
A Study on Portable Load Balancer
for Container Clusters

by

Kimitoshi Takahashi

Dissertation

submitted to the Department of Informatics

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies (SOKENDAI)

September 2019

Ph.D. Commi�ee

Kento Aida (Chair)
National Institute of Informatics

The Graduate University for Advanced Studies

Atsuko Takefusa
National Institute of Informatics

The Graduate University for Advanced Studies

Michihiro Koibuchi
National Institute of Informatics

The Graduate University for Advanced Studies

Takashi Kurimoto
National Institute of Informatics

The Graduate University for Advanced Studies

Shigetoshi Yokoyama
National Institute of Informatics

Gunma University

iii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor Prof.

Kento Aida for the continuous support of my PhD study, for his patience, motivation,

enthusiasm, and immense knowledge. His guidance helped me in all the time of

research and writing of this dissertation. I could not have imagined having a better

advisor and mentor for my PhD study.

Besides my advisor, I would like to sincerely thank the rest of my PhD committee:

Prof. Atsuko Takefusa, Prof. Michihiro Koibuchi, Prof. Takashi Kurimoto, and Prof.

Shigetoshi Yokoyama, for their patience, encouragement, insightful comments, and

hard questions.

I am deeply grateful to my former and current fellow lab members at National

Institute of Informatics, Kai Liu, Takeshi Nishimura, Zhang Yongzhe, Dr. Jingtao Sun,

Dr. Tomoya Tanjo, and Dr. Kazushige Saga for the stimulating discussions. In the

course of the study, I sometimes got stressed and lost enthusiasm in the research

activity itself. In such occasions, I was often inspired by their sincere attitude toward

knowledge and encouraged by some advises they gave me through the chat. I also

thank the administrative sta� of the Aida lab, Ms. Morimoto, for her support and

patience when I was not able to respond to her e-mail quickly.

Also, I thank my colleagues at Cluster Computing Inc., Koichirou Moria, and

Tomoko Kakizawa, for their help in my daily responsibilities at my work. Without their

help, I could not have even managed to spare the time to conduct research activities in

the �rst place.

I would also like to extend thanks to former colleagues at Fujitsu laboratories

Limited, where I was a member of from 1993 until 2002. During that time, I acquired

the necessary skills to conduct research and development. Especially among them are

iv

my ex-boss Dr. Hiroshi Arimoto at Fujitsu labs., and late Prof. Hideaki Fujitani at The

University of Tokyo. Dr. Hiroshi Arimoto, who helped me to enroll in the doctoral

program, has also inspired me with his scienti�c way of thinking for a long time. Late

Prof. Hideaki Fujitani helped me to join Fujitsu labs., and had always been a mentor

while I was at that company. Professors Fujitani’s passing in January in 2019 saddened

me deeply.

I am also grateful to Professor Emeritus Dr. Fabian Pease, former Professor Dr. Dan

Meiseburger and former colleague Dr. Liqun Han at Stanford University for allowing

me to work with them back in 1999-2000. Although the research topic back then is not

directly related to this dissertation, inspirations I got from them were so valuable that I

could go back to academia this time.

Last but not least, I would like to thank my family members: My parents Akiko

Takahashi and Nobuo Takahashi, for always supporting me throughout my life. My

son Yuki and daughter Hanae, have given me every reason in my life. Above all, the

exceptional thanks are due to my wife Junko for always being with me. I owe you

everything.

Kimitoshi Takahashi
September 2019

v

Abstract

Today, most of the people in the world can not spend a day without using smartphones

or PCs. They use these devices to access services provided by web applications on the

Internet. These services include e-mail, social media, search engines, shopping site, etc.,

everything provided through the Internet. As these services become an indispensable

part of the daily lives, portability of the application becomes very important.

For example, those who provide these services need to be able to recover from a

disaster by migrating their web applications to di�erent locations. They also need

to be able to expand their businesses to di�erent countries, once the web service is

successful in one country. It is also preferable for them to be able to migrate their

services without a hassle at their convenience in order to avoid lock-ins.

For the portability of web applications, providing a web application consisting of a

cluster of Linux containers is a promising candidate, since Linux containers can run on

any Linux system regardless of the infrastructures. A container orchestrator (also

called container cluster management system) is a tool to simplify the management of

a cluster of containers that are launched on multiple servers. And it is expected to

provide a uniform platform for container clusters by functioning as a middleware,

which will improve the portability of web applications. However, none of the existing

container orchestrators meets the expectation, because none of them has a standard

way to set up the route for ingress tra�c from the Internet automatically. Users need to

set up a route for ingress tra�c manually every time they start a new web application,

depending on the type of the infrastructure. The lack of this standardized automation

is one of the most critical problems that prevent container orchestrators from serving

as a common middleware that facilitates the portability of web applications. Without

solving this problem, the migration of a web application will never be easy, and will

vi

always require manual adjustment to the infrastructures.

In this dissertation, the author addresses this problem by proposing an architecture

using a portable software load balancer that can run on any infrastructure. The author

provides a cluster of software load balancers in containers that can be launched as a

part of web applications for Kubernetes. The architecture is also capable of setting

up the route for the ingress tra�c automatically by using standard protocols. For

this, Equal Cost Multi Path(ECMP) routes are populated through Border Gateway

Protocol(BGP) in order to provide redundancy and scalability at the same time. By

using the proposed architecture, web application clusters no longer depend on the load

balancers provided by infrastructures. And hence, container orchestrators become

being able to better serve as a common middleware.

The author has implemented a containerized software load balancer using Linux

kernel’s IPVS, and carried out experiments with the following criteria: 1) verify if

the proposed load balancer works correctly both in the cloud and the on-premise

datacenter. 2) verify if the proposed load balancer has a su�cient performance level for

1 Gbps and 10 Gbps networks. 3) verify if the proposed redundancy architecture using

ECMP with BGP properly functions.

From the results of the experiment, it has been shown that the proposed load

balancers can run in an on-premise data center, Google Cloud Platform (GCP), and

Amazon Web Service (AWS). Therefore the proposed load balancers can be said to be

portable.

In the case of 1 Gbps network environment, the throughput of the IPVS in a

container with Layer 3 Direct Server Return(L3DSR) setting has been about 1.5 times

higher than that of existing iptables DNAT rules, which is prepared by Kubernetes’s

daemons as an internal load balancer. And it has been shown that the proposed load

balancer has more than enough throughput to �ll up 1 Gbps bandwidth. In the case of

10 Gbps network environment, while a single IPVS load balancer in the container can

provide only 1/4 of required throughput, ECMP setups using more than four of them

can deal with 10 Gbps equivalent of the tra�c. Therefore, the proposed load balancer

has been proven to be portable with su�cient performance in both 1 Gbps and 10 Gbps

network environments.

The author has also veri�ed that ECMP routes are properly created on the upstream

router, upon launch of new load balancer containers. The update of the ECMP routing

vii

table was correct and quick enough, i.e., within 10 seconds, throughout 20 hours

experiment. The maximum performance level of a cluster of load balancers has

scaled linearly up to four times as the number of the load balancer containers has

been increased up to four. The maximum aggregated throughput obtained through

the experiment is 780k [req/sec], which is limited by the CPU performance of the

benchmark client and can be improved using better hardware in the future experiment.

Therefore the author has proved that proposed load balancer has the capability of the

automatic setup of ingress tra�c in a redundant and scalable manner.

Sooner or later, the day when the network speed in a data center becomes all 100

Gbps will come. Therefore, it is essential to improve the performance of the portable

load balancers in future work. The author has started to implement a novel software

load balancer using eXpress Data Path(XDP) technology. The preliminary result, where

the maximum throughput is about 390K [req/sec] with single-core packet processing,

indicates that this technology is very promising. The author estimates that about �ve

of the software load balancer using this technology with 16 core packet processing can

provide enough throughput in 100 Gbps environments in the future.

The proposed load balancer has been veri�ed to be portable while providing su�-

cient throughput in 10 Gbps environment. And the proposed redundancy architecture

using ECMP with BGP has also been veri�ed to function properly. As a consequence,

the proposed architecture with this load balancer will help improve the portability of

web applications.

The outcome of this study will bene�t users who want to improve the portability

of web applications and deploy them anywhere they want. Moreover, the result of

this study will potentially bene�t users who want to use a group of di�erent cloud

providers and on-premise data centers across the globe seamlessly. In other words,

users will become being able to deploy a complex web application on aggregated

computing resources on the earth, as if they were starting a single process on a single

computer.

ix

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Web application . 1

1.1.2 Portability of web application 3

1.1.3 Ideal infrastructure for portable web application 4

1.2 Infrastructure for web applications . 6

1.2.1 On-premise data center . 6

1.2.2 Cloud computing . 6

1.2.3 Container technology . 7

1.2.4 Container Orchestrator . 9

1.2.5 Kubernetes architecture and problem 12

1.3 Focus of the dissertation . 15

1.3.1 The purpose . 15

1.3.2 The method . 17

1.3.3 Contribution . 18

1.4 Outline . 18

2 Background 21
2.1 Overlay network . 22

2.1.1 Container network . 22

x Contents

2.1.2 Overlay Network . 24

2.1.3 Caveats of the overlay network 27

2.2 Multicore packet processing . 30

2.3 IPVS load balancer . 34

2.3.1 NAT mode . 35

2.3.2 Tunneling mode . 36

2.4 XDP technology . 37

2.5 Summary . 38

3 Architecture and Implementation 41
3.1 Architecture . 42

3.1.1 Problem of Conventional Architecture 42

3.1.2 Load balancer in container . 45

3.1.3 Redundancy with ECMP . 46

3.2 Implementation . 49

3.2.1 Experimental system architecture 49

3.2.2 IPVS container . 51

3.2.3 BGP software container . 55

3.3 Summary . 57

4 Performance Evaluation 59
4.1 Performance analysis of proposed load balancer 60

4.2 Cloud experiment . 71

4.3 Redundancy with ECMP . 74

4.4 Summary . 82

5 Perfomance in faster network 83
5.1 Throughput measurement in 10G network 83

5.2 Discussion of required throughput . 90

5.3 XDP load balancer . 92

5.4 Summary . 96

6 Related Work 97
6.1 Portability of web applications . 98

Contents xi

6.2 Software load balancers for Kubernetes 99

6.3 Cloud load balancers . 101

6.4 Load balancer tools in the container context 102

6.5 Summary . 103

7 Conclusion 105
7.1 Conclusions . 105

Appendix A Ingress controller 117

Appendix B ECMP settings 121
B.1 Gobgpd and zebra con�gurations on the router. 121

B.2 Gobgpd con�guration on the route re�ector. 122

B.3 Exabgp con�guration on the load balancer container. 123

Appendix C Analysis of the performance limit 125

Appendix D VRRP 129

xiii

List of Figures

1.1 An example of web application cluster. 2

1.2 Migration of web application cluster to di�erent locations. 4

1.3 An ideal global container infrastructure. 5

1.4 Bare Metal, Virtual Machine and Container technology 8

1.5 A web application cluster and container orchestrator 10

1.6 Architecture of Kubernetes clusters . 14

1.7 Load balancer for container clusters . 16

2.1 Docker networks setup . 23

2.2 Flannel setup with host-gw mode . 25

2.3 Flannel setup with vxlan . 26

2.4 Flannel setup with udp . 27

2.5 A network architecture of container cluster system 30

2.6 The IRQ numbers assigned for each RX/TX queue 31

2.7 RSS settings . 32

2.8 RPS settings . 33

2.9 RSS/RPS settings . 34

2.10 IPVS NAT mode . 35

2.11 IPVS tunneling mode . 36

2.12 XDP architecture . 38

3.1 Conventional architecture of Kubernetes clusters 44

3.2 Kubernetes cluster with proposed load balancer. 45

3.3 The proposed architecture of load balancer redundancy with ECMP . . 47

xiv List of Figures

3.4 Container cluster with proposed redundant software balancers 49

3.5 Implementation of IPVS container . 52

3.6 An example of ipvs.conf . 54

3.7 Example of IPVS balancing rules . 54

3.8 Network path by the exabgp container 55

4.1 Benchmark setup . 60

4.2 E�ect of multicore packet processing on IPVS throughput 64

4.3 E�ect of multicore packet processing on iptables DNAT throughput . . 64

4.4 E�ect of �annel backend modes on IPVS throughput 66

4.5 E�ect of �annel backend modes on iptables DNAT throughput 66

4.6 Throughput of IPVS, iptables DNAT and nginx 67

4.7 Latency for IPVS and iptables DNAT 68

4.8 Experimental setup for L3DSR throughput measurement 69

4.9 Throughput of L3DSR using IPVS-TUN. 70

4.10 Throughput measurement results in GCP 73

4.11 Throughput measurement results in AWS 74

4.12 Benchmark setup for ECMP experiment 75

4.13 Throughput of ECMP redundant load balancer 79

4.14 Throughput responsiveness . 80

4.15 ECMP update delay histogram . 81

5.1 Benchmark setups in 10 Gbps experiment 86

5.2 Throughput of load balancers in 10 Gbps 87

5.3 CPU usage of load balancers in containers 88

5.4 Throughput of load balancers in node namespace 89

5.5 CPU usage of load balancers on nodes 90

5.6 Xlb architecture . 93

5.7 Throughput of xlb load balancer . 94

5.8 CPU usage of xlb load balancer . 95

C.1 Perfomance limitation due to 1Gbps bandwidth. 128

D.1 An alternative redundant load balancer architecture using VRRP 130

List of Figures xv

D.2 An alternative redundant load balancer architecture using VRRP. . . . 130

xvii

List of Tables

1.1 Container orchestrator comparison . 12

2.1 Flannel backend modes . 28

3.1 Comparison of open source BGP agents 50

3.2 Required settings in the exabgp container 56

4.1 Benchmark command line and output example 61

4.2 Hardware and software speci�cations 62

4.3 Virtual Machine speci�cations in GCP experiment 71

4.4 Virtual Machine speci�cations in AWS experiment 72

4.5 Hardware and software speci�cations for ECMP experiment 76

4.6 ECMP routing tables . 78

5.1 Hardware and software speci�cations for 10 Gbps experiment 84

5.2 Summary of the maximum throughputs 91

5.3 Xlb components . 94

6.1 Comparison of software load balancers for Kubernetes 101

6.2 Cloud load balancer comparison . 102

C.1 Request data size for 100 HTTP requests in wrk measurement. 127

C.2 Response data size for 100 HTTP requests in wrk measurement. 127

C.3 Header sizes of TCP/IP packet in Ethernet frame. 127

1

1
Introduction

1.1 Motivation

1.1.1 Web application

Today, a great number of the people in the world can not spend a day without using

smartphones or personal computers (PCs) to retrieve information from the Internet for

work or for daily life. For example, people use these devices to look up web pages,

emails, social media and sometimes to play games. These services are often called web

applications or web services, where information is delivered using Hyper Text Transfer

Protocols (HTTP) or Hypertext Transfer Protocol Secure (HTTPS) from servers at the

other end of the Internet. Web applications are provided by various organizations,

including commercial companies, government, non-pro�table organizations, etc.

For example, Google provides a variety of web applications including, Gmail,

Search engines, Google Suite, etc. Facebook provides social media service, Amazon

provides shopping sites. Governments provides information regarding the service they

2 Chapter 1. Introduction

provide to their citizens. Schools often provide a syllabus to their students, which is

important for campus life. The author calls those organizations that provide web

applications, web application providers hereafter.

Figure 1.1: An example of web application cluster.

The load balancers distribute requests from clients to multiple web servers.

The web servers form responses using data retrieved from the database servers

and send it back to the clients. Sometimes the web servers also store and

update important data into the database servers.

A client program on PCs or smartphone sends out requests to servers, and the

servers respond with data that is requested using HTTP or HTTPS. Servers for web

applications are usually computers located in a data center. In the data center multiple

servers cooperate to ful�ll the need of the clients. A group of these servers is often

called a web application cluster or a web cluster. Figure 1.1 shows schematic diagram

of an example of a web application cluster.

In this example, there are two load balancers, four web servers and two database

(DB) servers that work together to respond to requests from the clients. The load

balancers distribute the requests from the clients to multiple web servers. Then the

web servers form responses using data retrieved from the database servers and send it

back to the clients. Sometimes the web servers also store and update important data

into the database servers.

1.1 Motivation 3

1.1.2 Portability of web application

As web applications become an essential part of daily life, improving their portabilities
1

is getting to be very important [1, 2]. If a web application is portable, it will become

much easier for web application providers to migrate the service when there is a

disaster, or when they want to expand their business to di�erent geographical locations,

etc.

Nowadays, an outage of the web application service will cause a critical problem.

If something happens to a web application cluster in a data center, people will not

be able to access the necessary information. For example, if web pages run by local

government stops, people will not be able to access the information regarding public

services. If a shopping site run by a company stops, customers can no longer buy

products and the revenue of the company will be greatly decreased. Outages of web

applications by giant companies can have an even bigger impact. An outage of Gmail

or Google search engine will probably stop most of the business activities around the

world. Service down of Amazon.com a�ect buyers and many businesses that sell

products on its platform.

In order to prevent such outages, preparing another web application cluster in a

di�erent location in the event of a disaster is very important. For that purpose, it

is desirable if a web application cluster can be easily migrated to a di�erent data

center. Migration of a web application cluster becomes more realistic by making the

web application itself portable with the use of Linux container technology, which is

explained later.

Improving the portability of a web application cluster also has another bene�t.

If an e-commerce service is successful in Japan, the company that runs the service

might want to start the same service in other countries, for example, in Europe. In

this situation, the company probably wants to start the same web application cluster

somewhere in Europe, because, for European customers, responses from a web site in

Europe is quicker than those from a web site in Japan. If the web application cluster is

portable, starting the service in a di�erent country will be very easy.

Improving the portability of a web application cluster is also very important for

1
The author de�nes portability as the extent of easiness when making a web application interoperable

in various infrastructures.

4 Chapter 1. Introduction

Figure 1.2: Migration of web application cluster to di�erent locations.

It is desirable to be able to migrate a web cluster from one place to another

with the easiness of on push button.

other purposes, including cost performance optimizations, meeting legal compliance,

and avoiding vendor lock-in problems. These are the main concerns for web application

providers in e-commerce, gaming, �nancial technology (Fintech) and Internet of

Things (IoT) �eld. The purpose of this research is to improve the portability of web

applications by proposing a common architecture, where web application providers

can easily deploy their services across the world, regardless of cloud providers or data

centers they use.

1.1.3 Ideal infrastructure for portable web application

In order to improve the portability of web applications, standardizing infrastructure

will be important. An ideal infrastructure probably have the following features; 1)

having common middleware to manage web application clusters, 2) capable of storing

data in globally consistent data storage, 3) capable of routing global tra�c based on

proximity to the client. Figure1.3 shows an exempli�ed global container infrastructure

having these features. Container orchestrators, as a common middleware, launch and

manage web applications consisting of container clusters. Important data are stored

in globally consistent data storage, which is similar to the Google spanner [3, 4] or

CockroachDB [5]. The tra�c is routed to the closest data center using anycast [6, 7].

Each of these features is important, and research e�orts are on-going in many

institutions. By realizing global container infrastructure portability of web application

1.1 Motivation 5

Figure 1.3: An ideal global container infrastructure.

Multiple web application clusters, each of which consisting of a cluster of

containers, are deployed in three di�erent data centers as an example. In

each of the data center, container orchestrator manages the container cluster.

Important data are stored in a globally consistent data store. Access from the

client is routed to the closest data center using anycast.

will be signi�cantly improved, and web application providers will be able to deploy

their web applications whenever and wherever they want. Also, they will be able to

move their web applications quickly depending on a variety of circumstances, including

disaster recovery, cost performance optimization, and compliance to government

regulations due to trade wars, etc. In this study, the author focuses on the research

regarding container orchestrator as a common middleware.

6 Chapter 1. Introduction

1.2 Infrastructure for web applications

1.2.1 On-premise data center

Historically, most of the web application providers purchased servers and installed

them in server housing facilities called data centers. In this type of infrastructure, web

application providers typically need to sign a contract with data center company

for server housing rack spaces, buy servers and install them in their rented racks

by themselves. They also install OS and software stacks needed to run their web

applications in the servers. Since web application providers place servers in their

facilities (either owned or rented) by themselves, and they are responsible for managing

the servers, this type of infrastructure is often called on-premise infrastructure in

contrast to Cloud Computing infrastructure.

Preparing data centers, installing the servers and con�guring software stacks for

web application services often require a considerable amount of time, money and e�ort.

If web application providers want to expand their services to di�erent countries or if

they want to prepare for natural disasters by preparing an additional web application

cluster in a di�erent data center, they probably need about the same amount of time,

money and e�ort required to build their original infrastructures. Therefore migration

of web application in this type of infrastructures has always been a daunting task.

1.2.2 Cloud computing

The emergence of Cloud Computing made many things easier for web application

providers than before. Cloud computing utilizes a virtual machine (VM) technology,

e.g. KVM, Xen, or VMware. Cloud computing service providers o�er VMs to web

application providers with pay-per-use billings.

Figure 1.4 compares di�erent type of usages of a single physical server and Figure 1.4

(b) shows an example architecture of VM technology. VMs share a single physical

server. A full OS including Linux kernel is running on top of the virtual machine

represented by the hypervisor. Each VM behaves almost as same as a single physical

server. Since VMs are fractions of a single physical server, server resources are utilized

with �ner granularities. Web application providers can start their services with a

cluster of VMs, which is smaller than a cluster of physical servers, and hence resulting

1.2 Infrastructure for web applications 7

in lower cost.

Cloud providers generally prepare physical servers and OSs for VMs before renting

it to users, and they also provide an easy to use web user interfaces. As a result, users

only need to click a few buttons on web browsers and wait for a few minutes before

obtaining up-and-running VMs. This simplicity will bring agility to web application

providers when they launch their services. And since computing resources are o�ered

with per-second pay-per-use billings, web application providers can quickly reduce the

cost by stopping excessive VMs, when the demand for computing power is scarce. This

was impossible when web application providers purchased physical servers and used

them as bare metal servers. In short, cloud computing brought users agility, �exibility,

and cost-e�ectiveness.

1.2.3 Container technology

More recently, Linux containers [8] have come to draw a signi�cant amount of attention.

Figure 1.4 (c) shows an example architecture of container technology. Linux containers

are merely the processes with separate execution environments that are created using

the Linux kernel’s namespace feature. The namespace feature can isolate visibility of

resources on a single Linux server.

Every process in a container is assigned to a certain namespace, and if two

processes belong to di�erent namespaces, they can not see each other’s resources.

Linux kernel implements �lesystem namespace, PID namespace, network namespace,

user namespace, IPC namespace, and hostname namespace. For example, every

�lesystem namespace can have its own root �lesystem, and every network namespace

can have its own network devices and IP addresses. Therefore, it is possible to con�gure

processes as if they were running in di�erent Linux systems by assigning them to

di�erent namespaces, although they share kernel and hardware. While a VM needs to

run a full OS on top of a hypervisor and hence imposes extra overhead, a process in

Linux container is merely a process with a dedicated namespace and hence expected to

impose much less extra overhead [9].

The Linux container can run on any Linux systems including physical servers and

VMs. Due to the widespread usage of Linux systems, the Linux container can run in

most of the cloud infrastructures and on-premise data centers, which is bene�cial for

8 Chapter 1. Introduction

Figure 1.4: Bare Metal, Virtual Machine and Container technology The di�erence

in physical server usage between (a) Bare Metal servers, (b) Virtual Machine and

(c) Container technology. (a) Bare Metal servers is a word to describe conventional

physical servers in contrast to Virtual Machines. On top of a Bare Metal server, an

operating system and application programs are running. (b) Virtual Machine

technology utilizes physical server hardware and a hypervisor. The hypervisor

provides generic representations of server hardware, which are called virtual

machines. A full operating system and applications are running on each of the

virtual machines. (c) Container technology separates applications by containing

them to their respective namespaces. Applications can not see each other’s �le

systems, networks, users and process IDs unless they belong to the same namespace.

Since container technology merely relies on Linux kernel’s namespace function

and optionally cgroup, a containerized process does not have any additional

overhead compared with a process running on a conventional physical server and

operating system. Container technology can be also utilized on top of virtual

machines.

interoperability.

Several management tools are available for Linux containers, including LXC [10],

systemd-nspawn [11] and Docker [12]. These tools assign an appropriate namespace to

a process upon the launch and make it look like running in its own virtual Linux

system. For example, container tools restore a �le system from an archive �le every

time a container is launched. Container tools also set up separate network interfaces

with separate IP addresses in the container’s namespace.

The fact that each container has its own �le system that is restored from a single

archive �le brings a signi�cant bene�t, i.e. a program binary and shared libraries are

1.2 Infrastructure for web applications 9

always exactly the same regardless of the base infrastructure. Therefore a process in a

container is guaranteed to behave exactly the same manner, even if totally di�erent

data centers or cloud providers are used. This was not easy when there was no

container technology. Because there are many �avors of Linux distributions, and even

if the same distribution is used, there was always a chance that a slight di�erence in a

program binary version or library versions would break the expected behavior.

In addition to that, containers can have own version of libraries in their respective

�lesystems, in other words, libraries in any container can be independently updated

without in�uencing other containers and host OSs. In conventional technologies,

processes on a single server are dependent on common shared libraries, and hence

updates of the library sometimes have caused unexpected side e�ects to those programs

that depend on that library. Container tools alleviate these problems by packing

necessary libraries for each program separately into respective archives.

Thanks to these bene�ts, container technologies are very attractive for improving the

portability of the web applications and hence, facilitating their migrations. Considerable

e�orts in utilizing container technologies for web applications are ongoing. And to

simplify the deployment of a complex web application that consists of interdependent

container clusters, several container orchestrators (container cluster management

systems)
2

have been in development.

1.2.4 Container Orchestrator

While container tools focused on launching individual container, a container orchestra-

tor is a tool to simplify the management of a cluster of containers that are launched on

multiple servers. Figure 1.5 shows the important features for the container orchestrator

for web applications; 1) Con�guration �le: Orchestrator should manage container

clusters based on a con�guration �le. The con�guration �le must be able to describe

container cluster internals and relationships between interdependent container clusters.

2) Scheduling: Depending on the con�guration �le, the orchestrator must be able to

pick servers and launch containers on them. Orchestrator must also maintain the state

described in con�guration �les, for example, the orchestrator may need to maintain

2
The author uses the word ’container orchestrator’ and ’container cluster management system’ for

the same meaning and uses them interchangeably

10 Chapter 1. Introduction

Figure 1.5: A web application cluster and container orchestrator. A web

application cluster consists of nginx (http), redis (key-value store) and mysqld

(database) is depicted in this �gure. Each of the component consists of a

container cluster. Container orchestrator receive con�guration �le(1), schedule

containers(2), set up ingress routing using load balancer(3) and set up internal

routing(4).

the number of running containers. 3) Ingress routing: The orchestrator must be able

to set up routes for incoming tra�c from the Internet to multiple containers in a

redundant and scalable manner. 4) Internal routing: If the web application consists

of multiple interdependent container clusters, the orchestrator must be able to set up

routes between them in a redundant and scalable manner.

In a con�guration �le a user can describe how a container cluster should be

con�gured, and also can describe relationships between di�erent container clusters. As

a result, a user can launch a web application that consists of interdependent container

clusters just by supplying the con�guration �le to the orchestrator. For example, a web

1.2 Infrastructure for web applications 11

application cluster in Figure 1.5 consists of three di�erent functionalities, namely http

server, key-value store, and database. Each of those consists of a container cluster. In

the con�guration �le, the relationships between the http server cluster, the key-value

store cluster, and the database cluster should be speci�ed. The con�guration �le must

also contain how each cluster should be con�gured, including the number of the

containers and resources assigned to them. If these requirements are met for the

con�guration �le, users only need to feed the con�guration �le to the orchestrator to

launch this web application.

Thanks to these features, an orchestrator can be viewed as if it is an Operating

System for a server farm in a data center, which not only schedules and launches

containers on the server farm but also routes the tra�c to the appropriate containers.

By using orchestrators, a user can start a complex web application that consists of

multiple interdependent container clusters, on multiple servers in a data center, as

easily as starting a single process on a single computer. As a result, web applications

become portable, and a user can also easily migrate their web applications at his or her

convenience. And migrated web applications are guaranteed to behave exactly the

same manner, not only because the same program binary and libraries are used in

container, but also because container orchestrators hide di�erences among the base

infrastructures.

Several container orchestrators are available, including Kubernetes, Docker swarm

and Mesos/Marathon. Each of the container orchestrators varies in target applications,

and thus has the strength and weaknesses.

Kubernetes Kubernetes [13] is an open source container orchestrator, originally

developed at Google based on their experiences of production container orchestrator,

Borg [14]. Since Google runs a lot of large scale web applications, Kubernetes are

considered to be best suited to run web applications.

Docker swarm Docker Swarm is a container orchestrator built in Docker daemon

itself. Users can execute regular Docker commands, which are then executed by a

swarm manager. The swarm manager is responsible for controlling the deployment

and the life cycle of containers.

12 Chapter 1. Introduction

Mesos/Marathon Mesos [15] is a common resource sharing layer for di�erent type

of applications like Hadoop, MPI jobs, and Spark in a Data Center. By using Mesos

user does not need to have a dedicated physical server cluster for each application.

Marathon is a framework which uses Mesos in order to orchestrate Docker containers.

Because of the broader scope of applications, an out of box Mesos might not be

particularly suited for web applications.

Kubernetes Docker Swarm Mesos Marathon

Con�g �le YAML YAML JSON

Scheduling Yes Yes Yes

Ingress routing

Manual
∗

Cloud load balancer
∗∗ Manual

∗
Manual

∗

Internal routing iptables DNAT IPVS haproxy

∗
Users are expected to set up a static route to one of the internal load balancers manually.

∗∗
Support for Cloud load balancer is only available in limited infrastructures including GCP,

AWS, Azure and OpenStack.

Table 1.1: Container orchestrator comparison. Important aspects of features as

web application infrastructures are compared.

Table1.1 compares these orchestrators based on necessary features as an infras-

tructure for web applications. Although all of these orchestrators mostly satisfy the

requirements, they fail to support the automatic routing of the ingress tra�c from the

Internet. Docker swarm and Mesos/Marathon rely on manual set up of a static routing

for ingress tra�c. Only Kubernetes has the functionality to manage cloud load balancer

so that ingress tra�c is automatically routed to containers in a redundant and scalable

manner. However, this functionality is applicable only for a few cloud environments.

To the best knowledge of the author, none of the existing container orchestrators

fully supports features that automatically set up ingress routing in a redundant and

scalable manner. The author believes solving this problem is an open and important

topic for research and development, and therefore intends to pursue it in this study.

1.2.5 Kubernetes architecture and problem

As is mentioned in the previous subsection, none of the existing container orchestrators

provides full support for automatic set up of ingress tra�c routing. In the case of

1.2 Infrastructure for web applications 13

Kubernetes, the problem is its partial support for external load balancers. Here the

author elaborates on the situation.

Figure 1.6 shows an exempli�ed Kubernetes cluster. A Kubernetes cluster typically

consists of a master and nodes. They can be physical servers or VMs. On the master,

daemons that control the Kubernetes cluster are typically deployed. These daemons

include, apiserver, scheduler, controller-manager and etcd. On the nodes, kubelet and

proxy are deployed. The kubelet daemon will run pods, depending on the PodSpec (pod

speci�cation) information obtained from the apiserver on the master. A pod is a group

of containers that share the same network namespace and cgroup, and is the basic

execution unit in a Kubernetes cluster. The proxy daemon on every node will set up

iptables Destination Network Address Translation (DNAT) rules that function as the

internal load balancer.

Thanks to the expressive syntax of the con�guration �le, Kubernetes allows users

to easily launch complex web applications that consist of multiple interdependent

container clusters as if they were launching a single application program. It also allows

users to modify the state of their container clusters, just by feeding the modi�ed

con�guration �le. Kubernetes always tries to make the states of containers to match its

desired state that is written in the con�guration �le.

When a service is created, the master schedules where to run pods, and the kubelets

on the nodes launch them accordingly. At the same time, the master sends out requests

to cloud provider’s API endpoints, asking them to set up external cloud load balancers

that distribute ingress tra�c to every node in the Kubernetes cluster. The proxy

daemon on the nodes also setup iptables DNAT rules. The ingress tra�c will then be

evenly distributed by the cloud load balancer to all of the existing nodes, after which it

will be distributed again by the DNAT rules on the nodes to the designated pods. The

returning packets follows the exact same route as the incoming ones.

In general, load balancers are often used to distribute high volume tra�c from the

Internet to hundreds of web servers. They are implemented as a dedicated hardware or

as a software on commodity hardware. Major cloud providers have developed software

load balancers [16, 17] dedicated for their infrastructures. For on-premise data centers,

there are a variety of proprietary hardware load balancers.

Kubernetes utilizes load balancers to route ingress tra�c into the Kubernetes cluster

in a redundant and scalable manner. Software load balancers for cloud infrastructure

14 Chapter 1. Introduction

Figure 1.6: Architecture of Kubernetes clusters. A Kubernetes cluster typically

consists of a master and nodes, which can be physical servers or VMs. On the

master, daemons that control the Kubernetes cluster are typically deployed.

On the nodes, daemons that control container and the internal routing are

typically deployed. Kubernetes depends on external load balancer to route

ingress tra�c from the internet into the container cluster. However, it seems

impractical to support all of the existing load balancers.

have APIs, through which Kubernetes can control the behavior. However, most of the

proprietary hardware load balancers for on-premise data center do not have such APIs.

In environments where there are supported load balancers, namely cloud environ-

ments including Google Cloud Platform (GCP), Amazon Web Applications (AWS), or

OpenStack, Kubernetes can automatically set up the route for the ingress tra�c upon

the launch of a web application. The cloud load balancers will distribute ingress tra�c

to every node (physical servers or VMs) that might host containers. Once the tra�c

reaches the nodes, Kubernetes nicely route them to appropriate containers using

iptables DNAT based internal load balancer. However, in environments where there

are no supported load balancers, Kubernetes fails to automatically set up the route for

ingress tra�c. In such cases Kubernetes expects users to manually set up a route for

the ingress tra�c, which generally lacks redundancy and scalabilities.

1.3 Focus of the dissertation 15

In this way, Kubernetes fails to provide a uniform interface to container clusters,

which degrades the portabilities of web applications. Other container orchestrators, e.g.

Docker swarm or Mesos/Marathon, do not even have partial support for load balancers

and expect users to manually set up the route for ingress tra�c. Therefore this is a

generic problem that current container cluster orchestrators possess.

1.3 Focus of the dissertation

1.3.1 The purpose

The ultimate goal of this research is to improve the portability of web applications by

providing global container infrastructure. Doing so will give users the freedom to

migrate their services when there is a disaster, expand their businesses, and prevent

vendor lock-ins, etc. To bring this into reality, container orchestrators need to function

as a common middleware. Container orchestrators must provide the same interfaces

to web applications, regardless of the base infrastructure, e.g., cloud providers or

on-premise data centers. However, existing orchestrators fail to do so, since the way to

route the ingress tra�c from the Internet is either by setting up a static route or by

relying on cloud load balancers.

The purpose of this research is to propose a generic architecture that can set up a

route for ingress tra�c automatically without relying on the cloud load balancers. For

that purpose, the author proposes a cluster of software load balancer containers, instead

of relying on load balancers provided by infrastructures. Proposed load balancer can

run both in cloud infrastructures and in on-premise data centers and can be utilized to

set up the route for ingress tra�c automatically. The proposed load balancer should

possess the following features; 1) The proposed load balancer properly functions

both in on-premise data centers and cloud infrastructures. 2) The proposed load

balancer has redundancy and scalability. 3) The proposed load balancer can set up

routes for ingress tra�c automatically. 4) The proposed load balancer can update the

load balancing table appropriately.

Figure 1.7 shows schematic diagram of an example architecture for such load

balancers. A web application that consists of nginx, redis, and mysqld, each being a

cluster of containers, is running in the server farm. There is also a cluster of software

16 Chapter 1. Introduction

Figure 1.7: Load balancer for container clusters. In order distribute the tra�c,

container orchestrator launches a cluster of software load balancer containers.

The container orchestrator also communicates with the upstream router

through BGP protocol and the router set up an ECMP routing rule in the

routing table.

load balancer containers, which is also a part of the web application cluster, running in

the same server farm. All of the containers are deployed and managed by the container

orchestrator. The orchestrator also communicates with the upstream router using

Border Gateway Protocol (BGP) [18], so that the ingress tra�c from the Internet is

forwarded to the existing load balancer containers in a redundant and scalable manner

by using Equal Cost Multi Path (ECMP) [19] routing table.

Container orchestrators are good at managing a cluster of containers. They can keep

the number of containers at the desired level. And also they can scale the number of

containers depending on the amount of tra�c. Therefore it seems to be very reasonable

to make container orchestrator also manage load balancer containers. With the help of

1.3 Focus of the dissertation 17

ECMP routing table on upstream router, redundancy and scalability are accomplished

simultaneously. Since BGP and ECMP are the standard protocol supported by most of

the commercial router hardware, the author regards this architecture is preferable in

most of the environments.

1.3.2 The method

The author implements the proposed software load balancer that works well with

Kubernetes, as a test case, since Kubernetes seems most appropriate for web application

clusters at the moment. The implemented load balancer uses the following technologies;

1) To make the load balancer runnable in any environment, Linux kernel’s Internet

Protocol Virtual Server (IPVS) [20] is containerized using Docker [12]. 2) Container

orchestrator manages the load balancer containers, and the ingress tra�c follows

the ECMP routing tables on the upstream router. These will make the load balancer

redundant and scalable. 3) To set up the ECMP route automatically, the author makes

the load balancer containers advertise route through BGP protocol. 4) To make the

load balancer capable of updating the load balancing table appropriately, the author

makes the load balancer acquire information about web server containers from the

orchestrator.

While the method to acquire information about running containers is speci�c to the

orchestrator, i.e, Kubernetes, the other technologies used are not. Therefore, the author

expects that the load balancer with the same architecture can also be implemented for

the other container orchestrators, i.e., Docker Swarm and Mesos/Marathon, just by

writing the code to acquire information about running containers.

The author veri�es the feasibility of the proposed load balancer through experiments,

with the following criteria; 1) Portability: whether the load balancer can run in both

on-premise data centers and cloud infrastructures. 2) Redundancy and scalability:

whether the throughput is improved by increasing the number of load balancers. 3)

Performance: whether the load balancer has su�cient throughput for 1 Gbps and 10

Gbps network.

The author also explores the possibility of enhancing the performance of the

proposed load balancer, for the faster network than 10 Gbps. The author implements

the novel load balancer using eXpress Data Path (XDP) technology [21] for that

18 Chapter 1. Introduction

purpose and shows preliminary experimental results.

1.3.3 Contribution

Contributions of this dissertation can be summarized as follows: 1) The author

proposes a cluster of software load balancer containers that is deployed as a part of web

applications. By removing the dependencies on external load balancers provided by

infrastructures, users can deploy their web applications in the same manner regardless

of the infrastructure, which will improve the portability of web applications. 2) The

author implements a proof of concept system using Open Source Software (OSS),

which means that anyone can test drive the proposed load balancers and use them in

production for free. 3) The author carries out a performance evaluation and quantitably

prove the feasibility of the proposed load balancer up to 10 Gbps network environment.

4) The author points out the remaining problems for future improvement and explores

other technology to be used in faster networks.

The outcome of this study will improve the portability of web applications, and

potentially bene�t users who want to use a group of di�erent cloud providers and

on-premise data centers across the globe seamlessly. In other words, users will become

being able to deploy a complex web application on aggregated computing resources on

the earth, as if they were starting a single process on a single computer.

1.4 Outline

The rest of the paper is organized as follows;

Chapter 2 provides explanations of the following technologies; 1) Overlay network

2) Multicore packet processing 3) IPVS load balancer 4) XDP technology. These are the

underlying technologies used in this study, and knowledge of these is necessary to

understand the contents of this dissertation.

Chapter 3 provides discussion of load balancer architecture suitable for container

clusters. One of the most important problems of existing container orchestrators is

that none of them has full support for automatically setting up routes for ingress

tra�c in a redundant and scalable manner. In order to solve this problem, the author

proposes a cluster of software load balancer in containers, which is deployed as a

1.4 Outline 19

part of the web application clusters. This chapter provides a discussion of such load

balancer architecture. The author also presents an implementation of the proof of the

concept system for the proposed load balancer architecture in detail.

Chapter 4 presents the results of the evaluation. The author veri�es the feasibility

of the proposed load balancer through experiments, with the following criteria; 1)

Portability: whether the load balancer can run in both on-premise data centers and

cloud infrastructures. 2) Redundancy and scalability: whether the throughput is

changed by changing the number of load balancers. 3) Performance: whether the load

balancer has su�cient throughput for 1 Gbps network.

In Chapter 4, the author evaluates the feasibility of the proposed load balancer in

the 1Gbps network. In Chapter 5, the author shows that the proposed load balancer has

su�cient throughput in 10Gbps network. The author also discusses how to improve

the performance levels in faster networks, e.g., 100 Gbps and �nds that there are rooms

for improvements in both the container network and the software load balancer itself.

Although these should be explored further in the future work, the author presents

preliminary experimental results of a novel software load balancer using eXpress Data

Plane (XDP) technology.

Chapter 6 presents related work of this study. The author presents related work

regarding the following subjects: (1) Portability of web applications. (2) Software load

balancers for Kubernetes. (3) Cloud load balancers. (4) Load balancer tools in the

container context.

And �nally, Chapter 7 presents the conclusion of this study.

21

2
Background

This chapter provides explanations of the following technologies; 1) Overlay network

2) Multicore packet processing 3) IPVS load balancer 4) XDP technology. These are the

underlying technologies used in this study, and knowledge of these is necessary to

understand the contents of this dissertation.

Overlay networks are used to deploy Kubernetes clusters in most cases in order to

separate the node network and container network. The author has also found that the

choice of the operation mode of the overlay network greatly a�ects the throughput of

the load balancers, as will be explained in Chapter 4. Therefore, �annel, which is one

of the overlay networks and is used in this study, is explained in detail.

Secondly, the author explains how to utilize multi-core CPUs for packet processing

in Linux. The Linux kernel comes with built-in features for multi-core packet processing.

However, the default setting of Linux distribution might not be necessarily optimized

for the best performance, which sometimes hinders the understanding of experimental

results. That was the case when the author �rst carried out the experiment, and

therefore the author explains about it.

22 Chapter 2. Background

Thirdly, the author explains Linux kernel’s IPVS load balancer, because IPVS is used

to implement the proposed load balancer in this study. The IPVS has three operation

modes, and two of them used in this study are also explained.

Lastly, the author brie�y explains about novel XDP technology. The author plans

to replace IPVS based load balancer with the one based on XDP technology in future

work. The author has already started the implementation of such load balancer and

presents a preliminary result in Chapter 5. The explanation of XDP technology is

necessary to understand why it is supposed to be faster than IPVS.

2.1 Overlay network

An overlay network is used to deploy a Kubernetes cluster in most cases in order to

separate the node network and container network. In the case of Kubernetes, every

pod1
is assigned with its own IP address. If the administrator of Kubernetes cluster

plans to host up to 10 pods on a single node, roughly 10 times larger IP address space is

required for container network than for node network. And if one plans to host up to

100 pods on a single node, 100 times larger IP address space is needed. Therefore

in practice, it is often convenient to separate administrations of node network and

container network using overlay network.

2.1.1 Container network

There are several types of container network including, veth [22], MACVLAN [23],

IPVLAN [24], host network. There are good reviews of these network in [25, 26,

27]. The author uses the container network that uses a network bridge and veth

pairs because of the popularity and easiness of the setups. Here the setup used in the

experiments is explained.

Figure 2.1 shows a schematic diagram of the container network used in this study.

The veth kernel module creates a pair of network interfaces that act like a pipe. One of

the peer interfaces is kept in the host network namespace and the other is added to the

container namespace. The interface in the host network namespace is connected to a

1
A pod is a group of containers that share the same network namespace and cgroup, and is the basic

execution unit in a Kubernetes cluster.

2.1 Overlay network 23

network bridge, docker0. In the case of Docker, most of the veth setup is done by the

Docker daemon.

The communication between two containers on the same physical node is through

the docker0. The communication with the outside of the node further follows the

routing rules in the kernel, and optionally translated using iptables Masquerade or

Source Network Address Translation (SNAT) [28].

Figure 2.1: Docker networks setup. (a) Two pairs of network interefaces

(veth0,eth0) and (veth1,eth0) are created. Each of the pairs acts like a pipe.

The veth0 and veth1 are placed in the host (node) network namespace, and

connected to the docker0 bridge. The eth0s are placed in respective container

namespaces. (b) Communication between network namespace 0 and 1 is

through the docker0. Communication with the outside of the node follows the

routing table inside the kernel.

When a container needs to communicate with other containers on di�erent nodes,

the kernel needs to know on which node the peer container exists. The kernel normally

does not know this, but if there is the help of overlay network [29], the kernel eventually

�nds out the next hop towards peer container.

24 Chapter 2. Background

2.1.2 Overlay Network

There are several choices for the overlay networks with popular ones being �annel [30],

calico [31], weave [32], etc. The author used �annel throughout this study because of

its popularity and easiness. Flannel has three types of backend, i.e., operation modes,

host-gw, vxlan and udp [33]. These are explained here.

host-gw mode

In the host-gw mode, the �anneld installed on a node simply con�gures the routing

table in the kernel based on the IP address assignment information of the overlay

network, which is retrieved from the etcd [34] on the master node of Kubernetes.

When pod1 on the node1 sends out an IP packet to pod2 on the di�erent node, node2,

the node1 consults its routing table and learn that the IP packet to pod2 should be sent

out to the node2. Then, the node1 forms Ethernet frames containing the destination

MAC address of the node2 without changing the IP header, and send them out. Since

packets are not encapsulated in the host-gw mode, the MTU size remains 1500 bytes.

2.1 Overlay network 25

Figure 2.2: Flannel setup with host-gw mode. The pod1 on the node1 sends out

an IP packet to pod2 on the node2. After receiving packets from the pod1, the

node1 learns that pod2 is on the node2, and forward the packets to the node2

without any encapsulation. The �anneld continuously updates routing entries

for containers in the routing table on each node.

26 Chapter 2. Background

vxlan mode

In the case of the vxlan mode, �anneld creates the Linux kernel’s vxlan device, �annel.1.

Flanneld will also con�gure the routing table appropriately based on the information

stored in the etcd. When pods on di�erent nodes need to communicate, the packet is

routed to �annel.1. The vxlan functionality of the Linux kernel identify the MAC

address of �annel.1 device on the destination node with the help of �anneld, then form

an Ethernet frame toward that MAC address. The vxlan then encapsulates the Ethernet

frame in a UDP/IP packet with a vxlan header, after which the IP packet is eventually

sent out. An additional 50 bytes of header is used in the vxlan mode, thereby resulting

in an MTU size of 1450 bytes.

Figure 2.3: Flannel setup with vxlan. The �anneld on the nodes updates

routing entries for containers. In addition to that, the �anneld also create

Linux kernel’s vxlan device, �annel.1 on every node. When packets are sent

out through �annel.1 devices, the �annel.1 encapsulate the original packets

with vxlan headers.

2.1 Overlay network 27

udp mode

In the case of udp mode, �anneld creates the tun device, �annel0, and con�gures the

routing table appropriately based on the information stored in the etcd. The �annel0

device is connected to the �anneld daemon itself. An IP packet routed to �annel0

is encapsulated by �anneld, and eventually sent out to the appropriate node. The

encapsulation is done for IP packets. In the case of the udp mode, only 28 bytes of

header are used for encapsulation, which results in an MTU size of 1472 bytes.

Figure 2.4: Flannel setup with udp. The �anneld creates the tun device,

�annel0, and updates routing entries for containers. The �annel0 device is

connected to the �anneld daemon itself. When packets are sent out through

�annel0 devices, the �anneld daemon encapsulates the original packets with

udp headers.

2.1.3 Caveats of the overlay network

There are caveats in using overlay network. The author explains two of them that are

identi�ed in the course of this study.

28 Chapter 2. Background

mode On-premise GCP AWS

host-gw OK NG NG

vxlan OK OK OK

udp OK OK OK

Table 2.1: Flannel backend modes. The host-gw mode without encapsulation

does not work in GCP nor in AWS.

The �rst caveat is that overlay network without encapsulation has issues when

used in cloud environments. There are chances when there is a gateway host without a

knowledge of the overlay network between two containers. When such a gateway host

receives a packet destined to a container without encapsulation, it simply drops the

packet because it does not know where to forward it.

The second caveat is that there is an issue when two containers communicate with

a host without knowledge of the ovelay network. Since the packets are translated

using SNAT, the host can not identify if the two connections are coming from a single

container or from two containers only by looking into IP and TCP headers.

Overlay network and cloud

Although the host-gw mode is expected to be most e�cient since no packet encap-

sulation is used, it has a signi�cant drawback that prohibit it to work correctly in

cloud platforms. The host-gw mode simply sends out a packet without encapsulation.

If there is a cloud gateway between nodes, the gateway cannot identify the proper

destination, therefore it drops the packet.

The author conducted an investigation to determine which of the �annel backend

mode would be usable on AWS, GCP, and on-premise data centers. The results are

summarized in Table 2.1. In the case of GCP, an IP address with the pre�x length of 32

(/32 in CIDR notation) is assigned to every VM host and every communication between

VMs goes through GCP’s gateway. As for AWS, the VMs within the same subnet

communicate directly, while the VMs in di�erent subnets communicate via the AWS’s

gateway. Since the gateways do not have knowledge of the �annel overlay network,

they drop the packets; thereby, they prohibit the use of the �annel host-gw mode in

2.1 Overlay network 29

those cloud providers.

Communication with router

The overlay network also causes a problem when communicating with the host

that has no knowledge of the overlay network. Fig. 2.5 shows schematic diagram of

network architecture of a container cluster system. There is a node network (physical

server network) with the IP address range of 10.0.0.0/16 and an overlay network with

the IP address range of 172.16.0.0/16. The node network is the network for nodes

to communicate with each other. The overlay network is the network setups for

containers to communicate with each other. An overlay network typically consists of

appropriate routing tables on nodes, and optionally of tunneling setup using IPIP [35]

or vxlan [29]. The upstream router usually belongs to the node network. When a

container in the Fig. 2.5 communicates with any of the nodes, it can use its IP address

in 172.16.0.0/16 range as a source IP, since every node has proper routing table for the

overlay network. However, when a container communicates with the upstream router

that does not have routing information regarding the overlay network, the source IP

address must be translated by SNAT rules on the node where the container resides.

The SNAT caused a problem when the author tried to co-host multiple load balancer

pods for di�erent services on a single node and let them connect the upstream router

directly. This was due to the fact that the BGP agent used in our experiment only used

the source IP address of the connection to distinguish the BGP peer. The agent on

the router behaved as though di�erent BGP connections from di�erent containers

belonged to a single BGP session because the source IP addresses were identical due to

the SNAT.

30 Chapter 2. Background

Figure 2.5: A network architecture of container cluster system. A load balancer

(lb) pod (the white box with "lb") and web pods are running on nodes (the

blue boxes). The tra�c from the internet are forwarded to the lb pod by the

upstream router using the node network, and the distributed to web pods

using the overlay network.

2.2 Multicore packet processing

The Linux kernel comes with built-in features for multi-core packet processing.

However, the default setting of Linux distribution might not be necessarily optimized

for the best performance, which sometimes hinders the understanding of experimental

results. That was the case when the author �rst carried out the experiment, and

therefore the author explains about it.

The performance of a computer system has been improved signi�cantly thanks to

the development of multi-core CPUs. One of the top of the line server processors from

Intel now includes up to 28 cores in a single CPU. In order to enjoy the bene�ts of

multi-core CPUs in communication performance, it is necessary to distribute the

handling of interrupts from the NIC and the subsequent IP protocol processing to the

available physical cores.

Receive Side Scaling (RSS) [36] is a technology to distribute handling of the interrupt

2.2 Multicore packet processing 31

from NIC queues to multiple CPU cores. Receive Packet Steering (RPS) [36] distributes

the IP protocol processing to multiple CPU cores by issuing inter core software

interrupts.

Since performance levels of a load balancer could be a�ected by these technologies,

the author conducted an experiment to determine how performance levels of the

load balancers are changed by the RSS and RPS settings in Chapter 4. The lest of this

section explains how RSS and RPS are enabled and disabled in the experiment. The

NIC used in the experiment is Broadcom BCM5720, which has four rx-queues and one

tx-queue. Figure 2.6 shows the interrupt request (IRQ) number assignments to those

NIC queues at the time of experiments.

81: eth0-tx-0
82: eth0-rx-1
83: eth0-rx-2
84: eth0-rx-3
85: eth0-rx-4

Figure 2.6: The IRQ numbers assigned for each RX/TX queue, which is obtained

from “/proc/interrupts”. IRQ numbers from 81 to 85 are assigned to di�erent

tx and rx queues.

RSS

When packets arrive, they are distributed to these rx-queues depending on the �ow

each packet belongs to. Each receive queue has a separate IRQ associated with it.

The NIC triggers this to notify a CPU when new packets arrive on the given queue.

Then, the noti�ed CPU handles the interrupt, and performs the protocol processing.

According to the [36], the CPU cores allowed to be noti�ed is controlled by setting a

hexadecimal value corresponding to the bit maps indicating the allowed CPU cores in

“/proc/irq/[IRQ number]/smp_a�nity”. For example, in order to route the interrupt

for eth0-rx-1 to CPU0, one should set “/proc/irq/82/smp_a�nity” to binary number

0001, which is 1 in hexadecimal value. Furthermore, in order to route the interrupt

for eth0-rx-2 to CPU1, one should set “/proc/irq/83/smp_a�nity” to binary number

0010, which is 2 in hexadecimal value.

32 Chapter 2. Background

In this dissertation, the setting that distributes interrupts from four rx-queues

separately to CPU0, CPU1, CPU2, and CPU3 is referred to as “RSS = on”. It is con�gured

as the setting in Figure 2.7(a). On the other hand, “RSS = o�” means that all the

interrupts from any rx-queue are routed to CPU0. It is con�gured as the setting in

Figure 2.7(b).

echo 1 > /proc/irq/82/smp_affinity
echo 2 > /proc/irq/83/smp_affinity
echo 4 > /proc/irq/84/smp_affinity
echo 8 > /proc/irq/85/smp_affinity

(a) RSS=on

echo 1 > /proc/irq/82/smp_affinity
echo 1 > /proc/irq/83/smp_affinity
echo 1 > /proc/irq/84/smp_affinity
echo 1 > /proc/irq/85/smp_affinity

(b) RSS=o�

Figure 2.7: RSS settings used in this study. (a) This setting distributes interrupts

from the IRQ# 82–85 to CPU0–CPU3, respectively. (b) This setting directs all

the interrupts from IRQ# 82–85 to CPU0.

RPS

After the interrupts from the NIC are handled, IP protocol processings are carried out.

The RPS distributes IP protocol processing by placing the packet on the desired CPU’s

backlog queue and wakes up the CPU using inter-processor interrupts. The author has

used the settings in Figure 2.8(a) to enable the RPS.

Since the hexadecimal value “fefe” represented as “1111 1110 1111 1110” in binary,

this setting will distribute protocol processing to all of the CPUs, except for CPU0

and CPU8. The CPU0 and CPU8 are logically di�erent but share the same physical

core
2
. In this dissertation, the author refers to this setting as “RPS = on”. On the other

hand, “RPS = o�” means that no CPU is allowed for RPS. In this case, the IP protocol

2
The hardware used in the experiment had Hyper-Threading functionality [37], therefore each of the

physical cores are shared by two logical cores.

2.2 Multicore packet processing 33

echo fefe > /sys/class/net/eth0/queues/rx-
0/RPS_cpus
echo fefe > /sys/class/net/eth0/queues/rx-
1/RPS_cpus
echo fefe > /sys/class/net/eth0/queues/rx-
2/RPS_cpus
echo fefe > /sys/class/net/eth0/queues/rx-
3/RPS_cpus

(a) RPS=on

echo 0 > /sys/class/net/eth0/queues/rx-0/RPS_cpus
echo 0 > /sys/class/net/eth0/queues/rx-1/RPS_cpus
echo 0 > /sys/class/net/eth0/queues/rx-2/RPS_cpus
echo 0 > /sys/class/net/eth0/queues/rx-3/RPS_cpus

(b) RPS=o�

Figure 2.8: RPS settings used in this study. (a) IP protocol proccessings are

distributed to CPU1–CPU7 and CPU9–CPU15. (b) Distribution of IP protocol

proccessings is prohibitted. Original CPUs that recieved interrupts will process

the IP protocols.

processing is performed on the CPUs the initial hardware interrupt is received. It is

con�gured as the settings in Figure 2.8(b).

The RPS is especially e�ective when the NIC does not have multiple receive queues

or when the number of queues is much smaller than the number of CPU cores. That

was the case in the experiment. Since there were only four rx-queues, RSS could utilize

only four physical cores out of eight. Figure 2.9 shows a schematic diagram of the

settings used in this study. While merely enabling RSS results in four core packet

processing, enabling RPS results in eight physical core packet processing.

34 Chapter 2. Background

Figure 2.9: RSS/RPS settings used in this study. (a) In the case of

“RSS=on,RPS=o�”, only four cores are used for packet processing. (b) In the

case of “RSS=o�,RPS=on”, eight cores are used for packet processing. (c) In the

case of “RSS=o�,RPS=o�”, only one core is used for packet processing.

2.3 IPVS load balancer

The IPVS is a Layer-4 load balancer capability, which is included in the Linux kernel

2.6.0 released in 2003 or later, to distribute incoming Transmission Control Protocol

(TCP) tra�c and User Datagram Protoco (UDP) tra�c to real servers3
[20]. For example,

IPVS distributes incoming Hypertext Transfer Protocol (HTTP) tra�c destined for a

single destination IP address, to multiple HTTP servers running on multiple nodes

in order to improve the performance of web services. The destination IP address is

often called Virtual IP (VIP) because the VIP and the multiple HTTP servers form a

virtual service. The IPVS has three operation modes, Network Address Translation

(NAT), Tunneling and (Direct Return) DR. In this study the author used NAT mode and

3
The term, real server refers to worker servers that will respond to incoming tra�c, in the original

literature [20]. The author will also use this term in the similar way.

2.3 IPVS load balancer 35

Tunneling mode. Here the author explains these two modes brie�y
4
.

2.3.1 NAT mode

Figure 2.10: Schematic diagram of IPVS NAT mode. The IP packets arriving at

the IPVS NAT enabled host are forwarded to real servers. The IP headers are

translated by IPVS NAT function in the Linux kernel.

Figure 2.10 shows a schematic diagram of NAT mode of IPVS. The NAT mode

works as follows: When a user accesses a virtual service provided by the server cluster,

a request packet destined for a VIP arrives at the load balancer. The load balancer

examines the packet’s destination address and port number, if they match a virtual

service in the load balancing table, one of the real servers are selected depending on

the scheduling algorithm, and the information regarding the connection is added into

the connection hash table. Then, the destination IP address and the port number of the

original packet are translated to those of the real server, and the packet is forwarded to

the real server. When an incoming packet belongs to an established connection, the

connection can be found in the hash table and the packet is rewritten and forwarded to

the right server. When response packets arrive, the load balancer rewrites the source

address and port number of the packets to those of the virtual service, and send them

back to the clients. When a connection terminates or timeouts, the corresponding

4
Readers interested in the DR mode, are referred to the original literature [20].

36 Chapter 2. Background

entry is removed from the connection hash table. In this dissertation, the author refers

to this NAT mode simply as IPVS hereafter.

2.3.2 Tunneling mode

Figure 2.11: Schematic diagram of IPVS tunneling mode. (1) The packet

arriving IPVS-TUN enabled host is encapsulated and (2) sent out to one of the

real servers. (3) The real server returns the response packets to the client

directly.

Figure 2.11 shows a schematic diagram of the tunneling mode of IPVS. IPIP

tunneling (IP encapsulation) is a technique to encapsulate IP datagram within IP

datagram. This technique allows datagrams destined for one IP address to be wrapped

and redirected to another IP address [35], and can be used to build a virtual server. The

load balancer encapsulates the request packets and sends them out to the real servers,

and the real servers decapsulate and process the requests, and then return the results

to the clients directly. As a result, the service can still appear as a virtual service on a

single IP address.

In the tunneling mode of the IPVS, the load balancer encapsulates the packet

within an IP datagram and forwards it to a dynamically selected server. When the

real server receives the encapsulated packet, it decapsulates the packet and �nds the

inside packet is destined for VIP that is on its tunnel device. Therefore, the real server

2.4 XDP technology 37

can return response packets originating from VIP directly to the clients. It should be

noted that in the NAT mode, the real servers never know VIP. The author refers to the

tunneling mode of the IPVS as IPVS-TUN hereafter in this dissertation.

2.4 XDP technology

In Chapter 5 the author implements a software load balancer using eXpress Data Path

(XDP) [38] technology. Here the XDP is brie�y explaned.

XDP is a framework to enable injection of a byte-compiled eBPF programs into the

NIC driver, so that the program can manipulate a received packet at the earliest point

in the Linux networking stack. Therefore much better performance than conventional

Linux kernel’s network stack is expected. One can create their eBPF program by writing

codes in C and then compiling them with Clang using the -march=bpf parameter.

The eBPF program injected into the Kernel is just-in-time compiled and used for

packet manipulation. XDP merely intercept and process packets only if the packets

match the conditions. The packets that do not match the condition are passed through

conventional Linux kernel network stack. Therefore there is no need for preparing

dedicated NIC for fast and e�cient network processing. This is one of the advantages

of the XDP technology, compared with the technology using Data Plane Development

Kit (DPDK) [39]. Use cases for XDP include DDoS protection, packet forwarding, and

load balancing, �ow sampling, monitoring, etc.

38 Chapter 2. Background

Figure 2.12: XDP architecture. In XDP, user can inject self-made byte-compiled

eBPF code in the NIC driver and let it process the incoming packets much

earlier than the kernel’s network stack. The eBPF programs can make a map

inside the kernel, and read/store temporal data from that map. The map

is mount at “/sys/fs/bpf/”. User can manipulate the behaviour of the eBPF

through this map.

2.5 Summary

This chapter provided explanations of the following technologies; 1) Overlay network

2) Multicore packet processing 3) IPVS load balancer 4) XDP technology. These are the

underlying technologies used in this study, and knowledge of these is necessary to

understand the contents of this dissertation.

Overlay networks are used to deploy Kubernetes clusters, and its operation mode

greatly a�ects the throughput of the load balancers. Therefore, they have been

explained here. The Linux kernel comes with built-in features for multi-core packet

processing. However, the setting might not be optimized for the best performance,

and lack of knowledge might hinder the understanding of the experimental results.

2.5 Summary 39

Therefore, this technology has also been explained. The Linux kernel’s IPVS is also

necessary to be understood because this is one of the core technologies used in this

study, and thus included here. The author plans to replace IPVS based load balancer

with the one based on XDP technology in order to improve the performance to meet

100 Gbps level in future work. The explanation of XDP technology is also necessary to

understand why it is supposed to be faster than IPVS.

41

3
Architecture and Implementation

One of the most critical problems of existing container orchestrators is that none of

them can fully automate the setup of routes for ingress tra�c in a redundant and

scalable manner. In order to solve this problem, the author proposes a cluster of

software load balancer in containers, which is deployed as a part of the web application

clusters. Key features required for such load balancers are; 1) to implement a mechanism

where the routing table of the upstream router is updated automatically so that the

router can forward ingress tra�c to running load balancers. 2) to implement software

load balancer in a container that is runnable in any environment while having the

feature to instantly update load balancing tables so that it can forward the packets to

running web application containers.

This chapter provides a discussion of such load balancer architecture. First, the

author discusses problems of conventional architecture in Section 3.1.1. Then the

author proposes a portable software load balancer in a container in Section 3.1.2, and

discusses redundancy architecture using ECMP in Section 3.1.3. After the discussion of

load balancer architecture, the author also presents an implementation of the proof of

42 Chapter 3. Architecture and Implementation

the concept load balancer system in detail. The �rst overall architecture is explained in

Section 3.2.1. Then IPVS containerization is explained in detail in Section 3.2.2. Finally,

the implementation of BGP software container is explained in Section 3.2.3.

3.1 Architecture

In this section the author discusses the architecture of a portable load balancer for

container clusters.

3.1.1 Problem of Conventional Architecture

The problem of Kubernetes is its partial support for the ingress tra�c routing.

Figure 3.1(a) shows an exempli�ed Kubernetes cluster. When a service is created,

the master schedules where to run pods, and kubelets on the nodes launch them

accordingly. At the same time, the master sends out requests to cloud provider’s API

endpoints, asking them to set up external cloud load balancers that distribute ingress

tra�c to every node in the Kubernetes cluster. The proxy daemon on the nodes also

setup iptables DNAT [28] rules as an internal load balancer. The Ingress tra�c will

then be evenly distributed by the cloud load balancer to all of the existing nodes, after

which it will be distributed again by the DNAT rules on the nodes to the designated

pods. The returning packets follows the exact same route as the incoming ones.

This architecture has the followings problems: 1) There must exist cloud load

balancers whose APIs are supported by the Kubernetes daemons. There are numerous

load balancers which is not supported by the Kubernetes. These include the hardware

load balancers for on-premise data centers. 2) Distributing the tra�c twice, �rst on the

external load balancers and second on each node, complicates the administration of

packet routing. Imagine a situation in which the DNAT table on one of the nodes

malfunctions. In such a case, only occasional timeouts would be observed, and hence it

would be very di�cult to �nd out which node is malfunctioning. 3) The ingress tra�c

is distributed to all the existing nodes in the Kubernetes cluster. If there are 1,000

nodes and one of the web applications only uses 10 nodes, distributing the ingress

tra�c to all of the 1,000 nodes seems complex and ine�cient.

Regarding the �rst problem, if there is no load balancer that is supported by

3.1 Architecture 43

Kubernetes, users must manually set up the static route on the upstream router every

time they launch the web application clusters, as is shown in Figure 3.1(b). The tra�c

will be routed to one of the nodes and then distributed by the DNAT rules on the node

to the designated pods. In cases where the upstream router is administered by a data

center company, users must always negotiate with them about adding a route to their

new application cluster. This approach signi�cantly lacks simplicity, and degrades the

portability of container clusters. Furthermore, a static route usually lacks redundancy

and scalability.

In short, while Kubernetes is e�ective in major cloud providers, it fails to provide

portability for container clusters in environments where there is no supported load

balancer. And the routes incoming tra�c follow are very complex and ine�cient. In

order to address these problems, the author proposes a containerized software load

balancer that is deployable as a part of web application cluster and hence enables users

to set up ingress route automatically in any environment even if there is no external

load balancer.

44 Chapter 3. Architecture and Implementation

(a) Kubernetes in cloud infrastructures

(b) Kubernetes in on-premise data centers

Figure 3.1: Conventional architecture of Kubernetes clusters in cloud infrastructure and

on-premise data center. (a) In supported infrastructures, e.g., major cloud providers,

Kubernetes automatically set up the routes for ingress tra�c with the help of the

external load balancer. The load balancer distributes ingress tra�c to all of the existing

nodes. (b) In unsupported infrastructures, e.g., on-premise data centers, web application

providers have to manually set up a route to one of the nodes. Packets that reached

any of the nodes will be distributed to appropriate pods by the iptables DNAT based

internal load balancer.

3.1 Architecture 45

3.1.2 Load balancer in container

The author proposes a load balancer architecture, where a cluster of load balancer

containers is deployed as a part of web application cluster. Figure 3.2 shows the proposed

load balancer architecture for Kubernetes, which has the following characteristics;

1) A cluster of load balancer containers is deployed as a part of a web application

cluster. 2) Each load balancer itself is run as a pod by Kubernetes. 3) Load balancing

rules are dynamically updated based on the information about running pods, which is

periodically populated by communicating with apiserver on the master. 4) There exist

multiple load balancers for redundancy and scalability. 5) The routing table in the

upstream router is updated dynamically using standard network protocol, BGP.

Figure 3.2: Kubernetes cluster with proposed load balancer.

A cluster of load balancer containers is deployed as a part of web application

cluster. Each load balancer itself is run as a pod in the Kubernetes cluster.

Load balancing rules are dynamically updated based on the information

about running pods. There exist multiple load balancers for redundancy and

scalability. The routing table in the upstream router is updated dynamically

using standard network protocol, BGP.

The proposed load balancer can resolve the conventional architecture problems.

46 Chapter 3. Architecture and Implementation

Since the load balancer itself is containerized, the load balancer can run in any

environment including on-premise data centers, even without external load balancers

that is supported by Kubernetes. The incoming tra�c is directly distributed to

designated pods by the load balancer. It makes the administration, e.g. �nding

malfunctions, easier. Since the proposed load balancers are deployed as a part of

web application cluster and the routes to the load balancers are set up automatically

through BGP, users do not need to manually set up a static route to a load balancer.

Furthermore, the proposed load balancer has other bene�ts. Since a software load

balancer in a container can run on any Linux system, it can share the server pool

with web containers. Users can utilize existing servers rather than buying dedicated

hardware.

Because a cluster of load balancer containers is controlled by Kubernetes, it becomes

redundant and scalable. Kubernetes always tries to maintain the number of load

balancer containers as same as the number speci�ed by the user. If a single container

fails, Kubernetes schedule and launch another one on a di�erent node, which provides

the resilience to failures. When there is a huge spike in the tra�c, user can quickly

scale the size of the cluster depending on the demand.

The routes to the load balancers are automatically updated through the standard

protocol, BGP. Therefore users do not need to manually add the route every time new

load balancer container is launched, as is the case in the conventional architecture.

3.1.3 Redundancy with ECMP

While containerizing IPVS makes it runnable in any environment, it is essential to

discuss how to route the ingress tra�c to the IPVS container. The author proposes

redundant architecture using ECMP with BGP for proposed load balancer containers.
1

The BGP and ECMP are both standard protocols supported by most of the commercial

router products, and they are used for cloud load balancers as well [16, 17]. However,

in the case of container environments, where overlay networks are often used, special

cares are needed to make the mechanism work properly.

Fig. 3.3 shows a schematic diagram to explain redundancy architecture with ECMP

1
The author also investigated redundancy architecture using VRRP in Appendix D. However, VRRP

had limitation in overlay networks used for container clusters.

3.1 Architecture 47

Figure 3.3: The proposed architecture of load balancer redundancy with ECMP.

The tra�c from the internet is distributed by the upstream router to multiple

of load balancer (lb) pods using hash-based ECMP (the solid green line), after

which distributed by the lb pods to web pods using Linux kernel’s IPVS (the

solid red line). The route toward a service IP is advertised to the route re�ector

(the dotted red line), after which advertised to the upstream router (the blue

dotted line) using iBGP.

for the proposed load balancer. The ECMP is a functionality a router supports, where

the router has multiple next hops with equal priority (cost) to a destination. And the

router generally distributes the tra�c to the multiple next hops depending on the hash

of �ve-tuples (source IP, destination IP, source port, destination port, protocol) of the

�ow. The multiple next hops and their cost are often populated using the BGP protocol.

The notable bene�t of the ECMP setup is its scalability. All the load balancers that

claims as the next hop is active, i.e., all of them are utilized to increase the performance

level. Since the tra�c from the internet is distributed by the upstream router, the

overall throughput is, after all, limited by performance levels of the router. However, in

practice, there are a lot of cases where this architecture is bene�cial. For example, if a

software load balancer is capable of handling 1 Gbps equivalent of tra�c and the

upstream router is capable of handling 10 Gbps, it still is worthwhile launching 10 of

the software load balancer containers to �ll up maximum throughput of the upstream

router.

In the proposed redundant architecture, there exists a node with the knowledge of

48 Chapter 3. Architecture and Implementation

the overlay network as a route re�ector. A route re�ector is a network component for

BGP to reduce the number of peerings by aggregating the routing information [40]. In

the proposed architecture the author uses it as a delegater for load balancer containers

towards the upstream router.

The route re�ector exists for a practical reason, i.e, to deal with the complexity due

to the overlay network. Since the upstream router normally has no knowledge of the

overlay network and IP addresses used inside the Kubernetes clusters, a container

must rely on SNAT on the node to communicate with the router. The SNAT caused a

problem when the author tried a set up without the route re�ector, to co-host multiple

load balancer containers for di�erent services on a single node. Because of the SNAT,

the source IP addresses of multiple connections were translated into a single IP address

possessed by the node. The BGP agent on the router was confused by these connections

and could not properly set up ECMP routes for separate services. This was due to the

fact that the BGP agent used in the experiment used only the source IP address of the

connection to distinguish the BGP peer.

In addition to alleviate complexiety due to overlay network, the route re�ector

brings another bene�t. By using the route re�ector, the upstream router no longer

needs to accept BGP sessions from containers with random IP addresses, but only from

the route re�ector with well known �xed IP address. This is preferable in terms of

security especially when a di�erent organization administers the upstream router.

By using the route re�ector, we can have the following bene�ts. 1) Each node can

accommodate multiple load balancer containers. This was not possible when the

author tried to directly connect load balancers and the router through SNAT. 2) The

router does not need to allow peering connections from random IP addresses that may

be used by load balancer containers. Now, the router only need to have the re�ector

information in the BGP peer de�nition.

Since a standard Linux system is used for the route re�ector, it can be con�gured as

we like; a) It can be con�gured to belong to the overlay network so that multiple

BGP sessions from containers on a single node can be properly distinguished. b) One

can select a BGP agent that supports dynamic neighbor (or dynamic peer), where he

only needs to de�ne the IP range as a peer group and does away with specifying

every possible IP that load balancers may use. Although not shown in the Fig. 3.3, it is

possible to have another route re�ector for redundancy purpose. It is also possible to

3.2 Implementation 49

make the master node of Kubernetes also act as the route re�ector.

3.2 Implementation

In this section the author discusses the implementation of the experimental system to

prove the concept of the proposed load balancers with ECMP redundancy in detail.

3.2.1 Experimental system architecture

Figure 3.4: An experimental container cluster with proposed redundant

software balancers. The master and nodes are con�gured as Kubernetes’s

master and nodes on top of conventional Linux systems, respectively. The

route re�ector and the upstream router are also conventional Linux systems.

For the green lines, a service IP address is used. The red lines use the IP

addresses of the overlay network. The blue line uses the IP addresses of the

node network.

Figure 3.4 shows the schematic diagram of proof of concept container cluster

system with the proposed software load balancers. Each load balancer pod consists of

an exabgp [41] container and an IPVS container. The IPVS container is responsible

50 Chapter 3. Architecture and Implementation

for distributing the tra�c toward the service IP to web server (nginx) pods. The

IP address for nginx pods and load balancer pods are dynamically assigned upon

launch of themselves from 172.16.0.0/16 address range. The IPVS container monitors

the availability of web server pods by consulting apiserver on the master node and

manages the load balancing rule appropriately. The exabgp container is responsible for

advertising the route toward the service IP to the route re�ector using BGP. The route

re�ector aggregates the routing information advertised by load balancer pods and

advertise them to the upstream router. The upstream router updates its routing table

according to the advertisement.

All the nodes and route re�ector are con�gured using Debian 9.5 with self

compiled linux-4.16.12 kernel. The author also used conventional Linux system

as an upstream router for testing purpose, using the same OS as the nodes and the

route re�ector. The version of Linux kernel needed to be 4.12 or later to support

hash based ECMP routing table. The author also needed to enable kernel con�g

option CONFIG_IP_ROUTE_MULTIPATH [42] when compiling, and set the kernel

parameter �b_multipath_hash_policy=1 at run time. Although in the actual production

environment proprietary hardware router with the highest throughput is usually

deployed, one can still test some of the advanced features by using a conventional

Linux system for the upstream router.

Features gobgpd exabgp bird

Static route advertisement complex simple complex

Add-path support
∗

Yes No Yes

Dynamic neighbor
∗∗

Yes No No

FIB manipulation Yes (through zebra) No Yes (Native)

Table 3.1: Comparison of open source BGP agents. Open source BGP agents

are compared in terms of the features required in the proposed systems.

∗
The add-path is the feature to support multipath advertisement.

∗∗
The dynamic-neighbor is the feature to describe peer group as a range of IP

address.

Table 3.1 compares open source BGP agents in terms of required features for the

proposed architecture. Each load balancer pod needs to advertise itself as the next hop

for packets toward the service IP. For that purpose, exabgp is preferable because it only

3.2 Implementation 51

requires to add a line, e.g., “route [Service_IP] next-hop [Pod_IP]” in the con�guration

�le. On the other hand, the gobgpd and the bird require other client programs to inject

the static route after the daemon itself is up and running. For example, in the case

of gobgpd, after launching gobgpd, a user is required to issue a command line, e.g.,

“gobgp global rib add [Service_IP]/32 origin igp nexthop [Pod_IP] community 100:50 -a

ipv4”. (The gobgp is a client program to manage gobgpd.) This is a bit complex and

error-prone, especially when one has to inject the route periodically inside a container.

As for the route re�ector, add-path [18] feature and dynamic neighbor feature

are needed. These are supported by gobgpd. For the upstream router Forwarding

Information Base (FIB) manipulation [41] feature is needed, which is supported by

gobgpd through zebra [43, 44]. As a result, exabgp is used for the load balancer pods,

gobgpd is used for the route re�ector, and gobgpd and zebra are used for the upstream

router.

The other requirement for the route re�ector is the knowledge of the overlay

network for the containers. The con�gurations for the upstream router is summarised in

Appendix B.1. The con�gurations for the route re�ector is summarised in Appendix B.2.

3.2.2 IPVS container

In order to implement a software load balancer that is runnable in any environment,

the author used Linux kernel’s IPVS in Docker container. In addition to that, the

proposed load balancer uses two other components, keepalived, and a controller. These

components are placed in a single Docker container image. The IPVS is a Layer-4 load

balancer capability, which is included in the Linux kernel 2.6.0 released in 2003 or later,

to distribute incoming Transmission Control Protocol (TCP) tra�c to real servers2 [20].

For example, IPVS distributes incoming Hypertext Transfer Protocol (HTTP) tra�c

destined for a single destination IP address, to multiple HTTP servers (e.g. Apache

HTTP or nginx) running on multiple nodes in order to improve the performance of

web services. Keepalived is a management program that performs health checking for

real servers and manages IPVS balancing rules in the kernel accordingly. It is often used

together with IPVS to facilitate ease of use. The controller is a daemon that periodically

2
The term, real servers refers to worker servers that will respond to incoming tra�c, in the original

literature [20]. The author will also use this term in a similar way.

52 Chapter 3. Architecture and Implementation

monitors the pod information on the master, and it performs various actions when

such information changes. Kubernetes provides ingress controller framework as the

Go Language (Golang) package to implement the controllers. The author implemented

a controller program that feeds pod state changes to keepalived using this framework

(Appendix A).

Figure 3.5: Implementation of IPVS container. The controller checks the pod

status every second, by consulting the master node. Upon a change of the

status, the controller updates the ipvs.conf and sends SIGHUP to keepalived.

The keepalived reload the ipvs.conf and updates the load balancing rules in

the kernel correctly.

The proposed load balancer needs to dynamically recon�gure the IPVS balancing

rules whenever pods are created or deleted. Figure 3.5 is a schematic diagram of

IPVS container to show the dynamic recon�guration of the IPVS rules. Two daemon

programs, controller and keepalived, running in the container are illustrated. The

keepalived manages Linux kernel’s IPVS rules depending on the ipvs.conf con�guration

�le. It can also periodically check the liveness of a real server, which is represented as a

combination of the IP addresses and port numbers of the target pods. If the health

check to a real server fails, keepalived will remove that real server from the IPVS rules

immediately. The interval of the health check is typically 1 to several seconds and is

3.2 Implementation 53

arbitrarily determined by users.

Every second, the controller monitors information concerning the running pods of

a web application in the Kubernetes cluster by consulting the apiserver running in the

master through its API. Whenever pods are created or deleted, the controller notices

the change and automatically regenerate an appropriate ipvs.conf and issue SIGHUP to

keepalived within a second. Then, keepalived will reload the ipvs.conf, and modify the

IPVS rules inside the kernel appropriately depending on the result of the health check.

When a pod is terminated, existing connections are reset by the node kernel.

The SYN packets sent to a pod after termination, but before the IPVS rule update,

will be answered with ICMP unreachable by the node. In these cases, the client sees

connection errors. However, since the load balancer rule update is within a second,

these errors can be regarded as the tolerable rare exceptions. In order to avoid the

connection errors to be seen by a human, HTTP client programs are required to

re-initiate the connection.

The actual controller [45] is implemented using the Kubernetes ingress controller

[46] framework. By importing existing Golang package, “k8s.io/ingress/core/pkg/ingress”,

the author could simplify the implementation, e.g. 120 lines of code (Appendix A).

Keepalived and the controller are placed in the docker image of IPVS container. The

namespace separation for IPVS has already been supported in the recent Linux kernel.

Con�gurations for capabilities were needed when deploying the IPVS container:

adding the CAP_SYS_MODULE capability to the container to allow the kernel to load

required kernel modules inside a container, and adding CAP_NET_ADMIN capability

to the container to allow keepalived to manipulate the kernel’s IPVS rules. For the

former case, the author also needed to mount the “/lib/module” of the node’s �le

system on the container’s �le system.

Figure 3.6 and Figure 3.7 show an example of an ipvs.conf �le generated by the

controller and the corresponding IPVS load balancing rules, respectively. Here, we

can see that the packet with fwmark=1 [47] is distributed to 172.16.21.2:80 and

172.16.80.2:80 using the masquerade mode (Masq) and the least connection (lc) [20]

balancing algorithm.

54 Chapter 3. Architecture and Implementation

virtual_server fwmark 1 {
delay_loop 5
lb_algo lc
lb_kind NAT
protocol TCP
real_server 172.16.21.2 80 {

uthreshold 20000
TCP_CHECK {

connect_timeout 5
connect_port 80

}
}
real_server 172.16.80.2 80 {

uthreshold 20000
TCP_CHECK {

connect_timeout 5
connect_port 80

}
}

}

Figure 3.6: An example of ipvs.conf This con�guration �le is auto-generated

by the controller. The controller periodically accesses the apiserver on the

master node and constantly monitor the status of running pods.

IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn

FWM 1 lc
-> 172.16.21.2:80 Masq 1 0 0
-> 172.16.80.2:80 Masq 1 0 0

Figure 3.7: Example of IPVS balancing rules. This shows the load balancing

rule in a load balancer container. The packet that has FWM (fwmark)=1 will

be forwarded to two real servers using the least connection (lc) balancing

algorithm. The fwmark is a parameter that is only available inside a socket

bu�er in Linux kernel. The fwmark can be put and manipulated by the iptables

program, once a socket bu�er for a received packet is assigned by the kernel.

3.2 Implementation 55

Figure 3.8: Network path by the exabgp container. The packets from Internet

to service IPs, 10.1.1.0/24 are routed to the load balancer pod (green arrows)

by the set of routing rules shown in Table 3.2. And then the IPVS container

forwards them to nginx pods (red arrows). The IP address of any pod is

dynamically assigned from 172.16.0.0/16 when the pod is started.

3.2.3 BGP software container

In order to implement the ECMP redundancy, the author also containerized exabgp

using Docker. Figure 3.8 shows a schematic diagram of the network path realized

by the exabgp container. As mentioned earlier, the author used exabgp as the BGP

advertiser. The ingress tra�c from the Internet is forwarded by ECMP routing table on

the router to the node that hosts a load balancer pod. And then it is routed to the load

balancer pod according to the set of routing rules in Table 3.2(2),(3). After that the

IPVS forwards them to nginx pods. The IP address of any pod is dynamically assigned

from 172.16.0.0/16 when the pod is started.

Table 3.2 summarises some key settings required in the exabgp container to route

the tra�c to the IPVS container. (1) In BGP announcements the node IP address,

10.0.0.106 is used as the next-hop for the service IPs, 10.1.1.0/24. (2) Then on the node,

in order to route the packets toward the service IPs to the IPVS container, a routing

rule for 10.1.1.0/24 to the dev docker0 is created in the node net namespace. (3) A

routing rule to accept the packets toward the service IPs as local is also required in the

56 Chapter 3. Architecture and Implementation

[BGP announcement]
route 10.1.1.0/24 next-hop 10.0.0.106 ...(1)

[Routing in node net namespace]
ip netns exec node \

ip route replace 10.1.1.0/24 dev docker0 ...(2)
[Accept as local]

ip route add local 10.1.1.0/24 dev eth0 ...(3)

Table 3.2: Required settings in the exabgp container. (1) The node IP ad-

dress, 10.0.0.106 is used as next-hop for the service IPs, 10.1.1.0/24, in BGP

announcement. (2) In order to route the packets destined toward the service

IP to the container, a routing rule to the dev docker0 is created in the node

net namespace. (3) A routing rule to accept the packets destined toward the

service IPs, as local is also required.

container net namespace. The con�guration for exabgp is shown in Appendix B.3.

3.3 Summary 57

3.3 Summary

In this chapter, the author provided a discussion of load balancer architecture and

its implementations suitable for container clusters. First, the author discussed the

problems of conventional architecture. Since Kubernetes is dependent on external

load balancers provided by the cloud infrastructures, it failed to provide portability

of a web application in environments where there was no supported load balancer.

Furthermore, the routes that ingress tra�c from the internet follow were very complex

and ine�cient.

In order to alleviate these problems, the author proposed a cluster of software load

balancers in containers. The proposed load balancers utilized container technology and

were managed by Kubernetes. As a result, it is runnable on any environment including

cloud infrastructures and on-premise data centers. Furthermore, since Kubernetes

manages load balancer containers, it can quickly scale the number of containers

depending on the demand. The author also discussed redundant architecture using

ECMP with BGP for proposed load balancer containers. By using the ECMP, the

upstream router can route the ingress tra�c to a cluster of load balancer containers in

a redundant and scalable manner. By using BGP, ECMP routing rules in the upstream

router are automatically populated, upon the launch of load balancer containers. The

BGP and ECMP are both standard protocols supported by most of the commercial

router products.

Thanks to the proposed load balancer, users become being able to set up routes to

their web applications automatically, upon its launch, regardless of the infrastructures

they use. This will greatly improve the portability of a web application and thereby

enables migrations.

59

4
Performance Evaluation

In this chapter, the author evaluates the feasibility of the proposed load balancer.

At �rst, the author evaluates the basic characteristics of the load balancer using

physical servers in the on-premise data center, by comparing the throughput of the load

balancer with several experimental conditions. Then the author veri�es the feasibility

of the proposed load balancer through experiments, with the following criteria; 1)

Portability: whether the load balancer can run in both on-premise data centers and

cloud infrastructures. 2) Redundancy and scalability: whether the throughput is

changed by changing the number of load balancers. 3) Performance: whether the load

balancer has su�cient throughput for 1 Gbps network.

60 Chapter 4. Performance Evaluation

Figure 4.1: Benchmark setup. There are nodes on which nginx pods are

deployed as web servers. There is another node where IPVS pod and nginx

pod are deployed. Iptables DNAT rules exist on every Kubernetes node as an

internal load balancer. Throughput measurements are performed for IPVS pod,

nginx pod, and iptables DNAT rules. Each of the load balancers distributes the

packets from the wrk to the nginx web servers. The response packets from the

nginx web servers follow the same route as the request packets.

4.1 Performance analysis of proposed load balancer

Experimental conditions

Throughput measurements were carried out in order to examine the basic characteristics

of the containerized IPVS load balancer in an on-premise data center. Figure 4.1 shows

the schematic diagram of the experimental setup for the measurement. A benchmark

program called wrk [48] were used. Multiple nginx pods are deployed on multiple

nodes as web servers in the Kubernetes cluster. In each nginx pod, single nginx web

server program that returns the IP address of the pod itself is running. The author then

launched IPVS pod and nginx pod as load balancers on one of the nodes, after that,

performed the throughput measurement changing the number of the nginx web server

4.1 Performance analysis of proposed load balancer 61

pods. On every Kubernetes node, there are iptables DNAT rules that function as an

internal load balancer. The author also measured throughput of this internal load

balancer. The throughput is measured by sending out HTTP requests from the wrk

towards a load balancer and by counting the number of responses the benchmark

client received.

Table 4.1 shows an example of the command-line for the benchmark program,

wrk, and the corresponding output. The command-line in Table 4.1 will generate 40

wrk program threads and allow those threads to send out a total of 800 concurrent

HTTP requests over the period of 30 seconds. The output example shows information

including per-thread statistics, error counts, throughput in [Request/sec] and data rate

in [Transfer/sec].

wrk -c800 -t40 -d30s http://172.16.72.2:8888/
-c: concurrency, -t: # of thread, -d: duration

(a) Command line

Running 30s test @ http://10.254.0.10:81/
40 threads and 800 connections
Thread Stats Avg Stdev Max +/- Stdev

Latency 15.82ms 41.45ms 1.90s 91.90\%
Req/Sec 4.14k 342.26 6.45k 69.24\%

4958000 requests in 30.10s, 1.14GB read
Socket errors: connect 0, read 0, write 0, timeout 1

Requests/sec: 164717.63
Transfer/sec: 38.86MB

(b) Output example

Table 4.1: Benchmark command line and output example. (a) This command

line will generate 40 wrk program threads and allow those threads to send

out a total of 800 concurrent HTTP requests over the period of 30 seconds.

(b) The output example shows information including per-thread statistics,

error counts, throughput in [Request/sec] and data rate in [Transfer/sec]. The

throughput is 164717.63 [Request/sec] in this example.

Table 4.2 shows hardware and software con�guration used in the experiment. The

62 Chapter 4. Performance Evaluation

[Hardware Specication]
CPU: Xeon E5-2450 2.10GHz (with 8 core, Hyper

Threading)
Memory: 32GB
NIC: Broadcom BCM5720 with 4 rx-queues, 1 Gbps
(Node x 6, Load Balancer x 1, Client x 1)

[Node Software]
OS: Debian 8.7, linux-3.16.0-4-amd64
Kubernetes v1.10.6
flannel v0.7.0
etcd version: 3.0.15

[Container Software]
Keepalived: v1.3.2 (12/03,2016)
nginx : 1.11.1 (load balancer), 1.13.0 (web server)

Table 4.2: Hardware and software speci�cations. The hardware had eight

physical CPU cores and a network interface card (NIC) with four rx-queues.

author used a total of eight servers; six servers for Nodes, one for the load balancer and

one for the benchmark client, with all having the same hardware speci�cations. The

hardware had eight physical CPU cores and a network interface card (NIC) with four

rx-queues. The author con�gured nginx HTTP server to return a small HTTP content,

the IP address of the pod, to make a relatively severe condition for load balancers. The

size of the character string making up an IP address is limited to 15 bytes.

The author also measured throughputs of the load balancers varying two types of

network conditions: The �rst condition is the setting for multicore packet processing.

It is known that distributing handling of interrupts from the NIC and the subsequent IP

protocol processing among multiple cores improve the network throughput of a Linux

machine. To derive the best performance from load balancers, the author investigated

how this setting would a�ect their performance levels. The second condition is the

overlay network settings [49, 25]. An overlay network is often used to build the

Kubernetes cluster and therefore used in the experiment. The author used �annel [30],

which is one of the popular overlay network technologies. The author compared the

throughputs of three backend modes [33] of �annel to �nd the best setting.

4.1 Performance analysis of proposed load balancer 63

E�ect of multicore processing

Figure 4.2 shows the result of the throughput measurement for the IPVS load balancer

with di�erent multicore processing settings. Since hardware used in the experiment

has a NIC with four rx-queues, and a CPU with eight cores, the setting “(RSS, RPS)

= (on, o�)” uses four cores and “(RSS, RPS) = (o�, on)” uses eight cores for packet

processing respectively. For the setting “(RSS, RPS) = (o�, o�)”, only one core is used

for the packet processing.

There is a general trend in the throughput result, where the throughput linearly

increases as the number of nginx pods increases and then it eventually saturates. For

example, if we look at the red line in the Figure 4.2, the throughput increases almost

linearly as the number of the nginx pods (web servers) increases from 1 to around 14,

and then saturates. The increase indicates that the load balancer functions properly, as

the load balancer increased throughput by distributing HTTP requests to multiple of

the web servers. The saturated throughput indicates the maximum performance level

of the load balancer, which could be determined either by network bandwidth between

the benchmark client and the load balancer node, or CPU performance levels of these

machines. The maximum performance levels are dependent on the number of cores

used for packet processing. Throughput is highest for the setting with eight cores (rps

= on), followed by four cores (rss = on), then single core (none). This indicates that the

more cores are used, the better the throughput is.

Figure 4.3 shows the result of the throughput measurement for iptables DNAT as a

load balancer, with di�erent multicore processing settings. As is the case for the IPVS

result, there is a general trend where the throughput increases as the number of nginx

pods increases and then it eventually saturates. Also, throughput is highest for the

setting with eight cores (rps = on), followed by four cores (rss = on), then single core

(none). The saturated performance levels of iptables DNAT and IPVS are the same for

the condition with eight cores (rss = on). The saturated performance levels of iptables

DNAT are higher than those of IPVS, for the conditions with four cores (rss = on) and

single core (none).

64 Chapter 4. Performance Evaluation

Figure 4.2: E�ect of multicore packet processing on IPVS throughput. Through-

put linearly increases as the number of nginx pods increases and then it

eventually saturates. The throughput is highest for the setting with eight

cores (rps = on), followed by four cores (rss = on), then single core (none).

Figure 4.3: E�ect of multicore packet processing iptables DNAT throughput.

Throughput linearly increases as the number of nginx pods increases and then

it eventually saturates. The throughput is highest for the setting with eight

cores (rps is on), followed by four cores (rss is on), then single core (none).

4.1 Performance analysis of proposed load balancer 65

E�ect of overlay network

Figure 4.4 shows the IPVS throughput results for di�erent overlay network settings.

The author used the �annel for the overlay network. Flannel has three backend modes,

host-gw, vxlan and udp, and the throughput for each setting are compared.

Except for the udp backend mode case, a general trend can be clearly seen, i.e.,

the throughput linearly increases as the number of nginx pod increases, and then

it eventually saturates. Among the �annel backend mode types, the host-gw mode

where no encapsulation is conducted shows the highest performance level, followed

by the vxlan mode where the Linux kernel encapsulates the Ethernet frame. The

udp mode where �anneld itself encapsulates the IP packet shows signi�cantly lower

performances levels.

Figure 4.5 shows throughput results of the iptables DNAT as a load balancer for

di�erent overlay network settings. The same characteristics can be seen for the iptables

DNAT, although the performance level of the iptables DNAT for udp mode is slightly

better than that of IPVS.

As is shown here, overlay network settings greatly a�ect the performance level.

The author considers the host-gw mode is the best, the vxlan tunnel the second

best and the udp tunnel mode unusable. In environments where containers need

to communicate with each other via a gateway that has no knowledge of overlay

network, the backend modes with tunneling are inevitable, which is often the case in

cloud environments. The author used vxlan mode for the experiments conducted in

cloud environments and host-gw mode for the rest of the experiments conducted in

on-premise data centers.

66 Chapter 4. Performance Evaluation

Figure 4.4: E�ect of �annel backend modes on IPVS throughput. The host-gw

mode shows the highest performance level, followed by the vxlan mode. The

udp mode shows signi�cantly lower performances levels.

Figure 4.5: E�ect of �annel backend modes on iptables DNAT throughput. the

host-gw mode shows the highest performance level, followed by the vxlan

mode. The udp mode shows signi�cantly lower performances levels.

4.1 Performance analysis of proposed load balancer 67

Comparison of di�erent load balancer

Figure 4.6: Throughput of IPVS, iptables DNAT and nginx. The performance

levels of IPVS and iptables DNAT are almost the same. The nginx as a load

balancer does not perform well in the experiment.

Figure 4.6 presents the throughput results of the di�erent load balancers. The

performance levels of IPVS, iptables DNAT and nginx as the load balancers are

compared. The throughput of the IPVS and iptables DNAT increases almost linearly as

the number of nginx pods (web servers) increase from 1 to around 14, and then it

saturates. The proposed IPVS load balancer exhibits almost equivalent performance

levels as the iptables DNAT as a load balancer.

The saturated throughput indicates the maximum performance level of the load

balancer, which could be determined either by network bandwidth between the

benchmark client machine and the load balancer node, or CPU performance levels

of these machines. In this speci�c experiment, it was found that the performance

levels of IPVS and iptables DNAT were limited by the 1 Gbps network bandwidth at

the load balancer node.
1

This was revealed by packet-level analysis using tcpdump

(Appendix C). On average the data size of each request and the corresponding response

1
All of the nodes use a single interface for communication. At the load balancer node, the bandwidth

for each direction of Full duplex Ethernet is consumed by the sum of request and response packets.

68 Chapter 4. Performance Evaluation

was about 636 [byte/req] in total, including TCP/IP headers, Ethernet header, and

inter-frame gaps. Multiplying that with 190K [req/sec] and 8 [bit/byte] will result in

966.72 Mbps. Therefore the throughput of about 190K [req/sec] is a reasonable number

as the maximum performance level in 1Gbps network environment.

Figure 4.7: Latency for IPVS and iptables DNAT. Cumulative Distribution

Function (CDF) of the latency for IPVS and iptables DNAT are compared, at

the two constant loads, 160K[req/sec] and 180K[req/sec] . Smaller latencies

are observed for IPVS.

Figure 4.7 compares Cumulative Distribution Function (CDF) of the load balancer

latency at the two constant loads, 160K[req/sec] and 180K[req/sec] for IPVS and

iptables DNAT. It is seen that the latencies are a little bit smaller for IPVS. For example,

the median values at 160K[req/sec] load for IPVS and iptables DNAT are, 1.14 msec

and 1.24 msec, respectively. Also, at 160K[req/sec], they are 1.39 msec and 1.45 msec,

respectively. While these may be considered a subtle di�erence, however, this indicates

that proposed load balancer is at least as good as iptables DNAT.

L3DSR using IPVS-TUN

The performance levels of IPVS and iptables DNAT have been limited by 1 Gbps

bandwidth at the load balancer node. This can be alleviated in the case of IPVS by

4.1 Performance analysis of proposed load balancer 69

using so-called Layer 3 Direct Server Return (L3DSR) setup. Figure 4.8 shows the

schematic diagram illustrating the packet �ow of the L3DSR experiment. The red

arrows indicate the route HTTP request packets follow and the blue arrows indicate

the route response packets follow. Since the response packets directly return to the

client and do not consume the bandwidth at the load balancer node, the load balancer

is expected to perform better.

The IPVS has a mode called IPVS-TUN. When the IPVS-TUN send out the packets

to real servers, it encapsulates the original packet in ipip tunneling packet [35] that is

destined to real servers. The real server receives the packet on a tunl0 device and

decapsulates the ipip packet, revealing the original packet. Since the source IP address

of the original packet is maintained, the returning packets are sent directly toward the

benchmark client. In this scheme, the returning packets do not consume the bandwidth

nor the CPU power of the load balancer node. Since iptables DNAT does not have the

functions that enable L3DSR settings, this is one of the bene�ts only available for the

proposed load balancer.

Figure 4.8: Experimental setup for L3DSR throughput measurement. The red

arrows indicate the route HTTP request packets follow and the blue arrows

indicate the route response packets follow. Since the response packets directly

return to the client, the load balance is expected to perform better.

The author carried out throughput measurement using the experimental setup

shown in Figure 4.8. Figure 4.9 compares the throughput of the IPVS-TUN, conventional

70 Chapter 4. Performance Evaluation

Figure 4.9: Throughput of L3DSR using IPVS-TUN. The throughput of IPVS-

TUN is 1.5 times higher than those of conventional IPVS and iptables DNAT.

IPVS and iptables DNAT. As can be seen in the �gure, while the performance levels for

IPVS and iptables DNAT exactly match because of the network bandwidth limitation,

the performance level of IPVS-TUN is much higher than those. For example, the

throughput of IPVS-TUN is about 1.5 times higher than those of conventional IPVS and

iptables DNAT. The saturated throughput indicates the maximum performance level of

the load balancer, which is determined by network bandwidth at the benchmark client,

or by CPU performance of either load balancer node or benchmark client. In the case

of IPVS-TUN, it turned out that the maximum throughput is limited by the bandwidth

at the benchmark client. This is because multiplying the maximum throughput of

about 290K [req/sec] with the response packet size 450[byte/req] (Appendix C) and

8 [bit/byte] results in 972M [bit/sec] . The fact that the load balancer itself is not

the performance limiting factor means that proposed load balancer has su�cient

performance levels in 1 Gbps network.

4.2 Cloud experiment 71

4.2 Cloud experiment

The throughput measurements were also carried out in GCP and AWS to show the

containerized IPVS load balancer is runnable even in the cloud environment. The

speci�cations of virtual machines used for the experiment in both environment are

summarized in Table 4.3 and Table 4.4. In the cases of cloud environments, it is easy to

change the machine speci�cations, especially CPU counts. Therefore, the author

measured throughput with several conditions of them. In the case of GCP, custom

instance with 32Gbyte memory and with 8, 16, and 32 CPU are used. And in the case of

AWS instance type of c4.2xlarge, c4.4xlarge, and c4.8xlarge, which support single root

I/O virtualization (SR-IOV), are used. The vxlan mode of the �annel is used for the

overlay network in both of the cloud environment. As for multicore packet processing,

di�erent settings depending on the number of prepared queues for VMs are used. The

setting “(RSS, RPS) = (on, o�)” is used in GCP and the setting “(RSS, RPS) = (o�, on)” is

used in AWS.

[GCP VM Specication for Client and Web Server Nodes]
Instance type: custom instance
CPU: Xeon 2.2GHz, 16 cpus
Memory: 16GB
NIC: virtio_net /w 16 rx-queues
(Node x 6, Client x 1)

[GCP VM Specication for Load balancer Node]
Instance type: custom instance
CPU: Xeon 2.2GHz, 8, 16, 32 cpus
Memory: 16GB
NIC: virtio_net /w 8, 16, 32 rx-queues
(Load balancer x 1)

Table 4.3: Virtual Machine speci�cations in GCP experiment. The author

measured throughputs using load balancer nodes with 8 CPUs, 16 CPUs, and

32 cups. The number of rx-queues of each node was 8, 16 and 32, respectively.

Since the same number of rx-queues as the number CPU is prepared, the

setting with “(rss, rps) = (on, o�)” is used.

Figure 4.10 and Figure 4.11 show throughput results that are measured in GCP and

72 Chapter 4. Performance Evaluation

[AWS VM Specication for Client and Web Server Nodes]
Instance type: m4.4xlarge
CPU: Xeon E5-2686 v4 2.30GHz, 16 cpus
Memory: 64GB
NIC: ixgbevf /w 2 rx-queues
(Node x 6, Client x 1)

[AWS VM Specication for Load balancer Node]
Instance type: c4.2xlarge, c4.4xlarge, c4.8xlarge
CPU: Xeon E5-2666 v3 2.90GHz, 8, 16, 36 cpus
Memory: 15GB, 30GB, 60GB
NIC: ixgbevf /w 2 rx-queues
(Load balancer x 1)

Table 4.4: Virtual Machine speci�cations in AWS experiment. The author

measured throughputs using load balancer nodes with 8 CPUs, 16 CPUs, and

36 CPUs. Since there are only two rx-queues, the setting with “(rss, rps) = (o�,

on)” is used.

AWS, respectively. Both results show similar characteristics as the experiment in an

on-premise data center in Figure 4.6, where throughput increased linearly to a certain

saturation level that is determined by either network speed or machine speci�cations.

It is also seen that the performance levels are higher for load balancer nodes with

more CPUs in both GCP and AWS. These results indicate that the proposed IPVS

load balancers function properly in GCP and AWS, and hence can be run in those

environments.

In general, the throughput results in the cloud environments are inferior to those in

the on-premise data center, even though much more powerful CPUs are used for VMs

in the cloud environment than the experiment in the on-premise data center. For

example, while the maximum throughput of the IPVS load balancer with eight physical

cores was 190K[req/sec] in the on-premise data center (Figure 4.2), the maximum

throughput in GCP and AWS are 160K[req/sec] and 100K[req/sec], respectively, even

with 32 and 36 virtual CPUs. The author suspects that this is due to the ine�ciency of

the virtual machines as opposed to Bare Metal servers. Although a detailed analysis is

left for future work, the author con�rmed that proposed load balancer could run both

4.2 Cloud experiment 73

Figure 4.10: Throughput measurement results in GCP. The throughput

increases linearly as the number of nginx pods increases until it reaches the

saturation level. The maximum throughput is higher for instances with more

virtual CPUs.

in GCP and AWS.

74 Chapter 4. Performance Evaluation

Figure 4.11: Throughput measurement results in AWS. The throughput

increases linearly as the number of nginx pods increases until it reaches the

saturation level. The maximum throughput is higher for instances with more

virtual CPUs.

4.3 Redundancy with ECMP

While containerizing IPVS makes it runnable in any environment, it is essential to

discuss how to route the tra�c to the IPVS container in a redundant and scalable

manner. The ECMP technique is expected to make the load balancers redundant and

scalable since all the load balancer containers act as active. The author examined the

behavior of the ECMP routing table updates, by changing the number of the load

balancers. After that, in order to explore the scalability, the author also measured the

throughput from a benchmark client with ECMP routes when multiple of the IPVS

container load balancers are deployed.

Figure 4.12 shows the schematic diagram of the experimental setup. Table 4.5

summarizes hardware and software speci�cations. Notable di�erences from the

previous throughput experiment in Figure 4.1 and Table 4.2 are as follows; 1) Each load

balancer pods now consists of both an IPVS container and an exabgp container. 2) The

routing table of the benchmark client is updated by BGP protocol through a route

re�ector. 3) The NIC of the benchmark client has been changed to 10 Gbps card, which

4.3 Redundancy with ECMP 75

Figure 4.12: Benchmark setup for ECMP experiment. Each load balancer pods

consists of both an IPVS container and an exabgp container. The routing table

of the benchmark client is updated by BGP protocol through a route re�ector.

prevented the bandwidth at the benchmark client from becoming the bottleneck too

early. 4) Some of the software have been updated to the most recent versions at the

time of the experiment.

76 Chapter 4. Performance Evaluation

[Hardware Specication]
CPU: Xeon E5-2450 2.10GHz x 8 (with Hyper Threading)
Memory: 32GB
NIC: Broadcom BCM5720 with 4 rx-queues, 1 Gbps
(Node x 6, Load Balancer x 4)

CPU: Xeon E5-2450 2.10GHz x 8 (with Hyper Threading)
Memory: 32GB
NIC: Intel X550
(Client x 1)

[Node Software]
OS: Debian 9.5, linux-4.16.8
Kubernetes v1.5.2
flannel v0.7.0
etcd version: 3.0.15

[Container Software]
Keepalived: v1.3.2 (12/03,2016)
nginx : 1.15.4 (web server)

[BGP Software]
gobgp version 1.33 (route reector & benchmark client)
exabgp 3.4.17 (load balancer)

Table 4.5: Hardware and software speci�cations for ECMP experiment. The

NIC of the benchmark client is 10 Gbps card to measure the aggregated

throughput of 1Gbps load balancers.

First, the author examined ECMP functionality by monitoring the routing table

on the benchmark client. Table 4.6(a) shows the routing table entry on the router

when a single load balancer pod exists. From this entry, it is seen that packets toward

10.1.1.0/24 are forwarded to 10.0.0.106 where the load balancer pod is running. It also

shows that this routing rule is updated by zebra. The routing table entry in Table 4.6(b)

is seen when the number of the load balancer pods is increased to three. There are

three next hops towards 10.1.1.0/24, each of which is the node where the load balancer

pods are running. The weights of the three next-hops are all 1. The update of the

routing entry was almost instant as the author increased the number of the load

4.3 Redundancy with ECMP 77

balancers. Table 4.6(c) shows the case where the author additionally started new

service with two load balancer pods with service addresses in 10.1.2.0/24 range. It was

possible to accommodate two services with di�erent service IPs on the same group of

nodes(10.0.0.105, 10.0.0.106, 10.0.0.107). One has three load balancers, and the other has

two load balancers. The update of the routing entry was almost instant as the author

started the load balancers for the second service.

As far as the route withdrawal is concerned, if an exabgp is killed by SIGKILL

or SIGTERM the kernel of the node close the BGP connection by sending out a

packet with FIN �ag to the peer gobgpd on the route re�ector, and thus the route is

withdrawn immediately. The gobgp on the route re�ector also periodically checks

the BGP connection, and if the peer exabgp container is unresponsive for more than

the speci�ed duration,“hold-time“ setting in gobgpd, it will also terminate the

connection and withdraw the route. The packets arriving within that duration will be

dropped. However, it is possible to set up the“hold-time” short enough so that the

retransmitted TCP packets from the client will be forwarded correctly to functioning

load balancers.

78 Chapter 4. Performance Evaluation

10.1.1.0/24 via 10.0.0.106 dev eth0 proto zebra metric 20

(a) With single load balancer pod.

10.1.1.0/24 proto zebra metric 20

nexthop via 10.0.0.105 dev eth0 weight 1

nexthop via 10.0.0.106 dev eth0 weight 1

nexthop via 10.0.0.107 dev eth0 weight 1

(b) With three load balancer pods.

10.1.1.0/24 pro to zebra metric 20

nexthop via 10.0.0.107 dev eth0 weight 1

nexthop via 10.0.0.105 dev eth0 weight 1

nexthop via 10.0.0.106 dev eth0 weight 1

10.1.2.0/24 proto zebra metric 20

nexthop via 10.0.0.107 dev eth0 weight 1

nexthop via 10.0.0.106 dev eth0 weight 1

(c) For a service with three load balancer pods and a service with two

load balancer pods.

Table 4.6: ECMP routing tables. All the routing rules are updated by zebra. (a)

According to this entry, packets toward 10.1.1.0/24 are forwarded to 10.0.0.106.

(b) There is a routing rule with three next hops towards 10.1.1.0/24, each of

which is the node where the load balancer pods are running. The weights of

the three next-hops are all 1. (c) There are two routing rules regarding the

services with di�erent service IPs, one with three load balancers and the other

with two load balancers. These load balancers share the same group of nodes,

i.e., (10.0.0.105,10.0.0.106,10.0.0.107).

4.3 Redundancy with ECMP 79

Figure 4.13: Throughput of ECMP redundant load balancer. The throughputs

are measured for a single load balancer (lb x1), two (lb x2), three (lb x3) and

four (lb x4) load balancers.

The author also carried out throughput measurement to show that the proposed

architecture increases the throughput as the number of the load balancers is increased.

Figure 4.13 shows the results of the measurements. There are four solid lines in the

�gure, each corresponding to the throughput result when there are one through four

of the proposed load balancers. The saturated levels, i.e. performance levels depend

on the number of the IPVS load balancer pods (lb x 1 being the case with one IPVS

pods, and lb x2 being two of them and as such). The performance level increases

linearly as the number of the load balancers increases up to four of the IPVS load

balancers, indicating that the load balancer with the proposed architecture is scalable.

The throughput of the load balancers does not scale further, because the benchmark

program uses up CPU power of the benchmark client, i.e., the CPU usage is 100%

when there are more than four load balancers. The author expects that replacing

the benchmark client with more powerful machines, or changing the experimental

setup so that multiple benchmark clients can simultaneously perform the throughput

measurements, will improve the performance level further.

80 Chapter 4. Performance Evaluation

Figure 4.14: Throughput responsiveness. Throughput responsiveness when

the number of load balancers is changed randomly in every 60 seconds is

shown.

Figure 4.14 shows the throughput measurement results when the author periodically

changed the number of the load balancers. The red line in the �gure shows the number

of IPVS load balancer pods, which is changed randomly every 60 seconds. The blue

line corresponds to the resulting throughput. As can be seen from the �gure, the blue

line nicely follows the shape of the red line. This indicates that new load balancers are

immediately utilized after they are created, and after removing some load balancers,

the tra�c to them is immediately directed to the existing load balancers.

Figure 4.15 shows a histogram of the ECMP update delay, where the author

measured the delays until the number of running IPVS pods is re�ected in the routing

table on the benchmark client, as the number of the IPVS pods is changed randomly

every 60 seconds for 20 hours. As can be seen from the �gure, most of the delays are

within 6 seconds, and the largest delay during the 20 hours experiment was 10 seconds.

This is practically quick enough because normally resizing of the load balancer cluster

does not occur so often and from the viewpoint of a client, 6 seconds is within a

duration of tree TCP retransmissions [50]. The author concludes that the proposed

redandancy architecture for the load balancer functions properly and the ECMP

4.3 Redundancy with ECMP 81

Figure 4.15: ECMP update delay histogram. This shows the delays until

the number of running IPVS pods is re�ected in the routing table on the

benchmark client, when the number of the IPVS pods is changed randomly

every 60 seconds for 20 hours.

routing update is quick enough.

82 Chapter 4. Performance Evaluation

4.4 Summary

In this chapter, the author evaluated the feasibility of the proposed load balancer.

The author carried out throughput measurement of the load balancer and veri�ed

the followings; (1) Portability: In the on-premise data center, the throughput of the

proposed load balancer linearly increases as the number of nginx pods increases, and

then it eventually saturates, indicating the load balancer functions properly. This

characteristic is also seen in the experiment in GCP and AWS, also indicating that the

proposed load balancer properly functions in these environments. (2) Redundancy

and scalability: The ECMP routing update in the proposed architecture is properly

functioning and quick enough. The linear scalability of the ECMP throughput has

been con�rmed up to 4x of single load balancer throughput. (3) Performance: The

throughput of the load balancers are limited by the network bandwidth in the 1 Gbps

environment. In the case of the IPVS and the iptables DNAT, maximum throughputs

are the same, because they are limited by network bandwidth at load balancer node. In

the case of the IPVS-TUN (L3DSR), the maximum throughput is limited by network

bandwidth at the benchmark client, and about 1.5 times larger than those of the IPVS

and the iptables DNAT. The fact that the load balancer itself is not the performance

limiting factor means that proposed load balancer has su�cient performance levels in

1 Gbps network. From these results, the author concludes that the proposed load

balancer is portable, redundant and scalable while providing su�cient performance

levels in 1Gbps network environment.

83

5
Perfomance in faster network

In the previous chapter, the author evaluated the feasibility of the proposed load

balancer in 1Gbps network. The author veri�ed that the proposed load balancer has

su�cient throughput in 1 Gbps network. In this chapter, the author shows that the

proposed load balancer has su�cient throughput in 10Gbps network. The author also

discusses how to improve the performance levels in faster networks, e.g., 100 Gbps and

�nds that there are rooms for improvements in both the container network and the

software load balancer itself. Although these should be explored further in the future

work, the author presents preliminary experimental results of a novel software load

balancer using eXpress Data Plane (XDP) technology.

5.1 Throughput measurement in 10G network

In order to evaluate the performance levels of the proposed load balancer in a 10 Gbps

network environment, the author carried out throughput measurements. Table 5.1

summarizes the hardware and software speci�cation used in the experiment. Bare

84 Chapter 5. Perfomance in faster network

metal servers with Intel X550 network card was used. The X550 NIC has a maximum

of 64 rx-queues, and 16 of them are activated by the driver at the boot time since there

are 16 logical CPUs. The setting “ (RSS, RPS)=(on, o�)” is used because interrupts

from each of 16 rx-queues can be assigned to separate logical cores. As a result,

packet processing is distributed to all of the 16 logical cores, which results in the best

performance in most of the cases. The host-gw mode is used as the backend mode of

the �annel overlay network.

[Hardware Specication]
CPU: Xeon E5-2450 2.10GHz x 8 (with Hyper Threading)
Memory: 32GB
NIC: Intel X550 with 64 rx-queues (16 activated), 10

Gbps
(Node x 6, Load Balancer x 1, Client x 1))

[Node Software]
OS: Debian 9.5, linux-4.16.8
Kubernetes v1.5.2
flannel v0.7.0
etcd version: 3.0.15

[Container Software]
Keepalived: v1.3.2 (12/03,2016)
nginx : 1.15.4 (web server)

Table 5.1: Hardware and software speci�cations for 10 Gbps experiment.

There are 16 rx-queues activated for the NIC, to match the number of logical

CPUs.

Figure 5.1 show experimental setups for the throughput measurements. Multiple

nginx pods are deployed on multiple nodes as web servers in the Kubernetes cluster. In

each nginx pod, single nginx web server program that returns the IP address of the pod
itself is running. The author then launched IPVS and IPVS-TUN pod as load balancers

on one of the nodes, after that, the author performed the throughput measurement

changing the number of the nginx web server pods. On every Kubernetes node, there

are iptables DNAT rules that function as an internal load balancer. The author also

measured throughput of the iptables DNAT as a load balancer. The throughput is

5.1 Throughput measurement in 10G network 85

measured by sending out HTTP requests from the wrk towards a load balancer and by

counting the number of responses the benchmark client received. In the case of the

IPVS-TUN, i.e., the tunneling mode of IPVS, the response packets follow the di�erent

route than the case of conventional IPVS and iptables DNAT. As a result, the better

performance level is expected for IPVS-TUN since the load balancer node only has to

deal with request packets of the tra�c.

86 Chapter 5. Perfomance in faster network

(a)

(b)

Figure 5.1: Benchmark setups in 10 Gbps experiment. (a) The setup used

in throughput measurements of IPVS and iptables DNAT. The request and

response packets both go through the load balancer node. (b) The setup

used in throughput measurements of IPVS-TUN. The response packets for

IPVS-TUN, return directly to the benchmark client.

5.1 Throughput measurement in 10G network 87

Figure 5.2 shows the throughput results of IPVS, IPVS-TUN and iptables DNAT

in 10 Gbps environment. The general characteristics of a load balancer, where the

throughput increases linearly to a saturation level as the number of nginx container

increases, can be seen. The maximum throughput of each load balancer is limited

by either packet forwarding e�ciency of the software load balancer itself or the

bandwidth of the network. The maximum throughput level of the iptables DNAT is

close to 780k [req/sec], where the CPU usage of the benchmark client was 100%. The

maximum throughput levels of IPVS and IPVS-TUN are less than that of iptables

DNAT.

Figure 5.2: Throughput of load balancers in 10 Gbps. The iptables DNAT rules

exist in the node net namespace. The IPVS and IPVS-TUN are in containers.

The throughput of the iptables DNAT is the highest.

Figure 5.2 shows comparison of CPU usage between load balancers. CPU usages

are sampled on the load balancer nodes at the time of the throughput measurement

using a program called dstat [51]. It is seen that IPVS-TUN uses less CPU resource than

IPVS because the load balancer node does not have to deal with the response packets.

The iptables DNAT uses even less CPU resource than IPVS and IPVS-TUN. Possible

reasons for the lesser performance levels for IPVS are as follows; (1) It is possible that

the IPVS and IPVS-TUN program themselves are less e�cient than iptables DNAT. (2)

88 Chapter 5. Perfomance in faster network

The network setup for the container, i.e., bridge+veth may be causing the overhead.

While iptables DNAT rules exist in node net namespace, proposed IPVS and IPVS-TUN

exist in container net namespace. In order to clarify which of these is the true reason

for the performance di�erence, the author carried out throughput measurement for

IPVS and IPVS-TUN without using the container network, i.e., in node net namespaces.

Figure 5.3: CPU usage of load balancers in containers. The iptables DNAT rules

exist in the node net namespace. The IPVS and IPVS-TUN are in containers.

The iptables DNAT consumes the smallest amount of the CPU resource.

Performance comparison in node net namespace

The IPVS and IPVS-TUN load balancers were setup on one of the nodes. The load

balancing rules were created in the node namespaces, and then throughput measurement

were carried out.

Figure 5.4 shows the throughput of IPVS and IPVS-TUN in the node net namespace

together with the throughput of the iptables DNAT. The throughputs of the IPVS and

IPVS-TUN are improved from the previous results in Figure 5.2. This improvement

indicates that the overhead due to container network using veth+bridge has a signi�cant

impact. The throughput of the IPVS-TUN is almost identical to that of iptables DNAT.

5.1 Throughput measurement in 10G network 89

The maximum throughput of these are probably limited by the performance of the

benchmark client since the CPU usages of the benchmark client at the saturation level

were almost 100% in both cases.

Figure 5.4: Throughput of load balancers in node namespace. The performance

levels of the IPVS and IPVS-TUN are greatly improved from those in Figure 5.2

by placing them in node net namespace.

Figure 5.5 shows CPU usages of each load balancers. The CPU usage of the

IPVS-TUN is smaller than that of IPVS. This is because the load balancer does not

process the response packets in L3DSR setting. The CPU usage of the IPVS is still more

extensive than that of iptables DNAT, indicating that IPVS is inherently less e�cient

than iptables DNAT.

The author summarizes this section as follows; The IPVS itself is less e�cient than

iptables DNAT. Using the container network, i.e., veth+bridge further degrades the

throughput of IPVS. Therefore, both of these are the reasons for inferior performance

levels for IPVS and IPVS-TUN in containers.

90 Chapter 5. Perfomance in faster network

Figure 5.5: CPU usage of load balancers on nodes. CPU usages of IPVS and

IPVS-TUN greatly improved from those in Figure 5.3 by placing them in node

net namespace. While the IPVS-TUN consumes the smallest amount of the

CPU resource, the CPU usage of IPVS is still larger than that of iptables DNAT.

5.2 Discussion of required throughput

The author has compared the performance of proposed load balancers in 10 Gbps

in the previous section. Although the proposed load balancer may not be the most

e�cient one, herein, the author shows that it has su�cient throughput for 10 Gbps

network environment.

Table 5.2 summarizes the maximum throughputs of the di�erent load balancers

obtained in the experiments so far. Depending on the experimental conditions di�erent

part of the experimental setup limits the throughput of the load balancers. Since the

performance bottlenecks are mainly due to network bandwidth in 1 Gbps network, it is

easy to estimate the possible bottleneck due to bandwidth in a faster network. Since

benchmark client exists at the location where normally the upstream router exists,

the performance bottleneck at the benchmark client corresponds to the maximum

throughput that the load balancer should handle.

5.2 Discussion of required throughput 91

Type namespace

Throughput

[req/sec]

Bottleneck

iptables DNAT node 193K

Bandwidth �lled with request

+ response @ load balancer

IPVS container 197K

Bandwidth �lled with request

+ response @ load balancer

IPVS-TUN container 293K

Bandwidth �lled with response

@ benchmark client

(a) 1 Gbps experiment

Type namespace

Throughput

[req/sec]

Bottleneck

iptables DNAT node 778K CPU∼100% @ benchmark client

IPVS container 335K CPU∼100% @ load balancer node

IPVS-TUN container 731K CPU∼100% @ load balancer node

IPVS node 700K CPU∼100% @ load balancer node

IPVS-TUN node 780K CPU∼100% @ benchmark client

(b) 10 Gbps experiment

Table 5.2: Summary of the maximum throughputs.

For example, the bottleneck at the benchmark client is about 293K [req/sec] in

the 1 Gbps network. The load balancers only need to be able to handle at most 293K

[req/sec] equivalent of the tra�c. Even if the load balancer is capable of handling 500K

[req/sec], the throughput of the system is ultimately determined by the bottleneck at

the entrance, that is 293K [req/sec]. The maximum throughput in 1 Gbps, i.e., 293K

[req/seq] is already achieved by single IPVS-TUN (293K [req/seq]) or two of IPVS load

balancers (193K x 2 [req/seq]) with ECMP redundancy.

In the case of 10 Gbps network, the maximum throughput determined by the

bottleneck at the entrance becomes 2.9M [req/sec]. Single IPVS-TUN cannnot handle

this much of the tra�c. However, this is still achievable without much of the hassle by

using four of IPVS-TUN (731K x 4 [req/seq]) or nine of IPVS load balancers (335K x 9

[req/seq]) with ECMP redundancy.

In the case of 100 Gbps network, where the load balancers are required to handle

up to 29M [req/sec] of the throughput, the ine�ciency of the software load balancer in

92 Chapter 5. Perfomance in faster network

a container can become a real problem. Because in order to handle 29M [req/sec]

of the tra�c, 90 of IPVS load balancer would be needed. In this case, more e�cient

load balancer or container network is needed. In the next section, the author tries to

improve the e�ciency of a load balancer, by implementing novel XDP load balancer.

Except for such cases, the proposed load balancer can provide su�cient throughput.

5.3 XDP load balancer

The eXpress Data Path (XDP) [38] is Linux kernel technology recently developed,

where the tools and functionality to intercept and process the packets in the earliest

phase as possible are provided. By using XDP, one can write packet manipulation

code using a subset of the C programing language, byte-compile it, and hook it

into the place before the socket bu�er is assigned, thereby speeding up network

manipulation. Typical applications include packet drop against DDOS attack, simple

packet forwarding, and load balancing. One of the bene�ts of the XDP compared to the

technology using Data Plane Development Kit (DPDK) [39] is that in the case of XDP,

the packets that do not match the rule for processing are then passed to normal Linux

kernel’s network stack. Therefore there is no need for preparing dedicated NIC for fast

and e�cient network processing. The author implemented the XDP load balancer and

carried out throughput measurement.

Implementation

Figure 5.6 show schematic diagram of the XDP load balancer, xlb, which is implemented

by the author. The xlb consists of programs and con�gurations shown in Table 5.3. The

xlb_kernel.ll is the byte-compiled eBPF program that actually process the packets

based on the load balance rules in the xlb table. Load balancing rules are populated by

a userspace daemon xlbd from the con�gration �le xlbd.conf and nexthop and MAC

address information obtained from the Linux kernel.

Throughput results

The author carried out the throughput measurement for the XDP load balancer, xlb.

The hardware and software con�gurations are same as the ones in Table 5.1. The

5.3 XDP load balancer 93

Figure 5.6: Xlb architecture. The author implemented an XDP load balancer

named xlb.

experimental setup is also same as the one in Figure 5.1(b). Since current implementation

of xlb does not support multi core packet processing, the setting “(RSS,RPS)=(o�,o�)”

is used in the throughput measurement. All the interrupt from the NIC are noti�ed to a

single core.

Figure 5.7 compares the throughput of xlb and iptables DNAT. Although a single

core is used for the packet processing, the throughput of the xlb load balancer is

390k[req/sec], which is close to half of the iptables DNAT’s throughput with 16 core

(eight physical cores) packet processing. Figure5.8 compares CPU usages between xlb

and iptables DNAT. At a given throughput the xlb consumes much less CPU resource

than iptables DNAT. These results indicate that load balancer using XDP technology is

very promising.

94 Chapter 5. Perfomance in faster network

Name Function

xlb_kern.ll byte compiled eBPF program

xlb utility to inject eBPF program into kernl

xlbd daemon to control load balance table

xlbd.conf load balancing con�guration

xlb table load balance table

xlb cache load balance cache

Table 5.3: Xlb components.

Figure 5.7: Throughput of xlb load balancer. The xlb load balancer is placed

in node net namespace. The setting “(RSS,RPS)=(o�,o�)”, i.e., single core

packet processing is used for the xlb measurement. The results of iptables

DNAT for “(RSS,RPS)=(on,o�)” and “(RSS,RPS)=(o�,o�)” are also shown for

comparison. The throughput of the xlb is much higher than that of iptables

DNAT with single core packet processing. Although using only a single core,

the throughput of the xlb load balancer is close to half of the iptables DNAT’s

with 16 core (eight physical core) packet processing.

5.3 XDP load balancer 95

Figure 5.8: CPU usage of xlb load balancer. The xlb uses much less CPU

resource than iptables DNAT.

96 Chapter 5. Perfomance in faster network

5.4 Summary

In this chapter, the author has shown that the proposed load balancer has su�cient

throughput in 10 Gbps network. The maximum throughput for IPVS-TUN is 731K

[req/sec], which is su�cient because four of the load balancers with ECMP setup can

deal with maximum tra�c of 2.9M [req/sec] in 10 Gbps network.

The author also discussed how to improve the performance levels for faster

networks. The throughputs of IPVS and IPVS-TUN in node net namespace are

signi�cantly improved from those in container net namespace. This indicates that

there is unignorable overhead due to container network using veth+bridge. The CPU

usage of the IPVS in node net namespace is more extensive than that of iptables

DNAT, indicating that IPVS is inherently less e�cient than iptables DNAT. The author

considers that both of these should be improved in future work.

As an e�ort to improve the e�ciency of the software load balancer itself, the

author has implemented a novel software load balancer, xlb, using XDP technology,

and presented the preliminary experimental result. The obtained throughput 390K

[req/sec] with single core packet processing is very promising. The author estimates

that about �ve of the software load balancer using this technology with 16 core packet

processing can provide su�cient throughput, 29M [req/sec] in 100 Gbps environments

in the future.

From these results, the author concludes this chapter as follows; 1) The proposed

load balancer has su�cient performance levels in 10 Gbps network environment.

2) For a faster network, e.g., 100 Gbps, improvement in container network and in

software load balancer itself is needed, which should be explored in future work. 3)

The author implemented a software load balancer using XDP technology, and the

preliminary result has shown that this technology is very promising.

97

6
Related Work

In this chapter, the author presents the related work of this study. The purpose of this

study has been to improve the portability of web applications by using container

orchestrators as a common middleware. Doing so will give users the freedom to

migrate their services when there is a disaster, expand their businesses, and prevent

vendor lock-ins, etc. However, none of the existing orchestrators has a standard

method to fully automate the setup of routes for ingress tra�c from the Internet,

regardless of di�erent type of infrastructures. As a result, they fail to provide the

standard interfaces to web applications. Therefore, the author proposes a cluster of

software load balancer containers for Kubernetes, which can be used in di�erent

infrastructures.

Following this logic, here the author presents related work regarding the following

subjects: (1) Portability of web applications. (2) Software load balancers for Kubernetes.

In addition to these, there are several software load balancers for cloud environments.

The author also presents related work regarding (3) Cloud load balancers.

Cloud providers have developed cloud load balancers, aiming to di�erentiate

98 Chapter 6. Related Work

their cloud infrastructure by seeking the best performances, while the author aims to

provide a portable load balancer common to any infrastructure by using standard

OSS technologies. Despite the di�erence in purposes, it is worthwhile comparing the

technology components in order to assess if the proposed load balancer is state of the

art.

6.1 Portability of web applications

Portability: There have been numerous works that identify importance of inter-

operability, portability and avoiding vendor lock-in issues in cloud computing [52,

53, 1, 54, 55, 55, 56]. There are good reviews about this subject [55, 2]. According to

one of the articles the vendor lock-in problem is a direct consequence of the lack of

interoperability and portability. Opara-Martins et al. [1] conducted a survey of 114

participants and argue from a business perspective that “vendor lock-in is a major

barrier to the adaption of cloud computing, due to the lack of standardization.”

As for solutions for the portability issues, some suggest migration of VM or

container [57, 58] to di�erent locations. The others suggest Meta Cloud [59] and

federations [60].

Federations use multiple clouds infrastructures in a coordinated way. Federations

can also be called multi-cloud or inter-cloud. The following Kubernetes based

federations also use multiple data centers or cloud infrastructures in a coordinated way,

where Kubernetes controls each of the data centers and acts as a common middleware.

Kubernetes federation: Kubernetes developers are trying to add federation [60]

capability for handling situations where multiple Kubernetes clusters
1

are deployed on

multiple cloud providers or on-premise data centers. Those Kubernetes clusters are

managed by the Kubernetes federation API server (federation-apiserver). According to

their explanation[60], the federation capability provides the followings:

“ High Availability: By spreading load across clusters and auto con�guring

DNS servers and load balancers, federation minimizes the impact of

1
The Kubernetes cluster refers to a server cluster controlled by the Kubernetes container management

system, in this dissertation.

6.2 Software load balancers for Kubernetes 99

cluster failure. Avoiding provider lock-in: By making it easier to migrate

applications across clusters, federation prevents cluster provider lock-in. ”

The approach taken in Kubernetes federation aligns with this dissertation. However,

how each Kubernetes cluster is run on di�erent types of cloud providers and/or

on-premise data centers, especially when the load balancers of such environments are

not supported by Kubernetes, seems beyond the scope of that project. This dissertation

is mainly focused on how to provide a common load balancer to di�erent types of

infrastructures.

There are other works [61, 62] regarding Kubernetes federation. Kim et.al. [61]

federate multiple Kubernetes clusters in the di�erent cloud regions using TOSCA [63,

64] based approach. Goethals et.al.[62] connects di�erent data centers using OpenVPN

[65] and deploy Kubernetes cluster in virtual data center that span across multiple

locations. These related works justify that there are needs to commonize varying cloud

infrastructures and data centers using Kubernetes as a common middleware. This

dissertation di�ers in that it is more focused on the load balancer features that are

overlooked in the cloud portability context.

6.2 Software load balancers for Kubernetes

In this study the author proposed a container cluster architecture and veri�ed its

feasibility using Kubernetes as an example. The author proposed a cluster of software

load balancer using IPVS in container. Other groups also have proposed software load

balancers for Kubernetes.

First, Kubernetes comes with proxy daemon that setup iptables DNAT based

internal load balancer on every node
2
. Once the ingress tra�c reaches one of the

nodes, the packets are directed to existing pods. In conventional setup, the tra�c is

manually routed to one of the nodes, which lacks the redundancy and scalability. In

cloud environments where there is supported load balancers, Kubernetes has a feature

to automatically setup the cloud load balancer, so that the tra�c is distributed all of the

existing nodes.

2
Until the author published the paper [66] regarding this dissertation, the internal load balancer only

used iptables DNAT. Latest release of the Kubernetes o�ers the internal load balancer using IPVS.

100 Chapter 6. Related Work

Nginx-ingress[67, 68] utilizes the ingress[46] capability of Kubernetes, to implement

a containerized Nginx proxy as a load balancer. Nginx itself is famous as a high-

performance web server program that also has the functionality of a Layer-7 load

balancer. Nginx is capable of handling Transport Layer Security(TLS) encryption, as

well as Uniform Resource Identi�er(URI) based switching. However, the �ip side of

Nginx is that it is slower than Layer-4 switching.

The kube-keepalived-vip[69] project is trying to use Linux kernel’s ipvs[20] load

balancer capabilities by containerizing the keepalived[70]. The kernel ipvs function is

set up in the host OS’s net namespaces and is shared among multiple web services,

as a part of the Kubernetes cluster infrastructure. Our approach di�ers in that the

ipvs rules are set up in container’s net namespaces and function as a part of the web

service container cluster itself. The load balancers are con�gurable one by one, and are

movable with the cluster once the migration is needed. The kube-keepalived-vip’s

approach lacks �exibility and portability whereas ours provide them.

MetalLB [71] is a load-balancer implementation for bare metal Kubernetes clusters,

using standard routing protocols. It has two operation modes, layer 2 mode, and BGP

mode. In the layer 2 mode, one of the nodes is chosen as a leader and the leader sends

out gratuitous ARP (ipv4) or NDP (ipv6) packets to notify the upstream router. The

leader also responds to ARP and NDP requests. In the BGP mode, each of the nodes

establishes peering connection with the upstream router, announces themselves as

a next hop of the service IP, and as a result, ECMP routing table can be created in

the upstream router. Once the ingress tra�c reaches one of the nodes, the packets

are directed to existing pods by the internal load balancer. The problems with this

implementation are as follows: In the case of the layer 2 mode, failover is slow (more

than about 10 secs) [71]. The ingress tra�c is distributed to all of the nodes. It is

impossible to localize the routes to a limited number of the nodes.

Table 6.1 compares key features for above mentioned load balancers. Regarding the

redundancy, ECMP is better than VRRP because all the load balancer are active in the

former case whereas only one of the load balancer is active in the latter. As far as the

L3DSR feature is concerned, the load balancer with this feature is bene�cial because of

the better performance. The proposed load balancer is better than those in related

works in these respects.

The proposed load balancer in this study di�ers in that it is deployed as part of a

6.3 Cloud load balancers 101

OSS

Container

friendly

Redundancy Forwarding L3DSR

Conventional No No
∗

Static iptables DNAT/IPVS No

Nginx-ingress Yes Yes No nginx No

kube-keepalived Yes Yes VRRP IPVS No

Metallb Yes Yes ECMP
∗∗

IPVS No

This work Yes Yes ECMP IPVS
∗∗∗

IPIP

Table 6.1: Comparison of software load balancers for Kubernetes.
∗

Conventional

technology uses cloud load balancers if available, which is not necessarily container

friendly.
∗∗

Metallb also supports layer 2 mode, which uses unsolicited ARP or NDP

packets to update layer 2 address table in the upstream router.
∗∗∗

The author plans to

add XDP feature in future work.

web application, giving the full control of the routing to the users rather than leaving

them to the cluster administrators. This will help resolve issues when there are routing

problems.

6.3 Cloud load balancers

As far as the cloud load balancers are concerned, two articles and one open source

project have been identi�ed. Google’s Maglev [16] is a software load balancer used in

Google Cloud Platform(GCP). Maglev uses modern technologies including per �ow

ECMP and kernel bypass for user space packet processing. Resulting performance

provided by single hardware has been more than su�cient for 10 Gbps network.

Maglev serves as the GCP’s load balancer. Maglev is not a product that users can use

outside of GCP nor is an open source software, while the users need open source

software load balancer that can run even in on-premise data centers.

Microsoft’s Ananta [17] is another software load balancer implementation using

ECMP and Windows Filtering Platform based kernel-mode driver. Ananta can be solely

used in Microsoft’s Azure cloud infrastructure[17]. The proposed load balancer by the

author is di�erent in that it aims to be used in every cloud provider and on-premise

data centers.

Facebook’s Katran [72] is an OSS software load balancer using Linux XDP technol-

ogy. Katran also uses ECMP for redundancy. Although Katran is expected to have high

102 Chapter 6. Related Work

performance levels, no data has been shown yet. The proposed load balancer in this

dissertation aims to be portable using container technology while Katran has no such

features.

OSS

Container

friendly

Redundancy Forwarding L3DSR

Maglev No No ECMP Flexible I/O layer GRE

Ananta No No ECMP Windows Filtering Platform IPIP

Katran Yes No ECMP XDP IPIP

This work Yes Yes ECMP IPVS (XDP in future) IPIP

Table 6.2: Cloud load balancer comparison.

Regarding the cloud load balancers, Maglev and Ananta try to di�erentiate their

own cloud infrastructure by seeking the best performances. On the other hand, this

study attempts to provide a load balancer common to any infrastructure by using

standard OSS technologies. Katran is an OSS software load balancer and hence can be

used outside of their infrastructure. The proposed load balancer in this dissertation

di�ers in that it is portable due to containerization, and it is integrated with container

infrastructure. Despite these di�erences, the technology components used in this

work and the cloud load balancers are similar, which indicates that the proposed load

balancer is state of the art.

6.4 Load balancer tools in the container context

There are several other projects where e�orts have been made to utilize ipvs in

the context of container environment. For example, GORB[73] and clusterf[74] are

daemons that setup ipvs rules in the kernel inside the Docker container. They utilize

running container information stored in key-value storages like Core OS etcd[34] and

HashiCorp’s Consul[75]. Although these were usable to implement a containerized

load balancer in our proposal, the author did not use them, since Kubernetes ingress

framework already provided the methods to retrieve running container information

through standard API. These are merely alternative technology components used in

this study.

6.5 Summary 103

6.5 Summary

In this chapter, the author presented the related work regarding the following subjects:

(1) Portability of web applications. (2) Software load balancers for Kubernetes. (3)

Cloud load balancers. (4) Load balancer tools in the container context.

There have been numerous works regarding the portability of web applications.

This study is more focused on practical architecture and veri�cation of its feasibility.

While the author proposes a portable load balancer for container clusters and

veri�es its feasibility using Kubernetes, other groups also have proposed ingress

routing using IPVS for Kubernetes. Compared with those related works, the proposed

load balancer in this study di�ers in that it is deployed as part of a web application.

Giving the full control of the routing to the users rather than leaving them to the

cluster administrators will help resolve issues when there are problems.

Regarding the cloud load balancers, all of them try to di�erentiate their own

cloud infrastructure by seeking the best performances. On the other hand, this study

attempts to provide a load balancer common to any infrastructure by using standard

OSS technologies. Despite the di�erences in purpose, the technology components used

in this work and the related work are similar, which indicates that the proposed load

balancer is state of the art.

105

7
Conclusion

7.1 Conclusions

As the web services become an indispensable part of the daily life, portability of

the application becomes very important. In order to improve the portability of web

applications consisting of container clusters, container orchestrators need to be able to

serve as a uniform platform by functioning as a common middleware. However, they

fail to do so, because none of the existing container orchestrators can fully automate

the setup of routes for ingress tra�c from the Internet.

To solve this problem, the author proposed an architecture using a portable

software load balancer that can run on any infrastructure. The author proposed a

cluster of software load balancers in containers that can be launched as a part of web

applications for Kubernetes. The proposed architecture is also capable of setting up the

routes for the ingress tra�c automatically in a redundant and scalable manner. For

that purpose, Equal Cost Multi Path(ECMP) routes are populated through Border

Gateway Protocol(BGP). Since both ECMP and BGP are the standard protocols, they

106 Chapter 7. Conclusion

are very likely to be supported by most of the upstream routers. By using the proposed

architecture, container clusters no longer depend on the load balancers provided by

infrastructures. And hence, container orchestrators become being able to better serve

as a common middleware, which will improve the portability of the web applications

consisting of container clusters.

To prove the feasibility of the proposed load balancer architecture, the author has

implemented a containerized software load balancer using Linux kernel’s IPVS for

Kubernetes, and carried out experiments with the following criteria: 1) verify if the

proposed load balancer works correctly both in the cloud and the on-premise data

center. 2) verify if the proposed load balancer has a su�cient performance level for 1

Gbps and 10 Gbps networks. 3) verify if the proposed redundancy architecture using

ECMP with BGP properly functions.

From the results of the experiments, it has been shown that the throughput of the

proposed load balancer linearly increases as the number of nginx pods increases, and

then it eventually saturates, indicating that the load balancer functions properly. It has

been also shown that the proposed load balancers can run in an on-premise data

center, Google Cloud Platform (GCP) and Amazon Web Service (AWS). Therefore the

proposed load balancers can be said to be portable.

The throughputs of a load balancer are dependent on the settings for multi-

core packet processing and the setting for the overlay network. To derive the best

performance, the author used as many CPU cores as possible for packet processing,

and the settings without any packet encapsulation for backend mode of the overlay

network. From the experiment in the 1 Gbps network environment, the author obtained

the highest throughput for the IPVS-TUN (L3DSR) in a container, which is limited by

the bandwidth of the benchmark client. Since the benchmark client is placed at the

same location where the upstream router exists, the load balancer can be said to have

su�cient performance to �ll up 1 Gbps network bandwidth.

The author also extended the throughput measurement into the 10 Gbps network

environment, in order to verify that proposed software load balancer is capable of

providing needed throughput for 10 Gbps environment. The throughputs of IPVS and

IPVS-TUN are smaller than that of iptables DNAT in 10Gbps network, both due to the

overhead of the container network and ine�ciency in the program itself. Considering

the fact that the throughput of the whole system never exceeds that of the upstream

7.1 Conclusions 107

router at the entrance, the load balancers only need to be able to handle at most 2.9M

[req/sec] in 10Gbps network. This can be easily achieved using four of the IPVS-TUN

(L3DSR) load balancer container since a single IPVS-TUN in a container can handle

731K [req/sec]. Therefore the author also concludes that although there is a room for

improvements the proposed load balancer has su�cient performance for 10 Gbps

network environment.

The author has also implemented an automatic setup of the ECMP route for ingress

tra�c. There, multiple load balancer containers are deployed, and each of them

advertises itself as an active next hop of the IP for web application through Border

Gateway Protocol (BGP). The ECMP route makes the load balancers redundant and

scalable since all the load balancer containers act as active. The BGP helps automatic

setup of the ECMP route. The BGP and ECMP are both standard protocols supported

by most of the commercial router products. The author veri�ed through experiment

that an ECMP route has been automatically created upon launch of a new load balancer

container on the upstream router. The update of the ECMP routing table was correct

and quick enough, i.e., within 10 seconds, throughout 20 hours experiment. The

maximum performance levels of the cluster of load balancers have scaled linearly up to

four times as the number of the load balancer containers has been increased to four of

them. The maximum aggregated throughput obtained through the experiment is 780k

[req/sec], which is limited by the CPU performance of the benchmark client, and

therefore can be improved using better hardware in the future experiment. Therefore

the author has proved that proposed load balancer has the capability of the automatic

setup of ingress tra�c in a redundant and scalable manner.

Sooner or later, the day when the network in a data center becomes all 100 Gbps

will come. Therefore, in the future, it becomes crucial to improve the throughput

of portable load balancers by using better container network and implementing

more e�cient software load balancer itself. The author leaves these for future work,

however, a preliminary result of the latter has also been presented. The author

has implemented a software load balancer using XDP technology and carried out

throughput measurement. The current implementation does not support multicore

packet processing, and hence throughput is limited by the capability of single core

processing performance. Nevertheless, the obtained throughput about 390K [req/sec]

for the XDP load balancer indicates that this technology is very promising. The author

108 Chapter 7. Conclusion

estimates that about �ve of the software load balancer using this technology with 16

core packet processing can provide enough throughput, 29M [req/sec] in 100 Gbps

environments in the future.

The proposed load balancer has been veri�ed to be portable while providing su�-

cient throughput in 10 Gbps environment. And the proposed redundancy architecture

using ECMP with BGP has also been veri�ed to function properly. As a consequence,

the proposed architecture with this load balancer will help improve the portability of

web applications.

The outcome of this study will bene�t users who want to deploy their web services

on any cloud provider where no scalable load balancer is provided, to achieve high

scalability. Moreover, the result of this study will potentially bene�t users who want to

use a group of di�erent cloud providers and on-premise data centers across the globe

seamlessly. In other words, users will become being able to deploy a complex web

service on aggregated computing resources on the earth, as if they were starting a

single process on a single computer.

109

Bibliography

[1] Justice Opara-Martins, Reza Sahandi, and Feng Tian. “Critical analysis of vendor

lock-in and its impact on cloud computing migration: a business perspective”. In:

Journal of Cloud Computing 5.1 (2016), p. 4.

[2] Dana Petcu and Athanasios V Vasilakos. “Portability in clouds: approaches and

research opportunities”. In: Scalable Computing: Practice and Experience 15.3

(2014), pp. 251–270.

[3] James C. Corbett et al. “Spanner: Google&Rsquo;s Globally Distributed Database”.

In: ACM Trans. Comput. Syst. 31.3 (Aug. 2013), 8:1–8:22. issn: 0734-2071. doi:

10.1145/2491245. url: http://doi.acm.org/10.1145/2491245.

[4] Brian F. Cooper. “Spanner: Google’s Globally-distributed Database”. In: Proceed-
ings of the 6th International Systems and Storage Conference. SYSTOR ’13. Haifa,

Israel: ACM, 2013, 9:1–9:1. isbn: 978-1-4503-2116-7. doi: 10.1145/2485732.2485756.

url: http://doi.acm.org/10.1145/2485732.2485756.

[5] Andrew Pavlo and Matthew Aslett. “What’s really new with NewSQL?” In: ACM
Sigmod Record 45.2 (2016), pp. 45–55.

[6] Walter Milliken, Trevor Mendez, and Dr. Craig Partridge. Host Anycasting Service.
RFC 1546. Nov. 1993. doi: 10.17487/RFC1546. url: https://rfc-editor.org/rfc/

rfc1546.txt.

[7] Fernanda Weiden and Peter Frost. “Anycast as a load balancing feature”. In:

Proceedings of the 24th international conference on Large installation system
administration. USENIX Association. 2010, pp. 1–6.

https://doi.org/10.1145/2491245
http://doi.acm.org/10.1145/2491245
https://doi.org/10.1145/2485732.2485756
http://doi.acm.org/10.1145/2485732.2485756
https://doi.org/10.17487/RFC1546
https://rfc-editor.org/rfc/rfc1546.txt
https://rfc-editor.org/rfc/rfc1546.txt

110 Bibliography

[8] Paul B Menage. “Adding generic process containers to the linux kernel”. In:

Proceedings of the Linux Symposium. Vol. 2. Citeseer. 2007, pp. 45–57.

[9] Wes Felter et al. “An updated performance comparison of virtual machines and

linux containers”. In: 2015 IEEE international symposium on performance analysis
of systems and software (ISPASS). IEEE. 2015, pp. 171–172.

[10] Vivian Noronha et al. “Performance Evaluation of Container Based Virtualization

on Embedded Microprocessors”. In: 2018 30th International Teletra�c Congress
(ITC 30). Vol. 1. IEEE. 2018, pp. 79–84.

[11] Jake Edge. Creating containers with systemd-nspawn. 2013. url: https://lwn.net/

Articles/572957/.

[12] Dirk Merkel. “Docker: lightweight linux containers for consistent development

and deployment”. In: Linux Journal 2014.239 (2014), p. 2.

[13] Brendan Burns et al. “Borg, omega, and kubernetes”. In: (2016).

[14] Abhishek Verma et al. “Large-scale cluster management at Google with Borg”.

In: Proceedings of the Tenth European Conference on Computer Systems - EuroSys
’15 (2015), pp. 1–17. doi: 10.1145/2741948.2741964. url: http://dl.acm.org/citation.

cfm?doid=2741948.2741964.

[15] Benjamin Hindman et al. “Mesos: A platform for �ne-grained resource sharing

in the data center.” In: NSDI. Vol. 11. 2011. 2011, pp. 22–22.

[16] Daniel E Eisenbud et al. “Maglev: A Fast and Reliable Software Network Load

Balancer.” In: NSDI. 2016, pp. 523–535.

[17] Parveen Patel et al. “Ananta: Cloud scale load balancing”. In: ACM SIGCOMM
Computer Communication Review 43.4 (2013), pp. 207–218.

[18] Daniel Walton et al. Advertisement of multiple paths in BGP. RFC 7911. RFC

Editor, July 2016, pp. 1–8. url: https://www.rfc-editor.org/rfc/rfc7911.txt.

[19] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A scalable,

commodity data center network architecture”. In: ACM SIGCOMM Computer
Communication Review. Vol. 38. 4. ACM. 2008, pp. 63–74.

[20] Wensong Zhang. “Linux virtual server for scalable network services”. In: Ottawa
Linux Symposium (2000).

https://lwn.net/Articles/572957/
https://lwn.net/Articles/572957/
https://doi.org/10.1145/2741948.2741964
http://dl.acm.org/citation.cfm?doid=2741948.2741964
http://dl.acm.org/citation.cfm?doid=2741948.2741964
https://www.rfc-editor.org/rfc/rfc7911.txt

Bibliography 111

[21] Gilberto Bertin. “XDP in practice: integrating XDP into our DDoS mitigation

pipeline”. In: Technical Conference on Linux Networking, Netdev. Vol. 2. 2017.

[22] Sukadev Bhattiprolu et al. “Virtual servers and checkpoint/restart in mainstream

Linux”. In: ACM SIGOPS Operating Systems Review 42.5 (2008), pp. 104–113.

[23] M Siraj Rathore, Markus Hidell, and Peter Sjödin. “Performance evaluation of

open virtual routers”. In: 2010 IEEE Globecom Workshops. IEEE. 2010, pp. 288–293.

[24] Mahesh Bandewar. IPVLAN Driver HOWTO. url: https://www.kernel.org/doc/

Documentation/networking/ipvlan.txt.

[25] Victor Marmol, Rohit Jnagal, and Tim Hockin. “Networking in Containers and

Container Clusters”. In: Netdev (2015).

[26] Joris Claassen, Ralph Koning, and Paola Grosso. “Linux containers networking:

Performance and scalability of kernel modules”. In: NOMS 2016-2016 IEEE/IFIP
Network Operations and Management Symposium. IEEE. 2016, pp. 713–717.

[27] Jakob Struye et al. “Assessing the value of containers for NFVs: A detailed

network performance study”. In: 2017 13th International Conference on Network
and Service Management (CNSM). IEEE. 2017, pp. 1–7.

[28] Martin A. Brown. Guide to IP Layer Network Administration with Linux. 2007.

url: http://linux-ip.net/html/index.html (visited on 07/14/2017).

[29] Arne Zismer. “Performance of Docker Overlay Networks”. In: University of
Amsterdam (2016).

[30] Inc CoreOS. �annel. url: https : / / github . com / coreos / �annel (visited on

07/14/2017).

[31] Inc. Tigera. Project Calico - Secure Networking for the Cloud Native Era. url:

https://www.projectcalico.org/ (visited on 08/14/2019).

[32] Weaveworks. Weave Net - Weaving Containers into Applications. url: https:

//github.com/weaveworks/weave (visited on 08/14/2019).

[33] Inc CoreOS. Backend. url: https://github.com/coreos/�annel/blob/master/

Documentation/backends.md (visited on 07/14/2017).

[34] Inc CoreOS. etcd | etcd Cluster by CoreOS. url: https://coreos.com/etcd (visited

on 07/14/2017).

https://www.kernel.org/doc/Documentation/networking/ipvlan.txt
https://www.kernel.org/doc/Documentation/networking/ipvlan.txt
http://linux-ip.net/html/index.html
https://github.com/coreos/flannel
https://www.projectcalico.org/
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://github.com/coreos/flannel/blob/master/Documentation/backends.md
https://github.com/coreos/flannel/blob/master/Documentation/backends.md
https://coreos.com/etcd

112 Bibliography

[35] Alexey N Kuznetsov. Tunnels over IP in Linux-2.2. 1999.

[36] Tom Herbert and Willem de Bruijn. Scaling in the Linux Networking Stack. url:

https://www.kernel.org/doc/Documentation/networking/scaling.txt (visited on

07/14/2017).

[37] Deborah T Marr et al. “Hyper-Threading Technology Architecture and Microar-

chitecture.” In: Intel Technology Journal 6.1 (2002).

[38] Toke Høiland-Jørgensen et al. “The eXpress data path: fast programmable

packet processing in the operating system kernel”. In: Proceedings of the 14th
International Conference on emerging Networking EXperiments and Technologies.
ACM. 2018, pp. 54–66.

[39] The Linux Foundation. DPDK. url: http://dpdk.org/.

[40] E. Chen T. Bates and R. Chandra. BGP Route Re�ection: An Alternative to Full
Mesh Internal BGP (IBGP). RFC 4456. RFC Editor, Apr. 2006, pp. 1–12. url:

https://www.rfc-editor.org/rfc/rfc4456.txt.

[41] Exa-Networks. Exa-Networks/exabgp. July 2018. url: https://github.com/Exa-

Networks/exabgp.

[42] ip-sysctl.txt. url: https://www.kernel.org/doc/Documentation/networking/ip-

sysctl.txt.

[43] Paul Jakma and David Lamparter. “Introduction to the quagga routing suite.” In:

IEEE Network 28.2 (2014), pp. 42–48.

[44] Osrg. osrg/gobgp. url: https://github.com/osrg/gobgp/blob/master/docs/sources/

zebra.md.

[45] ktaka-ccmp. ktaka-ccmp/ipvs-ingress: Initial Release. July 2017. doi: 10.5281/

zenodo.826894. url: https://doi.org/10.5281/zenodo.826894.

[46] The Kubernetes Authors. Ingress Resources | Kubernetes. 2017. url: https :

//kubernetes.io/docs/concepts/services-networking/ingress/.

[47] Bert Hubert et al. Linux Advanced Routing & Tra�c Control HOWTO. 2002. url:

http://www.tldp.org/HOWTO/Adv-Routing-HOWTO/index.html (visited on

07/14/2017).

https://www.kernel.org/doc/Documentation/networking/scaling.txt
http://dpdk.org/
https://www.rfc-editor.org/rfc/rfc4456.txt
https://github.com/Exa-Networks/exabgp
https://github.com/Exa-Networks/exabgp
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://github.com/osrg/gobgp/blob/master/docs/sources/zebra.md
https://github.com/osrg/gobgp/blob/master/docs/sources/zebra.md
https://doi.org/10.5281/zenodo.826894
https://doi.org/10.5281/zenodo.826894
https://doi.org/10.5281/zenodo.826894
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
http://www.tldp.org/HOWTO/Adv-Routing-HOWTO/index.html

Bibliography 113

[48] Will Glozer. wrk - a HTTP benchmarking tool. 2012. url: https://github.com/wg/

wrk.

[49] Alan Sill. “Standards Underlying Cloud Networking”. In: IEEE Cloud Computing
3.3 (2016), pp. 76–80. issn: 23256095. doi: 10.1109/MCC.2016.55.

[50] Matt Sargent et al. Computing TCP’s Retransmission Timer. RFC 6298. June 2011.

doi: 10.17487/RFC6298. url: https://rfc-editor.org/rfc/rfc6298.txt.

[51] Dag Wieers. “Dstat: Versatile resource statistics tool”. In: online] http://dag. wiee.
rs/home-made/dstat/ (2019).

[52] Nane Kratzke and René Peinl. “Clouns-a cloud-native application reference

model for enterprise architects”. In: 2016 IEEE 20th International Enterprise
Distributed Object Computing Workshop (EDOCW). IEEE. 2016, pp. 1–10.

[53] Justice Opara-Martins, Reza Sahandi, and Feng Tian. “Critical review of vendor

lock-in and its impact on adoption of cloud computing”. In: International
Conference on Information Society (i-Society 2014). IEEE. 2014, pp. 92–97.

[54] Ibrahim Mansour et al. “Interoperability in the heterogeneous cloud environment:

a survey of recent user-centric approaches”. In: Proceedings of the International
Conference on Internet of things and Cloud Computing. ACM. 2016, p. 62.

[55] Kiranbir Kaur, DR Sharma, and DR Kahlon. “Interoperability and portability

approaches in inter-connected clouds: A review”. In: ACM Computing Surveys
(CSUR) 50.4 (2017), p. 49.

[56] Beniamino Di Martino, Giuseppina Cretella, and Antonio Esposito. “Cloud

portability and interoperability”. In: Cloud Portability and Interoperability.

Springer, 2015, pp. 1–14.

[57] Kenneth Nagin et al. “Inter-cloud mobility of virtual machines”. In: Proceedings of
the 4th Annual International Conference on Systems and Storage. ACM. 2011, p. 3.

[58] Fabrizio Messina et al. “A trust-based, multi-agent architecture supporting

inter-cloud vm migration in iaas federations”. In: International Conference on
Internet and Distributed Computing Systems. Springer. 2014, pp. 74–83.

[59] Benjamin Satzger et al. “Winds of change: From vendor lock-in to the meta

cloud”. In: IEEE internet computing 17.1 (2013), pp. 69–73.

https://github.com/wg/wrk
https://github.com/wg/wrk
https://doi.org/10.1109/MCC.2016.55
https://doi.org/10.17487/RFC6298
https://rfc-editor.org/rfc/rfc6298.txt

114 Bibliography

[60] The Kubernetes Authors. Federation. 2017. url: https://kubernetes.io/docs/

concepts/cluster-administration/federation/.

[61] Dongmin Kim et al. “TOSCA-based and federation-aware cloud orchestration for

Kubernetes container platform”. In: Applied Sciences 9.1 (2019), p. 191.

[62] Tom Goethals et al. “FUSE: A microservice approach to cross-domain federation

using docker containers”. In: CLOSER2019, the 9th International Conference on
Cloud Computing and Services Science. 2019, pp. 90–99.

[63] OASIS Standard. Topology and orchestration speci�cation for cloud applications
version 1.0. 2013. url: http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-

v1.0-os.html.

[64] Tobias Binz et al. “Portable cloud services using tosca”. In: IEEE Internet Computing
16.3 (2012), pp. 80–85.

[65] Markus Feilner. OpenVPN: Building and integrating virtual private networks.
Packt Publishing Ltd, 2006.

[66] Kimitoshi Takahashi et al. “A Portable Load Balancer for Kubernetes Cluster”. In:

Proceedings of the International Conference on High Performance Computing in
Asia-Paci�c Region. ACM. 2018, pp. 222–231.

[67] Michael Pleshakov. NGINX and NGINX Plus Ingress Controllers for Kubernetes
Load Balancing. Dec. 2016. url: https://www.nginx.com/blog/nginx-plus-

ingress-controller-kubernetes-load-balancing/.

[68] NGINX Inc. NGINX Ingress Controller. 2017. url: https://github.com/nginxinc/

kubernetes-ingress.

[69] Bowei Du Prashanth B Mike Danese. kube-keepalived-vip. 2016. url: https:

//github.com/kubernetes/contrib/tree/master/keepalived-vip.

[70] Alexandre Cassen. Keepalived for Linux. url: http://www.keepalived.org/.

[71] Dave Anderson. MetalLB, bare metal load-balancer for Kubernetes. 2017. url:

https://metallb.universe.tf/.

[72] Nikita Shirokov and Ranjeeth Dasineni. Opensourcing Katran, a scalable network
load balancer. 2018. url: https://engineering.fb.com/open-source/open-sourcing-

katran-a-scalable-network-load-balancer/.

https://kubernetes.io/docs/concepts/cluster-administration/federation/
https://kubernetes.io/docs/concepts/cluster-administration/federation/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://www.nginx.com/blog/nginx-plus-ingress-controller-kubernetes-load-balancing/
https://www.nginx.com/blog/nginx-plus-ingress-controller-kubernetes-load-balancing/
https://github.com/nginxinc/kubernetes-ingress
https://github.com/nginxinc/kubernetes-ingress
https://github.com/kubernetes/contrib/tree/master/keepalived-vip
https://github.com/kubernetes/contrib/tree/master/keepalived-vip
http://www.keepalived.org/
https://metallb.universe.tf/
https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/

Bibliography 115

[73] Andrey Sibiryov. GORB Go Routing and Balancing. 2015. url: https://github.com/

kobolog/gorb.

[74] Tero Marttila. “Design and Implementation of the clusterf Load Balancer for

Docker Clusters”. en. Master’s Thesis, Aalto University. 2016-10-27, pp. 97+7.

url: http://urn.�/URN:NBN:�:aalto-201611025433.

[75] HashiCorp. Consul by HashiCorp. url: https://www.consul.io/ (visited on

07/14/2017).

[76] Van Jacobson, Craig Leres, and S McCanne. “The tcpdump manual page”. In:

Lawrence Berkeley Laboratory, Berkeley, CA 143 (1989).

https://github.com/kobolog/gorb
https://github.com/kobolog/gorb
http://urn.fi/URN:NBN:fi:aalto-201611025433
https://www.consul.io/

117

A
Ingress controller

package main

import (
"log"
"net/http"
"os"
"syscall"
"os/exec"
"strings"
"text/template"
"github.com/spf13/pflag"
api "k8s.io/client-go/pkg/api/v1"
nginxconfig "k8s.io/ingress/controllers/nginx/pkg/config"
"k8s.io/ingress/core/pkg/ingress"
"k8s.io/ingress/core/pkg/ingress/controller"
"k8s.io/ingress/core/pkg/ingress/defaults"

)

118 Chapter A. Ingress controller

var cmd = exec.Command("keepalived", "-nCDlf", "/etc/
↪→ keepalived/ipvs.conf")

func main() {
ipvs := newIPVSController()
ic := controller.NewIngressController(ipvs)
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
cmd.Start()
defer func() {

log.Printf("Shutting down ingress controller...")
ic.Stop()

}()
ic.Start()

}

func newIPVSController() ingress.Controller {
return &IPVSController{}

}

type IPVSController struct{}

func (ipvs IPVSController) SetConfig(cfgMap *api.ConfigMap) {
log.Printf("Config map %+v", cfgMap)

}

func (ipvs IPVSController) Reload(data []byte) ([]byte, bool,
↪→ error) {

cmd.Process.Signal(syscall.SIGHUP)
out, err := exec.Command("echo", string(data)).

↪→ CombinedOutput()
if err != nil {

return out, false, err
}
log.Printf("Issue kill to keepalived. Reloaded new config %s

↪→ ", out)
return out, true, err

}

119

func (ipvs IPVSController) OnUpdate(updatePayload ingress.
↪→ Configuration) ([]byte, error) {

log.Printf("Received OnUpdate notification")
for _, b := range updatePayload.Backends {

type ep struct{
Address,Port string

}
eps := []ep{}
for _, e := range b.Endpoints {

eps = append(eps, ep{Address: e.Address, Port: e.Port})
}

for _, a := range eps {
log.Printf("Endpoint %v:%v added to %v:%v.", a.Address, a.

↪→ Port, b.Name, b.Port)
}

if b.Name == "upstream-default-backend" {
continue

}
cnf := []string{"/etc/keepalived/ipvs.d/" , b.Name , ".

↪→ conf"}
w, err := os.Create(strings.Join(cnf, ""))
if err != nil {

return []byte("Ooops"), err
}
tpl := template.Must(template.ParseFiles("ipvs.conf.tmpl")

↪→)
tpl.Execute(w, eps)
w.Close()

}

return []byte("hello"), nil
}

func (ipvs IPVSController) BackendDefaults() defaults.Backend
↪→ {

// Just adopt nginx’s default backend config
return nginxconfig.NewDefault().Backend

120 Chapter A. Ingress controller

}

func (ipvs IPVSController) Name() string {
return "IPVS Controller"

}

func (ipvs IPVSController) Check(_ *http.Request) error {
return nil

}

func (ipvs IPVSController) Info() *ingress.BackendInfo {
return &ingress.BackendInfo{

Name: "dummy",
Release: "0.0.0",
Build: "git-00000000",
Repository: "git://foo.bar.com",

}
}

func (ipvs IPVSController) OverrideFlags(*pflag.FlagSet) {
}

func (ipvs IPVSController) SetListers(lister ingress.
↪→ StoreLister) {

}

func (ipvs IPVSController) DefaultIngressClass() string {
return "ipvs"

}

121

B
ECMP settings

B.1 Gobgpd and zebra con�gurations on the router.

gobgp.conf:

global:
config:

as: 65021
router-id: 10.0.0.110
local-address-list:
- 0.0.0.0

use-multiple-paths:
config:

enabled: true

neighbors:
- config:

122 Chapter B. ECMP settings

neighbor-address: 10.0.0.109
peer-as: 65021

add-paths:
config:

receive: true

zebra:
config:

enabled: true
url: unix:/run/quagga/zserv.api
version: 3
redistribute-route-type-list:

- static

The "use-multiple-paths" should be enabled for the gobgpd to redistribute BGP

multipath routes to Zebra.

zebra.conf:

hostname Router
log file /var/log/zebra.log

B.2 Gobgpd con�guration on the route re�ector.

gobgp.conf:

global:
config:

as: 65021
router-id: 10.0.0.109
local-address-list:
- 0.0.0.0 # ipv4 only

use-multiple-paths:
config:

enabled: true

peer-groups:

B.3 Exabgp con�guration on the load balancer container. 123

- config:
peer-group-name: k8s
peer-as: 65021

afi-safis:
- config:

afi-safi-name: ipv4-unicast

dynamic-neighbors:
- config:

prefix: 172.16.0.0/16
peer-group: k8s

neighbors:
- config:

neighbor-address: 10.0.0.110
peer-as: 65021

route-reflector:
config:

route-reflector-client: true
route-reflector-cluster-id: 10.0.0.109

add-paths:
config:

send-max: 255
receive: true

The "dynamic-neighbors" section and the "peer-groups" section set up dynamic

neighbor settings to avoid listing of every possible IP. The "add-paths" setting in the

"neighbors" section enables multi path advertisement for a single network pre�x.

B.3 Exabgp con�guration on the load balancer con-

tainer.

exabgp.conf:

neighbor 10.0.0.109 {
description "peer1";
router-id 172.16.20.2;

124 Chapter B. ECMP settings

local-address 172.16.20.2;
local-as 65021;
peer-as 65021;
hold-time 1800;

static {
route 10.1.1.0/24 next-hop 10.0.0.106;

}
}

The IP address of the load balancer pod(i.e. container), "172.16.20.2", is used for

"router-id" and "local-address". This address is dynamically assigned when the pod is

started. The IP address of the node, "10.0.0.106", is used for "next-hop". The node

address is found out when the pod starts.

125

C
Analysis of the performance limit

The maximum throghput in this series of experiment is roughly, 190k[req/sec] for both

ipvs an the iptables DNAT. At �rst, it was not clear what caused this limit. The author

analyzed the kind of packets that �ows during the experiment using tcpdump[76] as

follows; 1) A wrk worker opens multiple connections and sends out http request to the

web servers. The number of connections is determined by the command-line option,

eg. 800/40 = 20 connection in the case of command-line in Table 4.1. The worker sends

out 100 requests to the web server within each connection, and closes it either if all of

the responses are recieved or time out occurs. 2) As in seen in Listing C.1, tcp options

were mss(4 byte), sack(2 byte), ts(10 byte), nop(1 byte) and wscale(3 byte), for SYN

packets. For other packets, tcp options were, nop(1 byte), nop(1 byte) and ts(10 byte). 3)

The author classi�ed the types of packes and counted the number of each type in a

single connection, which is 100 http requests. Table C.1,C.2,C.3 summarize the data

size of 100 request, including TCP headr, IP header, Ether header and overheads. From

this analysis, it was found that per each HTTP request and response, request data with

the size of 227.68[byte] and response data with the data(http content)+437.68[byte]

126 Chapter C. Analysis of the performance limit

were being sent.

Since the node for load balancer recives and transmits both request and response

packets using single network interface, each 1Gbps half duplex of full duplex must

accomodate request and response data size. Therefore the theoretical maximum

throughput can be expressed as;

throughput[req/sec] = bandwidth[byte/sec]/(request + response)

= 1e9/8/(data+665.36)

Figure C.1 shows plot of theoretical maximum throughput 1Gbps ethernet together

with actual benchmark results. Since experimnetal results agrees well with theory, the

author concludes that when “RPS = on”, ipvs performance limit is due to the 1Gbps

bandwidth.

curl -s http://172.16.72.2:8888/1000
tcpdmup(response):

03:09:27.968942 IP 172.16.72.2.8888 > 192.168.0.112.60142:
Flags [S.], seq 2317920646, ack 648140715, win 28960, options [mss

↪→ 1460,sackOK,TS val 2274012282 ecr 2324675546,nop,wscale 8],
↪→ length 0

03:09:27.969685 IP 172.16.72.2.8888 > 192.168.0.112.60142:
Flags [.], ack 85, win 114, options [nop,nop,TS val 2274012282 ecr

↪→ 2324675546], length 0
03:09:27.969945 IP 172.16.72.2.8888 > 192.168.0.112.60142:
Flags [P.], seq 1:255, ack 85, win 114, options [nop,nop,TS val

↪→ 2274012282 ecr 2324675546], length 254
03:09:27.969948 IP 172.16.72.2.8888 > 192.168.0.112.60142:
Flags [P.], seq 255:1255, ack 85, win 114, options [nop,nop,TS val

↪→ 2274012282 ecr 2324675546], length 1000
03:09:27.970846 IP 172.16.72.2.8888 > 192.168.0.112.60142:
Flags [F.], seq 1255, ack 86, win 114, options [nop,nop,TS val

↪→ 2274012282 ecr 2324675547], length 0

Listing C.1: An example of the tcpdump output

127

Type of Packet Payload [byte] Header [byte] Count Total [byte]

SYN 0 98 1 98

ACK 0 90 102 9,180

Push(GET) 44 90 100 13,400

FIN+ACK 0 90 1 90

Total 22,768

Table C.1: Request data size for 100 HTTP requests in wrk measurement.

Type of Packet Payload [byte] Header [byte] Count Total [byte]

SYN+ACK 0 98 1 98

ACK 0 90 2 180

Push(GET) 254 90 100 34,400

Push(DATA) data 90 100 100x(data+90)

FIN+ACK 0 90 1 90

Total 100x(data+90)+34,768

Table C.2: Response data size for 100 HTTP requests in wrk measurement.

Type of �eld SYN

ACK, SYN+ACK,

FIN+ACK, PUSH

preamble 8 8

ether header 14 14

ip header 20 20

tcp header 20 + 20(tcp options) 20 + 12(tcp options)

fcs 4 4

inter frame gap 12 12

Total [byte] 98 90

Table C.3: Header sizes of TCP/IP packet in Ethernet frame.

128 Chapter C. Analysis of the performance limit

Figure C.1: Perfomance limitation due to 1Gbps bandwidth.

129

D
VRRP

The authors have considered another redundant architecture using the VRRP protocol.

However, it turned out to be less preferable than the proposed ECMP redundancy

with following reasons; (a)Redundancy is in an active-backup manner. (b)The VRRP

protocols relied on multicast, which is often not supported in the overlay network

environments. Here, the author explain our considerations.

Fig. D.1 shows the redundancy setup using the VRRP protocol. In the case of

VRRP, the load balancer container needs to run in the node net namespace for the

following two reasons; 1) When fail over occurs, the new master sends gratuitous

Address Resolution Packets(ARP) packets to update the ARP cache of the upstream

router and Forwarding Data Base(FDB) of layer 2 swicthes during the transition. Such

gratuitous ARP packets should consist of the virtual IP address shared by the load

balancers and the MAC address of the node where the new master load balancer is

running. Programs that send out gratuitous ARP with node MAC address should

be in the node net namespace. 2) Furthermore, the active load balancer sends out

periodic advertisement using UDP multicast packet to inform existence of itself. The

130 Chapter D. VRRP

Figure D.1: An alternative redundant load balancer architecture using VRRP.

The tra�c from the internet is forwarded by the upstream router to a active lb

node(the solid green line) and then distributed by the lb pods to web pods

using Linux kernel’s ipvs(the solid red line). The active lb pod is selected using

VRRP protocol(the blue dotted line). For the green lines global IP address is

used. The red lines use IP addresses of overlay network. The blue line uses the

IP address of node network.

Figure D.2: An alternative redundant load balancer architecture using VRRP.

load balancer in backup state stays calm unless the VRRP advertisement stops for a

speci�ed duration of time. The UDP multicast is often unsupported in overlay network

used by container cluster environment, and hence the load balancer needs to be able to

use the node net namespace. Running containers in the node net namespace loses the

whole point of containerization, i.e., they share the node network without separation.

This requires the users’ additional e�orts to avoid con�ict in VRRP con�guration for

multiple services.

VRRP programs also support unicast advertisement by specifying IP addresses of

peer load balancers before it starts. However, container cluster management system

randomly assign IP addresses of containers when it launches them, and it is impossible

to know peer IPs in advance. Therefore the unicast mode is not feasible in container

cluster environment.

The other drawback compared with the ECMP case is that the redundancy of VRRP

131

is provided in Active-Backup manner. This means that a single software load balancer

limits the overall performance of the entire container cluster. Therefore, the author

believes that the ECMP redundancy is better than VRRP.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.1.1 Web application
	1.1.2 Portability of web application
	1.1.3 Ideal infrastructure for portable web application

	1.2 Infrastructure for web applications
	1.2.1 On-premise data center
	1.2.2 Cloud computing
	1.2.3 Container technology
	1.2.4 Container Orchestrator
	1.2.5 Kubernetes architecture and problem

	1.3 Focus of the dissertation
	1.3.1 The purpose
	1.3.2 The method
	1.3.3 Contribution

	1.4 Outline

	2 Background
	2.1 Overlay network
	2.1.1 Container network
	2.1.2 Overlay Network
	2.1.3 Caveats of the overlay network

	2.2 Multicore packet processing
	2.3 IPVS load balancer
	2.3.1 NAT mode
	2.3.2 Tunneling mode

	2.4 XDP technology
	2.5 Summary

	3 Architecture and Implementation
	3.1 Architecture
	3.1.1 Problem of Conventional Architecture
	3.1.2 Load balancer in container
	3.1.3 Redundancy with ECMP

	3.2 Implementation
	3.2.1 Experimental system architecture
	3.2.2 IPVS container
	3.2.3 BGP software container

	3.3 Summary

	4 Performance Evaluation
	4.1 Performance analysis of proposed load balancer
	4.2 Cloud experiment
	4.3 Redundancy with ECMP
	4.4 Summary

	5 Perfomance in faster network
	5.1 Throughput measurement in 10G network
	5.2 Discussion of required throughput
	5.3 XDP load balancer
	5.4 Summary

	6 Related Work
	6.1 Portability of web applications
	6.2 Software load balancers for Kubernetes
	6.3 Cloud load balancers
	6.4 Load balancer tools in the container context
	6.5 Summary

	7 Conclusion
	7.1 Conclusions

	Appendix A Ingress controller
	Appendix B ECMP settings
	B.1 Gobgpd and zebra configurations on the router.
	B.2 Gobgpd configuration on the route reflector.
	B.3 Exabgp configuration on the load balancer container.

	Appendix C Analysis of the performance limit
	Appendix D VRRP

