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Abstract

In this thesis, we present a detailed analysis of ut — ety and
gt — eteTe” with polarized muons in supersymmetric grand unified
theory (SUSY GUT). In particular, we focus on various P- and T-odd
asymmetries which are defined relative to the initial muon polarization.
First, we discuss lepton flavor violation (LFV) in SUSY GUT based
on the minimal supergravity model. A brief review of the minimal
supersymmetric standard model (MSSM) and SUSY GUT is also in-
cluded. Next, we develop a model-independent framework for analyzing
the p* — ety and ut — etete™ processes with polarized muons. We
define various P- and T-odd asymmetries relative to the initial muon po-
larization. Finally, we present the results of our numerical calculations
for these asymmetries in the SU(5) and SO(10) SUSY GUT. As a result
of a detailed numerical analysis, we found that the asymmetries and the
ratio of two branching fractions are useful to distinguish different mod-
els. We show that the P-odd asymmetry of 4t — et~ becomes +-100%—
—100% in the SO(10) GUT, whereas it becomes 100% in the SU(5) GUT.
It is also shown that the T-odd asymmetry of u* — etete™ can reach
15% in the SU(5) GUT within various EDM constraints for the SUSY
CP violating phases, whereas it is small in the SO(10) GUT. The distri-
bution of differential branching ratios and asymmetries of u* — eTete™

process are also useful to distinguish different models.
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Chapter 1

Introduction

The Standard Model (SM) [1]| has succeeded enormously since its formulation 30
years ago. Almost all results of experiments can be explained within the framework
of the SM, except for the recent discovery of neutrino oscillation. The SM is a
renormalizable anomaly-free theory and is self-consistent. Although it can be applied
to an arbitrary cnergy scale, we know the theory must be cut off and unified with
the theory of gravity at the Planck scale (~ 10! GeV).

Theoretically, however, there is an important clue to explore the theory beyond
the SM. The SM has a scalar field called the Higgs ficld, which plays an important
roll in that it breaks the gauge symmetry SU(2) x U(1) to U(1),,, and gives masses
to the weak bosons and to all matter fermions at the electro-weak (EW) scale (~ 102
GeV). The mass of the Higgs field is a unique parameter which has a mass dimension
in the SM, which determines the EW scale. Generally, the mass parameter of a scalar
field is highly unstable under quantumn corrections. Its square diverges quadratically
with a cut-off of the theory. If the SM describes nature correctly until the Planck
scale, this quantum correction would amount to an order of 10'* GeV. Extreme fine
tunings for parameters at the Planck scale are needed in every step of perturbation to
cancel the correction and keep the EW scale. It is hard to iinagine that a mechanism
to control the quantum correction between the Planck scale to the EW scale with
such a high precision is a part of the physics at the Planck scale , which is responsible
for the bare parameters of the SM at the Planck scale (hierarchy problem) [2].

To remove such fine tunings from the theory, we must introduce new physics

such a theoretical reasoning. The first one is the supersymmetry (SUSY) scenario3],



the second one is the technicolor scenario[4] and the third one is the extra-dimension
scenario[5]. The first one excludes any quadratic divergence of the scalar field by
imposing extra symmetry on the theory. The second one removes a fundamental
scalar field, itself, from the theory and replaces it with a composite of fermions. The
third one utilizes extra dimensions in addition to the ordinary four dimensions of
space time to solve the hierarchy problem. Among them, the SUSY scenario is very
attractive because a minimal SUSY extension of the SM agrees very well with the
hypothesis of grand unification of gauge groups, as well as the result of precision
measurements of the gauge coupling constants. It predicts many new particles at
the TeV scale. Their spectrum may carry information about an ultra-high energy
scale not very far from the Planck scale.

Thus, a direct experimental search for a high-energy frontier at the TeV scale
is indispensable. It may open a way to a new era of particle physics. However, such
a direct experiment is not easy, because it needs a long time scale, highly specialized
manpower and an enormous amount of money , which can hardly be afforded by one
nation. It is important to collect any evidence of new physics through low-energy
experiments with new ideas, and to clarify the form of the new physics as precisely
as possible so as to strengthen the foundation of such a direct experiment.

At a low-energy scale, the effects of new physics appear as non-trivial relations
among renormalizable coupling constants, or the existence of higher dimensional op-
erators which can not be renormalized. Precision measurements of gauge couplings
and a determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
belong to the former case. In order to explore small effects of higher dimensional
operators, processes which are forbidden, or are very suppressed, within the SM
are important. There are a variety of such processes, including lepton-number vio-
lation, baryon-number violation, lepton-flavor violation (LFV) ; CP violation, and
flavor-changing neutral currents (FCNC).

Theoretically, LFV is a touchstone of new models. In the SM, all possible
renormalizable interactions appear and lepton flavor conservation is automatic as a
result of its matter content and gauge symmetry. However, an extension of its matter
content easily violates lepton- flavor conservation. In the case of a supersymmetric
extension of the SM, scalar partners of ordinary leptons become a source of LFV. It

imposes severe constraints on the mechanisms of SUSY-breaking. There are many



SUSY-breaking scenarios which escape such constraints. The minimal supergravity
model (minimal SUGRA) is the most conventional one.

In recent years, LFV processes have received much attention because it was
pointed out that, in supersymmetric grand unified theory (SUSY GUT), the branch-
ing ratios for p* — ety and ut — etete and the p-e conversion rate in a nucleus
can reach just below the present experimental values, even if the minimal SUGRA
is assumed [6]-[9]. The present experimental upper bounds of these LFV processes
are B(u™ — ety) < 1.2 x 107" [10], B(gt — etete™) < 1.0 x 10712[11] and
o(u~Ti— e Ti)/o(u Ti— capture) < 6.1 x 10713 [12]). It is possible that future
experiments will improve the sensitivity by two or three orders of magnitude below
the current bounds [13, 14].

In this thesis we discuss the u* — ety and u* — e*ete™ processes in SUSY
GUT. In particular, we focus on various asymmetries defined with the help of ini-
tial muon polarization. Experimentally, polarized positive muons are available by
the surface muon method because muons emitted from 7™’s stopped at the target
surface are 100% polarized in a direction opposite to the muon momentum [15]. Pre-
viously, it has not been positively utilized in rare decay experiments. It is shown in
Ref.[16], however, that the muon polarization is useful to suppress the background
processes in the u* — e*~ search. As for the signal distribution of ut — e*+, the
angular distribution with respect to the muon polarization can distinguish between
pt — efvy and pu* — efv. In the case of u* — etete~, the distribution in the
Dalitz plot and various asymmetries defined with help of the muon polarization carry
information on chirality and the Lorentz structure of LFV couplings. In particular,
we can define T-odd asymmetry which is sensitive to CP violation in LFV interac-
tions [17, 18]. The purpose of this paper is to give a model-independent framework
for analyzing the u* — ey and u* — etete™ processes with polarized muons and
to investigate specific features of the SU(5) and SO(10) SUSY GUT while focusing
on the P- and T-odd asymmetries. A detailed comparison of the T-odd asymmetry
with the electron, neutron and Hg electric dipole moments (EDM) is also done by
introducing SUSY CP violating phases within the minimal SUGRA model [19].

In chapter 2 and 3, we review SUSY GUT based on the minimal SUGRA
model * in the context of flavor physics. In chapter 4, we first present the general

*More comprehensive review of this subject is found in reference [20].



effective Lagrangian for ¥ — ety and ut — etete™ processes. Then, we explain
how LFV coupling constants in this Lagrangian emerges in the SUSY GUT. We
discuss the model-specific features of these processes in the SU(5) and SO(10) SUSY
GUT. In chapter 5, we present a model-independent framework for analyzing the
ut — ety and ut — eFete processes with polarized muons. We fix the kinematics
for the u* — ety and ™ — eTete™ processes and define various P- and T-odd
asymmetries relative to the muon polarization in the center-of-mass system of the
muon. In chapter 6, we present the results of our numerical calculations for these
asymmetries in the SU(5) and SO(10) SUSY GUT.



Chapter 2

Minimal supersymmetric standard
model (MSSM)

I N=1 SUSY Lagrangian

As discussed in the previous chapter, considering the hierarchy problem, SUSY is
a very attractive solution because it reduces the degree of divergence of the the-
ory. SUSY is a natural extension of the Poincaré group, which includes a fermionic
generator. Consequently, it relates bosons and fermions, which are unified in the
same multiplet. In the minimal case of N=1 SUSY, it is known that only wave-
function renormalization must be taken into account in the quantum corrections
(non-renormalization theorem) [21]. As a result, quadratic divergence does not ap-
pear in the theory.

Just as the Lorentz invariance exhibit enormous power to constrain any possi-
ble form of the Lagrangian, SUSY is also very powerful. It is very convenient to use
a superfield formalism to treat the SUSY Lagrangian, because SUSY is manifest in
this formalism, similar to the Lorentz invariant formalism in the case of the Poincaré
group [22]. If we restrict ourselves to fields whose spin is less than one, there are two
kinds of multiplets. One is a chiral superfield, &, whose physical degrees of freedom
are one Weyl fermion field, v, and one complex scalar field, ¢, called a sfermion.
The other is a vector superfield, V, which describes gauge symmetry, and its physical
degrees of freedom are one vector field, v, which represents the gauge boson and one
Majorana fermion field, A,, called gaugino. In this formalism, renormalizable SUSY
Lagrangian is specified by only one holomorphic function of chiral superfields called



superpotential W(®,;). W(®;) is a cubic polynomial of chiral superfields, ®;, in the
case of a renormalizable theory. From this superpotential, an ordinary interaction

Lagrangian is derived by the following prescriptions:

Ling = Lf+ Ly, (2.1)
1
£ = 3% 3¢13¢J¢C¢J+hc (2.2)
ow

Note that, in this formula, the fermionic interaction and the bosonic interaction
come from the same function, W{(®;), and their coupling constants are related in a
non-trivial manner. In particular, the mass terms of the fermion and the sfermion
come from the same bilinear term of the superpotential, and their masses become
degenerate.

In N=1 SUSY, in addition to ordinary gauge couplings, which are represented
by the covariant derivative D, = 8, + igu;(1T?), two kinds of new gauge couplings

appear, as follows:.

Loauge = {(non-SUSY) — \/ig(%(T“)g/\“qbi + h.c)— %gg > (D)

D* = 33 (¢ (T, (2.4)

i a8
where ¢ denotes the gauge coupling constant and 7 is a generator of the gauge
symmetry. In this formula, the second term is a gaugino-sfermion-fermion coupling
and the third term is a sfermion self coupling. Note that in the third term gauge

fields do not appear.

II Matter contents and Lagrangian

In the SM, there are five kinds of SU(3) x SU(2), x U(1}y gauge multiplets of
a left-handed fermion: ¢, u$, d$, I; and €. Here, superscript ¢ denotes the charge
conjugation of a right-handed field. They have three sets of copies called generation,

and subscript ¢ represents the generation indices (¢ = 1 — 3). In addition to these



matter fermions, there is also one scalar multiplet called the Higgs field, h. Their
transformation properties and charge assignment under the SM gauge group SU(3) x
SU(2);, x U(1)y are summarized in Table 2.1.

| G|u [ dE ] L | e | R
SU@B) (33| 3|1 |1]1
SUQLl21 12 |1]2
Uy lgl-3[3-5]1 |-
B s|-3]-3] 000
L; ¢l 0] 0] 1y-1]0

Table 2.1: The transformation properties and charge assignment of the SM fields.

The interaction Lagrangian of the SM is described as follows:

ocint = CYukawa + EHiggs; (25)
LYukawa - _Eaﬁyeijhae_iljﬁ - eaﬁydi_jhad—z’c‘tqfﬁ
_yﬂijh*au_ﬂiq.?ﬁn (2.6)
A
EHiggs = _M2h*ah‘ﬂr - §(h'tahﬂt)2? (27)

where @ denotes the SU(3) index and a, 3 denote the SU(2) indices. In this formula
the SU(2) invariant tensor, e*°, is defined as €' = €22 = 0, €'? = —€?! = 1. The
square of the Higgs mass, u, in Eq.(2.7) must be negative, to break SU(2); xU(1)y to
U(1)em. Note that all possible renormalizable interactions which are allowed by the
gauge symmetry SU(3) x SU(2), xU(1)y appear in the above formula. Whereas the
Yukawa interaction Lagrangian, Eq.(2.6), has global symmetries called the baryon
number, B, and the lepton number, L. Among them, the lepton number is conserved
for each generation (lepton flavor conservation). Their charge assignment is also
summarized in table 2.1.

To construct a minimal extension of the SM, we need scalar partners for matter
fermions called squarks ; §, @*, d* and sleptons ; I, & and a fermionic partner for
Higgs scalar called higgsino, h. We use tilde as a symbol of a SUSY partner. They

are unified in a chiral superfield so that Q{q,q}, U{u®, @*}, D°{d", J"}, L{l,l~},




E<{e?,&} and H{h,h}. The SU(3), SU(2); and U(1)y gauge bosons (G,, W,
and B,) also have fermionic partners called gluino (G}, wino (W) and bino (B)
respectively. In the N=1 SUSY formalism, the Yukawa interaction comes from
Eq.(2.2), and the scalar potential comes from Eq.(2.3). Comparing Eq.(2.6), (2.7)
and Eq.(2.2), (2.3) the superpotential for the minimal supersymmetric standard

model (MSSM) can be written as follows:
Wirssne = €2 (yeijHiaEfLip + €7 (y4)i; Hia DEQ 15
P (y, )i HaaUS Q5 + €*P uH o Hog, (2.8)

where we note that two Higgs doublets, H; and Hs, are needed even in the minimal
case, because the superpotential must be a holomorphic function of chiral superfields.
It is also demanded by a cancellation of the chiral anomaly which we will discuss in
the section I of the chapter 3. Note that any self-interaction of the Higgs bosons can
not come from a superpotential in the minimal case, because of the gauge invariance.
The self-interaction of Higgs bosons alternatively comes from the gauge couplings
Eq.(2.4). The square of the mass of the Higgs bosons, |u|?, alwa}'fs becomes positive
from Eq.(2.3). We can relax this condition in the next section.

In contrast to the SM, the superpotential, Eq.(2.8), is not maximally allowed
by the gauge invariance. Because we introduced many scalar partners to the SM,
new interactions can be added to the Lagrangian, Eq.(2.5). New contributions to

the superpotential can be parameterized as follows:
Wp = P XjpLiaESLig + €M Lia DSQxgp

+ AL UEDSD;, + P 1 Lio Hog. (2.9)

ijk

This superpotential violates the global symmetry of the SM. The first term, the
second term and the fourth term violate lepton-number conservation. The third term
violates baryon-number conservation. Combinations of these coupling constants are
severely constrained from proton-decay experiments. Although the possibilitiy of
the existence of these renormalizable coupling constants is a very interesting subject,
we do not treat this possibility in this thesis. Alternatively, we simply forbid these
coupling constants by imposing a discrete symmetry, called R-parity, on the theory.

We assign R-parity + to the Higgs superfields H, and Hy and R-parity - to matter

10



superfields Q,,Uf,D¢,L; and Ef. This discrete symmetry forbids a superpotential,
Eq.(2.9) *

IIT SUSY braking and flavor problem in the MSSM

In the previous section, we constructed the minimal SUSY extension of the SM.
This exact SUSY model is, however, phenomenologically unacceptable, because the
square of the Higgs mass is always positive and can not break the SU(2); x U(1}y
gauge symmetry; also all scalar partners of the SM fields and gauginos which have
not yet been discovered are degenerate with their SUSY partners. In order to exclude
the quadratic divergence from the theory, an exact SUSY is not necessary. Some
interactions which violate SUSY can be added without quadratic divergence [23].
The first one is a mass term of the sfermion, and the second one is a mass term of
gaugino; the third one is a sfermion self-interaction, which can be obtained from a
holomorphic function, like the superpotential. They are called soft SUSY breaking
terms. In the case of the MSSM| the soft SUSY breaking terms can be parameterized

as follows:

Loopp = —(mE)y B} E; — (m)y, L’ Ly — (m3y);,Df D
_(m%)ijﬁ;ﬁj - (mgg)ij@:@i - qu] HIHl - mQHQH:'ZrH2
—[(Ae)ije*? Hia B Lig + (Aa)i;* H1aD; Qs
+(Au)5j€aﬁHgaﬁ:Qjﬁ + Eaﬁ[.l.BHlaHzﬁ
+§M1BRBL + §M2WRWL + §M3GRGL + hc] (210)

Because of the above new interactions, we can break SU(2); x U{1)y to U(1)em,- We
can also push the masses of the SUSY partners above their experimental bounds.

These masses, however, can not become much larger than the EW scale in order to

avoid a hierarchy problem.

In the above formula, the mass parameters of the sfermions (mg), mf,, m},

m2 and m%) and trilinear sfermion self-couplings (A4,, A4 and A.) ate 3 x 3 com-

*R symmetry assigns different charges to SUSY partners. In this case, consequently, the SM
fields and the extra Higgs scalar have R-parity + and their SUSY partners have R-parity -.
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plex matrices, which generally can not be diagonalized simultaneously with the
Yukawa coupling constants in the superpotential, Eq.(2.8), which determine the
fermion masses. They can become sources of the FCNC processes and LFV pro-
cesses. Thus, the form of the soft SUSY breaking terms is constrained from such
processes. For example [24], if we assume mixing on the order of the CKM matrix
elements, € o sin f¢, the mass difference of the first- and second-generation squarks,

Ay, is constrained from K°-K° mixing (See Fig.2.1) , so that

1 Am2

(—1)?2 < O(1077) GeV™2 (2.11)
M3

m2
q

In the case of the lepton sector, that of sleptons are constrained from u — ey (See
Fig.2.2) so that

1 Am% -7 -2
!

If we assume M| >~ My ~ 100 GeV, these constraints can be read as

Am% 1

(31 < O(z;) (213)

Ak ‘

(—F) < O(107%). (2.14)
i

Because we introduced about one hundred new parameters, another fine-tuning
problem arises (SUSY flavor problem). There are three possibilities to escape such
phenomenological constraints. In the first case, sfermion masses in the same gauge
multiplet are nearly degenerate. [20, 25, 26} In the second case, the fermion mass
matrices and the sfermion mass matrices are nearly aligned [27]. In the third case,
soft SUSY-breaking masses, which are relevant to the flavor problem, are much
larger than the EW scale in a particular manner with which the hierarchy problem
does not relapse [28]. In any case, to justify such a special pattern of the soft SUSY-
breaking parameters, we can not avoid to discuss the origin of SUSY breaking. In
the next section, we introduce a typical model of SUSY breaking which realize such

constramts.
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FIG. 2.1: Feynman diagram which induces K o_x° mixing. The circle-crosses repre-
sent insertion of flavor changing off-diagonal elements of the squark mass matrix.

[ el
3

FIG. 2.2: Feynman diagram which induces y — e¢v. The cross denotes chirality flip
by the muon mass. The circle-cross represents insertion of lepton flavor violating
off-diagonal element of the slepton mass matrix.

IV  Minimal supergravity model

We know that a fundamental theory must include the SM and the theory of gravity
in accordance with quantum mechanics in a way we have not yet understood. We
have introduced SUSY as a solution for the hierarchy problem of the SM. On the

other hand, SUSY is an extension of the Poincaré group and its further extension to
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a local symmetry naturally includes gravity. Such an extension of SUSY to a local
symmetry is called supergravity (SUGRA). Unfortunately, there is no consistent
quantum theory of SUGRA. However, it is not unreasonable to expect that SUGRA
describes an effective theory of the fundamental theory at the Planck scale.

If we extend a global N=1 SUSY model such as the MSSM to SUGRA, all
of the interactions of matter chiral superfields , ®,, are represented by one function

called the Kahler potential:
K 5
G = —3£og(—§) — log(|W|*) (2.15)

where W(®;) is the superpotential of the global SUSY model. A function K(dleV @)
is given by

K(@le® @) = &le®Vd, -3 (2.16)

in the case of the renormalizable global SUSY model.

In this setup of SUGRA, we can construct a model which spontaneously breaks
SUSY and reproduces the soft SUSY-breaking terms in Eq.(2.10)[29]. In addition
to the MSSM sector, this model has a hidden sector which does not couple to the
SM gauge group, SU(3) x SU(2), x U(1)y, as follows:

W = Whrssar + Whidden- (2.17)

We assume that SUSY is spontaneously broken in the hidden sector. In the global
SUSY case, these two sectors are completely isolated and the SUSY-breaking effects
cannot be observed in the MSSM sector. If we couple these two sectors in SUGRA,
Those SUSY-breaking effects in the hidden sector are mediated to the MSSM sector
thorough higher dimensional operators suppressed by the Planck mass, Mp.

At the Planck scale, it is not reasonable to constrain ourselves to a renormal-
izable theory, because N=1 SUGRA, itself, can not be renormalized. Thus, there
are ambiguities to obtain the Kahler potential which is consistent with the renor-
malizable superpotential, Eq.(2.17), at the low-energy scale. If we take the leading
terms of the Kahler potential expanded by the bilinears of chiral superfields, <I>I D,

(minimal SUGRA) , the effects of SUSY breaking are parameterized by only four

14



parameters: mq, My, Ap and By . In such an approximation, we obtain a universal
boundary condition for the soft SUSY-breaking parameters at the Planck scale, as

follows:

(Au)ij = mOAO(yu)ijy (Ad)ij = moAO(yd)ij, (A[)ij = 7710A0(yt)ij,
B = By,
My, = My = Mz = M,. (2.18)
Then the Lagrangian for soft SUSY-breaking terms becomes as follows:
Lsope = —mo(GGia + W + dids + 120 + E1E)
~[Ao{ ()i M@l lis + (Ya)ije® hiad;Gia + (u)ij€ ™ haalii Gis}

1 — e —_  —— ——
+Bojte® hyghag + 3Mo(BrBL+ WiWy + GrGr) +he]  (2.19)

With these boundary conditions, all of the mass matrices of the scalar partners can
be diagonalized simultanecusly with the Yukawa couplings, and there is no SUSY
flavor problem at the Planck scale.

The above approximation of the Kéhler potential can not be always justified.
A non-minimal form of the Kihler potential could break this universal boundary
conditions. However, this ansatz is very useful as a first approximation to discuss
low-energy phenomenology, because it simplifies the model enormously. We do not
discuss the case of a non-minimal Kahler potential in this thesis.

V Radiative corrections and mass spectrum of

the minimal SUGRA

Even if we take the universal boundary condition at the Planck scale, a radiative
correction between the Planck scale and the EW scale modifies the mass spectrum

'If we assume the soft SUSY braking terms are determined cxactly from the superpotential
(2.8) at the Planck scale, By is related to Ag so that By = Ay — 1. We, however, take By as a
free parameter because the origin of the dimensional parameter, j, in the superpotential is not
understood.

15



of the SUSY partners. A complete set of 1-loop renormalization group equations
(RGEs) for the MSSM are summarized in Appendix A. The radiative corrections
are classified into two parts. The first part comes from gauge interactions, and the
second part comes from Yukawa interactions. The first part is universal for the
flavor structure, and determines the rough spectrum of the SUSY partners. The
second part is negligibly small relative to the first part, except for the top Yukawa
coupling constant. The second part, however, distinguishes the flavor structure. We
discuss the fist part in this section and the effects of the top Yukawa coupling are
discussed in the next section.

The RGEs for the gauge coupling constants and the gaugino masses are given

in Appendix A as follows:

d .
(47r)2Mf—ﬁm/lrgft = bigf, (2.20)

ons @ 2
(4mP MM, = 2bg!M, (2.21)

where g3, g2 and ¢, are the gauge coupling constants for SU(3), SU(2)r and U(1)y,
respectively. The normalization of the /(1) charge is modified from table 2.1 so that
the gauge coupling constant is defined with an extra factor, g, because of a reason

which will be explained in section I of chapter 3. The coefficients for beta functions

are b3 = —3, by =1 and b, = 35—3 If we neglect the Yukawa coupling constants, the
RGEs for the soft SUSY-breaking masses of the sfermions are given as follows:
d .
(47r)2Mmmi, = —8(ckgzM; + A gaM; + cxgi MY), (2.22)

where X distinguishes kinds of sfermions (X = {Q,U, D, L, E}) and we omit the
flavor indices, because the gauge interactions do not distinguish them. In the above
formula, ¢ ,c% and ) are the quadratic Casimir of the gauge groups and U(1) charge
factors. They are given in Table 2.2. This formula is easily solved analytically. If

we define «; = ZL’ the solution is described as follows:

1 1 b Mp
- - Y% 2.2
cup o 27 ID(MW)’ (2.23)
M, = (M, (2.24)
oy p
mi = mg— { o 1)+925(a—§—1)+ ( —1)}M§, (2.25)
X - ‘0 ] b CI2 0 '
by 3P 2 2P h
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(X |QIUI|D|L|E[H |H]

T 4] 2] 3

cx | g |00 51015 |4
L T W S I
X 60 15 15 20 5 20 20

Table 2.2: The quadratic Casimir of SU(3) and SU(2) and U(1) charge factors
which appear in the RGEs of soft SUSY breaking masses.

where Mp and My denote the Planck scale and the EW scale, respectively. Sub-
script P means the value at the Planck scale. If we input experimental values
ag =~ 0.12, ap ~ 0.034 and a; =~ 0.017, the soft SUSY-breaking masses at the EW

scale become as follows:

My ~3.2My, M, =~ 0.8M,,

M, ~ 0.33M,,
m2Q ~mi+85ME mi~ mfﬁ ~ma + 0.6,
my ~ma+8ME,  mi~m?+0.16M2,
m3, ~ mZ + 8MZ, (2.26)

Note that, in this approximation, the soft SUSY-breaking masses of the Higgs
scalars, my, =~ mp,, are always positive, and that SU(2);, x U(1)y can not break to
U(1)em- These formulas, however, are not correct for the third-generation squarks
and H;, because the top Yukawa coupling is comparable to the gauge couplings and

can not be neglected in the RGE.

VI Radiative electroweak symmetry breaking

The top Yukawa contribution to the RGEs are written as follows:

d
(47r)2Mmm2Qa = (gauge) + 2yly.(md, + md, +mi, + AlA),  (2.27)

d
(4%)2]\4mm?u3 = (gauge) + 4y§yt(m2QS + my, +myy, + ATA),  (2.28)
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d
dM Tn,”z = (gauge) + ﬁygyt(még + m?JJ + m?’!z + AIAE) (229)

The effect of these contributions is to reduce the soft SUSY-breaking masses of the

(47) 7

third-generation squarks and H: in Eq.{2.26). Note that the above formulas have
a 1-2-3 structure, so that the contribution for H» is just three-times larger than
that for ¢}3. Also, the contribution for Us is just two-times larger than that for
(23 This structure can be understood as a group factor. H, is an SU(3) singlet,
and the indices of SU(3) of the top Yukawa coupling constant must be closed in
loop diagrams which represent radiative corrections for m3, from the top Yukawa
coupling. The trace of the 3 representation of SU(3) produces a factor of 3. Us
is an SU(2) singlet, and the indices of SU(2) of the top Yukawa coupling constant
must be closed in the loop diagrams which contribute to mU Thus, the trace of the
2 representation of SU(2) produces a factor 2. Because of this group factor, mj;,
is reduced most, and can become negative without breaking the SU(3) symmetry
(radiative EW symmetry breaking) [30].

If we keep only the top Yukawa coupling constant in the RGEs in addition
to the contribution of the gauge interactions, they can still be solved analytically,
except for one integral [31]. Fig.2.3 shows an example for a particular parameter
set.

The Higgs potential for the MSSM is calculated from Eq.(2.3), Eq.(2.4) and
Eq.(2.8) as follows:

Viiggs = milhS1? + m3|h3|* + (mihlh) + h.c.)
]' 3 042 01242
8(591 + g3)(I131F — 13, (2.30)

where m?, m2 and m3 are determined by the soft SUSY-breaking parameters and

the i parameter as follows:
m? = m?‘h + “J,IZ, m% = m%fg + |Ju|23
m: = Bp. (2.31)

Note that quadratic terms are completely determined from the SU(2); and U(1)y
gauge coupling constants. In addition to mg, My and Ag, if we have boundary
conditions for ¢ and B, we can obtain the Higgs potential. Because the quadratic
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FIG. 2.3: Running of the soft breaking masses in the minimal SUGRA. We take
the top quark mass as 175 GeV and the ratio of two Higgs vacuum expectation
values tan 3 equal to 3. As the initial condition of the minimal SUGRA, we take
my = 200GeV, Ay = 1 and My = 200GeV.

term has a flat direction, |hY| = |h|, the mass parameters must satisfy the following

stability condition:
my +mz —2|msf®> > 0. (2.32)

In order to break the SU(2), x U(1)y symmetry, these parameters also must fulfill

the condition
mims — |m3)? < 0. (2.33)

In the numerical calculations of this thesis, however, we rather solve u and B at
the EW scale to obtain correct vacuum expectation values (VEVs), which we want,
because we do not know the origin of dimensional parameter, y, in the renormalizable

superpotential, which takes a value on the order of the EW scale (i problem). If we
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define tan S as the ratio of two VEVs of Higgs fields so that tan 3 = é—ﬁ%%, u and B
1

can be solved from the minimum of Eq.(2.30) as follows:

m2 2
ul* = —(2miy, + Tz) + m(mil — mi, ), (2.34)
sin 23

where mz = (24 + ¢3)(< hY >? + < h§ >?) is the Z boson mass. The stability
condition Eq.(2.32) and the symmetry-breaking condition Eq.(2.33) are translated
into constraints that these solutions must be positive.

After the Higgs bosons acquire VEVs at the EW scale, the gauginos and hig-
gsinos are mixed with each other. As a consequence, they form Dirac fields, which
are called chargino x; (A = 1,2), and Majorana fields, which are called neutralino
x% (B = 1 —4). On the other hand, the sfermions obtain additional masses from
the Yukawa and gauge interactions with the Higgs bosons. In addition, they are
mixed by the left-right mixing masses, which come from the Yukawa couplings in
the superpotential and trilinear scalar couplings in the soft SUSY-breaking terms.
Their mass matrices and their diagonalization are summarized in Appendix B.

VII SUSY CP-violating phases in the minimal su-
pergravity model

In addition to the Kobayashi-Maskawa (KM) phase in the SM, the soft SUSY-
breaking parameters (Mg, Ao, Bo) in Eq.(2.19) and the p parameter in Eq.(2.8) can
have complex phases. They, however, are not all physically independent. As physical
phases of the minimal SUGRA model, we can choose the phase of Ay and the phase of
it. The phase of the universal gaugino mass, ¢ay,, can be absorbed by gaugino fields
BW and G. To retain Eq.(2.4), we can also rotate the phase of the Weyl fermion
fields, ¥;, by d’—’;ﬂ. To keep Eq.(2.2), this means that we rotate the total phase of the
superpotential by —¢ay,. From Eq.(2.2) and (2.8) we can absorb this total phase by
rotating the Higgs fields h;,hy and their fermionic partners simultaneously by —@ay,,
and also rotating the phase of p by ¢p,. The net result is a p parameter with an
additional phase, ¢3;,. The phase of By can be absorbed by rotating the phase

of the Higgs field ,h,, and its fermionic partner simultaneously. It then appears
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as a phase of u and y,. The total phase of y, can be absorbed by rotating the
phase of right-handed up-type quarks, u{, and their scalar partners simultaneously.
The net result is also a ¢ parameter with an additional phase. These new phases
cause electric dipole moments (EDMs) of various particles through 1-loop diagrams,
including SUSY partners [40, 41]. We summarize the useful formulas for the EDMs
in Appendix F.
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Chapter 3

Supersymmetric grand unified
theory (SUSY GUT)

I Gauge-coupling unification in the MSSM

We introduced SUSY from a purely theoretical reasoning to remove any fine tuning
from the SM. We then constructed the MSSM as the minimal SUSY extension of
the SM. Nevertheless, there is a strong experimental indication that the MSSM is a
part of nature.

The SM gauge group, SU(3) x SU(2), x U(1)y, includes an Abelian subgroup,
U(1)y. In general, normalization of the U(1) generator is arbitrary. However, the
U(1) charges of different SU(3) x SU(2), multiplets listed in the table 2.1 are
quantized by %. This fact seems to be unnatural. There is an another “miracle”
that the chiral anomaly of the SM is canceled. In other words, the sum of the U(1)
charge listed in table 2.1 and the sum of its cube become zero if we take into account
the SU(3) and SU(2),, indices, as follows:

(é)><6+(—§)x3+(%)><3+(%)><2+(—1)=0,

(P %6 (2P %35 (3 x31 (3P x24 (-1 =0 @)

This fact seems to be very unnatural. This condition is indispensable for the SM
to be a consistent quantum gauge theory. These facts can be explained naturally if
we identify the SM multiplets as being parts of the representations of some kind of

simple Lie group, &, which includes the SM group as its subgroup. In such a context,
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the SM can be realized as part of a unified theory which has gauge symmetry G.
Such a unified theory is called a grand unified theory (GUT).

The minimal choice of the GUT group, G, is SU(5) [32, 33, 34]. To cast the SM
gauge group in SU(5), we must multiply the factor \/g to the U(1} charge listed in
table 2.1 because the normalization of the SU(5) generators is determined by their
commutation relations. Fig.3.1 shows the running of the gauge coupling constants
for the MSSM and the SM. They are calculated from Eq.(2.21) while taking into
account the U(1) normalization factor. In the MSSM case, these three coupling
constants meet at one point of the energy scale, Mg ~ 2 x 10'®. This is a very
non-trivial result, because these coupling constants are completely independent in
the MSSM. The GUT hypothesis described above can explain this fact naturally.
The SM gauge group was originally a part of the gauge group G characterized by one
gauge coupling constant above the energy scale Mg. The three coupling constants
of the MSSM are split by the radiative corrections after this original symmetry G is
broken to SU(3) x SU(2);, x U(1)y at the GUT scale M. There are various choice
of the GUT group G which include the SM group. In this thesis, we discuss the
minimal case of SU(5) and the next-minimal case of SO(10) which includes SU(5)
as its subgroup [35].

II Minimal SU(5) and SO(10) GUT

The SM group SU(3) x SU(2);, x U(1}y include 4 generators which can be diago-
nalized simultaneously. Then, the rank of the GUT group must be equal to or lager
than 4. SU(5) is a simple Lie group of rank 4. The SU(3) index @ =1 — 3 and the
SU(2)r, index « = 1,2 can be cast in the index of a fundamental representation of
SU(5) so that a = {d,a}. Then, the matter superfields in the MSSM can be unified

in the 10 representation and the 5 representation of SU(5) as follows:

. eaBaUg —_)as _ D§
(T = ‘ EAN IR AN RNEY)

QTarb | _EaﬁEc _€QﬁLE

Two Higgs doublets in the MSSM can be cast in the 5 and 5 representations of
SU(5) if we introduce colored Higgs superfields, Ho* and Hc;, in addition to the
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FIG. 3.1: Running of gauge coupling constants in the MSSM (left) and the SM
(right). M indicates the renormalization scale in GeV. a;, a; and a3 denote the
square of the gauge coupling constants normalized by 4= for U(1), SU(2) and SU(3)
respectively. They are calculated from Eq.(2.21) in the previous chapter. In the SM,
the coefficients of the beta functions are calculated so that by = —7, by = —% and
by = 4. A general formula is given in Appendix A.

MSSM superfields as follows:

ae=| 5 @.=| fo (3.3)
Hza _EGBHI

Then, the SU(5) invariant renormalizable superpotential which reproduces the Yukawa
superpotential of the MSSM, Eq.(2.8), under the above decomposition can be writ-
ten as

1 — —
Wsy(sy = gfabcde(yu)ijﬂabﬂ?dH 4 (Ya)i; FiaT{ Ho, (3.4)

where ¢, j are generation indices and a,b, ¢, d, e are SU(5) indices. The SU(5) in-
variant antisymmetric tensor, €,p.4e, 18 defined so that €19345 = 1. %, is symmetric in
the SU(5) model. Froin the above formula, It can be seen that the Yukawa coupling
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constants of leptons are related to that of down-type quarks as

Ye = Y3 (3.5)

In addition to the Yukawa superpotential, Eq.(3.4), we need a Higgs sector
which is responsible for the spontaneous breaking of SU(5). There is a minimal
model which includes an adjoint Higgs superfield, ¥¢, in addition to the above
superfields [33]; however, we do not discuss the details of SU(5) breaking in this
thesis, because our discussion about LFV is almost independent of it.

SO(10) is a simple Lie group of rank 5 which includes SU{5} as a subgroup.
The 16 representation of SO(10) can be decomposed into SU(5) representations
so that 16 = 5 + 10 + 1. If we introduce three generations of the SU(5) singlet
superfield, NN;, all of the matter superfields in the SU(5) (MSSM) can be unified into
the 16 representation of SO(10) so that U;{F;, T;, N;}. The 5 and 5 representation
Higgs superfields, H and H, in the SU(5) GUT can be cast in a 10 representation
of SO(10). The SO(10) invariant renormalizable superpotential which reproduces
the Yukawa superpotential of the MSSM Eq.(2.8) can be written as

1 1
Wso@o) = §(yu)ij‘l’i¢’u‘1’j+§(yd)ij‘l’i¢’d‘1’j, (3.6)

where note that we have introduced two 10 representation Higgs superfields, ®,{ H, F’}
and ®4{H', H} for the up- and down-type Yukawa coupling constants. H’ and H
are other 5 and 5 multiplets of SU(5). Without these two Higgs superfields, the
CKM matrix can not be reproduced in this minimal model. In the minimal SO(10)
case, the two Yukawa coupling constants are symmetric about the flavor indices. The
GUT relation between the lepton Yukawa coupling constants and those of down-type
quarks, Eq.(3.5), also holds in the SO(10) model.

III Bottom tau unification and non-minimal model

The GUT relation for the Yukawa coupling constants Eq.(3.5) at the GUT scale
predicts the ratio of the masses of the down-type quarks and charged leptons [36].
If we take into account only the gauge coupling constants in the RGEs for the

down-type and lepton Yukawa coupling constants, the ratio can be calculated as
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follows:

Vi L (@
Ye, Gy G
~ 24, (3.7)

where o ~ 3; denotes a unified value of o; (i = 1 — 3) at the GUT scale. For
the third generation, this relation seems to be good, because my ~ 4GeV and
m, =~ 1.777GeV. Detailed calculations including the Yukawa coupling constants
shows that the GUT relation can be satisfied for small and large tan 5 [37]. On the
other hand, for the first and second generation, this relation can not explain the

experimental data:

ms 1% 10% MeV

~ Mev 3.8
m, 106 MeV (38)
my 7 MeV

me 0511 MeV’ (39)

This mismatch, however, is not a fatal defect of the SUSY GUT. We assumed a
minimal form of the superpotential which only includes renormalizable couplings
in Eqgs.(3.4) and (3.6). Because the GUT scale is only two orders of magnitude
below the Planck scale, where the SUSY GUT must be cut off, there is no reason
to exclude non-renormalizable higher dimensional operators which are suppressed
by the Planck mass, Mp, in the superpotential. They can also contribute to the
Yukawa coupling constants of the MSSM after the GUT symmetry is broken. The
small Yukawa coupling constants of the first and second generations may be affected
much from these contributions. These contributions depend on the details of the
models and the mechanism which breaks the GUT symmetry. We do not discuss
such details of non-minimal models in this thesis, but rather focus on the universal

features of SU(5} and SO(10) SUSY GUT.

IV Radiative corrections and mass spectrum of
the SUSY GUT

Because we set the cut-off of the MSSM at the GUT scale, the approximate formulas

of the RGE corrections for the first- and the second-generation sfermions in the
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previous chapter Eq.(2.26) are replaced as follows:

My~ 29Mse, M, = 0.82Msq,
M, ~ 0.41 My,
my = mb, + TIME g,  mi ~mi,+05M,,
mé ~mi . +6.6M2,, mi~mi,+0.15M7,,

mp ~ my, +6.6Mi,  my, ~my .+ 05MI, (3.10)

where subscript G means the value at the GUT scale. Mjs represents a unified
value of the gaugino masses at the GUT scale. The ratio of three gaugino masses
satisfy well-known relation M : My : M; ~ 7 : 2 : 1. These boundary conditions
for the soft breaking terms of the MSSM at the GUT scale are determined by the
physics above the GUT scale. We simply assume that the SUSY GUT with the soft
SUSY-breaking terms describes the nature up to the Planck scale, and that SUSY
is broken at the Planck scale by the minimal SUGRA described in section IV of
the previous chapter. This assumption is essential for the discussion of this thesis,
whereas another possibilities also can be considered [25].

The soft breaking terms for the SU(5) SUSY GUT are parameterized as follows:
~af

Csoft = _(m%’)uf‘f TP - (m2—)F _ﬁ’-ja - m%HlH“ — m?ﬁF“THa

1 - -
_{g(Au)ijfabcdeﬂ“bi’?dHe + (Ad)ijFia’_T;be

) E—
+§M5A5RA5L + hC} (311)

where we used same symbols for superfields and their component fields for abbre-
viation. T, F are scalar components of the superfields T, F' and A; is the SU(5)
gaugino. These parameters satisfy the universal boundary condition at the Planck
scale similar to the case of the MSSM, as follows:

M5 = MU)
mE = mk = mll, m§ = mi = mg,
(Au)i; = moAo(Yu)ij, (Ad)iz = modo(ya)is- (3.12)
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These conditions receive radiative corrections between the Planck scale and the GUT
scale. RGEs for the minimal SU(5) SUSY GUT are summarized in Appendix A.
These radiative corrections are also classified to the contribution from the gauge
interaction and the contribution from the Yukawa interactions. The latter contribu-
tion has an important meaning for flavor physics. It is a main subject of this thesis,
and we discuss the details of this correction in the next chapter. In this section,
however, we discuss the former contribution to see the rough spectrum. Because we
assumed a minimal model which includes an adjoint Higgs field, the coefficient of-
the gauge beta function becomes b; = —3. Thus, the radiative correction for the

gaugino mass becomes as follows:

If we neglect the Yukawa coupling constants in the RGEs, using a similar formula
to Eq.(2.23), the soft SUSY-breaking mass parameters for the first and second gen-

erations at the GUT scale are approximated as follows:
2 2 2
Mra = Mg+ 0.47My, (3.14)
My, ~ mype ~ m§+0.32M;. (3.15)
5 18 (8 12

The quadratic Casimir for 10 ( 5 ) representation of SU(5) is ¢§ = 2 (& = 2).

SU(3)xSU(2), xU(1)y decomposition gives boundary conditions for the soft SUSY-
breaking parameters of the MSSM at the GUT scale, as follows:
A, = A7, (3.16)
ma = mi = My = Mipg, Mj = mp = 'm%c,

My, = Mg, Mip, = Mg, M1 = My = My = Msg. (3.17)

Combined with Eq.(3.10), we obtain an approximated formulas at the EW scale, as

follows:
Mz ~ 3.2M,, My ~ 0.88M,

A{[I ~ 045M{],
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myh ~my+89M,  mi ~my ~mg+ 0.94M;,
m2U ~mi+84MZ,  mi ~m3+ 0.65M2
m% ~ md + 8.2M3.
(3.18)

Because of the running between the Planck scale and the GUT scale, the contribu-
tions from the gaugino mass to the slepton masses becomes large compared to the
case of the MSSM, Eq.(2.26).

In the case of the SO(10) SUSY GUT, the soft SUSY-breaking terms can be

written as
Lsosr = —(my)i;¥IT; — md @10, — m 2l0q

1 1 N
_{§(Au)ij‘1’i¢’u‘1’j + §(Ad)z'j‘1’i‘1’d‘1’j + §M10)\10R)\10L

+h.c.}, (3.19)

where we used same symbols for superfields and their component fields. ¥ is the
scalar component of the superfield ¥ and Ay is the SO(10) gaugino. These param-

eters satisfy the universal boundary condition at the Planck scale, as follows:

Ml(l = MO:
m?p = mol m%u = méd = mg,
(Auw)i; = moAo(Yu)ij,  (Aa)i; = moAo(ya)s;- (3.20)

The RGEs for the minimal SO(10) SUSY GUT are also summarized in Appendix
A. The radiative corrections for the first and second generations are approximated

as follows:
my, ~ mi+0.74ME, (3.21)
My, = g+ 0.59M¢. (3.22)

The quadratic Casimir for 16 ( 10 ) representation of SO(10) is ¢} = £ (cclp(l L=2)
Decomposition to the SM group shows that the boundary conditions for the soft
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SUSY-breaking parameters of the MSSM at the GUT scale is given by:

Ac = Ad:

my =mi =mh =m} = mé = m3 o

Mir, = Mg My, = Mo, M= Moy = My = Mg (3-23)

Combined with Eq.(3.10), the approximated spectrum for the first and second gen-
eration at the EW scale becomes as follows:

My~ 3.2M,, My ~ 0.88M,,
M ~ 0.45M,,
m?) ~md+92M;,  mi ~mi+ 1AM,
my; =~ mg + 8.TME,  mi ~mi + 0.92MZ,
mp ~mf+8.6M5,  mi ~mg+ 1L2ME. (3.24)

In this section, we took into account only the renormalization effects from the
gauge interactions. Contributions from the Yukawa interactions modify the above
spectrum. In particular, the effect of the top Yukawa coupling can not be neglected.
The third-generation squarks and H, become considerably lighter than the above
spectrum. The radiative EW symmetry-breaking scenario described in section VI
of the previous chapter also works in the SUSY GUT. In addition to the radiative
EW symmetry breaking, another important consequence of the large top Yukawa
coupling constant is new contributions to flavor physics. In the next chapter, we
consider the LFV processes induced by these renormalization effects of the Yukawa
couplings in SUSY GUT.
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Chapter 4

SUSY GUT and lepton flavor
violation (LFV)

I LFV in the SUSY GUT

Now that we have reviewed the SUSY GUT and the minimal SUGRA, let us go to
the main subject of this thesis: LFV in the SUSY GUT. As discussed in section
IV of chapter 2, there is no source of LFV in the MSSM if we assume the flavor
blind condition for the soft SUSY-breaking terms at some high-energy scale, such
as the Planck scale. Radiative corrections between the high-energy scale to the EW
scale do not change the situation, because the MSSM interactions conserve lepton
flavor. However, if we assume SUSY GUT, the GUT interaction which violates
lepton flavor can become a source of LFV through the radiative correction to the
soft SUSY breaking terms between the Planck scale and the GUT scale [38]. In this
chapter we explain the mechanism which induces LFV in the SU(5) and SO(10)
SUSY GUTs and discuss qualitative features of LFV interactions specific to these
two theories. There are various LFV processes, such as 4 — ey, ¢ — 3e, p—€
conversion, 7 — Iy, and 7 — 3I. In particular, we focus on the g — ey and y — 3e
processes in this thesis because we can define various P- and T-odd asymmetries
relative to the muon polarization. We discuss a possibility to use these observables
to distinguish the different SUSY theories in subsequent chapters.
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II Effective Lagrangian for y* — ¢’y and pu* —
etete™ processes

Before explaining the mechanism which generates LFV processes in the SUSY GUT,

we present the effective Lagrangian for the 7 — e*y and pt — e"ete™ processes.

Using the electromagnetic gauge invariance and the Fierz rearrangement, we can

write without any loss of generality *:

4G
L = F {mﬂARﬁaWeLFW + muALmO'FWCRFpu

V2

+a1(ftrer)(€rer) + G2(Fizer)(ezer)
+33(ErY er) (@R VueR) + Ja(FEL Y er)(BLVueL)
+s(FrY er)(@Lvuer) + de(Br Y er)(ErYueR) + hec.}, (4.1)

where Gr is the Fermi coupling constant and m,, is the muon mass. The chirality
projection is defined by the projection operators Pp = %‘ﬁ and Pp = %ﬁ Opwr
is defined as g, = %[y, 7). AL(Ag) is a dimensionless photon-penguin coupling
constant which contributes to u* — efy (u*t — e}tvy). These couplings also induce
the ut — etete™ process. §;’s (i = 1 — 6) are dimensionless four-fermion coupling
constants which only contribute to y* — eTe*e™. § and §; are scalar type coupling
constants and §’s (1 = 3 — 6) are vector-type coupling constants. A; g and §’s
(¢ = 1—6) are generally complex numbers, and are calculated based on a particular
model with LF'V interactions. We first discuss them based on the SU(5) SUSY GUT

and introduce the SO(10) SUSY GUT later.

III SU(5) SUSY GUT

As discussed in section IV of the previous chapter, at the Planck scale the soft SUSY
breaking parameters satisfy flavor-blind universal conditions which are implied in
the minimal SUGRA model Eq.(3.12). With these conditions the lepton and slepton
mass matrices can be diagonalized simultaneously at the Planck scale, and therefore

*We include the contributions from off-shell photon-penguin amplitudes in the four-fermion
coupling constants
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there is no LF'V at this scale. The radiative correction from the gauge interaction
discussed in the last section of the previous chapter does not change the situation.
However, radiative corrections from the Yukawa couplings between the Planck scale
to the GUT scale break such a universality about flavor indices under these condi-
tions. Especially, the correction from the large top Yukawa coupling constant can
not be neglected. As a result, the magnitude of the 3-3 element of the mass matrix
for the 10 scalar fields becomes smaller than the 1-1 and 2-2 elements. On the basis
where y, is diagonalized at the Plank scale, the mass matrix for the 10 scalar fields

at the GUT scale is approximately given by:

m
my o m? :
m? 4+ Am?
3 Mo
Am? o~ _§F|(y“)33|2m3(3+|A°|2)IH(M_G)’ (4.2)

where Mp and Mg denote the reduced Planck mass (~ 2 x 10®GeV)and the GUT
scale (~ 2 x 10'®GeV). This correction amounts to about 50% of their original values
and the lepton and slepton mass matrices are no longer diagonalized simultaneously.
This becomes a source of LFV, which could induce observable effects in ut — e [6].
On the basis where ¥, is diagonalized at the Planck scale, y, at the GUT scale still
remains approximately diagonal. On this basis, y. is diagonalized in the following

way:
Vay.V] = diagonal, (4.3)
where V}, and Vp are unitary matrices and, using Eq.(3.5), Vg is given by
(VR)g = (Veka)s, (4.4)

where V3, is CKM matrix at the GUT scale.
It is useful to make unitary transformations on E; and L; to go to the basis
where v, is diagonalized at the GUT scale. In the new basis, the off-diagonal element

of m% is given by

3 . M
(m%)i ~ W—E(VCOKM)31'(VCOKM)3J'|(yu)33|2mg(3 + |Ao[?) In(=2). (4.5)
8 M
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The off-diagonal element of the slepton mass matrix becomes a source of LFV.

In an actual numerical analysis, we solved the MSSM renormalization group
equation from the GUT scale to the electroweak scale, and determined the masses
and mixings for SUSY particles. We also required the electroweak symmetry break-
ing to occur properly to give the correct Z-boson mass, as discussed in section VI
of chapter 2. From the MSSM Lagrangian at the electroweak scale we can derive
the LFV coupling constants, Ar,g and 1, through 1-loop diagrams involving the
slepton, gaugino and higgsino. The complete formulas are given in Appendix I.

In the SU(5) model, only the right-handed slepton mass matrix can develop
off-diagonal terms if the ratio of the vacuum expectation values of two Higgs fields
(tanjg = %%) is not very large. In such a case, only Ay, g3 and §s have siz-
able contributions. Restricting to small or moderate tan 3 cases, all effective cou-
pling constants are proportional to the product of the CKM matrix element, A, =
(VEkat)32, (VEkar) %1 since the LEV transition occurs through (m%)a; or (m%)3,(m2)a;.
This situation does not change even if we take into account the LFV transition due to
the left-right mixing of the slepton mass matrix. This means that the CP-violating
phase of Yukawa coupling constants cannot make a phase difference among the LFV
coupling constants. Thus, as we will discuss in the subsection II.1 of the next chapter
it can not generate any observable effects in the LFV processes.

There is another important source of CP-violating phases in soft SUSY break-
ing terms, as discussed in section VIT of chapter 2. Within the SUGRA model,
we can introduce four phases, phases of My, Ay, B and y, but not all of them are
physically independent. By field redefinition, we can take the phases of Ag and u
as being independent phases. Since these phases also induce the electron, neutron
and Hg EDMs [40, 41], we take into account these EDM constraints to obtain the
allowed region of the SUSY phases.

Up to now we have considered that the Yukawa coupling constants are given
by Eq. (3.4), so that the lepton and down-type quark Yukawa coupling constants
are related at the GUT scale by Eq. (3.5). On the other hand, as discussed in
section III of the previous chapter, it is known that this relation does not reproduce
realistic mass relations for charged leptons and down-type quarks in the first and
second generations. It is therefore important to study how the prediction for LFV

processes depends on the details of the origin of the Yukawa coupling constant in

34



the MSSM Lagrangian. One way to generate a realistic mass matrix is to introduce
higher dimensional operators in the SU(5) superpotential. Once this is done, the
simple relationship between the charged lepton and down-type quark Yukawa cou-
pling constants does not hold. Although the effect of higher dimensional operators
is suppressed by O (%g), the masses and mixings for the first and second genera-
tions can receive large corrections to the GUT relation. If tan 3 is not very large,
LFV is still induced only for the right-handed slepton sector, and Eq. (4.5) holds
with a replacement of V3, by V2, which is not necessary related to the CKM
matrix elements. In the following, therefore, we treat A, as a free parameter. Since
the u* — ety and the ut — etete~ branching ratios are proportional to |A,|?,
we present these branching ratios divided by |A.|°. If tang is as large as 30, the
bottom Yukawa coupling constant can induce the LFV in the left-handed slepton
sector. In such a case, if we include the effect of higher dimensional operators at the
GUT scale, there are photon-penguin diagrams which are proportional to m,; these
contributions tend to dominate over other contributions, as shown in [42]. Because
the LFV branching ratios depend on many unknown parameters in such a case, we

do not consider this possibility here.

IV SO(10) SUSY GUT

In contrast with the SU(5) SUSY GUT, in the SO(10) SUSY GUT, all matter
fields are unified in a single representation, ¥, of SO(10), and the masses of all
squarks and sleptons of the third generation receive a large correction due to the
renormalization effect by the top Yukawa coupling constant. In the y,-diagonalized
basis, the difference between the mass of the third-generation sfermion and that of

the first and second generation is given by

5 Mp
ol = =5 lalm3(3 + 1ol (D) (46)
where the symmetric matrix, ., can be expressed as:

Ye = UTPgeUt
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ez¢l
P = 2 : (4.7)

81‘153

Here g, is a real diagonal matrix, and therefore the unitary matrix, U, is related to
the CKM matrix at the GUT scale as

v = VCOLM- (4.8)

If we go to the y.-diagonalized basis at the GUT scale, the off-diagonal elements of

slepton mass matrices become as follows:

5 itd— . M
(m%)y =~ —a2€ (9 %)(VCOKM)BI'(VCOKM)MI(yu)33|2m(2)(3+ |40]*) ln(_P)C4-9)
81 ﬂJG
2..~_iV0 * (V9 . 2m2(3 A21% 4.10
(my)y = 8ﬂ_g( crem)3i(Vora)sil(ya)asl"mg (3 + [Ao|) H(MG)' (4.10)

Since the left-handed slepton also has the LFV effect in the case of the SO(10)
SUSY GUT, there are dominant photon-penguin diagrams which are proportional
to m, in the slepton left-right mixing, as discussed in [7] . These contributions come
from neutralino-charged-slepton loop diagrams (see Fig.4.1). There is an another
diagram which only contributes to Ag (see Fig.4.2). In spite of no m, enhancement,
this chargino-sneutrino loop diagram is comparable to the neutralino diagrams which
are proportional to m, if the chargino mass is not very much larger than the slepton
masses. However, it becomes dominant as the slepton masses become larger. A
detailed discussion using approximate formulas is given in Appendix D.

In addition to the KM phase, there are two physical phases in Eq. (4.7) up to
an overall phase. A combination of these phases and the KM phase is responsible
for the electron EDM through the diagrams in Fig.4.3 [7, 43]. Because this diagram
is obtained by simply replacing the LFV coupling constants in Fig.4.1, there is a
simple relation between the electron EDM and the p+ — e*+ branching ratio, if the
photon-penguin diagram proportional to m, dominates in the p* — ¢ty amplitude

[7]. Defining a phase as

Im[@i(m_m){(vcoknf)al(Vc(:)KM);a}Q] = |(VCOKM)31(VC(‘)KM);3|2 sin ¢, (4.11)
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the relation is given by

B(p — ev)

To-12 |sing| (107%"e - em). (4.12)

de| = 1.3

However, the diagram proportional to m, does not necessarily dominate over other
diagrams when the chargino-neutralino loop contribution becomes large. In such a

case, the above relation does not hold.

-ime(Aa/y +it tanp) imy(Asafy+ptanp)
TR 5. % T 3T
, /,3’ * "TL\\ , \ /,'1' * -m'i\ )
-i{mg)s; X X -i(mi)s, ‘i(mL)23/® ®\‘i(mE)31
~ /, \\ - ~ Mo
Hr e Y &R
Kg i \ €L He i er
—d — b —>
i o

FIG. 4.1: Two dominant diagrams which are proportional to m. in neutralino-
charged-slepton loop diagrams. They contribute to Ap and Ay, respectively. The
cross denotes a chirality flip and the circle-crosses denote LFV coupling constants,
which are given by Eq. 4.9, if we neglect the renormalization effect between the

GUT scale and the EW scale.
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FIG. 4.2: Dominant diagram in Chargino-sneutrino loop diagrams which only con-
tributes to Ar. The cross denotes chirality flip and the circle-cross denotes a LFV
coupling constant.
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FIG. 4.3: Dominant diagrams which contribute to the electron EDM. The cross
denotes a chirality flip and the circle-crosses denote LFV coupling constants.
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Chapter 5

LFV processes with polarized
muons

The previous chapter discussed the LF'V processes in particular models : SU(5) and
S0(10) SUSY GUT. In this chapter, however, we return to the general effective
Lagrangian, Eq.(4.1), and develop a model-independent framework for analyzing
put — ety and ut — etete” processes with polarized muons. We fix the kine-
matics of the u* — et~y and ut — etete™ processes in the center-of-mass system
of the muon, and define various P- and T-odd asymmetries relative to the muon
polarization. In the next chapter we discuss the SU(5) and SO(10) SUSY GUT

numerically using these observables.

I ut — e*y process

First, we discuss the u* — e+ process with polarized muons. Using the effective
coupling constants defined in Eq.(4.1), the differential branching ratio for ut — ety
is given by

dB(u* — e7y)

— 2 2 9 _
T = 1920 {|Al' (1 + Peos6) + |Axl*(1 - Pcos6)}  (5.1)

+ ot
2(“—26—7){1 + A(p* — eTy)Pcos b}, (5.2)

where the total branching ratio for pyt — ety (B(ut — etv)) and the P-odd
asymmetry (A(ut — et)) are defined as

B(ut —ety) = 3847%(|ALl® + |ARP), (5.3)
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|AL]? — |Agl?

; 54
AL T | ARP (5:4)

A(p — e'y)
Here, P is the muon polarization and # is the angle between the positron momentum

and the polarization direction.

II ut —e'ete process
II.1 Kinematics of um — e7ete™

Next, we discuss the ut — eTee™ process with polarized muons. The kinematics
of this process is determined by two energy variables of decay positrons and two
angle variables which indicate the direction of the muon polarization with respect
to the decay plane. In Fig. 5.1 we take the z-axis as the direction of the decay
electron momentum (p3) and the z-z plane as the decay plane. Polar angles (8, ¢)
(0 < 6 <70 < ¢ < 27) indicate the direction of the muon polarization, P. We take
the convention that the decay positron having a larger energy is named positron 1
and the other is positron 2 and {p;), > 0. We define the energy variables as z; = %}
and z; = %’ where E; and F» are the energy of positron 1 and 2, respectively.
In this convention (x;,z2) represents one point of the Dalitz plot (Fig. 5.2). In our
calculation we neglect the electron mass compared to the muon mass, except for the
total branching ratio. To evaluate the total branching ratio we have to take into
account the electron mass properly in order to avoid a logarithmic singularity .

Using the coupling constants in the Lagrangian in Eq.(4.1) the differential
branching ratio for u* — e¥ete™ is written as follows:

dB
dxydrod cosdp

= %[C’lql(ml,wg)(l + Pcos®) + Coay(xy,32)(1 — Pcosh)

+ Cs{aa(z1,z2) + PBi(x1,22) cos @ + Py, (21, 22) sinf cosp}
+ Cy{as(z,x2} — PBi(z1, 22) cos8 — Pyi(xy, 22) sinf cos ¢}
+ Cs{az(zy,22) + PBa(xy, 25) cos 8 + Prye(xy,33) sinf cosp}

+  Celas(zy, zo) — PBa(xy, x9) cos8 — Pryy(xy, z2) sinfcosp}
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FIG. 5.1: Kinematics of the ¥ — eTete™ decay in the center-of-mass system of
muon. Plane I represents the decay plane on which the momentum vectors gy, pa, D3
lie, where 7 and 7, are momenta of two e*’s and P is momentum of e~ respectively.
Plane II is the plane which the muon polarization vector P and p; make.

+ Cr{os(z1,22)(1 — Pcosb) + Pys(z1, z4) sin b cos ¢}
+ Cg{as(zy,z2)(1 + Pcosl) — Pys(zy, x2)sinfcosp}
4+ Co{as(z1,z2)(1 + Pcosf) — Pyy(z, z;) sinf cos ¢}

+ Crofas(zy, z2)(1 — Pcos®) + Pyy{xy, z2) sinf cos ¢}

+ C11Pys(zy, z) sin B sing — CroPys(z1, o) sinfsing], (5.5)

where C; are expressed by the coupling constants §; (i =1 —6) and A g as:

|91| 2 |£§’2|2
= -+ Cy =
G = 16 | 3' =T 16

Cs = |45%, Ci = |ds|*,Cs = |leAr|*, Cs = |eAL[*,

+ |§'4|2)

C7 = Re(eArg;), Cs = Re(eALgs), Cs = Re(eArgg), Cro = Re(eArgs),
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Ko

0.5 -

FIG. 5.2: Kinematical region of the u* -—— e*ete™ decay in the center-of-mass
system of the muon. z, (22) represents a larger (smaller) energy of decay positrons
normalized by . The light shaded region is allowed.

Ci = Im(eARQJ + CAL,Q‘;), Cip = Im(eARf]; + CALQE), (56)

where e(> 0) is the positron charge and P is the magnitude of the polarization

vector. Functions «;, 3; and +y; are defined as follows:

051(351,332) = 8(2 — T — 3)2)(3)1 + 9 — 1)J (57)

(J!g(.’L‘l,.’L‘z) = 2{.‘13](]. - .’L']) + .’1?2(1 — Sl’,'z)}, (58)
222 — 20+ 1 222 22,41

' = /{2 L , 5.9

az(zy, Z2) { T —2, O 1-g } (5.9)

ag(zy, z2) = 32(z; + 23 — 1), (5.10)

as(zy,2) = 8(2—x1 — I2), (5.11)

(.‘131 + IEQ)(’E? + .’Eg) — 3(231 + 232)2 + 6(.1’.1 + .'L'Q) —14

Bz, ) = 2
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B s 1§ e T e

{2(zy + 932)(:1:"13 + :cg) — d(xy + 2)(20F + 2129 + 229)

+(192% + 30z, 25 + 1923) — 12(21) + 235 — 1)}, (5.13)
%m@ﬂzéyuﬂmug?gjg_MQ_m, (5.14)
ey an) = 92\ e (515
(ena) = 16, 1(”3;;“’1“_22)(331 + 23— 1)(m2 — 7)), (5.16)
(@, ) = S\J (1("11;)"”(21__22)(2 — 31— 25) (w2 — ). e

In Eq. (5.5) there are three classes of terms: the first contribution arises
from the four-fermion coupling constants (C;_4) and the second from the photon-
penguin coupling constants (Csg); the third comes from interferences between the
four-fermion couplings and the photon-penguin couplings {C7_;2). In our approxi-
mation, neglecting the electron mass, there is no interference between the photon-
penguin couplings and among the four-fermion couplings by themselves because the
chirality of the electrons can not be matched between these couplings. For the
same reason, the scalar-type coupling constants, §; and §;, can not interfere with
the photon-penguin coupling constants, Ag and A;. The angular dependence with
respect to the polarization direction is classified into four types, namely, terms pro-
portional to (i) 1, (ii) cos#, (iii) sin@cos ¢, and (iv) sin@sing. Under the parity

operation (P}, 8, ¢ transform as follows:

0 - wT—48,

T—p (0<p<m)
L {3#—90 (mr<ep<2m)’ (5.18)

so that terms proportional to (i) and (iii) are P-odd. On the other hand the time-
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reversal operation (T) induces the following transformation:
6 — 0, ¢ —2m— . (5.19)

Thus, only terms proportional to Cy; and Cjo are T-odd quantities. Notice that
these terms are given by imaginary parts of the interference terms between the
photon-penguin and vector-type four-fermion coupling constants. This means that
the effects of CP violation can be seen only through a phase difference between these
two coupling constants. As we discussed in the previous chapter, in the case of
SU(5) SUSY GUT, the KM phase of the Yukawa coupling constants is factorized as
a overall phase of LFV coupling constants. We can not observe such a CP-violating

parameter through the u* — etete™ process.

II.2 Branching ratios and P and T-odd asymmetries

It is convenient to define integrated asymmetries in order to separate four angular
dependences, although in principle we can determine C; separately by fitting the

experimental data in full phase space. In the Dalitz plot, a3 and f; have a singularity

1
1—x1,2

in the region near to the kinematical boundary (z12 ~ 1). 72, vz and 74

1
l—z32

photon-penguin amplitudes, whereas 3 and -4 come from interferences between

as

have a weaker singularity as a3, (2, and 7y, arise as the square of the

the photon-penguin and four-fermion terms. On the contrary, contributions from
the square of the four-fermion coupling constants have no singularity on the edge,
and have a rather flat shape. These singular behaviors are cut off if we take into
account, the electron mass. To show this behavior explicitly, we first integrate over
a smaller positron energy, o, while fixing the larger positron energy, x;, and define
the following differential branching ratio and three types of asymmetries (ap, ,ap,

and ar) as a function of the larger positron energy z, (% <z <1):

dB(a:l) ]51 /1 /27r dB
dx, 1-z; az; —1d0089 0 d(pdzldwgdcos%go

= 3{(01 + CQ)Fl(CIJ]) + (C3 + C4)F2(.'131)

+(Cs + Cs) Fa(x1) + (C7 + Cs) Fy(x1)
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+(Cg+ClU)F5((E])}, (520)

2 dB
dy
dz, fr dcosb 0 dml daod cos fdyp

T J 0 9 QTrd dB
_/;—ml ng_ldcob 0 Lpd:cld:cgdcosﬂdap)

]

1
ap(z1) = P B (/13:
dry 1

3
QF@Q{(Q

dx1

— Cy)Fi(z1) + (C5 — C) Gy (1)

+(Cs — Cg)Ga(x) — (C7 — Cg) Fulxy)

+(Cg —Cm)Fs(:L'])}, (5.21)

ap, (:‘El) = Pdg[fb‘l) (/1Mm1 dx [1 d cos GL d(pd.’llldiﬁgd COS3 Qd(,l?
T

o ir
B /1 @ des f dcosd ./ dﬂ?ldﬂ?zd cos Ody

2

[ fld 9]27}5 b )
. 2 —1 €08 in ('Dd:cld:z:gdcosﬂdgo

3 1
9 dB(z1) {(

dr,

Cg —_ C4)H1(ZE1) -+ (05 - Of;,)Hz(.L])

+(C7 — CeyHsz(zy) — (Cy — Cro)Hylz)) }, (5.22)

—1 T 1 ™ dB
e lc 9] d
ar(z1) Pd}ftmgzlg (/1—z1 dz; ];1 (h cos 0 ('Dd.?:l(lmgd cos Bdy

" by [ deosd [ d b
/1—11 EQLI cos [r wdmldmgdcosé)dw)

3 ! {C11H3(3/1) CIQH‘l(:El)}' (523)

d.L‘1

In these formula, F;, GG; and H; are functions of variable x;; their analytic forms

are found in Appendix E. ‘i(’:l) ap (x1), ap,(zy) and ar(x,) arc defined to extract

terms (i)-(iv) with different angular dependences, and ay(z)) is the T—odd quantity.

. . dB
In the above expression, F3(z;) in —(-:'z—‘l and Ga(z1) in ap, have a ;—- singularity.

dzx



Introducing the cutoff & for variable z, and integrating over % <z <1-—4, we

define the integrated branching ratio, B, and three asymmetries (Ap,,Ap, and Ar)
as follows’:
16 (4B
B{ 5] — / da (331)
% d$1

= 3{(C1 + Co)[1[8] + (Cy + Cy) L[8] + (Cs + Co) I3[9]

+H(Cr + C) 4[8] + (Co + Cro) 5[0}, (5.24)

1 1-4 dB
Ap 8] = W/ doran(m) =)

- %m{(cl — Co)11[8) + (Cs — Ca)h[8] + (C5 — Ce) (0]
—(C7 — Co)L[8] + (Cy — Cro)I:[0]}, (5.25)
Apld] = ﬁ ]:_6 diﬂlﬂ?(xl)gg(fﬂl)
= %w{(c:i - C4)K1[5] + (C5 — CG)K2[5] + (CT _ CB)KJ[é]

—(Cy — Cho) K4[6]}, (5.26)
Arld] = El[é_] /:_6 dm1a3(x1)j—:i(a:1)

- %w{cnf{g[a} — CKafd]}. (5.27)
I;, J; and K are functions of the cutoff §; their analytic forms are also found in
Appendix E. Note that [3[é] and J»[é] have a logarithmic singularity at & = 0.
Because of this logarithmic dependence, the terms |A;|? and |Ag|?> dominate over
all other terms in the branching ratio if the coupling constants eAy, eAg and §; have
similar magnitudes. On the other hand, because the numerator of Ar does not have
a singular behavior, Ap, itself, is suppressed when we take a very small é. In the
latter numerical analysis of SUSY GUT cases we introduce the cutoff § to optimize
the T-odd asymmetry.

We have to take into account the electron mass properly to obtain a precise
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value of the total branching ratio. If the photon-penguin contribution dominates
the branching ratio, we can derive a model-independent relation between the two

branching ratios [39], as follows:

B(ut — etete b m? 11
W zelele) | 2Tyl
B{ut — ety) Ir Tm2 4
~ 0.0061, (5.28)

where « is the fine structure constant. Neglecting the terms suppressed by g:, the

total branching ratio is , therefore, given by

21
Bt — etetem) = 2(Ch + Cy) + (Cs + Cs) + 32{log(—£) — —HCs+Co)

2
my

+16(C7 + Cg) + 8(Cy + CIO). (5.29)
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Chapter 6

Results of numerical calculations

Now that we have defined various P- and T-odd observables in the u* — e¥+ and
put — etete™ processes, let us present results of our numerical analysis based on
these observables for the SU(5) and SO(10) SUSY GUT. We also discuss our cal-
culation of the electron, neutron and Hg EDMs as constraints on the CP-violating
phases of the soft SUSY-breaking terms. Following the procedure discussed in chap-
ter 4, we solve the renormalization group equations with the universal condition for
the SUSY breaking terms at the Plank scale. Though approximate formula for the
slepton mass and mass difference are given in chapters 3 and 4 to explain qualitative
features, we solved the renormalization group equations from the Planck scale to the
electroweak scale numerically while taking into account the full flavor-mixing matrix
for fermions and sfermions. To determine allowed range of SUSY parameter space
we used the results of various SUSY particle searches at LEP and Tevatron and the
branching ratio, B(b — s7v). The details concerning these constraints are described
in Ref. [44]*. We took the top quark mass as m; = 175 GeV. Because we calculate
the LFV branching ratios divided by |X,|?, the result is almost independent of the
CKM matrix elements. For definiteness, we used the input parameters of the CKM
matrix elements as |(Voxar)es| = 0.041, |(Vorar )] = 0.006 and |(Vora)us| = 0.22.
Requiring the radiative electroweak symmetry breaking described in the section VI
of the chapter 2, the free parameters of the SUGRA model can be taken as tan g,
My, mg, |Ao| and the phase of Ay (84,) and that of p (6,.).

*The branching ratio B(s — s7) is updated as 2.0 x 107* < B(B — X,7v) < 4.5 x 107 [45]
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I SU(5) GUT

Let us first discuss the case without the CP violating phases in the SU(5) GUT. In
Fig. 6.1 we present the following quantities:
B(ut — ety) B(ut —etete™) B(pt —etete)
A2 A |2 " B(ut —ety)

A(’J'+ - e+7)1 AP] 1AP2: (61)

in the plane of m;, and |Ag| for tan 8 = 3, My = 150GeV, 84, = 6, = 0. Here,. Ar
is defined by the mixing matrix which diagonalizes the right-handed slepton mass
matrix at the electroweak scale in the basis where the charged lepton mass matrix
is diagonalized. For the asymmetries we take the cutoff parameter 6 = 0.02. If
|A:| = 1072, B(u™ — e*y) can be 107! and B(u — e*ete™) can be at the 10713
level, but if A, is given by the corresponding CKM matrix element, |\,| becomes
(3 - 5) x 1074, so that the branching ratios are smaller by three orders of magnitude.
In Fig. 6.1(c) the ratio of two branching fractions is shown. If the photon-penguin
contribution dominates over the four-fermion ones, this ratio is given by Eq. (5.28).
We can see that for the large-parameter region the ratio is enhanced. In particular,
near ms, = 400-600 GeV almost exact cancellation occurs for the photon-penguin
amplitudes [8]. In Fig. 6.1(d) A(ut — e*y) is shown. It is close to 100% except for
the small region where an almost exact cancellation occurs. The P-odd asymmetries,
Ap, and Ap,, are shown in Fig. 6.1(e) and Fig. 6.1(f). Ap, changes from —30% to
40% and Ap, changes from —10% to 15%. For § = 0.02 the asymmetries Ap, and

Ap, are expressed as follows:

3
Apl g ﬁ{OG(Cl — Cg) - 012(03 — C4) + 56(05 - Cﬁ)
—4.7(C7 — Cg) + 2.5(Cy — Cho) }, (6.2)
Ap2 =~ %{01(03 - C4) + 10(05 - Cﬁ)

+2(Cy — Cg) — 1.6(Co — Cio))- (6.3)

In the SU(5) case, because only g3, §s and A; have sizable contributions, we obtain

the following expressions:
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3 . .
E{0.619312 —0.12g5]* — 5.6|eAL]?
+4.TRe(eALg3) — 2.5Re(eALds)}, (6.4)
3 .
Ap = 5 {01135 — 10]eA,
~2Re{eALgy) + 1.6Re(eALgt)}. (6.5)

In the above formula we can see that the coeflicients for |Ap|?, Re(Ag;) and
Re(Arg:) are large. Therefore, these asymmetries represent the dependence of the
square of photon-penguin terms and interference terms. It is interesting to see that
we can over-determine the three coupling constants (g3, §5 and Ayp) from observables
B{ut — eTy), B(ut — eTete™), Ap, and Ap, if we assume the SU(5) SUSY GUT
without the SUSY CP violating phases. For example, we can determine gs, §s and
Ap, from the three observables B{u™ — etv), B(p — eTete™) and Ap,; then, Ap,
can be predicted. In addition we should have A(u* — eT) = 100% and A7 = 0.

Next, we include the SUSY CP-violating phases and discuss the EDM con-
straints and T-odd asymmetry. We calculate the electron and neutron EDMs accord-
ing to Ref. [46]. Useful formulas for their calculations are summarized in Appendix
F. For the Hg EDM, we use the result of Ref. [41]. dp, is given by:

drg = —(C§ — CC — 0.012C%) x 3.2 - 10 %, (6.6)

where C¢, C§ and C¢ are chromomagnetic moments discussed in Appendix F.

In order to see the 84, and 8, dependences on the EDMs and Ar, we first show
these quantities for a specific set of SUSY parameters. In Fig. 6.2, the electron,
neutron and Hg EDMs and Ay are shown for tan 3 = 3, M, = 300GeV, m;, =
650GeV, |Ag| =1 in the parameter region —m < #4, < 7 and —0.057 < 8, < 0.05%.
The experimental bounds on the EDMs are given by |d,| < 4 x 107% (e - cm) [47],
|d,] < 0.63 x 107%(e - cm) [48] and |du,| < 9 x 107%(e - cm) [49]. As is well known
from Ref. [50], because the EDMs are very sensitive to f,, 8, is strongly constrained.
On the other hand 64, can be large. In this particular parameter set, f4, = 5 is not
excluded by three EDM constraints. The maximum value of the T-odd asymmetry,

A7 in the allowed region in this figure is 15%. Note that A is proportional to
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sinf4, in a good approximation because the magnitude of 8, is strongly constraint
by the EDMs.

In Fig. 6.3 we show the quantities in Eq.(6.1) and Ay for tang3 = 3, M, =
300GeV, 84, = 7, 6, = 0. We also show the constraints from the electron, neutron
and Hg EDMs. Within the EDM constraints Ar can be 10%. As shown in Fig. 6.2,
when we vary 6, around 6, = 0, the EDM values change considerably but Ar is
almost constant. Therefore, the allowed region by the EDM constraints moves in
Fig. 6.3 if we take 8, as being a slightly different value from 0. On the other hand,
the contours for the branching ratios and the asymmetries in this figure are almost
exactly the same. In this figure we also show the parameter region which is not
allowed by the EDM constraints, even if we change 6, around 8, = 0 for 84, = 7.
Within the allowed region, the maximum value of At is 15%.

Similar plots are shown for tan3 = 10 in Fig. 6.4. In this case, also, the
maximum value of Ay is about 15%. Note that, in the case with the CP violating
phases, we can still determine the complex coupling constants (g3, gs and Ap) up to
a total phase from the two branching ratios, B(ut — e*v), B(u™ — e*ete™), and

three asymmetries: Ap,, Ap, and Ar.

II SO(10) GUT

In the SO(10) case, from Eq. {(4.7) there are two physical phases which contribute
to the EDMs and the ut — et amplitudes. In the 4* — e+ amplitudes the term
proportional to m, has a dependence of e®3~92(VE,\ )ao { (V& 2 )33 2 (VEk ar)31 and
other contributions are proportional to (V3 )5(VEka)s1. Therefore, the branch-
ing ratio gt — e*y depends on the relative phase of the two terms. In the following
we consider the case where there is no relative phase, so that the amplitude is propor-
tional to A,. Also, we do not consider EDM constraints from Eq. (4.12) explicitly,
since this can be suppressed when ¢ is small.

In Fig. 6.5 the branching ratios and the asymmetries are shown for the SO(10)
model. We first show the case without the SUSY CP-violating phases. Input SUSY
parameters are taken as tan 3 = 3, My = 150GeV, 84, = 0 and 6, = 0. We see that
B{ut — e*7)/|A-? can be 1073, This value is enhanced by 2-4 orders of magnitude

compared to the SU(5) case. The ratio of two branching fractions is almost constant,
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because the photon-penguin diagrams give dominant contributions to u* — eTete™.
The pt — ety asymmetry A(pt — ety) varies from —20% to —90%. This is in
contrast to the previous belief that A; and Agr have a similar magnitude in this
model. As discussed in chapter 4, although the diagram proportional to m, gives
the same contribution to Ay and Ag, there is a chargino loop diagram which only
contributes to Ag. In spite of no m, enhancement, the contribution from the latter
diagram can be comparable to that from the former one, especially when the slepton
mass is larger than the chargino mass. The dominant contributions to A; and Ay are
discussed based on approximate formulas in a special parameter region in Appendix
D. In Fig. 6.5(e), (f} the P-odd asymmetries for u* — e*tete™ are shown and these
asymmetries are small compared to the SU(5) case. Ap; is less than 10% and Ap, is
less than 14%. In this case the Cys and Cg terms dominate in Eqgs. (6.2) and (6.3), so
that these asymmetries are proportional to A(u™ — e*y) and expressed, as follows:

1
API = _1_0“4(#'-'- —)6+’)’), (67)
Ly +

It is interesting to see that we can predict two observables in the p¥ — etete~
process from the u* — et~ asymmetry. We have also investigated the case with
tan 8 = 10. We found that the parity asymmetries for u* — ety and Ap;, Aps have
similar magnitudes as in Fig. 6.5; namely, A(ut — e*+) varies —20% - —100%, Ap,
varies 2% — 10% and Ap; varies 4% — 16% in the same parameter space.

In Fig. 6.6 we consider the case with the SUSY CP-violating phase, and take
the input parameters as tanf = 3, My = 300GeV, 84, = 5 and 6, = 0. The
branching ratio and other asymmetries have similar magnitudes compared to the
case in Fig. 6.5, We can see that the T-odd asymmetry, Ap, is less than 0.01%,
because only the photon-penguin amplitude becomes large.

SOII]G remarks are in order:

1. When we take into account the phase in Eq. (4.11}, the EDM is generated as
discussed in Eq. (4.12). We note that the T-odd asymmetry cannot be large
even in such a case, because the photon-penguin diagram dominates over the

Jour-fermion contributions.
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2. If the u* — ety asymmetry is sizable, the simple relationship between the
EDM and the u+ — e'+y branching ratio, as in Eq. (4.12), does not hold. This
is because the EDM amplitude is no longer proportional to the ut — ety

amplitude due to the chargino loop contribution.

3. Even if we include the relative phases between the term proportional to m, and
i)
as long as the two contributions have a similar magnitude. By a numerical

other contribution in the ut — et~ amplitude, we expect a large A(u™ — ¢

calculation we have checked that the asymmetry varies from —100% to 100% if
we include the relative phases. Qualitatively, this feature can be understood by
the approximate formulas in Appendix C. From Eq.{D.1) we can see that the
neutralino and chargino contributions to Ag can interfere either constructively
or destructively, depending on the relative phase, so that A(pt — e*) can

change its sign.

IIT Differential branching ratio and asymmetries

Up to now, we have only discussed the integrated branching ratio and asymmetries
of p* — etete™. In the actual experiment, the differential quantities are useful
to distinguish different models. For example, in Figs. 6.7 and 6.8, we show the
differential branching ratio and asymmetries for a particular parameter set in the
SU(5) and SO(10) models. j—ﬁ, ap,, ap, and ar are plotted for the parameter
set of tan3 = 3, ms, = 700 GeV, My = 300 GeV, |Ag| = 0.5, 64, = § and
0, = 0. We can see a clear difference between the SU(5) and SO(10) models. The
differential branching has a steep peak near to 1 = 1 for the SO(10) case, whereas
the distribution is broader for the SU(5) case. This is because the photon-penguin
contribution has a 171; behavior near to z; = 1 and the four-fermion operators give
a broad spectrum. We can also see that the T-odd asymmetry has the peak at z;

close to 1. This fact arises from the \/11_—11 behavior in the 3 and +4 near z; = 1.

Because of this feature of the distribution, we have chosen § = (.02 to optimize the

T-odd asymmetry.
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Chapter 7

Conclusions

We developed a model-independent formalism for the processes ut — ety and
ut — etete” with a polarized muon, and defined convenient observables, such as
the P-odd and T-odd asymimetries. Using an explicit calculation based on SU(5)
and SO(10) SUSY GUT, we show that various combinations of the LFV coupling
constants can be determined from measurements of the branching ratio and asym-
metries. In the SO(10) case, the P-odd asymmetry in ™ — et~ varies from +100%
to —100%, whereas it is +100% for the SU(5) case. The P-odd asymmetries in
pt — etete” are simply proportional to the u* — e*y asymmetry in the SO(10)
case, and can be predicted from it. On the other hand, with the branching ratios
and the P-odd asymmetries in the py* — etete™ process, we can over-determine
the coupling constants in the effective Lagrangian in the SU(5) SUSY GUT if there
is no SUSY CP-violating phases. We also calculated the T-odd asymmetry in the
pT — etete™ process with the SUSY CP-violating phases, and compared it with the
neutron, electron and Hg EDMs. In the SU(5) case we can still determine these cou-
pling constants using additional information concerning the T-odd asymmetry. The
T-odd asymmetry can reach 15% within the constraints of the EDMs. In the SO(10)
case, the T-odd asymmetry is small as a result of the dominance of photon-penguin
diagram. These results are summarized in Table 7.1. We stress that although the
magnitude of the branching ratio has a large uncertainty due to an unknown pa-
rameter, A,, asymmetries and the ratio of two branching ratios are independent of
this ambiguity. Thus, these quantities are useful to distinguish different models.
The experimental prospects for measuring these quantities depend on the
branching ratio. For the SO(10) model, we expect that the ut — €'~ branch-
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ing ratio can be 10712 when ), is given by the corresponding CKM matrix elements.
In such a case, the ut — e™ asymmetry can be measurable in an experiment with a
sensitivity on the 107 level. For the SU(5) model, to obtain a 4= — e*+ branching
ratio on order of 1072 and a u* — e*ete™ branching ratio of 107!, we have to
assume that A, is larger than several times 1073, If the branching ratio turns out to
be so large, u* — eteTe™ experiments with a sensitivity on the 1076 level could re-
veal various asymmetries. Because various asymmetries are defined with respect to
the muon polarization, experimental searches for y= — ety and ut — etete™ with

polarized muons are very important to uncover the nature of the LFV interactions.

| [SU(5) SUSY GUT | SO(10) SUSY GUT |
A(ut — ety) +100% +100% — —100%
% 0.007 - O(1) constant (~ 0.0062)
Ap, —30% — +40% | Apr ~ —A(pT —ety)
Ap, —20% — +20% Apy ~ —c A(ut — ety)
Az <15% < 0.01%

Table 7.1: Summary of the results
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Appendix A

Renormalization group equations

In this Appendix we summarize l-loop renormalization group equations (RGEs)

which are used in our numerical calculations.

I Gauge coupling constant

We first present a general formula of RGE for the gauge coupling constant. In 1-
loop level, running of the gauge coupling constant is completely determined by the
quadratic Casimir of the gauge group and the matter contents, which couple to the
gauge field. If there are N; Weyl fermion fields of representation Ry and N, complex
scalar fields of representation Ry, the coefficient of the beta function is given by:

d
(47r)2MB—Mg = bey’, (A1)
11 2 1
b = —ECQ(G) +Z§NJ’C2(RJ‘)+Z§NSCQ(RS)’ (A.2)
f 3

where Co(R) denotes the quadratic Casimir of the representation R of the gauge
group. The adjoint representation is referred as G and sum is performed over dif-
ferent representations. In the case of Abelian gauge theory, the above formula can
be used by replacing Ca2(G) = 0 and Cy(Ry) = Y7 (Co(R.) = Y7?) where Yy (V)
represents the {/(1} charge of the fermion (scalar) field.

In the case of N=1 SUSY, a gauge field has a fermionc partner of adjoint

representation and a matter fermion has a scalar partner of the same representation.
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Then, we can obtain the formula for N=1 SUSY theories as follows:

b = —3Cy(G)+ D NeCoRa), (A.3)
P

where Ny represents the number of chiral superfields of representation Rg which

couple to the gauge field.

II MSSM

The running of gauge coupling constants of the MSSM is derived from the general

formula in the previous section as follows:

d .
2 —; = : ‘5 ;= —
bg = —3: bg = ]., bl = % (A5)

where the coefficients of the beta functions are obtained from the quadratic Casimir
and U(1) charge factors listed in Table 2.2 and that of adjoint representations.
The anomalous dimensions from wavefunction renormalization associated with

the Yukawa interactions are summarized as follows:

Yo = ylvu + ylya, Vi = Yy,
Yo = 2yayl, e = 2yeyl,

(A.6)
Yp = deyg,

iy = (3tr(ylya) + tr(ylye))1, va, = 3tr(ylya)l.
Using these anomalous dimensions, the running of the Yukawa coupling con-

stants in the superpotential is described as

d 3 9
(47f)2MdMye = -2 (593 + ﬁgf) Ye + Vi Ye + VEYe + YeTLs (A7)
d 8 3 7
(47T)2Mmyd = -2 (593 + 59‘3 + %9‘?) Ya + Y, Ya + YoYa + Yavo, (A8)
d 8 3 13
2, = oS24 l2y 2y, . e+ 0. (A9
(4m) M s 2 (393 + 59z + 3091) Yo + Y Yu + Yol + YuYg. (A9)
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Next we present the RGEs for the soft SUSY-breaking parameters. The run-
ning of gaugino masses is determined by the coefficients of the beta functions of the

gauge coupling constants as follows:

(4 )MdLM = WM, (i=1-3). (A.10)

Note that they do not depend on the other soft SUSY-breaking parameters.

The RGEs for trilinear scalar coupling constants are described as follows:

d

3, 9
2 = —
(m)y MprAe = 2(292+ 1091)A

3 9
—4 (292M2 * 1091M1)

+AcyL + YEA + AcYH,

+2 {3tr(yl Ac)ye + tr(yl Ac)ye + 2Aculye + eyl A o} (A.11)

8 3 7
(4m)*M m/‘ld = -2 (3‘9:3 + 593 + %9%) Aq

8 3 7
4 (§9§M3 + §9§M2 + %ngl) Ya
+Ad'yQ + '}'DAd + vH, Ay
+2 {Str(y:iAd)yd + 2Aaylya + yayl A + ydy:r[Ad} , (A12)

d 8. 3. 13
arPM 4, = —2(—2 ) .
(4m)"M oo 39+ 59+ 3591 ) A

8, 3, 13
—a{Za2 My + Sg2M.
4( gsMs ¥ g9 M2 + 55

3 glMl)

+Au")’Q + "yuAu + 'YHzAu
+2 {3tr(y! Au)yu + 2Autlv + vt Au + vaplbAa} . (A13)

They do not depend on the soft SUSY-breaking scalar masses.
Finally we present the RGEs for scalar masses. In the case of MSSM, the
gauge group includes a U(1) subgroup and there is a contribution from the U(1)
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D-term, which is parameterized by

3 3 5. 3
~4 (50803 + SgME) + gl

74

S =tr(md) — 2r(m) + tr(mh) — tr(m3) + tr(my) — miy, +my,.  (A14)
Then the running of scalar masses becomne as follows:

M = —Zgiut - Lot

+yEMmE + METVE

2425l + il )od + 24,41}, (A15)
(477)2]\ffdi4mi —4 @gng + %ngf) + %gfs

+yLmy, + ML

+2{2yl(m% + m3; Jye + 241 A}, (A.16)
(47)2M d;f _mb, = (gg.gM; 4 %ngf) - %g{?S

+vpm + mhyp

+2{2g4(m} +m% Yyl + 24,4%}, (A.17)
(rp ot = —a (Saind o 5 i) + 2ot

+yymy; + miy

+2{2y(mg +mi )yl + 24,41}, (A.18)
(4m)*M dﬁ 7710 —4 (gggnﬁ + ;ggfvfg + %gf[\f]?) — l—logfs

—I—’)/QmZQ + m%'yQ

+2{yk(mi; +miy, yu + yh(mh + mi, )y

+At A, + ALAL), (A.19)




F 2y, m%y, + 2{3tr(yambyl) + 3tr(yimbya)

+tr{yemiyl) + tr(yimEye)

+3tr(AgAL) + tr(A.AD}, (A.20)
d 3 3 3
(UM, = —4(5M3 + SM?) — soots

+2ym,mey, + 2{3tr(yumByl) + 3tr(vimiv.)

+3tr(A, AN}, (A.21)

III minimal SU(5) SUSY GUT

If we assume the minimal model with an adjoint Higgs, the running of the gauge
coupling constant becomes as follows

(4n)* M d

bs = —3. (A.23)

The Yukawa contributions in the anomalous dimensions which come from the
wavefunction renormalization and the RGEs for the Yukawa coupling constants are

calculated as follows:

VE = Yaylh vr = (Byly. + 2ylya),
(A.24)
vi = 4tr(ylya)l, e = 3triyivd)l,
a. d % |,
(Ar)"M—vys = ——G5¥a+ VaYs + VEYd T Ya¥T, (A.25)
dM 5
0rs d 84 r
(471') Mmyﬂ = _€g5yu + YHYu + YrYu + YuYT- (AQG)

The RGEs of the soft SUSY-breaking parameters for the minimal SU(5) SUSY

GUT are summarized as follows:
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d
(47)? MM = bsgs Ms,

d 84 168
(47r)2 d_ﬂ/f_Ad = _ggsz)Ad_ngMflyd

+vpAg + Aavr + Y5 A4

+2{4t7‘(’y;Ad)yd + ya(3yT Ay + 2’9‘:21441)

+(4Ady;)yd}:
d 96 192
A7) M —— A, = :
( ﬂ') dM u 5 A 5 g5M5yu

+vE AL 4+ Auvr + yr A,
+2{3tr (Yl Au) v + v By Au + 2y} Al)

+(3Auy] + 245y},

d 96
AryPM—m% = giM?
() Mo 59
+7FmE + mEYE
+2{4y(m3T + miyy + 4A43A5 Y
d 144

+hmi + miar
+203yL (T + m¥)y + 205 (T + mE )y

+3AL A, -+ 44L4,1,
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(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)



d 96
(4TF)2Mmm% = —gggMg
+2vgmiy

+2{dtr(yamdyl + yimby)) + 4tr(AJA0)},  (A.33)

d 96
(47r)2Mmqu = —EggMg

+27Hmi,

+2{6tr(yim3y,) + 3tr(Al A,)}. (A.34)

(A.35)

IV  minimal SO(10) SUSY GUT

We arrange the RGE for the gauge coupling constant of the SO(10) SUSY GUT as
follows [7]:

d
(47T)2Mm910 = biogio; (A.36)
bo = —3. (A.37)

The Yukawa contributions in the anomalous dimensions which come from the
wavefunction renormalization and the RGEs for the Yukawa coupling constants are

calculated as follows:

Yo = 5(yly. + vlya),

(A.38)

Vo, = 4r(Yly)l,  ve, = dtr(ylva)l,
sy = 93 T A.39
(4m) dMy" = 9 GioYu + Yelu T Yu 7w + Yo, Yo, (A. )
sy, = B T A.40
(4r) TfYe = T 9i0Ye et Y+ Yesye (A.40)

The RGEs of the soft SUSY-breaking parameters for the minimal SO(10)
SUSY GUT are summarized as follows:

d
(4TF)2ME—A‘J‘M10 - blng()AJlOa (A41)
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d 63
(4?T)2ﬂ/lrwfqu = *EQ?OA‘L: — 639%0.“’110'3}“

+’Y$Au + Au’}'\l' + ’chuAu
+2{5y, i Au + 5 AuY iy

Fatr(yt ALy + dtr(yh Ad)yal, (A.42)

63
Ag = _EQ%UAd“G:'}Q’]?oAJlOyd

d
47V M
(4m)"M o

+74 Ad + Aarve + Yo, Ad
+2{5y 5 Aa + 5Aaylya

At (yt Ay + Atr (Y Ad)yal, (A.43)

d
(47r)2M’mm?1, = —45¢3, M3,

+7ymy +my e
+10{ylmTy, + (?}l’yu)mgu
+yim3 ya + (yhya)m3,

+AL A, + ALAL), (A.44)

d

(4m)*M a7

_369120*“4120
+2’y¢um§,u
+8{2tr(yim2 y,) + tr(AlL A}, (A.45)
(4m)PM———my = —36g5,MF

+2’y¢dm§,d
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+8{2tr(yim3Ty,) + tr(ALAD}. (A.46)
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Appendix B

Mass matrices and mass eigen
states in the MSSM

After the EW symmetry is broken, couplings to the Higgs fields become new sources
of mass parameters which mix the SU(2) x U(1) eigen states. In this Appendix we
fix our notations of the MSSM relevant to the definition of various mass matrices

and diagonalization of them for our numerical calculations.

I Fermion mass matrices

The matter fermions acquire masses from the Yukawa couplings to the Higgs fields

as follows:
(me)ij = _(ye)iaij%coslﬁ: (Bl)
(ma)y = —()(Vern')y s cosf (B.2)
(m)is = ()b s sinf, (B.3)
where v and J are defined so that:
v o= VAR + (), | (B.4)
_ (h3)

In the above formula, we take a basis of the superfields in which the lepton and

up-type Yukawa coupling constants are diagonal. .
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II Neutralino and chargino mass matrices

Winos, bino and higgsinos are mixed each other through the gauge couplings to the
Higgs fields and form new mass eigen states named neuatralino ¥Y and chargino ¥~

The neutralino mass matrix is written as follows:

By,
1 = - =C =C I/If:;L

1:1\-‘2*5( Br Wi R, hg )MN 7.0 + h.c

g,
0
har
My 0 —m,sinfy-cosF m.sinfy sin
My = 0 My m, cos By cos 3 —m, cos By sin 3
N —m, sinfy cos 3 m,cosBy cos I 0 —u ’
mysinfysinf3  —m;cosfy sin 3 - 0

where m. is the Z boson mass and #yy is the Weinberg angle (tan by = ffgL;) This

symmetric matrix can be diagonalized with an unitary matrix, as follows:

Oy MyOy = d@'ag(mi;?,m;g, m;g,mﬁ), (B.7)
Onvr = On, (B.8)
ONL = ON*. (BQ)

The chargino mass matrix is written as follows:

hiy

Lo=— ( W-p hyp )Mc ( + ) + h.c.,

ﬁfg ﬁmwi CcOSs ;3
V2mw sin 8 I ' (B.10)

where myy is W boson mass. This matrix can be diagonalized with unitary matrices,

Me = (

as follows:
OcrMeOL, = diag(m—,m-). (B.11)
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III Sfermion mass matrices

Sfermions acquire masses from the Yukawa couplings and gauge couplings and they

are mixed each other. The charged slepton and sneutrino mass matrices are written

as follows:
_ -\ -
N A R _ j0§,.270
L;= ( € )mé ( 5 ) Frmil?,
2 ( m +mim, +m?cos2B(—3 +sin’fw)  J5co8 5(

2 ;2
mZ cos 23 sin” Ow

Ae + yept* tan 8)!
5 08 B(Ae + yep” tan 3) mi +mem} —

1
m2 =m? - ~2-mf cos 23. (B.12)
They are diagonalized with unitary matrices as follows:
Umill = dzag(mel,mgg,mgs, mi, ms,, m (B.13)
UmiUl = diag(m? ,mk, ml). (B.14)
The squark mass matrices are written as follows:
L= —( -3t dt 2 ‘7_% ~2f 2 fi%
= (b @)my( TP )= (g w )t (),
m2 — m + mimg + m2 cos 28(—1 + Lsin? gy) 3= cos B(Ag + yap* tan §)1
d 5 cos B(Ag + yap” tan 3) m% + mgm} — sm?cos2@sin’ Gy |’
2 m% + mim, +m2 cos28(3 — £sin® Oy) —J5sin ﬁ(A + yu,u cot 6)
@ — 7 sin B(A, + yup® cot B) mg 4+ muml + 2m? cos 28 sin’
(B.15)

They are diagonalized with unitary matrices, as follows:

20t — diga(m? m: .m: mE . md om
UmiU; = dzag(mdl,mdg,mds,md4,md5,md6),

21t e
UmUl = dmg(mm,muz,mua,mm,mu&,
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IV Neutralino and chargino vertices

The neutralino and chargino vertices for leptons and sleptons are written as follows:

4 6
Y N @(NLix P+ Nfix Pr)XY

Mm

i=1 A=1 X=1
3 2 3
+ZZ Z & IAXPL+CAXpR)XAUX+hC (B.18)
i=1 A=1 X=1
Nhx = —g2{V2tan 8w (One )i (UeYxiss
ik On (U (B.19)
. V2
Niax = _92[__{(ONR)A2+tan9W(ONR)A1}( ):
bl O Ukl (B.20)
Chy = gL( Ocr)n(U.)3 (B.21)
iAX 2\/—m A2 Xjr
Chiy = ~a(Ocr)n(U)ks (B.22)

The neutralino, chargino and gluino vertices for quarks and squarks are written
as follows:

3 4 6
> Z{ (NEx P+ NzAXPR)XAdX
=1 A=1X=1

e

+ T (NYx PL + NES PRI iEx )

3 2 6
+3° 3 D Adi(Cliix Pu + Cidk Pr)Xatix

i=1 A=1 X=1

—

+%(Clx P+ C, ;‘ARXPR))EZJX}

3 6
+ 5 S AU Py + TR PR)G T d
i=1 X=1
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+ TG (TP + TUE PG T iy} + hec., (B.23)

1
Nt = =g v2 (5 ) tan B (On) (Uduss

3

(ma)ij . .
+ ; T cos B (One)as(Ua)y; (B.24)

1y~ 1
NEE = —92[\/5{(—5) (ONR)?m*F(g) tan by (Onr) i }(Ua) s
I G PN (B.25)
j=1 V2my, cos NRIASLT I X+l .
2
Nty = —9:AV2 (=3 ) tan By (One)iu (U)iigs
(17 )s
OneYia(Ua)ss) B.26
\/_mwsmﬂ( L) as(Ui)x:} (B.26)
: 1
Ny = (Jz[\/_{( ) (Onr)az + (6) tan Gw (Onr)ar HUu) s
Ty, * *
\/_(Tf)smﬁ( ~NR) a3(Un) il (B.27)
, iy *
Cltx = 0. (00U (B.29
g * * (mu)i * *
Cﬁ«ﬁ\' = _92{(OCR)A1(U!1)X1'_ W(OCR)AQ(U?J)XHB}r (8-29)
C_uL_ — (Tn’ﬂ)l * )
AN g2 \/_mwcosﬁ(OCR)AQ(Ud)‘\“ - (B.30)
3
C*R. = _g.{(O Uy) (ma)y .} (B3l
iAX 92{(Ocr) a1 (Ug) g mwcosﬁ( cr)a2(Ud)x sty (B.31)
Té = —V2g3(U3) xivn, (B.32)
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dR
Iix
ul
X

ul
Iix

= V25(U3) x4,
= —V203(UN xi43,

= \/Egs(U:)Xi-
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Appendix C

LFV effective coupling constants
in the MSSM

I LFYV effective coupling constants

The formulas of the effective coupling constants for the p¢ — ey and 2 — 3e processes
written in the MSSM variables are given in Ref.[51]. We present these formulas for
completeness while taking care of the CP violating phases.

Each coupling constant is divided into a neutralino-charged-slepton-loop con-
tribution and chargino-sneutrino-loop contribution. The four-fermi coupling con-

stants are given as follows:

=g’ +g; (i=1-6) (C.1)

The coupling constant §; comes only from box diagrams.

\/§ 4 6
ATV L R+ L Rx L L Rx* R
G = _647r2GF Z Z (Noax Niay Nipy Mgx = 2Noax Niay Mgy Nigx)
AB=1X)Y=1
2 2 2 2
migmi%dg(mi% ,mi% ,méx ,mEY ), (02)
V2 2 2 L R L R
~C — * *
9 = T 64n2C Z Z CouxCray CrayCiex
TP A B=1XY=1
2 2 2 2
mﬂmi;dg(mﬁ M=, My ™ My ). (C.3)

86



The coupling constant §; is divided into three parts. g3 is a contribution of box
diagrams and g3, is that of Z-penguin diagrams. §s3 is a contribution of off-shell

photon-penguin diagrams.

3 = g1 + Gs2 + Ga3, (C4)

AT \/7 L Lx 42 2 2 2
951 — T 64mC Z Z {N AXNIAYNIBYNIBXdQ(”Lif‘ TR0 Mgy, ey )
AB=1X)Y=1

1
N Ny Ny NG em;, o Mo do(my o, my 02 Myt me )}, (C.5)

2
1 ° g L L 2 2 2
g3 = _@Z}%[A%:—U(E—% N2AXNIB*X{4(Y22)ABC2(mé,\' y TG0~ g0 )

—Qmﬂm)z,%(}’i%),wco(méxa mﬂz, mi%z)}

a6
+23 0 > NiaxNoy( XEL)XYc2(7n}Z%2!méx2:ﬂléy2)]; (C.6)
A= XY=l
SN Ly C.7)
G5y = b , 7
33 11527T2GF AZI = ‘2AX lAX mgx 0 mgx ) (

e V2
951 = YRR Z Z CQLAXC YC chx

647T2GFAB 1X,Y=1

d2(m2;2:mi52:mﬁx2amﬂv2): (CS)

S, = QZR Z ZC‘QAX Cla {A( Y_)A“gu:g(m,,\2 7112-2,1715(-2)
16w A,B=1X=1 4 ?
_2mwm (Y )4Bc0(m,,}\ ,mxf,mi;)}, (C.9)
m2
N 2 3

G, = ————— by, C.10
933 115272G Ag Zz M‘(m&x UX) ( )

The coupling constant, §s is divided into three parts. §s; is a contribution of box

diagrams and §s2 is that of Z-penguin diagrams. @3 is a contribution of off-shell
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photon-penguin diagrains.

g5 = Gs1 + G52 -+ gss, (C.11)
~1 \/_ R L
Jo1 = 647r2Gp Z Z {A2AX lBYNlBA NzA\NlAYngyNim
A,B=1 X Y=1
+N, AXN1AVN18YN1R§)()d2(m>232:mg‘;jZ,méXZ,méyz)
1 *
_imigmi%Nﬁv}axNﬁyN YNIBXdO(miggrm)E%Z’méx2=méy2)}v (C.12)
4 6 .
G 2 2
952 = 16”2 A NzAlesx{‘i(Ygg)ABCz(méx , g0~ ge °)
A B=1X=]
—Qmiaﬂli%(yi(}t)ABCO(méxz, mﬁ?, mi{;f)}
4 6
"‘22 Z 2ax Ny ( éL)XYCZ(mig2;méXQaméyz)], (C.13)
A=1 X,¥Y=1
QQS = Q‘le.‘}: (014)
g5, = V2 Z Z {CE..Cl dg(mh_ m,-2,my,. %, ms %)
51 64W2GFAB XYl 2AX lAY 1BY lB,\ g 7 tex o oy
C Xcmycwycﬁéxmg;mggdo(m;{fami;:mﬁanmDy?)}a (C.15)
952 = Z ZCEAX Bx{4(Yy: ) apca(ma,®, me-2, mo %)
A,B=1X=1
_2mi;m‘iE(Yi;)Agcﬂ(m"X2’miggrmigz)}ﬂ (C.16)
953 = G- (C.17)

Various mixing matrices and Z coupling constants which appear in the above for-

mulas are given as follows:

(Fephas = =5 {(Oxe)as(Ont)is — (On)as(Oniligh
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(V)as = 5{ONR)as(Onm)hs — (Onr)aa(Onn)ia),

(Viohas = ~5(0ct)aaOci)ie
(Vihas = —5(0cR)sa(Ocrlim:
3
(Xe)xy = _kZ(Ue)Xk(Ue);fkﬁ

3
(Xep)xy = X (Ue)xrsa(Ue)yrrs:
k=1
e 1 r a2
Z: = (-—5 + sin® Gy ),

ZE = Sinzgw.

The photon-penguin coupling constant is written as follows:

2

V2e 81 1 Mo
A" = _NR NR* e XA
R 2567T2GF AZ=:1 Xgl mgx 6 2AX-T1AX l(mgx)
+Npax Nfx — bg(m?)}:
H €x
2
Vv2e E &1 1 s
Ay = SCR Ol b (=2
R 1287T2GF Azzjl)(X::l mgx{ﬁ 2AXY1AX l(mgx)
L Rx mi; c m?(;
+Coax Clax—b3(—*)}
[ vy
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(C.19)

(C.20)

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)



The other coupling constants can be obtained by simply exchanging the suffix of

the above formulas:

g2 = §i(L < R), (C.29)
s = g3(L < R), (C.30)
gs = gs(L < R), (C.31)
A, = Ag(L e~ R). (C.32)

II Mass Functions

The mass functions used in the effective coupling constants of the u* — et+y and

put — eTete™ processes are defined as follows:

by (2)

b (z)

by (x)

b5(z)

bi(z)

b(z)

colz,y, z)

C2($: Y, 2')

1

m@ — 92 4 182% — 112° + 62° In(z)), (C.33)
@ _1$)4 (1 - 6z + 322 + 22 — 62 In(x)), (C.34)
ﬁ(l — 22 + 2z In(z)), (C.35)
m(—m + 45z — 362 + Tz* + 6(3z — 2) In(z)),  (C.36)
m(z + 3z — 622 + 2% + 6z In(xz)), (C.37)
2(1—;_)3(—3 +4x — 27 — 21n(z)), (C.38)

zin(z)  ylny)  zln(z) (©39)

w-2)e-2) @-y-y) (@-2y-2)
1.3 Zln(z)  ln(y) 2% In(z)

12 G-0k-2 G-nie-v G-2u-2"
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(C.40)

wnp ) = g m)élﬁ(g(w —) ' (- y)éli(ii(w ~)
T T R Faet i e Y
) = 3 >< TR J)EI lf(g))(w ~v)
- )(J ]f(:z))(w =3 - w)tilf(f))(z —y) (G42)
10

‘.\- bco

10 10 ] 0
X

FIG. C.1: Mass functions which appear in the calculation of the photon-penguin
amplitudes.
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Appendix D

Approximate expressions of the
photon-penguin amplitudes for the

SO(10) model

In this Appendix we discuss the ut — ey amplitude for SO(10) GUT using ap-
proximate formulas. Although we used full formulas for a numerical analysis, more
transparent expressions are obtained in a special parameter region.

The expressions for Ar and A;, are simplified if we use the following approxi-

mations:

1. Keep only dominant contributions. These are parts of terms proportional to
m, in the neutralino and charged-slepton loop diagrams for both Ag and Ajp.
For Apg, a part of the chargino-sneutrino loop contribution can also give a large

contribution.

2. Use the fact that, except for the left-right slepton mixings, the slepton mass
matrix is almost diagonalized in the basis where ¥, is diagonal and the di-
agonal elements for the first-two-generations are almost the same. The third
generation sleptons become lighter because of the effect of the GU'T interac-
tion. We treat diagonal elements for the first two generation in the slepton

mass matrix exactly degenerate in the approximate formulas and the differ-

ence between the third and the first components are denoted as AmZ_, AmZ,
and AmZ , respectively. Neglecting the renormalization effects between the

GUT and electroweak scales by small lepton Yukawa coupling constants, these
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difference are given by Eq.(4.6). We take into account the left-right mixing of

the slepton mass matrix as a perturbation.

3. Take the limit m;, >~ mz, @ my, = M >> M-- M. 05 namely, the average

slepton mass is much larger than the chargino and neutralino masses.

Within these approximations Ap and Ay are given by

e tan? By, Cida—da) m L e
Ap 3972 e a” + af, (D.1)
etan®fy . _.
~ - @0 _1(¢3_¢1) n*
Ap ~ P e a™|, (D.2)
where
n 0 0 my
a" = (Vorm)az(Vexm)i (VCKM)31(m)
i
(%‘f + p*tan ) m M, eL m2
P (e My Sy B, (D.3
c . v2cot? 8
a = (Vé‘)lﬂw)m(ng’;\z‘r):ﬂTsﬁ“vE
2 M.- Am?
" mW Xa g,
> (OeialOct)a 3 In Mg_)( Gy =2). (D4)

For the neutralino contributions, the difference between the above expression
and the exact calculation is within 10% above m;, > 500 GeV for the parameter set
of Fig.(6.5). For the chargino contributions the approximation is slightly worse. At
mgz, > 500 GeV the difference is within a factor of two and becomes about at the
10% level for m;,= 1000 GeV. From the above expression we can see that despite
a lack of the factor gf the chargino contribution can become comparable to, or
even dominant over, the neutralino contribution when m >> my, because of the

enhancement factors ﬂc—"tﬁg—”ﬁ and (2 )ln( ~).

%4
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Appendix E

Branching ratios and asymmetries

In this appendix, we give kinematic functions which appear in the calculation of

branching ratio and asymmetries of i — 3¢ process with polarized muons:

Fiz) = 2 ; dzacri(, 22), (E.1)

Giz) = 2 /1 ; dz2fi(x, ), (E.2)

Hiz) = -2 [ derile,z), (E3)
Fi(z) = —%(43: —5)(2z — 1)?, (E.4)
Fy(z) = —§(2a: — 1)(8z% ~ 8z — 1), (E.5)
Fye) = 16In(5 = ~)(22” — 2z + 1) + 3—32 (2z - Uf‘ij t+1) (E.6)
Fy(z) = 32(2z—1)% (E.7)
Fy(z) = —8(2z -~ 1)(2z — 3), (E.8)
Gi(z) = —-16(1—z)’m2(1 —2z)— % (22 — 1)(82% — 322 + 23), (E.9)
Go{z) = —16(22° — 2z — T)In2(1 — z) + 16(2x* — 22+ 1) In 2z
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Hg(l')

L] =
Lld] =
Lfd] =

L8] =

— 2 _
+g(2$ )(z*— 13z + 13)’ (E.10)
3 l1-=z

2(6 — 5z} (1 —z)v2zr — 1

2 _
~(72* — 24z + 16)v/1 — z arccos( $3x)
2 11—z
+16(1 —~ x)* arccos( )V} (E.11)
x
= —16(6—2)V2zr — 1
2 — — _—
—8% .‘::chcos(2 33:) — 128 arccos( ! p 2:), (E.12)
4 , (7x — 6)z2° 2 -3z
= 29— — E1l
3 20 —1(17x° — 242 + 4) + 2 Tz arccos( },(E.13)
= +§\/2x — 1(172% — 30z + 16)
2 _ -
_{= \/116__33::_ 8)x arccos(2 3:E)‘ (E.14)
1-§
Ll = ﬁ dzFi(x), (E.15)
1-5
) = f dzG(z)dz, (E.16)
1-5
K5 = f dzH(z)dz, (E.17)
2 3
31 +28)(1 - 28, (E.18)
-:15(1 + 26 — 28%)(1 — 26)?, (E.19)
-1-??(1 —8)(2 -4 + 26%) ln(lT_(s) — g(l — 26)(13 — 46 + 46%), (E.20)
?(1 — 26)°, (E.21)
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I5[9]
J119]

Jo[d]

K, (4]

Ky[d]

K3[d]

K9]

—2—(1 + 8)(1 — 28)?, (E.22)

1 2 , 16 4., 8,

5 36+66 + 3 (In24 3)(5 36, (E.23)

16 s 16 .
—§(2+21(5+3(5 —28°)In28 + 3(1 —6){2 -6+ 26%1In2(1 —6)
%(1 — 26)(49 + 685 + 46%), (E.24)
4 .
§1‘5(8 + 88 — 936% — 2256°)v1 — 26

2 36 — 1
—Z283(1 — 68 — 342

3(5 (1 — 66 — 36°) arccos( 1—6)

16 )
— 8 arc :

3 arccos(1 — 6)’ (E.25)
?(4+96+5 W1 — 26 — 16V/6(3 + 66 — §2) arccos( =% )

)
+1285arccos(1 —6)’ (E.26)
8
—+/1 - 28(48 — 576 — 684° 8
105 3(48 — 576 — 686~ + 8567)
—4(1 - §)* 6arccos(316__61), (E.27)
2 T 25(64 — 416 + 2657 — 855%)
105
0 3 36 -1

~2(1 — & — 6% + 8%)V/§ arccos( T3 ). (E.28)
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Appendix F

Electric dipole moments

I Electron EDM

The electron EDM is described by the effective Lagrangian which is given by
.Ceﬁ' = —%deéa’“’%eb_‘w. (Fl)

In the MSSM, if we include the SUSY CP violating phases, this effective Lagrangian
is induced from 1-loop diagrams which include SUSY particles at the EW scale.
There are two contributions from neutralino-selectron and chargino-sneutrino loop

diagrams, as follows:

L R Mx MZQ

&= g 2 3 NN R, (F.3)
= = ex ex
2 3 M;- M'%“

& = Im(Cfix Clix) —2b5(—2). (F.4)
=1 X= YV vx

A similar discussion can be applied to the quark sector and various CP-violating
operators are induced at the EW scale. They result in the neutron EDM at a

low-energy scale, whereas QCD corrections for these operators cannot be neglected.
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II Neutron EDM

In this section, we discuss the QCD correction in the calculation of the neutron EDM
[46, 52]. The neutron EDM is calculated by the following effective Lagrangian,

Leg = CFMYOF M)+ CIHM)OS (M) + CE(M)O(M), (F.5)

where OF, OY, O correspond to the quark electric dipole, chromomagnetic dipole,

and gluonic Weinberg’s operators, respectively, which are given by

i
Of = —iqa‘mfyg,qF'””, (F.6)
of = _i—g TeqG*" (F.7)
q - 2q MV’TS q 1 -
1 aoc ra 143 COx
O¢ = —gf”e“ MG ,GhL Gl (F.8)

Here, "% = 1, and f°% is the structure constant of the SU(3) group.

In SUSY models, we can obtain the Wilson coefficients at the electroweak
scale by evaluating 1-loop diagrams. C‘qE is induced by the photon-penguin dia-
gram. C¢ is induced by the gluon-penguin diagram. There are three types of SUSY
contributions: chargino-squark loop, neutralino-squark loop and gluino-squark loop

diagrams which are given by

CP(Mw) = 7%+ +c7@, (F.9)
. 2 6 My
cEE) o __© Im(C4R. Cé ) — (F.10)
‘ 32772:&:1)(21 A m’ﬂx
2 M2
by (—2) — 2(Q S(—2 F.1
{Qub3( HX) (Qa Qu)bz(n%x)}, (F.11)
. j\,/f2
v eQq d[* Mx” x5
ci% = S Im(NE N Ry (Fa2)
392 = XZI AX m(?i.x mgx
BG . eQu 9 My . M2
C; = 12W2ZI I Wb (m?; ), (F.13)
X X
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CE(My) = C¥(Mw) (do ), (F.14)

Cf(Mw) = C§%7 4% 4.0f @, . (F.15)
2 6 M~ M2
C(%™ g . 5
Ci%) =~ L X Im(CEk O 5 b () (F.16)
A=1 X=1 ux ux
4 6 M= M2,
CC(x) _ __ & Im(Nth NdL*) xﬂb"( XA), (F.17)
327{2 Az::l XZ=I A m%x m%x
Mg 1. M; M2
C,c(c: _ Z ke 23 ~bR (=) — 3b5(—2)},(F.18)
7T X= mJX 6 mdx mgx
CS(Mw) = C§(Mw) (d e wu). (F.19)

The gluonic Weinberg’s operator is induced at a 2-loop level and the diagram
involving the stop and the gluino gives dominant contribution. On the basis where

¥, is diagonalized, the Wilson coefficient is written using the matrix elements in
Eq.(B.15):

393 2Im{(m )63} 1

G
C - 167r2cx th3 M2 ILI(Z,’I.J 29, Zt) (FQO)
where z;, 2o and z are defined as follows
2
72 = 2M2{( 23z + (m3)es — n29|(m§)63|}= (F.21)
2
zg = 2{( 2)a3 + (m3)es + ool 2esl} (F.22)
T
2 = () (F.23)
2|(m2)es|
tan260 = -— L . F.24
(m2)as — (m3)es (F-24
A mass function H(z1, 23, ;) is defined so that
NN,
H(z,20,2) = 2/ dmf du[ dyx(l — z)u D (F.25)
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Ny = u(l—z)+ zx(l —z)(1 —u) — 2uz{zny + 22(1 — y)}, (F.26)

Ny = (1—$)2(1—u)2+u2—%J:Q(l—u)?, (F.27)

D = u(l -2)+ zz(l—2)(l —u) +uzr{ziy + 20 -y} (F.28)

These three contributions are listed in Ref.[46].
We can take into account a QCD correction from the electroweak scale to a
hadronic scale (1 GeV) by using the following renormalization group equations for

the Wilson coefficients:

ACM) _ asM) 7

Man T 4rx

(M), (F.29)

where C = (C’éE , C’qc ,C9T and the anomalous dimension matrix Y. is written by

8/3 0 0
vy = ( 32¢Q/(3gs) (—29+2N;)/3 0 .
0 6m, IN;+3

(F.30)

Here, Ny is the number of the quark flavors and @ denotes the electro-magnetic
charge of the quark in unit e (¢ > 0). The RGEs can be solved analytically as

follows:
E _ F3—a2N Efar __ 333N q '
Cq (AJ) = n ! |Cq (A-[z) + 86@ (1 n f) q.s(ﬂ/fz)
72eQm,{1to) =i 2 W\ Co(M;)
— % 3N [ 332Ny 1 — 32Ny F.31
7+ 2Ny " +2Nf+5( " ) gs(M;) { )
—284+2N
COM) = 0™ [CO(M)
9 k4 G
_ _ 33-2N . . F.
Tr N, (1 s f) mg(M;)C (Mi)] , (F.32)
946N
COM) = ¥ CO(M), (F.33)

where n = g,(M;)/g(M).
We solve RGE from my to my, my to m. and m. to the 1 GeV scale. When
the heavy quarks (¢, b) decouple at their mass threshold, C¢ is induced through the
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chromo-electric dipole moment of the heavy quarks. The difference C% below and
above the threshold is given by [53]

O‘S(mq)

Ccm mﬂ_CGmaove:+
( Q)bd ( Q‘) b 87qu(mq)

CE (my). (F.34)

Taking into account the QCD and threshold corrections, we obtain the effective
Lagrangian at the hadronic scale. It is then straightforward to evaluate the effective
L at the 1 GeV scale from the my scale.

The neutron EDM (d,,) is given by the Wilson coefficients at a hadronic scale

as follows:
d, = df +d°+dS, (F.35)
df = %(405 - C¥F), (F.36)
Y= a (4§ - C9), (F.37)
M
4 = Z—WC‘G, (F.38)

where M is a chiral symmetry-breaking parameter, which is estimated to be 1.19
GeV. In the above we use a non-relativistic quark model for df and a naive dimen-

sional analysis for d¢ and d°.
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