. ut

Suppose that G is an h× n (u,w)-completely separating matrix. If w is set to

d− u, then every h× d submatrix, which is constructed by any d columns of

G, is a (u, d− u)-completely separating matrix. This property is too strong and

increases the number of rows in G. To reduce the number of rows, we relax this

property to a “for-each” guarantee as follows: each h× d submatrix, which is

constructed by d columns of G, is a (u, d− u)-completely separating matrix with

high probability. The following corollary describes this idea in more detail.

Corollary 5 Let u, d, n be any given positive integers such that 1 ≤ u < d < n.

For any ε > 0, there exists a random h×n matrix such that for each h×d submatrix,

which is constructed by picking a set of d columns, is a (u, d − u)-completely
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separating matrix with probability at least 1− ε, where

h =

⌈(
d

u

)u(
d

d− u

)d−u(
u log

ed

u
+ log

1

ε

)⌉

and e is base of the natural logarithm.

Proof. Consider a random h× n matrix G = (gij)1≤i≤h,1≤j≤n in which each entry

gij is assigned to 1 with probability of u
d

and to 0 with probability of 1− u
d
. Our

task is to prove that each h× d matrix G ′, constructed by d columns of G, is a

(u, d−u)-completely separating matrix with probability at least 1− ε for any ε > 0.

Specifically, we prove that h =
⌈(

d
u

)u ( d
d−u

)d−u (
u log ed

u
+ log 1

ε

)⌉
is sufficient to

achieve such G ′. Similar to the proof in Theorem 4.1, the probability that G ′ is not

a (u, d− u)-completely separating matrix up to ε is

(
d

u

)(
1−

(u
d

)u (
1− u

d

)d−u)h
≤
(

ed

u

)u
exp

(
−h
(u
d

)u(d− u
d

)d−u)
≤ ε

(4.8)

⇐⇒ 1

ε

(
ed

u

)u
≤ exp

(
h
(u
d

)u(d− u
d

)d−u)

⇐⇒ h ≥
(
d

u

)u(
d

d− u

)d−u(
u log

ed

u
+ log

1

ε

)

We get (4.8) because 1−x ≤ e−x for any x > 0 and
(
a
b

)
≤
(
ea
b

)b
. This completes

the proof. ut

4.4 Proposed scheme

The basic idea of our scheme, which uses a divide and conquer strategy, is to

create at least κ rows of matrix G, e.g., i1, i2, . . . , iκ such that |Di1| = · · · = |Diκ| = u

and Di1 ∪ . . . ∪Diκ = D. Then we “map” these rows by using a special matrix

that enables us to convert the outcome in NATGT to the outcome in NACGT.

The defective items in each row can then be efficiently identified. We present a

particular matrix that achieves efficient decoding for each row in the following
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Figure 4.1: An illustration of the proposed scheme.

section. This idea is illustrated in Figure 4.1.

In Figure 4.1, the defective and negative items are represented as red and black

dots, respectively. There are five steps in the proposed scheme. The encoding

procedure includes Steps 1, 2, and 3. Steps 4 and 5 correspond to the decoding

procedure. A row Gi,∗ can be represented by a support set Vi = {j | gij = 1}. Let

M = (mi′j) be a k × n d-disjunct matrix and Mi′ = {j | mi′j = 1} be the support

set of Mj for i′ = 1, . . . , k and j = 1, . . . , n.

In the encoding procedure, we create h “indicating subsets” V1, . . . , Vh in Step

1 in which Vil ∩Dil = Dil for l = 1, . . . , κ. Our objective is to extract Dil from

Vil efficiently. In Step 2, each subset Vi is mapped to 2k + 1 subsets. They are

the Vi and k dual subsets in which each dual subset (Vi ∩Mi′ and Vi \ Vi ∩Mi′

for i′ = 1, . . . , k) is a partition of a Vi created from M. Step 3 simply gets the

outcomes of all tests generated in Step 2.

In the decoding procedure, Step 4 gets the defective set Gi from the 2k + 1

subsets created from Vi as an instance of NATGT, for i = 1, . . . , h. As a result,

the cardinality of Gi is either u or 0. Finally, the defective set D is the union of
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G1, . . . , Gh in Step 5.

4.4.1 When the number of defective items equals the thresh-

old

In this section, we consider a special case in which the number of defective

items equals the threshold, i.e., |x| = u. Given a measurement matrix M and

a representation vector of u defective items x (|x| = u), what we observe is

y =M⊗x = (y1, . . . , yk)
T . Our objective is to recover y′ =M�x = (y′1, . . . , y

′
k)
T

from y. Then x can be recovered if we choose M as a d-disjunct matrix described

in Theorem 2.5. To achieve this goal, we create a measurement matrix:

A =

[
M
M

]
(4.9)

where M = (mij) is a k × n d-disjunct matrix as described in Theorem 2.5 and

M = (mij) is the complement matrix of M, mij = 1−mij for i = 1, . . . , k and

j = 1, . . . , n. We note that M can be decoded in time poly(k) = poly(d2 log n)

because k = O(d2 log n). Let us assume that the outcome vector is z. Then we

have:

z = A⊗ x =

[
M⊗ x

M⊗ x

]
=

[
y

y

]
(4.10)

where y =M⊗ x = (y1, . . . , yk)
T and y =M⊗ x = (y1, . . . , yk)

T . The following

lemma shows that y′ =M� x is always obtained from z; i.e., vector x can always

be recovered.

Lemma 4.2 Given integers 2 ≤ u ≤ d < n, there exists a strongly explicit 2k × n
matrix such that if there are exactly u defective items among n items in u-NATGT,

the u defective items can be identified in time poly(k), where k = O(d2 log n).

Proof. We construct the measurement matrix A in (4.9) and assume that z is

the observed vector as in (4.10). Our task is to create vector y′ =M� x from z.

One can get it using the following rules, where l = 1, 2, . . . , k:

1. If yl = 1, then y′l = 1.
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2. If yl = 0 and yl = 1, then y′l = 0.

3. If yl = 0 and yl = 0, then y′l = 1.

We now prove the correctness of the above rules. Because yl = 1, there are at least

u defective items in row Ml,∗. Then, the first rule is implied.

If yl = 0, there are less than u defective items in row Ml,∗. Because |x| = u,

we have yl = 1, and the threshold is u, there must be u defective items in row

Ml,∗. Moreover, since Ml,∗ is the complement of Ml,∗, there must be no defective

item in test l of M. Therefore, we have y′l = 0, and the second rule is implied.

If yl = 0, there are less than u defective items in row Ml,∗. Similarly, if yl = 0,

there are less than u defective items in row Ml,∗. We now show that the number

of defective items in row Ml,∗ or Ml,∗ cannot be equal to zero. Indeed, if the

number of defective items in row Ml,∗ (resp., Ml,∗) equals zero, then yl = 1 (resp.,

yl = 1) because Ml,∗ is the complement of Ml,∗. This contradicts the assumption

that yl = 0 and yl = 0. Therefore, the number of defective items in row Ml,∗ is

not equal to zero. Consequently, the test outcome corresponding to row Ml,∗ in

NACGT is positive, i.e., y′l = 1. The third rule is thus implied.

Since we get y′ =M� x, the matrix M is a d-disjunct matrix and u ≤ d, u

defective items can be identified in time poly(k) by Theorem 2.5, 3.5, or Corollary 3.

ut

Example: We demonstrate Lemma 4.2 by setting u = d = 2, k = 9, and

n = 12 and defining a 9× 12 2-disjunct matrix M as follows:

M =



0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 1 1 1 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 1 0 0

0 0 1 0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0 0 1 0

0 1 0 1 0 0 0 0 1 0 0 1

0 0 1 0 1 0 1 0 0 0 0 1

1 0 0 0 0 1 0 1 0 0 0 1


,y =



0

0

1

0

0

0

0

0

0


,y =



1

1

0

1

0

0

0

1

0


,y′ =



0

0

1

0

1

1

1

0

1


(4.11)
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Assume that the defective items are 1 and 2, i.e., x = [1, 1, 0, 0, 0, 0, 0, 0, 0]T ;

then the observed vector is z = [yT yT ]T . Using the three rules in the proof of

Lemma 4.2, we obtain vector y′. We note that y′ =M1

∨
M2 =M� x. Using a

decoding algorithm (which is omitted in this example), we can identify items 1

and 2 as defective items from y′.

4.4.2 Encoding procedure

To implement the divide and conquer strategy, we need to divide the set

of defective items into small subsets such that defective items in those subsets

can be effectively identified. We suppose that there exists an h × n matrix G
containing κ rows, denoted as i1, i2, . . . , iκ, with probability at least 1− ε such

that (i) |Di1| = · · · = |Diκ| = u and (ii) Di1 ∪ . . . ∪Diκ = D for any ε ≥ 0, where

Di is the set of indices of defective items in row Gi,∗ (defined in Section 4.3). These

conditions guarantee that all defective items are included in the decoded set.

After creating the matrix G, we generate matrix A as in (4.9). Then the final

measurement matrix T of size (2k + 1)h× n is created as follows:

T =



G1,∗
A× diag(G1,∗)

...

Gh,∗
A× diag(Gh,∗)


=



G1,∗
M× diag(G1,∗)
M× diag(G1,∗)

...

Gh,∗
M× diag(Gh,∗)
M× diag(Gh,∗)


(4.12)

The vector observed using u-NATGT after performing the tests given by the
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measurement matrix T is

y = T ⊗ x =



G1,∗
A× diag(G1,∗)

...

Gh,∗
A× diag(Gh,∗)


⊗ x =



G1,∗ ⊗ x

A⊗ x1

...

Gh,∗ ⊗ x

A⊗ xh


=



G1,∗ ⊗ x

M⊗ x1

M⊗ x1

...

Gh,∗ ⊗ x

M⊗ xh

M⊗ xh


=



y1

y1

y1
...

yh

yh

yh


=



y1

z1

...

yh

zh


(4.13)

where xi = diag(Gi,∗) × x, yi = Gi,∗ ⊗ x, yi = M⊗ xi = (yi1, . . . , yik)
T , yi =

M⊗ xi = (yi1, . . . , yik)
T , and zi = [yTi yTi ]T for i = 1, 2, . . . , h.

We note that xi is the vector representing the defective items corresponding to

row Gi,∗. If xi = (xi1, xi2, . . . , xin)T , then Di = {l | xil = 1, l ∈ [n]}. We thus have

|Di| = |xi| ≤ d. Moreover, the condition yi = 1 holds if and only if |xi| ≥ u.

4.4.3 The decoding procedure

The decoding procedure is summarized as Algorithm 4.1, where y′i = (y′i1, . . . , y
′
ik)

T

is presumed to be M� xi. The procedure is briefly explained as follows: Step 2

enumerates the h rows of G. Step 3 checks if there are at least u defective items in

row Gi,∗. Steps 4 to 14 calculate y′i, and Step 16 checks if all items in Gi are truly

defective and adds them into D.

4.4.4 Correctness of the decoding procedure

Recall that our objective is to recover xi from yi and zi = [yTi yTi ] for

i = 1, 2, . . . , h. Step 2 enumerates the h rows of G. We have that yi is the indicator

for whether there are at least u defective items in row Gi,∗. If yi = 0, it implies

that there are less than u defective items in row Gi,∗. Since we only focus on rows

Gi,∗, which have exactly u defective items, vector zi is not considered if yi = 0.

This is achieved by Step 3.

When yi = 1, there are at least u defective items in row Gi,∗. If there are
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Algorithm 4.1 Decoding procedure for u-NATGT
Input: Outcome vector y, M.
Output: The set of defective items D.

1: D = ∅.
2: for i = 1 to h do
3: if yi = 1 then
4: for l = 1 to k do
5: if yil = 1 then
6: y′il = 1
7: end if
8: if yil = 0 and yil = 1 then
9: y′il = 0

10: end if
11: if yil = 0 and yil = 0 then
12: y′il = 1
13: end if
14: end for
15: Decode y′i using M to get the defective set Gi.
16: if |Gi| = u and

∨
j∈GiMj ≡ y′i then

17: D = D ∪Gi.
18: end if
19: end if
20: end for
21: Return D.
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exactly u defective items in this row, they are always identified as described by

Lemma 4.2. Our task is now to prevent false defectives by decoding y′i.

Steps 4 to 14 calculate y′i from zi. If there are exactly u defective items in row

Gi,∗, we have y′i =M⊗ xi and |xi| = u. If there are more than u defective items

in row Gi,∗, vector y′i =M⊗ x′i for some vector x′i ∈ {0, 1}n after implementing

Steps 4 to 14. In the latter case, we may not recover x′i correctly. Moreover, it is

not clear whether the non-zero entries in x′i are necessarily the indices of defective

items. Therefore, our task is to decode y′i using matrix M to get the defective set

Gi, and then validate whether all items in Gi are defective.

There exists at least κ rows of G in which there are exactly u defective items,

and we need to identify all defective items in these rows. Therefore, we only

consider the case when the number of defective items obtained from decoding y′i

is equal to u; i.e., |Gi| = u. Our task is now to avoid false positives, which is

accomplished by Step 16. There are two sets of defective items corresponding

to zi: the first one is the true set, which is Di and is unknown, and the second

one is Gi, which is expected to be Di (albeit not surely) and |Gi| = u. Note that

|Di| ≥ u because yi = 1. If Gi ≡ Di, we can always identify u defective items and

the condition in Step 16 always holds because of Lemma 4.2. We need to consider

the case Gi 6≡ Di; i.e., when there are more than u defective items in row Gi,∗. We

break down this case into two categories:

1. When |Gi \Di| = 0: in this case, all elements in Gi are defective items. We

need to consider whether
∨
j∈GiMj ≡ y′i. If this condition holds, we obtain

the true defective items. If it does not hold, we do not take Gi into the set of

defective items.

2. When |Gi \Di| 6= 0: in this case, we prove that
∨
j∈GiMj ≡ y′i does not

hold; i.e., none of the elements in Gi are added to the defective set. Consider

any j1 ∈ Gi \Di. Since |Di| ≤ d and M is a d-disjunct matrix, there exists a

row, denoted τ , such that mτj1 = 1 and mτx = 0 for x ∈ Di. Therefore, there

are fewer than u defective items in row τ ; i.e., yiτ = 0. Because u ≤ |Di|, we

have yiτ = 1, which implies that y′iτ = 0. However, we have
∨
x∈Gimτx =(∨

x∈Gi\{j1}mτx

)∨
mτj1 =

(∨
x∈Gi\{j1}mτx

)∨
1 = 1 6= 0 = y′iτ . Therefore,

the condition
∨
j∈GiMj ≡ y′i does not hold.
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Thus, Step 16 eliminates false positives. Finally, Step 21 returns the defective item

set D.

4.4.5 Example for Algorithm 4.1

In this section, we demonstrate Algorithm 4.1 by setting n = 5, u = 2, d =

4, h = 5, and k = 9. Assume that the defective items are 1, 2, 3, and 4. The two

matrices, G and M, are as follows:

G =


0 0 0 0 1

1 0 0 0 1

1 1 0 0 0

0 0 1 1 1

1 1 1 1 1

 ,M =



0 0 0 0 1

0 0 0 1 0

1 1 1 0 0

0 0 1 0 1

0 1 0 0 0

1 0 0 1 0

0 1 0 1 1

0 0 1 0 0

1 0 0 0 0


.

Note that matrix M is a 4-disjunct matrix and that matrix G satisfies

conditions (i) and (ii) for the defective set D = {1, 2, 3, 4}. There are 0, 1, 2, 2, and

4 defective items in rows 1, 2, 3, 4, and 5 in G, respectively. After measurement

matrix T is created as in (4.12), the test outcome observed using u-NATGT is

y = [y1 yT1 yT1 y2 yT2 yT2 y3 yT3 yT3 y4 yT4 yT4 y5 yT5 yT5 ]T , where:

y1 = 0, yT1 =
[
0 0 0 0 0 0 0 0 0

]
,yT1 =

[
0 0 0 0 0 0 0 0 0

]
,

y2 = 0, yT2 =
[
0 0 0 0 0 0 0 0 0

]
,yT2 =

[
0 0 0 0 0 0 0 0 0

]
,

y3 = 1, yT3 =
[
0 0 1 0 0 0 0 0 0

]
,yT3 =

[
1 1 0 1 0 0 0 1 0

]
,

(y′3)
T =

[
0 0 1 0 1 1 1 0 1

]
,

y4 = 1, yT4 =
[
0 0 0 0 0 0 0 0 0

]
,yT4 =

[
1 0 0 0 1 0 0 0 1

]
,

(y′4)
T =

[
0 1 1 1 0 1 1 1 0

]
,
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y5 = 1, yT5 =
[
0 0 1 0 0 1 1 0 0

]
,yT5 =

[
1 1 0 1 1 1 1 1 1

]
,

(y′5)
T =

[
0 0 1 0 0 1 1 0 0

]
.

Algorithm 4.1 proceeds as follows. Because y1 = y2 = 0 (Step 3), there are less

than u = 2 defective items in rows G1,∗ and G2,∗. Therefore, vectors y′1 and y′2 are

not computed. Since y3 = 1 (Step 3), there are at least u = 2 defective items

in row G3,∗; y′3 is thus computed from y3 and y3 (Steps 4 to 14). The decoding

procedure implemented at Step 15 produces G3 = {1, 2}. Because |G3| = 2 = u

and M1 ∨M2 = y′3, the set D = D ∪G3 = {1, 2} is obtained in Steps 16 to 18.

Similarly, y′4, G4, and D = D ∪G4 = {1, 2, 3, 4} are obtained for row G4.
For the last row G5,∗, because y5 = 1 (Step 3), y′5 is obtained from y5 and y5

(Steps 4 to 14). However, the decoding procedure implemented at Step 15 produces

G5 = ∅. Since |G5| = 0, the condition at Step 16 does not hold. Therefore, G5 is

not added to the defective set D.

Finally, Step 21 returns the defective item set D = {1, 2, 3, 4}, which contains

all defective items and no false defective items.

4.4.6 The decoding complexity

Because T is constructed using G andM, the probability of successful decoding

of y depends on these choices. Given an input vector y′i, we get the set of defective

items from decoding of M. The probability of successful decoding of y thus

depends only on G. Since G has κ rows satisfying (i) and (ii) with probability at

least 1− ε, all |D| defective items can be identified by using t = h(2k + 1) tests

with probability of at least 1− ε for any ε ≥ 0.

The time to run Steps 4 to 14 is O(k). Suppose that matrixM can be decoded

in time O(A) and that each column of M can be generated in time O(B). It is

natural that k ≤ O(B) because each column of M has k entries. It thus takes

O(A) time to run Step 15 and u×O(B) time to run Steps 16 to 18. Because the
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loop in Step 2 is run h times, the total decoding time is:

h× (O(k) + A + u×O(B)) = O(h× (A + uB)).

We summarize the divide and conquer strategy in the following theorem:

Theorem 4.3 Let 2 ≤ u ≤ d < n be integers and D be the defective set. Suppose

that an h × n matrix G contains κ rows, denoted as i1, . . . , iκ, such that (i)

|Di1| = · · · = |Diκ| = u and (ii) Di1 ∪ . . . ∪Diκ = D, where Dil is the index set of

defective items in row Gil,∗. Suppose that a k × n matrix M is a d-disjunct matrix

that can be decoded in time O(A) and that each column of M can be generated in

time O(B). A (2k + 1)h× n measurement matrix T , as defined in (4.12), can thus

be used to identify up to d defective items in u-NATGT in time O(h× (A + uB)).

The probability of successful decoding depends only on the event that G has κ

rows satisfying (i) and (ii). Specifically, if that event happens with probability at

least 1− ε, the probability of successful decoding is also at least 1− ε for any ε ≥ 0.

4.5 Complexity of proposed scheme

We specify the matrix G in Theorem 4.3 to get the desired number of tests

and decoding complexity for identifying up to d defective items. Note that when

u = d, the number of defective items should be u (otherwise, every test would

yield a negative outcome). In this case, Lemma 4.2 is sufficient to find the

defective items. We consider the following notions of deterministic and randomized

decoding. Deterministic decoding is a scheme in which all defective items are

found with probability 1. It is achievable when every h× d submatrix of G is

(u, d− u)-completely separating. Randomized decoding reduces the number of

tests, in which all defective items can be found with probability at least 1− ε for

any ε > 0. It is achieved when each h× d submatrix is a (u, d− u)-completely

separating matrix with probability at least 1− ε.



4.5 Complexity of proposed scheme 63

4.5.1 Deterministic decoding

The following theorem states that there exists a deterministic algorithm for

identifying all defective items by choosing G of size h×n to be a (u, d−u)-completely

separating matrix in Theorem 4.1.

Theorem 4.4 Let 2 ≤ u ≤ d ≤ n. There exists a t× n matrix such that up to d

defective items in u-NATGT can be identified in time t× poly(d2 log n), where

t = O

((
d

u

)u(
d

d− u

)d−u
· d3 log n · log

n

d

)

Proof. On the basis of Theorem 4.3, a t× n measurement matrix T is generated

as follows:

1. Choose an h×n (u, d−u)-completely separating matrix G as in Theorem 4.1,

where h =
⌈(

d
u

)u ( d
d−u

)d−u (
d log en

d
+ u log ed

u

)⌉
+ 1.

2. Choose a k×n d-disjunct matrixM as in Theorem 2.5, where k = O(d2 log n)

and the decoding time of M is poly(k).

3. Define T as (4.12).

Since G is an h× d (u, d− u)-completely separating matrix, for any |D| ≤ d,

an h× d pruning matrix G ′, which is created by removing n− d columns Gx for

x ∈ [n] \D, is also a (u, d− u)-completely separating matrix with probability 1.

From Definition 6, matrix G ′ is also a (u, |D| − u)-completely separating matrix.

Then, there exists κ rows satisfying (i) and (ii). From Theorem 4.3, up to d

defective items can be recovered using t = h ·O(d2 log n) tests with probability 1,

in time h · poly(k). ut

4.5.2 Randomized decoding

For randomized decoding, matrix G is chosen such that the pruning matrix

G ′ of size h× d created by removing n− d columns Gx of G for x ∈ [n] \D is a

(u, d− u)-completely separating matrix with probability at least 1− ε for any

ε > 0. This results is an improved number of tests and decoding time compared to

Theorem 4.4:
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Theorem 4.5 Let 2 ≤ u ≤ d ≤ n. For any ε > 0, up to d defective items in

u-NATGT can be identified using

t = O

((
d

u

)u(
d

d− u

)d−u(
u log

d

u
+ log

1

ε

)
· d2 log n

)

tests with probability at least 1− ε. The decoding time is t× poly(d2 log n).

Proof. Using Theorem 4.3, a t×n measurement matrix T is generated as follows:

1. Choose an h× n matrix G as in Corollary 5, where

h =
⌈(

d
u

)u ( d
d−u

)d−u (
u log ed

u
+ log 1

ε

)⌉
.

2. Generate a k × n d-disjunct matrix M using Theorem 2.5, where k =

O(d2 log n) and the decoding time of M is poly(k).

3. Define T as (4.12).

Let G be an h× n matrix as described in Corollary 5. Then for any |D| ≤ d,

an h × d pruning matrix G ′, which is created by removing n − d columns Gx
for x ∈ [n] \ D, is a (u, d − u)-completely separating matrix with probability

at least 1 − ε. From Definition 6, matrix G ′ is also a (u, |D| − u)-completely

separating matrix. Then, there exist κ rows satisfying (i) and (ii) with probability

at least 1− ε. From Theorem 4.3, all |D| defective items can be recovered using

t = h ·O(d2 log n) tests with probability at least 1− ε and in time h · poly(k). ut

4.6 Simulation

In this section, we visualize the decoding times in Table 4.1. For deterministic

decoding, the number of items n and the maximum number of defective items d are

set to be {220, 230, 240, 250, 260} and {100; 1, 000}, respectively. For the randomized

algorithm, the number of items n and the maximum number of defective items

d are set to be1 {230, 250, 2100, 2300, 2500} and {10; 100; 1, 000}, respectively. The

1We note that the parameters are chosen for theoretical benchmarks and do not necessarily
reflect the range encountered for practical applications.
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threshold u is set to be 0.2d. Finally, the precision ε for randomized algorithms is

set to be 10−6.

We see that for deterministic decoding, our proposed scheme is always better

than the one proposed by Chen et al. [39] as shown in Figure 4.2. However, for

randomized decoding, our proposed scheme is better than the one proposed by

Chan et al. [38] for d ≤ log n and large enough n, as shown in Figure 4.3. Since

the decoding time in [38] is not affected much by the parameters d and u, we only

plot one graph for it. Note that when n ≤ 260, the decoding time in our proposed

scheme is worse than the one in [38]. The main reason is that the decoding time of

a d-disjunct matrix in Theorem 2.5 is high, i.e., O(d11 log17 n), and the number

of rows in G is large. Therefore, if there exists any d-disjunct matrix with low

decoding complexity, e.g., O(d2 log2 n), and the number of rows in G is sufficiently

bounded, e.g., O(d2 log2 n), our proposed scheme would perform much better than

the one in [38] when the number of items n is small, and would be practically

feasible.

4.7 Conclusion

We introduced an efficient scheme for identifying defective items in NATGT. Its

main idea is to convert the test outcomes in NATGT to NACGT by distributing

defective items into tests properly. Then all defective items are identified by using

some known decoding procedure in NACGT. However, the algorithm works only

for g = 0. Extending the results to g > 0 is left for future work. Since the number

of tests in the randomized decoding is quite large, reducing it is also an important

task. Moreover, it would be interesting to consider noisy NATGT as well, in which

erroneous tests are present in the test outcomes.
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Figure 4.2: Decoding time in deterministic decoding
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Figure 4.3: Decoding time in randomized decoding



“Nature - how, we don’t know - has technology
that works in every living cell and

that depends on every atom being precisely in the right spot.
Enzymes are precise down to the last atom.

They’re molecules. You put the last atom in, and it’s done.
Nature does things with molecular perfection.”

– Richard Smalley.

5
Non-adaptive group testing with

inhibitors

67
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5.1 Introduction

We have visited different types of defective items in a set of defective and

negative items in Chapters 3 and 4. The development of NAGT applications in

the field of molecular biology led to the introduction of another type of item:

inhibitor. An item is considered to be an inhibitor if it interferes with the

identification of defective items in a test, i.e., a test containing at least one inhibitor

item returns negative outcome. In this “Group Testing with Inhibitors (GTI)”

model, the outcome of a test on a subset of items is positive iff the subset has

at least one defective item and no inhibitors. Due to great potential for use

in applications, the GTI model has been intensively studied for the last two

decades [6], [73], [74], [75], [10].

In NAGT using the GTI model (NAGTI), if t tests are needed to identify up to

d defective items and up to h inhibitors among n items, it can be seen that they

comprise a t× n measurement matrix. The procedure for obtaining the matrix

is called the construction procedure. The procedure for obtaining the outcome

of t tests using the matrix is called encoding procedure, and the procedure for

obtaining the defective items and the inhibitor items from t outcomes is called the

decoding procedure. Since noise typically occurs in biology experiments, we assume

that there are up to e erroneous outcomes in the test outcomes. The objective of

NAGTI is to efficiently classify all items from the encoding procedure and from

the decoding procedure in the presence of noise.

There are two approaches when using NAGTI. One is to identify defective

items only. Chang et al. [76] proposed a scheme using O((d+ h+ e)2 log n) tests to

identify all defective items in time O((d+ h+ e)2n log n). Using a probabilistic

scheme, Ganesan et al. [77] reduced the number of tests to O((d+ h) log n) and the

decoding time to O((d+ h)n log n). However, this scheme proposed is applicable

only in a noise-free setting, which is restricted in practice. The second approach

is to identify both defective items and inhibitors. Chang et al. [76] proposed a

scheme using O(e(d+h)3 log n) tests to classify n items in time O(e(d+h)3n log n).

Without considering the presence of noise in the test outcome, Ganesan et al. [77]

used O((d+ h2) log n) tests to identify at most d defective items and at most h

inhibitor items in time O((d+ h2)n log n).
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5.1.1 Problem definition

We address two problems. The first is how to efficiently identify defective items

in the test outcomes in the presence of noise. The second is how to efficiently

identify both defective items and inhibitor items in the test outcome in the

presence of noise. Let z be an odd integer and e = z−1
2

be the maximum number

of errors in the test outcomes.

Problem 5.1 There are n items including up to d defective items and up to h

inhibitor items. Is there a measurement matrix such that

• All defective items can be identified in time poly(d, h, e, log n) in the presence

of up to e erroneous outcomes, where the number of rows in the measurement

matrix is much smaller than n?

• Each column of the matrix can be nonrandomly generated in polynomial time

of the number of rows?

Problem 5.2 There are n items including up to d defective items and up to h

inhibitor items. Is there a measurement matrix such that

• All defective items and inhibitors items can be identified in time poly(d, h, e, log n)

in the presence of up to e erroneous outcomes, where the number of rows in

the measurement matrix is much smaller than n?

• Each column of the matrix can be nonrandomly generated in polynomial time

of the number of rows?

We note that some previous works such as [51,52] do not consider inhibitor

items. In these works, Problems 5.1 and 5.2 can be reduced to the same problem

by eliminating all terms related to “inhibitor items.”

5.1.2 Problem model

We model NAGTI as follows. Suppose that there are up to 1 ≤ d defectives and

up to 0 ≤ h inhibitors in n items. Let x = (x1, . . . , xn)T ∈ {0, 1,−∞}n be the vector

representation of n items. Note that the number of defective items must be at least
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one. Otherwise, the outcomes of the tests designed would yield negative. Item j is

defective iff xj = 1, is an inhibitor iff xj = −∞, and is negative iff xj = 0. Suppose

that there are at most d 1’s in x, i.e., |D = {j | xj = 1, for j = 1, . . . , n}| ≤ d, and

at most h −∞’s in x, i.e., |H = {j | xj = −∞, for j = 1, . . . , n}| ≤ h.

Let Q = (qij) be a q × n binary measurement matrix which is used to identify

defectives and inhibitors in n items. Item j is represented by column j of Q (Qj)
for j = 1, . . . , n. Test i is represented by row i in which qij = 1 iff the item j

belongs to test i, and qij = 0 otherwise, where i = 1, . . . , q. Then the outcome

vector using the measurement matrix Q is

r = Q~ x =


r1
...

rq

 , (5.1)

where ~ is called the NAGTI operator, test outcome ri = 1 iff
∑n

j=1 qijxj ≥ 1, and

ri = 0 otherwise for i = 1, . . . , q. Note that we assume 0× (−∞) = 0 and there

may be at most e erroneous outcomes in r.

Given l binary vectors yw = (y1w, y2w, . . . , yBw)T for w = 1, . . . , l and some

integer B ≥ 1. The union of y1, . . . ,yl is defined as vector y = ∨li=1yi =

(∨li=1y1i, . . . ,∨li=1yBi)
T , where ∨ is the OR operator. Then when vector x is binary,

i.e., there are no inhibitors in n items, (5.1) can be represented as

r = Q~ x =
n∨
j=1

Qjxj =
n∨

j∈D

Qj. (5.2)

Our objective is to design the matrix Q such that vector x can be recovered

when having r in time poly(q) = poly(d, h, e, log n).

5.1.3 Our contributions

Overview: Our objective is to reduce the decoding complexity for identifying

up to d defectives and/or up to h inhibitors in the presence of up to e erroneous

test outcomes. We present two deterministic schemes that can efficiently solve

both Problems 5.1 and 5.2 with the probability 1. These schemes use two basic
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ideas: each column of a t1 × n (d+ h, r; z]-disjunct matrix (defined later) must

be generated in time poly(t1) and the tensor product (defined later) between

it and a special signature matrix. These ideas reduce decoding complexity to

poly(t1). Moreover, the measurement matrices used in our proposed schemes are

nonrandom, i.e., their columns can be nonrandomly generated in time polynomial

of the number of rows. As a result, one can save space for storing the measurement

matrices. Simulation results confirm our theoretical analysis. When the number of

items is sufficiently large, the decoding time in our proposed scheme is smallest in

comparison with existing work.

Comparison: We compare our proposed schemes with existing schemes in

Table 5.1. There are six criteria to be considered here. The first one is construction

type, which defines how to achieve a measurement matrix. It also affects how

defectives and inhibitors are identified. The most common construction type

is random; i.e., a measurement matrix is generated randomly. The six schemes

evaluated here use random construction except for our proposed schemes.

The second criterion is decoding type: “Deterministic” means the decoding

objectives are always achieved with probability 1, while “Randomized” means the

decoding objectives are achieved with some high probability. Ganesan et al. [77]

used randomized decoding schemes to identify defectives and inhibitors. The

schemes in [76] and our proposed schemes use deterministic decoding.

The remaining criteria are: identification of defective items only, identification

of both defective items and inhibitor items, error tolerance, the number of tests,

and the decoding complexity. The only advantage of the schemes proposed by

Ganesan et al. [77] is that the number of tests is less than ours. Our schemes

outperformed the existing schemes in other criteria such as error-tolerance, the

decoding type, and the decoding complexity. The number of tests with our

proposed schemes for identifying defective items only (both defective items and

inhibitor items, resp.) is smaller (larger, resp.) than that with the scheme proposed

by Chang et al. [76]. The decoding complexity in our proposed scheme is much

less than theirs when the number of items is sufficiently large.
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Table 5.1: Comparison with existing schemes. “Deterministic” and “Randomized”
are abbreviated as “Det.” and “Rnd.”. The

√
sign means that the criterion

holds for that scheme, while the × sign means that it does not. We set e = z−1
2

,

λ = (d+h) lnn
W((d+h) lnn)

+ z, and α = max
{

λ
(d+h)2

, 1
}

, where W(x) = Θ (lnx− ln lnx) .

Scheme
Construction

type
Decoding

type
Max. no.

of # errors
Defectives

only

Defectives
and

inhibitors

Number of tests
(t)

Decoding
complexity

Chang
et al. [76]

Random Det. e
√

× O((d+ h+ e)2 lnn) O(tn)

Ganesan
et al. [77]

Random Rnd. 0
√

× O((d+ h) lnn) O(tn)

Proposed
(Theorem 5.4)

Nonrandom Det. e
√

× Θ (λ2 lnn) O
(
λ5 lnn
(d+h)2

)
Chang

et al. [76]
Random Det. e

√ √
O(e(d+ h)3 lnn) O(tn)

Ganesan
et al. [77]

Random Rnd. 0
√ √

O((d+ h2) lnn) O(tn)

Proposed
(Theorem 5.5)

Nonrandom Det. e
√ √

Θ (λ3 lnn) O (dλ6 × α)

5.2 Preliminaries

Notation is defined here for consistency. Capital letters with asterisk is

denoted for multisets in which elements may appear multiple times. For example,

S = {1, 2, 3} is a set and S∗ = {1, 1, 2, 3} is a multiset. Here we assume

0× (−∞) = 0.

Some frequent notations are listed as follows:

• ~: operator for NAGTI.

• S: s× n measurement matrix used to identify at most one defective item or

one inhibitor item, where s = 2 log n.

• M = (mij): m× n disjunct matrix, where integer m ≥ 1 is number of tests.

• T = (tij): t× n measurement matrix used to identify at most d defective

items, where integer t ≥ 1 is number of tests.

• D;H: index set of defective items; index set of inhibitor items.
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5.3 Improved instantiation of nonrandom (d, r; z]-

disjunct matrices

We first state the useful nonrandom construction of (d, r; z]-disjunct matrices,

which is an instance of Theorem 2.2:

Theorem 5.3 [36, Lemma 29] Let 1 ≤ d, r, z < n be integers and C be a

[n1 = q − 1, k1]q-RS code. For any d < n1−z
r(k1−1) = q−1−z

r(k1−1) and n ≤ qk1, there exists

a t× n nonrandom (d, r; z]-disjunct matrix where t = O (qr+1). Moreover, each

column of the matrix can be constructed in time O (qr+2/(r2d2)).

An approximation of a Lambert W function W(x) [71] is lnx − ln lnx ≤
W(x) ≤ lnx− 1

2
ln lnx for any x ≥ e. Then an improved instatiation of nonrandom

(d, r; z]-disjunct matrix is stated as follows:

Corollary 6 For any positive integers d, r, z, and n with d + r ≤ n, there

exists a t × n nonrandom (d, r; z]-disjunct matrix with t = Θ (λr+1), where

λ = (rd lnn)/(W(d lnn)) + z. Moreover, each column of the matrix can be

constructed in time O (λr+2/(r2d2)) .

Proof. From Theorem 5.3, we only need to find an [n1 = q− 1, k1]q-RS code such

that d < n1−z
r(k1−1) = q−1−z

r(k1−1) and qk1 ≥ n. One chooses

q =

 rd lnn
W(d lnn)

+ z + 1 if rd lnn
W(d lnn)

+ z + 1 is the power of 2.

2η+1, otherwise.
(5.3)

where η is an integer satisfying 2η < rd lnn
W(d lnn)

+ z + 1 < 2η+1. We have q =

Θ
(

rd lnn
W(d lnn)

+ z
)

in both cases because rd lnn
W(d lnn)

+ z + 1 ≤ q < 2
(

rd lnn
W(d lnn)

+ z + 1
)
.

Set k1 =
⌈
q−z−1
rd

⌉
≥ lnn

W(d lnn)
. Note that the condition on d in Theorem 5.3

always holds because:

k1 =

⌈
q − z − 1

rd

⌉
=⇒ k1 <

q − z − 1

rd
+ 1 =⇒ d <

q − 1− z
r(k1 − 1)

=
n1 − z
r(k1 − 1)

.
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Finally, our task is to prove that n ≤ qk1 . Indeed, we have:

qk1 ≥
(

rd lnn

W(d lnn)
+ z + 1

) lnn
W(d lnn)

≥
(

d lnn

W(d lnn)

) lnn
W(d lnn)

≥
(

eW(d lnn)eW(d lnn
)1/d

= (ed lnn)1/d = n.

This completes our proof. ut

The number of tests in our construction is better than the one in Theorem 2.2.

Furthermore, there is no decoding scheme associated with matrices in this corollary.

However, when r = z = 1, the scheme in [51] achieves the same number of tests

and has an efficient decoding algorithm.

5.4 Identification of defective items

In this section, we answer Problem 5.1 that there exists a t× n measurement

matrix such that: it can handle at most e errors in the test outcome; each column

can be nonrandomly generated in time poly(t); and all defective items can be

identified in time poly(d, h, e, log n), where there are up to d defective items and

up to h inhibitor items in n items. The main idea is to use the modified version of

Algorithm 3.1 to identify all potential defective items. Then a sanitary procedure

is proceeded to remove all false defective items.

Theorem 5.4 Let 1 ≤ d, h, d+h ≤ n be integers, z be odd, and λ = (d+h) lnn
W((d+h) lnn)

+z.

A set of n items includes up to d defective items and up to h inhibitors. Then

there exists a t× n nonrandom matrix such that up to d defective items can be

identified in time O
(
λ5 logn
(d+h)2

)
with up to e = z−1

2
errors in the test outcomes, where

t = Θ (λ2 log n). Moreover, each column of the matrix can be generated in time

poly(t).

The proof is given in the following sections.
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5.4.1 Encoding procedure

We set e = z−1
2

and λ = (d+h) lnn
W((d+h) lnn)

+ z. Let an m × n matrix M be an

(d+ h; z]-disjunct matrix in Corollary 6 (r = 1), where

m = Θ

((
(d+ h) lnn

W((d+ h) lnn)
+ z

)2
)

= O(λ2).

Each column in M can be generated in time t1 = O
(

λ3

(d+h)2

)
. Then the final

t× n measurement matrix T is

T =M} S, (5.4)

where the s× n matrix S is defined in (3.1) and t = ms = Θ (λ2 log n). Then it is

easy to see that each column of T can be generated in time t1 × s = poly(t).

Any input vector x = (x1, . . . , xn)T ∈ {0, 1,−∞}n contains at most d 1’s and

at most h −∞’s as described in section 5.1.2. Note that D and H are the index

sets of the defective items and the inhibitor items, respectively. Then the binary

outcome vector using the measurement matrix T is y = T ~ x = [yT1 , . . . ,y
T
m]T ,

where yi = (S × diag(Mi,∗)) ~ x = [y(i−1)s+1, . . . , yis]
T , and y(i−1)s+l = 1 iff∑n

j=1 sljmijxj ≥ 1, and y(i−1)s+l = 0 otherwise, for i = 1, . . . ,m, and l = 1, . . . , s.

We assume that there are at most e incorrect outcomes in the outcome vector y.

5.4.2 Decoding procedure

Algorithm 3.1 is modified and denoted as GetDefectives∗(y, n) if we substitute

S by multiset S∗; i.e., the output of GetDefectives∗(·) may have duplicated items

which are used to handle the presence of erroneous outcomes in Sections 5.4

and 5.5. Line 7 is interpreted as “Add d0 to set S∗”.

Given outcome vector y = (yT1 , . . . ,y
T
m)T , we can identify all defective items by

using Algorithm 5.1. Step 1 is to identify all potential defectives and put them in

the set S∗. Then Steps 3 to 8 are to remove duplicate items in the new potential

defective set S0. After that, Steps 9 to 16 are to remove all false defectives. Finally,

Step 17 returns the defective set. The main idea of this algorithm can be illustrated
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serial outcomes,

identify a defectiveDecoding
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…

𝑛 items
up to 𝑑

defectives

Figure 5.1: Main idea of Algorithm 5.1.

as in Figure 5.2, where the signature of item j is Sj.

5.4.3 Correctness of decoding procedure

Since matrix M is an (d+ h; z]-disjunct matrix, there are at least z rows i0

such that mi0j = 1 and mi0j′ = 0 for any j ∈ D and j′ 6∈ D ∪H \ {j}. Since up to

e = (z − 1)/2 errors may appear in test outcome y, there are at least e+ 1 vectors

yi0 such that the condition in Step 5 of Algorithm 3.1 holds. Consequently, each

value j ∈ D appears at least e+ 1 times. Therefore, Steps 1 to 8 return a set S0

containing all defective items and some false defectives.

Steps 9 to 16 are to remove false defectives. For any index j 6∈ D, since there

are at most e = (z − 1)/2 erroneous outcomes, there is at least 1 row i0 such that

ti0j = 1 and ti0j′ = 0 for all j′ ∈ D ∪H. Because item j 6∈ D, the outcome of that

row (test) is negative (0). Therefore, Step 12 is to check whether an item in S0 is

non-defective. Finally, Step 17 returns the set of defective items.

5.4.4 Decoding complexity

The time to run Step 1 is O(t). Since |S∗| ≤ m, it takes m time to run Steps 3

to 8. Because |S∗| ≤ m, the cardinality of S0 is up to m. The loop at Step 9 runs
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Algorithm 5.1 GetDefectivesWOInhibitors(y, n, e): detection of up to d defective
items without identifying inhibitors.

Input: a function to generate t× n measurement matrix T ; outcome vector y;
maximum number of errors e
Output: defective items

1: S∗ = GetDefectives∗(y, n). . Identify all potential defectives.
2: S0 = ∅. . Defective set.
3: foreach x ∈ S∗ do
4: if x appears in S∗ at least e+ 1 times then
5: S0 = S0 ∪ {x}.
6: Remove all elements that equal x in S∗.
7: end if
8: end foreach
9: for all x ∈ S0 do . Remove false defectives.

10: . Get column corresponding to defective item x.
11: Generate column Tx =Mx } Sx.
12: if ∃i0 ∈ [t] : ti0x = 1 and yi0 = 0 then . Condition for a false defective.
13: S0 = S0 \ {x}. . Remove false defectives.
14: break;
15: end if
16: end for
17: return S0. . Return set of defective item.

at most m times. Steps 11 and 12 take time s× m1.5

(d+h)2
and t, respectively. The

total decoding time is:

O(t) +m+m×
(
s× m1.5

(d+ h)2
+ t

)
= O

(
sm2.5

(d+ h)2

)
= O

(
λ5 log n

(d+ h)2

)
.

5.5 Identification of defectives and inhibitors

In this section, we answer Problem 5.2 that there exists a v × n measurement

matrix such that: it can handle at most e errors in the test outcome; each column

can be nonrandomly generated in time poly(v); and all defective items and inhibitor

items can be identified in time poly(d, h, e, log n), where there are up to d defective

items and up to h inhibitor items in n items.
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Theorem 5.5 Let 1 ≤ d, h, d+h ≤ n be integers, z be odd, and λ = (d+h) lnn
W((d+h) lnn)

+z.

A set of n items includes up to d defective items and up to h inhibitors. Then

there exists a v × n nonrandom matrix such that up to d defective items and up

to h inhibitor items can be identified in time O
(
dλ6 ×max

{
λ

(d+h)2
, 1
})

, with up

to e = z−1
2

errors in the test outcomes, where v = Θ (λ3 log n). Moreover, each

column of the matrix can be generated in time poly(v).

To detect both up to h inhibitors and d defectives, we have to use two types of

matrices: an (d+ h; z]-disjunct matrix and an (d+ h− 2, 2; z]-disjunct matrix.

The main idea is as follows. We first identify all defective items. Then all potential

inhibitors are located by using an (d + h − 2, 2; z]-disjunct matrix. The final

procedure is to remove all false inhibitor items.

5.5.1 Identification of an inhibitor

Let ∨ be the notation for the union of the column corresponding to the defective

item and the column corresponding to the inhibitor item. We suppose that there

is an outcome o := (o1, . . . , os)
T = Sa∨Sb, where the defective item is a and the

inhibitor item is b, and that Sa and Sb are two columns in the s × n matrix

S in (3.1). Note that oi = 1 iff sia = 1 and sib = 0, and oi = 0 otherwise, for

i = 1, . . . , s. Assume that the defective item a is already known. The inhibitor

item b is identified as in Algorithm 5.2.

The correctness of the algorithm is described here. Step 2 initializes the

corresponding column of inhibitor b in S. Since column Sa has exactly s/2 1’s,

Steps 3 to 6 are to obtain s/2 positions of Sb. Since the first half of Sa is the

complement of its second half, it does not exist two indexes i0 and i1 such that

si0a = si1a = 1, where |i0 − i1| = log n. As a result, it does not exist two indexes i0

and i1 such that si0b = si1b = −1, where |i0 − i1| = log n. Moreover, the first half

of Sb is the complement of its second half. Therefore, the remaining s/2 entries

of Sb can be obtained by using Steps 7 to 11. The index of inhibitor b can be

identified by checking the first half of Sb, which is done in Step 12. Finally, Step 13

returns the index of the inhibitor.

It is easy to verify that the decoding complexity of Algorithm 5.2 is O(s).
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Algorithm 5.2 GetInhibitorFromADefective(o,Sa, n): identification of an in-
hibitor when defective item and union of corresponding columns are known.

Input: outcome vector o := (o1, . . . , os) = Sa ∨ Sb; number of items n; vector Sa
corresponding to defective item a
Output: inhibitor item b

1: s = 2 log n.
2: Set Sb = (s1b, . . . , ssb)

T = (−1,−1, . . . ,−1)T .
3: for i = 1 to s do . Obtain s/2 entries of Sb.
4: If sia = 1 and oi = 1 then sib = 0. end if
5: If sia = 1 and oi = 0 then sib = 1. end if
6: end for
7: for i = 1 to s/2 do . Obtain s/2 remaining entries of Sb.
8: If sib = −1 then sib = 1− si+s/2,b. end if
9: If sib = 0 then si+s/2,b = 1. end if

10: If sib = 1 then si+s/2,b = 0. end if
11: end for
12: Get index b by checking first half of Sb.
13: return b. . Return the inhibitor item.

Example: Let S be the matrix in (3.1), where n = 8 and s = 2 log n = 6.

Given item 1 is the unknown inhibitor and that item 3 is the known defective

item, assume that the observed vector is o = (0, 1, 0, 0, 0, 0)T . The corresponding

column of the defective item is S3. We set Sb = (−1,−1,−1,−1,−1,−1)T .

We get Sb = (−1, 0,−1, 1,−1, 1)T from Steps 3 to 6 and the complete column

Sb = (0, 0, 0, 1, 1, 1)T from Steps 7 to 11. Because the first half of Sb is (0, 0, 0)T ,

the index of the inhibitor is 1.

5.5.2 Encoding procedure

We set e = z−1
2

and λ = (d+h) lnn
W((d+h) lnn)

+ z. Let an m× n matrix M and a g × n
matrix G be an (d+ h; z]-disjunct matrix and an (d+ h− 2, 2; z]-disjunct matrix
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in Corollary 6, respectively, where

m = Θ

((
(d+ h) lnn

W((d+ h) lnn)
+ z

)2
)

= Θ
(
λ2
)
,

g = Θ

((
(d+ h) lnn

W((d+ h) lnn)
+ z

)3
)

= Θ
(
λ3
)
.

Each column in M and G can be generated in time t1 and t2, respectively,

where

t1 = O

(
λ3

(d+ h)2

)
, t2 = O

(
λ4

(d+ h)2

)
. (5.5)

The final v × n measurement matrix V is

V =

M} S
G } S
G

 =

TH
G

 , (5.6)

where T =M} S and H = G } S. The sizes of matrices T and H are t× n and

h× n, respectively. Then we have t = ms = 2m log n and h = gs = 2g log n. Note

that the matrix T is the same as the one in (5.4). The number of tests of the

measurement matrix V is

v = t+ h+ g = ms+ gs+ g = O((m+ g)s) = Θ
(
λ3 log n

)
.

Then it is easy to see that each column of matrix V can be generated in time

(t1 + t2)× s+ t2 = poly(v).

Any input vector x = (x1, . . . , xn)T ∈ {0, 1,−∞}n contains at most d 1’s and at

most h −∞’s as described in Section 5.1.2. The outcome vector using measurement

matrix T , i.e., y = T ~ x, is the same as the one in Section 5.4.1. The binary
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outcome vector using the measurement matrix H is

h = H~ x =


h1

...

hg

 , (5.7)

where hi = (S × diag(Gi,∗))~x = [h(i−1)s+1, . . . , his], h(i−1)s+l = 1 iff
∑n

j=1 sljgijxj ≥
1, and h(i−1)s+l = 0 otherwise, for i = 1, . . . , g, and l = 1, . . . , s. Therefore, the

outcome vector using the measurement matrix V in (5.6) is:

v = V ~ x =

TH
G

~ x =

T ~ x

H~ x

G ~ x

 =

y

h

g

 , (5.8)

where y is as same as the one in Section 5.4.1, h is defined in (5.7), and

g = G ~ x = (r1, . . . , rg)
T . We assume that 0× (−∞) = 0 and there are at most

e = (z − 1)/2 incorrect outcomes in the outcome vector v.

5.5.3 Decoding procedure

Given outcome vector v, number of items n, number of tests in matrix M,

number of tests in matrix G, maximum number of errors e, and functions to

generate matrix V , G, M, and S. The details of the proposed scheme is described

in Algorithm 5.3. Steps 1 to 2 are to divide the outcome vector v into three

smaller vectors y,h, and g as (5.8). Then Step 3 is to get the defective set. All

potential inhibitors would be identified in Steps 5 to 12. Then Steps 14 to 23 are to

remove most of false inhibitors. Since there may be some duplicate inhibitors and

some remaining false inhibitors in the inhibitor set, Step 25 to 31 are to remove

the remaining false inhibitors and make each element in the inhibitor set unique.

Finally, Step 32 is to return the defective set and the inhibitor set. The main idea

of this algorithm can be illustrated as in Figure 5.2, where the signature of item j

is Sj and the signature of the defective item j1 and the inhibitor item j2 is Sj1∨Sj2 .
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Figure 5.2: Main idea of Algorithm 5.3.

5.5.4 Correctness of the decoding procedure

Because of the construction of V, the three vectors split from the outcome

vector v in Step 2 are y = T ~ x,h = H~ x, and g = G ~ x. Therefore, the set D

achieved in Step 3 is the defective set as analyzed in Section 5.4.

Let H be the true inhibitor set which we will identify. Since G is an (d+h−2, 2; z]-

disjunct matrix G, for any j1 ∈ H (we have not known H yet) and j2 ∈ D, there

exists at least z rows i0’s such that gi0j1 = gi0j2 = 1 and gi0j′ = 0, for all

j′ ∈ D ∪H \ {j1, j2}. Then, since there are at most e = (z− 1)/2 errors in v, there

exists at least e+ 1 = (z− 1)/2 + 1 index i0’s such that hi0 = Sj1∨Sj2 . As analyzed

in Section 5.5.1, for any vector which is the union of the column corresponding

to the defective item and the column corresponding to the inhibitor item, the

inhibitor item is always identified if the defective item is known. Therefore, the set

H∗0 obtained from Steps 7 to 12 contains all inhibitors and may contain some false

inhibitors. Our next goal is to remove false inhibitors.

To remove the false inhibitors, we first remove all defective items in the set

H∗0 as Step 16. Therefore, there are only inhibitors and negative items in the

set H∗0 after implementing Step 16. One needs to exploit the property of the
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inhibitor that it will make the test outcome negative if there are at least one

inhibitor and at least one defective in the same test. We pick an arbitrary defective

item y ∈ D and generate its corresponding column Gy in the matrix G. Since

G is an (d+ h− 2, 2; z]-disjunct matrix G and there are at most e = (z − 1)/2

errors in v, for any j1 ∈ H (we have not known H yet) and y ∈ D, there exists

at least z − e = e + 1 rows i0’s such that gi0j1 = gi0y = 1 and gi0j′ = 0, for all

j′ ∈ D ∪H \ {j1, y}. The outcome of these tests would be negative. Therefore,

Steps 14 to 23 removes most of false inhibitors. Note that since there are at most

e errors, the are at most e false inhibitors and each of them appears at most e

times in the set H∗0 . Then Step 25 to 31 are to completely remove false inhibitors

and make each element in the inhibitor set unique. Finally, Step 32 returns the

sets of defective items and inhibitor items.

5.5.5 Decoding complexity

First, we find all potential inhibitors. It takes time O(v) for Step 2. The time

to get the defective set D is O
(
sm2.5

(d+h)2

)
= O

(
λ5 logn
(d+h)2

)
as analyzed in Theorem 5.4.

Steps 7 and 8 have up to g and |D| ≤ d loops, respectively. Since Step 9 takes

time O(s), the running time from Steps 7 to 12 is O(gds) and the cardinality of

H∗0 is up to gd.

Second, we analyze the complexity of removing false inhibitors. Step 15 takes

time t1 as in (5.5). Since |H∗0 | ≤ gd, the number of loops at Step 17 is at most gd.

For the next step, it takes time t2 for Step 18 as in (5.5). And it takes time O(g)

from Steps 19 to 22. As a result, it takes time O(t1 + gd(t2 + g)) for Steps 14 to 23.

Finally, Steps 25 to 31 are to remove duplicate inhibitors in the new defective

set H. It takes time O(gd) to do that because we know |H∗0 | ≤ gd.

In summary, the decoding complexity is:

O

(
sm2.5

(d+ h)2

)
+O(gds) +O(t1 + gd× (t2 + g)) +O(gd)

= O

(
sm2.5

(d+ h)2

)
+O(gd(t2 + g)) = O

(
λ5 log n

(d+ h)2

)
+O

(
dλ3 ×

(
λ4

(d+ h)2
+ λ3

))
= O

(
dλ6 ×max

{
λ

(d+ h)2
, 1

})
.
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5.6 Simulation

In this section, we visualize the number of tests and decoding times in

Table 5.1. We evaluated variations of our proposed scheme by simulation using

d = 2, 4, . . . , 210, h = 0.2d, and n = 232 in Matlab R2015a on an HP Compaq Pro

8300SF desktop PC with a 3.4-GHz Intel Core i7-3770 processor and 16-GB memory.

Two scenarios are considered here: identification of defective items (corresponding

to section 5.4) and identification of defectives and inhibitors (corresponding to

section 5.5). For each scenario, two models of noise are considered in test outcomes:

noiseless setting and noisy setting. In the noisy setting, the number of errors is

set to be as 100 times the summation of the number of defective items and the

number of inhibitor items. Moreover, in some special cases, the number of items

and the number of errors may be reconsidered.

All figures are plotted in 3 dimensions in which the x-axis (on the right of

figures), y-axis (in the middle of figures), z-axis (the vertical line) represent number

of defectives, number of inhibitors, and number of tests. Our proposed scheme,

Ganesan et al.’s scheme, and Chang et al.’s scheme are visualized with red color

with marker of circle, green color with marker of pentagram, and blue color with

marker of asterisk. In the noisy setting, Ganesan et al.’s scheme is not plotted

because the authors of that scheme did not consider the noisy setting.

For decoding time, when the number of items is sufficiently large, the decoding

time in our proposed scheme is smaller than that of Chang et al.’s scheme and

Ganesan et al.’s scheme.

5.6.1 Identification of defective items

We illustrate decoding time when defective items are the only items that we

want to recover here. When there are no errors in test outcomes, as shown in

Fig. 5.3, the decoding time in our proposed scheme is lowest. Since the decoding

times in our proposed scheme and Ganesan et al.’s scheme are relatively equal,

only one line is visible in the left subfigure of Fig. 5.3. Therefore, we zoomed in

on those lines to see how close these two decoding times are. As plotted in the

right subfigure of Fig. 5.3, when the number of defective items and the number of
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Figure 5.3: Decoding time vs. number of defectives and number of inhibitors for
identifying only defective items when there are no errors in test outcomes.
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Figure 5.4: Decoding time vs. number of defectives and number of inhibitors for
identifying only defective items with presence of erroneous outcomes.

inhibitor items are small, the decoding time in our proposed scheme is always

smaller the one in Ganesan et al.’s scheme. As the number of defective items and

the number of inhibitor items increase, the decoding time in our proposed scheme

first becomes larger the one in Ganesan et al.’s scheme, though it becomes smaller

after the number of items reaches some threshold. We note that if the number of

defective items and inhibitor items are fixed while the number of total items is

sufficiently large, the decoding time in our proposed scheme is always smaller than

the ones in Chang et al.’s scheme and Ganesan et al.’s scheme.

When some erroneous outcomes are allowed, the decoding time in our proposed

scheme is always smaller than the one in Chang et al.’s scheme as shown in Fig. 5.4.
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Figure 5.5: Decoding time vs. number of defectives and number of inhibitors for
classifying items when there are no errors in test outcomes.
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Figure 5.6: Decoding time vs. number of defectives and number of inhibitors for
classifying items when there are some erroneous outcomes.

5.6.2 Identification of defectives and inhibitors

We illustrate decoding time for classifying all items. In principle, the complexity

of the decoding time in our proposed scheme is smallest in comparison with the

ones in Chang et al.’s scheme and Ganesan et al.’s scheme when the number of

items is sufficiently large. When there are no errors in test outcomes, the decoding

time of the proposed scheme is smallest when the number of items is at least 266,

as shown in subfigure (b) of Fig. 5.5. When some erroneous outcomes are allowed,

the decoding time in our proposed scheme is always smaller than the one in Chang

et al.’s scheme when the number of items is at least 261, as shown in subfigure (b)

of Fig. 5.6.
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5.7 Conclusion

We have presented two schemes efficiently identifying up to d defective items and

up to h inhibitors in the presence of e erroneous outcomes in time poly(d, h, e, log n).

This decoding complexity is substantially less than that of state-of-the-art systems

in which the decoding complexity is poly(d, h, e, n). However, the number of tests

with our proposed schemes is slightly higher. Moreover, we have not considered

an inhibitor complex model [76] in which each inhibitor in this work would

be transferred to a bundle of inhibitors. Such a model would be much more

complicated and is left for future work.
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Algorithm 5.3 GetInhibitors(v, n, e,m, g): identification of up to d defectives
and up to h inhibitors.

Input: outcome vector v; number of items n; number of tests in matrix M;
number of tests in matrix G; maximum number of errors e; and functions to
generate matrix V , G, M, and S
Output: defective items and inhibitor items

1: s = 2 log n. . number of rows in the matrix S.
2: Divide vector v into three smaller vectors y,h, and g such that v =

(yT ,hT ,gT )T and number of entries in y,h, and g are ms, gs, and g, re-
spectively.

3: D = GetDefectivesWOInhibitors(y, n, e). . defective set.
4: � Find all potential inhibitors.
5: Divide vector h into g smaller vectors h1, . . . ,hg such that h = (hT1 , . . . ,h

T
g )T

and their size are equal to s.
6: H∗0 = ∅. . Initialize inhibitor multiset.
7: for i = 1 to g do . Scan all outcomes in h.
8: foreach x ∈ D do
9: i0 = GetInhibitorFromADefective(hi,Sx, n).

10: Add item i0 to multiset H∗0 .
11: end foreach
12: end for
13: � Remove most of false inhibitors.
14: Assign (r1, . . . , rg)

T = g.
15: Generate a column Gy for any y ∈ D. . Get the column of a defective.
16: H∗0 = H∗0 \D.
17: foreach x ∈ H∗0 do . Scan all potential inhibitors.
18: Generate column Gx
19: if ∃i0 ∈ [g] : gi0x = gi0y = 1 and ri0 = 1 then
20: Remove all elements that equal x in H∗0 . . Remove the false inhibitor.
21: break;
22: end if
23: end foreach
24: � Completely remove false inhibitors and duplicate inhibitors.
25: H = ∅.
26: foreach x ∈ H∗0 do
27: if x appears in H∗0 at least e+ 1 times then
28: H = H ∪ {x}.
29: Remove all elements that equal x in H∗0 .
30: end if
31: end foreach
32: return D and H. . Return set of defective items.



“We can only see a short distance ahead, but
we can see plenty there that needs to be done.”

– Alan Turing.

6
Summary and future work

89



6.1 Summary of contributions 90

6.1 Summary of contributions

This thesis explored algorithmic aspects of group testing. It addressed how to

design tests and how to utilize them for decoding for various group testing models.

All of the decoding complexities proposed are sub-linear wrt the number of items.

Further, most of the proposed schemes attain good performance in practice. The

key underlying ideas binding the improvements achieved in algorithmic aspects

together is to use divide-and-conquer strategies.

Since non-adaptive classical group testing has been widely used in practice for

decades, an efficient nonrandom design of the measurement matrices is required.

In Chapter 3, we presented a nonrandom design that is quite simple, is easy to

implement, and requires low memory for practice]al application. Moreover, we

overcame a 54–year bound on nonrandom construction for non-adaptive classical

group testing. Empirical results demonstrated the superior performance compared

of existing schemes.

By revising the definition of defective items, a new model of group testing is

devised: threshold group testing. We presented in Chapters 4 efficient decoding

schemes for this in which the decoding complexity is sub-linear wrt the number of

items. These schemes outperform existing ones in which the decoding complexities

are polynomial or exponential wrt the number of items. Nonetheless, the number

of tests associated with decoding is too large for practical application.

The diversity in group testing basically reflects in biology. As inhibitor

molecules inhibit the functioning of other molecules, inhibitor items added to a set

of items in classical group testing. In Chapter 5, we presented an efficient decoding

scheme that is again sub-linear wrt the number of items. The empirical results

obtained by implementing the proposed scheme match those of theoretical analysis.

6.2 Directions for future work

While the problems in classical group testing have mostly been solved, several

problems in non-classical group testing remains unsolved. This fact leads to several

natural extensions of the work described in this thesis for non-classical group

testing.
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The number of tests in threshold group testing is impractically high. As the

threshold increases, the number of tests exponentially increases. The number

could be reduced by placing strict conditions on u and d, but such conditions

would make any solutions associated with them impractical. Removing the strict

conditions while keeping the number of tests low is thus an important task.

Another important task is determining whether there exists a solution such that

the decoding time is a polynomial of d, u, and log n.

Those open problems for non-classical group testing described above are

considered under the algorithmic viewpoint. Interesting tasks from the viewpoint

of information theory include investigating the upper and lower bounds on the

number of tests and the decoding time for non-classical group testing.

Moving from theory to practice, it is essential to apply group testing to

real-world problems. It would be best to design tests in practice corresponding to

tests in theory. However, this is a costly and time-consuming approach. A more

promising approach is to use available biological datasets for creating tests instead

of carrying out biological experiments.
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