
Fine-Grained and Distributed Traffic
Monitoring Platform in

Software-Defined Networks
by

Phan Xuan Thien

Dissertation

submitted to the Department of Informatics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

SOKENDAI (The Graduate University for Advanced Studies)

September 2019

Committee

Advisor Dr. Kensuke FUKUDA

Associate Professor of National Institute of Informatics and SOKENDAI

Sub-advisor Dr. Yusheng JI

Professor of National Institute of Informatics and SOKENDAI

Examiner Dr. Michihiro KOIBUCHI

Associate Professor of National Institute of Informatics and SOKENDAI

Examiner Dr. Takashi KURIMOTO

Associate Professor of National Institute of Informatics and SOKENDAI

Examiner Dr. Yuji SEKIYA

Associate Professor of The University of Tokyo

Abstract

Traffic engineering is an important issue for network operation. It is essential for most
networks since it enables network operators and service providers to ensure efficient use of
network resources and proper network performance for applications and services. Traffic
engineering adapts the routing of traffic based on the network conditions and optimizes
traffic demand and capacity such as big flow migrations, fine-grained QoS control, anomaly
elimination. Therefore, it requires integrating of traffic monitoring and control capabilities
in the network. However, in the past and current networks, network monitoring and control
are conducted independently, and current monitoring techniques require separate hardware
deployment or software configuration, making it hard to implement traffic engineering and
other network management applications.

Different monitoring techniques are used for monitoring networks such as sFlow, NetFlow,
Simple Network Management Protocol (SNMP), and other telemetry tools. Though SNMP
is integrated in most network devices, it limits counters to aggregate traffic for the whole
switch and each of its interfaces, disabling insight into flow-level statistics necessary for
fine-grained traffic engineering. While packet-sampling tools like sFlow and NetFlow mostly
require separate hardware deployment for the flow collector and they are not integrated with
existing control protocol/APIs in the networks. Therefore, existing monitoring techniques
remain inflexibility and drawback to meet traffic engineering requirement.

Recently, Software Defined Network (SDN) has been introduced to solve the drawbacks
of network control and monitoring in current networks. SDN in general and OpenFlow
as its current implementation instance in particular, provides a centralized visibility with
global network and application information, a programmability without a need to handle
individual network elements, and a traffic flow based controllability with flow table pipelines
in OpenFlow switches making flow management more flexible and efficient. With these
supports, traffic engineering mechanisms can be implemented flexibly and intelligently in
SDN/OpenFlow compared to conventional approaches.

For traffic monitoring functionality, SDN/OpenFlow employs a default monitoring mecha-
nism that records statistics of flows using forwarding flow tables. This monitoring mechanism

vi

may not ensure an effective performance for fine-grained monitoring (i.e., monitoring net-
work traffic with high granularity) due to two main reasons: (1) installing larger number of
fine-grained rules without coarse-grained forwarding rules increases cache misses, which
results in additional latency that decreases the performance of the switch as it may send
a Packet-In message to the controller to ask for a forwarding rule and wait for controller’
response; (2) installing larger number of flow entries make the sizes of flow tables greater,
which increases the latency due to the lookup process for matching incoming packets with
the flow entries. Therefore, an effective monitoring method with better performance at switch
is critically essential to improve traffic monitoring in SDN/OpenFlow for fine-grained traffic
engineering.

In addition, in most SDN based networks, a number of selected SDN/OpenFlow switches
for monitoring tasks independently monitor traffic flows. These switches may consume
huge resources (e.g., throughput, CPU, memory usage) to perform monitoring tasks. When
monitoring a network in a distributed scenario, for each flow that traverses through multiple
monitoring switches, the switch along the flow path records almost the same statistics of
the flow. This introduces a duplication issue of flow monitoring as a single switch in the
flow path is enough to monitor the flow statistics. This duplication results in redundant
flow-based monitoring rules in switches that consume significant resources of the switches
and the network, and may cause serious problem to the performance of the switches and
the network due to their limited resources. Therefore, a distributed monitoring capability
that can distribute the monitoring load over multiple monitoring switches in the network and
eliminate duplication is critically essential for monitoring in distributed scenarios.

In this dissertation, we propose a systematic approach that integrates fine-grained traffic
monitoring capability to a capable traffic control platform, i.e., SDN, for traffic engineering
applications. Our approach concentrates on both solving the monitoring performance limita-
tion at SDN/OpenFlow switch (i.e., OpenFlow software switch in particular), and enabling a
distributed monitoring capability at controller for flexible and low overhead flows monitoring
that operates independently from the forwarding functionality in the switch. In the proposed
method, network flows statistics are actively monitored based on monitoring match fields
(e.g., 5-tuple match fields) that can be defined by controller applications. Traffic flows are
forwarded based on flow entries of flow tables while their statistics at a fine-grained level
are monitored at a monitoring module that is independent from the forwarding tables. The
approach ensures network flows are monitored at switch with low overhead independent of
the forwarding functionality of the switch, and applications use such flow data statistics via
extended OpenFlow APIs. As a result, the proposal decreases the monitoring overhead in the
switch even for monitoring large number of active flows.

vii

Furthermore, for distributed monitoring scenarios, we propose a distributed monitoring
method that eliminates the redundant monitoring rules, and distributes the monitoring load
over multiple monitoring switches in a balancing fashion. The proposed method detects
duplicated monitoring rules and for each duplication; it selects a switch with highest avail-
ability among the switches along the path to monitor the flow and eliminates the redundant
monitoring rules in the other switches in a balancing fashion. The switch selection is adaptive
based on the available status of the switches, which is frequently updated in each statistics
query time of the controller. The proposed method decreases the number of monitoring rules
per switch, therefore it decreases the monitoring load of the switches and the entire network.

We implemented our proposed methods as a monitoring platform integrated to SDN/
OpenFlow called SDN-MON. We also designed and implemented a dedicated protocol for the
communication between the switches and the controller for exchanging monitoring control
messages and transmitting the monitoring data. The designed protocol is implemented with
OpenFlow based formats to integrate it to OpenFlow standard. We conducted a number of
experiments based on the implementation instance to show the effectiveness of our proposals.
The experimental results demonstrate a low monitoring overhead at switch, and a low
processing time of the proposed distributed monitoring mechanism at controller.

Acknowledgments

The work presented in this dissertation would not have been possible without the association
and support of many people. I would like to take this opportunity to express my sincere
gratitude and appreciation to all those who have supported me throughout my research to
make this Ph.D dissertation come true.

First and foremost, I would like express my sincere gratitude to my adviser, Professor
Kensuke Fukuda, for his valuable advice and support for my Ph.D study. His guidance
helped me a lot in the research and the writing of this dissertation. I appreciate his advice
and instructions during my study, which contribute to the accomplishment of the research
and the dissertation.

I would like to express my special thanks to my other advisers, Professor Shigeki Yamada
and Professor Yusheng Ji, who have great support and always give me helpful advice
throughout my research progress, as well as motivates me to overcome difficulties and
challenges of the research.

I also want to give special thanks to the other professors in the dissertation evaluation
committee, Professor Michihiro Koibuchi, Professor Takashi Kurimoto, and Professor Yuji
Sekiya, for their valuable advice, insightful comments for my research and the dissertation.

I acknowledge the professors and staffs in The Graduate University for Advanced Studies
(SOKENDAI) and National Institute of Informatics (NII) for the endless effort to provide an
excellent study and working environment for my research.

Furthermore, I would like to thank fellow researchers and colleagues who have various
collaboration and discussion with me throughout my research. I especially thank Professor
Thoai Nam (Dean of the Faculty of Computer Science and Engineering, Ho Chi Minh City
University of Technology, Vietnam), for being a mentor who always supports and motivates
me throughout my Master and Ph.D studies. I also want to thank Professor Le Dinh Duy
(NII, Japan, and University of Information Technology, Vietnam), Dr. Tran Minh Quang (Ho
Chi Minh City University of Technology, Vietnam), Dr. Nguyen Kien (Chiba University,
Japan), Dr. Le Duc Tung (IBM Research, Japan), Dr. Nguyen Phi Le (Hanoi University of
Science and Technology, Vietnam), Dr. Phan Le Sang (NII, Japan), Dr. Nguyen Son Hoang

x Acknowledgments

Quoc (KDDI, Japan), Dr. Romain Fontugne (IIJ, Japan), Dr. Johan Mazel (NII, Japan), Dr.
Tiago Oliveira (NII, Japan), Ignacio Dominguez Martinez-Casanueva (Technical University
of Madrid, Spain), and my other mates at National Institute of Informatics who have been my
collaborators and companies on the way pursuing my Ph.D. In addition, I thank Professor
Yuji Sekiya and Dr. Marc Bruyere for their support on the experimental environment at The
University of Tokyo, as well as related discussion and advice on the experimental works in
the dissertation.

Last but not least, I would like to send warmest thanks to my family, especially my
Parents, my Brothers and Sisters for their enduring support, spiritual encouragement during
my Ph.D study, and for always being the greatest motivation for me throughout my studies,
my career and my life.

Dedicated to my Family.

Table of contents

Abstract v

Acknowledgments ix

List of figures xvii

List of tables xix

1 Introduction 1
1.1 Network traffic monitoring . 1
1.2 Software-Defined Network (SDN) . 2
1.3 Monitoring in SDN . 4
1.4 Problem statement . 5
1.5 Criteria in designing monitoring method for SDN 6
1.6 Our proposal . 7
1.7 Main contributions . 9
1.8 Dissertation organization . 10

2 Background 11
2.1 Software-Defined Networking . 11

2.1.1 Introduction . 11
2.1.2 Architectural Overview . 12
2.1.3 Benefits of SDN for network control and management 16
2.1.4 SDN ecosystem and practical deployments 17
2.1.5 Discussion on the scale of OpenFlow-based SDN 19

2.2 Importance of traffic monitoring and measurement for network control and
management in SDN . 21

2.3 Traffic flow monitoring in SDN . 23
2.3.1 Default traffic flow monitoring support in OpenFlow-based SDN . . 23

xiv Table of contents

2.3.2 Drawbacks of default traffic flow monitoring in OpenFlow-based SDN 25
2.4 A survey on requirements of different networks and applications 26

2.4.1 Investigation on the requirements of different networks 26
2.4.2 Investigation on the requirements of different network applications . 28

2.5 Existing approaches for SDN monitoring 31
2.5.1 Switch overhead reduction approach 31
2.5.2 Sampling based approach . 33
2.5.3 Rule aggregation based approach 33
2.5.4 Switch selection based approach 34
2.5.5 Time window based approach . 35

3 Monitoring method for SDN switch 39
3.1 Design requirements . 39
3.2 Method overview . 40
3.3 SDN-MON Architecture . 42

3.3.1 Architecture Overview . 42
3.3.2 Monitoring process . 45
3.3.3 SDN-MON Monitoring APIs . 47
3.3.4 SDN-MON communication protocol 49

3.4 Implementation . 54
3.5 Performance evaluation . 56

3.5.1 Experiment environment . 56
3.5.2 SDN-MON switch overhead evaluation 57
3.5.3 Impact of the sampling capability on enhancing the throughput of

the proposed architecture . 59
3.5.4 Validating the efficiency of the proposed architecture 60
3.5.5 SDN-MON system overhead evaluation 61

3.6 Discussion . 63
3.7 Summary . 69

4 Distributed monitoring method for SDN 71
4.1 Design requirements . 71
4.2 Method overview . 73
4.3 Architectural Design . 74
4.4 Monitoring Mechanism . 76

4.4.1 Organization of Global Monitoring Data 76
4.4.2 Monitoring workflow . 77

Table of contents xv

4.4.3 Distributed monitoring algorithm 77
4.5 Implementation . 80
4.6 Evaluation . 84

4.6.1 Experiment environment . 84
4.6.2 Evaluation on the reduction of monitoring load per switch and the

monitoring load balance among multiple switches 84
4.6.3 Elapsed times of the algorithm and the system 86
4.6.4 Evaluation on the scale of the proposed distributed monitoring mech-

anism . 87
4.7 Discussion . 92
4.8 Summary . 93

5 Discussion 97
5.1 Application examples . 97
5.2 Applicability for designed networks and applications 100
5.3 Limitations . 100

6 Conclusion 103
6.1 Dissertation summary . 103
6.2 Future Work . 105

References 107

Publication List 115

List of figures

2.1 Software-Defined Network architecture [51] 12

2.2 Main components of an OpenFlow-enabled SDN switch [49] 13

2.3 Flow matching process in OpenFlow switch [49] 14

2.4 Basic mechanism for traffic flow monitoring in OpenFlow-enabled SDN . . 24

2.5 UMON design which restructures a flow table and subflow table for monitor-
ing [81] . 32

2.6 OpenSample monitoring scheme [72] . 33

2.7 FlowCover monitoring scheme [70] . 35

3.1 SDN-MON Architecture . 43

3.2 Packet processing for monitoring at SDN-MON enabled switch 46

3.3 Workflow of monitoring process in SDN-MON switch-side module 47

3.4 Experimental setup . 56

3.5 Throughput in Mpps of SDN-MON and other switches 58

3.6 Throughput in Gbps of SDN-MON and other switches 59

3.7 Throughput of default Lagopus with 1 rule vs. SDN-MON with 9000 rules
and 9000 bloom filter elements . 60

3.8 Impact of sampling ratio on throughput of the proposed architecture (SDN-
MON) . 61

3.9 Throughput of SDN-MON vs. default Lagopus in different number of active
flow rules . 62

3.10 System elapsed time at different numbers of monitoring rules 63

3.11 System elapsed time at different input traffic rates 64

4.1 Extended SDN-MON architecture. 75

4.2 Organization of the global data. 76

4.3 Controller-switches communication. 78

xviii List of figures

4.4 An illustration on duplicated monitoring entries detection and assignment of
monitoring entries to global monitoring tables of switches 80

4.5 An illustration of global monitoring data processing and the switch selection
scheme. 81

4.6 Experiment network. 84
4.7 Average number of m-entries per switch in various number of flows. 85
4.8 Standard deviation of numbers of m-entries in switches. 86
4.9 Processing time of the proposed distributed monitoring algorithm at different

numbers of monitoring entries per switch 88
4.10 Processing time of the proposed distributed monitoring algorithm at different

numbers of switches . 89
4.11 Processing time of the proposed distributed monitoring algorithm in different

flow duplication ratios . 90
4.12 Data parsing time (processed by default controller) at different number of

monitoring rules . 91
4.13 Data transmission and switch processing time at different number of moni-

toring rules . 92

List of tables

2.1 A survey on number of active flows in different networks 27
2.2 A survey on number of active flows in different applications 29
2.3 Pros and cons of existing SDN traffic monitoring methods 37

3.1 Hardware configuration of experimental network 57
3.2 Main characters of flow table lookup in Lagopus switch and monitoring table

lookup in SDN-MON . 65
3.3 Comparison of our proposal with existing traffic monitoring methods in

terms of monitoring overhead reduction in switch 68

4.1 Algorithm elapsed time and system elapsed time at various numbers of
monitoring entries per query. 87

4.2 Comparison of our proposal with existing traffic monitoring methods in both
aspects: monitoring overhead reduction at switch and overhead reduction in
distributed monitoring scenario . 94

5.1 Example data of detected heavy-hitter flows. 98

Chapter 1

Introduction

1.1 Network traffic monitoring

Traffic engineering is an important issue in network and security operation. It is beneficial
for most networks since it enables network operators and service providers to ensure proper
network performance and efficient use of network resources. Traffic engineering adapts the
routing of traffic based on the network conditions and optimize traffic demand and capacity
such as big flow migrations, fine-grained QoS control, anomaly elimination. Thus, it requires
feedback loop between control and monitoring. For instance, in order to ensure efficient
routing of network traffic through network links, traffic engineering requires detecting
congestion of network traffic in the links to determine proper react to mitigate the congestion
(e.g., reroute/split the traffic from congested links to other available links). Furthermore, once
the congestion is detected and new routes for congestion mitigation are determined, traffic
engineering requires to enforce the routes to corresponding network devices to mitigate or
eliminate the traffic congestion. Such network management requires a monitoring and control
capability that integrate both monitoring statistics of network traffic (e.g., bandwidth) for
analysis to make react decision, and quickly enforcing policy changes to network devices to
adapt the network traffic with the changes in network conditions.

However, in the past and current networks, network monitoring and control are conducted
independently, and current measure techniques require separate hardware deployment or
software configuration [78]. This drawback make it hard to implement traffic engineering and
other network management applications. Specifically, different monitoring techniques are
used for monitoring networks such as Simple Network Management Protocol (SNMP) [7],
sFlow [57], NetFlow [10], and other telemetry tools. SNMP is one of the most used protocols
to monitor network status. SNMP can be used to request per-interface port-counters and
overall node statistics from a switch, and it is integrated in most network devices. Monitoring

2 Introduction

using SNMP is achieved by regularly polling the switch, though switch efficiency may
degrade with frequent polling due to CPU overhead. Although vendors are free to implement
their own SNMP counters, most switches are limited to counters that aggregate traffic for each
of its interfaces, disabling insight into flow-level statistics necessary for fine-grained traffic
engineering. It is worth noting that fine-grained traffic monitoring/engineering indicates
monitoring/controlling network traffic with high granularity, which requires fine-grained
monitoring rules with more matching fields than simple origin-destination pair (e.g., 5 tuple
matching fields with source IP address, source port number, destination IP address, destination
port number, protocol number). NetFlow and sFlow are a passive flow-based monitoring
tool that collects samples of traffic and estimates overall flow statistics based on the samples,
which is considered sufficiently accurate for long-term statistics. NetFlow and sFlow are
usually used with a 1-out-of-n random sampling, and assumes the collected packets to be
representative for all traffic passing through the collector. Every configurable time interval,
the router sends the collected flow statistics to a centralized unit for further aggregation.
Drawbacks of packet-sampling is the fact that small flows may be underrepresented, and
multiple monitoring nodes along a flow path may sample exactly the same packet and
therewith over-represent a certain traffic group that may decrease the monitoring accuracy.
These monitoring techniques mostly require separate hardware deployment for the flow
collector and they are not integrated with existing control protocol/APIs in the networks.
Therefore, existing monitoring techniques introduces inflexibility and drawback to meet
traffic engineering requirement.

1.2 Software-Defined Network (SDN)

As explained above, network management, especially traffic engineering, is essentially im-
portant to ensure network performance and efficient routing of traffic for computer networks.
Traffic engineering has been exploited in the past and current networks (e.g., ATM, MPLS,
and IP networks [2] [21]). However, these traditional networks mostly embed networking
functions and protocols into hardware devices (e.g., switches, routers) that limits the ability
to access and control networks (e.g., routing rules are almost fixed with pre-defined policies
embedded into the routing devices and hard to change [51]). For example, to add/move
any device or change a network policy, network operators may need to configure multiple
switches, routers, firewalls, update ACLs, VLANs, QoS, and other mechanisms using device-
level configuration tools, which may take non-trivial time and effort to enforce and ensure the
consistency. Because of this static nature, these networks mostly cannot dynamically adapt
to changing traffic to meet the changing demands of end-user applications and services.

1.2 Software-Defined Network (SDN) 3

In order to deal with the drawbacks of the past and current networks in terms of network
management and traffic engineering, Software-Defined Network (SDN) [51] [49] [64] has
been introduced recently. SDN in general, or OpenFlow as its successful implementation in
particular, is an architecture that can operate networks with many flexibilities. SDN enables
network operators to enforce routing rules and other network policies in real-time, where rules
can be installed into network devices and enforced consistently by directly programming. This
architecture decouples network control and forwarding functions that allows programmability
for network control and enhances flexible manageability for various network services and
applications. The decoupling enables network infrastructure to process the network traffic
in line rate speed and allows network intelligence to be logically centralized in a controller
with a well-defined OpenFlow protocol. SDN provides a global view over the whole network
where network intelligence is logically centralized that enables network operators to observe
the networking status and control their network in real time by programming. By the
network control capability, SDN facilitates network management and traffic engineering.
With SDN, network operators can quickly apply routing policies to adapt with changes in
network conditions for bandwidth optimization, resource utilization, and quality of service
for end-users.

Specifically, with SDN and its OpenFlow implementation, traffic engineering mechanisms
can be implemented flexibly and intelligently as a centralized traffic engineering system
compared to conventional approaches such ATM based, IP based, and MPLS based traffic
engineering due to the advantages of SDN architecture [2]. This is because SDN provides:
centralized visibility with global network and application information (e.g., network resource
limits, QoS requirements); programmability without a need to handle individual network
elements, i.e., SDN/OpenFlow switches can be programmed and dynamically reprogramed at
the centralized controller to allocate network resources efficiently, avoid network congestion,
or enhance network performance to ensure QoS for end-user services/applications; traffic
flow based controllability with flow table pipelines in SDN/OpenFlow switches makes flow
management more flexible and efficient.

With its benefits for network control, management and traffic engineering, SDN is
considered as an innovative architecture for today’s networks, applications and services.
It is being widely used and deployed by the research communities (e.g. SDN in campus
environment [53]) and industries (e.g. Google deployed B4 [33] [27], a software-defined
WAN connecting Google’s data centers across the planet) and being supported big hardware
vendors (e.g., BigSwitch, Pica8, NTT, Cisco, HP, Brocade, Juniper, VMware, Extreme
Networks,...) by integrating SDN architecture and OpenFlow protocol into their switches and
routers. A variety of SDN based applications and services are developed with flows statistics

4 Introduction

acquired from network traffic monitoring [85] such as traffic engineering mechanisms (e.g.,
[2]), traffic matrix estimation (e.g. OpenTM [77]), network utilization (e.g. FlowSense [87]),
network security (e.g. FlowGuard [32], OFX [68], anomaly detection methods [88] [23]
[25], DDoS attack protection [82]), data center and cloud services [44] [84] [54] [50], and
wireless and mobile cloud services [36] [35].

1.3 Monitoring in SDN

In SDN or any conventional networks, network management or traffic engineering appli-
cations require monitoring the networks to acquire necessary information for analysis and
react decision making. This indicates that in order to achieve the control capability in SDN,
network traffic monitoring is a key factor since it is the source of any information required to
observe networking status and control the network. In SDN, particularly OpenFlow as its only
implementation instance at the current stage, packets are forwarded based on the flow entries
in the flow tables of switches through a matching mechanism. Each flow entry includes
match fields for matching with the headers of incoming packets, actions to indicate which
actions that the switch performs for the packets, and related counters (i.e., packet counts,
byte counts) for monitoring the network traffic for management purpose. In each switch, for
each incoming packet, the switch finds a matching flow entries based on the packet’s header
and the match fields of the flow entry. If a match is found, the switch performs forwarding
and other actions to the packet as defined in the actions field in the flow entry, and record the
packet count and byte count statistics. If no match is found, the switch sends a Packet-In
message to the controller to ask for a flow entry for the packet, and then install a new flow
entry to forward and monitor packet based on the instruction sent from the controller. By that
mechanism, SDN/OpenFlow forwards the network traffic flows and monitor the flows based
statistics through the counters in the flow entries of each switch for network management.

Some recent approaches propose deploying additional systems with sFlow [57] and
NetFlow [10] tools for OpenFlow for traffic monitoring. By using sFlow and NetFlow,
these approaches can achieve a low monitoring overhead for network switch/router since
the monitoring tasks are conducted in separate servers. Although sFlow and NetFlow are
capable tools for network monitoring, they are not integrated in SDN/OpenFlow protocol.
Thus, it requires external hardware deployment and configuration to integrate monitoring
functionality to SDN, which is not flexible to implement traffic engineering in SDN.

Other approaches propose extension methods to improve the monitoring performance at
switch. Several approaches [9] [87] [78] propose reducing the amount of switch-controller
interactions and delays in the control channel and use the flow entries of flow tables of

1.4 Problem statement 5

the switch to monitor traffic flows. Although these approaches can reduce the number of
switch-controller overhead, the significant monitoring overhead due to the increasing size
of the flow tables with fine-grained flow entries may still remain that limit the throughput
performance of the switch. Other approach [81] proposes in-band traffic monitoring method
at switch which integrate monitoring modules in switch for flows monitoring. Although the
approach brings flexibility for the traffic flows monitoring as the monitoring modules can be
implemented independently from the flow tables of the switch, the throughput performance
and monitoring overhead of these approaches are still limited. On the other hand, several
approaches [70] [77] propose distributed monitoring capability for the SDN controller for
traffic flows monitoring. It is worth noting that in this dissertation, the distributed monitoring
term indicates monitoring network traffic where multiple switches are used for the monitoring
task. These approaches suggest distributed methods and reduce monitoring overhead at the
controller. However, in these approaches, the traffic flows are monitored by the default
mechanism of switch, which remain the performance limitation in terms of throughput
at switch. Overall, the above approaches discuss partly on either reducing monitoring
overhead at switch or reducing monitoring overhead of network for distributed monitoring
scenario where a systematic approach that solves both issues is essential for in-band network
monitoring in SDN, especially for fine-grained monitoring of network traffic. The term,
systematic, means that both the issues in SDN traffic monitoring are considered as a whole
system: the issue of overhead per monitoring rule in switch, and the issue of overhead in
controller and control channel for a typical SDN monitoring deployment where multiple
switches and a controller are used for the monitoring task.

1.4 Problem statement

The above analysis indicates that integrating fine-grained monitoring in OpenFlow is im-
portant for traffic engineering applications that use integrated APIs. OpenFlow employs a
default monitoring mechanism that record statistics of flows using forwarding flow tables.
However, this naive mechanism may not ensure to achieve an efficient performance for
fine-grained monitoring due to two reasons: (1) For fine-grained monitoring of traffic flows,
each OpenFlow switch requires to install a larger number of flow entries (with fine-grained
matching fields) than the number of flow entries required for basic forwarding. Installing
fine-grained rules without coarse-grained forwarding rules increases the possibility of miss-
match in the matching process of the switch, which results in additional latency as the switch
must send a Packet-In message to ask the controller for a corresponding rule and wait for its
response. This latency downgrades the performance (i.e., throughput) of the switch; (2) For

6 Introduction

fine-grained flows monitoring, the required number of flow entries to be installed in each
switch is greater than the number of flow entries for basic packet forwarding. This makes
the size of flow tables greater, and therefore increases the latency due to the lookup process
for matching incoming packets with the flow entries. This factor introduces more latency
for the switch processing that degrades its throughput performance, especially it may make
the switch become a bottleneck when monitoring a large number of flows. Therefore, an
efficient monitoring method for better monitoring performance at SDN/OpenFlow switch,
especially software switch, is necessary to benefit SDN based network management. This is
the first objective of the research in this dissertation.

Moreover, in most SDN based networks, a number of SDN/OpenFlow switches are
selected for monitoring tasks. These switches independently monitor traffic flows and may
consume huge resources (e.g., throughput, CPU, memory usage) to perform monitoring tasks,
especially for network management services that require monitoring a large number of flows.
In addition, when monitoring in a distributed scenario, for each flow traversing through
multiple monitoring switches in the network, the switches along the flow path record almost
the same statistics of the flow. This is considered as duplication of flow monitoring as a
single switch in the flow path is enough to monitor the flow statistics. This duplication results
in redundant flow-based monitoring rules in switches that consume significant resources of
the switches (e.g., throughput, CPU, memory) and the network (i.e., communication cost in
the control channel for transmitting recorded statistics of redundant flows to the controller in
each flow-based statistics query, the computational cost of the controller for processing the
redundant flow-based monitoring rules). This may cause serious problem to the performance
of the switches and the monitoring network as the switches normally have limited resources,
and especially when monitoring large number of flows. Therefore, a distributed monitoring
capability that allows distributing the monitoring load, which is represented by flow-based
monitoring rules, over multiple monitoring SDN/OpenFlow switches in the network and
eliminate the duplication of monitoring rules is critically essential for monitoring traffic flows
in distributed scenarios with multiple monitoring switches and for increasing the monitoring
scalability. This is the second objective of the research in this dissertation.

1.5 Criteria in designing monitoring method for SDN

To integrate fine-grained traffic monitoring for traffic engineering in SDN/OpenFlow, a traffic
monitoring method requires to embed monitoring functionality in SDN/OpenFlow switches
for the monitoring task. However, due to the limitation of the resources of a SDN/OpenFlow
switch (e.g., CPU, memory, bandwidth), the possibly large monitoring overhead in switches

1.6 Our proposal 7

is a critical problem. Typically, monitoring overhead in a switch is caused by the computation
of the monitoring process (i.e., store, lookup, and update monitoring records) and the memory
usage for storing the monitoring records. This overhead directly downgrades the throughput
of the switch and can be computed by the decrease of the throughput in the switch compared
to the base line (i.e., without monitoring). Therefore, an integrated network monitoring
method for SDN/OpenFlow switch must reduce the computation cost of the monitoring
process, and the number and size of each monitoring rule in order to reduce the monitoring
overhead in switches.

For distributed monitoring scenarios, due to duplication issue when multiple SDN/OpenFlow
switches independently monitor traffic flows, and considering the limitation of resources in
each monitoring switch, a distributed monitoring method must reduce the number of monitor-
ing load in each switch by reducing the number of duplicated/redundant monitoring records
in each switch. Moreover, to enhance the effectiveness of the collaborative monitoring in
multiple monitoring switches, distributed monitoring method must assign the monitoring
records into the switches in a balancing fashion, so that the monitoring load in the switches
could be balanced. In addition, to reduce the overhead caused by the monitoring data and
instructions exchanges in the communication channel, monitoring method/platform must
minimize the size and number of monitoring records to be transmitted to the controller in
each query.

In summary, the following four criteria were considered for our design of the SDN/OpenFlow
based network traffic flows monitoring platform:

• Switch monitoring overhead minimization (i.e., switch throughput maximization)

• Controller processing overhead minimization (i.e., processing time of the distributed
monitoring algorithm minimization)

• Communication overhead minimization

• Number of monitoring rules per switch minimization and monitoring load balance
maximization

1.6 Our proposal

In this dissertation, we propose a systematic approach for traffic flows monitoring in SDN,
specifically OpenFlow as its only implementation at the current stage. We aim at integrating
a fine-grained traffic monitoring capability in OpenFlow for traffic engineering applications.

8 Introduction

Different from existing approaches where partly discuss on solving either monitoring perfor-
mance limitation at OpenFlow switch or overhead in distributed monitoring scenarios (i.e.,
monitoring with multiple monitoring SDN/OpenFlow switches in network), we focus on
proposing an approach that solves both of the problems (i.e., reducing monitoring overhead
for SDN switch, and reducing monitoring overhead in distributed monitoring scenarios with
multiple monitoring switches) to enable a fine-grained and distributed monitoring capability
for traffic engineering in SDN.

Firstly, we propose a platform for traffic flows monitoring at SDN/OpenFlow switch
(named as SDN-MON). The key idea behind our proposal is to integrate into SDN switch
a flows monitoring capability to enable flexible and low overhead flows monitoring in the
switch that is independent from the forwarding functionality of the switch. The proposed
monitoring method actively monitors network flows statistics based on monitoring match
fields that can be defined by controller applications (e.g., 5-tuple match fields including source
IP address, source port, destination IP address, destination port, and protocol). Traffic flows
are forwarded based on flow entries of OpenFlow tables while their statistics at a fine-grained
level, e.g., 5-tuple, are monitored at a separate monitoring module that is independent from
the forwarding tables. The approach supports to monitor network statistics at SDN/OpenFlow
switch with low overhead without affecting the forwarding functionality in the switch. As
a result, the proposal decreases the monitoring overhead in the switch even for monitoring
large number of active flows (e.g., thousands or hundreds thousands of active flows). We
implemented the proposed method on a base software switch (i.e., Lagopus switch [60], a
high performance OpenFlow software switch), and conducted a number of experiments on
the based on the implementation instance to show the effectiveness of our proposal. With our
proposal, new flexible monitoring functionality for SDN is introduced with a small overhead.

Secondly, we propose a distributed monitoring method to enable distributed monitoring
capability for SDN. Our method eliminates the redundant flow-based monitoring rules, and
distribute the monitoring load over multiple monitoring OpenFlow switches in a balancing
fashion. The proposed method detects duplicated flow-based monitoring rules from the
monitoring rules that the controller receive from the multiple monitoring OpenFlow switches
in each query time. For each duplication, it selects a switch with the highest availability
among the switches along the path to monitor the flow and eliminate the redundant monitoring
rules in the other switches in a balancing fashion. The switch selection is adaptive based on
the available status of the switches (represented by the existing numbers of monitoring entries
in the switches), which is frequently updated in each statistics query time of the controller.
The proposed method significantly decreases the number of flow-based monitoring rules
per monitoring switch, therefore it decrease the monitoring load of the switches and the

1.7 Main contributions 9

entire network. We implemented the proposed method and integrated into the SDN-MON.
We designed and implemented a dedicated protocol for the communication between the
switches and the controller for exchanging monitoring control messages and transmitting
the monitoring data from the switches to the controller based on the proposed methods.
We conducted a number of experiments based on the implementation instance to show the
effectiveness of our proposal. The experimental results show a small processing time of
the proposed distributed monitoring mechanism with around 1.6s for processing as large as
a million active flows. Our proposals are integrated as a systematic approach for efficient
traffic flows monitoring for SDN.

1.7 Main contributions

By integrating fine-grained traffic monitoring capability for SDN, our proposed platform
brings a flexible and applicable solution for traffic engineering applications. SDN-MON
provides network flow statistics at fine-grained level for network operators to implement
network policies in order to enhance and optimize network performance. As SDN-MON
APIs is integrated to OpenFlow as a same platform, traffic engineering applications can use
both SDN-MON monitoring APIs and OpenFlow APIs at a whole for traffic control and
monitoring in real time. Therefore, our proposal facilitates the implementation of traffic
engineering applications and benefits network management. Main technical contributions of
this dissertation consist of:

1. We propose a traffic monitoring method (i.e., SDN-MON) that can monitor flows at
fine-grained level with low overhead at OpenFlow switch. The proposed method can reduces
the overhead per monitoring rule in OpenFlow switch, thus reducing the total monitoring
overhead when handling a specific number of flows in switch, especially for fine-grained
monitoring with large number of flows.

2. Based on the traffic flow monitoring method at OpenFlow switch, we propose a
distributed monitoring method for SDN. The proposal can reduces number of flow monitoring
rules per switch by detect and eliminate redundant monitoring rules at switches and distribute
monitoring load per switch in a balancing fashion, thus it significantly decreases monitoring
overhead in switches and in the network.

3. We integrate the proposed methods as a systematic approach for traffic monitoring
in SDN, including the structural designs of monitoring elements and monitoring processes
for switches, controller, and a dedicated protocol for exchanging monitoring data and in-
structions. All of these elements and processes operate consistently as a whole monitoring
solution/system for SDN/OpenFlow. We implemented the proposal on selected base software

10 Introduction

switch and controller (i.e., Lagopus software switch [60], and Ryu controller [63]). We
conduct a number of experiments based on the implementation instance in different aspects
and scenarios to demonstrate the efficiency of the proposal. The experimental results on
the SDN-MON switch performance demonstrate that our proposed method can achieve
significantly better throughput performance than the OpenFlow default monitoring mech-
anism at switch. In addition, the experimental results on the distributed monitoring aspect
indicate a small overhead in terms of processing time of the proposed method. We also
discuss the applicability of the proposal for common networks and applications based on the
experimental results of SDN-MON performance and the empirical study of requirements of
the networks and applications.

1.8 Dissertation organization

This dissertation is organized as follows.
In chapter 1, we present a brief overview about SDN and network monitoring in

SDN/OpenFlow. Then we analyze the problem statement, the criteria in designing a network
monitoring method/platform for SDN, and introduce our proposal for the problems.

Chapter 2 introduces a background and literature review. We present a background about
network traffic monitoring, SDN, an empirical study on requirements of different networks
and applications for network monitoring, and discuss related proposals to the problems.

In chapter 3 and chapter 4, we describe our proposals in details. We first present our
proposed method for network traffic monitoring at OpenFlow switch with small overhead
in chapter 3. Based on the proposed monitoring method at switch, we propose a distributed
monitoring method that enables distributed monitoring capability efficiently for SDN in
chapter 4. The sections describes in details our strategies and designs of the monitoring
modules and monitoring process towards the outlined design criteria. We present numerical
analysis with a number of experiments based on the implementation instance of SDN-MON
for both aspects, switch overhead and processing time of the distributed processing in the
controller.

In chapter 5, we discuss the aspects of applications and limitations of the proposal.
Chapter 6 summarizes our works and discuss the future directions.

Chapter 2

Background

2.1 Software-Defined Networking

2.1.1 Introduction

Software-Defined Network (SDN) [52] is an emerging network architecture that decouples
the control plane from the forwarding plane, allow network devices to be operated in real time
by direct programming at the control plane. This separation allows network infrastructure
to be abstracted for network services and applications, where the network can be treated as
a logical or virtual entity. SDN maintains a global view of the network in SDN controllers
where network intelligence is logically centralized. With SDN, the network design and
operation are largely simplified since enterprises and carriers have a control over the entire
network from a single logical point. The network devices (i.e switches, routers,...) are
also simplified since they only need to process the instructions from the SDN controllers
without any necessity to understand and process thousands of network protocols as traditional
network architecture.

SDN provides well-defined network APIs that supports implementing network services
and applications including routing, bandwidth management, traffic engineering, quality of
service, security, access control, storage optimization, policy management,... to meet the
demand of today’s business. In addition, SDN enables a network programmability that
allow network operators and administrators to program any configuration of the network
forwarding plane (network devices) rather than hand-code tens of thousands of configuration
in thousands of devices. With a centralized intelligence at the SDN controller, the network
behavior can be adjusted and operated in real-time and the deployment of new applications
and network services spends much less time and effort than that in the traditional network
architecture. The centralization of network state in the control plane supports network

12 Background

managers to flexibly manage, secure, configure, and optimize network resources through
dynamic SDN programs. Additionally, SDN architecture allows network administrators to
dynamically adjust network-wide traffic flows to meet the changing needs of today’s data
centers, carrier environments, and campuses.

SDN has been being deployed more and more widely nowadays by research communities
and industrial companies (e.g. Google deployed B4 [33], a software-defined WAN connecting
Google’s data centers across the planet). The SDN eco-system today introduces a variety
of both SDN-supported hardware switches (e.g. Cisco SDN switch, pica8, BigSwitch,
Broadcom) and software switch (e.g. Open vSwitch [55]), controller implementations (e.g.
NOX [28], Floodlight [20], Ryu [63], POX [59] Beacon [16]), as well as virtual deployment
tools (e.g. Mininet [39]). SDN and its OpenFlow protocol is widely supported by a variety
of network vendors include traditional infrastructure vendors like Cisco, HP, and IBM and
startups like Pica8.

2.1.2 Architectural Overview

ONF WHITE PAPER
Software-Defined Networking: The New Norm for Networks

7 of 12© Open Networking Foundation. All rights reserved.

Introducing Software-Defined Networking

Software Defined Networking (SDN) is an emerging network architecture

where network control is decoupled from forwarding and is directly

programmable. This migration of control, formerly tightly bound in individual

network devices, into accessible computing devices enables the underlying

infrastructure to be abstracted for applications and network services, which

can treat the network as a logical or virtual entity.

Figure 1 depicts a logical view of the SDN architecture. Network intelligence

is (logically) centralized in software-based SDN controllers, which maintain

a global view of the network. As a result, the network appears to the

applications and policy engines as a single, logical switch. With SDN,

enterprises and carriers gain vendor-independent control over the entire

network from a single logical point, which greatly simplifies the network

design and operation. SDN also greatly simplifies the network devices

themselves, since they no longer need to understand and process

thousands of protocol standards but merely accept instructions from the

SDN controllers.

APPLICATION LAYER

CONTROL LAYER

INFRASTRUCTURE LAYER

SDN
Control
Software

Network Device

Network Device Network Device

Network Device Network Device

Business Applications

Network Services

Control Data Plane interface
(e.g., OpenFlow)

APIAPIAPI

Perhaps most importantly, network operators and administrators can

programmatically configure this simplified network abstraction rather than

having to hand-code tens of thousands of lines of configuration scattered

among thousands of devices. In addition, leveraging the SDN controller’s

centralized intelligence, IT can alter network behavior in real-time and

deploy new applications and network services in a matter of hours or days,

FIGURE 1
Software-Defined Network

Architecture

Fig. 2.1 Software-Defined Network architecture [51]

Basically, SDN architecture consists of three main layers: an infrastructure layer (or data
plane) includes network devices (i.e. SDN/OpenFlow switches, routers,...); a control layer
(control plane), which is a logical controller for operating and managing the network devices,
and an application layer where network services and applications can be built for operating
the network. The controller communicates with network devices through a standardized
APIs called southbound APIs, in which the only enabler is OpenFlow protocol [42] currently.
Also, the interaction between the network applications and the controller platform (control
layer) is through northbound APIs.

2.1 Software-Defined Networking 13

OpenFlow controller

The network intelligence in SDN is logically centralized in the controller (network operating
system) as Fig. 2.1. This controller maintains a global view of the network that is accessible
through some well-defined open application programming interfaces (APIs). These APIs
(typically called northbound APIs) will be used by various applications and network services
that exploits the network abstraction in the controller for operating and managing the network.
These APIs do not depend on proprietary software or hardware, so network administrators
can write those themselves and dynamically and automatically enforce some QoS policies to
manage and control a large number of network devices and traffic paths.

OpenFlow-enabled SDN switch

OpenFlow Switch Specification Version 1.5.0

1 Introduction

This document describes the requirements of an OpenFlow Logical Switch. Additional information
describing OpenFlow and Software Defined Networking is available on the Open Networking Foundation
website (https://www.opennetworking.org/). This specification covers the components and the basic
functions of the switch, and the OpenFlow switch protocol to manage an OpenFlow switch from a
remote OpenFlow controller.

Port

Port

Port

Port

OpenFlow
Channel

Flow
Table

Flow
Table

Flow
Table

Controller

Pipeline

OpenFlow Switch

OpenFlow
Channel Group

Table
Meter
TableControl Channel

Controller

Datapath

Protocol

Figure 1: Main components of an OpenFlow switch.

2 Switch Components

An OpenFlow Logical Switch consists of one or more flow tables and a group table, which perform packet
lookups and forwarding, and one or more OpenFlow channels to an external controller (Figure 1). The
switch communicates with the controller and the controller manages the switch via the OpenFlow switch
protocol.

Using the OpenFlow switch protocol, the controller can add, update, and delete flow entries in flow
tables, both reactively (in response to packets) and proactively. Each flow table in the switch contains
a set of flow entries; each flow entry consists of match fields, counters, and a set of instructions to apply
to matching packets (see 5.2).

Matching starts at the first flow table and may continue to additional flow tables of the pipeline (see
5.1). Flow entries match packets in priority order, with the first matching entry in each table being
used (see 5.3). If a matching entry is found, the instructions associated with the specific flow entry are
executed (see 5.5). If no match is found in a flow table, the outcome depends on configuration of the

11 © 2014; The Open Networking Foundation

Fig. 2.2 Main components of an OpenFlow-enabled SDN switch [49]

An OpenFlow switch [49] [42] [38] consists of one or more flow tables and a group table
for packet lookups and forwarding, and one or more OpenFlow channels for communication
with an external controller (Fig. 2.2). The controller communicates and manages the switch
via the OpenFlow protocol. Through this protocol, the controller can proactively or reactively
add, update and delete flow entries in flow tables. Each flow table in the switch consists of
flow entries, each consists of match fields, counters, and instructions. The match fields are
used for matching with the header fields of incoming packets, the counters are for counting
various network statistics related to matching flows (typically counting the number of packets

14 Background

and bytes passing through an OpenFlow element), and the instructions will be applied to the
matching packets which informs the switch how to process the packets.

Flow matching process in OpenFlow switch
OpenFlow Switch Specification Version 1.5.1

Group
action ?

Output
action ?

Yes

NoDrop packet

Start egress processing
 • action set = {output port}
 • start at first egress table

Match in
table n ?

Packet In
 • clear action set
 • initialise pipeline fields
 • start at table 0

Execute action set :
 • update packet headers
 • update match set fields
 • update pipeline fields

Goto-
Table n ?

Table-
miss flow

entry
exists ?

Drop packet

No

No

Yes

Yes

Yes

No

Yes

Output
action ?

Yes

No

Packet Out

No

Drop packet

Yes No

Match in
table n ?

Goto-
Table n ?

Table-
miss flow

entry
exists ?

Drop packet

No

No

Yes

Yes

Yes

No

Drop packetDrop packetDrop packet

switch
has egress

tables ?

switch
has egress

tables ?

Update counters
Execute instruction set :
 • update action set
 • update packet headers
 • update match set fields
 • update pipeline fields
 • as needed, clone packet
 to egress

Execute action set :
 • update packet headers
 • update match set fields
 • update pipeline fields

Execute action set :
 • update packet headers
 • update match set fields
 • update pipeline fields

Update counters
Execute instruction set :
 • update action set
 • update packet headers
 • update match set fields
 • update pipeline fields
 • as needed, clone packet
 to egress

Ingress
Egress

Figure 3: Simplified flowchart detailing packet flow through an OpenFlow switch.

23 © 2015; The Open Networking Foundation
Fig. 2.3 Flow matching process in OpenFlow switch [49]

The matching process of an incoming packet starts at the first flow table and may continue
to the next flow tables as showed in Fig. 2.3. A set of packet fields (e.g. source or destination
MAC addresses, Ethernet type,...) will be used to match a specific flow entry in the flow
tables. OpenFlow introduced multiple match fields in flow tables to perform various types
of actions for the matching packets (e.g., about 40 match fields in total [49]). If a matching
entry is found, the instructions in the flow entry are executed to process the packet (e.g.

2.1 Software-Defined Networking 15

direct the packet to an out-port, modify packet header fields, drop the packet,...). In case no
matching entry is found, processing for the packets relies on configuration of table-miss flow
entry (e.g. it may be forwarded to the controller, or dropped, or continue matching in the
next flow tables). Once an OpenFlow switch receives a packet for which it does not have a
matching entry, i.e., it has never seen that flow before, it sends this packet to the controller.
The controller can determine how to handle this packet (e.g. drop, forward to a specific port,
modify the packet contents,...) and add a flow entry to instruct the OpenFlow switches on
what to process with the packets of the same flow coming in the future.

The matching decision in OpenFlow is based on priority. This means for each incoming
packet, lookup will be performed for all flow tables to find all possible matches, then the
match with highest priority will be selected for perform actions to process the packet. For a
matching flow entry, multiple counters associated with the flow entry (e.g., per-port counters,
per-queue counters, per-meter counters) are updated and the instruction set included in
the selected flow entry is executed. The basis flow matching process of OpenFlow can be
illustrated in Fig. 2.3, and further details on the match fields and counters can be referenced
in [49] [42].

OpenFlow protocol

The communication between the network operating system (the controller) and the packet
forwarding devices (i.e. SDN/OpenFlow switches) in SDN is through a standardized protocol
called OpenFlow protocol [42]. This is currently the only enabler of southbound APIs.
OpenFlow allows direct access to the forwarding plane of network devices (i.e. switches,
routers). It is the enabler that move the network control out of the networking switches to the
centralized controller. OpenFlow uses the concept of flows to identify network traffic based
on matching rules (flow entries), which can be controlled by programming at the controller.
It also supports to control how traffic flows should go through network devices based on
parameters such as usage patterns, applications, and cloud resources. Unlike current IP-
based routing, in which all flows between two endpoints must follow the same path through
the network regardless of their different requirements, OpenFlow supports to program the
network on per-flow basic. Thus, SDN, specifically OpenFlow as its implementation, provides
a granular control, and enables the network to respond to real-time changes at the application,
user, and session levels.

OpenFlow-based SDN architecture can be deployed on existing networks both physically
and virtually. This means network devices can support and process both OpenFlow-based
forwarding and traditional forwarding. OpenFlow is being widely supported by infrastructure
vendors, in which it is implemented as a simple firmware or software upgrade. OpenFlow-

16 Background

based architecture can integrate with existing infrastructure of an enterprise or carrier to
provide SDN functionality and benefits for those segments of the network.

OpenFlow is the only standardized SDN protocol that allows direct manipulation of the
forwarding plane of network devices. It is currently being exploited and implemented by the
research community and industry in various applications related to network management,
traffic measurement, network and data center virtualization and wireless applications. For
traffic analysis applications, OpenFlow allows for flexible, automated, fine-grained flow
measurement, which makes it possible to develop innovative tools to improve traffic measure-
ment capabilities of a switch using real-time machine learning algorithms, databases, and any
other software mechanism. These innovative software mechanisms will reduce operational
cost, improve network stability, and support emerging IT services.

2.1.3 Benefits of SDN for network control and management

SDN supports to address the dynamic nature of applications nowadays. It provides the
flexibility and manageability for the network to adapt with the demand of today’s business and
significantly reduce the operations and management complexity. Its benefits for enterprises
and carriers are outlined as follows.

Flexible controllability: The SDN controller can control any SDN network device includ-
ing switches, routers, and virtual switches from any vendor. With SDN, network operators
and managers no longer need to manage groups of devices from different vendors, which may
consumes a large amount of time and effort. Instead, they can use SDN-based orchestration
and management tools to quickly configure, deploy, and update devices of the whole network.

Reduced complexity: SDN offers a flexible programmability for network management
and automation. It enables to develop tools that automate many management tasks that are
done manually today. With the automation of management tasks, the operational overhead
and network instability (caused by operator errors) can be reduced. Moreover, SDN sup-
ports cloud-based applications to be managed via intelligent orchestration and provisioning
systems, thus it supports decreasing operational overhead while increasing business agility.

Increased facilitation for innovation: SDN allows network operators to directly program
(and reprogram) the network in real time to meet the demands of business and user appli-
cations, thus it helps accelerating and increases facilitation for business innovation. SDN
brings the ability to manage and operate the behavior of network that is critically important
for proposing/developing new network services and capabilities with much less required time
and effort (e.g. even in a manner of hours).

Increased network reliability and security: SDN supports to define high-level configu-
ration and policy statements, which will be applied to the network infrastructure through

2.1 Software-Defined Networking 17

OpenFlow protocol. With SDN, there is no need to individually configure network de-
vices each time a policy changes, or a service, application or end point is added or moved.
Therefore, it decreases the likelihood of network failures caused by configuration or policy in-
consistencies. With a global view and complete control over the network, SDN can ensure the
quality of service, access control, traffic engineering, security, and other policies are applied
consistently across the network infrastructures (including campuses, data centers, branch
offices,...). Overall, SDN benefits in reducing operational costs, consistent configuration and
policy enforcement, fewer errors, and more dynamic configuration capabilities.

Dynamic and granular network control: The flow-based control model of SDN supports
to apply policies at a very granular level, including user, device, application and section
levels, with a high abstraction and automation. This allows cloud operators to be able to
support multi-tenancy while maintaining adaptive resource management, traffic isolation and
security when customers share the same infrastructure.

2.1.4 SDN ecosystem and practical deployments

With various benefits for network control and management, SDN has been being supported
by the research community and industrial vendors and companies. The SDN eco-system
today introduces a variety of both SDN-supported hardware switches (e.g. Cisco OpenFlow
switch, Pica8, BigSwitch, Broadcom) and software switch (e.g. Open vSwitch [55], Lagopus
[60]), controller implementations (e.g. Floodlight [20], Ryu [63], POX [59], Beacon [16],
and OpenDayLight [43]), as well as virtual network deployment tools (e.g. Mininet [39]).
SDN is widely supported by a variety of network vendors include traditional infrastructure
vendors like Cisco, HP, and IBM and startups like Pica8. Members of SDN consortium
that represent the customer voice include Deutsche Telecom, Facebook, Google, Microsoft,
Yahoo, Verizon, and so on.

SDN has been being deployed more and more widely nowadays such as deployment
on campus network[53], deployment on large-scale data centers (e.g. Google B4 [33], a
software-defined WAN connecting Google’s data centers across the planet). The applications
of SDN cover various networking fields and issues including WAN, cloud, data center,
routing, big data, network virtualization, and wireless. The following section briefly outlines
a part of these applications.

Network access control (NAC). Basically, the main functionality of network access
control is to set appropriate privileges for users or devices accessing the networks, including
access control limits, incorporation of service chains as well as appropriate quality of service.
NAC generally follows the user/device as they connect from different parts of the network.
An example application of SDN for network access control is campus network access control

18 Background

[53]. This is the ability to control access as well as service quality to LAN and WLAN for
employees, contractors and visitors based on their roles and privileges in an organization.
SDN provides programmability across all access elements from campus switches to WLAN
and allows assignment of the right level of privileges and quality of service for user and
application flows. Comprehensive SDN controls across all devices provides ability to create
end-to-end separated networks. Another example of SDN for network access control is
remote office/branch (enterprise) network access control [48]. This is the ability to control
access as well as service quality for remote users in disparate locations for employees,
contractors and visitors based on their roles and privileges in an organization. SDN provides
programmability across all access elements from remote network access devices to corporate
devices, allowing control of privileges at remote branch.

Network virtualization. The basic functionality of network virtualization is creating
an abstracted virtual network on top of a physical network, allowing a large number of
multi-tenant networks to run over a physical network. This functionality can be spanned over
multiple racks in the data center or locations, including fine-grained controls and isolation,
or security services [31]. An example of SDN application for network virtualization is data
center network virtualization [24]. It is the capability for creating virtualized networks that
handle multiple-tenants at a time and separate traffic between different tenants. Network
virtualization controllers decouple networks through direct flow control or via virtual overlay
networks that can span racks or even geographic locations. Advanced SDN solutions support
overlapping IP address ranges running over the same physical equipment. Virtualized gateway
devices provide for communication into and out of these virtualized networks. Other SDN
based network virtualization includes Network Function as a Service. It is the ability to
provide existing network functions (vRouters, or virtual L4-7 functions) as an on-demand
service for enterprise applications hosted within the cloud such [3] [1]. SDN is used to create
dynamic paths to insert these virtual services. Virtualization of these L3 or L4-7 services
enables them to be deployed on-demand and flexibly in different locations.

Data center optimization. SDN supports optimizing networks to improve application
performance by detecting and taking into account affinities, orchestrating workloads with
networking configuration (mice/elephant flows). One application of SDN for data center is
Big Data Optimization [13] [83], which is the ability to enable improved resource utilization
of hardware switches, and reduces overall computing time for faster results during Big Data
analysis. SDN can be used to program the switches to provide optimal flow paths during
each stage of the Big Data analysis, to enable better QoS between the servers, or dedicate
more cross-links between servers based on the analysis stage. Another SDN application for
data center optimization is Mice/Elephant Flow Optimization [40]. This optimization is the

2.1 Software-Defined Networking 19

ability to control network infrastructure in the data center to ensure low running latency for
critical business applications, while co-existing with large data set transfers for Big Data
applications or video streaming. SDN can be used to set the appropriate QoS and flow
rules across different ports on the network to ensure optimal use of resources based on the
observing type of application flows.

Dynamic interconnect. Creation of dynamic links between locations, including between
data centers, enterprise and data centers, and other enterprise locations, as well as dynamically
applying appropriate QoS and bandwidth allocation to those links. An application of SDN
for dynamic interconnect is dynamic enterprise VPN [79], whic is the ability to create quick
connections between multiple enterprise locations to enable communications for secure
conferencing or data transfer. SDN can be used to create network overlays between multiple
enterprise locations to allow users or devices to communicate with each other securely for
a period of time. Another SDN application is cross-domain interconnect [30] [8]. It is the
ability to provide direct connections across suppliers or partners, which can be dynamically
scaled-up, down or terminated. SDN can be used to create interim connections at exchange
points (IXPs) between enterprises , or between enterprises and public cloud services to create
instant high-speed networks for applications and devices. Other application of SDN for
dynamic interconnect is bandwidth utilization [37]. It is the ability for end users to turn up
bandwidth on their network links as and when they need (e.g. for dataset movement or large
backups), and bring it back down when the users no longer need it. SDN is used to moderate
the amount of bandwidth allowed on network links (across multiple WAN links) as well as
control the QoS. SDN can also be used to instantiate instant connectivity between locations
that were not connected previously.

2.1.5 Discussion on the scale of OpenFlow-based SDN

Besides various benefits for network control and management, a big concern about OpenFlow-
based SDN is its scalability. This section discusses the scalability of OpenFlow-based SDN
on two aspects: number of switches that a controller can manage, and number of flows a
SDN switch can support.

Number of SDN switches managed by a controller.
The number of switches which can be controlled by a single OpenFlow controller is

determined by the number of TCP sessions and CPU performance. Given today’s server
architecture, we can realistically expect a server to handle tens of thousands of TCP connec-
tions. This indicates a single server could connect with many thousands of switches. If more
connectivity is needed, then additional servers can be added to form a cluster. The number of
connections should not be an issue with good connection architecture.

20 Background

Current generation Intel Xeon class servers have the ability to support 2 or more processor
sockets with up to 16 cores per socket, providing massive amounts of processor cycles. Intel
claims a single server can handle 160 million packets per second which translates to 100+
Gbps performance. This type of performance should be sufficient to cover thousands of
switches. In addition, when the controller is architected and implemented correctly it will
be capable of scaling up as servers are added to the network. The point is that a proper
network and controller architecture is the key factor for scalability, which is not limited by the
OpenFlow protocol [86]. However, due to a benchmarks on NOX (the first SDN controller)
[74], it can only handle 30,000 flow initiations per second while maintaining a sub-10 ms flow
install time. Therefore, although a controller can theoretically cover thousands of switches,
its actual scale also depends on the how busy the network is, and the number of flows traverse
through and among the network that the controller manages.

Number of flows a SDN switch can support.
The number of flows a switch can handle is basically limited by the sizes of its flow

tables. OpenFlow 1.0 specifies a single flow table for the switch must match on 12 fields.
Because of this requirement, most early implementations used a ternary content addressable
memory (TCAM) for the flow table. These TCAM-based tables were limited to just a few
thousand entries. If the table was exceeded, the packets would be handled by the switch’s
software. This severely limited the scalability and performance of early OpenFlow switches.
Many of these scalability limitations have been resolved by using existing lookup tables
when matching strictly at L2 and L3. Since OpenFlow version 1.1, the concept of multiple
flow tables was introduced. It allowed each different flow table to match different fields. This
flexibility provides a pathway for more flows per switch, as TCAMs could be replaced with
large lower cost RAM devices. Modern switches and routers support forwarding information
bases (FIB) in range of 64K to 512K entries. However, we are not able to store the OpenFlow-
based flow rules in the FIB unless the flow matches on destination MAC address or destination
IP prefix. Therefore, storing and processing OpenFlow’s flow entries still depends mostly on
the TCAM of a physical OpenFlow switch. The current SDN switches support only limited
number of TCAM entries (i.e., a few thousands or a few tens of thousands entries). Thus,
SDN may not support well for network applications and services that demands storing and
processing a large number of fine-grained flows (i.e., fine-grained network monitoring based
applications like anomaly detection, network visualization and so on).

2.2 Importance of traffic monitoring and measurement for network control and management
in SDN 21

2.2 Importance of traffic monitoring and measurement for
network control and management in SDN

In order to achieve the manageability and controllability over the network infrastructure, SDN
must support integration of new paradigms and services such as big data applications, cloud
computing, rich multimedia content, and data centers services. Operators are responsible for
configuring network policies that employ traffic monitoring mechanisms and measurement
tools for detection and reaction to a wide range and dynamic network events and applications.
The large scale and diversity of traffic generated from current networks results in the following
problems: (1) Difficulty for network operators to effectively monitor the status and dynamics
of network in short time scales; (2) Difficulty in monitoring various types of network traffic
at different time scales for tasks such as congestion detection and traffic engineering to
guarantee application performance; (3) Hard situations for network operators to satisfy user’s
expectations for delivering applications with guaranteed quality of service (QoS) that have
obiquitos and accurate traffic monitoring mechanisms; (4) Requirement for interactive media
applications to identify the factors that cause performance decrease along the whole end-to-
end network path (e.g. to detect congestion for real-time video conferencing applications,
we have to accurately monitor bandwidth changes caused by cross traffic in milliseconds to
decrease the quality degradation of the video).

Traditional network devices (e.g. switches, routers) are inflexible and cannot deal with
various types of network traffic due to the binding of routing rules in hardwired implementa-
tion and other obstacles. Today networking research community and industry have introduced
SDN architecture and new standardized communication protocol (i.e. OpenFlow) that brings
various benefits for network control and management and it is overcoming the above men-
tioned problems. With better capability for network management introduced by SDN, it is
now easier to perform QoS control anytime and anywhere by using self-directed/adaptive
mechanisms that monitors network performance and react quickly to the problems [85]. The
global view of the network at the SDN controller, which is supported by the OpenFlow
protocol and network monitoring and measurement mechanisms, enables a seamless network
management for network infrastructure and complex applications (i.e. applications consisting
of QoS and context aware components).

Besides the standard monitoring mechanism supported by the SDN architecture and
OpenFlow protocol, existing monitoring techniques, which require external modules for
monitoring such as sFlow [56] and NetFlow [10] [67], can be optionally used to handle
the monitoring task in SDN. NetFlow is used to collect network traffic information such as
source IP, destination IP, ports, protocols, bandwidth utilization, applications and more. A

22 Background

NetFlow capable router or switch collects IP flow data and sends it to a server where a flow
collector is installed. The collector has the ability to decipher NetFlow packets and interpret
their content in a user friendly manner for further traffic analysis.

sFlow [56] [45] [57] has a similar approach of using external modules/devices to collect
and analyze traffic monitoring data. However, instead of aggregating packets into flows as
NetFlow, the monitoring mechanism of sFlow is based on packet sampling (i.e., capturing
packet samples with a ratio of either 1:1 to capture all packet samples, or 1:N to capture a
packet sample for every N incoming packets). sFlow and NetFlow can collect all packet
samples by setting a sampling ratio of 1:1, though 1:N ratio is usually applied for busy
traffic due to a large number of flows to be collected. A sFlow system consists of multiple
devices performing two types of sampling: random sampling of packets or application layer
operations, and time-based sampling of counters. The sampled packet/operation and counter
information, referred to as flow samples and counter samples respectively, are sent as sFlow
datagrams to a sFlow collector, which is central server running software that analyzes and
reports on network traffic.

NetFlow, sFlow and other similar approaches (i.e., IPFIX [11]) may not be integrated
with the OpenFlow-based SDN platform. Furthermore, the agents running inside switches
and packets/flows extracting processes consume a certain amount of computing/memory
resources in the switch that may affect forwarding performance of switches [26]. Although
NetFlow, sFlow as similar techniques like IPFIX may not be integrated and supported in
some specific SDN switches, they can be considered as optional approaches for network
traffic monitoring in SDN.

With the support of network programmability, SDN-based network monitoring and mea-
surement solutions provides consistent traffic monitoring of flow parameters (e.g. bandwidth,
packet loss, latency,...) to support various requirements of today’s network services and
applications. The flexibility of SDN-based traffic monitoring/measurement gives the network
operators and managers the capability to offer dynamic QoS to ensure service quality between
endpoints. In addition, SDN-based traffic monitoring/measurement enables a statistical way
to infer characteristics that cannot be monitored in traditional large networks in some cases.
Overall, SDN-based network traffic monitoring and measurement is considerably a critical
factor to maintain the network controllability and manageability to meet the dynamic nature
and various demands of network applications and services nowadays.

2.3 Traffic flow monitoring in SDN 23

2.3 Traffic flow monitoring in SDN

2.3.1 Default traffic flow monitoring support in OpenFlow-based SDN

The main goal of traffic measurement in SDNs is to provide a flexible flow measurement with
different granularities to satisfy a variety of applications. This task, however, is not trivial
because it requires estimation of fine-grained volume of network flows with flexible settings
in interconnected heterogeneous large scale networks. Currently, the OpenFlow based SDN
uses counters in flow entries in switch’s flow tables for monitoring functionality. Basically,
current OpenFlow supports two kinds of traffic flow monitoring: individual flows monitoring
and aggregate flow monitoring.

Individual flows monitoring

The individual flows monitoring is conducted by sending individual flow statistics requests
(or individual flow descriptions requests) from the controller to switch to query statistics of
individual flow entries at the flow tables of the switch [49]. This request is conducted by an
OpenFlow-based message type called OFPMP_FLOW_STATS multipart request. Details on
the format of this message can be referenced in [49].

Upon receiving an individual flow statistics request, the switch replies by sending a
individual flow statistics reply to the controller. This reply contains the statistics of all
individual flow entries that match with the match fields (i.e. ofp_match) defined in the request.
The message body of the reply consists of an array of ofp_flow_stats (each corresponds to
statistics of a matched flow entry). Details on the format of this message can be referenced in
[49].

The statistics information of a flow entry basically consists of packet-count and byte-
count of the flow, which are counted by the switch when packets are matched with the flow
entry and are processed by the flow entry. By specifying the match fields, the controller
applications can query the statistics of the flows that match the defined match fields. Fig.
2.4 illustrates an example of the flow statistics query process, in which the controller sends
a flow stats request to the switch then get statistics of flow included in the flow stats reply
sent from the switch. The details of the individual flows statistics request and reply can be
referenced in the OpenFlow switch specification [49]. The individual flows monitoring is
the fundamental method of SDN architecture for monitoring traffic flows in the SDN-based
network.

24 Background

SDN
Controller

Research	Note	02-revised	
SDN-Mon	based	monitoring	over	multiple	switches	and	anomaly	detection	and	mitigation	

	
	
	
	
	

	
	
	

	
	
	
	
	
	
	
	

Match fields Counters ...

F2-1 <srcIp2, srcPort1, dstIp2, dstPort1, proto1>

F2-2 <srcIp2, srcPort1, dstIp2, dstPort1, proto2>

...

F2-K <srcIp2, srcPortK, dstIp2, dstPortK, protoK>

F3-1 <srcIp3, srcPort1, dstIp3, dstPort1, proto1>

F3-2 <srcIp3, srcPort2, dstIp3, dstPort2, proto2>

...

F3-M <srcIP3, srcPortM, dstIP3, dstPortM, protoM>

...

SDN		
Switch	

f1

S1

S2

S3

Monitoring Table

Flow Stats
Request

f3

f2

Flow Table

Flow Stats
Reply

Fig. 2.4 Basic mechanism for traffic flow monitoring in OpenFlow-enabled SDN

Aggregate flow monitoring

Besides the individual flows monitoring, SDN also supports aggregate flow monitoring. The
aggregate flow monitoring is conducted by sending aggregate flow statistics requests from
the controller to switch to query aggregate statistics of all flow entries at the flow tables in
the switch that match the request [49]. This request is conducted by an OpenFlow-based
message type called OFPMP_AGGREGATE_STATS multipart request. Similar to individual
flows monitoring, once receiving an aggregate flow statistics request, the switch replies by
sending an aggregate flow statistics reply to the controller (further details on the format of
this message can be referenced in [49]).

The statistics information included in an aggregate flow statistics reply basically consists
of a flow-count that is equal to the number of flow entries that match the request, and
(optionally) the packet-count and byte-count that the switch counts all packets processed
by all the flow entries matching the request. The details of the aggregate flow statistics
request and reply can be referenced in the OpenFlow switch specification [49]. Basically, the
individual flows monitoring is the typical method for monitoring traffic flows in SDN that is
used in various network monitoring based controller applications and services.

2.3 Traffic flow monitoring in SDN 25

2.3.2 Drawbacks of default traffic flow monitoring in OpenFlow-based
SDN

Inflexibility since the monitoring is bounded with forwarding in the same flow tables.
The current OpenFlow-based SDN architecture relies on flow entries in flow tables for
monitoring task. Such dependence causes inflexibility since these tables should serve more
priority the forwarding functionality. The inflexibility is due to the fact the packet header
fields that controller applications want to apply for monitoring the network traffic may not be
the same or overlap with OpenFlow match fields in flow entries that should be installed in
flow tables to maintain usual forwarding functionality. Coarse-grained monitoring results
in general flow entries will be inserted in the flow tables that affects the proper forwarding
functionality of the switch (e.g. the existing finer-grained flow entries may be ignored or
inactive due to the inserted general flow entries). While fine-grained monitoring results in a
large number of flow entries will be inserted to the flow tables that slow down the forwarding
functionality, which is basically based on matching with the flow entries in the flow tables.

Overhead in the control channel. With the current SDN architecture, every first packet
of a new flow arriving at a switch will cause the switch to send a packet-in message to the
controller to request forwarding rules to process the packet. Even if the packet is not the first
one of the flow (it may be one of the following packets of the same flow that are ignored
by the controller based on requirements of monitoring-based applications or because of
an overload problem), the switch also sends a new packet-in message to the controller to
request instructions to process the packet. Without any general flow entries installed in the
switch (for basic forwarding functionality), the number of table-misses (when processing the
matching with existing flow entries in the flow tables for a new flow) will be increased to a
large number that causes a large number of packet-in messages sent from the switch to the
controller (to query for a new flow entry to process that the new incoming flow). This large
number of frequent queries from switch to the controller results in a lot of overhead created
in the controller-switch communication channel and causes a large number of interrupts that
heavily affects the performance/throughput of the switch.

Lack of scalability. Fine-grained monitoring demands a large number of flow entries
installed in flow tables of the OpenFlow based SDN switch for the monitoring task. This
large number of flow entries will cause the forwarding processing to be non-trivially slow
down. Moreover, in fine-grained monitoring, large number of frequent packet-in messages
will create a huge overhead in the control channel and interrupt the forwarding process of the
switch that significantly decrease the throughput of the switch. In addition, the maximum
number of flow entries that existing OpenFlow switches/routers can support is very limited
(only a few thousands of flow entries depending on the specific switches/routers). With

26 Background

this limitation, the OpenFlow supported switches/routers cannot monitoring large number
of traffic flows for fine-grained monitoring (since the current monitoring mechanism of
OpenFlow totally relies on flow entries, while the number of flows in fine-grained monitoring
may be much greater than the maximum number of flow entries allowed in OpenFlow
supported switches/routers). These factors results in the lack of scalability for fine-grained
monitoring in OpenFlow-based SDN.

Lack of support for monitoring over multiple switches. This results in the problem
of duplication of flow monitoring in the switches. Since a flow may traverse through and be
monitored at multiple switches in the network, multiple flow entries may be created at those
switches to monitor that single flow. While in practical, only a single monitoring/flow entry
can be enough to monitor a single flow. This duplication may create significant overhead on
switches’s computing and memory resources, computing/memory resources of the controller
and the overhead on the controller-switch communication channel, to handle the duplicated
monitoring rules. Moreover, current SDN architecture almost has no support to distribute
and balance the monitoring load over multiple switches in the network. This results in
instability/unbalance of the network, since heavy monitoring loads may be assigned to busy
switches while idle switches handle only lightweight monitoring loads.

With the above mentioned drawbacks, the current SDN monitoring support is considerably
not flexible, scalable, and adaptable enough to support fine-grained and network-wide
monitoring tasks for a variety of controller applications.

2.4 A survey on requirements of different networks and
applications

This section discusses a survey on the requirements of different networks and applications
which are required to evaluate if a monitoring system is capable of serving the networks or
applications. The requirements on the networks or applications are based on the main metric
of number of active flows in a certain time window. Number of active flows is the main and
direct factor that affect the performance of a monitoring system. A monitoring system is
considered to be capable of serving a network or an application if the number of active flows
supported by that system in a certain time window is over the number of active flows that
may exist in the network or the application.

2.4.1 Investigation on the requirements of different networks

For the investigation about requirements of networks, we target three types of networks, i.e.,
local area network, campus network, and backbone network, as they are typical networks

2.4 A survey on requirements of different networks and applications 27

for SDN deployment. The investigation considers the number of active flows in certain time
windows, which is the main factors to judge whether a network monitoring system is capable
of serving the networks. The referenced information is gathered and summarized in table 2.1.

Network ID Network type Number of
active flows

Time win-
dow

Ab-I Backbone 37000 20 (s)
Ab-III Backbone 62000 20 (s)
ADSL LAN 24000 20 (s)
INRIA Campus 38000 60 (s)
MAG Backbone 100105 5 (s)
MAG+ Backbone 98424 5 (s)
COS Campus 18070 5 (s)
IND Campus 2164 5 (s)
Enterprise Enterprise 131281 1 hour

Table 2.1 A survey on number of active flows in different networks

In the above table, the MAG, MAG+ are the traffics that were measured in a high speed
backbone OC-48 backbone link, and the COS, IND are the traffic that were measured on
connection points of two university campus to the internet [17]. The INRIA is the traffic
measured in connection point of a campus (INRIA) to the internet [22]. The ADSL is
the traffic measured on an OC3 link to several thousands of users [34]. Ab-I is the traffic
measured on an OC48 link on the Abilene research network between Indianapolis and Kansas
City of USA, and Ab-III is the traffic measured on an OC192 link on Abilene II between
Indianapolis and Chicago [34]. Another example is the network traffic measured in an
enterprise network (i.e., IBM Zurich Research Laboratory) [14]. The traffic is measured at
two border routers of the network where it shows 131,281 active flows in a duration of 1
hour.

These references indicate the number of active flows that may exist on different networks
(i.e., local area network, campus network, backbone network, and enterprise network) in a
certain time window. These are examples to show how busy the networks are for estimating
the applicability of a network traffic monitoring system. As for our proposal, the experimental
results in chapter 3 shows that the monitoring platform can serve networks with over hundreds
of active flows concurrently while the the distributed monitoring process at controller only
spends 0.3-1.6 (s) for processing from two hundreds thousands to a million active flows.
This indicates that the proposed platform is capable of serving the above mentioned types of
networks.

28 Background

2.4.2 Investigation on the requirements of different network applica-
tions

To study the requirements of common network applications, we investigate a few typical
network applications that requires traffic monitoring for its operation, such as heavy-hitter
flows detection, network troubleshooting, network forensic, bandwidth monitoring, and
anomaly detection. These applications and their necessity for network operation and end-
users, as well as required monitoring statistics are summarized as follows.

Heavy-hitter detection: Heavy-hitter detection is to detect traffic flows that have a large
number of packets or to find the set of flows contributing significant amounts of traffic
to a link. Heavy-hitter detection benefits a number of network management applications.
For instance, heavy-hitter detection enables relieving link congestion [4], planning network
capacity [19], or to cache forwarding table entries [62]. Further, identifying heavy hitters
at small time scales can enable dynamic routing of heavy flows [12] and dynamic flow
scheduling [66]. In order to detect heavy-hitters, network monitoring is important as it
provides the required information of flows statistics for the analysis and detection phase.
Heavy-hitter detection typically requires flow statistics (i.e., packet counts, and byte counts)
based on 5 tuple (i.e., source/destination IP addresses, source/destination port numbers,
protocol number) can be used to identify the heavy-hitters [46].

Bandwidth monitoring: Bandwidth monitoring is essential for planning network resources
and assuring quality of services. It can be applied to detect the sources of bandwidth
consumption by monitoring traffic volume of flows (i.e., numbers of packets and accumulated
byte counts of the flows defined with 5-tuple). Monitoring bandwidth in fine granularity
brings a global view in terms bandwidth consumption of hosts, applications and services to
network operators so that they can ensure proper bandwidth consumptions of applications
and services (e.g., within the limits they are allocated). Network operators can ensure
bandwidth availability and resource utilization in a reasonable manner and estimate the
network equipment upgrades needed to satisfy bandwidth requirements of applications and
services.

Network troubleshooting: Troubleshooting and discovering root causes of some of the
hard-to-debug network issues can be done with flow-based network monitoring. For instance,
by correlating packet counts for a flow across the network hop-by-hop, it is able to identify
the node that is dropping the packets.

Network Forensics: The capability to define flexible criterion for monitoring flows makes
it easier to gather network forensic reports. Typically, 5-tuples are used to define criterion
for capturing flow metadata that can define wildcards for some of the tuples. This enables

2.4 A survey on requirements of different networks and applications 29

gathering and analyzing reports (e.g., for a particular source and destination IP address
combination).

Flow based anomaly detection and mitigation: Anomaly detection and mitigation is an
important network security application to ensure proper operation of networked systems.
To detect an anomaly, packet inspection approach can be applied where capturing and
inspecting the payload of every packet, which is high cost and may be hard to perform in
high speed networks. Therefore, flow based approach has been introduced as a supplement
solution besides packet inspection approach [69]. Flow based anomaly detection analyzes
communication patterns of network instead of contents of individual packets, thus it can be
applied at a first stage for quick detection of anomalous traffic flows, then packet inspection
may be used for further analysis of detected anomalies. Typically, for detecting anomalous
flows (e.g., Denial of Service, Scans, Worms, Botnets), traffic volume statistics of flows at a
fine-grained granularity (i.e., 5 tuple) are required [69]. The traffic volume is represented by
number of bytes or number of packet in flows, and this is the data source for further anomaly
analysis. For instance, an anomaly detector may set an empirical threshold for traffic volume
changes in flows through query times, then when the traffic volume change of a flow exceeds
the threshold, the flow is marked as anomalous [65]. Reaction to anomalous/attacked traffic
to mitigate the affect of attacks requires a control capability that can drop, reroute or modify
traffic pattern quickly or even in real time. Thus, a fine-grained traffic monitoring platform
with low overhead that can be integrated to a capable network control architecture is required
for anomaly detection and mitigation applications.

Since the main factors to evaluate whether a network monitoring system is applicable for
a network application are the number of active flows and corresponding time windows where
the flows are generated in the network, we consider these factors in this investigation. The
referenced information is gathered and summarized in table 2.2.

Application Number of
active flows

Time window

Heavy-hitter flows identification [46] 206,299 124 seconds
Heavy-hitters detection [14] 133,281 1 hour
Diagnostic of troubleshooting [73] (FREEnet 1) 64778 30 min
Diagnostic of troubleshooting [73] (FREEnet 2) 15495 30 min
Anomaly detection ([41] [71]) 54,912 15 seconds
Anomaly detection ([76]) 324,608 15 seconds

Table 2.2 A survey on number of active flows in different applications

In Table 2.2, the heavy-hitter flows identification application [46] detects heavy-hitter
flows in a high speed backbone network. The traffic is measured in a high speed OC-48c

30 Background

backbone link by the PMA project at NLANR where it shows 206,299 flows (i.e., 5-tuple
flows) in a duration of 124 seconds of the detection. As another reference, the heavy-hitter
detection application [14] detects heavy-hitter flows from the network of the IBM Zurich
Research Laboratory. The network hosts approximately 400 employees and at least as
many networked workstations. The network traffic is measured at the two border routers
of the network where it shows 133,281 flows in a period of 1 hour. The diagnostic of
troubleshooting application [73] works on a backbone network. Traffic monitoring were
conducted on two border gateway routers from FREEnet (i.e., FREEnet 1, FREEnet 2), which
has several internal and external links. Measurements from Gigabit links were taken, where
network statistics were recorded at 30 minutes intervals, twenty-four hours a day for a week
to discover network behavior with different loading levels. The maximum number of active
flows observed through the measurement period is 64,778 and 15495 for the border gateway
routers FREEnet 1 and FREEnet 2 with a time window of 30 minutes, with traffic rate of
215.4 Mbps and 28.05 Mbps correspondingly.

For anomaly detection and mitigation application, the accumulated number of flows that
an anomaly detection requires to monitor can reach a number of millions. For instance, the
number of flows in a duration of 15 minutes of MAWI traffic repository [41] (i.e., a traffic
trace collection measured at a transit link) is 3,299,166 flows [71]. Similar accumulated
number of flows for CAIDA [76] (i.e., another well-known traffic trace) is 2,353,413 flows,
and RedIRIS [71] (i.e., a Spanish Research and Education network) is 2,972,880 flows. As
these numbers are the accumulated number of flows during the monitoring lifetime, active
number of flows required to be monitored is a lower number corresponding to query time
window. For instance, the number of new flows arrived per second in those traces are 3,665
flows in MAWI, 21,672 flows in CAIDA, and 9,916 flows in RedIRIS. Furthermore, average
number of required monitoring rules with a timeout of 15 seconds (i.e., number of active
flows for a time window of 15 seconds) for a flow sampling ratio of 1/128 is 429 active flows
for MAWI, 1,162 active flows for RedIRIS, and 2,540 active flows for CAIDA. Thus, the
number of active flows in a time window of 15 seconds is about 54,912 active flows for
MAWI, 148,736 active flows for RedIRIS, and 324,608 active flows for CAIDA. Those are
the numbers of active flows in an example time window of 15 seconds in the above traces. A
certain sampling ratio may be applied in case of monitoring in busy network, so as to reduce
the number of active flows to be monitored in a certain time window. For a smaller time
window, the number of active flows requires to be monitored will be smaller with a possibly
corresponding ratio.

The above mentioned applications typically require 5-tuple flow statistics for their analysis
and operation. As the number of active flows in a certain time window is the main factor that

2.5 Existing approaches for SDN monitoring 31

affects the performance of a network monitoring system, a network monitoring system is
considered as being capable of serving such applications if it can handle monitoring active
flows in the applied networks of the applications. Therefore, the condition to judge the
applicability of a network monitoring system for such applications is whether it is capable of
monitoring specific numbers of active flows that may exist in the target deploying networks
of the applications (e.g., LAN, Campus network, Backbone network, etc).

2.5 Existing approaches for SDN monitoring

Realizing the importance of network traffic monitoring for traffic engineering and network
management, recent researches exploit SDN and proposed approaches for enhancing traffic
monitoring in SDN. The works proposed methods for in-band traffic monitoring SDN
using OpenFlow switches and controller. The main goal of the approaches is to reduce
monitoring overhead either for switches, controller, and the network. The existing works can
be categorized into 4 main approaches: overhead per monitoring rule reduction approach,
sampling based approach, switch-selection based approach, and rule aggregation based
approach. The details of the approaches are discussed as follows.

2.5.1 Switch overhead reduction approach

This approach refers to the works that proposed monitoring methods for OpenFlow based
SDN switch (i.e., Open vSwitch) to reduce monitoring overhead. Realizing the important
of fine-grained traffic monitoring for network management, and the resource limitation in
a switch, the authors in [81] proposes UMON that can support fine-grained monitoring of
traffic flows at switch. UMON extends OpenVSwitch and embed additional monitoring
module to support traffic monitoring based on non-routing fields and subflow monitoring.
It restructures a flow table in the OpenFlow pipelined flow tables into a monitoring table
with an extra pointer pointing to a subflow table that can monitor subflows (Fig. 2.5). The
monitoring mechanism is that after a packet passes through the pipelined flow tables, it is
passed through the monitoring table where flow statistics will be collected. Packets of a flow
can also be passed to the subflow table (if the extra pointer to the subflow table was specified
in the entry that monitors that flow in the monitoring table) where finer-grained statistics will
be recorded based on its specified subflows. By this way, a flow can be divided into subflows
and monitored with finer-grained statistics. In the kernel space of OpenVSwitch, in order
to collect flow statistics, the authors suggest to adjust kernel flow rule into a finer one by
mapping kernel forwarding rules to a monitoring rule. For instance, assume there are two

32 Background

existing forwarding rules DstIP=A, Output(0) and DstIP=B, Output(1), and we would like to
monitor packet counts that are sent to port 80. This can be achieved by unwildcarding the
DstPort field and converting the original two forwarding rules into following rules (assuming
that all packets are either to port 80 or port 22): DstIP=A, DstPort=80, Output(0) (rule 1),
DstIP=A, DstPort=22, Output(0) (rule 2), DstIP=B, DstPort=80, Output(1) (rule 3), DstIP=B,
DstPort=22, Output(1) (rule 4) [81]. From those converted rules, the packet counts that
are sent to port 80 can be inferred as the sum of packet counts of rule 1 and rule 3. Using
kernel space of OpenVSwitch may reduce the monitoring overhead in user space (i.e., reduce
overhead per monitoring rule), however, converting forwarding rules into finer rules for
monitoring is complicated as it depends on the overlap of match fields in forwarding rules
to infer them into sub-rules, and it may increase the number of rules in the kernel routing
tables than necessary. Although the approach of UMON supports fine-grained monitoring,
the current design mostly fit for only Open vSwitch with kernel and user spaces. In addition,
the performance of UMON as observed is still limited (e.g., throughput of UMON is about 2 -
2.4 Gbps, and the packet rate is about 0.3 - 0.4 Mpps for a 10G NICs experimental network).

the matching rule, counters, and instructions, as a for-
warding flow entry, with an extra pointer pointing to
the table that can store the monitored subflows. The
matching rule defines the flow or mega-flow that need to
be monitored. The monitoring flow entry contains the
monitoring actions as defined in the Section 3.2 and the
Section 3.3. After a packet passes through the pipelined
routing table, it goes through the monitoring table so
as to collect the required stats.

Figure 2: UMON monitoring table, subflow ta-
bles, and anomaly detection module in OVS.

• Decoupling in the kernel. The decoupling in
the kernel is more complicated. One possibility is to
install a copy of the user-level monitoring table in the
kernel. But such a design will incur significant perfor-
mance penalty. We thus resort to carefully designed
kernel flow rules that can also satisfy the monitoring
requirements. The technique bears similarity with the
example in [9], but differs in that the OVS kernel flow
does not support priority. For example, assume there
are two forwarding rules {DstIP=A, Output(0)} and
{DstIP=B, Output(1)}, and one monitoring rule {Dst-
Port=80, Counts} in the user space. The first routing
rule forwards all packets to host A to the egress port
0, and the second routing rule forwards all packets to
host B to the egress port 1. The monitoring rule wants
to collect the packet counts that are sent to port 80.
Without the monitoring rule, the kernel routing rules
will be the same as the user-level routing rules. The
packet counts to Port 80 will be missed because the only
packet counts obtained are the number of packets/bytes
to host A and B. The solution is to make the kernel rout-
ing rules more fine-grained so that the packet counts
of {DstPort=80} can be computed using the packet
counts of kernel rules. This can be achieved by un-
wildcarding the DstPort field and installing the follow-
ing rules into the kernel (without the loss of generality,
let’s assume all packets are either to port 80 or port 22):
{DstIP=A, DstPort=80, Output(0)}, {DstIP=A, Dst-
Port=22, Output(0)}, {DstIP=B, DstPort=80, Out-
put(1)}, and {DstIP=B, DstPort=22, Output(1)}. The
packet count of port 80 is thus the sum of packet counts
of rule 1 and rule 3.

Next we describe how to generate the satisfactory ker-
nel rules. Let (rf , mf) be the kernel flow rule gener-
ated by the pipe-lined flow table, where rf is the binary

packet header, and mf is the binary mask. Assume
there are I monitoring rules in the monitoring table,
with (ri, mi) being the i-th rule’s header and mask,
i ∈ I, I ! {1, · · · , I}. Let mfi ! mf & mi, with &
the bitwise AND. The value of mfi is the shared mask,
or common unwildcarded bits, of the flow rule and the
monitoring rule i. Denote by m∗

f to be the adjusted
kernel rule mask after taking monitoring rules into the
considerations. We have:

m∗
f ! mf | (|i∈If

mi), (1)

where

If ! {i | rf & mfi = ri & mfi, i ∈ I}, (2)

and |i∈If
mi is bitwise OR of mi, i ∈ If . In Eqn(2),

rf & mfi = ri & mfi indicates the packet header bits
unwildcarded by both the flow rule rf and the monitor-
ing rule ri are equal, implying that the flow rule rf and
the monitoring rule ri can potentially overlap with each
other. The set If includes all monitoring rules that may
overlap with the flow rule. The adjusted mask for the
kernel rule, m∗

f , is the bitwise OR (|) of its original mask
mf and the masks of all potential overlapping monitor-
ing rules. Thus the adjusted kernel flow rule (rf , m∗

f)
is finer than any overlapping monitoring rules, allowing
to collect the required monitoring stats by mapping one
or multiple kernel rules to a monitoring rule.

In OVS, the user-level ovs-vswitchd module controls
and interacts with the kernel module via the netlink in-
terface. The main functions of ovs-vswitchd are carried
out by two types of threads: handler and revalida-

tor. Handler contains the packet processing logic in
user space, while revalidator manages the kernel flow
table and retrieves flow stats from the kernel to user
space. We modified the handler thread to handle the
monitoring table and kernel rule generation, and modi-
fied the revalidator thread to collect the stats for the
monitoring entries in the monitoring table.

3.2 Trafficmonitoring of non-routing fields
We introduce new monitoring actions, Field Moni-

toring Action, to support collecting stats based on non-
routing fields. For instance, SYN Monitoring Action

reports the number of SYN packets associated with the
flow entry. ACK Monitoring Action reports the num-
ber of ACK packets associated with the flow entry. The
Field Monitoring Action is implemented analogous to
other existing actions – it can be added to the action set
of a flow entry, which is then installed in the kernel flow
table. Whenever a packet matches the flow entry, the
action is executed and the corresponding packet count
is increased.

In the current OVS implementation, there is already
a data structure that keeps track of the packet and byte
counts of flow rules. We expand this data structure, in

Fig. 2.5 UMON design which restructures a flow table and subflow table for monitoring [81]

Similarly, another work [29] proposes extension for Open vSwitch that injects telemetry
functionality for network monitoring. The proposal extends kernel module of Open vSwitch
that modifies port functionality in the switch, and manually insert additional actions to
monitor some traffic metrics. The mechanism is that at the ingress port, some telemetry
metadata is allocated and associated with incoming packets, and an ingress timestamp is
stored in reserved memory of the packets. At the egress port, packets with attached telemetry
flags and ingress timestamp is processed where telemetry metrics are computed. With this
mechanism, switch performance is not affected by the extension when not using the telemetry
functionality and overhead is reduced by implementing the monitoring process in kernel
space of Open vSwitch. However, the current implementation of the proposal mostly focus
on hop latency metric where other important metrics for traffic monitoring such as number
of packets/bytes per second are not implemented, leaving the default monitoring mechanism
in the OpenFlow switch to handle monitoring these traffic metrics. Thus, the current design
may not benefit for fine-grained traffic engineering applications.

2.5 Existing approaches for SDN monitoring 33

2.5.2 Sampling based approach

This approach indicates the works that deploy external system using tools such as sFlow [57],
NetFlow [10], IPFIX [11], or JFlow [47], to collect packet samples for monitoring purpose.
The sampling based schemes in this approach are considered as non-OpenFlow monitoring
schemes as they mostly requires external deployment for sFlow/NetFlow/IPFIX system for
sampling and analyzing packets/flows. A typical scheme in this approach is OpenSample
[72], which uses sFlow deployed in external hardware servers to collect flow samples for
monitoring. OpenSample uses sFlow agents running on switches to collect packet samples
and transmit them to a sFlow collector. The samples are then aggregated into snapshots
and sent to the controller via a communication API (Fig. 2.6). The external collector in
OpenSample gathers samples from all switches in the network for monitoring and analysis.

Fig. 2.6 OpenSample monitoring scheme [72]

Similarly, another work [25] proposed combining OpenFlow and sFlow for anomaly
detection in SDN. The proposal deploys a similar network statistics collection system that
uses sFlow tool for collecting packet samples from the SDN network, then use the statistics
as the input for further analysis and detecting anomalies. By sampling packets and delegating
further monitoring processes to an external system, the works in [72] and [25] introduce
low overhead at switch and low monitoring latency. Similar to OpenSample, this proposal
requires external deployment for sFlow collector, and monitoring APIs are not integrated well
to OpenFlow control APIs, which may not benefit for facilitating implemention of general
traffic monitoring applications.

2.5.3 Rule aggregation based approach

The rule aggregation based approach infers to the works that reduce monitoring overhead in
switches and in the network by suggesting flow monitoring algorithms that can adaptively

34 Background

adjust the granularity of flow monitoring. The authors in [88] proposed a monitoring
mechanism, i.e., OpenWatch, that can adjust aggregation of flows for anomaly detection.
The mechanism bases on an algorithm to predict the possibility of anomaly to adjust the
monitoring granularity. For instance, if the predicted possibility of anomaly is low, the
algorithm can aggregate flows to reduce total number of required rules in switch. By
adaptively aggregate flows, the mechanism balances between monitoring overhead and
accuracy detection and reduce monitoring overhead when the predicted possibility of anomaly
is low. However, as the scheme bases on aggregating flows, it may not be applicable for
applications that requires fine-grained statistics of flows (e.g., traffic classification application,
where fine-grained statistics is required to identify traffic of different applications or groups
of applications). In addition, as the scheme uses forwarding flow entries for monitoring, it
may not be flexible for other applications as matching rules for monitoring purpose may
be different from forwarding purpose (e.g., traffic classification may requires fine-grained
monitoring rules with 5-tuple based matching, while basic forwarding may require much
coarser grained rules such as only ingress and egress port numbers). Moreover, the overhead
per rule is not reduced in the proposed scheme, which can be considered as a drawback
for fine-grained monitoring as fine-grained monitoring may require a large number of rules
installed in switch.

2.5.4 Switch selection based approach

The switch selection based approach represents for the works that reduce monitoring overhead
in the network by selecting switches in the network for polling flow statistics. A typical
scheme in this approach is FlowCover [70], which proposed a switch selection scheme
for polling flow statistics (Fig. 2.7. FlowCover selects a subset of switches that cover all
existing flows (i.e., existing flow entries in switches) in the SDN network and only poll the
statistics from only these switches instead of polling all switches. By this scheme, statistics
of all existing flow entries can be gathered at the controller with smaller number of statistics
queries is required, as the controller only polls statistics from selected switches in each
query time. Thus, the communication cost in the SDN control channel can be reduced
accordingly. However, the overhead per monitoring rule is not reduced in this scheme
where default forwarding flow entries are used for traffic monitoring, which is inflexible and
can be considered as a drawback to be applicable for applications that require fine-grained
monitoring (e.g., traffic classification, which may require 5-tuple based monitoring), as
fine-grained monitoring may require installing large number of rules in switches. In addition,
as switches independently monitor flows where the scheme do not present any mechanism

2.5 Existing approaches for SDN monitoring 35

to detect and eliminate rule duplication, redundant rules may still remain in switches which
cause non-trivial overhead for switches.

Fig. 2.7 FlowCover monitoring scheme [70]

The authors in [77] introduces OpenTM, a switch selection scheme for traffic matrix
estimation (i.e., estimation of traffic volume between origin-destination pairs in a network).
The idea is that for each flow, the mechanism selects switches in the flow path to poll flow
statistics. It keeps track of all active flows in the network, get topology information from the
controller, discover flow paths, then periodically polls flow statistics from switches on the
flow path. The switch selection strategies for statistics query are also discussed, e.g., querying
the last switch, querying the switches on the flow path uniformly or non-uniformly random,
round-robin querying, querying the least load switch, for traffic matrix estimation. The
switch selection reduces overhead in the communication channel as the controller can query
only selected switches to get flow statistics instead of querying all switches. As the proposal
does not discuss neither reducing overhead per monitoring rule nor removing redundant rules
in switches in the switch selection mechanism, if the number of active flows is large, the
overhead in switches and the communication cost become large accordingly.

2.5.5 Time window based approach

The time window based approach indicates the proposals that adjust the frequency and
schedule of polling flow statistics to reduce monitoring overhead in the network. The authors
in [9] proposed Payless, an adaptive scheduling mechanism for flow statistics collection
which targets a link utilization application. The key idea of the proposed mechanism is
that it maintains a higher polling frequency for flows that significantly contribute to link

36 Background

utilization, and a lower polling frequency for flows that do not significantly contribute to link
utilization at a certain moment. Payless uses FlowRemoved and FlowStatisticsRequest of
OpenFlow protocol, and initializes a statistics collection time out τ (i.e., polling time window)
to collect flow statistics. Specifically, when the controller receives a PacketIn message from
a switch, it will add a new flow entry to the switch with flow expiration time out is set as
the Payless suggested time window τ . If the flow is expired within τ , the controller will
receive statistics of the flow in a FlowRemoved message. Otherwise, the controller sends a
FlowStatisticsRequest message to poll statistics of the flow. If the packet count in that flow
does not significantly change within τ , Payless will multiply the τ for that flow with a small
constant α , and in the opposite case, the τ will be divided by another small constant β . By
this mechanism, low polling frequency can be applied for flows with low traffic volume, thus
it reduces communication overhead on the OpenFlow control channel. This proposal mainly
balances between overhead and monitoring accuracy for link utilization application. As the
proposal does not discuss reducing overhead per monitoring rule, it may not suit applications
that require fine-grained monitoring of a possibly large number of traffic flows.

Other works propose monitoring methods that target specific scenarios/applications.
The authors in [87] proposed a mechanism (i.e., FlowSense) that exploits OpenFlow based
events to get flow statistics for network utilization. The mechanism acquires flow statistics
by passively capturing and analyzing the flow arrival and flow expiration messages. The
proposed mechanism may introduce low overhead for traffic matrix estimation as it mostly
captures OpenFlow based events/messages for the estimation. However, it calculates the
link utilization at discrete points in time after the flows expire, thus, it may not be applica-
ble for applications that require real time monitoring statistics (e.g., traffic classification).
OpenNetMon [78] proposes a similar mechanism for monitoring specific per-flow metrics
such as throughput, delay, and packet loss. The idea of the mechanism is poll switches with
an adaptive rate (i.e., polling time window) that increases when flow rates differ between
samples (i.e., traffic volume change significantly between the current and nearest queries) and
increases when flows stabilized. By using adaptive polling rate, network overhead can be re-
duced as low polling rate can be applied when traffic volume change in a flow is insignificant,
and it is basically a tradeoff between monitoring accuracy and network overhead. However,
the mechanism simply polls edge switches in each flow path without any switch selection
mechanism, thus the monitoring load in switches and in the network may not be balanced as
there is no mechanism to control it. In addition, as the proposal does not discuss reducing
overhead per monitoring rule, the monitoring overhead is large when the number of active
flows in the network is large (i.e., it may not suit for applications that require fine-grained

2.5 Existing approaches for SDN monitoring 37

Method Features
Overhead per
rule reduction

Distributed
monitoring
overhead
reduction

Network
component

Aggregated
flow

monitoring
Pros and cons

UMON [81]
Inject monitoring module
into switch for monitoring

Yes No
Switch

(Open Vswitch)
Yes Reduced overhead per rule

OpenSample [72]
Deploy sFlow system

to collect packet samples
for monitoring (sampling based)

No No
Use external
deployment

Yes

Reduced overhead by
sampling. High accuracy,

low latency. May
require external deployment

for sFlow collector

K. Giotis et.al [25]
Deploy sFlow for anomaly
detection (sampling based)

No No
External

deployment
Yes

Reduced overhead by sampling.
High monitoring accuracy,

low latency. Required
external hardware deployment

for sFlow collector

OpenWatch [88]
Prediction for flow

counting to detect anomaly
(rule aggregation based)

No Yes Controller Yes

Overhead of switch and
network reduced by rule

aggregation. Overhead per
rule not reduced

FlowCover [70]
Switch selection based,

load-balanced
No Yes Controller No

Overhead of switch and network
reduced by distributing

load over switches.
Overhead per rule

not reduced

OpenTM [77]

Select switches on flow
path for polling statistics
(switch selection based).

For traffic matrix estimation

No Yes Controller No

Overhead on controller
and network reduced.

Overhead in switch not
reduced (redundant rules
in switch not removed)

Payless [9]
Adjust frequency of polling

statistics in switch
(time window based)

No Yes Controller No

Reduced network overhead
(tradeoff between monitoring

accuracy and overhead).
Overhead per rule

not reduced

FlowSense [87]
Capture flow arrival

and flow expiration messages
for monitoring

No Yes Controller No
Reduced overhead by only

capturing OpenFlow events.
Not capable of real-time monitoring

OpenNetMon [78]

Adapt statistics polling time
window to reduce overhead

(higher time window for busy
traffic and lower one
for less busy traffic).

Simple polling edge switches
in each flow path

No Yes Controller No

Reduced overhead for
less busy traffic.

Monitoring load in switches
not balanced. Overhead

per rule not reduced

Table 2.3 Pros and cons of existing SDN traffic monitoring methods

monitoring of traffic flows). The main features, advantages, and disadvantage of the related
works are summarized in table 2.3.

Chapter 3

Monitoring method for SDN switch

This chapter presents our monitoring method for OpenFlow-based SDN that reduces moni-
toring overhead at switch and the network for fine-grained monitoring of network traffic. We
aims at designing a dedicated method for monitoring that can reduce overhead per monitoring
rule in switch. As outlined in chapter 1, using flow entries for monitoring is expensive and
may introduce high overhead, especially when the number of active flows in the network is
large, we design our proposed monitoring method with monitoring components and process
that are independent from forwarding functionality of OpenFlow based SDN switch. In
this chapter, we firstly present in section 3.1 an empirical discussion on requirements of
different networks and applications. Section 3.2 presents an overview about our method.
In section 3.3, we describe the details about the proposed method including the proposed
architecture, monitoring process, monitoring APIs. The implementation of the proposal are
described in section 3.4. Section 3.5 describes the evaluation of our proposed method in
terms of monitoring overhead at switch and other aspects to validate the efficiency of the
proposal. In section 3.6, we discuss the monitoring performance of Lagopus switch and our
proposed method, the impact of sampling on the monitoring overhead in the proposal, and
a comparison of our proposed method with existing works. A summary of the chapter is
presented in section 3.7.

3.1 Design requirements

In OpenFlow-based SDN, a main controller typically manages a number of switches in the
network. Therefore, in the proposal of this chapter, we assume to use a controller to control
monitoring switch. As discussed in chapter 2, we target our proposal to serve monitoring
for common networks (i.e., LAN, backbone network, campus network, and smaller scaled
networks) and traffic engineering applications (e.g., heavy-hitter detection, traffic classifica-

40 Monitoring method for SDN switch

tion, bandwidth monitoring, routing optimization). As these networks and applications may
require monitoring fine-grained statistics of thousands or a hundred thousands of active flows,
we set a first requirement for our proposal in this chapter is being capable of monitoring
thousands or a hundred thousands of active flows. Furthermore, discussed in chapter 2,
the targeted networks and applications require query time windows of seconds, minutes,
or an hour. Therefore, we set a second requirement for our proposal is that the processing
time (i.e., the elapsed time of the monitoring process) of the proposed monitoring method
must be under a threshold of required query time window, i.e., in an order of seconds. We
target our design for fine-grained and real-time monitoring that does not rely on capturing
OpenFlow events passively (e.g., existing works of time window based approach that base
on OpenFlow Packet-In and Flow-Expiration messages to monitor traffic, such as FlowSense
[87], OpenNetMon [78]), thus we reasonably do not require setting short flow expiration
period or frequently change of routing flow entries at switch in our design.

Furthermore, as discussed in chapter 1, the target networks and applications may require
monitoring a large number of active flows (e.g., thousands or a hundred thousands active
flows), while a switch typically has limited resource (e.g., bandwidth, CPU, memory).
Therefore, to meet the above mentioned requirements, a monitoring method must be able to
reduce monitoring overhead at switch to enable fine-grained monitoring capability for switch
and the network. For monitoring a large number of active flows, the required number of
monitoring rules is large accordingly, which results in a large monitoring overhead in switch.
Therefore, a monitoring method must be able to reduce monitoring overhead per monitoring
rule in switch to ensure a low/acceptable monitoring overhead for serving such networks and
applications. This is considered as a critical requirement for proposing a monitoring method
in OpenFlow-based SDN. In summary, main requirements for our proposed monitoring
method in this chapter consists of: (1) The method must be able to reduce overhead per
monitoring rule in switch; (2) The method must be capable of monitoring thousands or a
hundred of active flows; (3) The processing time of the monitoring method must be under a
threshold of a few seconds for monitoring such number of active flows in the network.

3.2 Method overview

In order to meet the above mentioned requirements, we propose a monitoring method for
OpenFlow based SDN where switch can monitor traffic flows with reduced overhead. Our
strategies for reducing overhead per monitoring rule in OpenFlow-based SDN switch and
network consists of:

3.2 Method overview 41

(1) Designing lightweight monitoring modules and monitoring process in OpenFlow-
based SDN switch which is independent from the forwarding functionality of the switch. In
our design, incoming packets are forwarded by matching with the flow entries of the switch,
while fine-grained statistics of the flows, i.e., packet counts and byte counts, are recorded
or updated using separated monitoring rules (i.e., monitoring entries). With this design,
incoming packets are forwarded with no additional delay and the matching is with a small
number of flow entries (which are installed for basic packet forwarding functionality of the
switch), while the monitoring process record statistics automatically and concurrently. This
design strategy conserves the throughput for the switch.

(2) Monitoring entry in the proposed method is designed with smaller number of fields
than a flow entry, and a fast lookup/matching data structure is also applied (i.e., hash table
with hash based matching, 5 tuple exact match) to reduce monitoring overhead. Number of
fields and number of required bytes in each monitoring entry is minimized with necessary
fields and bytes that dedicated only for flows monitoring purpose.

(3) Designing a sampling process to support a flow-based sampling capability. For this
sampling process, a lightweight data structure (i.e., Bloom filter) is used for checking if a
flow is sampled or not. This sampling method support reducing number of monitoring rules
with a tradeoff with monitoring accuracy. Thus, it may enhances throughput in the switch
(i.e., decrease the monitoring overhead) in case the switch is about to be overloaded.

We design monitoring modules and process integrated as a monitoring platform for
OpenFlow-based SDN called SDN-MON. The platform is integrated into OpenFlow protocol
to improve monitoring capability for network management. Our monitoring method can be
simplified with 2 phases:

• When a packet traverse through an OpenFlow switch, the switch forwards the packet
using flow entries in its flow tables (it may sends a PacketIn message to ask for a
flow entry if the incoming packet is a first packet of a new flow). Concurrently, SDN-
MON monitoring module in switch monitor the flow with fine-grained statistics using
monitoring entry or Bloom filter element.

• Applications at the controller use SDN-MON monitoring APIs to query SDN-MON
monitoring statistics in switch with an adjustable query time window for their opera-
tions.

The details of the architectural design, structures of monitoring modules, and the moni-
toring process are described in the following sections.

42 Monitoring method for SDN switch

3.3 SDN-MON Architecture

Our SDN based monitoring platform (SDN-MON) is a platform that supports a fine-grained
and flexible monitoring for controller applications. In SDN-MON, monitoring is conducted
independently from forwarding. SDN-MON monitors packet flows at fine-grained level (i.e.,
based on 5 tuple match fields) using a separated and integrated monitoring module in switch,
while the flows can be forwarded by a small number of coarse-grained flow entries in flow
tables. SDN-MON supports controller applications to monitor flows based on 5 tuple match
fields. These are common match fields of various flow based control applications. The 5
tuple match fields consist of source Ip address, source port number, destination Ip address,
destination port number, and protocol number. SDN-MON supports an efficient sampling
mechanism that makes it more scalable to be adaptable with larger-scale networks than
current mechanisms. With SDN-MON support, the SDN controller can determine forwarding
logics in a more proper and scalable way with less flow entries in the switches’ flow tables
to avoid a possible overflow problem. Moreover, the number of controller-switch messages
required for monitoring are smaller, this helps reduce the monitoring-based overhead in
the SDN communication channel. SDN-MON leverages the switches’ processing power to
process its monitoring functionality and is designed with a high priority for low processing
overhead in a switch. In this section, we describe the architecture of SDN-MON, how it
operates alongside other processing of SDN switches as well as its APIs to support monitoring
applications on SDN.

3.3.1 Architecture Overview

As shown in Fig. 3.1, SDN-MON is composed of a controller-side module and a switch-side
module. The controller-side module has SDN-MON monitoring APIs that enable a flexible
monitoring in the SDN controller. These APIs operate on top of the SDN controller platform
to support monitoring purposes of controller applications. The switch-side module consists
of three components: the SDN-MON local control app, SDN-MON monitoring APIs, SDN-
MON monitoring database. These components operate together to handle the monitoring
functionality in switches. The support of these components together with the SDN-MON
monitoring APIs on the controller-side enables a more fine grained and flexible monitoring
with a set of arbitrary monitoring match fields defined by controller applications.

SDN-MON Monitoring APIs at controller side

The controller-side SDN-MON monitoring APIs are programming APIs to support controller
applications for monitoring. With these APIs, controller applications can request the switches

3.3 SDN-MON Architecture 43

OpenFlow
channel

SDN-Mon Local
Control App

SDN-Mon
Monitoring APIs

Flow Tables

SDN-Mon
Monitoring Database

OpenFlow
Tables

Group Table

SDN-Mon Handler

SDN
controller
platform

Controller App

Meter Tables

SDN-Mon
Monitoring APIs

!
!
!
!
!
!
!
!
!
!
!
!
!
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

SDN controller

OpenFlow protocol

Fig. 3.1 SDN-MON Architecture

to insert monitoring entries with a certain user-defined set of monitoring match fields, remove
monitoring entries from the monitoring database in switches, query network statistics of
monitoring entries in switches, as well as other monitoring control functions, as described in
Section 2.3. These APIs serve a variety of monitoring purposes of controller applications
independently from the forwarding functionality.

SDN-MON Handler

The SDN-MON handler is a module at the controller-side that is responsible for handling
SDN-MON-related communication with switches. This module supports encapsulating
the controller’s monitoring request parameters into SDN-MON messages and sending the
messages to the switches. For SDN-MON-related replies from the switches, the SDN-MON
handler supports parsing the received messages and extracting the monitoring data or switch
notification information from the messages for controller applications.

44 Monitoring method for SDN switch

SDN-MON Local Control Application

The SDN-MON local control app is a lightweight processing application that is responsible for
handling SDN-MON-related requests from the controller as well as local switch-management
processing to ensure the proper operation of the SDN-MON switch-side module. This
application analyzes the monitoring-related messages delegated by the SDN communication
channel between the control and data planes, which is enabled by the well defined OpenFlow
protocol [49], and leverages the SDN-MON monitoring APIs to process and manage the
monitoring database based on the controller requests. For network-statistics requests from
the controller, the SDN-MON local control app queries the statistics from the monitoring
database, encapsulates the statistical information, and delegates it to the controller-switch
communication channel to send to the controller. The SDN-MON local control app also
reserves room for local pre-processing in switches for experimenters’ applications (e.g. pre-
checking flows in a switch for anomaly detection, and pre-checking flow volumes to detect
large flows in the networks).

SDN-MON Monitoring APIs at switch

The switch-side SDN-MON monitoring APIs are programming APIs for the SDN-MON local
control app to process the monitoring tasks delegated by the controller through the monitoring
requests. Basically, the programming functions provided by these APIs correspond to the
functions of the controller-side SDN-MON monitoring APIs. These APIs support the SDN-
MON local control app to manage the SDN-MON monitoring database and query monitoring
statistics from the database to respond to the controller requests. Details of these APIs are
described in Section 2.3.

SDN-MON Monitoring Database

The SDN-MON Monitoring Database includes a monitoring table and a Bloom filter. The
monitoring table has a set of monitoring entries. Each monitoring entry consists of monitoring
match fields (i.e., 5 tuple), counters, and a hash value. The structure of a monitoring entry
consists of the following fields: hash value of the entry (used as an identification of the
entry that hashed based on the 5 tuple), source Ip address, source port number, destination Ip
address, destination port number, protocol number, packet count, byte count, and last update
time stamp.

Since OpenFlow protocol [49] is basically the only protocol that enables SDN commu-
nication channel between the control and data planes, in our current design, monitoring
match fields are a set of fields that correspond to the match fields of a flow entry defined

3.3 SDN-MON Architecture 45

in the OpenFlow protocol. These fields consist of a subset or all OpenFlow match fields.
Controller applications define monitoring match fields based on their monitoring purposes at
the initial stage of the monitoring process. Counters consist of a list of packet counts and
one of byte counts. These lists have an equal size (which is the number of packet count in
the lists, called counters buffer size Sb) that is defined by controller applications at the initial
stage of the monitoring process based on the applications’ requirements. The packet and
byte count lists are buffers that record the historical packet and byte counts of a monitoring
entry at every time interval ∆Tu. The counter-buffer-update time interval ∆Tu is calculated
by the local control application based on Sb and a query time interval ∆Tq, which is also set
by the controller at the initial stage of monitoring, with the formula: ∆Tu = ∆Tq / Sb. These
counter buffers support fine-grained monitoring and help decrease the number of necessary
data exchanges between switches and controller for monitoring statistics. The hash value in a
monitoring entry is calculated from the monitoring match fields of the entry. This hash value
together with the hash table data structure implementation of the monitoring table support
accelerating the lookup process in the monitoring table.

Due to the need of sampling in a variety of existing network monitoring applications,
SDN-MON provides a sampling mechanism in its monitoring process. This sampling
mechanism is processed with the support of a Bloom filter [6], a lightweight data structure
for checking the existence of certain entries. In SDN-MON, the Bloom filter is used to
mark specific flows corresponding to an incoming packet as non-monitoring to ignore them
for monitoring based on the result of the sampling mechanism. This sampling mechanism
allows the controller to control the total numbers of monitoring entries in a switch based
on monitoring-based application requirements or to avoid possible overflow/overloading
problems, by setting the sampling ratio in the SDN-MON monitoring database via the
SDN-MON monitoring APIs. The sampling ratio is defined as the ratio of sample size to
population size, or the ratio of number of flows to be monitored by the monitoring table of
SDN-MON to the number of existing flows in the network, i.e., ∆Rs = n f / N f , where n f

is the number of monitored flows, and N f is the number of existing flows in the network.
Figure 3.2 illustrates in detail the components in the SDN-MON switch-side module and
how packets are processed in the module for monitoring.

3.3.2 Monitoring process

For monitoring traffic at a switch, the controller firstly sends a message to the switch turns on
the monitoring mode. The monitoring process in SDN-MON is initiated accordingly. When a
packet arrives at a switch (where the monitoring mode is on), the pipeline packet processing
of OpenFlow is performed. Concurrently, monitoring match fields are extracted from the

46 Monitoring method for SDN switch

!

! Update Monitoring
Table (add/delete/
update entries)

! Execute anomaly
detection algorithm

! Drop found
anomalous flows
(via controller)

SDN-Mon
Local

Control App

OpenFlow
Tables

OpenFlow
channel

SDN
Controller

Research Note – 001 (updated version 1.1, 3/23/2015)

Idea about extending SDN switch for anomaly detection

A Sw-extension module will be embedded into SDN switch for monitoring the

network traffic flows, especially the potentially
anomalous flows. This module includes: (1) a SwApp
which is a user-space application embedded into switch
for sampling, pre-checking and other local processing of
switch; (2) a Monitoring Table to record statistics of
traffic flows for anomaly detection; (3) a Bloom filter to
mark flows that are not monitored (non-monitoring flows).

ID Monitor-
features

Counters Last
update
time

Hash
value

… … … …

Monitoring Match
Fields

Counters Hash
Value

… … …

1 0 1 1 0 0 …
Bloom filter

Monitoring Table SDN-Mon switch-
side module

Incoming
packet

(Non-monitoring flows)

(Monitoring flows)

(1)

(3’)

(2)

(S
D

N
 n

or
m

al
 p

ac
ke

t
pr

oc
es

si
ng

)

(monitoring
match fields)

SDN
Controller

SDN-Mon enabled switch

Monitoring Table

DetectionApp
Network Anomaly Detector

Monitoring
table updates

Monitoring
data/notification

(Northbound
API)

Monitoring
table updates

Monitoring
request/instruction

(Southbound
API)

(SDN-Mon
messages)

Fig. 3.2 Packet processing for monitoring at SDN-MON enabled switch

packet-header fields and passed into the SDN-MON local control app for monitoring. Based
on the monitoring match fields, this application conducts a lookup process in the Bloom filter
to verify if a corresponding entry exists in the Bloom filter. If the verification result is positive
(this means that the entry based on these monitoring match fields is a non-monitoring entry),
the SDN-MON local control app ignores this entry, and all following packets matching
these monitoring match fields will not be monitored. If the verifying result is negative, the
application conducts the lookup process in the monitoring table to find a monitoring entry
whose monitoring match fields match the corresponding match fields in the packet.

If a match occurs, the counters in the matching monitoring-entry will be updated by
increasing the packet count by one, and increasing the byte count by the number of bytes
of the packet. If no matching entry is found, the SDN-MON local control app determines
whether to monitor this flow based on the sampling ratio set by the controller. If the flow is
determined for monitoring, a new monitoring entry, in which the values of monitoring match
fields are set by those of corresponding match fields of the flow, will be created and inserted
into the monitoring table. If the flow is not determined for monitoring, a new entry/element,
in which the values of monitoring match fields are set by the same way, will be created
and inserted into the Bloom filter to mark the flow as non-monitoring. The workflow of the
monitoring process is illustrated in Fig. 3.3. In SDN-MON, the monitoring match fields are
flexible and set by the controller based on the requirements of the controller applications. The
controller can also insert specific monitoring entries for monitoring by using the SDN-MON
monitoring APIs to send monitoring entry modification requests to a switch to insert the
entries.

3.3 SDN-MON Architecture 47

Check if a
corresponding entry

existed in Bloom filter

Skip packet
(non-monitoring entry)

Lookup
monitoring table

Update entry's
counters

Packet sampling
decision

Create a new
entry in

Monitoring table

Create a new
entry in Bloom

filter

ObjectNode

Not sample Sample

Entry not foundEntry found

NoYes

Powered By Visual Paradigm Community Edition

Fig. 3.3 Workflow of monitoring process in SDN-MON switch-side module

3.3.3 SDN-MON Monitoring APIs

The SDN-MON monitoring APIs provide functions that the SDN-MON controller-side and
switch-side modules can use to exchange messages containing monitoring control instructions
or monitoring data between each other in the OpenFlow communication channel. These
functions allow the controller to define the set of monitoring match fields for the monitoring
table in the switches, manage the monitoring table by setting a sampling ratio based on its
requirements or monitoring table status, and query statistics of monitoring entries in switch-
side monitoring tables. For the switches and the controller, SDN-MON provides functions
for adding a new monitoring entry into the monitoring table of a switch and removing an
entry from the monitoring table. The functions of the SDN-MON monitoring APIs are as
follows.

sendToController (SDN-MON message): This allows the switch-side module to send
SDN-MON messages to its controller. These messages include the Monitoring Statistics
Reply Message and Overflow Notification Message.

48 Monitoring method for SDN switch

sendToSwitch (SDN-MON message, Switch ID): This allows the controller-side module
to send SDN-MON messages to a specific switch. These messages include the Monitoring
Statistics Request Message, Set Monitoring Match Fields Message, Set Sampling Ratio
Message, Add Monitoring Entry Message, and Remove Monitoring Entry Message.

setMonitoringModeOn(Monitoring Match Fields, Counter Buffer Size, Query Time
Interval, Switch ID): This function turns on the monitoring mode on a switch. It initiates
the SDN-MON switch-side module with the specified monitoring match fields (i.e., 5 tuple
match fields in the current specification of SDN-MON), counter buffer size Sb, and query
time interval ∆Tq. The query time interval ∆Tq can be flexibly adjusted at a later time based
on the controller’s requirements, by using the setQueryTimeInterval function as described
below.

setMonitoringModeOff(Switch ID): This function turns off the monitoring mode on a
switch. All data structures of SDN-MON switch-side module will be cleaned up accordingly.

addMonitoringEntry (Monitoring Match Fields Pattern, Switch ID): This function
adds a new monitoring entry into the switch-side monitoring table. For monitoring a specific
flow, the controller uses this function to insert a new monitoring entry into the switch-side
monitoring table for monitoring. The controller-side module encapsulates the monitoring
match fields pattern into an Add Monitoring Entry Message and sends it to the switch
specified by its switch ID.

removeMonitoringEntry (Monitoring Match Fields Pattern, Switch ID): This func-
tion removes an existing monitoring entry from the switch-side monitoring table, when the
controller determines not to keep monitoring a specific flow/entry. The switch processes this
command by removing the corresponding monitoring entry from the monitoring table and by
concurrently creating a new Bloom filter element corresponding to the entry to add into the
Bloom filter for marking the flow as non-monitoring.

resetMonitoringTable (Monitoring Match Fields, Counter Buffer Size, Query Time
Interval, Switch ID): This function cleans up the existing monitoring table and resets it
with the specified monitoring match fields, counter buffer size Sb, and query time interval
∆Tq.

3.3 SDN-MON Architecture 49

setSamplingRatio (Sampling Ratio Value, Switch ID): This function sets a sampling
ratio for the switch-side monitoring database. It can be reused subsequently to adjust the
sampling ratio and control the monitoring table size to avoid the overflow or overload
problem.

setQueryTimeInterval(Query Time Interval, Switch ID): This function sets a new
query time interval ∆Tq. The controller uses this function to notify the monitoring switch
each time it changes the query time interval. The switch then calculates and updates the
counter-buffer-update time interval ∆Tu based on this new query time interval. The counter
buffers on the switch will be updated based on the new value of ∆Tu accordingly.

setOverflowNotificationThreshold (Threshold Value, Switch ID): This function sup-
ports setting a threshold for the monitoring switch to pre-alert the controller concerning the
overflow of the monitoring table. When the number of existing monitoring entries exceeds
this threshold, which can be set based on the switch capacity, the switch will send an Overflow
Notification Message to its controller to notify the controller. The controller can reuse this
function at subsequent times to adjust the threshold to avoid the overflow problem.

3.3.4 SDN-MON communication protocol

For communication and exchanging the monitoring control instructions and monitoring data
between switches and controller in the network, we design a communication protocol, called
SDN-MON protocol. This protocol is an extension of OpenFlow protocol and it is integrated
into OpenFlow protocol. SDN-MON protocol consists of messages that are implemented
in experimenter message space of OpenFlow. The messages in our designed protocol can
be categorized into two groups: monitoring control messages, and monitoring data query
messages.

To integrate our monitoring protocol to SDN/OpenFlow, we design SDN-MON messages
following the format of the OpenFlow messages [49] (i.e., using experimenter message types
defined in OpenFlow). This make it easy for deployment and avoid any possible conflict or
incompatibility in the communication channel. Experimenter extensions provide a standard
way for OpenFlow switches to implement additional functionality within the OpenFlow
message type space. This is a staging area for features meant for future OpenFlow revisions.
A typical experimenter message is composed of an experimenter ID, an experimenter type,
and experimenter arbitrary data. In SDN-MON messages, the experimenter ID is set to
a unique 32-bit constant, which allows the SDN-MON modules to differentiate between
SDN-MON messages and other experimenter messages that may exist in the communication

50 Monitoring method for SDN switch

channel. The Experimenter Type field in SDN-MON is set with the 32-bit ID of the module
sending the message (note that both of the SDN-MON switch-side and controller-side
modules are assigned with a unique ID for management purposes). With these settings, each
SDN-MON message includes: an OpenFlow header, a SDN-MON experimenter ID (32-bit),
a SDN-MON module ID (32-bit), and a message content. The detail design of SDN-MON
messages are as follows.

Monitoring control messages

The monitoring control messages are designed for user applications at the controller to
control monitoring parameters and modules in switches as the specified monitoring process
in the proposed monitoring method. SDN-MON control messages are implemented where
its header fields follow structure of an OpenFlow message header [42]. The general structure
of a SDN-MON message is as follows.

• ofp-header: OpenFlow header.

• SDN-MON Identifier (4 bytes): Identifier of SDN-MON. This field is to identify if a
message received at switch or controller is SDN-MON message or OpenFlow message
so as to process the message based on SDN-MON defined process or OpenFlow
default process. This field is set as with a hexadecimal value of 0xEFFE in the our
implementation.

• Switch/Controller ID (4 bytes): This field indicate the identifier of the destined receiver
of the message. If the message is from controller to a switch, then this field is set as
the ID of the switch. In the other hand, if the message is a response message from a
switch to a controller, then this field is set as the ID of the controller.

• SDN-MON message type (4 bytes): This field is the code of the message. Upon
receiving a SDN-MON message, switches or controller will base on this code to
recognize the message in order to process it according to the defined monitoring
process of the proposed method. The message types are set with codes from 1 to 14
corresponding to 14 messages of SDN-MON protocol.

• SDN-MON control data (8 bytes): The data included in the message to send from
controller to a switch for control purpose, or from a switch to controller for response
to a controller message.

Monitoring mode on/off message This SDN-MON message is used to initialize or ter-
minate monitoring process in switch. The structure of this message is implemented as
follows.

3.3 SDN-MON Architecture 51

• ofp-header: OpenFlow header.

• SDN-MON Identifier (4 bytes): set with SDN-MON identifier, i.e., 0xEFFE.

• Switch ID (4 bytes): set with the ID of the destined switch.

• SDN-MON message type (4 bytes): set with a 4-bytes hexadecimal value of 0x0001.

• SDN-MON control data (8 bytes): set with a hexadecimal value of 1 for starting
monitoring mode, or 0 for terminating monitoring mode in switch.

A user or operator at the controller can start or terminate monitoring mode in switch by
sending this message to switch. When a switch receive this message, if the control data field
is set as 1, it starts monitoring traffic flows using its SDN-MON local monitoring modules.
Similarly, if control data field in this message is set as 0, the switch reset all monitoring data
storage and terminate the monitoring process.

Reset monitoring database message This message is used to reset the monitoring database
in switch. Upon receiving this message, a switch reset its local monitoring database including
monitoring table and Bloom filter. The structure of this message is as follows.

• ofp-header: OpenFlow header.

• SDN-MON Identifier (4 bytes): set with SDN-MON identifier, i.e., 0xEFFE

• Switch ID (4 bytes): set with the ID of the destined switch.

• SDN-MON message type (4 bytes): set with a 4-bytes hexadecimal value of 0x0002.

• SDN-MON control data (8 bytes): This field is not required in this message. It is set as
0 by default.

Set sampling ratio message A user or network operator at the controller can use this
message to set or adjust a sampling ratio for a switch. Upon receiving this message, the
switch set or adjust the sampling ratio in its local monitoring process. The structure of this
message is implemented as follows.

• ofp-header: OpenFlow header.

• SDN-MON Identifier (4 bytes): set with SDN-MON identifier, i.e., 0xEFFE

• Switch ID (4 bytes): set with the ID of the destined switch.

• SDN-MON message type (4 bytes): set with a 4-bytes hexadecimal value of 0x0003.

• SDN-MON control data (8 bytes): set with a sampling ratio for switch. If this field is
not specified, 1 is set by default (i.e., monitor all flows in the network).

52 Monitoring method for SDN switch

Set query time window message This message is used to set or adjust a query time
window in switch for polling monitoring entries in the switch. Upon receiving this message,
the switch set or adjust the query time window in its local monitoring module. If the time
window is defined in a switch, it can periodically send new or updated monitoring entries to
the controller without any request from controller. This message can be used to automate the
monitoring process, and reduce control overhead as the controller is not required to send a
statistics query message in each period of the time window. The structure of this message is
implemented as follows.

• ofp-header: OpenFlow header.

• SDN-MON Identifier (4 bytes): set with SDN-MON identifier, i.e., 0xEFFE

• Switch ID (4 bytes): set with the ID of the destined switch.

• SDN-MON message type (4 bytes): set with a 4-bytes hexadecimal value of 0x0004.

• SDN-MON control data (8 bytes): set with a query time window for switch. If this
field is not specified, 10 is set by default (i.e., 10 seconds is set for the query time
window).

Set overflow notification threshold This message is optional and can be used to set or
adjust an overflow threshold for switch. This threshold is defined by the number of entries
(i.e., monitoring entries and flow entries) and can be set by the controller to get notification
from switch if the existing number of entries in switch is about to overcome the threshold.
The structure of this message is implemented as follows.

• ofp-header: OpenFlow header.

• SDN-MON Identifier (4 bytes): set with SDN-MON identifier, i.e., 0xEFFE

• Switch ID (4 bytes): set with the ID of the destined switch.

• SDN-MON message type (4 bytes): set with a 4-bytes hexadecimal value of 0x0005.

• SDN-MON control data (8 bytes): set with a notification threshold for switch.

Response message This message is used by switch to response to a controller’s control
message. Upon receiving a control message from controller, switch will reply with a response
message including a success code of 1 if defined instruction is executed successfully, or an
error code of 0 if any error occurs. For instance, if a switch receive a set sampling ratio
message, it update the sampling ratio in its monitoring module. Then it replies the controller
with a response message with a success code of 1 if the ratio is updated successfully, or with
an error code of 0 if any error. The structure of this message is implemented as follows.

3.3 SDN-MON Architecture 53

• ofp-header: OpenFlow header.

• SDN-MON Identifier (4 bytes): set with SDN-MON identifier, i.e., 0xEFFE

• Controller ID (4 bytes): set with the ID of the controller.

• SDN-MON message type (4 bytes): set with the message type to response to the
controller.

• SDN-MON control data (8 bytes): set as 1 if success, or 0 if any error.

Monitoring data query messages

Monitoring data query messages are designed for users and applications at the controller
to poll the monitoring entries in the switch. This message group consists of two messages:
monitoring data request message and monitoring data reply message. The header fields
in SDN-MON monitoring data query messages follow structure of an OpenFlow message
header [42]. The details about these messages are defined as follows.

SDN-MON monitoring data request This message is used to request a switch to send
monitoring data (i.e., monitoring entries) to controller for user applications. The structure of
this message is as follows.

• ofp-header: OpenFlow header.

• SDN-MON Identifier (4 bytes): set with SDN-MON identifier, i.e., 0xEFFE

• Switch ID (4 bytes): set with the ID of the switch from which to query monitoring data.

• SDN-MON message type (4 bytes): set with 0x0006.

SDN-MON monitoring data reply This message is used as response from switch to
the controller when receiving a SDN-MON monitoring data request. This message is
implemented as an experimenter multipart message type of OpenFlow. It is worth noting that
for an OpenFlow multipart message, when the data to send to the controller is larger than a
maximum number of bytes of a single message, the data will be transmitted as a sequence
of continuous messages with the same header fields. Once receiving a multipart message,
the controller parses the receiving data sequentially to get the data in a correct order. The
implemented format of a SDN-MON monitoring data request message consists a number of
fields as follows.

• ofp-header: OpenFlow header.

54 Monitoring method for SDN switch

• SDN-MON Identifier (4 bytes): set with SDN-MON identifier, i.e., 0xEFFE

• Controller ID (4 bytes): set with the ID of the controller to which to send monitoring
data.

• SDN-MON message type (4 bytes): set with 0x0007.

• N f e (4 bytes): set with the number of existing flow entries in switch.

• Nme (4 bytes): set with the number of existing monitoring entries in switch.

• SDN-MON monitoring data: encoded bytes of the monitoring entries to send to
controller.

Once receiving a SDN-MON monitoring data request from the controller, a switch collects
new or updated monitoring entries, encode these entries into a SDN-MON monitoring data
reply message, then send the message to the controller.

3.4 Implementation

Our implementation of SDN-MON consists of the switch-side and controller-side modules.
We implement the switch-side module on a base switch (i.e., Lagopus software switch [60])
and the controller-side module on a base controller (i.e., Ryu controller [63]). The Lagopus
switch is a software OpenFlow switch that exhibits a high performance, is easy to deploy, and
has been used widely in the commercial and research community recently. The switch-side
module is implemented using C programming language and the controller-side module is
implemented using Python. In our implementation, about 1500 lines of C code is added into
the Lagopus switch for the SDN-MON switch-side module and only a few hundred lines
of Python code is added to the Ryu controller for the SDN-MON controller-side module,
which requires only a limited amount of processing power for the SDN-MON monitoring
mechanism. Although SDN-MON extends switches, it remains deployable since it runs on
the general-purpose processors of the switches.

Based on the design of the local data storage at switch as mentioned above, the monitoring
data in the local monitoring module at switch consists of a monitoring table, and a Bloom
filter. The global monitoring table is the main data storage component as they store the
monitoring statistics of flows in the network. We implementation the monitoring table using a
fast lookup data structure, i.e., hash table. With hash table implementation, the computational
complexity for lookup process is O(1), and for update process is also O(1). The monitoring
table contains a number of monitoring entries which are used to records statistics of flows in
network. A monitoring entry is used to monitor a flow that consists of a number of fields and
defined number of bytes as described below:

3.4 Implementation 55

• Entry hash: 8 bytes (Unique hash value of a monitoring entry, this hash value is
unchanged during the lifetime of the monitoring entry).

• SrcIp: 4 bytes (Source IP address of the flow)

• SrcPort: 2 bytes (Source port number of the flow)

• DstIp: 4 bytes (Destination IP address of the flow)

• DstPort: 2 bytes (Destination port number of the flow)

• Proto: 1 byte (Protocol number of the flow)

• Packet count: 8 bytes (Number of packets recorded for the flow)

• Byte count: 8 bytes (Number of bytes recorded for the flow)

• Last update: 8 bytes (Timestamp since the last update of the packet count and byte
count of the flow)

As the resources in a switch (e.g., throughput, CPU, memory) are limited, it may become
overloaded when the number of flows to be monitored become larger than its capacity.
Therefore, our proposed monitoring method support sampling capability to reduce number
of monitoring rules with a tradeoff with monitoring accuracy in case a switch is about to
overload. The sampling is flow based with checks if an incoming flow is sampled or not. For
this goal, we use a data structure that can quickly check the presence of a certain element
with low memory consumption, i.e., Bloom filter. We implement the Bloom filter as a bit
vector with filter size of 20 bits. This means the memory size of the implemented Bloom
filter is 220, i.e., 128 KB. Initially, all bits in the bit vector are set to 0 when the SDN-MON
monitoring functionality is initialized. To add an element to the Bloom filter, we hash the 5
tuple values of the flow (i.e., srcIp, srcPort, dstIp, dstPort, proto) a few times and set the bits
in the bit vector at the index of those hashes to 1. To test for the presence of an element (i.e.,
checking if a flow was monitored or not), we hash the 5 tuple of the flow with the same hash
functions, then check if those values are set in the bit vector. For resetting a Bloom filter in
case receiving a monitoring reset message from the controller, the Bloom filter is clean up
by setting all bits in the implemented bits vector to 0. As the Bloom filter can determine if
an element is definitely not in the set and consume low memory (i.e., only 128 KB in our
implementation), it suits well for sampling purpose of checking if a flow is sampled or not in
our design.

When a packet come to a switch, the packet will be proceeded by the processing pipeline
of OpenFlow tables. Concurrently, we extract the 5 tuple values from the packet header and
pass it to the SDN-MON monitoring module in switch. The packet flow will be checked
with the Bloom filter for sampling decision and will be saved to the monitoring table if a

56 Monitoring method for SDN switch

sampling is determined following the workflow in Fig. 3.3. For monitoring data storage at
the controller, we implement a similar hash table for storing and updating monitoring entries
received from switches. The monitoring hash table in controller has the same number of
fields and required bytes as the switch’s monitoring table as described above to make the
monitoring data storage and update consistent.

For the communication between controller and switch in SDN-MON, we implement
the SDN-MON messages. Each message has a structure, number and of bytes as described
the SDN-MON protocol design above. In our implementation, message parsers are also
implemented at switch and controller as extension of corresponding default parsers at switch
and controller, to parse the byte arrays of SDN-MON messages in the right order for
monitoring process at switch and the controller.

3.5 Performance evaluation

3.5.1 Experiment environment

We conducted experiments with a testbed SDN network as illustrated in Fig. 3.4. This
network is composed of an SDN software switch running in a physical computer (bare metal
setup), a controller and a host connecting to the switch in a loopback topology with 2 NICs in
each host and switch. The software switch is a SDN-MON capable switch (i.e., SDN-MON
switch-side extension modules integrated in a base Lagopus software switch version v0.2.0),
and the controller is the SDN-MON capable controller (i.e., SDN-MON controller-side
extension modules integrated in a base Ryu controller version v3.26). We ran a SDN-MON
capable switch and a default Lagopus switch to evaluate the performance overhead.

Controller

Traffic generator
(TRex)

Lab Meeting
Date: 2018 – 04 – 09

1. Experiment setup

						
	
	
	
	

1. Plotting the results of switches performance (in better way, not using excel):
DONE (would add these plots to thesis)

2. Experiments of Algorithm Elapsed Time in simulation:
As per your advice: experiments of distributed monitoring performance using simulation:

SDN-Mon/
Base switch

PC-1

eth1

eth2

PC-3

PC-2

eth1

eth2

 streaming packets

 loopback packets

Fig. 3.4 Experimental setup

The hardware configuration of the experimental network is summarized in Table 3.1. The
software switches in our experiments run with DPDK v16.11 [15] for increasing the speed
of packet processing. The switch in each experiment worked on the server PC-1, a physical

3.5 Performance evaluation 57

computer with a 2.6-GHz CPU (16 cores) with 32GB RAM. The Ryu controller worked on
a separate computer (PC-3) and connected to a switch through a LAN. Two Intel Ethernet
10-Gigabit 2P X520 NICs were installed in PC-1 to handle switch ports (represented by
interfaces ‘eth1’ and ‘eth2’ of the switch, as shown in Fig. 3.4). An two 82599ES 10-Gb
SFI/SFP+ NICs were installed in the host running TRex for experimenting the SDN-MON
switch, each NIC was connected to the corresponding NIC of the switch in a loopback
topology for reliable experimenting the switch as a device-under-test (DUT).

CPU Memory
size

NIC type

PC-1 (SDN-
MON switch)

Intel Xeon E5-2650
v2 2.6 GHz (16 cores)

32 GB Ethernet 10-Gb 2P X520
(eth1, eth2), NetEtreme II
BCM57800 1/10 Gigabit
Ethernet (eth0)

PC-2 (TRex) Intel Xeon E5-2650
v2 2.6 GHz (16 cores)

32 GB 82599ES 10-Gb SFI/SFP+
(eth1, eth2)

PC-3 (SDN-
MON controller)

Intel Xeon E5-2650
v2 2.6 GHz (16 cores)

32 GB NetEtreme II BCM57800
1/10 Gigabit Ethernet

Table 3.1 Hardware configuration of experimental network

We ran the SDN-MON-supported Lagopus switch and the Ryu controller for the experi-
ments. We set monitoring match fields to 5-tuple consisting of a source IP address, source
port, destination IP address, destination port, and protocol, which are popular matching fields
used in a variety of monitoring applications. The Sb was set to 5 and the ∆Tq was set to
10 seconds, which results in packet and byte counters being updated in every 2 seconds.
We injected a stream of packets from host 1 to host 2. We measured the throughput, then
repeated the same experiments for the default Lagopus switch to evaluate the performance
overhead of the SDN-MON modules. We used TRex for experimenting the performance of
the SDN-MON switch, where treaming packets with a defined configuration are sent from an
interface of TRex device to the switch and the output traffic from the switch comes to the
other interface of TRex device. Statistics including traffic rate of input and output traffic,
packet drop-rate, and number of lost packets are recorded for each experiment.

3.5.2 SDN-MON switch overhead evaluation

Firstly, we conduct experiments on the throughput performance of SDN-MON, the base
switch (i.e., Lagopus software switch) and other switches with 1 flow in the injected traffic in
the experimental environment with 10G NICs. The throughputs are measured in Mpps and
Gbps. The experimental results (Fig. 3.5 and Fig. 3.6) showed that Lagopus switch has a

58 Monitoring method for SDN switch

throughput of around 8 Mpps for basic forwarding functionality, which could be considered
as a competitive performance among the available well-known SDN switches. This explains
the reason why Lagopus switch was chosen as a base switch for the prototype implementation
of SDN-MON. The figures also showed the throughput of SDN-MON as about 7.5 Mpps
for the basic forwarding case, which show a small overhead as the monitoring process of
SDN-MON was functioned besides the forwarding functionality in such case.

0 200 400 600 800 1000 1200 1400
Packet size (bytes)

0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 (M

pp
s)

Throughput in Mpps of SDN-MON and other switches
Original Lagopus
SDN-Mon
OpenVswitch
OVS-DPDK
Linux Bridge
10G NIC Theoretical Rate

Fig. 3.5 Throughput in Mpps of SDN-MON and other switches

We evaluated the performance of the SDN-MON-supported Lagopus switch when moni-
toring 18000 5-tuple flows (created when monitoring traffic of the experimental pcap trace).
The original (unmodified) Lagopus switch is set with 1 flow entry installed for basic for-
warding from the source interface to the destination interface in the switch (i.e. the original
Lagopus does not handle 5-tuple based monitoring task in this case). The packet size of each
packet in the experimental traffic is of 64 bytes in each experiment. In the experiments for
SDN-MON overhead, we set the sampling ratio of SDN-MON to 0.5 (this results in 9000
monitoring entries will created at the monitoring table of SDN-MON and 9000 Bloom filter
elements will be created at the Bloom filter). We measured the packet output rates in Mpps
through different packet-injecting rates from 0 to 10 Mpps. The input rates Ris and the output
rates Ros measured by TRex were recorded.

Figure 3.7 shows the Ros of SDN-MON switch (with one flow entry for forwarding, and
9000 monitoring entries and 9000 Bloom filter elements for monitoring) and the default

3.5 Performance evaluation 59

0 200 400 600 800 1000 1200 1400
Packet size (bytes)

0

2

4

6

8

10
Th

ro
ug

hp
ut

 (G
bp

s)
Throughput in Gbps of SDN-MON and other switches

Original Lagopus
SDN-Mon
OpenVswitch
OVS-DPDK
Linux Bridge
10G NIC Theoretical Rate

Fig. 3.6 Throughput in Gbps of SDN-MON and other switches

Lagopus switch (with only one flow entry). The experimental results show a small monitoring
overhead of SDN-MON, which is calculated as only 11% for monitoring the rather large
number of flows in the network traffic (i.e., 18000 flows).

Moreover, we conducted experiments on the throughputs of SDN-MON and other moni-
toring framework/switch to show its throughput among with the base switch and others (i.e.,
OVS, OVS-DPDK) running on the same deployed network environment. In the experiments,
SDN-MON handle monitoring task with about 10000 monitoring entries with sampling ratio
1.0 and other switches were set with only 1 rule for basic forwarding. The throughputs were
measured in Mpps and Gbps. The experimental results in Mpps (Fig. 3.5) and in Gbps
(Fig. 3.6) show that SDN-MON has small monitoring overhead a competitive throughput
compared to compared to the base Lagopus switch and other switches.

3.5.3 Impact of the sampling capability on enhancing the throughput
of the proposed architecture

In order to demonstrate the positive impact of the sampling capability of the proposed
architecture on enhancing its performance, we conducted additional experiments to measure
the throughput of SDN-Mom on different sampling ratios. We set the sampling ratio from 0
to 1.0. The experimenting traffic includes 18000 active flows. We injected traffic with packet

60 Monitoring method for SDN switch

2 4 6 8 10
Input Traffic Rate (Mpps)

2

4

6

8

Ou
tp

ut
 T

ra
ffi

c
Ra

te
 (M

pp
s)

Throughput of Lagopus with 1 rule vs. SDN-MON with
 9000 monitoring rules and 9000 bloom-filter (BF) elements

Lagopus with 1 rule
SDN-Mon with 9000 rules and 9000 BF elements

Fig. 3.7 Throughput of default Lagopus with 1 rule vs. SDN-MON with 9000 rules and 9000
bloom filter elements

input rate from 6 Mpps to 8 Mpps and measured the output traffic in Mpps. The experimental
results (Fig. 3.8 showed the positive impact of the sampling capability which enhanced the
throughput the monitoring switch when the traffic input rate overcome the processing limit
of the switch (i.e., over 6.5 Mpps as in Fig. 3.8). These results demonstrated the validity of
our proposal which integrated sampling capability with a Bloom filter data structure.

3.5.4 Validating the efficiency of the proposed architecture

In addition, to demonstrate the validity of the proposal on enhancing the performance of
the default SDN monitoring mechanism, we have conducted additional experiments on
the performance of SDN-MON compared with the default monitoring mechanism of the
base SDN switch (i.e., Lagopus software switch) at different numbers of active flows. In
these experiments, traffic with different numbers of active flows from 1 to 100000 of 64-
byte packets were injected and maximum throughputs of SDN-MON and the base switch
are measured. The experimental results (Fig. 3.9) demonstrated the higher throughput
performance of SDN-MON compared to the based switch when the number of active flows
is around or above1500 flows (i.e., the crossover point in Fig. 3.9). The source of the
crossover point is because SDN-MON monitoring modules and process are operated besides

3.5 Performance evaluation 61

0.0 0.2 0.4 0.6 0.8 1.0
Sampling Ratio

6.00

6.25

6.50

6.75

7.00

7.25

7.50

7.75

Ou
tp

ut
 T

ra
ffi

c
Ra

te
 (M

pp
s)

Impact of sampling ratio on the throughput of SDN-MON
Input Traffic Rate: 6 Mpps
Input Traffic Rate: 6.5 Mpps
Input Traffic Rate: 7 Mpps
Input Traffic Rate: 7.5 Mpps
Input Traffic Rate: 8 Mpps

Fig. 3.8 Impact of sampling ratio on throughput of the proposed architecture (SDN-MON)

the forwarding functionality in such case resulting in a certain overhead is introduced in
SDN-MON compared to the default Lagopus with operating only forwarding functionality,
and the general but heavy flow matching in pure SDN/Lagopus switch (details about main
factors that affect the performance difference between the default SDN/Lagopus switch
and our proposal are described in section 3.6 of this chapter). As showed in Fig. 3.9, the
throughputs of SDN-MON and the base switch for monitoring 20000 active flows are 5.8
Mpps and 3.4 Mpps correspondingly, and for 100000 active flows, the throughputs are about
3.5 Mpps for SDN-MON and 0.8 Mpps for the base switch. These results demonstrated that
the proposal enhances the performance of switch for fine-grained monitoring of network
traffic.

3.5.5 SDN-MON system overhead evaluation

We evaluated the system overhead of SDN-MON from two aspects: (1) the system overhead
in various monitoring-table sizes (the number of active monitoring entries in the monitoring
table) without background traffic, and (2) the system overhead at various Ri of background
traffic. To evaluate the system overhead of SDN-MON, we built a controller program that
leverages the SDN-MON monitoring APIs to query monitoring statistics in the SDN-MON-
supported Lagopus switch from the controller. The system overhead is represented by the
elapsed time of a round trip since the controller sends a monitoring-statistics request to

62 Monitoring method for SDN switch

0 20000 40000 60000 80000 100000
Number of active flow rules

1

2

3

4

5

6

7

8

Th
ro

ug
hp

ut
 (M

pp
s)

Throughput of Unmodified Lagopus and SDN-MON
 in various numbers of active flow rules

Unmodified Lagopus
SDN-Mon (sampling ratio 1.0)

Fig. 3.9 Throughput of SDN-MON vs. default Lagopus in different number of active flow
rules

the switch until it completes receiving all statistical data from the switch. This elapsed
time consists of the time for the monitoring-statistics request to reach the controller since
it was sent, the time for processing in the switch to collect the requested data and create a
monitoring statistics reply message, and the time since the reply message was sent until it
reaches the controller. In this experiment, the sampling ratio of SDN-MON was set to 0.5.
The controller program in our experiment sent a monitoring-statistics request to the switch
every 10 seconds periodically, and the timestamps were marked to observe the exact time
when the controller sent the request and when it received reply data from the switch.

For the performance evaluation (1), we use TRex to generate experimenting traffic
containing different numbers of active flows from 0 to 20000, which resulted in 0 to 10000
monitoring entries in the monitoring table of the SDN-MON switch (sampling ratio 0.5 was
set in these experiments). In each experiment, we injected the packets in the pcap file and
started to observe the system elapsed time when the sending host completed injecting the
packets. We observed the system elapsed time 5 times and calculated the sample means and
standard deviations. Figure 3.10 shows the observed system elapsed time. We observed that
the elapsed time increased from 1.6 to 180 ms when the number of entries in the monitoring
table increased from 0 to 10000. This is reasonable because for a larger number of monitoring

3.6 Discussion 63

0 2000 4000 6000 8000 10000
Number of monitoring rules

0

25

50

75

100

125

150

175

200
Sy

st
em

 E
la

ps
ed

 T
im

e
(m

s)
System elapsed time at different numbers of monitoring rules

Fig. 3.10 System elapsed time at different numbers of monitoring rules

entries, the switch consumes more time for collecting the statistics from all entries, and
transferring a larger amount of statistical data also results in a greater delay time in the
communication channel between the switch and controller. The experimental results show
that the system elapsed time of SDN-MON-based monitoring is small, even for pulling
statistical data of thousands of monitoring entries.

We conducted the performance evaluation (2) with experimental network traffic contain-
ing 20000 active flows, which creates 10000 monitoring entries in the monitoring table of the
SDN-MON switch accordingly at a sampling ratio of 0.5. We injected the packets at various
Ri from 0 to 6 Mpps to create the background traffic in the experiments. We observed the
elapsed time of the system 5 times and calculated the sample means and standard deviations.
Figure 3.11 shows the elapsed time of the monitoring system in different Ri from 0 to 6
Mpps. The experimental results show that the overhead caused by the background traffic was
negligible compared with the cases of no background traffic.

3.6 Discussion

Monitoring performance of SDN/Lagopus switch and SDN-MON

As presented in chapter 2 about the flow matching mechanism of OpenFlow-based SDN
switch [49] and its implementation instance (e.g., Lagopus software switch [60]), a large

64 Monitoring method for SDN switch

0 1000 2000 3000 4000 5000 6000
Input Traffic Rate (Mpps)

0

25

50

75

100

125

150

175

200
Sy

st
em

 E
la

ps
ed

 T
im

e
(m

s)
System elapsed time at different input traffic rates

Fig. 3.11 System elapsed time at different input traffic rates

number of fields is required to be checked for each incoming packet in the flow entry
matching mechanism (i.e., about 40 different match fields, which requires 1261 bits to
implement match fields of a flow entry). These are the fields required for various actions to
packets forwarding and controlling of SDN. In SDN-MON, for monitoring purpose, only
5 different match fields (i.e., 5 tuple, which requires 104 bits to implement the monitoring
match fields) are required to be checked to find a matching monitoring entry. The large
number of fields required to be checked for each incoming packets is a factor that makes the
flow entry matching in default OpenFlow-based SDN switch is more complicated and costly
than the monitoring entry matching in SDN-MON. In addition, a typical OpenFlow switch
(e.g., Lagopus switch) must implement wildcard matching, which is more costly than exact
matching. Although wildcard matching supports controller to aggregate traffic for routing, it
is not required for fine-grained flow monitoring. Thus, it is reasonable that we design our
monitoring mechanism with exact match that suits the target monitoring purpose to reduce
processing overhead.

Moreover, multiple actions (e.g., forward to an output port, update packet headers, drop
packet, group the entry), and counters (e.g., per-port counters, per-queue counters, per-
group counter, per-meter counters) are defined for each flow entry in OpenFlow switch [49]
[60], which requires multiple actions and counters to be executed and updated for each
match, resulting in non-trivial processing for the actions execution and counters update. For

3.6 Discussion 65

monitoring purpose, as updating counters and corresponding time stamp are main required
actions, in our design and implementation of SDN-MON, no action is required, and only
three updates are performed for each flow match: updating packet count and byte count
of the matched flow, and update the last update timestamp. Thus, the cost for processing
a monitoring entry match in SDN-MON is lower than the cost of processing a flow entry
match in SDN flow tables. This is considered as a second factor that contributes to the lower
overhead of SDN-MON compared to the default monitoring mechanism of SDN switch and
its implementation instance.

In addition, OpenFlow switch introduced a priority matching scheme where each incom-
ing packet will be matched with all existing flow entries in the flow tables to find out all
matches, then the match with highest priority will be selected to process the packet. With
this matching scheme, the switch must check all flow entries to find out all possible matches
instead of concluding the matching process when a match is found. For monitoring purpose,
such priority mechanism is basically not required. Thus, in our design and implementation
of SDN-MON, matching process for a flow is concluded when a match is found, which
results in less number of lookups and less computing cost in average compared to the case
of lookup for the whole of all tables in SDN flow matching process. The above characters
are considerably the main factors that contribute to the lower overhead of monitoring entry
matching in SDN-MON compared to the flow entry matching of SDN switch and Lagopus
switch as its implementation instance. The main characteristics of the two frameworks are
summarized in Table 3.2.

OpenFlow switch (Lagopus) SDN-MON
40 different match fields required to be checked for
each incoming packet

5 different match fields (i.e., 5 tuple) to be checked
for monitoring traffic flows

1261 bits required for match fields implementation 104 bits required (13 bytes for implementation of
5 tuple)

Tree matching in Lagopus implementation Hash based matching
Multiple flow tables are required A single monitoring table and a lightweight Bloom

filter are required for monitoring process
All flow entries required to be checked to find all
possible matches (match priority)

Matching process finishes when a hash match is
found

Wild card enabled Exact match (fine-grained rule match)
Multiple actions and counters executed and up-
dated for each flow entry match

No action required and only three counter updates
performed for each monitoring entry match

Table 3.2 Main characters of flow table lookup in Lagopus switch and monitoring table
lookup in SDN-MON

66 Monitoring method for SDN switch

On the other hand, an OpenFlow switch may implement a flow cache that store a limited
number of frequently accessed flow table entries (e.g., Lagopus implementation [60]) for
speed up the forwarding process. In the implementation of SDN-MON, we do not implement
any cache for our monitoring module in switch as limited cache in switch should be reserved
for forwarding functionality of the switch as a higher priority. Therefore, the original Lagopus
may perform better than SDN-MON for small number of rules with the support of flow cache
(e.g., the number of flows about less than 1500 flows corresponding to the crossover point
in Fig. 3.9), as the monitoring module and related process are operated besides forwarding
functionality in SDN-MON compared to only forwarding functionality operated in default
OpenFlow switch/Lagopus. As SDN-MON performance is higher than the performance
of default SDN monitoring mechanism for larger number of flows (e.g., over 1500 flows
for the case of using Lagopus as a base switch), while the number of flows required to
be monitored in fine-grained traffic engineering applications mostly over a few thousands
or even hundreds of thousands, SDN-MON considerably performs monitoring better than
default SDN monitoring mechanism for such traffic engineering applications.

The affect of flow sampling in our proposal

In the design of SDN-MON, we use Bloom filter for sampling mechanism in order to reduce
monitoring overhead in case a switch is about to be overload, with a tradeoff with monitoring
accuracy. The Bloom filter used in our design is a lightweight data structure to check the
presence of an element, thus it suits properly for our purpose of checking if a flow is sampled
or not for sampling support in our proposed monitoring process. We implement the Bloom
filter as a bit array with low memory consumption (i.e., only 128 KB in our implementation),
where a presence of a member/entry can be quickly checked with hashing the 5 tuple with
a few hash functions, and check if all the bits in hashed positions are 1 (i.e., representing
that the checking member is existed in the Bloom filter). Bloom filter is used for sampling
mechanism to reduce the number of monitoring entries in case a switch is about to be
overloaded. As the number of monitoring rules are reduced, and a Bloom filter member
lookup is basically faster than a monitoring entry lookup, the monitoring overhead in switch
is reduced accordingly with a tradeoff with monitoring accuracy. We consider supporting
reliably removing existing Bloom filter elements with the Cuckoo filter [18] in the next
version of our implementation.

Comparison with existing traffic monitoring methods

As our goal in this dissertation is in-band traffic monitoring in SDN that integrate monitoring
capability into SDN APIs for fine-grained traffic engineering applications, we discuss the

3.6 Discussion 67

previous works with this target. As this chapter focuses on the aspect of reducing monitoring
overhead in switch, we outline in this section the pros and cons of existing works in com-
parison with our proposal. The closet work to ours is UMON [81] that reduces monitoring
overhead in SDN switch (i.e. Open VSwitch) for fine-grained monitoring. The overhead in
switch is reduced by injecting subflow table for fine-grained monitoring and using kernel
space of Open VSwitch. Although UMON extends OpenFlow based SDN switch (i.e., Open
vSwitch) for fine-grained monitoring similar to our approach, its performance is still limited.
Specifically, for monitoring 4432 fine-grained flows with a network deployment using 10G
NICs, the throughput in switch is about 0.4 Mpps. While SDN-MON achieved over 6 Mpps
in a similar network deployment of using 10G NICs as demonstrated by the experimental
results presented above. The work in [29] reduces overhead at switch by implementing
extended monitoring functionality with some telemetry metrics in kernel space of Open
vSwitch. Although the monitoring overhead in switch is reduced by the support of kernel
space for speeding up the monitoring process, the current design only introduces hop latency
measurement. Other important monitoring metrics such as packet and byte counts are not
implemented in this proposal, leaving the default monitoring mechanism of the OpenFlow
switch to handle monitoring these traffic volume metrics. As our proposed monitoring method
introduces lower overhead than default OpenFlow based SDN monitoring mechanism for
monitoring a large number of flows (e.g., a few thousands flows or above) as showed in the
above experiments, it is reasonable to infer that our monitoring method will achieve lower
monitoring overhead than that the proposal [29] in terms of monitoring overhead reduction
in switch for fine-grained traffic monitoring.

The aggregation based approach (i.e., OpenWatch [88]) reduced overhead in network
based on adjusting flow aggregation level. However, this approach does not discuss reducing
overhead per monitoring rule, as it uses flow entries for monitoring. Thus it may not fit well
for fine-grained traffic engineering applications as these application requires fine granularity
of flow statistics resulting in a large number of rules to be installed in switch for monitoring.
In fact, using flow entries introduce high overhead as we demonstrated in our experiments in
this chapter. Therefore, in terms of overhead in switch, our proposal achieve lower overhead
per monitoring rule, resulting in lower overhead in switch when monitoring the same number
of flows compared to OpenWatch.

The switch selection based approach introduced in FlowCover [70] and OpenTM [77]
reduced overhead in network by adaptively select switches to poll flow statistics. Network
overhead is reduced since the approach only poll statistics in selected switches instead of all
switches. As this approach uses flow entries for as monitoring rules and does not discuss
removing redundant rules in non-selected switches, the overhead in switch for monitoring

68 Monitoring method for SDN switch

the same number of flows will be higher than our proposed method. This indicates that
for fine-grained traffic engineering, our proposed monitoring method will archive better
performance in switch (i.e., lower overhead) than the approach.

For the time window based approach presented in Payless [9], the overhead in controller
and network is reduced by adjusting statistics polling frequency (i.e., query time window)
adaptively. With this approach, the business is each flow is predicted where low polling
frequency is applied for less busy flows, thus the overhead in network is reduced. As
this approach uses flow entries for monitoring, the overhead in switch will be higher than
SDN-MON for monitoring a same number of flows. The approach in FlowSense [87] and
OpenNetMon [78] reduced overhead by passively capturing OpenFlow events (i.e., PacketIn,
and FlowRemoved messages) without injecting any monitoring message in the control
channel. As the approach relied on OpenFlow events passively, it may not suit for neither
real-time or fine-grained monitoring. Furthermore, the approach do not discuss reducing
overhead per monitoring rules, thus overhead in switch will be higher than SDN-MON for
monitoring same number of flows.

Overall, our monitoring method outperforms the discussed existing works in terms of
overhead at switch for monitoring same number of flows. Table 3.3 summarizes a comparison
between the closet work and our proposal. As the monitoring is integrated to a capable control
platform (i.e., OpenFlow based SDN), our proposed method benefits network management,
especially traffic engineering applications that requires monitoring a possibly large number
of flows and flexibly controlling network traffic.

Method Switch
overhead
reduction

Distributed mon-
itoring overhead
reduction

Network com-
ponent

Integrated
API

Fine-grained
monitoring

UMON [81] Yes No Switch (Open
vSwitch)

Yes Yes

A. Gulenko, et. al.
[29]

Yes No Switch (Open
vSwitch)

Yes Yes

sFlow/NetFlow
[57] [10]

Yes Yes External
deployment

No Yes

SDN-MON (ours) Yes Yes Switch and
Controller

Yes Yes

Table 3.3 Comparison of our proposal with existing traffic monitoring methods in terms of
monitoring overhead reduction in switch

3.7 Summary 69

3.7 Summary

This chapter presented our proposed monitoring method that reduces monitoring overhead
in switch for fine-grained traffic monitoring in OpenFlow based SDN. The method, with its
monitoring modules, data structure, and monitoring process are designed as a monitoring
platform for OpenFlow based SDN, which is integrated to OpenFlow protocol. Our proposed
method reduces overhead per monitoring rule in OpenFlow switch, thus it reduces the
monitoring overhead for the switch. The experimental results show a low monitoring
overhead at switch and small system elapsed time. Specifically, the experimental results
as showed in Fig. 3.9 demonstrated that SDN-MON introduce lower monitoring overhead
(i.e., higher throughput) for monitoring different number of active flows compared to the
default SDN monitoring mechanism in the base switch. For instance, the throughput of
SDN-MON and the base switch for monitoring 20000 active flows are 5.8 Mpps and 3.4
Mpps correspondingly, and for 100000 active flows, the throughputs are about 3.5 Mpps for
SDN-MON and 0.8 Mpps for the base switch. This indicates that SDN-MON satisfies the
requirement in terms of reducing overhead per monitoring rule for serving target networks
and applications as specified in section 3.1. Moreover, as SDN-MON can monitoring over a
hundred thousands of active flows as showed by experimental results above, the requirement
in terms of number of active flows of target networks and application is also satisfied. In
addition, the elapsed time of the monitoring system was also proved to be small, i.e., in an
order of hundreds of mili seconds for monitoring thousands of active flows, and about a
second for monitoring a hundred thousands of active flows). This indicates that the proposal
satisfies the requirement in terms of processing time of the monitoring system (i.e., in order
of seconds). Since our proposed monitoring method satisfied the requirements of the targeted
networks and applications as outlined in section 3.1 of this chapter, it is reasonable to infer
that the proposal is capable of serving monitoring task for the networks and applications.

Chapter 4

Distributed monitoring method for SDN

In this chapter, we present our monitoring method for SDN monitoring in distributed scenarios
with multiple monitoring switches. In SDN, switches independently monitor flows that results
in duplication of flows monitoring and produce overhead in switches and the network as
analyzed in chapter 1. Specifically, when the number of flows traversing through the multiple
monitoring switches is large, the duplication ratio may become large accordingly that results
in significant overhead in switches. As the resources (e.g., throughput, memory, CPU) in
switches are limited, reducing overhead caused by the monitoring duplication is important to
enable monitoring in distributed scenarios with reduced overhead. Therefore, in our proposal,
we aim at designing a monitoring method that can detect and eliminate the duplicated
monitoring rules and distribute monitoring load over multiple monitoring switches in a
balancing fashion. In this chapter, we firstly present in section 4.1 an empirical discussion on
requirements of different networks and applications. Section 4.2 describes an overview of our
proposed method. The architectural design of the method including monitoring components
and modules are described in section 4.3. Section 4.4 presents the details of our proposed
algorithm for detecting, removing duplicated monitoring rules and assigning non-duplicated
rules into switches in a balancing manner. In section 4.5, we describes the evaluation of
our proposed method in different aspects: the reduction of monitoring rules per switch, the
balance of monitoring load in switches, algorithm processing time, and the system elapsed
time.

4.1 Design requirements

Typically, in SDN, a main controller manages switches in the network. Therefore, in the
proposal of this chapter, we assume that one controller manages monitoring switches in
a distributed monitoring scenario where each monitoring switch is a monitoring point in

72 Distributed monitoring method for SDN

the network. As the monitoring functionality is operated independently from forwarding
functionality and does not rely on flow tables of SDN switch in our proposed monitoring
platform, a small number of flow entries for basic forwarding in switch may be required for
basic forwarding (e.g., a switch may install forwarding rules where matching fields are only
source ip address, ingress port, and egress port, which results in a small number of rules
required corresponding to number of physical links and hosts in the network). We target
our proposed monitoring platform to serve a number of common networks including LAN,
campus network, backbone network and smaller scaled networks, and common applications
including heavy-hitter detection, traffic classification, routing optimization, bandwidth moni-
toring, and other traffic engineering applications. As discussed in chapter 2, the number of
active flows required to be monitored in these networks and applications may reach thousands
or a hundred thousands of active flows with a query time window in seconds, minutes, or
hours. Therefore, we set a first requirement for our design that it must be capable of serving
thousands or a hundred of active flows, and a second requirement is that processing time of
the monitoring method must be under a threshold of the required query time windows of the
target networks and applications (i.e., in an order of seconds). In addition, the monitoring
tasks are mostly conducted in a few monitoring points. Therefore, we set a third requirement
for our design in this chapter that is a capability to serve at least ten or even a few tens of
monitoring switches. In summary, the requirements for our design in this chapter consists
of: (1) Capability of serving a few thousands or a hundred thousands of active flows; (2)
Processing time of the monitoring method must be in an order of seconds for such number of
active flows; (3) Capability to serve ten or a few tens of monitoring switches in the network
for distributed monitoring scenarios.

As outlined above, distributed monitoring scenarios with multiple independently operated
monitoring switches introduce the duplication issue, while the resources in switches and
in network are limited. Therefore, for distributed monitoring, it is important to solve
the monitoring duplication problem and maintain a balance of monitoring load assigned
in switches. This means that a distributed monitoring method must be able to eliminate
redundant/duplicated monitoring rules to reduce monitoring overhead per switch and in
network, and ensure monitoring rules are assigned to switches in a balancing fashion. As
the process of such monitoring rules reduction and balance introduces a certain processing
overhead at the controller, a distributed monitoring method must consider this factor in
its design so as to limit the processing overhead at controller under the required time
window. Our proposed monitoring method for a switch in chapter 3 demonstrates that it
can monitor over a hundred of active flows with reduced overhead compared to the default
SDN monitoring implementation in a base switch. Therefore, for distributed monitoring

4.2 Method overview 73

aspect, to meet the above mention requirements, we focus on the following main goals for
our distributed monitoring method: (1) the method must eliminate redundant rules caused
by monitoring duplication in switches; (2) the method must ensure assigning monitoring
rules to switches in a balancing fashion; (3) the processing overhead at the controller, i.e.,
processing time of the distributed monitoring functionality, must be under a threshold of
required query time windows of the networks and applications (i.e., in an order of seconds or
minutes); (4) the method must be capable of serving ten or a few tens of monitoring switches
in the network.

4.2 Method overview

To meet the above mentioned requirements, we propose a distributed monitoring mechanism
where multiple switches can monitor traffic flows in the network in a coordinated way. This
method is integrated with the proposed monitoring platform in chapter 3 as a consistent
monitoring platform for fine-grained and distributed monitoring platform (SDN-MON). With
our distributed monitoring method, network applications can define a specific time window
to periodically collect monitoring data from the switches. To reduce monitoring overhead in
network and processing overhead at the controller, we introduce the following strategies in
the proposed method:

(1) To reduce monitoring overhead caused by redundant/duplicated monitoring rules, we
detect and eliminate duplicated monitoring rules in switches and balance monitoring load
assigned to the switches. The key factor of the proposed method is a distributed monitoring
algorithm that filters monitoring records collected from the switches in each query. For each
flow, only one monitoring rule is kept for monitoring the flow and remove other duplicated
ones from the correspondent switches. The switch selection is determined based on the
available status of the switches (i.e. represented by the number of existing monitoring and
forwarding entries in the switch) at the current time and the most available switch is select.
This selection strategy ensures the monitoring rules assigned to the switches are balanced
based on the available status of the switches. The available status of the switches is updated
periodically where the information of number of flow entries and monitoring entries are
injected into the reply message sent to the controller in each query without requiring any
additional message.

(2) Furthermore, in order to reduce the communication cost caused by monitoring
messages in the control channel, we design the format of a monitoring rule with a minimum
number of fields and required bytes which are dedicated for monitoring purpose as the
proposed switch monitoring method introduced in chapter 3. On the other hand, we observe

74 Distributed monitoring method for SDN

that only new monitoring rules or updated ones (i.e., monitoring rules that have their statistics
updated during the time window since the previous query) are necessary to be sent to the
controller for statistics update at the controller. Our distributed monitoring method integrates
a strategy that allow a switch to quickly check the update status of monitoring rules and only
send new or updated monitoring rules to the controller in each query instead of all existing
rules in the switch. With this strategy, the number of rules required to be sent to the controller
is reduced, and thus additionally reduce communication overhead in the communication
channel and processing overhead at the controller.

(3) In addition, although the controller is mostly a server where its resources (CPU,
memory,...) is not as limited as the switches, our distributed monitoring algorithm was
designed with targeting for small overhead in terms of processing time of the algorithm.

Our distributed monitoring method can be summarized with four main phases as follows.

1. SDN-MON monitoring module in switches actively monitor traffic flows in a network
(i.e., create a new monitoring entry to monitor the flow) independently from the flow
tables of the switch.

2. To get monitoring statistics, the SDN-MON monitoring module at the controller peri-
odically sends query messages to monitoring switches. Upon receiving new/updated
monitoring entries from switches, the proposed algorithm detects duplicated monitor-
ing entries and select a switch with lowest load to keep monitoring the flow. Duplicated
entries are marked for later removal.

3. When the process of duplication detection and storing monitoring entries is finished, the
proposed algorithm sends messages to switches that are storing duplicated monitoring
entries to remove the entries.

4. Upon receiving the monitoring entry removing message, each switch removes specified
entries in its monitoring table.

The details of the architectural design, structures of monitoring data storage, and the
distributed monitoring algorithm are described in the following sections.

4.3 Architectural Design

This section describes the architecture design of our distributed monitoring method. As the
target of this method is to enable efficient monitoring in distributed scenarios with multiple
switches, we design and integrate the components of this method as an extension on the

4.3 Architectural Design 75

Fig. 4.1 Extended SDN-MON architecture.

SDN-MON platform proposed in chapter 3 (and call the platform with a consistent name
as SDN-MON). Fig. 4.1 illustrates the architecture of extended SDN-MON which support
monitoring with multiple switches and external applications and services of third parties.

The extended SDN-MON consists of three major modules: the switch module, the
controller module, and the external module. The switch module handles the monitoring
functionality at a switch [58], while the controller module provides global monitoring APIs
and global monitoring data for controller applications and services. The external module
provides monitoring data query APIs that support third parties to remotely extract the
global monitoring data from the controller, and monitoring APIs that correspond to the
monitoring APIs at the controller module for external applications and services. Each flow
that traverses through a switch is monitored by a monitoring entry (or m-entry), which
consists of monitoring match fields (e.g. 5-tuple), counters, and the updating timestamp, in
the switch’s monitoring database. The proposed mechanism in this section enables SDN-
MON to automatically assign the monitoring load to multiple monitoring switches in a
balanced way. This allows network operators to leverage SDN-MON APIs and the global
monitoring data for their applications without any further effort for managing the multiple
monitoring switches.

76 Distributed monitoring method for SDN

4.4 Monitoring Mechanism

4.4.1 Organization of Global Monitoring Data

In the proposed mechanism, we organize the global monitoring data at the controller into
Global Monitoring Tables (GMTs); each corresponds to each monitoring switch in the
network. Each table stores, updates, and manages the monitoring data (i.e., m-entries) in
a switch. Each m-entry includes following fields: Monitoring match fields, Counters, Last
update, and Hash. The hash value of each entry is unique, and a corresponding hash-based
data structure is used for fast lookups and other data based processes of GMTs. The m-entries
in each GMT is kept updated by the controller through frequently polling of m-entries at the
corresponding switch.

Fig. 4.2 Organization of the global data.

A lightweight table called Switch Memory Usage Table (Fig. 4.2) holds frequently updated
information of the memory usages of switches for monitoring load balancing purpose. Each
entry in this table holds the memory usage information of a certain switch, including the
following fields: <switch ID, Usage, Last update>. The switch ID is the identification
number of the switch. The Usage represents the percentage of used memory: Usage
= (N f e +Nme)/Capacity, where Capacity is approximately estimated by the maximum
number of flows and m-entries that the switch can handle (based on the switch configuration),
N f e and Nme are the current numbers of flow entries and m-entries at the switch. The Last
update is the timestamp of the latest update of N f e, Nme and Usage.

4.4 Monitoring Mechanism 77

Besides the GMTs, the controller also contains temporary data structures consisting of a
Buffering Table and Removing Lists. The buffering table holds selected m-entries from lists
of m-entries that the controller receives for each monitoring data query. Removing lists (RLs),
in which each one corresponds to each monitoring switch, hold hashes of rejected m-entries.
These m-entries are duplicated ones that are not chosen from the switch selection process.
When the controller completes processing the received monitoring data of each querying
time, the m-entries in the removing lists will be physically removed from that switch, and the
buffering table and the removing lists will be cleared for processing the received data of the
next querying time.

4.4.2 Monitoring workflow

For every query-time-interval, the controller sends SDN-MON Data Request messages to
all monitoring switches to query the new and updated m-entries at switches. Each switch
responds such request by sending a SDN-MON Data Reply message including a list of new
m-entries and updated ones (the m-entries whose counters have been updated since the
previous query of the controller) to the controller (Fig. 4.3). A SDN-MON Data Reply also
includes N f e and Nme, which are counted by the SDN-MON switch module, for updating the
memory usage information of that switch in the Switch Memory Usage Table at the controller.
For a flow that traverses through multiple switches in network, such switches may actively
install m-entries to sample/monitor that flow (the probability of sampling the flow is based
on the sampling ratio), resulting in the duplicated m-entries stored at the switches.

Upon receiving the m-entries from switches, the controller filters the m-entries by:
selecting a switch with smallest memory usage to keep monitoring a m-entry for each flow,
putting the hashes of the duplicated m-entries to RLs for later removal at switches. For
switches whose removing list is not empty, the controller sends instructions to them to
physically remove the rejected entries after processing all received m-entries of a querying
time. Algorithm 1 illustrates the detailed steps for processing the received monitoring data of
a querying time at the controller.

4.4.3 Distributed monitoring algorithm

In the proposed monitoring algorithm (algorithm 1), the controller checks each m-entry eX

of each m-entries list Li received from a switch SI . If the entry is an updated version of an
existing monitoring entry (i.e. the entry that arrived at the controller in a previous query),
the controller updates the corresponding m-entry in the GMT of that switch. If not (i.e., the
m-entry is a new one that arrives at the controller for the first time), the controller check if

78 Distributed monitoring method for SDN

Fig. 4.3 Controller-switches communication.

the buffering table has a duplicated m-entry (i.e., an entry whose hash is the same as the
hash of eX). If not, the controller inserts the entry eX into the buffering table. If the buffering
table has a duplicated m-entry eY (whose hash is the same as the hash of eX), the controller
compares the memory usages of switch SI of eX and SeY of eY . If the switch memory usage
of SI is less than the switch memory usage of SeY , the controller inserts eX to the buffering
table, and puts the hash of eY to the RL of SeY . Else, the controller puts the hash of eX to the
RL of SI .

After the above mentioned processing, non-duplicated entries from all arriving m-entries
of a querying time (including the originally non-duplicated entries, and the chosen m-entries
among duplicated ones through the switch selection processes) are put to the buffering table
(task (1) in Fig. 4.4). The hashes of non-chosen duplicated m-entries are put to the RLs of
correponding switches for later removing process (task (2) in Fig. 4.4). After each time
interval ∆T since the controller receives the first SDN-MON Multipart Reply message of a
querying time, the controller puts the m-entries in the buffering table to the GMTs of the
corresponding switches, and clears/resets the buffering table to be ready for processing the
arriving m-entries of the next querying time (task (3) in Fig. 4.4). Then for each RL, the
controller sends an instruction containing the entry-hashes in RL to the corresponding switch
to remove those m-entries from the local monitoring module of the switch, and clears/resets
the RL of that switch. The time interval ∆T can be set equal to the query-time-interval (the
time interval between two continuous queries), or it can be flexibly set by a time amount that
is enough for the controller to complete the above mentioned processings for all arriving

4.4 Monitoring Mechanism 79

Data: Lists of m-entries received from switches
for Each list of m-entries Li from a switch SI do

for Each m-entry eX in Li do
if eX is an updated m-entry then

Update the corresponding m-entry in Global Monitoring Table of SI;
else

if eX is not existed in Buffering Table then
Insert eX into Buffering Table;

else
Assume eY is the duplicated m-entry, SeY is corresponding switch of eY ;
if switch-usage(SI) < switch-usage(SeY) then

Insert eX into Buffering Table;
Insert eY into Removing List of SeY ;
Update Switch Memory Usage Table;

else
Insert eX into Removing List of SI;

end
end

end
end

end
Algorithm 1: Pseudocode for processing the received m-entries of a querying time at the
controller.

SDN-MON Multipart Reply messages of a query (and should be less than or equal to the
query-time-interval). By default, ∆T is set equal to value of the query-time-interval.

Fig. 4.5 shows an example of how arriving m-entries are distributed to GMTs and RLs
after the duplicated m-entries detecting and switch-selecting phases of algorithm 1. The
monitoring entry e1 is monitored in switches S1 and S3 (represented by e1-S1 and e1-S3
in Fig. 4.5). Since S1 has memory usage of 42%, greater than the memory usage 31% of
S3, after processing the algorithm with the support of the buffering table, the hash of the
entry e1 is put in the RL of S1, and the entry e1 is inserted to the GMT of S3. Similarly,
the monitoring entry e2 appears in S1, S2, and S3. Since S3 has the smallest memory usage
among the three switches, it is chosen for monitoring e2. The result is that the entry e2 is
inserted to GMT of S3, and the hash of e2 is put to the RL of S1 and S2 correspondingly.
Similar process occurs for the entry e3. The result of the overall process (including actual
removing of m-entries in RLs from corresponding switches) is that the monitoring load for
e1, e2, and e3 is distributed on the idlest switches among S1, S2, and S3 in a balancing way
based on the switch memory usage of the switches at the moment when the processing is
performed, without any duplication.

The proposed algorithm detects and eliminate the duplication in the received monitor-
ing data and adaptively selects polling-switches with lowest load (i.e., lowest number of
monitoring entries and flow entries) for monitoring flows. With the proposed algorithm, mon-

80 Distributed monitoring method for SDN

Idea:	Managing	and	balancing	the	monitoring	load	over	network-
wide	with	multiple	switches	(SDN-Mon-based	monitoring)	

Adaptive	monitoring-data	categorizing	and	managing	mechanism	at		
controller	

	
	
	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
*Notes:	
(1):	Entries	that	are	chosen	to	keep	monitoring	in	switches	are	temporarily	stored	
in	Buffering	Table	
(2):	 Removing	 entries	 are	 moved	 to	 Remove-Awaiting	 Table	 (RAT)	 of	 each	
corresponding	switch	

Switch_ID Capacity
(entries)

Nfe Nme Usage Last
update

S1 c1 nfe1 nme1 u1% t1
S2 c2 nfe2 nme2 u2% t2
...
SN cN nfeN nmeN uN% tN Switch_ID Entry_Hash Entry

S1 hep eP
S2 heP+1 eP+1
...
SO heQ eQ

Entry-Hash Entry

he1 e1
he2 e2
... ...
heI eI

Entry-Hash Entry

heJ eJ
heJ+1 eJ+1

... ...
heK eK

Entry-Hash Entry

heL eL
heL+1 eL+1

... ...
heM eM

Entry-Hash

heX
heX+1

...

Entry-Hash

heY
heY+1

...

Entry-Hash

heZ
heZ+1

...

...		

...		

GMT - Switch S1 GMT - Switch S2 GMT - Switch SN

Buffering Table

RAL - Switch S1 RAL - Switch S2 RAL - Switch SN

Monitoring Data
Distributor

Arriving
monitoring data (1)

(2) (2)

(2)

(3)

(3)

(3)
Network-wide
monitoring data

Switch Memory Usage Table

 RL RL RL

Fig. 4.4 An illustration on duplicated monitoring entries detection and assignment of moni-
toring entries to global monitoring tables of switches

itoring overhead per switch is reduced since the overhead caused by duplicated monitoring is
rejected, and the monitoring load is distributed over switches in a balancing manner.

4.5 Implementation

We implement our proposed distributed monitoring method in this chapter as an extension
of the monitoring platform proposed in chapter 3. The extensions mostly focus on imple-
mentation of global monitoring data structures at the controller, the distributed monitoring
algorithm, and communication messages for monitoring control and monitoring data query
exchange between a controller and switches in the network. We use C programming language

4.5 Implementation 81

Idea:	Managing	and	balancing	the	monitoring	load	over	network-
wide	with	multiple	switches	(SDN-Mon-based	monitoring)	

Adaptive	monitoring-data	categorizing	and	managing	mechanism	at	
controller	

	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Switch_ID Capacity
(entries)

Nfe Nme Usage Last
update

S1 5000 100 2000 42% _
S2 5000 200 2500 54% _
S3 5000 50 1500 31% _

...

e1
e2

e3

e1-S1
e1-S3
e2-S1

e2-S2

e2-S3

e3-S1

e3-S2

...

e1
e2

e2
e3

Switch Memory-Usage Table

GMT-S2 GMT-S1 GMT-S3

RML-S1 RML-S2 RML-S3

Arriving
monitoring

entries

Figure: An example of switch selection scheme and data categorizing for
monitoring-load balancing at controller

Fig. 4.5 An illustration of global monitoring data processing and the switch selection scheme.

for implementing extensions in switch, and Python for implementing extensions for the
controller as these programming languages are the ones used in the base switch (i.e., Lagopus
software switch) and the base controller (i.e., Ryu controller) of SDN-MON implementation.
The implementation for SDN-MON switch is about 1800 lines of C codes and for SDN-MON
controller and the monitoring messages are about a few hundreds lines of Python codes.
Further details of the implementation of the proposed distributed monitoring method in this
chapter is presented in the following subsections.

According to the design of the global data storage at the controller as mentioned above,
global monitoring data consists of: Global monitoring tables, Switch memory usage table,
Buffering table, and removing lists. The global monitoring tables is the main data storage
component as they store the monitoring data of monitoring switches in the network. Each
table represents for monitoring data of a switch, and the table is identified by the identification
number of the switch (i.e., switch ID value). We implementation these tables using a fast
lookup data structure, i.e., hash table. With hash tables implementation, the computational
complexity for lookup process is O(1), and for update process is also O(1). Each table contain
a number of monitoring entries. A monitoring entry is used to monitor a flow that consists of
a number of fields and defined number of bytes as described below:

• Entry hash (8 bytes): Unique hash value of a monitoring entry, this hash value is
unchanged during the lifetime of the monitoring entry.

82 Distributed monitoring method for SDN

• SrcIp (4 bytes): Source IP address of the flow

• SrcPort (2 bytes): Source port number of the flow

• DstIp (4 bytes): Destination IP address of the flow

• DstPort (2 bytes): Destination port number of the flow

• Proto (1 byte): Protocol number of the flow

• Packet count (8 bytes): Number of packets traversed though the flow

• Byte count (8 bytes): Number of bytes traversed through the flow

• Last update (8 bytes): Timestamp since the last update of the packet count and byte
count of the flow

For maintaining available status of switches in the network for switch selection when
a duplication occur based on the proposed algorithm (i.e., algorithm 1), we implement the
Switch Memory Usage table using hash table data structure. With hash table data structure,
a number of entries that it can store can be tens of thousands or even millions of entries.
However, as the number of monitoring switches in a network is typically not too large (e.g., a
few or a few tens of switches), this table is lightweight table which may store a few or a few
tens of entries depending on the number of switches used for monitoring task in the network.
Each entry in this table contains information about the availability of a switch, which consists
of a number of fields as defined below:

• Switch ID (4 bytes): Unique identification number of a switch in the network. For
monitoring in a distributed scenario with multiple monitoring switches, this ID is used
to identify a switch at the controller.

• Capacity (4 bytes): An estimated capacity threshold of a switch (i.e., maximum number
of entries that the switch can store and process), which can be approximately estimated
and set by the controller based on capacity support of the switch.

• N f e (4 bytes): Existing number of flow entries in the switch

• Nme (4 bytes): Existing number of monitoring entries in the switch

• Usage (2 bytes): Percentage of resource usage in the switch. This percentage is
calculated by the formula Usage = (N f e +Nme)/Capacity as specified in the above
section.

• Last update (8 bytes): Timestamp since the last update of the packet count and byte
count of a flow

4.5 Implementation 83

For filtering and detecting duplicated monitoring entries sent from multiple monitoring
switches in the network, a buffering table is implemented as the design of global data specified
in the above section. As this table may be large depending on the number of monitoring
entries received from multiple switches in a query, we implement it using hash table data
structure. A buffering table is a temporary data structure designed for the duplication filtering
and detecting process and will be reset when the proposed algorithm finish duplication
detection and elimination process in each query time. A buffering table temporarily storing a
number of monitoring entries of the detecting phase. Each entries in this table consists of
a number of fields representing for a monitoring entry, and a Switch ID to indicate which
switch the monitoring entry is sent from, as specified below:

• Switch ID (4 bytes): Unique identification number of a switch in the network.

• Entry hash (8 bytes): Unique hash value of monitoring entry.

• SrcIp (4 bytes): Source IP address of the monitoring entry

• SrcPort (2 bytes): Source port number of the monitoring entry

• DstIp (4 bytes): Destination IP address of the monitoring entry

• DstPort (2 bytes): Destination port number of the monitoring entry

• Proto (1 byte): Protocol number of the monitoring entry

• Packet count (8 bytes): Number of packets traversed though the monitoring entry

• Byte count (8 bytes): Number of bytes traversed through the monitoring entry

• Last update (8 bytes): Timestamp since the last update of the packet count and byte
count of the monitoring entry

In the proposed distributed monitoring algorithm, duplicated monitoring entries that
are detected and filtered out from the duplication detecting phase will be rejected and the
related instructions will be sent to corresponding switches to remove the duplicated entries
in their local monitoring table. To remove a monitoring entry, a hash value of the entry is
enough to lookup and delete the entry. Therefore, in our implementation, for saving memory
for the controller, we simply keep the hash values of the duplicated monitoring entries and
temporarily save them into lists, i.e., removing lists, for later removal of the duplicated
monitoring entries. Each removing list contains a list of hashes of duplicated monitoring
entries of a switch. Each hash value in a removing list has the same number of bytes as an
entry hash of a monitoring entry (i.e., 8 bytes). Since only a list of hash values are temporarily
stored in each query, we use a list data structure for the implementation of the removing list.

84 Distributed monitoring method for SDN

4.6 Evaluation

We evaluate the effectiveness of the proposed mechanism in three aspects: the reduction
of monitoring rules the per switch, the balance of monitoring rules assigned to monitoring
switches, and the overheads (i.e., elapsed times) of the proposed distributed monitoring
algorithm and the monitoring system.

4.6.1 Experiment environment

Fig. 4.6 Experiment network.

We conducted experiments with a virtual SDN deployment using VNX [80], as illustrated
in Fig. 4.6. The controller is run on PC-1, a physical computer with a 2.66 GHz CPU Intel
core 2 Duo E6750 (2 cores) and 4 GiB RAM. Three switches and three hosts are run on PC-2,
another physical computer with a 3.4 GHz CPU Intel core i7 (8 cores) and 8 GiB RAM. PC-1
and PC-2 are connected via a LAN network. The switches are run with DPDK v16.11 [15]
to enhance its processing speed.

4.6.2 Evaluation on the reduction of monitoring load per switch and
the monitoring load balance among multiple switches

The monitoring match fields in SDN-MON switch module are set with 5-tuple consisting of
source IP address, source port, destination IP address, destination port, and protocol. The
query time interval is set to 10 seconds, which means the controller queries new and updated

4.6 Evaluation 85

m-entries from switches in every 10 seconds. Sampling ratio is set to 1.0. We conduct the
experiments for two cases: monitoring with the support of our proposed mechanism, and
monitoring without the support of our proposed mechanism.

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

-e
n

tr
ie

s
 p

e
r

s
w

it
c
h

Number of flows

With network-wide monitoring support
Without network-wide monitoring support

Fig. 4.7 Average number of m-entries per switch in various number of flows.

For evaluating the reduction of monitoring load per switch, we inject a stream of packets
from H1 to H3 using tcpreplay [75]. The dataset for packet injecting is a pcap file from
MAWI traffic repository [41], which is a 6.6 GB file of network traffic captured from a real
backbone network in Feb. 26, 2017. We measure the number of m-entries installed in each
switch in various numbers of 5-tuple flows (from 0 to 100,000 flows). The evaluation results
(Fig. 4.7) shows that the average number of m-entries per switch is reduced as over 63%.

For evaluating the monitoring load balance among the switches, we inject two streams of
packets from H1 to H3, and from H2 to H1 concurrently with two pcap traces (of the same
traffic volume), with the same packet injecting speed. We measure the numbers of m-entries
in switches and calculate the standard deviation of these numbers. A small standard deviation
means that the monitoring load balancing functionality works efficiently. The evaluation
results (Fig. 4.8) shows that with the support of the proposed mechanism, the standard
deviations are small for all different numbers of flows in the traffic. Thus, the switches are
assigned with nearly equal or equivalent numbers of m-entries.

86 Distributed monitoring method for SDN

 0

 10000

 20000

 30000

 40000

 50000

 0 20000 40000 60000 80000 100000

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Number of flows

With network-wide monitoring support
Without network-wide monitoring support

Fig. 4.8 Standard deviation of numbers of m-entries in switches.

4.6.3 Elapsed times of the algorithm and the system

We evaluate the overhead of the proposed mechanism in two aspects: the elapsed time
of the processing of the proposed algorithm (called the algorithm elapsed time), and the
elapsed time of all the processes of a querying time (called the system elapsed time). The
algorithm elapsed time is calculated by the amount of time for processing all arriving reply
messages and the amount of time for putting the m-entries in the buffering table into the
GMTs and removing the corresponding m-entries in the RLs. Let T 1i be the time when the
controller receives an SDN-MON multipart message from a monitoring switch (an SDN-
MON multipart reply from a switch consists of one multipart message or a sequence of
multiple ones depending on the number of m-entries that the switch send to the controller in
a querying time), T 2i be the time when the controller completes processing that message,
and ∆T be the processing time for putting the m-entries in the buffering table into GMTs,
removing the corresponding m-entries in RLs from related switches, and clearing the buffering
table and the RLs: Algorithm elapsed time = ∑

N
i=1(T 2i −T 1i)+∆T , where N is the total

number of multipart messages that the controller receives from all monitoring switches in a
querying time; The system elapsed time is evaluated by the time interval since the controller
sends the first m-entries request message to a switch until it completes processing all reply
messages from switches including the algorithm processing.

4.6 Evaluation 87

Number of monitoring entries
per query

20,000 40,000 60,000 80,000 100,000

Algorithm elapsed time (s) 0.237 0.436 0.742 0.939 1.181
System elapsed time (s) 0.371 0.868 1.361 1.966 2.692

Table 4.1 Algorithm elapsed time and system elapsed time at various numbers of monitoring
entries per query.

We experiment for various numbers of m-entries per query (the total number of m-entries
sent from all monitoring switches that the controller receives and processes in a querying
time) to observe the algorithm and system elapsed times. We inject a pcap trace containing
634,500 5-tuple flows, which creates 232,950, 234,860, and 234,390 m-entries stored in
the switches S1, S2 and S3 respectively (and corresponding numbers of m-entries stored in
the global monitoring tables GMT-S1, GMT-S2, and GMT-S3 at the controller). We inject
the packets at various injecting rates so that the total numbers of m-entries sent from all
monitoring switches to the controller are at various values from 20,000 to 100,000 m-entries.
We measure the algorithm and system elapsed times for 5 times in each experiment and
calculate average values of them for final results. Table 4.1 shows the elapsed times for
processing the algorithm and the system elapsed time in different numbers of m-entries
per query from 20,000 to 100,000. The experimental results show that both of the elapsed
times of the proposed network-wide monitoring mechanism and the monitoring system
are negligible, with maximum elapsed times of the algorithm and the system are small as
1.181 and 2.692 seconds correspondingly even for processing a large number of m-entries
as 100,000 m-entries per query, for a large number of 5-tuple flows as 634,500 flows in the
injecting traffic.

4.6.4 Evaluation on the scale of the proposed distributed monitoring
mechanism

For evaluating the scale of the proposed distributed monitoring algorithm, as the existing
tools have limited support for SDN and mostly no support for deploying modified switches,
we have built up a simulation module which simulate the input data that the algorithm
processes in each query time. The simulation module generate the monitoring entries sent
from switches to mimic the input data that the proposed distributed monitoring algorithm
received from switches, with three parameters: number of active switch (N), number of active
flows sent per switch (M), and duplication ratio (D). Based on the built simulation module,

88 Distributed monitoring method for SDN

we conducted simulation experiments on different numbers of switches, different numbers of
active flows and the different duplication ratios.

We conducted experiments with different numbers of monitoring entries of 1000 to 5000
m-entries for the cases of 10 switches, 100 switches, 500 switches, and 1000 switches. The
experimental results (Fig. 4.9 showed that the processing time of the proposed algorithm
is trivial for the case of 10 switches with 5000 monitoring active flows monitored in the
switches. For the cases of 100 switches, the elapsed time is about 0.3s for 5000 active flows
in each switches, which means the algorithm spends 0.3s for processing as large as 500000
active flows per query.

1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of m-entries received per switch

0

1

2

3

4

5

6

7

8

El
ap

se
d

tim
e

(s
)

Algorithm Elapsed Time (s)
N=1000 switches
N=500 switches
N=100 switches
N=10 switches

Fig. 4.9 Processing time of the proposed distributed monitoring algorithm at different numbers
of monitoring entries per switch

Moreover, we evaluated the elapsed time of the proposed distributed monitoring algorithm
in different number of switches. The experimental results (Fig. 4.10 showed a small elapsed
time of 1.8s for handling 200 switches where each switch monitors 5000 active flows. Further,
we evaluated the elapsed time of the algorithm based on the numbers of active flows with the
parameter of duplication ratio. The duplication ratio is set from 0 to 0.8 and the elapsed times
for different number of active flows from 200000 to 1000000 active flows were measured.
The experimental results (Fig. 4.11 showed a small elapsed time of 1.6s for processing a big
number of active flows as 1 million active flows, which is enough to serve different types of
networks (i.e., backbone, local area network, campus network, and smaller scaled networks).

4.6 Evaluation 89

200 300 400 500 600 700 800 900 1000
Number of switches

0

1

2

3

4

5

6

7

8
El

ap
se

d
tim

e
(s

)
Algorithm Elapsed Time (s)

M=5000 entries
M=4000 entries
M=3000 entries
M=2000 entries
M=1000 entries

Fig. 4.10 Processing time of the proposed distributed monitoring algorithm at different
numbers of switches

In addition, we evaluated the system elapsed time in the network measurement through
an estimated calculation from measurement results on data transmission time and simulation
results on the processing time of the proposed algorithm. The system elapsed time is
estimated from the overall elapsed time of all processing steps including switch processing
for gathering data and data transmission time (i.e., τ1), data parsing time processed by the
default controller (i.e., τ2), and the algorithm elapsed time (i.e., τ3). Given τ1, τ2, τ3, the
system elapsed time is calculated as: τs = τ1 + τ2 + τ3.

Let Ns be the number of monitoring switches, Ms be the number of m-entries existed in
each switch. As the specified in the proposed method, when a monitoring switch receives a
monitoring statistics request, its collect monitoring entries and sends to the controller. This
process is conducted concurrently and independently in each of the monitoring switches. In
addition, as the controller sends monitoring statistics requests to all monitoring switches at
the same time in each query (e.g., through a Python loop), and assuming that each request
spends a similar amount of time to reach its destined switch, the switch processing and data
transmitting time of Ns switches, i.e. τ1, can be estimated as the maximum of τ1,i: τ1 =
max(τ1,i), for i in [1, Ns], where τ1,i is the switch processing and data transmitting time of a
monitoring switch Si.

90 Distributed monitoring method for SDN

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Duplication Ratio

0.4

0.6

0.8

1.0

1.2

1.4

1.6

El
ap

se
d

tim
e

(s
)

Algorithm Elapsed Time (s)
200000 active flows
400000 active flows
600000 active flows
800000 active flows
1000000 active flows

Fig. 4.11 Processing time of the proposed distributed monitoring algorithm in different flow
duplication ratios

When a reply message reaches the controller, a default data parsing module in the
controller parses the message from byte arrays into data with a defined format of the controller
(e.g., Python data object in a Ryu controller). For worse case evaluation, we assume that
the data parsing times for parsing multiple reply messages from monitoring switches are
sequential. This means that in the worse case, the data parsing time for all reply messages is
estimated as: τ2 = K

j ∑τ2, j, where τ2, j is the data parsing time of a monitoring entry, K is
the total number of monitoring entries received from switches, i.e., K = Ns x Ms. Therefore,
the system elapsed time is estimated as: τs = max(τ1,i) + K

j ∑τ2, j + τ3, for i in [1, Ns], j
in [1, K], K = Ns x Ms, where: τ1,i is the switch processing and data transmitting time of
each monitoring switch Si, τ2, j is the data parsing time of a monitoring entry among all
monitoring entries that the controller received from switches, and τ3 is the processing time
of the algorithm for all received monitoring entries.

As each monitoring entry has the same structure and number of bytes, it is reasonable to
assume that the controller spend an equivalent amount of time for parsing each monitoring
entry. Therefore, the data parsing time for all monitoring entries received from Ns switches,
where each switch sends Ms monitoring entries, can be estimated as: τs = max(τ1,i) + Ns

x τ2,i + τ3, for i in [1, Ns], where: τ1,i is the switch processing and data transmitting time
of each monitoring switch Si, τ2,i is the data parsing time of all monitoring entries that the

4.6 Evaluation 91

controller received from a monitoring switch, and τ3 is the processing time of the algorithm
for all received monitoring entries.

We conducted experiments to measure: (1) the elapsed time for data gathering at switch
and data transmitting from switches to controller (i.e., τ1,i), and (2) the elapsed time for data
parsing (i.e., τ2,i). The processing time of the algorithm for all received monitoring entries,
τ3 is measured through simulation as indicated above. Fig. 4.13 and Fig. 4.12 showed the
elapsed time of corresponding processing steps. The evaluations results (as showed in Fig.
4.9, Fig. 4.10, Fig. 4.11, Fig. 4.12, and Fig. 4.13) indicated that the architecture can support
a few tens of switches for busy networks with a number of active flows up to a hundred
thousands active flows, and it can support a few hundreds of switches for less busy networks
with a number of active flows about a few thousands or a few tens of thousands of active
flows. The system elapsed time can be calculated with the above mentioned formula. For
instance, for monitoring a million active flows, τ3 is about 1.6s, the τ1 is about 0.45s (as the
data transmission and switch processing time is about 45ms as showed in Fig. 4.13), τ2 is
about 5.15s (as the data transmission and switch processing time is about 515ms as showed
in Fig. 4.12), the system elapsed time will be about 7.2s.

0 20000 40000 60000 80000 100000
Number of monitoring rules

0

100

200

300

400

500

Da
ta

 P
ar

sin
g

Ti
m

e
(m

s)

Data parsing time (processed by controller)
 at different number of monitoring rules

Fig. 4.12 Data parsing time (processed by default controller) at different number of monitor-
ing rules

With the conducted experimental results, the scale of network of the architecture is
validated where overall elapsed time (including switch processing for gathering data, data

92 Distributed monitoring method for SDN

0 20000 40000 60000 80000 100000
Number of monitoring rules

10

20

30

40

El
ap

se
d

tim
e

(m
s)

Data transmission and switch processing time
 at different numbers of monitoring rules

Fig. 4.13 Data transmission and switch processing time at different number of monitoring
rules

transmission to the controller, data parsing by the default data parsing step of controller, and
the processing time of the proposed algorithm) is about a second for monitoring a hundred
thousands of active flows int the network. The processing time of the proposed distributed
algorithm is proved to be small (e.g., about 1.6 second for processing a million active flows
as in Fig. 4.11). The results showed its capability of serving the target networks with over
few tens of switches for busy networks with up to a hundred thousands of active flows (e.g.,
backbone network), and a few hundreds thousands of switches for less busy networks with up
to a few thousands of active flows in the network (i.e., local area network, campus network,
and smaller scaled networks).

4.7 Discussion

As the target of this dissertation is proposing traffic monitoring method for OpenFlow-based
SDN that reduces monitoring overhead for all network elements including switches, con-
troller and control channel, we discuss the previous pros and cons of previous works as whole
monitoring systems for all related aspects, and compare to our proposed platform in this
section. UMON [81] reduces monitoring overhead in switch and support fine-grained moni-

4.8 Summary 93

toring. However, it does not discuss any mechanism for monitoring in a distributed scenario
with multiple switches. Thus, redundant/duplicated monitoring rules are not eliminated from
switches that results in significant overhead in switches caused by the redundant rules. Thus,
for distributed monitoring with multiple switches, the overhead in UMON system will be
higher than our proposed SDN-MON platform.

The aggregation based approach in OpenWatch [88] reduced overhead by adapting flow
aggregation level (i.e., adjusting monitoring granularity). However, aggregation mechanism
may not benefit for network applications that requires fine-grained statistics of all flows (e.g.,
traffic classification, anomaly detection). Furthermore, as the approach does not discuss
reducing overhead per monitoring rule in switch, the overhead in switch for monitoring a
same number of flows in OpenWatch will be higher than our proposed platform. In FlowCover
[70] and OpenTM [77], the overhead in control channel is reduced with different proposed
switch selection schemes. However, these proposals do not discuss reducing overhead per
monitoring rule, and the redundant/duplicated rules are not eliminated in switches. Thus,
overhead in these proposals will be higher than SDN-MON for monitoring same number
of flows. In terms of system processing overhead, the system elapsed time of FlowCover
is about 2.5 seconds for monitoring 100000 active flows, while the system elapsed time in
SDN-MON for monitoring the same number of active flows is about a second as showed
by experimented results in this chapter. Thus, the system overhead of SDN-MON is lower
than FlowCover. In Payless [9] and OpenNetMon [78], the monitoring overhead is reduced
by adapting frequency of statistics polling with traffic busy status. These works do not
discuss reducing overhead per monitoring rule and simply reply on OpenFlow events for
monitoring. Thus, overhead for monitoring same number of flows will be higher than our
proposed platform. In addition, by passively capturing OpenFlow events, it may not benefit
for fine-grained or real time monitoring requirements. Table 4.2 summarizes a comparison
between the closest work and our proposal in the aspect of reducing monitoring overhead in
distributed scenarios.

4.8 Summary

This chapter presents our proposed mechanism to support SDN to monitor over multiple
switches network in a distributed fashion (called network-wide monitoring mechanism). The
mechanism is designed and implemented on the proposed SDN-MON platform, to enable a
monitoring capability for OpenFlow-based SDN for fine-grained and distributed monitoring.
The mechanism distributes the monitoring tasks, which are represented by monitoring entries,
over multiple monitoring switches in the network and balance these tasks among switches.

94 Distributed monitoring method for SDN

Method Overhead per
rule reduction

Distributed mon-
itoring overhead
reduction

Network
component

Integrated
API

Fine-grained moni-
toring

FlowCover [70] No Yes Controller Yes Yes
OpenWatch [88] No Yes Controller Yes Not well supported
OpenTM [77] No Yes Controller Yes Yes
Payless [9] No Yes Controller Yes Not well supported
OpenSample [72] Yes Yes External de-

ployment
No Yes

FlowSense [87] No Yes Controller Yes Not well supported
OpenNetMon [78] No Yes Controller Yes Not well supported
SDN-MON (ours) Yes Yes Switch and

Controller
Yes Yes

Table 4.2 Comparison of our proposal with existing traffic monitoring methods in both
aspects: monitoring overhead reduction at switch and overhead reduction in distributed
monitoring scenario

This mechanism benefits in intelligently leveraging idle computing/memory resources at
switches for monitoring, and allows much less monitoring load/overhead at each single
switch. The experimental results, which are conducted with real traffic traces, validate the
reduction of monitoring load per switch corresponding to the duplication ratio (e.g., over 63%
for a three switches network scenario). Through the experiments, the balance of monitoring
load among the switches is also validated where the results show small standard deviations on
the numbers of monitoring entries assigned to switches. The elapsed times of the proposed
mechanism and the monitoring system are also proved to be small (e.g., about a second and
2.7 seconds respectively for monitoring a large number active flows as a hundred thousands
active flows, where the number of flows in the experimental traffic is as large as over a half
million flows.

In addition, the effectiveness in terms of the scale of the proposed distributed monitoring
proposal was also evaluated to validate its capability to serve the targeted networks and
applications. With the conducted experimental results, the scale of network of the architecture
is validated where the processing time of the proposed distributed algorithm and system
elapsed time are proved to be small. For instance, the overall elapsed time (including switch
processing for gathering data, data transmission to the controller, data parsing by the default
data parsing step of controller, and the processing time of the proposed algorithm) for
monitoring a hundred thousands of active flows is about a second. The experimental results
also showed a small algorithm elapsed time, e.g., about 1.6 second for processing a million
active flows per query. As the system elapsed time is a round a seconds for monitoring a

4.8 Summary 95

hundred thousands of active flows, the proposed method satisfies the requirements of target
networks and applications in terms of required number of active flows (i.e., thousands or a
hundred thousands active flows) and required query time window (i.e., in an order of seconds
or minutes). In addition, as the proposed method can server over a few tens of switches
as discussed above, the requirement of target networks and applications about number of
switches (i.e., a few or a few tens of switches) is also satisfied. Since the proposed monitoring
method satisfies the specified requirements of targeted networks and applications (as outlined
in section 4.1 of this chapter), it is considered to be capable of serving the targeted networks
and applications.

Chapter 5

Discussion

5.1 Application examples

In this section, we discuss example traffic applications that can be developed on top of the
SDN-MON. Since SDN-MON integrates fine-grained monitoring capability into OpenFlow-
based SDN, it facilitates the implementation of traffic engineering applications since the
monitoring and control are operated consistently as a whole system in a SDN controller.
Typically, a traffic engineering application uses SDN-MON APIs to obtain fine-grained
statistics of traffic flows in the network for its analysis. Once a routing decision or a traffic
engineering policy is made, the application uses OpenFlow-based APIs to install flow entries
into switches to enforce the new routing rules or policies. SDN-MON platform can be
used for a variety of traffic engineering applications such as heavy-hitter detection, network
bandwidth measurement and load balancing, traffic classification, traffic matrix estimation,
routing optimization.

As an example, heavy-hitter detection and mitigation can be implemented on top of
SDN-MON to detect traffic flows that have a very large number of packets or to find the set
of flows contributing significant amounts of traffic to a link. Heavy-hitter detection benefits a
number of network management applications, e.g., relieving link congestion [4], planning
network capacity [19], or caching forwarding table entries [62] for efficient routing of traffic.
Identifying heavy hitters at small time scales enables dynamic routing of heavy flows [12]
and dynamic flow scheduling [66]. In order to detect heavy-hitters, fine-grained statistics of
traffic flows are required for analysis and detection. The required flow statistics consists of
number of packets and number of bytes in flows, where the required monitoring granularity
of the flows is 5-tuple based granularity including specified header fields: source IP address,
source port number, destination IP address, destination port number, and protocol number
[46].

98 Discussion

Rank Source IP Source
Port

Destination IP Destination
Port

Protocol Bytes Percentage

1 192.168.2.104 1208 65.75.343.170 23560 TCP 929.4
MBytes

10%

2 62.146.10.41 80 192.168.2.104 3932 TCP 743.2
MBytes

8%

3 192.168.1.101 80 192.168.1.150 4497 TCP 504.3
MBytes

6%

4 217.6.164.162 80 192.168.2.104 4220 TCP 365.7
MBytes

5%

5 192.168.1.101 80 192.168.1.150 4497 TCP 235.2
MBytes

3%

...

Table 5.1 Example data of detected heavy-hitter flows.

As the required flow statistics of a heavy-hitter detection and mitigation application
are exactly the flow statistics and monitoring granularity that SDN-MON supports, to im-
plement the heavy-hitter detection, users or network operators can write a simple Python
application/program at the controller that use SDN-MON APIs and initialize its monitoring
process. By using the SDN-MON APIs, the application can set a suitable query time window
(e.g., 5 seconds) by sending a Set query time window message to monitoring switches to
get the fine-grained statistics. Periodically, SDN-MON monitoring modules at switches
report the fine-grained flow statistics to the application. The receiving monitoring data at the
controller will be parsed by SDN-MON controller module from the bytes format to usable
format of monitoring entries, eliminating duplication, and storing flow statistics. Based on
the monitoring data, the traffic engineering can simply calculate/count number of bytes or
packets of the traffic flows to determine heavy-hitter flows in the network, and to determine
available route of source-destination end hosts for rerouting traffic. As an example, detected
heavy-hitter flows can also be ranked and visualized as Table 5.1. Once new routing rules
are determined, the traffic engineering application simply use OpenFlow APIs to install
corresponding flow entries in switches for traffic rerouting to mitigate/eliminate heavy-hitter
flows. In case there is not other available link to reroute the flow from its source host to desti-
nation host, the application may drop incoming traffic of the flow to avoid link congestion.
As the SDN-MON is integrated to SDN/OpenFlow as a same platform on controller, such
application workflow can be implemented on SDN-MON platform via a few tens of lines of
Python code. Algorithm 2 presents an example pseudo code of the application.

Since other traffic engineering applications such as routing optimization [21] [61], traffic
classification [5], require the same flow statistics and monitoring granularity level, they can
also be implemented using SDN-MON platform with a similar programming workflow within

5.1 Application examples 99

Send Monitoring Mode On messages to SDN-MON switches;
continue-monitoring = True;
query-time-window = 5;
(set query time window of 5 seconds) network-topo = NetworkTopology();
network-topo.discover();
switch-IDs = network-topo.get-switches();
while continue-monitoring do

for switch-Id in switch-IDs do
send-SDNMON-Monitoring-Data-Request(switchId);
sleep(query-time-window);

end
end
heavy-hitters = [];
heavy-hitter-count = 5;
min-number-of-bytes = 0;
min-index = 0;
for switchId in switch-IDs do

global-monitoring-table = global-monitoring-tables[switch-Id];
for hash in global-monitoring-table.key() do

if (global-monitoring-table[hash][byte-count] >= min-number-of-bytes) then
heavy-hitters.remove(min-index);
heavy-hitters.append(global-monitoring-table[hash]);
update(min-number-of-bytes);
update(min-index);

end
end

end
top-heavy-hitter = heavy-hitters[0];
network-links = network-topo.get-links();
reroute-link = find-reroute-link(top-heavy-hitter, network-links);
if (reroute-link) then

install new flow entries to switches of the reroute link;
remove old flow entries;

end
else

send OF-Flow-Mod message to switches of the top heavy hitter flow to drop incoming
traffic;

end
Algorithm 2: Example pseudocode of heavy hitter detection and mitigation application.

100 Discussion

a few tens of lines of Python code. These example applications indicate that SDN-MON,
with integrating fine-grained monitoring capability to OpenFlow-based software switch,
facilitates implementation of common traffic engineering applications that benefit network
management.

5.2 Applicability for designed networks and applications

The experimental results on monitoring performance at switch as showed in chapter 3 has
demonstrated a low overhead of SDN-MON for monitoring fine-grained traffic flows. In
addition, the experiment results for distributed scenarios in chapter 4 shows a reduction of
monitoring load in each switch depending on flow duplication ratio, while monitoring load
are balanced among switches. The evaluation also proves small processing times of the
distributed monitoring mechanism and the monitoring system (e.g., for 100,000 active flows,
switch processing and data transmitting time is less than 50 ms, and data transmission time is
about 550 ms, so the overall elapsed time is about 600 ms). Specifically, the processing time
of the distributed algorithm is small as around 0.3 second for processing 200,000 active flows
and 1.6 second for processing a million flows correspondingly. Moreover, the evaluation in
terms of scalability has showed that SDN-MON is capable of serving tens or even hundreds
of switches depending on business of network (represented by the number of active flows
in a certain time window). Together with requirements of different networks (i.e., LAN,
Campus network, Backbone network, and smaller scaled networks) and applications (e.g.,
heavy-hitter detection, bandwidth monitoring, traffic classification, network diagnosis of
troubleshooting) where the numbers of active flows is around or below 100,000 active flows
in time windows of 5s or above, the evaluation results indicates that SDN-MON is considered
to be capable of serving those networks and applications.

5.3 Limitations

The focus of this dissertation is proposing the monitoring method for OpenFlow-based SDN
with small overhead so that SDN users or network operators can monitor traffic within
the existing infrastructure (i.e., SDN switches and controller). Although our proposal has
demonstrated its low overhead with reducing overhead per rule for switches, reducing
overhead in switches and in the network by detecting and eliminating redundant monitoring
rules and assigning rules to switches in a balancing fashion, the proposal and its current
implementation has several limitations. Firstly, the proposal requires installing our extension
modules for both switch and controller to use SDN-MON monitoring method. Secondly, the

5.3 Limitations 101

applicability of the proposal on hardware switch has not been investigated, thus the current
implementation mostly works for software switch. We consider to investigate the applicability
of our proposal on hardware switch for our future works. Thirdly, the current implementation
instance of SDN-MON uses exact 5 tuple for match fields. With 5 tuple based match fields,
network traffic is monitored with high granularity (i.e., fine-grained) in SDN-MON and the
exact match also contributes to the processing speed of the monitoring process in switch.
However, if SDN-MON introduces wildcard match by adding more sophisticated matching
algorithm at switch, it causes high overhead due to the complicated flow matching algorithm
and in the worst case, the performance may be similar to Lagopus. Also, if SDN-MON
handles a wildcard by summing up individual monitoring entries matched to the wildcard at
switch (then merge at controller), it doesn’t scale for general rules. For example, in case of
monitoring with one wildcard rule (i.e., one flow entry in switch), the switch performance
of Lagopus is about 8 Mpps, while the corresponding performance for SDN-MON with
1000 rules without wildcard (i.e., 1000 monitoring entries) and one wildcard forwarding flow
entry is about 7.4 Mpps, which is smaller than the original switch. Therefore, if wildcard
is implemented in SDN-MON that can accept aggregations of the traffic flows (i.e., coarse-
grained monitoring, such as origin-destination pair), the performance of the monitoring
process in SDN-MON switch is decreased accordingly and in worse case it may be similar
to performance of the original switch. Fourly, although our proposal has demonstrated its
low overhead for monitoring in OpenFlow-based software switch, the limited resources at
switches may limit its use cases, especially for busier networks (e.g., MAN, WAN), and
applications that require monitoring larger number of active flows within smaller query
time window (e.g, for anomaly detection, depending on the scale of network and number of
hosts, if the number of active flows required to be monitored is over a hundred thousands
flows in a time window of less than a second, more than one switch may be required to
monitor the flows for the detection analysis). However, with the constraint of in-band
monitoring within the existing SDN infrastructure, our proposal has showed its applicability
for a number of common networks (i.e., LAN, Campus network, Backbone network, and
smaller scaled networks) and a number of common traffic engineering applications (e.g.,
heavy-hitter detection, traffic classification, bandwidth monitoring, network diagnosis of
troubleshooting) as discussed in the previous chapters.

Chapter 6

Conclusion

6.1 Dissertation summary

In this dissertation, we studied the traffic monitoring problem in SDN/OpenFlow for fine-
grained traffic engineering. Since traffic engineering requires both monitoring traffic flow
statistics and controlling network traffic, integrating monitoring and controlling in the same
platform/APIs are essentially important. Therefore, in our proposal, we aim at integrating a
fine-grained monitoring capability to OpenFlow-based SDN to facilitate the implementation
of traffic engineering applications and benefit network management. We target our proposal to
be capable of monitoring common networks (i.e., LAN, campus network, backbone network,
and smaller scaled networks) and fine-grained traffic engineering applications (e.g., heavy
hitter detection, traffic classification, bandwidth monitoring, routing optimization). Through
an empirical study presented in chapter 2, we outline the requirements of the target networks
and applications. The requirements consists of: (1) Capability of reducing overhead per
monitoring rule in switch; (2) Capability of serving a few thousands or a hundred thousands
of active flows; (3) Processing time of the monitoring method must be in an order of seconds
for such number of active flows; (4) Capability to serve ten or a few tens of monitoring
switches in the network for distributed monitoring scenarios.

As a switch typically has limited resources (e.g., throughput, CPU, memory) while
fine-grained monitoring requires monitoring large number of flows, the first critical goal
for our proposal is to reduce overhead per monitoring rule in OpenFlow based SDN switch.
To meet this goal, we proposed a traffic monitoring method that can reduce overhead
per monitoring rule in switch, thus reduce monitoring overhead in switch. We designed
lightweight monitoring modules and process for switch that is operated independently from
forwarding functionality to achieve the overhead reduction.

104 Conclusion

Furthermore, in most networks, multiple switches independently monitor flows that
results in duplication of flows monitoring and produce overhead in switches and the network
as analyzed in chapter 1. Specifically, when the number of flows traversing through the
multiple monitoring switches is large, the duplication may become large accordingly that
results in significant overhead in switches. As the resources (e.g., throughput, memory,
CPU) in switches are limited, reducing overhead caused by the monitoring duplication is
important to enable monitoring in distributed scenarios with reduced overhead. Therefore,
we additionally propose a distributed monitoring method for traffic monitoring in distributed
scenarios with multiple monitoring switches. We design a monitoring method that can
detect and eliminate the duplicated monitoring rules and distribute monitoring load over
multiple monitoring switches in a balancing fashion. We also design a dedicated protocol for
communication between switches and controller and integrate it into OpenFlow protocol for
exchanging monitoring data and instructions in the proposed monitoring platform.

We implemented the proposed methods as a systematic flows monitoring platform for
OpenFlow-based SDN called SDN-MON. We conduct a number of experiments based on the
implementation instance of the proposals, and demonstrate the effectiveness of our proposals
with experimental results in both aspects: (1) monitoring performance at switch (in terms of
throughput performance of the switch), and (2) performance of the distributed monitoring
method (in terms of processing times of the distributed monitoring algorithm and the overall
monitoring process). Experimental results demonstrated that SDN-MON achieves better
performance at switch (i.e., higher throughput, or lower overhead) than the default OpenFlow
based SDN monitoring mechanism. Therefore, the requirements on reducing overhead per
monitoring rule is satisfied. Furthermore, experimental results on the distributed monitoring
aspect show small algorithm elapsed times, e.g., about 1.6 second for processing a million
active flows per query. As the system elapsed time is a round a seconds for monitoring a
hundred thousands of active flows, the proposed method satisfies the requirements of target
networks and applications in terms of required number of active flows (i.e., thousands or
a hundred thousands active flows) and required query time window (i.e., in an order of
seconds or minutes). In addition, as the proposed method can server over a few tens of
switches as discussed above, the requirement of target networks and applications about
number of switches (i.e., a few or a few tens of switches) is also satisfied. As the proposed
monitoring method satisfies the specified requirements of targeted networks and applications
(the requirements (1) to (4) as outlined above), it is considered to be applicable for targeted
networks and fine-grained traffic engineering applications.

6.2 Future Work 105

6.2 Future Work

These are categories of works needed to be done in the future.
Investigating the applicability of the proposal on hardware switches Our prototype im-

plementation of the proposal was showed to work efficiently on software switch. The
applicability of the proposal for hardware switch may require some refinement of the imple-
mentation to work on a hardware switch. This possibility has not tested. We consider this as
a future direction of our work.

Deploying and experimenting the proposal on a physical network environment. The
monitoring on multiple switches scenario was experimented in a simulation environment
with multiple switches running in a physical machine due to a lack of physical devices for
experiments. Although the evaluation results is considerably reliable due to the reliability of
the simulation environment, it would be even more convincing to show the performance in
that aspect on a physical deployment.

Making the implementation of the proposed framework more efficient. The experimental
results on the performance of the current implementation of our proposal have showed a
promising applicability to production networks such as LANs, CANs or even data centers.
However, it still has room for performance improvement as the implementation might not be
an optimal one in terms of programming and engineering. We consider this as another future
direction of our work.

Making more programs and applications to be run on the proposed framework. Current
applications written on top of the proposed monitoring framework is still simple. Therefore,
making more programs and applications, even complicated ones, would show the applicability
of the framework and interest community to using it better. This is considered as another
future direction of our work.

References

[1] Davide Adami, Barbara Martini, Molka Gharbaoui, Piero Castoldi, Gianni Antichi, and
Stefano Giordano. Effective resource control strategies using openflow in cloud data
center. In IFIP/IEEE IM 2013, pages 568–574. IEEE, 2013.

[2] Ian F Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and Wu Chou. A roadmap for traffic
engineering in sdn-openflow networks. Computer Networks, 71:1–30, 2014.

[3] Mohammad Banikazemi, David Olshefski, Anees Shaikh, John Tracey, and Guohui
Wang. Meridian: an sdn platform for cloud network services. IEEE Communications
Magazine, 51(2):120–127, 2013.

[4] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Microte: Fine
grained traffic engineering for data centers. In ACM CoNEXT’11, page 8. ACM, 2011.

[5] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and Kave
Salamatian. Traffic classification on the fly. ACM SIGCOMM Computer Communication
Review, 36(2):23–26, 2006.

[6] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM, 13(7):422–426, 1970.

[7] Jeffrey D Case, Mark Fedor, Martin L Schoffstall, and James Davin. Simple network
management protocol (SNMP). RFC1157, 1990.

[8] Marco Chiesa, Christoph Dietzel, Gianni Antichi, Marc Bruyere, Ignacio Castro, Mitch
Gusat, Thomas King, Andrew W Moore, Thanh Dang Nguyen, Philippe Owezarski,
et al. Inter-domain networking innovation on steroids: empowering ixps with sdn
capabilities. IEEE Communications Magazine, 54(10):102–108, 2016.

[9] Shubhajit Roy Chowdhury, M Faizul Bari, Rizwan Ahmed, and Raouf Boutaba. Payless:
A low cost network monitoring framework for software defined networks. In IEEE
NOMS’14, pages 1–9, 2014.

108 References

[10] Benoit Claise. Cisco systems netflow services export version 9. RFC3954, 2004.

[11] Benoit Claise. Specification of the ip flow information export (ipfix) protocol for the
exchange of ip traffic flow information. RFC5101, 2008.

[12] Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet
Sharma, and Sujata Banerjee. DevoFlow: scaling flow management for high-
performance networks. In ACM SIGCOMM Computer Communication Review, vol-
ume 41, pages 254–265, 2011.

[13] Anupam Das, Cristian Lumezanu, Yueping Zhang, Vishal K Singh, Guofei Jiang, and
Curtis Yu. Transparent and flexible network management for big data processing in the
cloud. In HotCloud’13, page 6. Usenix, 2013.

[14] Xenofontas Dimitropoulos, Paul Hurley, and Andreas Kind. Probabilistic lossy count-
ing: an efficient algorithm for finding heavy hitters. ACM SIGCOMM Computer
Communication Review, 38(1):5–5, 2008.

[15] DPDK: Data plane development kit. http://dpdk.org/.

[16] David Erickson. The beacon openflow controller. In HotSDN’13, pages 13–18. ACM,
2013.

[17] Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for counting active
flows on high speed links. In ACM IMC’03, pages 153–166. ACM, 2003.

[18] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher. Cuckoo
filter: Practically better than bloom. In ACM CoNEXT’14, pages 75–88. ACM, 2014.

[19] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, Jennifer Rexford,
and Fred True. Deriving traffic demands for operational ip networks: Methodology and
experience. IEEE/ACM Transactions on Networking, 9(3):265–280, 2001.

[20] Floodlight Controller. http://www.projectfloodlight.org/floodlight/.

[21] Bernard Fortz, Jennifer Rexford, and Mikkel Thorup. Traffic engineering with tradi-
tional ip routing protocols. IEEE communications Magazine, 40(10):118–124, 2002.

[22] Éric Fusy and Frécéric Giroire. Estimating the number of active flows in a data stream
over a sliding window. In Proceedings of the Meeting on Analytic Algorithmics and
Combinatorics, pages 223–231. Society for Industrial and Applied Mathematics, 2007.

References 109

[23] Gagandeep Garg and Roopali Garg. Detecting anomalies efficiently in sdn using
adaptive mechanism. In IEEE ACCT’15, pages 367–370. IEEE, 2015.

[24] Molka Gharbaoui, Barbara Martini, Davide Adami, Gianni Antichi, Stefano Giordano,
and Piero Castoldi. On virtualization-aware traffic engineering in openflow data centers
networks. In IEEE NOMS’14, pages 1–8. IEEE, 2014.

[25] Kostas Giotis, Christos Argyropoulos, Georgios Androulidakis, Dimitrios Kalogeras,
and Vasilis Maglaris. Combining openflow and sflow for an effective and scalable
anomaly detection and mitigation mechanism on sdn environments. Computer Networks,
62:122–136, 2014.

[26] Karyna Gogunska, Chadi Barakat, Guillaume Urvoy-Keller, and Dino Lopez-Pacheco.
On the cost of measuring traffic in a virtualized environment. In IEEE CloudNet’18,
pages 1–6. IEEE, 2018.

[27] Google Inc. Inter-datacenter WAN with centralized TE using SDN and OpenFlow.
https://www.opennetworking.org/wp-content/uploads/2013/02/cs-googlesdn.pdf, 2012.

[28] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín Casado, Nick McK-
eown, and Scott Shenker. NOX: towards an operating system for networks. ACM
SIGCOMM Computer Communication Review, 38(3):105–110, 2008.

[29] Anton Gulenko, Marcel Wallschläger, and Odej Kao. A practical implementation of
in-band network telemetry in open vswitch. In IEEE CloudNet’18, pages 1–4. IEEE,
2018.

[30] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P Donovan, Brandon
Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, and Ethan
Katz-Bassett. Sdx: A software defined internet exchange. ACM SIGCOMM Computer
Communication Review, 44(4):551–562, 2015.

[31] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network function
virtualization: Challenges and opportunities for innovations. IEEE Communications
Magazine, 53(2):90–97, 2015.

[32] Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. FLOWGUARD: building
robust firewalls for software-defined networks. In ACM HotSDN, pages 97–102. ACM,
2014.

110 References

[33] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Experi-
ence with a globally-deployed software defined wan. In ACM SIGCOMM Computer
Communication Review, volume 43, pages 3–14, 2013.

[34] Abdesselem Kortebi, Luca Muscariello, Sara Oueslati, and James Roberts. Evaluating
the number of active flows in a scheduler realizing fair statistical bandwidth sharing.
In ACM SIGMETRICS Performance Evaluation Review, volume 33, pages 217–228.
ACM, 2005.

[35] Ian Ku, You Lu, and Mario Gerla. Software-defined mobile cloud: Architecture,
services and use cases. In IEEE IWCMC’14, pages 1–6. IEEE, 2014.

[36] Ian Ku, You Lu, Mario Gerla, Francesco Ongaro, Rafael L Gomes, and Eduardo
Cerqueira. Towards software-defined vanet: Architecture and services. In MED-HOC-
NET’14, pages 103–110. IEEE, 2014.

[37] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinadhuni,
Enrique Cauich Zermeno, C Stephen Gunn, Jing Ai, Björn Carlin, Mihai Amarandei-
Stavila, et al. Bwe: Flexible, hierarchical bandwidth allocation for wan distributed
computing. In ACM SIGCOMM Computer Communication Review, volume 45, pages
1–14. ACM, 2015.

[38] Maciej Kuźniar, Peter Perešíni, and Dejan Kostić. What you need to know about sdn
flow tables. In PAM’15, pages 347–359. Springer, 2015.

[39] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: rapid proto-
typing for software-defined networks. In HotNets’10, page 19. ACM, 2010.

[40] Jing Liu, Jie Li, Guochu Shou, Yihong Hu, Zhigang Guo, and Wei Dai. Sdn based load
balancing mechanism for elephant flow in data center networks. In IEEE WPMC’14,
pages 486–490. IEEE, 2014.

[41] MAWI Traffic Repository. http://mawi.wide.ad.jp.

[42] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling innovation
in campus networks. ACM SIGCOMM Computer Communication Review, 38(2):69–74,
2008.

References 111

[43] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight: Towards a
model-driven sdn controller architecture. In IEEE WoWMoM’14, pages 1–6. IEEE,
2014.

[44] Wang Miao, Fernando Agraz, Shuping Peng, Salvatore Spadaro, Giacomo Bernini,
Jordi Perelló, Georgios Zervas, Reza Nejabati, Nicola Ciulli, Dimitra Simeonidou, et al.
Sdn-enabled ops with qos guarantee for reconfigurable virtual data center networks.
Journal of Optical Communications and Networking, 7(7):634–643, 2015.

[45] Traffic monitoring using sFlow. http://www.sflow.org/sflowoverview.pdf.

[46] Tatsuya Mori, Tetsuya Takine, Jianping Pan, Ryoichi Kawahara, Masato Uchida, and
Shigeki Goto. Identifying heavy-hitter flows from sampled flow statistics. IEICE
Transactions on Communications, 90(11):3061–3072, 2007.

[47] Andrew C Myers and Andrew C Myers. Jflow: Practical mostly-static information flow
control. In ACM POPL’99, pages 228–241. ACM, 1999.

[48] Ankur Kumar Nayak, Alex Reimers, Nick Feamster, and Russ Clark. Resonance:
dynamic access control for enterprise networks. In WREN’09, pages 11–18. ACM,
2009.

[49] Open Networking Foundation . OpenFlow Switch Specification version 1.5.0. 2014.

[50] Open Networking Foundation. How OpenFlow-based SDN transforms private cloud.
ONF Solution Brief, 2012.

[51] Open Networking Foundation. Software-defined networking: The new norm for
networks. ONF White Paper, 2:2–6, 2012.

[52] Open Networking Foundation. SDN architecture overview. ONF White Paper, 2013.

[53] Open Networking Foundation. SDN in the campus environment. ONF Solution Brief,
2013.

[54] Open Networking Foundation. SDN security considerations in data center. ONF
Solution Brief, 2013.

[55] Open vSwitch. http://www.openvswitch.org/.

[56] Peter Phaal and Marc Lavine. sflow version 5. white paper, 2004.

112 References

[57] Peter Phaal, Sonia Panchen, and Neil McKee. InMon Corporation’s sFlow: A Method
for Motoring Traffic in Switched and Routed Networks. RFC3176, 2001.

[58] Xuan Thien Phan and Kensuke Fukuda. SDN-Mon: Fine-grained traffic monitoring
framework in software-defined networks. Journal of Information Processings (JIP), 25:
182–190, Feb. 2017.

[59] POX Controller. http://www.noxrepo.org/pox/about-pox/.

[60] Reza Rahimi, Malathi Veeraraghavan, Yoshihiro Nakajima, Hirokazu Takahashi,
S Okamoto, and N Yamanaka. A high-performance openflow software switch. In
IEEE HPSR’16, pages 93–99. IEEE, 2016.

[61] Anton Riedl and Dominic A Schupke. Routing optimization in ip networks utilizing
additive and concave link metrics. IEEE/ACM transactions on networking, 15(5):
1136–1148, 2007.

[62] Ori Rottenstreich and János Tapolcai. Optimal rule caching and lossy compression
for longest prefix matching. IEEE/ACM Transactions on Networking, 25(2):864–878,
2017.

[63] Ryu SDN Framework. http://osrg.github.io/ryu/.

[64] Sakir Sezer, Sandra Scott-Hayward, Pushpinder-Kaur Chouhan, Barbara Fraser, David
Lake, Jim Finnegan, Niel Viljoen, Mary Miller, and Neeraj Rao. Are we ready for SDN?
Implementation challenges for software-defined networks. IEEE Communications
Magazine, 51(7):36–43, 2013.

[65] Fernando Silveira, Christophe Diot, Nina Taft, and Ramesh Govindan. Astute: Detect-
ing a different class of traffic anomalies. ACM SIGCOMM Computer Communication
Review, 41(4):267–278, 2011.

[66] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole, Shang-
Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti, and Nick
McKeown. Programmable packet scheduling at line rate. In ACM SIGCOMM Computer
Communication Review, pages 44–57. ACM, 2016.

[67] Robin Sommer and Anja Feldmann. Netflow: Information loss or win? In ACM
IMW’02, pages 173–174. ACM, 2002.

References 113

[68] John Sonchack, Adam J Aviv, Eric Keller, and Jonathan M Smith. Enabling practical
software-defined networking security applications with OFX. In NDSS’16, pages 1–15,
2016.

[69] Anna Sperotto, Gregor Schaffrath, Ramin Sadre, Cristian Morariu, Aiko Pras, and
Burkhard Stiller. An overview of ip flow-based intrusion detection. IEEE communica-
tions surveys & tutorials, 12(3):343–356, 2010.

[70] Zhiyang Su, Ting Wang, Yu Xia, and Mounir Hamdi. FlowCover: Low-cost flow
monitoring scheme in software defined networks. In IEEE GLOBECOM’14, pages
1956–1961, 2014.

[71] José Suárez-Varela and Pere Barlet-Ros. Towards a netflow implementation for open-
flow software-defined networks. In ITC’17, volume 1, pages 187–195. IEEE, 2017.

[72] Junho Suh, Ted Taekyoung Kwon, Colin Dixon, Wes Felter, and Jenny Carter. Open-
Sample: A low-latency, sampling-based measurement platform for commodity SDN.
In IEEE ICDCS’14, pages 228–237, 2014.

[73] Andrei M Sukhov, Dmitry I Sidelnikov, AP Platonov, MV Strizhov, and Aleksey A
Galtsev. Active flows in diagnostic of troubleshooting on backbone links. Journal of
High Speed Networks, 18(1):69–81, 2011.

[74] Arsalan Tavakoli, Martin Casado, Teemu Koponen, and Scott Shenker. Applying nox
to the datacenter. In ACM HotNets’09, page 6. ACM, 2009.

[75] Tcpreplay. http://tcpreplay.synfin.net/wiki/tcpreplay.

[76] The CAIDA UCSD Anonymized Internet Traces 2016 - [18/02/2016].
http://www.caida.org/data/passive/passive 2016 dataset.xml.

[77] Amin Tootoonchian, Monia Ghobadi, and Yashar Ganjali. OpenTM: Traffic matrix
estimator for OpenFlow networks. In PAM’10, pages 201–210. Springer, 2010.

[78] Niels LM Van Adrichem, Christian Doerr, and Fernando A Kuipers. OpenNetMon:
Network monitoring in openflow software-defined networks. In IEEE NOMS’14, pages
1–8, 2014.

[79] Ronald van der Pol, Bart Gijsen, Piotr Zuraniewski, Daniel Filipe Cabaça Romão, and
Marijke Kaat. Assessment of sdn technology for an easy-to-use vpn service. Future
Generation Computer Systems, 56:295–302, 2016.

114 References

[80] Virtual Networks over Linux (VNX). http://web.dit.upm.es/vnxwiki/index.php.

[81] An Wang, Yang Guo, Fang Hao, TV Lakshman, and Songqing Chen. UMON: Flexible
and fine grained traffic monitoring in Open vSwitch. In ACM CoNEXT’15, pages 1–7.
ACM, 2015.

[82] Bing Wang, Yao Zheng, Wenjing Lou, and Y Thomas Hou. Ddos attack protection in
the era of cloud computing and software-defined networking. Computer Networks, 81:
308–319, 2015.

[83] Guohui Wang, TS Ng, and Anees Shaikh. Programming your network at run-time for
big data applications. In HotSDN, pages 103–108. ACM, 2012.

[84] Shao-Heng Wang, Patrick P-W Huang, Charles H-P Wen, and Li-Chun Wang. Eqvmp:
Energy-efficient and qos-aware virtual machine placement for software defined data-
center networks. In ICOIN’14, pages 220–225. IEEE, 2014.

[85] Abdulsalam Yassine, Hesam Rahimi, and Shervin Shirmohammadi. Software defined
network traffic measurement: Current trends and challenges. IEEE Instrumentation
and Measurement Magazine, 18(2):42–50, 2015.

[86] Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar Ganjali. On scalability of
software-defined networking. IEEE Communications Magazine, 51(2):136–141, 2013.

[87] Curtis Yu, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and Har-
sha V Madhyastha. FlowSense: Monitoring network utilization with zero measurement
cost. In PAM’13, pages 31–41. Springer, 2013.

[88] Ying Zhang. An adaptive flow counting method for anomaly detection in SDN. In
ACM CoNEXT’13, pages 25–30, 2013.

Publication List

Journal paper (reviewed)

[1] X.T. Phan, and K. Fukuda. Fine-grained traffic monitoring framework in Software-
Defined Networks. Journal of Information Processing, vol. 25, pp.182–190, 2017.

Conference papers (reviewed)

[2] X.T. Phan, and K. Fukuda. Toward a flexible and scalable monitoring framework in
Software-Defined Networks. In IEEE Internetional Workshop on Network Management
and Monitoring (NETMM), 2017, pp.403–408, 2017.

[3] X.T. Phan, I.D.M. Casanueva, and K. Fukuda. Adaptive and distributed monitoring
mechanism in Software-Defined Networks (short/poster paper). In IFIP/IEEE Inter-
national Conference on Network and Service Management (CNSM), 2017, 5 pages,
2017.

	Abstract
	Acknowledgments
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Network traffic monitoring
	1.2 Software-Defined Network (SDN)
	1.3 Monitoring in SDN
	1.4 Problem statement
	1.5 Criteria in designing monitoring method for SDN
	1.6 Our proposal
	1.7 Main contributions
	1.8 Dissertation organization

	2 Background
	2.1 Software-Defined Networking
	2.1.1 Introduction
	2.1.2 Architectural Overview
	2.1.3 Benefits of SDN for network control and management
	2.1.4 SDN ecosystem and practical deployments
	2.1.5 Discussion on the scale of OpenFlow-based SDN

	2.2 Importance of traffic monitoring and measurement for network control and management in SDN
	2.3 Traffic flow monitoring in SDN
	2.3.1 Default traffic flow monitoring support in OpenFlow-based SDN
	2.3.2 Drawbacks of default traffic flow monitoring in OpenFlow-based SDN

	2.4 A survey on requirements of different networks and applications
	2.4.1 Investigation on the requirements of different networks
	2.4.2 Investigation on the requirements of different network applications

	2.5 Existing approaches for SDN monitoring
	2.5.1 Switch overhead reduction approach
	2.5.2 Sampling based approach
	2.5.3 Rule aggregation based approach
	2.5.4 Switch selection based approach
	2.5.5 Time window based approach

	3 Monitoring method for SDN switch
	3.1 Design requirements
	3.2 Method overview
	3.3 SDN-MON Architecture
	3.3.1 Architecture Overview
	3.3.2 Monitoring process
	3.3.3 SDN-MON Monitoring APIs
	3.3.4 SDN-MON communication protocol

	3.4 Implementation
	3.5 Performance evaluation
	3.5.1 Experiment environment
	3.5.2 SDN-MON switch overhead evaluation
	3.5.3 Impact of the sampling capability on enhancing the throughput of the proposed architecture
	3.5.4 Validating the efficiency of the proposed architecture
	3.5.5 SDN-MON system overhead evaluation

	3.6 Discussion
	3.7 Summary

	4 Distributed monitoring method for SDN
	4.1 Design requirements
	4.2 Method overview
	4.3 Architectural Design
	4.4 Monitoring Mechanism
	4.4.1 Organization of Global Monitoring Data
	4.4.2 Monitoring workflow
	4.4.3 Distributed monitoring algorithm

	4.5 Implementation
	4.6 Evaluation
	4.6.1 Experiment environment
	4.6.2 Evaluation on the reduction of monitoring load per switch and the monitoring load balance among multiple switches
	4.6.3 Elapsed times of the algorithm and the system
	4.6.4 Evaluation on the scale of the proposed distributed monitoring mechanism

	4.7 Discussion
	4.8 Summary

	5 Discussion
	5.1 Application examples
	5.2 Applicability for designed networks and applications
	5.3 Limitations

	6 Conclusion
	6.1 Dissertation summary
	6.2 Future Work

	References
	Publication List

