K 4

FAL (B 247)

¥R F S

PR G- O B A

AL G- OB

EVA I

i 3C A % A

A (1)

K 2114 =5

2019 4F 9 H 27 H

A Study on Portable Load Balancer for Container Clusters
SR #HX 6m EA
w#x e bor
HEHR BT E L
WA A 5
i Bl ER
HERFEREEWRAT AT 7 —

i

(s 3)
BERXDEE

K 4

=

Y3

i LB H A Study on Portable Load Balancer for Container Clusters

Today, most of the people in the world can not spend a day without using
smartphones or PCs. They use these devices to access services provided by web
applications on the Internet. These services include e-mail, social media, search
engines, shopping site, etc., everything provided through the Internet. As these
services become an indispensable part of the daily lives, portability of the application
becomes very important.

For example, those who provide these services need to be able to recover from a
disaster by migrating their web applications to different locations. They also need to
be able to expand their businesses to different countries, once the web service 1is
successful in one country. It is also preferable for them to be able to migrate their
services without a hassle at their convenience in order to avoid lock-ins.

For the portability of web applications, providing a web application consisting of a
cluster of Linux containers is a promising candidate, since Linux containers can run
on any Linux system regardless of the infrastructures. A container orchestrator (also
called container cluster management system) is a tool to simplify the management of
a cluster of containers that are launched on multiple servers. And it is expected to
provide a uniform platform for container clusters by functioning as a middleware,
which will improve the portability of web applications. However, none of the existing
container orchestrators meets the expectation, because none of them has a standard
way to set up the route for ingress traffic from the Internet automatically. Users need
to set up a route for ingress traffic manually every time they start a new web
application, depending on the type of the infrastructure. The lack of this standardized
automation is one of the most critical problems that prevent container orchestrators
from serving as a common middleware that facilitates the portability of web
applications. Without solving this problem, the migration of a web application will
never be easy, and will always require manual adjustment to the infrastructures.

In this dissertation, the author addresses this problem by proposing an
architecture using a portable software load balancer that can run on any infrastructure.
The author provides a cluster of software load balancers in containers that can be
launched as a part of web applications for Kubernetes. The architecture is also capable
of setting up the route for the ingress traffic automatically by using standard protocols.
For this, Equal Cost Multi Path (ECMP) routes are populated through Border Gateway
Protocol (BGP) in order to provide redundancy and scalability at the same time. By

using the proposed architecture, web application clusters no longer depend on the load
balancers provided by infrastructures. And hence, container orchestrators become
being able to better serve as a common middleware.

The author has implemented a containerized software load balancer using Linux
kernel’s IPVS, and carried out experiments with the following criteria: 1) verify if the
proposed load balancer works correctly both in the cloud and the on-premise data center.
2) verify if the proposed load balancer has a sufficient performance level for 1 Gbps
and 10 Gbps networks. 3) verify if the proposed redundancy architecture using ECMP
with BGP properly functions.

From the results of the experiment, it has been shown that the proposed load
balancers can run in an on-premise data center, Google Cloud Platform (GCP), and
Amazon Web Service (AWS). Therefore, the proposed load balancers can be said to be
portable.

In the case of 1 Gbps network environment, the throughput of the IPVS in a
container with Layer 3 Direct Server Return(LL3DSR) setting has been about 1.5 times
higher than that of existing iptables DNAT rules, which is prepared by Kubernetes’s
daemons as an internal load balancer. And it has been shown that the proposed load
balancer has more than enough throughput to fill up 1 Gbps bandwidth. In the case of
10 Gbps network environment, while a single IPVS load balancer in the container can
provide only 1/4 of required throughput, ECMP setups using more than four of them
can deal with 10 Gbps equivalent of the traffic. Therefore, the proposed load balancer
has been proven to be portable with sufficient performance in both 1 Gbps and 10 Gbps
network environments.

The author has also verified that ECMP routes are properly created on the
upstream router, upon launch of new load balancer containers. The update of the ECMP
routing table was correct and quick enough, i.e., within 10 seconds, throughout 20
hours experiment. The maximum performance level of a cluster of load balancers has
scaled linearly up to four times as the number of the load balancer containers has been
increased up to four. The maximum aggregated throughput obtained through the
experiment is 780k [req/sec], which is limited by the CPU performance of the
benchmark client and can be improved using better hardware in the future experiment.
Therefore, the author has proved that proposed load balancer has the capability of the
automatic setup of ingress traffic in a redundant and scalable manner.

Sooner or later, the day when the network in a data center becomes all 100 Gbps
will come. Therefore, it is essential to improve the performance of the portable load
balancers in future work. The author has started to implement a novel software load
balancer using eXpress Data Path (XDP) technology. The preliminary result, where the
maximum throughput is about 390K [req/sec] with single-core packet processing,
indicates that this technology is very promising. The author estimates that about five

of the software load balancers using this technology with 16 core packet processing can

provide enough throughput in 100 Gbps environments in the future.

The proposed load balancer has been verified to be portable while providing
sufficient throughput in 10 Gbps environment. And the proposed redundancy
architecture using ECMP with BGP has also been verified to function properly. As a
consequence, the proposed architecture with this load balancer will help improve the
portability of web applications.

The outcome of this study will benefit users who want to improve the portability
of web applications and deploy them anywhere they want. Moreover, the result of this
study will potentially benefit users who want to use a group of different cloud providers
and on-premise data centers across the globe seamlessly. In other words, users will
become being able to deploy a complex web service on aggregated computing resources

on the earth, as if they were starting a single process on a single computer.

Results of the doctoral thesis screening

G Y

-

Name in Fuyl!
ST N
?Irﬁlj(l%ﬁ H A Study on Portable Load Balancer for Container Clusters

A I, [AStudy on Portable Load Balancer for Container Clusters! &L .
ETEMSHEINTNS.

% 1 % [Introduction] Tid., FHAOERELBENERNTWS, Yo T Yy —VY A %EE
BTS00, FERRECETO—-DTHIICTFEEERNZAVTFIFTAITY
AFLETT IV —2a/ndSazERFTHANERLTWS, HEFIZ. BCP
HEEOAMTALTFISRI AT LERBDHEEE (FFTRPT TV IR
AT L) ATESBCBHARELTSZEEZANELAER—FE) T OBREHRICERT S
EEBiIZ, BEHMHTERA—FEYUF s ORECO-—RNI VHICERNTI2BEN DS 2
EEREML, AEMRXOBANY, COMBRERIET SO0 — RN BT —F5
TFvDRETHDILEZRRTNS,

% 2 # [Background) T, AREMUBX PR RETZ2IFTFITAI AT AL, B
RENRKHEETS Ry hT—F, O—RFNT HENICDODWTHHEL TS,

% 3 & lArchitecture and Implementation| Tid. EHMICB T2 FFI5RF
VATFLOR—FE) T OMERERNTIELDIC,. MERERRIT S EDOO—R
NI HOT7—FFIFv, ROV TOREFEEZRELTWS, EEEMTCIR. 3
FTFISA AT LAEZRLRSHEERIIBITASEI., RHEOHEELBOLFETEAD
BT, BEENO-—BENFHICHTHIMREOREEZERT L HENHD, F—FEUF
A ZETESRLIERE > T, TN LTREFETHE, D—RNS V22257
FUIAFCATFLARITELEL, 7TV r—2a v ERAKKRBIHEAREBBH TS &
EHi, BERFEHIMEL TS, £, O—RASCHORARELATr—5 Y 54
DERZRD LK, YTV r—2 a3 OETHECEKTZ2IMATVL S,

% 4 & Performance Evaluation] 72 5 TNZ % 5 & [Performance in faster network
T, BEFEOERFMAERZRL. TOEHEEZBRNTWVS, EFMTHE,. BREF
HZERAWTEREN IV TFISAI L ATFLALDOT) r—aht, 27132
PATLBELBREZDODONRT)y s /50 F ETENTNRAEOHETETAIRTES
EERLTWDS, £/, DN HORNEAIZLIDEAEHB TORWEREZ#figTE
HZE, ROEVKRABEATOLACH LU THHBARTAyr— T2 2R TES
ZEEBBRLTND, REBIZ, INSOEBERID, BREFED, BFEERICEXTHEHSE
ODHREZREDD, IXFFISAFYVATFLADR—FEYF 4 QR EICEILTWS &
BHOTTHB,

% 6 & [Related Work] Tld, AR OEMEIFIFERIIDOWLWTHEML, £ 7 E Conclusions
1 T, AR EZREL. BOENLERBLIVSHOBBEIIDVNTHERTNS,

BERETOICEZMHB L, TI2FFIFAFIATALADOR—FEUF L ZHRLSE
LHEICED, FHERESMTOY LTV — VY ADBRHEABI TAOFEEERETEEED
. BREFEOEELSTICHEEMICLY, TOHHEEZRLADOTHS. IN5D
BRI, #4242 ITY—EXDBCPHEPR IO T4 EVWSHRBEOMREIZDREMNS
BbOTHb. T, FEMMXORRE, FWEBHIX LG, IV —NERAERH
1 & L THERIN, EHNLERIDBD NS, L LoBEBizXD, BEEEALI.
BEMMIXBREMNOBREICEST 2 EHEL .

