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Abstract

We consider bosonic noncritical strings as QCD strings and we present
a basic strategy to construct them in the context of Liouville theory. We
show that Dirichlet boundary conditions play important roles in generalized
Liouville theory. Specifically, they are used to stabilize the classical con-
figuration of strings and also utilized to treat tachyon condensation in our
model. We point out that Dirichlet boundary conditions for the Liouville
mode maintains Weyl invariance, if an appropriate condition is satisfied, in

the background with a (non-linear) dilaton.
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Chapter 1

Introduction

Gauge theories and string theories are very important ficlds of modern the-
oretical physics. Construction of a non-perturbative formulation of string
theories is one of the main subjects which has not yet been completely un-
derstood. Although non-perturbative formulations of gauge theories were
constructed as lattice gauge theories, we are still interested in analytical
studies on non-perturbative effects of gauge theories. The relation between
gange theories and string theories has been studied for a long time, and both
theories have developed while affecting cach other deeply. Thus, studies on
the connection between them seems to be important and is expected to be
fruitful. With this in mind, we consider QCD strings in this thesis, from the
viewpoint of Liouville theory.

Investigation of non-perturbative effects of QCD (for example, confine-
ment of quarks) has been one of the motivations for string theories. In the
context of QCD strings, confinement of quarks is explained in terms of a
linear potential produced by the “string” stretched between quark and an-
tiquark. There are mdny reasons why we consider such a string theory [2],

although this naive explanation has not been completed nor proved to this



time."

In the strong coupling expansion of lattice gauge theories, the quark-
antiquark potential is given by the expectation value of the Wilson loop,
each term of which corresponds to different configuration of the lattice sur-
faces. This reminds us of the sum of the open-string “world-sheet surfaces”
whose boundary is the Wilson loop. We can find another description of gauge
theories in terms of strings in the large-N limit. In large-V gauge theories,
Feynman diagrams are classified by the “Euler number,” and the physical
obscrvables are expressed as a series with respect to the “topology” of the
graph. The dominant terms correspond to planar diagrams. This also re-
minds us of a “world-shect” description. Furthermore, in the description of
the dual Meissner effect, the fluxes of color electric charge are collimated,
and form a “string” between quarks. We also find similar correspondence
between gauge theories and string theories in the contexts of D-branes and
AdS/CFT?

In this chapter we review the connections between gauge theories and
string theories from various viewpoints. After the overview of them, we
make our basic presuppositions and assumptions to promote further consider-
ation. Our main assumption is that the four-dimensional non-SUSY large- N
pure Yang-Mills (YM) theory corresponds to some suitable four-dimensional
bosonic string which has not yet been found.

The organization of this thesis is as follows. In chapter 2, we review
Liouville theory which we utilize to describe noncritical strings. Noncritical

'
strings, in the spacetime where the dimension is lower than one, can be

consistently quantized in the framework of Liouville theory. The problems

'For a review of these topics, see also Ref. [3] and the references therein.
?We have found other connections between gauge theories and strings [2, 3]



in the construction of noncritical strings in higher-dimensional spacetime
(dimension of which is higher than one) will be presented in chapter 2: one
is the instability of the Liouville mode, and the other is the existence of
tachvonic mode.

In chapter 3 and chapter 4, we attempt to generalize Liouville theory in
order to describe noneritical strings in higher-dimensional spacetime.  We
point out that one of the problems, the instability of the Liouville mode, can
be overcome if we introduce Dirichlet boundary conditions for the Liouville
mode at the boundary of the world-sheet. In general, Dirichlet boundary
conditions for Liouville mode are forbidden, since they break Weyl invariance.
However we point out that we have a special case which we can introduce
Dirichlet boundary conditions for it with maintaining Weyl invariance.

In chapter 4, we treat tachyon condensation. Although exact treatment
of this problem is very difficult, we present a basic strategy for it in the
framework of the generalized Liouville theory. Our proposal is to utilize
Dirichlet boundary conditions again. Tachyon condensation is one of the hot
topics of recent string theories even for critical strings. We briefly review
the recent works related to open-string tachyvon condensation on unstable
D-branes, and also comment shortly about the author’'s work on tachyon

condensation for eritical bosonic strings.
1.1 Connections between gauge theories and
string theories

1.1.1 Large-N gauge theory

One of the indication that gauge theories are related to strings is found in

the context of large- NV gauge theories considered by "t Hooft [4] for the first



time.

Let’s consider SU{N) pure Yang-Mills theory. The Lagrangian is given as

1 g w ;
L = —i[dt:f:F,wF’ . (1.1.1)
IL-‘:II.V - a,uf"lu - auA,u - "':g\’r»-i[-q,u: -41/]: (112)
1
Ay = AL, Tr(t"t?) = 55“”, (1.1.3)

where 1% are the generators of the SU(N) gauge group.

We obtain the S-function in this theory by perturbative calculation as

Blgvu) = 1672 3" + O(giy)- (1.1.4)

Therefore, the encrgy scale which characterizes the theory is given as
. 247
2 2 -
Ajep = piexpl———— 1. 1.1.5
QCD ( 11{}2 N ( )

YM

from (1.1.4) with the approximation up to O(gl,,).
Now let’s take the limit N — co with Agep fixed, namely
N =00 (A= gy, N : fixed). {1.1.6)
In this limit, each Feynman diagram carries a topological factor NX, namely
(contribution of the graph) oc A" 7" N, (1.1.7)

where n, and 7, denote the number of the propagators and the vertexes in-
cluded in the graph. y represents the Euler number of the graph. Therefore,
if N is sufficiently large, 1/N expansion gives good approximation, and cach
term is categorized by its topology. The sum over graphs of a given topol-
ogy can perhaps be thought as a sum over “world-sheets” of a hypothetical

“string”. We expect from (1.1.7) that the “closed string coupling constant”
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is of oder 1/N. Furthermore, the boundaries of the hypothetical world-sheet
.can be seen as the world-lines of quarks whose color charge can be interpreted
as Chan-Paton factor.

Thus the hypothetical open string stretched between quarks can be thought
as a meson, and the hypothetical closed string can be interpreted as a glue-

ball. We call these strings QCD strings in this thesis.

1.1.2 Lattice Strong Coupling Expansion

The correspondence between gauge theories and strings can also be scen in
lattice gauge theories. '

Suppose that we calculate an expectation value of a Wilson loop. In
the strong coupling region, we can obtain it analytically in lattice gauge
theory with strong coupling expansion [5]. The leading term of the expansion
corresponds to the planar section in the lattice rounded by the Wilson loop.
The contribution of each term in the expansion seems to depend on the
“area” of the section, and we can optimistically expect that

(W{c)) ~ > exp{—(the area of the scction rounded by ¢)}, (1.1.8)
sections
where ¢ denotes the contour of the Wilson loop. In the case of the rectangular
Wilson loop infinitely long in the time direction, its expectation value is
related to the quark-antiquark static potential via

lim (W(c)) =exp (—=V (r)T), (1.1.9)

T 00

where T is the length of the Wilson loop in the time direction. V(r) de-
notes quark-antiquark static potential where 7 is the distance between quark
and antiquark. In the leading order of the strong coupling expansion, the

quark-antiquark potential is linear with r, which describes the property of
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confinement of quarks. This property also reminds us of the hypothetical
string stretched between quarks, the tension of which is the proportional fac-
tor in front of r in the linear potential. This picture also suggests that the
area of the section of the lattice rounded by the Wiison ]oo'p corresponds to
the action of the string, and the expectation value of the Wilson loop seems
to be obtained as the partition function of the string.

Similar relation between a string partition function and a expectation
value of a Wilson loop is alse found in the context of AdS/CFT, described

in section 1.1.4.

1.1.3 Regge Phenomenology

The relation between gauge theories and string theories was also pointed out

in the context of Regge phenomenology.?

Regge Trajectory

Regge trajectory represents the relations between mass and angular momen-

tum of hadrons as
J <o'm? + ag, (1.1.10)

where J denotes the angular momentum of a hadron, the mass of which is
m. « and o are constants, especially o’ is called “Regge slope”.
Correctness of Regge trajectory (1.1.10) has been checked experimentally
both for mesons of J < 6 and baryons of J < 1 [6, 7] as far as the author
know, and it has good accuracy in this region. It is also known that the
approximate value of ' for hadrons is 1GeV?. A similar relation between

the angular momentum of glueballs and their mass is also expected. Regge

*For a review of subjects in this subsection, see Ref. [6]
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trajectory for glueballs has been researched with both experimental method
and numerical method in lattice gauge theory. In this case, the suggested
value of o' for glueballs is almost the half of that for mesons [7].

In the picture of QCD strings presented in the previous sections, Regge
trajectories can easily derived as the relation between the angular momentum
and the mass of the strings. In this picture, the tension 7 of the string is
(2ra’}"' and 7 ~ Agep. The approximate ratio of Regge slopes for mesons
and that for glueballs is around 2, and it agrees with the ratio of the tension

of open strings and that of closed strings.

Veneziano Amplitude

We can evaluate scattering amplitude of hadrons with QCD string model.
For example, the four-point scattering amplitude A can be obtained as [8]

L(=J{s)T(=J (1))

A(s, 1) D(=J(s) = J(t)

(1.1.11)

where s and ¢ denote square of the momentum flowing in s-channel and t-
channel, respectively. This amplitude has s-t duality of hadrons. In the limit

of large-s with fixed ¢, the amplitude behaves like as
Als, 8) ~ T(=J() - (=J(s))7¥, (1.1.12)

and it describes the behavior of hadrons well. Therefore, the string descrip-
tion of QCD seems to be successful at least within the above consideration.

However, a simple QCD string model fails to represent the behavior of
hadrons in high energy region with fixed-angle scattering. In this case, we

obtain

Als, 1) ~ F(§) 7 (1.1.13)




where 8 is the center-of-mass scattering angle. The relations (1.1.13) and
(1.1.10) tell us that the amplitude decreases exponentially as s grows. How-
cver, experimental data of the fixed angle scattering, in the region s — oo
and ¢ = —oo with fixed s/t, suggest that it decreases in power law of s [9].
As a matter of fact, the behavior of hadrons in this region was explained by
parton model instead of QCD strings. Some attempts to describe the proper-
ties of hadron amplitude in this region with a QCD string model are found in
[53, 54, 53], and it is suggested that the role of Dirichlet boundary conditions
on the world-sheet is important. It was also shown that the free energy of
large-N YM theory [57] does not agree with that obtained from QCD string
at high temperature. However, it was pointed out that Dirichlet boundaries
on world-sheets of QCD strings make the free energy more similar to that
of YM theory [56]. Important roles of Dirichlet boundaries on world-sheets
mentioned above are discussed in chapter 5.

Another disagreement between predictions of QCD strings and the actual
behavior of hadrons arises at the quantum level. The value of oy have to be
unity if we make quantum critical strings unitary in flat spacetime. There-
fore, QCD string model has tachyonic ground state, in general. This problem
has not yet been solved, and the treatment of tachyon condensation is one

of the main themes in this thesis.

1.1.4 AdS/CFT

The relations between gauge theories and strings mentioned above are baéed
on somewhat conceptual discussions. Furthermore, we do not know how
to describe the string theory which represents large-N QCD in elementary
terms, namely no one knows the exact vacuum of QCD string, cven if it exists

or not.
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However, the vacuum of the string which represents N = 4 super Yang-
Mills (SYM) theory was presented by Maldacena [10]. According to the
Maldacena’s conjecture, N = 4 SYM theory is described by type IIB su-
perstring theory living in ten-dimensional spacetime which is compactified
on the special manifold: AdSs ® S°. (Here AdSs denotes five-dimensional
anti-de Sitter spacetitme.)

We briefly review this correspondence, in this subsection. In AdS/CFT
picture, D-branes play an important role which connect the physics of super-
gravity and that of SYM theory. '

A system of N coincident Dp-branes is a classical solution of the low

energy effective action of superstring. The solution is called as brack p-brane

solution, and given as follows [11],

ds* = H(r)"3(=dt® + daf) + H(r)i(dr® + r?dQ2?)

e = 5«0‘31’1’(1’")%12
H(r) = 1+(§)Lp
R™? = cpgyc,oNlT?JJ
¢, = 2Px 2l (Lz—p) (1.1.14)

where [? = o, 7 is the isotropic radial co‘ordinat.e on the transverse space,
z); denotes the spatial coordinates along the brane, and g, is open string
coupling constant at r = oo.

On the other hand, a system of NV coincident Dp-branes is considered to
be described by the non-abelian version of the Born-Infeld action, which 1s

suggested as [12]

Sy = —7}?fdp+1$e_¢STr\/f(let(Gij + 21’ Fy;)
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0 1
P 27“/,5, (1.1.15)
gs  2ma'gs

where G5 is the pull back of the metric G, Fi; is the field strength of the
gauge field on the brane, and g, = €¢*. STr denotes the symmetrized trace
over the gauge group matrices. We obtain the action for the gange field in

the standard form by expand Sy, in powers of Fj;:

1 -

—_ +1,,. e rai

SB] = _4931\’1 fdp .LF;}F ]1
P = 20,277 Ha)'T, (1.1.16)

where we normalized the U(N) matrices as Tr(t;¢;) = 16;;-
Let -us try to connect these two descriptions of the system of D-branes.

First, we look deeper into the case we take near-horizon limit:

r— 0, a'—)O

U= —: fixed. (1.1.17)
CH

In this limit, the metric in (1.1.14) can be rewritten as

ds? U? \/ g
2 dx? 2dU? + \/dnr N g, 1.
r_z’ TN, T + 5 dU” + \/drNyg d$22, (1.1.18)

This is the metric of the manifold AdS; ® 5°. One can find that the radius

of AdSs and the radius of 5% has the same value 4% as

b = o\J4rNg, = o'\/g2 N

= oV (1.1.19)

The black p-brane solution is valid only in the classical region where

o'R < 1, namely

I

k
1>>b_2:>’\>>1 (1.1.20)
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Here R is the scalar curvature of the target space. In this region, the coupling
constant of SYM and that of IIB string are

9oy = dmg, = % (1.1.21)
and we find that the perturbative method is valid for both SYM and string
theory, in 't Hooft litnit N — oc. Therefore, in this region, we can expect
that both SYM theory and supergravity are good descriptions for the system
of D-branes.

Furthermore, the isometry group of AdSs is O(4,2) which corresponds
exactly to the conformal symmetry in N = 4 SYM, and the isometries of §°
correspond exactly to the R-symmetry group SU(4) of N = 4 SYM. Thus,
Maldacena conjectured that N = 4 super Yang-Mills theory is equivalent to
type 11B string theory compactified on the special background AdSs @ S3.

In the framework of AdS/CFT, the Green functions in the SYM can be

given in the string theory as follows [13, 14],

(cf mmo(z)cz(z)) — PDPe—S(®) (1.1.22)
by

Here (Q(x) denotes boundary field ( a field living on the boundary of AdS
spacetime), and @ is bulk field with boundary value ®;. In the left-hand-side,
®y acts as a source of boundary field. The right-hand-side is the partition
function of type IIB string theory obtained by the functional integral over &
with the restriction that its boundary value is ®,.

Expectation value of a Wilson loop in ¥V = 4 SYM can be obtained as

follows [15],
(W(e)) ~e 7, (1.1.23)

where ¢ denotes the contour of the Wilson loop and S is the classical value

of the action of 1IB open string with the world-sheet boundary c.
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In fact, this equivalence has been checked by various calculations and it
scems to be correct (for example, sce Refs. [16]).

There are also some attempts to generalize this string/YM correspon-
dence to non-SUSY case [17].1 However, the generalization to non-SUSY

case has not fully succeeded.

1.1.5 Other connections between gauge theories and
strings

We can find other several connections between gauge theories and strings.

We briefly introduce them here.

Dual Meissner effects

Nielsen and Olsen {18, 19] presented non-trivial solutions of abelian Higgs
model. The solutions, called vortex solutions, have structure similar to that
of strings; they are tubes of magnetic flux with constant energy per unit
length.

In the dual superconductor picture, dual Meissner effect confines electric
color flux to narrow tubes connecting qpark—antiquark pairs [20, 21, 22].
These narrow tubes are dual objects of Nielsen-Olsen vortices. String picture

also arise from dual Meissner effect like this.

Two-dimensional gauge theories

Two-dimensional gauge theories are exactly solvable, both in a lattice [23, 24]
and a continuum formulation (25, 26, 27]. They have two important proper-

ties; they are invariant under area-preserving diffcomorphism, and they have

4See also sub-subsection “Type 0 strings” in 1.1.5 and the references therein.

14



no propagating degrees of freedom. These properties reveal their almost
topological nature, and they are interpreted in terms of strings [28, 29].
The coefficients of the terms of the order (J‘V)X . in the 1/NV expansion of
the partition function of two-dimensional gange theory, count the number of
maps from a world-sheet of Euler number x to the two-dimensional target
space. The number of maps correspond to the number of string configura-
tions, and each map is weighted by the area of its world-sheet. Therefore,
two-dimensional gauge theories can be represented as two-dimensional string

theortes. The connection between them seems to provide an interesting arena

for understanding YM/string correspondence in arbitrary dimensions.

Type 0 strings

Type 0 strings are superstrigs which has no supersymmetry in target space
[35). There are some attempts to take type 0 strings as dual models to
certain four-dimensional non-SUSY large-V gauge theories [30, 31, 32, 33].
Although this is one of the natural extension of AdS/CFT to non-SUSY ver-
sion, type 0 strings has tachyons. Some proposal to stabilize these tachvons
in appropriate background are found in [30, 34]. This is one of the attractive
directions to construct QCD strings, though exact dual models which de-
scribe four-dimensional non-SUSY large-V gauge theories has not yet been

obtained in this method.



1.2 The basic assumptions and a presupposi-
tions for QCD strings

1.2.1 The basic assumptions and a presuppositions in
this thesis

With the above overviews in mind, we make the following presuppositions

and we study QCD strings with the following assumptions.

Presupposition 1

We assume that the color charge 15 attached to the ends of open strings, and

we regard the world-sheet boundaries as Wilson loops.

This presupposition seems to be very natural in the viewpoints of previous

subsections.

Presupposition 2

We treat non-dynamical Wilson loops, namely we attempt to desceribe pure
YM theories in which quarks are not dynamical.

In other words, all the open-string boundaries correspond non-dynamical
Wilson loops which we set as input; we presuppose that no interinediate open-

string state is created even in higher order corrections of string perturbation.

We have several reasons for this presupposition. One of themn is that we
can simplify the discussions if we neglect the dynamical freedom of quarks.
Another reason is as follows. If quarks are dynamical, many mesons can he

created when we make the distance between gquark and antiquark sufficiently

16



large. In this situation, the “string” between quark and antiquark is cut into
many pieces and QCD-string picture get worse obviously.

Furthermore, we do not have string models which have degrees of freedom
of spin on the edges of open strings. This is one of the reasons why we do

not treat dynamical quarks which have spin, here.

Assumption 1

We assume that the strings are bosonic, and they exist in four-dimensional

spacctime.

This is because our purpose is to describe four-dimensional (large-N)
non-SUSY gauge theories. Although there are some attempts to generalize
AdS/CFT for non-SUSY cases, they have not yet succeeded. We consider
that one of the most natural candidate for non-SUSY QCD strings is bosonic
string.

Furthermore, we set the target-space dimensions to be four on purpose.
Naively, this is natural choice at the classical level. At the quantum level,
our choice makes strings noncritical. However, as seen in chapter 2, Weyl
anomaly of noncritical strings reproduces another freedom of an extra space-
time dimension. Therefore the holographic picture similar to that in AdS/CFT,
where strings live in higher-dimensional target space while gauge theory is

in the lower-dimensional subspace, arise naturally in noncritical strings.
Assumption 2

We assume that the connection between gauge theories and QCD strings is

described by the following relation,
(W) ~ Z{c). (1.2.24)

17



Here ¢ denotes the contour of a Wilson loop, and (W (¢)) is the expectation
value of the Wilson loop. Z(¢) is the partition function of the dual open string
with the boundary ¢. The left-hand-side and the right-hand-side coincides

up to overall factor.

This assumption is natural in the viewpoint of large-N gauge theories,

lattice gauge theories;, and AdS/CFT, mentioned above.

1.2.2 Some comments for other directions

Polyvakov has proposed dual string models which represent dynamical Wilson
loops as closed strings [36, 37). The correspondence between gauge theories
and string theories in this model is pursued along loop equations [38] for
Wilson loops. Although this is another attractive direction, we do not discuss
QCD strings along this model. Because, we made the basic presupposition

that we treat Wilson loops as non-dynamical objects here.

18



Chapter 2

Review of Liouville theory

As mentioned in the previous chapter, it is most natural to assume that QCD
strings are bosonic and four-dimensional objects. Therefore, we must to find
some nontrivial way to construct a consistent noncritical string theory.
Quantization of noncritical strings has been considered in Liouville theo-
ries [39, 40]. In particular, strings for d < 1 have been consistently quantized
using DDK theory presented by Distler and Kawai [41] and David [42]. (Here
d denotes the spacetime dimension in which strings exist.) For this reason,

we first review the work on the DDK theory.'

2.1 DDK theory without boundaries

Let us start with a d-dimensional {d # 26) bosonic string without boundaries
for simplicity. We use the Euclidean signature both for the world-shect metric

and for the spacetime metric. The Polyakov action is

_ 1 2 ab g
SM - 47]_0{,/d f\/a(f] aa-X abXp,): (211)

'For a review of DDK, sce Ref. [43].
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where p runs from 1 to d. The partition function with respect to this action

is diffeomorphism invariant, and we can fix the world-sheet meétric as
Gab = gabetﬁ(f)- (212)

However, the Weyl invariance of the partition function is broken for d # 26 at
the quantum level, and the freedom of the Weyl transformation is no longer a
gauge freedom. Therefore, we have to perform the path integral with respect
to ¢ rigorously. However, the measure [d¢], of the path integral with respect

to ¢ is given by the norm

166lly = [ a6 /500y = [ d¥e\fae?Os0)?, (2.1.3)

which depends on ¢ itself in a complicateci manner. Thus, to perforin the
path integral with this measure is difficult and seems to be almost impossible.

In Louville theory based on the DDK argutnent, the measure of the path
integral is redefined with respect to some fixed world-sheet metric g, to avoid
the above described difficulty. Namely, we use the measure [d¢]; given by

the norm

186lis = [ a*€\/a(64)" (2.1.4)

which does not depend on ¢. With this redefinition, we have to use a Jacobian

J to maintain consistency:

(X, (bl el ldgly = [dX],[ab]gldclyldgls ), (2.1.5)

J = e 5, (2.1.6)
where O and ¢ are the ghost fields. We have the relations [39]
[dX],[db],[dc), = [dX);[db];]dc]ze™ e (2.1.7)
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126 —d
Siae = 2 487

[ @6 \fataraup0ne + 29}, (2.1.8)

where R is the world-sheet scalar curvature with respect to the metric gup.
(Note that (2.1.7) does not contain [dé]|, while (2.1.5) does contain [d¢].)

Therefore, the Jacobian J can be naturally assumed to be

Si = [ 6 /i{g0.000 + eio), (2.1.9)

where u and g are some constants.

Then, the total action, including the Jacobian term, is

S = Sum+S.+ Sghost

1 . .
= o [P0tk + 50X AN, + ¢QRg)

dmer!
+ Sghosh (2110)

where we have redefined the factor ¢ and the field ¢ as

47u

Q= q, (2.1.11)

o'

4
o(8) = Virau 9(6) = 5 o(6). (2.1.12)
In the action (2.1.10), the field ¢ has a kinetic term and can be regarded
as a new “coordinate” of the target space?; we obtain one more spacetime -
dimension and a linear dilaton term through the process of quantization. The
world-sheet metric g, has been replaced with gg in the process.

Let us consider the partition function Z with respect to the action (2.1.10),

Z= f[d(,o} [dX]e™%, (2.1.13)

*Note that p has the dimension of length, though ¢ is a dimensionless field.
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where [dy] and [dX] stand for [de]; and [dX];. (We omit § from expressions
of the measure in the following.) Here [dX] represents the measure with
respect to the matter and the ghost. It also represents the measure for the
modular integration if N, > 0, where N, is the number of the genus of the
world-sheet.

We note that the partition function does not change under the simulta-

Qa’

neons transformations that keep gu, = gape @ ¥ invariant,

Gab = Gune’®, (2.1.14)

- QT”’ 5(€), (2.1.15)

0(€) = w(&) = (&)
if the boundary condition of the integration in (2.1.13) allows the shift of
w given by (2.1.15). This is because the action in the initial formulation
(2.1.1) depends only on g, and X*, which do not change under the above

transformations. Thus,
Z = f [dp)[dX e SNl = f [dep!|[d.X | o= 518e" € Xw'], (2.1.16)

After rewriting the dummy variable ¢’ as ¢, we note the very important fact
that the partition function is now represented in a Weyvl tnvariant way wnth
respect to the new metric .

Now we are in a position to determine the value of . We found that the
partition function is Wey! invariant. Therefore, the total central charge of

the theory should be zero:
Crp + C‘M + Cglmst =10 3 (2117)

where C,, is the central charge for Sp,, Cyy is the central charge for Sy, which

is equal to d, and Cgpes is the central charge for Sgyos, which is calculated
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to be —26. We can cvaluate €, with a standard technique of conformal field
%]

theory as
C,=1+60'Q". (2.1.18)

Thus (2.1.17) and (2.1.18) give us

(2.1.19)

We chioose the positive branch, in this thesis.

We point out that our action is exactly the same as that of the “lincar
dilaton string” in d + 1 dimensional spacetime. In the linear dilaton string,
@ is regarded as one of the spacetime coordinates, and Q is given as a factor
which appears in the dilaton term. However, from the viewpoint of Liouville
theory, we do not regard ¢ as a real physical coordinate of spacetime. It is
the parameter of the Weyl transformation and becomes the new spacetime
coordinate through the quantization process. Thus, we call ¢ (or @) the
“Liouville mode”™ in this thesis.

Now we have some problems. First, the Liouville mode ¢ does not have a
stable vacuum with the action (2.1.10). In Refs. [41] and [42], a cosmological
constant, is added to the action to obtain a stable vacuum. The Polvakov

action with the (renarmalized) cosmological constant g is

1 . . .
Sy = irer [{i‘zf\@(g"bau.\ X, + ). (2.1.20)

Tk
[t is natural to assume that the cosmological constant term is deformed by

the quantum effect as

It 20 [- @ ! €4/ ger?
E/ Peae? —s E/d E\/.;(,%
- !_!/ 125 gc(\"#’: (2121)

 dr
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where < i1s a constant indicating an anomalous dimension, and we defined «
as o = qu"y.' To preserve the Weyl invariance of the theory, we choose a so
that the cosmological constant term is Weyl invariant. This is realized if the
conformal dimension of the operator ™% is 2. Namely, we demand % to be
a (1,1)-primary operator. In complex coordinates, the holomorphic part of

the energy-momentum tensor given by the action (2.1.10) is

1
Tzz —E(E)c,aago — ), (2.1.22)
and the conformal weight A of e*¥ is given by

A:%@(Q~%), (2.1.23)

which should be 1. Thus we obtain two solutions:

.4 25 — d 1-d _
CB:{:IQ:&JQZ—EZ\/ 6 :t\/ 6o . (2124)

In the classical limit (d = —o0), « should be zero, and we take the branch

of a_. Then we have a stable vacuum for a negative world-sheet curvature
R. This is because the potential for ¢ is given by

Vip) = 1 [ @E(@hp+ pe), (2.1.25)

and has a minimum value if the factor of ¢ in the first term is negative. {(We
have assumed a constant-p configuration as a classical solution here.)

We have a second problem with the strings for d > 1. In this region, ais a
complex number. Thus we have to regard pe®® as a tachyon vertex operator
with momentum in the ¢ direction, rather than a cosmological constant
term. Furthermore, the composite operator e*¢ becomes non-normalizable
[44]. We also have to consider the condensation of the target-space tachyons,

since we treat a noncritical bosonic string in which the tachyonic mode is not
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projected out. We point out that we do not have target-space tachyons if
d < 1. This is because the Liouville theory is described as a d+ 1-dimensional
string theory, and the world-sheet oscillation can be fixed completely by the
gauge symmetry if d + 1 < 2. Thus the tachyonic mode cannot appear.

For this reason, we can construct a Weyl invariant string theory with a
cosmological constant for the case d < 1. A consistent model for quantized

noncritical strings for d > 1 has not yet been constructed.

2.2 Liouville theory with boundaries

For noncritical strings with a boundary, we assume Sy, to be

1
Sp =

4o’

/M dzg\/é{gabaa(pabcp + o'QRp} + 27:(1, /(')M d.s\/g;a'ch v,
(2.2.26)
where s is a parameter of the boundary M and ds+/§,, denotes an invariant
infinitesimal length on it [40]. The quantity k is the extrinsic curvature with
respect to the metric gg. If the world-sheet has many boundaries, oM
denotes all of them. The only difference between this and the boundaryless
casc is the existence of the boundary terms. We can also add a boundary

cosmological constant term,

dsy/Ge.e7%. 2.2.97
,ub/(;M 5y/ Gss€ { )

For strings with boundaries, we also need to consider the boundary con-
ditions. We can consider several types of boundary conditions for ¢.3 Now
we set k = 0 for simplicity. The reason why this choice is natural is discussed

in section 3.1. In this case, we have two choices for the houndary conditions.

3Boundary conditions and houndary states for linear dilaton theory have been consid-
cred by several authors. (For example, see Refs. [40],[45],[46] and the references therein.)




One of them is Neumann boundary conditions, and the other is Dirichlet
boundary conditions.

Neumann boundary conditions allow the ends of open strings to move
frecly. In other words, Neumann boundary conditions can be regarded as
an equation of motion for the endpoint. Therefore, it does not restrict the
discussion in section 2.1, and the argument given for the boundaryless case
still holds. On the other hand, we have to be careful if we consider Dirichlet
boundary conditions. This is because the shift of ¢ (2.1.15) is not consistent,
with Dirichlet boundary conditions, and thus Weyl invariance is broken, [46]
in general.

However, we show in chapter 4 that we can use Dirichlet boundary con-

ditions without breaking Weyl invariance in some special case.
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Chapter 3

Liouville theory as a QCD
string: a trial to go beyond the
d = 1 barrier |

3.1 Liouville theory as a QCD string

We presented our basic assumptions for noncritical QCD strings in chapter 1.
Here we make these more precise before proceeding with a further argument.

The boundaries of the world-sheet correspond to non-dynamical rigid Wil-
son loops. In this sense, the boundary conditions for X*# should be Dirichlet
boundary conditions. A nontrivial problem is how to choose the boundary
conditions for .

We choose the topology of the classical world-sheet to be a cylinder, and
we set k = 0 for simplicity. This is reasonable for the calculation of the static
quark-antiquark potential. We usually consider a rectangular Wilson loop of
infinite length along the time direction to calculate it. However, k diverges at
the corners of the rectangle, and this makes calculations difficult. To avoid

this, we connect the shorter sides (the space-like sides) of the rectangle and
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thereby make it periodic, like a ring. This (:onﬁguré,tion consists of two paral-
lel circular Wilson loops, and is like a cylinder. Then, the corners disappear,
and the boundaries are straight from the two-dimensional viewpoint on the
world-sheet. Then we can set k = 0 naturally on the world-sheet. Of course,
the color charges on the loops are set to make a color singlet. In the last step
of the calculation, the periodicity of the loops is set, to infinity, and thus the
calcilated value of the potential should attain the same value as that for an
infinitely long rectangular Wilson loop.

Next, we make our problems clear. To go beyond the d = 1 barrier, we
have mainly two problems to solve. First, we must stabilize the vacuum of
the field ¢, or fix the zero mode of ¢ to stabilize the classical configuration
of the string. Secand, we have to treat the condensation of the target space
tachyons if they exist. '

We propose some basic ideas to solve these probletus in the following
sections. We find that Dirichlet boundary conditions play important roles in

the generalized Liouville theory.

3.1.1 Generalization of Liouville theory

We saw that the cosmological constant term becomes tachyonic for d > 1.
Thus we cannot use it to stabilize .

One idea to stabilize ¢ without a cosmological constant is to add another
Weyl invariant term to the action, which generates the minimum of V().
We point out that one of the simplest candidates for such a term is

! .
—4;:0” ](125 engpgabaaXﬂabX.ua (311)

where g/ in (3.1.1) is a constant. This is because one can verify that the
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operator
g, X X, (3.1.2)

has conformal dimension 2, namely A(e’?%) = 0 from (2.1.23). Then we
obtain a new action with {3.1.1):

1

4oy’

S=

[(126\/3{ (1 + Mfe'ZQtp)gabaﬂXuab‘Xu + gabaa(pabgo + Q’QR@} +Sghust-

However, one finds that the above action is not exactly Weyl invariant.!
Let us consider the most general action for Liouville theory. We naturally
impose SO(d) symmetry on d-dimensional spacetime, and we then obtain

1
S =

dmey’

[ Befila@)@X" + (00)F + ' ROB(p)}, (310.9)

where we have fixed the @e-component of the target-space metric to be 1,
with appropriate redefinition (or target space general coordinate transforma-
tion) of ¢. Now the cosmological constant term is assumed to be zero. (We
have suppressed the ghost term here. Also, note that we have dropped the
boundary terms, since we set k = 0.)

The S-functions which should vanish for Weyl invariance are

B = o' (Run + 2V Vy®) + O(a'?), (3.1.5)

5% = o (- = SV*8 + (VO)?) + O, (3.1.6)

! Although the composite operator (3.1.2) is a (1, 1)primary operator, multiple insertion
of them creates another divergence, which causes breakdown of the scale invariance. Thus
the insertion of the operator (3.1.2) into the action breaks Weyl invariance.

In the case of a cosmological constant term, the multiple insertions do not give any
divergence.

(3.1.3)



where M and N run from 1 to d+1, and X' = . Rysn is the Ricci tensor
of the d + 1-dimensional target space.
Collecting the above results, the equation of motion up to order o be-

coime

0=Rmun +2Vy VD, (3.1.7)

, 1, ‘
0=-Q° - §V2<I> + (V®)?, (3.1.8)

where @ is given by (2.1.19). We stress that we can use these equations
only in the region o/R < 1, where the perturbative approximation for the
B-functions is valid.

The solution of these equations is given in Ref. [47] as

[1 4 Xe2Qv
(L((p) = m y (319)

where A and ag are constants, and
3 2Q 1 QQ
b =Qp - §log(1 — Ae”~?) + 3 log(1 + Ae*“#) + constant . (3.1.10)
‘The allowed region for ¢ is given by {Ae*?9| < 1, or
< - log || (3.1.11)
We have to check the validity of this solution before further calculations. The

target space scalar curvature for the solution (3.1.9) is given by

2

! 1
) _a

R = -3[=| —5—
1 (¢

—4Q% ] —oco (A >0)
= T gae Y =0) as|b (3.1
(1_()2)2(31 +8b+3)—1 0 (A=10) as|b] =1,(3.1.12)
+o0 (A <0}
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da

where b = Xe?? and o' denotes Do Therefore, the solution is valid only in

the region satisfying |b| < 1, or equivalently

1
—— log|A 3.1.1
© K 20 og Al (3.1.13)

if A # 0. In the case A = 0, the solution is exactly the same as the “linear

dilaton string” considered for d < 1. We investigate the A # 0 solution here.

In the region satisfying (3.1.13), the solution is expanded as

a*(p) = aZ{1 + 22’9} + O(b?), (3.1.14)

B(p) = Qu + 2Xe?9 + O(b?). (3.1.15)

We find that the above solution is consistent with the proposed action given
in (3.1.3), if we set ¢/ = 2 and rescale X in (3.1.4) to %

Although the best method is to find a solution for the exact equation of
motion, this seems to be very difficult. Thus we consider the physics only in
the region defined by (3.1.13), where the perturbation with respect to o' is

valid, and we use the action

1 ~
5 = I jdzﬁ\/g{(l + 22e9%) 50, X#8, X, + ™00 + o' R(Qy + 2)e?¥%)}
+Sghost (3.1.16)

in this region.
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Chapter 4

Stabilization of the vacuum of
Liouville mode ¢

In this chapter, we attempt to stabilize the vacuum for ¢ in the action
(3.1.16). We have two strategies. One is the standard stabilization using
the minimum of the potential. However, we find that the potential in which
we are interested has no minimum in some cases. The other one is to im-
pose Dirichlet boundary conditions for ¢ and fix its zero mode. To use this
method, we have to check the consistency of the Dirichlet boundary condi-

tions and Weyl invariance.

4.1 Stabilization using the potential minimum

In the case that Dirichlet boundary conditions are not imposed, the zero
mode of ¢ must be stabilized at the minimum point of the potential.
The vacua of X* are stable, and only the stabilization of ¢ 1s needed in

our model. Thus, let us consider the effective action which we obtain after
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the path integration with respect to X'#,

1

4o’

S(p) 260/ G{(1420e299) (50, X" D, X, )+ 5 D 0o+ R(Qo+2Xe9%9))
I

(4.1.1)
where () denotes the expectation value of the operator O obtained by the
path integration with respect to X#. The equation of motion with respect

to the zero mode of ¢ is given by
58S = {5(;9(:/(1{25\/_(3111((,0,;) =0, (4.1.2)
where ., 1s the zero mode of ¢, and v(g,) i1s expressed by
v(p.) = o« RQp + 22697 (o' R + (;}“f’a,,Xf‘a,,,\',l)), {4.1.3)
The Gauss-Bonnet theorem states that

/ d*6\/GR = Ay, (4.1.4)
A

where x is the Eunler nmumber of the world-sheet M. It is given by y =
2 — 2N, — Ny, where N, is the number of the genus of M, and N, is the

number of boundaries of M. Then the equation of motion for ¢, is

47’ Qx + 4AQe* W (dma' y + A) = 0, (4.1.5)
where
A= [M P60, X 0N, > 0. | (4.1.6)
Since A # 0 and (¢ 5 00, we obtain
2o — ___ATaX >0, (4.1.7)

AA(dre’y + A)
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and we immediately note that we have no solution for y = 0. We also obtain
2
0" (o) = —8ma' Q% x (4.1.8)

from (4.1.3) and {4.1.5}, and we have no stable vacuum for x > 0.

Note that the leading string diagram in our model is a cylinder, for which
we have y = 0. In general, the leading term can be a disk (x = 1) or a
cylinder in the caleulation of the correlation functions of Wilson loops. Thus,

unfortunately, we do not have a stable vacunm suitable for these ¥ > 0 cases.!

4.2 The Weyl invariant Dirichlet boundary.
conditions and stabilization of the vac-
uum of ¢

We have seen in our model that we cannot make a consistent potential for ¢
with disk and cylinder diagrams. However, if we impose Dirichlet boundary
conditions and fix the zero mode ., we are free of this difficulty.

The problem in this case is the compatibility of the Dirichlet boundary
conditions and the Weyl invariance of the world-sheet. In a linear dilaton
string, Dirichlet boundary conditions break Weyl invariance {46]. Thercfore,
we have to find a method to introduce Dirichlet boundary conditions into
our theory without breaking Weyl invanance.

A pood place to start is to recall the origin of the Weyl-invariance breaking
in a general dilatonic string with Dirichlet boundary conditions. In dilatonic
string theory, we usually need a freedom of field redefinition to preserve

Weyl invariance. For example, we have to make a constant shift (a ficld

"'We have the same problem for y > 0 in DDK. However, in the calculation of string
susceptibility, insertion of a d-function into the path integral, which keeps the world-sheet.
area constant, allows us to obtain the correct value for f < 1.
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redefinition) of ¢, are in (2.1.15), to cancel the variation caused by the Weyl
transformation (2.1.14) for d < 1. Dirichlet houndary conditions for ¢ forbids
such a shift at the boundary, and breaks Weyl invariance. On the other hand,
Dirichlet boundary conditions for X# do not break Weyl invariance, because
no shift of X*# i1s needed.

However, we point out that we can employ Dirichlet boundary
conditions for ¢ in a general dilatonic string if the criterion stated
below is satisfied. In the theory with a dilaton, the required shift of the
ficld is not a constant in general. For example, the shifts we need for the
fields in (3.1.4) at the one-loop level are given as

(]{"

b = -5 0,8(¢)do, (4.2.9)

SXH =0, (4.2.10)

where 0, stands for %2 We can check that (4.2.9) gives the correct constant
shift required in the lincar dilaton case (2.1.15) if we set ¢ = 2.* We look
deeper into the origin of the field redefinition in the Appendix. |

We note that we do not need ficld redefinition for ¢ if 9,® = 0. Thercfore,

we can use the Dirichlet boundary conditions

wlom = v , (4.2.11)

where

0,8() g = 0, (1.2.12)

2The reqguired field redefinition to preserve Weyl invariance appears in articles which
discnss the B-functions for non-lincar sigma models. For the models with boundaries, see
Refs. (48] and [49]. The condition (4.2.9) for the shift is also found in Ref. [46].

Mg =2, weget u = %d;ﬂ;’r" The denominator naturally coincides with the denom-
inator of the factor in (2.1.8). In this lincar dilaton case, the Weyl anomaly is obtained
exactly at the one-loop level.
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without breaking Weyl invariance at the one-loop level. The above stated
criterion for consistent Dirichlet boundary conditions is one of the most im-
portant assertions of this thesis.

As a next step, let us examine whether our model (3.1.16) has such a g

or not. Qur dilaton term is
P(p) = Qu + 22?2 - O(h?). (4.2.13)
Thus the condition (4.2.12) is
D, P = Q +40Qe*¥ + O(H?) = 0, (4.2.14)
and we obtain
1 . -
wo = ~30 log(—4A) + O(6%) (4.2.15)

for A < 0. The condition (4.2.14) is valid only in the region satisfying |b] =
|Ae?@¥| < 1, and now Ae?@¥° = —1/4. Thus the above result suggests that we
have an appropriate point g for the Dirichlet boundary conditions (4.2.11)
if A <O

For this reason, we choose A < 0 and impose Dirichlet boundary condi-
tions on the ends of the string to stabilize its configuration for arbitrary yx.

Note that the above argument naturally selects the branch of A uniquely.

4.3 Consistency with black p-brane solutions

In this section, we check the consistency of the statement in the previous
section from the viewpoint of black p-brane solutions in supergravity.
Black p-branes in supergravity theories are interpreted as Dp-branes in

superstring theories. Generally, black p-brane solutions contain a dilaton
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field which depends on the position in target space. Black p-brane solntions

are given as follows [11],

ds’ = H(r) #(=dt* + daf) + H(r)2 (dr? + rd$2?)

e = _qu('r)L;E
IR T-p
H(r) = 1+(—)
r
R7P = ¢goNII7P
0 S—p 7_
¢ = 2-’-%—2%( 2”), (4.3.16)

where 12 = o, v is the isotropic radial coordinate on the transverse space,
x) denotes the spatial coordinates along the brane, and g, is open string
coupling constant at r = oc.

In the case of p # 3, the dilaton has nontrivial dependence on r. There-
fore, in the string theory side, the position where branes can exist should
be restricted by the consistency condition for Weyl invariance on the world-
sheet, as discussed in the previous section. Therefore, we will check how the
consistency condition works in the black p-brane solutions (4.3.16).

The consistency condition for Weyl invariance here is V7 ®(r) = (), and it

can be written as

VO(r) = GV,

= GTo.0()
- H*%ar(l)(y)

3—p s 7P R
= S PH - =0 (4.3.17)

Let us take the limit # — 0 for (4.3.17). After short calculations, we

obtain

>0 (3’_8) as |r| = 0. (4.3.18)

Vr(D(?')H{ 0 (2 0)
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Therefore, the left-hand-side of (4.3.17) diverges near the brane position
r = 0 and the condition does not secmn to be satisfied in the case of p = 6,
while the condition (4.3.17) is satisfied at » = 0 in the case of p # 6.

However, the above divergence does not mean the contradiction between
the consistency condition and the black p-brane solutions. When we derive
the consistency condition, we performed perturbative caleulations in the non-
linear sigina model on the world-sheet. The perturbative method is only valid
when o'R < 1, where R is the scalar curvature of the target space. The

behavior of R near = 0 in the solutions (4.3.16) is as follows

1, . . 5
R = =0 —4p = 1T)(0,H)'H 3
. o0 {(p > 3)
~ 77— { const. (p=3) as|rl—0. (4.3.19)
0 (p < 3)

Therefore, our perturbative analysis for the condition (4.3.17) is not applica-
ble to the case of p > 3, and the divergence in (4.3.18) in the p = 6 case does
not mean the contradiction to our result. On the other hand, the condition
(4.3.17) 1s satisfied in the region p < 3 where perturbative analysis is valid.

Thus, our criterion for Dirichlet boundary conditions maintaining Weyl

invariance is consistent, and has no contradiction to black p-brane solutions.
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Chapter 5

Tachyon condensation: another
role of Dirichlet boundary
conditions in Liouville theory

5.1 Tachyon condensation with Dirichlet bound-
ary conditions

We found that we can use Dirichlet boundary conditions to stabilize the string
configuration, while preserving Weyl invariance for arbitrary y, at least up
to O(u'?).

However, we have another big problem: If the target-space dimension
(d + 1 for our model) is greater than 2, we cannot fix all of the freedom
of the world-sheet oscillation with gauge symmetry, and we have physical
oscillation. It is well known that we have a tachvonic oscillation in the
bosonic string in flat spacetime. In our model (3.1.16), the target space
becomes asymptotically flat in the region ¢ € 0. Now we are considering
the case d > 1. Thus a tachyonic ground state appears at least in the region

in which the spacetime is almost flat. [f we have a tachyonic mode, we have
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to handle tachyon condensation.

Tachyon condensation has been discussed by many authors (for example,
see Ref. [51])'), but this subject is difficult and has not yet been solved
completely. We present some ideas to treat tachyon condensation here [52]. '
We stress that Dirichlet boundary conditions play an important role in this
subscction too.

First, let us recall ficld condensation in usual quantum ficld theories. In
field theory with field condensation (that is, in the theory with nonzero ex-
pectation value of the ficld), we can calculate correct quantities if we know
the correct expectation value of the field, even with the perturbation around
an incorrect vacuum. For example, we can calculate the exact propagator
with the perturbation around an incorrect vacuum by attaching tadpole dia-
grams to the tree propagator. Even though the mass squared is negative in a
description around such a vacuum, tadpoles with appropriate weight create
an additional shift of the mass squared, and make the total mass squared
positive. In such a case, although the tachyouic mode exists in a perturba-
tive theory around an incorrect vacuum, the theory is never wrong, and only
the “vacuum” is wrong. In field theories, the true vacuum or exact expecta-
tion value of the field can be given by the Schwinger-Dyson equation. Thus
we can get the correct weight of the tadpoles, we can calculate the correct
propagator, and so on.

We now make an analogy between field theories and tachyonic string
theories. Although we have a tachyonic mode, we believe that the string
theory is not fatally flawed, and the problem is that we do not know the true
vacuum of it. The analogy with field theories tells us that we may be able to

obtain correct quantities if we attach correct “tadpoles” to the world-sheet.

ISee also section 5.2 in this thesis.
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Then, the question is what is the “tadpole” in string theories.
We guess here that the tadpole in string theories is a macroscopic hole
with Dirichlet boundary conditions in the world-sheet. We assume that the

Dirichlet boundary condition for them is

XH(E) = (5.1.1)

P(&) = o, {5.1.2}

where 1 distinguishes each tadpole, a

© is a constant, and g 1s a constant

which satisfies the condition (4.2.12). The translational invariance in d-
dimensional spacetime is recovered after the integration over the moduli space
which 1s the region where “holes” can exist in the spacetime. Of course, we
have to consider the proper weights of the string wave functions on it. The
above assumption results from the following considerations.

The tachyonic tadpole is an off-shell state, because it does not carry mo-
mentum. We also know that off-shell states in string theory do not correspond
to local emission vertexes. Thus we naturally assume that the tachvonic tad-
pole is a non-local macroscopic hole on the world-sheet.? We also have to
preserve Weyl invariance, and it is natural to impose the above Dirichlet
boundary conditions (5.1.1) and (5.1.2) on the edge of the hole. Note that
the above Dirichlet boundary conditions map the macroscopic hole on the
world-sheet into a single point in the target space, and the “holes™ are in-
visible in the target space. We set boundary conditions like this because
visible “holes” seem to be unphysical. Neumann boundary conditions can-
not be taken for a tadpole for the following reason. If we impose Neumann

boundary conditions at a hole, the value of X'* changes along the edge of the

“Some argument for the macroscopic hole as a tachyonic state is given in Ref. [44].
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hole. This means that we observe a macroscopic hole even in d-dimensional
spacetime. Although the Neumann boundary conditions for ¢ do not make
a macroscopic hole in the visible d-dimensional spacetime, the hole can have
momentum in the ¢ direction. This allows us to make an on-shell state, and
the hole can break into on-shell open strings moving along the ¢ direction.
These situations do not seem to be natural for our model. Contrastingly, the
tadpole with the Dirichlet boundary conditions {5.1.1) and (5.1.2) does not
leak any momentum from the world-sheet, and this gives a natural property
for the tadpole.

The macroscopic holes with Dirichlet boundary conditions on the world-
sheet (or D-instantous in the target space) and the non-perturbative effects
induced by them have alrcady discussed in Refs. [53, 54, 55] and Ref. [46]
for critical strings. However, we insist that the macroscopic holes discussed
here play the role of “tadpoles” naturally even in Liouville theory.

Unfortunately, we do not have the Schwinger-Dyson equation of string
theory, and we do not know how to obtain the correct weight which should
be attached to the tadpole. Thus, we canuot give a rigorous discussion
to treat tachyon condensation, but we present a rough argument regarding
tachyon condensation.

To treat a macroscopic hole on the world-sheet is rather difficult, and we
therefore approximate it as a point on the world-sheet which couples to the
Dirichlet boundary conditions. In this case, the insertion of the tadpole is

regarded as the insertion of

I fw 2263 (XM () — a™(€)) (5.1.3)

into the world-sheet, where /v is the weight of the tadpole, and &, denotes the

insertion peint on the world-shect. We have X4 = o and o«**! = ;. In
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usual strings without a dilaton, the é-function in (3.1.3) becomes 1 after the
integration over the moduli @, and the string propagator with the tadpoles

can be estimated as

1 1 1 1 1 1
yropagator = — + —h — + =—f —Ah — 4.
Propas Lo+ Lo  Lo+1Lo Lot Ly LotLy Lo+Ly Lo+ Lo
1
= 5.1.4
Lo+ Lo—h ( )

where Ly (Ly) is the {anti)holomorphic part of the Hamiltonian of the corre-
sponding conformal field theory. Thus, the insertion of the tadpoles (5.1.3)
seems to make an additional shift to the energy of the tachyonic state.
However, we cannot apply the above estimation directly to Liouville the-
ory. Although we should integrate over ¢* to get Poincaré¢ invariance in the
d-dimensional spacetime, we never integrate over ¢y in our model (because
it is fixed). Therefore, the expected non-perturbative effects induced by the
tadpoles in Liouville theory seem to be different from those of strings with
a constant dilaton. strings. In any case, we must develop a technique to

estimate the effects of the insertion of Dirichlet boundaries.

5.2 Some comments on tachyon condensation
in critical strings

In the previous section, we have presented a basic strategy to handle tachyon
condensation in the generalized Liouville theory. However, we need further
(:onsid(:rat.ion_to reach exact treatient.

In this section, we make a survey of tachyon condensation of critical
strings. Consideration of tachyon condensation in critical string theory is
as important as that in Liouville theory. Although we do not yet under-

stand the relation between tachvon condensation of critical strings and that,
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of noncritical strings, consideration of critical case seems to be significant,
even for our purpose here. It might give us some important suggestions for
construction of Liouville theory.

In this section, we briefly review the recent developments on tachyon
condensation for critical bosonic open strings. We also comment on some

new results obtained by the author.

5.2.1 Brief review of tachyon condensation foi critical
bosonic open strings

Sen presented several important conjectures on tachyvon condensation of open
bosonic strings [60, 61, 62, 63]. It was conjectured that arbitrary-dimensional
bosonic D-brane can decay into the open string vacuun or lower-dimensional
D-brane. Moreover, the vacuum energy of the bosonic D-brane is considered
to correspond to the tension of the D-brane.

Old-days calculation [64] in the open string field theory [65] has been
renewed to discuss the tachyon condensation [66, 67, 68, 69, 70, 71, 72, 73].
Since in these cases all scalar quantities may acquire the vacuum expectation
value, we can only analyze the tachyon condensation by truncating the infi-
nite lq\fcls of string excitations. Some attempts for the exact manipulation
are found in [74, 75, 76, 77].

However, this difficulty is overcome recently [78, 79, 80!. Using another
formulation called boundary string field theory (BSFT) [81, 82, 83, 84, 85],
we have only to consider the tachyon field in the discussion of the tachyon
condensation. This is because the general property of the renormalization
group flow ensures that the quadratic modes of the tachyon field decouple
from the other modes. Exact analysis was performed in this formulation.

Both the D25-brane’s decay into the open string vacuum and the D25-brane’s
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decay into lower-dimensional brane were analyzed, and Sen’s conjectures were
confirmed exactly. As a result, the derivative truncated tachyon potential was
found to agree with the toy model proposed in [86, 87|. Several related works
“are also found in [88, 89, 90, 91, 92, 93].

5.2.2 Some new results for open-string tachyon con-
densation

Morivama and the author have obtained some new results on the tachyon
condensation for critical bosonic open strings, recently [94]%.
We have considered the decaving processes of D25-brane into lower-dimensional

D-brane, and have derived the descent relation of effective tachyon poten-

tial of bosonic open strings, in the framework of BSFT. We have also made
field-theoretical analysis, and have calculated the effective tachyon potential.

We have shown that the effective tachyon potential on lower-dimensional
D-branes has the same profile as that on D25-brane. Namely, there exist
self-similarity in the effective tachyon potential on arbitrary-dimensional D-
branes in bosonic strings.

The details for this work is presented in Ref. [94].

5.2.3 Toward closed-string tachyon condensation

Although our understanding on tachyon condensation in critical open bosonie
string has been deepened through the recent works related to decay of D-
branes, closed-string tachyon condensation is still unknown topics cven in
the critical dimension. When open-string tachivons condense, open-string
sector disappears within the treatment mentioned in the previons subsec-

tions 5.2.1 and 5.2.2, which does not include consideration of closed-string

3Tt is submitted to GUAS with this thesis.
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sector. However, closed-string tachyons still remain open-string vacuum, and
we have to treat closed-string tachyon condensation to reach fully stable vac-
uum. Therefore, to consider closed-string tachyon condensation is extremely
important. _

The basic strategy to treat tachyon coudensation presented in section
5.1 has been applied to closed-string tachyons in Liouville theory, although
exact analysis has not yet been performmed. To treat tachyon condensation
with “tadpoles™ ( macroscopic holes on world-sheets with Dirichlet boundary
conditions ) can be one of the directions which solve problems related on
closed-string tachvons, both for critical and noncritical cases.

As a matter of fact, Green has already tried to insert such macroscopic
holes into world-sheets of critical strings to obtain a modified QCD string
theory which has properties similar to those in YM theories. For example,
point-like states of the Dirichlet boundaries were shown to produce power-
like behavior of fixed angle scattering at high energy [53, 54, 53]. It was
also pointed out in Ref. {56] that at high temperature the Dirichlet bound-
aries make a string free energy similar to that of large-N YM theory found
by Polchinski [57]. Furthermore, we find an argument that logarithmic de-
pendence of physical quantities on energy scale is produced by the Dirichlet
boundaries in calculations of critical strings (58], which might lead us to a
suitable QCD string model that 1*eﬁmduces correct asymptotic-freedom be-
havior of YM theories.

The results obtained there seem to be indications that we are in the

correct way toward a description of closed strings at stable vacuum.
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Chapter 6

Conclusion and discussions

6.1 Conclusion

We attempted to quantize a noncritical (four dimensional) bosonic string
as a natural candidate of a (large-N) pure QCD string. We considered the
generalized Liouville action (3.1.4) as such a string.

One of the main problems here is the stabilization of the Liouville mode
¢ while preserving Weyl invariance, and we found that we can stabilize it
with the Dirichlet boundary conditions (4.2.11). The criterion for consistent
Dirichlet boundary conditions at the one-loop level is given by (4.2.12), and
the stabilized value of ¢ i1s independent on the topology of the world-sheet, in
this method. We also analyzed the perturbative solutions of the equation of
motion for the backgrounds. It was shown that we have a suitable solution, at
the one-loop level, which satisfies the criterion. Furthermore, this argument
leads us to the unique selection of the branch of the solutions; although
we have several branches of the solutions, we can select the unique branch
among them by examining whether it allows consistent Dirichlet boundary

conditions or not.
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We also discussed tachyon condensation. Although the complete treat-
ment of it is very difficult, we presented a simple strategy for it. The idea
we presented is to attach “tadpoles” to the world-sheet. We surmised that
the “tadpole” in Liouville theory Inight be represented as a macroscopic hole
‘with Dirichlet boundary conditions, where the condition for Liouville mode
is restricted by the criterion {4.2.12). Although a similar proposal to alter
string vacuum with D-instantons has already given for critical strings, we
insist that we can also use the above method for Liouville theory within the
condition (4.2.12), and the introduction of D-instanton-like tadpoles does
not break our assumptions and presuppositions presented in chapter 1. Fur-
thermore, we guess that the non-perturbative effects in Liouville theory are
different from those of critical strings. This is because the moduli space,
namely the regions for the target-space coordinates of the tadpoles which
should be integrated over, is different from those for strings with a constant
dilaton.

As further directions, the effects of the insertion of Dirichlet boundaries
into world-sheets should be investigated more, even for critical cases. They
are closely related to closed-string tachyon condensation. Studies on critical-
string vacua should give us some important suggestions for Liouville theory
as a QCD string. The relation between open-string tachyon condensation
and closed-string tachyon condensation should be studied further, too. Con-
sideration of open-string “tadpoles” would be also fruitful if we compare the
results with those from recent analyses of unstable D-branes.

Before we close this thesis, we stress again that Dirichlet boundary con-
ditions have important roles in the generalized Liouville theory, and they
can be imposed on the Liouville mode while preserving Weyl invariance if

the appropriate condition mentioned above is satisfied. The investigation of
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Dirichlet strings in dilatonic backgrounds is very important, and it should

yield necessary information about the construction of noncritical strings.
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Appendix A

The Origin of the Field
Redefinition and the Derivation
of (4.2.9)

Here we look deeper into the origin of the necessity of the field redefinition,
at the one-loop level [namely, up to O{a'?) |. Let us consider a general string

action in d + 1 dimensions,

s = f e\ JH{ o (X)§ 0. X M9, X Y + of RO™( X))

47r04
[ dsy/Gaa FOYT(X (5)) (A.0.1)
amM

27ra
where we have included the boundary term, as it is needed in following
calculation.! The couplings with the superscript “bare” are the bare quanti-
ties, while those without such a superseript denote the renormalized quanti-
ties, in this appendix. The renormalized action with dimensional regulariza-

tion up to two loops is expressed as

R / d“fgf(cm; +az CMN (Gun, P, X)) g, XMo, XN

4oy

'For the non-lincar sigma model with boundaries, see Refs. [48] and [49].
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47ra

1
2ma’ Jam

1
/ > e g’ R (@bare(x) +> —nCé:LJ(GMN, ®, X))

n=1 €

d*es\[o. ok ((I)b‘"e(X(s)) + i
(A.0.2)

where the symmetric tensor 3 02 ] nCMN is the counterterm of the kinetic

) ,,C (3o 1C ™) is the counterterm of the

term, and the scalar Y00 nel

dilaton term in M (OM). If we perform the Weyl transformation gq +—
Ga5€%? and take the limit of ¢ — 0, the finite variation of the action at O(do)

is

5.5 = f ¢\ fa! {1 0, Chy o OChin } i3 XM X N o
dma 2 o0 OGkL |-

+ 4730, /M d¢\[ga' R {%c;” + @% + GKngfi } §o

- 47;, fM d*¢\fgo’ (2(X) + C§) v2(5a)

+2ﬂla, [M ds@a’%(ﬁ“aawa)) (@(X () + c”z;“) , (A.0.3)

where 7% is the unit outward normal vector, and K, L, M and N are the

indices of the coordinates of spacetime.? The term which contains V*(do) in

(A.0.3) is rewritten as

dzﬁ\/gj o {VQV;,XMVM (tI)(X) +C<(Dl))
+ Ba,x*A:abXNVMV,\-@(X)} So
1 —_
T Jow, BV s 1200(60)) (2(X(5)) +C)

2The divergent terms of O{1/¢) are set to zero by pole equation [30].

=4

51




1
4y’ Jam

A5/ 9us 20, XMV s (2(X () +Cy') b0, (A0.4)

where Jy; stands for ﬁg

Therefore we get

1 -1 acy acsy cabn M A 1
55 = - [M &?€\/3 {505},},\, + QN 4 Gy MY, VND(X) 520, XM, X V5o

B KLaG 1.

1 .1 act) aCcty
— | de/ir{-Cc) +p=2 st 20 )
+47T/M Vo {ch) w* 0% +GhLOGKL 7

| — (1 CD g
+2W/st ;jssk{20¢, F oot 4 Gy §o

dG k1L
+;r [ y ds\/0: (704 (60)) (C§ — C§")
1

2 ~ ~ab -M (1)
5 /.d VGV VXM, (B(X) + CY) 6o

+$ ./aM ds\/g“:fa“aaXMVM (‘I’(X(s)) + C((I)l)) 5o

The last three terms cannot be absorbed into any counterterm. The third
term of (A.0.5) goes to zero if C‘é,]) = g). This is realized if all the -
functions, except for that of the dilaton, vanish [49]. The problem is to
determine how to deal with the last two terms.

Fortunately, we can cancel them using field redefinition. If we perform a

field redefinition XM — XM 4 X the variation of the action is

1

58 = fdz 7200, XM 3,5 X
X3 provl f\/; g 0 X pr

+(terms proportional to 8.X )
1 i
= —— [ #6/525"V,9, XX,
u

dmey’ J,

1
4o
+(terms proportional to 6.X ). (A.0.6)

/ dsy/ G203, X M6 Xy,
am

02

(A.0.5)



Therefore, if we set
!
sXM = —%V”(@(X) +ci(X))do, (A.0.7)

we can cancel the last two terms of (A.0.5). The remaining terms propor-
tional to . X3y in (A.0.6) can be absorbed into the counterterms. Thus, after
a proper field redefinition, 6,5 + 6y S contains only terms proportional to
the A-functions, and we can preserve Weyl invariance if we sct ecach of the
B-functions to zero. We know that the counterterm Cé,l} at the one-loop level
corresponds to the central charge, and is a constant. Thus the required shift

of XM is
SXM = g%v”cb(X)aa. (A.0.8)

Now we emphasize the very important fact that we do not need field redefi-
nition at the special point X, where VY ®(X,) = 0.
In our model (3.1.16), Gun, ® and the counterterms depend only on

X9 = o, so that (A.0.8) can be written as

!
Sp = ﬁ%vv’cp(@)(sa (A.0.9)

SX* =0, (A.0.10)

where g runs from 1 to d and V¥ = V' Now G = |, and V¥¢ = V.

Thus we obtain (4.2.9).
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