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Abstract

In the Standard Model (SM) of the perticle physics, the existence of the Higgs boson is
predicted as a consequence of including mass of the particles. Experimental search for the
Higgs boson has been continued at the Run-II of the Tevatron experiment. If the Higgs
-‘boso‘n is discovered, we can test the SM and distinguish models of new physics at high
energy scales by checking the mass and various properties of the Higgs boson. The purpose
of this paper is to clarify allowed properties of the Higgs boson in various models beyond the
SM, e.g. two-Higgs-doublet model (2HDM) with a softly-broken discrete symmetry, Zee-
’Model which requires the existence of a SU(2) charged Higgs singlet in order to generate
the small neutrino mass, and Minimal Super-symmetric Standard Model (MSSM). The
possible range of the Higgs boson mass (m;) for each model is obtained by demanding
the considered theory to be a valid effective theory all the waiy up to some cut-off energy
scale (A). In the SM, the allowed Higgs boson mass is 143-175 GeV, if the cut-off scale is
taken as the Planck scale (10" GeV) and m; = 175 GeV. For both of the 2HDM and the
Zee-Model, the mass upper bound is same as that of the SM, whereas the lower bouhd
is considerably reduced. It is given by about 100 GeV in the decoupling regime where
only one neutral Higgs boson is light as compared to the other physical states of the Higgs
boson. In the mixing regime, my, is no longer bounded from below. Thus, if the Higgs
boson is discovered with the mass around 100 GeV in near future, the 2HDM and the
Zee-Model with very high cut-off scale are another candidates of models which predict
such light Higgs boson along with the MSSM of which mass upper bound is about 120
GeV. The 2HDM and the Zee-Model might be distinguished each other by the partial

decay width of h — 7y or the charged Higgs boson decay into a lepton pair.
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Chapter 1 |

Introduction

The Standard Model (SM) of the particle [1] was successful in giving mass to some gauge
bosons and fermions through the mechanism of electroweak gauge-symmetry breaking. In
consequence, the existence of the Higgs boson was predicted. After the discovery of the
top quark, the Higgs sector is the last remaining part yet to be 'conﬁrmed in the SM.
Experimental search for the Higgs boson has been continued at the Fermilab Tevatron
experiments. Current experimental lower bound of Higgs boson mass is given by CERN
LEP-II experiments; the Higgs boson with the mass less than about 110 GeV has been
excluded, if its production cross section and decay modes are similar to that of the SM
Higgs boson[2]. The Run—II of the Tevatron can be sensitive to a SM-like Higgs boson with
mass up to about 180 GeV, provided that the integrated luminosity of the collider is large
enough (about 30 fb™!) [3]. Furthermore, the primary goal of the CERN LHC experiments
is to guarantee the discovery of a SM-like Higgs boson for its mass as large as about 1
TeV[4], which is the upper bound of the SM Higgs boson mass. (For a Higgs boson mass
beyond this value, the SM is no longer a consistent low-energy effective theory.)
Discovery of the Higgs particle is important not only in confirming the mechanism of
the electroweak gauge-symmetry breaking but also in providing us useful information on
physics beyond the SM. When the Higgs boson is discovered, its mass and various decay
properties will be measured to test the SM and to distinguish models of new physics at

high energy scales. In this thesis we discuss the properties of the Higgs boson in various

extensions of the SM.




The most interesting property of the Higgs boson is its mass value. For each model,
we can obtain the mass bounds by demanding the considered theory to be a valid effective
theory all the way up to some cut-off energy scale (A); by using renormalization group
equations (RGE’s) and requiring the vacuum stability and the validity of perturbation
theory below a given cut-off scale A, we can determine the lower and the upper bounds of
the Higgs boson mass as a function of A, respectively. |

Allowed region of the Higgs boson and the top quark masses in the SM was examined
in ref. [5]. The prediction of the SM Higgs boson mass is 143 — 175 GeV, if the SM is
precisely valid and any new particles do not appear up to Planck scale. If the Higgs boson
is discovered with small mass as currently searched, it suggests that there is new physics
beyond the SM at high energy scale and the SM appears as a low energy effective theory.

The Minimal Super-symmetric Standard Model (MSSM) is most popular in the particle
models beyond the SM. In the MSSM, the Higgs boson self couplings is determined by
SUSY relation at mg,,. Therefore, the mass range do not depend on A. The theoretical
upper bound on the lighﬁest CP-even Higgs boson mass is given by about 120 GeV for
my = 175 GeV and Mgtop = 1 TeV [6, 7, 8].

We investigate also the lightest CP-even Higgs-boson mass for the two-Higgs-doublet
model (2HDM) with soft—bfeaking terms [10]. The upper bound of the lightest Higgs
boson mass is almost the same as that in the SM. Whereas the lower bound is much
reduced in comparison with that in the SM. For example in the decoupling regime where
only one neutral Higgs boson is light as compared to the other physical states of Higgs
bosons, for A = 10 GeV and m; = 175 GeV, while the upper bound is about 175 GeV,
which is almost the same as that in the SM, the lower bound is given by 100 GeV. This is
- considerably smaller than the similar lower bound in the SM. For the region of thé small
soft-breaking mass, the lower and upper bounds are proportional to the soft-breaking mass
and these are no longer bounded from below in the case without the soft-breaking mass.

Next, the Higgs boson mass bounds for the Zee-Model is investigated [11]. This model
is an extension of the SM to incorporate the small masses of the neutrinos suggested by

data [12]. In this model, the three different flavor neutrinos are massless at the tree level,

~and their small masses are induced radiatively through one-loop diagrams. The Higgs




sector of the Zee-model is similar to that of the 2HDM except for the existence of an
additional weak-singlet charged Higgs field, so that the physical scalar-bosons include two
CP-even, one CP-odd and two pairs of charged Higgs bosons. We show that the upper
and lower mass bounds for A are almost the same as those in the ZHDM.

For the Zee-Model, although the allowed mass ra,ngé is same as that of the 2HDM, the
singlet charged Higgs boson can significantly modify the partial decay width of h —
via radiative corrections, and its collider phenomenology can also be drastically different
from that of the charged Higgs bosons in the usual 2HDMs.

This thesis is organized as follows. In Chapter 2, we review the Higgs sector in the
SM, and the mass bounds in the MSSM is also mentioned. In Chapter 3, we discuss
mass bounds of the Higgs boson for the 2HDM. In Chapter 4, mass bound and other

phenomenology of Higgs bosons for the Zee-model are discussed. In Chapter 5, we présent

our conclusion. Relevant RGE’s and so on are collected in Appendix.




Chapter 2

Higgs boson

2.1 The Higgs mechanism

The Higgs mechanism is proposed in order to explain the existence of massive gauge
particles, like W-boson and Z-boson [13].

In the QED, the massless gauge boson which interacts with the fermions is lead by
requiring the U(1) local gauge invariance on the kinetic term‘of the fermion. The QED-

Lagrangian is written as,

— — 1

EQED=’I: “D“ —m _ZF2

o

(2.1)’

where D, = 9, —ieA, and is the fermion field and A, is the U(1) gauge field. This

Lagrangian is invariant under the local U(1) gauge transformation,

() — € (z) (2.2)
Alm) — A(m)+éa,,a(ac). (2.3)

But if we try to introduce the gauge boson mass term L,,, = 3m% A, A* for the extension
to the massive gauge boson case, it unfortunately causes a problem of a violation of the
U(1) local gauge symmetry. |

In the SM, without such a violation of the gauge symmetry, the gauge bosons gain

mass through the Higgs mechanism which introduce the Higgs field ¢. We first consider
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Figure 2.1: Higgs potential V. The ¢ has expectation value at the minimum of V.

U(1) case. The Lagrangian of the Higgs sector is
Lo= 1Dl - V(@) (2.4)
where V is the Higgs potential. V is assumed to be
V($) =m®|¢]" + x|g|", (2.5)

where m? < 0, A > 0. The shape of V is shown as Figure 2.1. This Lagrangian is invariant
under the U(1) local gauge transformation, |

¢ — e @@y, (2.6)
Because the potential has the minimum at ¢ = —-%‘Xz, the symmetry around ¢ = 0 is
spontaneously broken and the ¢ has the vacuum expectation value,

m2

v
| #="T5=-%
We can set v as real without loss of generality. By substituting ¢ = —\—15 (v+z+1dy)

2.7)

into the Higgs sector in the Lagrangian (eq. (2.4)), we obtain
1 2, 1 2 1 2,2
Lin, = 3 (Ouz)” + 5 (Ouy)” — evA, 0"y + 3¢V A AR ... (2.8)

V=%@m§ﬁ+~g (2.9)

where Ly;, is the kinetic term of ¢. From the kinetic terms, we extract the mass term of

the gauge boson

EmassA = %mzAAMAM7 : (210)
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where

m? = ev. (211)

And in the V, we find the mass term of field z. Its mass square is
ms = 2\°. o (2.12)

The field z represents the physical Higgs boson of which mass is v2M?2. On the othér
hand, although the field y represents the massless Goldstone boson [14], we can delete the
field y by suitable gauge transformation.

Thus, through the Higgs mechanism, the gauge boson can have mass without conflict
with t}he gauge symmetry. After the spontaneous symmetry breaking, one component of
the complex field ¢ becomes the physical Higgs boson and another becomes a longitudinal

polarization of the massive gauge boson A,,.

2.2 The Higgs sector in the Standard Model

In this section, the Higgs sector in the SM[1] is reviewed. In order to give a unified
description of the electro-magnetic and the weak force, SU(2) x U(1) local gauge symmetry
on the Lagrangian is assumed in the SM. Although for the color interaction the SU(3)
local gauge symmetry is also assumed in the SM, we neglect this sector in the discussion
below, for simplicity.

In the SM the total Lagrangian Lgys is written as

ESM = £kin - V(¢) +k£Y'u,ka'wa (213)

where Ly;, is kinetic terms which are given by

Liin = |Duo|?

+ig; “D,gq, +iu, “Dyu, +id, *D,d,

+il, *Dy,l, +ie; ¥“Dye,
|
- > 15w (2.14)
a=SU(2)U(1)




In the above equation, gz, is the left-handed quark doublet with an implicit generation
index while ug and dg denote the right-handed singlet quarks. Similarly, [, and eg denote
the left-handed and right-handed leptons in three generations. The covariant derivative
D,, is taken as

D, =08, —igpAT* - ingu?-fz— (2.15)
where, T and Y are generator of SU(2) and U(1) respectively. The F};, is defined as,

Fl, =0,A; —’8,,AZ +g f“bcAZA,‘i. (2.16)

Higgs potential V(@) is assumed as follows,
V(g) =m? g + Algl", (2.17)

where A and m? are real parameters. We assume m? < 0 and A > 0. The Higgs doublet

0
consists of two components as ¢ = ¢ , and ¢ = (im2) ¢*.

The Lagrangian is invariant under the gauge transformation

b — @ THA@Y g (2.18)
s @) T +iBE)Y \ (2.19)
1
4, = AL+ —0,0°() + [ A0 () (2.20)
A \
B, — B"+E ,8(z) (2.21)

where SU(2) and U(1) charges of the particles are shown in Table 2.1.

Assuming that the ¢ has the vacuum expectation value

1 v '
¢) = —= , (2.22)
( > \/_2_ 0 ,
the gauge bosons gain mass, meanwhile the Higgs boson appears. By substituting the

vacuum expectétion value (¢) into the kinetic term of ¢, the mass term of the weak boson

W=, Z is lead. The charged vector boson W* has mass

1




and the neutral vectdr boson Z has mass

1
ms = 5\t + g3 (229)

In the Higgs potential, the Higgs boson mass square is found as
ma = 2\, (2.25)

Before the spontaneous symmetry breaking, the ¢ consists of four ‘components. After it,
one component becomes physical Higgs boson and remaining three components become
longitudinal polarization of the I‘nassive gauge boson W,f , W, and Z,. In the above, the
vacuum expectation value v is about 246 GeV, which is lead from the measurement of the
Fermi coupling.

Lyukawa is the Yukawa coupling term. In the SU(2) x U(1) theory, the fermion mass
term of the QED, i.e. —m = —m_-{l (1-— s)+3(1+ 5)} = —m (_; L+ 1 R)
violates the gauge symmetry, because  is a SU(2) doublet whereas g is a SU(2)
singlet. In the SM so that the gauge invariance of the fermion mass term is conserved,
the interaction between the fermion and the Higgs field is introduced. The coupling is

called the Yukawa coupling. The Yukawa coupling terms in the SM are given by,

Lyukawa = d (yDVCKM) ¢TQL +Up, Up, (yU)u ¢TqL + &g, (yE)ii $TlLi +hec.,. (2-26)

where y,,y,,,y, are diagonal Yukawa matrices and Vg s is the Cabibbo-Kobayashi-Maskawa,
(CKM) matrix. By introducing the vacuum expectation value of ¢, the Yukawa coupling

terms tern into the fermion mass terms.

Emf - d (yDVCKM) d + 'LL (yU)u u + eR (yE)u e + h.c. (2'27)

Later, we shall only keep the top Yukawa coupling constants y, = (Yy )s3 in our numerical
evaluation of the RGE’s.
Thus, through the Higgs mechanism, the gauge boson can have mass without conflict

with the gauge symmetry in the SM, and the existence of the Higgs boson is predicted.
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Table 2.1: SU(2) and U(1) charges of particles in the SM where Q@ = T% + ¥

Q|T|T3|Y
I/LO%%—l
e | -1|3|—-3]|-1
er | -1]0} 0 [ -2
AEINEIE
ur || 2 (0| O | 3
dr || -3 (0| 0 | -2
A ERRHE
o [1]3 ]3]

2.3 The Higgs boson search

Let me summarize current states of the experimental Higgs boson search. Although the
electroweak gauge symmetry breaking mechanism in the SM is successful in giving a
supreme description of the electro-magnetic and the weak interaction, the Higgs sector
is still unexplored experimentally. After the discovery of the top quark, the Higgs sector
is the last remaining part yet to be confirmed in the SM. If the Higgs boson is discovered,
we obtain the evidence of the SM. Experimental search for the Higgs boson has been
continued at the Fermilab Tevatron experiments.

In the LEP-II experiments, the Higgs boson with the mass less than about 110 GeV has
been excluded, if its production cross section and decay modes are similar to that of the SM
Higgs boson[2]. Recently, the ALEPH collaboration reported the Higgs boson candidates
of which mass is 114 GeV. The LEP experiment had searched the Higgs boson mainly
produced by the Higgs-strahlung process ete~ — Zh, and there are small contribution
from the WW and ZZ fusion process ete™ — Tvh, ete™ — ete"h. It decays by the
process, h — qg, h — Il, W*W~, ZZ and h — . The production and decay rate are
seen in ref. [17].

The Run-II of the Tevatron can be sensitive to a SM-like Higgs boson with mass

11




up to about 180 GeV, should the integrated luminosity of the collider be large enough
(about 30fb~') [3]. In the Tevatron, the Higgs boson can be produced through mainly
pp — hZ, hW process. The produced Higgs boson decays mainly into fermion pair, like
h — bb.

The several years later, the LHC will arise. The primary goal of the CERN LHC
experiments is to guarantee the discovery of a SM-like Higgs boson for its mass as large as
about 1 TeV[4], which is the upper bound of the SM Higgs boson mass to be a consistent
low-energy effective theory. The JLC is also being planned.

The SM Higgs bosoh mass bound is also obtained from precision measurements of the
electroweak p parameter. Adding the radiative correction to the p parameter and com-
paring it with experimental data, we can obtain the Higgs boson mass bound. Recently,
the LEP Electroweak Working group reports that the SM Higgs mass upper bound is 215
GeV [15].

2.4 The mass bounds on the Higgs boson in the SM

In this section theoretical bounds on the Higgs boson mass in the SM are discussed [5].
Although the mass of the Higgs boson is a free parameter in the minimal SM, the allowed
mass range of the Higgs boson (h) can be determined by demanding the considered theory
to be a valid effective theory all the way up to some cut-off energy scale (A).

The analysis of the Higgs boson mass is done as follows. We first assume the free
parameter of the theory m; at a low energy scale. The Higgs boson self coupling constant
A is determined by the tree level mass formula (2.25). Then we run the A to higher energy
scale up to A. The cut-off energy scale A is the energy scale that the new physics appears.
For example,‘ if the SM is precisely valid and the new particle do not appear up to Planck
scale (my), A is set as my ~ 10%,

According to the renormalization theory, the values of the Higgs boson self coupling
constant runs with energy scale (Figure 2.2). The running is calculated numerically by
solving renormalization group equations (RGE’s). The one-loop RGE’s for the SM are

shown in Appendix A. In this analysis Yukawa coupling constants except top-Yukawa

12
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Figure 2.2: Running of A for the several values of my,.
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Figure 2.3: The vacuum stability condition. If A > 0, the vacuum stays in a stable point

(a). But in the case of A < 0, the vacuum is unstable (b).

coupling constant y; are neglected because of their tiny effects.

At each energy scale up to A, it is required that the theory is valid. In order to check
this, we check whether the Higgs boson self coupling constant (\) satisfies two conditions:
the applicability of perturbation theory and the vacuum stability condition. First, we
discuss the condition of the applicability of perturbation theory. If X is too large, the

theory is not reliable. So, we assume the condition,

A < 4r. (2.28)

This condition gives an upper bound on m;,.
Second, the vacuum stability condition is lead by the requirement that the Higgs
potential V have a minimum so that the vacuum has stable points as seen in Figure 2.3

(a). If A < 0, the vacuum go to ¢ — co and do not have a stable point as shown in Figure

2.3 (b). This condition implies,

2> 0. (2.29)
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'This condition gives a lower bound on m;,.

Imposing these conditions, my, is bounded. If my is too big, A? term in RGE of \
(eq. A.1) which comes from the Higgs boson loop, grow \ to +oco as energy scale becomes
higher. As a result, A blows up soon and the allowed cut-off is small. On the other hand,
if my, is too small, ¥ term which comes from top-quark loop, reduce ) into negative value,
and A becomes negative soon. Also in this case, the allowed cut-off becomes small.

Thus allowed region of the Higgs boson in the SM is examined [5]. For example, for
the Plank scale mp; ~ 10'° GeV as A, the lower and the upper bounds become about 145
- 175 GeV at m; = 175 GeV, respectively. More detailed results is shown in Table 3.1.
The allowed mass range is depend on my. If we take m; larger, the allowed range of m;
shift to higher, because large A dismiss strong —y; term effect. The shift of lower bound
is larger than that of the upper bound.

This has been reexamined by taking into account the two-loop beta function in [33].

2.5 The mass bounds on the Higgs boson in the MSSM

In this section, we study the allowed range of the lightest Higgs boson mass in the Minimal
Super-symmetric Standard Model (MSSM) [7]. The MSSM is most popular in the models
beyond the SM, because of the unification of three gauge couplings [16].

There are two Higgs doublets in the MSSM. The tree-level Higgs potential with the

soft breaking terms is written as

1,/ _— 2 1, /,— —_ N2
Vsusy = ggg (HlTaH1 + HzTaH2) + ggf (H1H1 - Hsz)
+m2H Hy + m2H,H,
—mj (HyHy + HiHy) . (2.30)

By introducing the vacuum expectation value, five types bf Higgs boson appear: h, H, A,
HZ the same as the ordinary 2HDM.

In the MSSM, Higgs boson self coupling constants are determined by the gauge cou-
pling constants, and this relation is broken below the SUSY breaking scale mgysy by the

radiative effect, where we assume that all the supersymmetry (SUSY) particles have mass
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close to SUSY breaking scale mgygy o My, and also assume myg,, > mwy, M. In the
previous inequality, the soft breaking mass M 3.8 is equal to the CP-odd Higgs boson
mass my in the MSSM.

We can obtain the values of the coupling constants at the low energy scale by solving
the RGE’s numerically. Assuming that all the Higgs bosons but h have mass close to M,
we use the RGE’s of the ordinary 2HDM between my;,, and M, and the RGE’s of the SM
below the energy scale M. The relations between the Higgs boson self coupling constants

of the MSSM and the those of the 2HDM at the SUSY breaking scale are follows.

No= g (+a) (231)
Ny = %(gf+g§) (2.32)
X o= 1 (-9 (233
A = ——%gg (2.34)
A = 0 (2.35)

At the electro-weak scale, the lightest Higgs boson mass is calculated by the tree level -
mass formula in SM (2.25). “

For each allowed sets of two vacuum expectation values, we repeat the analysis about
any 'tan‘,B and can determine allowed range of the Higgs boson mass as a function of M.
If my0p = 1 TeV, the upper bound of my, is about 120 GeV (fig. 2.4). This is lighter than
that of the SM by 20 GeV if its cut-off is 10'® GeV. If the Higgs boson is discovered and
its mass is 110 — 120 GeV, the MSSM will be favored as the primary candidate model
beyond the SM.

Also, in extended versions of the SUSY SM, we can obtain upper bounds, if we demand

that all dimensionless coupling constants remain perturbative up to the GUT scale [9].
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Chapter 3

Mass bounds in the

two-Higgs-doublet-model

In this chapter, the lightest CP-even Higgs-boson mass for the two-Higgs-doublet model
(2HDM) is investigated[10]. The 2HDM is the most simple extension of the SM. Imposing
the discrete symmetry for suppressing the flavor changing neutral current (FCNC), The
2HDM is classified in two types; namely, one where only one Higgs doublet has Yukawa
couplings with the quarks and leptons (Model I), and the other where the one Higgs-
- doublet interacts only with the down-type quarks and leptons and the second one only
with up-type quarks (Model II). We can determine mass bounds as a function of a cut-off
scale A by a similar method as used in the SM. The lower bound of the lightest Higgs boson
mass is much reduced in comparison with that in the SM. For example in the decoupling
regime where only one neutral Higgs boson is light as compared to the other physical
states of Higgs bosons and for A = 10!° GeV and m; = 175 GeV, while the upper bound
is about 175 GeV, which is almostk the same as in the SM, the lower bound is given by 100
GeV. This is considerably smaller than the similar lower bound in the SM which is 145
GeV. For the region of the small soft-breaking mass, the lower and upper bounds depend
on the soft-breaking mass and there is no longer bounded from below in the case without
the soft-breaking mass. In Model II 2HDM the constraint from b — s branching ratio

excludes the small mass region of the neutral Higgs boson.
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3.1 The two-Higgs-doublet-model

The 2HDM includes two Higgs doublets ¢, ¢». The Higgs potential of the 2HDM is given
as [17]
Vaupm (o1, 92) = mf |<P1|2 +‘m§ |<,02|2 - m:?; (‘PI‘Pz + 902901)
A A
+71 o + ?2 loal* + As |01 |* lepal?
+o2 ﬁ P2 t 2

S A 5 {(wlsoz) + (eker) ¢ (3.1)
For simplicity, we take all the self-coupling constants and the mass parameters in (3.1)
to be real. m2 terms are the soft-breaking terms for the discrete symmetry discussed
below. In the 2HDM, a discrete symmetry is often assumed in order to suppress the flavor

changing neutral current (FCNC) in a natural way [18]. There are two types of discrete
symmetry. According to the discrete symmetry, the 2HDM is classified in two types.

MOdelI . ¢1 — —'¢1

Model IT : ¢1 — —¢1, dR — —dR, er — —€R

By imposing the discrete symmetry, the Yukawa interactions are restricted. In Model II
¢1 has couplings with down-type quarks and leptons and ¢, has couplings with up-type
quarks, and only ¢, has couplings with fermions in Model 1. For Model I, '

—— -1 . _ -t
Lyukawa-1 = dR,- (yDVCT'KM)ij b2 QLj + Up, (yv)ii ¢§qz,,¢ + Cg, (yE)ii ¢2 lLi + h.c., (3'2)
and for Model II,
- ~t ot
Ly ukawa-11 = dR,- (yDVg'KM)ij P 4z, + Up, (Yo )i ¢£‘IL,- +8, (Ys)u 1 lL,- +hec, (33)

where y,,,y,,,y; are diagonal Yukawa matrices and Vg is the Cabibbo-Kobayashi-Maskawa.
$m

m

(CKM) matrix. ¢, = and ¢, = (i12) &7, with m = 1,2. In this analysis, we also

include soft-breaking terms for the discrete symmetry in the Higgs potential.! Inclusion

1There have been several works on the Higgs mass bounds in the 2HDM with and without the soft-

bfeaking term [19, 20, 21, 22, 23, 24].

19




of these terms does not induce the FCNC problem, because these mass terms do not pro-
duce FCNC in tree level and the effect is negligible. On the contrary, these terms may be
necessary to avoid the domain wall problem [25].

It is useful to work on the following basis by rotating the doublets ¢; and <p2 with

Y=-1as
(cpl) _ (cosﬂ _sinﬂ) (@)’ (3.4)
Vg sin8 cosf3 X

where ® and y are parameterized as

o - (‘\}—5(”+¢1+i¢2)) , Xz(%(Xrl-iA)) ’ (3.5)
¢~ | H~
where v, ¢1, ¢2, x1 and A are real parameters, and down component ¢~, H~ are complex
fields. In this expression, the mixing angle 8 and the vacuum expectation value v ~ 246
GeV are given by tan 3 = (p,)/{¢1) and v/v/2 = } (p1)? + (p2)? respectivery.
From the above Higgs potential (3.1), it is straightforward to derive masses of the Higgs
bosons assuming that there is no CP nor charge violation at vacuum. The masses of the

physical charged Higgs boson (H i) and CP-odd Higgs boson (A) are expfessed as

mas = M- )\4_‘;‘_&”2, (3.6)
m4 = M?— )52, (3.7

where M is a dimensionful free parameter related to the soft-breaking mass ms and defined
by

ms '
M= 0——2 - (3.8
v/cos Bsin B ( )

As for the CP-even neutral Higgs modes, ¢; and x; are not yet mass-eigenstates. The

mass eigenstates h and H are obtained by diagonalizing the mass matrix;

1 M3 M2 o3 m: 0 h
§(¢1,X1) 121 122 ==(h,H) h , , (3.9)

Mi; My X1 0 my H

A
M = v? Xcos*B+ Agsin* B+ 3 sin? 2,8) ,

DN =

where
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' 2
Mz, = 3}2— sin 203 (—)\1 cos? B + Az sin® B + A cos 2[3) ,

2
M,

v% (A1 + Ao — 2)) sin® Bcos® B + M2,

and A = A3 + Ay + 5. The mass of the lighter (heavier) CP-even Higgs boson h (H) is
given by

1
mi gy = 5 { M+ M % (M — M)+ 4 | (3.10)

For the case of v2 <« M2, they can be expressed as

. 4 _
m: = v? Alcos4ﬂ+Azsin4,8+%sin22,8)+(9(—J\%), (3.11)

m3 = M?+v*(\ + Xy —2)\)sin® Bcos® B+ O(L—Z . (3.12)
Notice that the free parameter M characterizes properties of the Higgs bosons in this
model. In the case of M? > \;v?, the masses of all the Higgs bosons but A become close to
M. In this region, these heavy Higgs bosons decouple from the low-energy observable due
to the deéoupling theorem [26] and below the scale M the model is effectively regarded as
the SM with one Higgs doublet. On the other hand, if M? ~ \;v?, the masses are controlled
by the self-coupling constants, and thus the heavy Higgs bosons do not decouple and the
lightest CP-even Higgs boson can have a different property from the SM Higgs boson [27].

We can see such a property of the Higgs boson masses in Figure 3.1.

3.2 Higgs boson mass bounds through RGE analysis
in 2HDM

In this section, we discuss bounds on the Higgs boson mass for 2HDM through RGE
analysis. For each set of parameters defined at the electroweak scale, the running coupling
constants are calculated numerically through RGE’s at the one-loop level. We require that
any of the dimensionless coupling constants does not blow up below a given cut-off scale
A, and the coupling éonstants satisfy the vacuum stability condition, to be discussed later.
We vary the input parameters at the electroweak scale and determine the possible range

of the lightest CP-even Higgs boson mass as a function of A.
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Let us discuss the conditions for validity of perturbation theory and the vacuum sta-
bility. For the first condition, we require that the running coupling constants of the Higgs

self-couplings and the Yukawa couplings do not blow up below a certain energy scale A;
"ip) < 8w, yi(p) <4, o (3.13)

for a renormalization scale u less than A.2 For the requirement of the vacuum stability, we
assume that the quartic interaction terms in the potential do not give negative contribution

for all directions of scaler fields at each energy scale up to A. This condition leads to

A(p) >0, Xo(p) >0,
VAL () A2 (k) + Aa() + min [0, Ag(pe) + As(p), Aa(p) — As(p)] > 0, (3.14)

for p < A. We also require that the tree-level Higgs potential at the weak scale does not |
have any global minimum except for the one we consider. In particular, we assume that
there is no CP nor charge breaking at the global minimum.® These conditions imposed
on the coupling constants at a high energy region are transmitted into constraints on the
coupling constants at the electroweak scale and then on the masses of Higgs bosons.

In our analysis, we use the 1-loop RGE’s for the SM and the 2HDM which are found
in Appendix A, or for example, in ref. [21, 28]. We only consider the top-Yukawa coupling
contribution as the Yukawa interaction. The running top mass is defined as T (u) =
%yt(u)v sin 8 and it is related to the pole mass m; by Mz(m;) = m(1 — ;= as(me)). Note
that only the running of ), in eq. (A.3) has a quartic power contribution of the top-Yukawa
coupling constant ;. This affects on Ay as a negative factor: the large y; tends to make

the vacuum unstable along the direction of (7).

2This condition corresponds to the conditions Asar(u) < 47 and yPM(u) < 4 with coupling nor-
malization of mpy,,, = v2Asyv and m; = %ytSM v in the SM case. The above condition becomes

the same as the SM condition in the decoupling limit of our 2HDM for large tanf because in this case

Aa(w) ~ 2Xsnr(u) and ye(p) ~ y™ (p).
3The vacuum stability condition here is slightly different from that in ref. [23], where they have put

As(p) + Xs() < 0 and As(p) < 0 below p < A in addition to (3.14) in the model with M2 = 0. In the
case of M2 ~ 0, our condition is essentially the same as that in ref. [23], because we then have A4+ X5 <0
and s < 0 at the electroweak scale from the positiveness of the squared-masses of x* and x2 and we can

show that these inequalities tend to be preserved at higher energy scale according to the 2HDM RGE’s.
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In the decoupling case where M? > )\;v?, there can be a sizable correction on the

lightest CP-even Higgs boson mass at a low energy scale. In order to include this effect,
‘instead of calculating the \;’s at the weak scale from the RGE and using the tree-level
mass formulas, we adopt the folloWing procedure. We determine the )\; at the scale M by
using the 2HDM RGE in the region between A and M, and then calculate the CP-even
Higgs boson mass according to the tree-level formulas. Since the effective theory below M
is just the SM with one Higgs doublet, we use the SM RGE from M to my, to evaluate the
lightest Higgs boson mass. Although this procedure is not really justified for M2 ~ \v2,
we calculate the mass in this way because the correction from the SM RGE is numerically -
very small in such case.

There are important phenomenological constraints on the 2HDM. From the low-energy
electroweak precision tests, the p parameter should be closed to unity, which means that the
custodial SU(2)y symmetry should not be badly broken in the Higgs sector. We evaluate
the 2HDM contribution to the p parameter according to refs. [29]. Taking account of the
experimental data up to 95% CL [30], we here set the condition Apsapm = —0.0020 —
0.00049’”—%&%"'—"5’— +0.0027 for our analysis, where Apsppy is the extra contribution of the
2HDM to the p parameter.*

Another experimental constraint is obtained from the b — s measurement [31]. It
is known that there is very strong constraint on the charged-Higgs boson mass from this
process in the case of Model II, while Model I is not strongly constrained (Figure 3.2). We
calculate the b — s branching ratio with the next-to-leading order QCD correction [32]
and use its constraint to determine the allowed region of the parameter space.

In the actual analysis, we first fix parameter sets of my, tan 3 and M. Since the Higgs
potential contains three masses and five coupling constants, the number of free parameters
is four with fixing v = 246 GeV for each set of the parameter choice. We examine four-
dimensional parameter space of A, A3, A4 and A5 under the experimental constraints above

and obtain a maximum scale A where one of the conditions (3.13) and (3.14) is broken.

4We here set the reference value of the SM Higgs mass into 100 GeV. We also include uncertainties from

the strong coupling constant and the electromagnetic coupling constant at the Z pole for our evaluation

of the p parameter.
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Figure 3.2: b — s  branching ratio as a function of mg+ with tan 8 = v/2, m; = 175 GeV.
In the Model I, any my+ do not conflict with experimental value. But in the Model II,
mpy+ < 400 GeV is excluded. The more tan 8 becomes high, the more constraint relaxed.

If m, is higher than 175 GeV, more large myz is excluded.
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Figure 3.3: The allowed region of the lightest CP even Higgs boson mass as a function of
tan 3 for different values of the cut-off scale (A) for M = 1000 GeV in the 2HDM. The
top mass is taken to be 175 GeV. For each A (= 10,106 103,10'°,107,10* GeV) the
inside of the contour is allowed. There is no difference between Model I and Model II in

this figure.

We also put mz = 91.19 GeV and ag(mz) = 0.118. The mass of the top quark is fixed as
175 GeV in our main analysis and later the dependence on m; is discussed.

Let us first consider the case of the decoupling regime (v? <« M?). All the Higgs
bosons but A are all heavy and their masses are almost degenerate around M. Fig. 3.3
shows that the contour plot of each A (= 10%°,10%, 103,10, 107, 10* GeV) for M = 1000
GeV on the my-tan G plane. The tan 8 dependence is not so sensitive except for the small
tan B region where the top-Yukawa coupling constant blows up at a low energy scale. For
the smaller values of my, Ay tends to become negative because of the négative effect of
yi-term in the RGE for A;. On the other hand, for a large value of my, A2 blows up at a

low energy scale. There is no difference between Model I and Model II in the decoupling
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regime, because the constraint from b — s is not important in this case.
The qualitative result may be understood by looking at the RGE’s. From eq. (3.11),

m? is approximately given by Av? for tan 8 > 1, and the RGE for )\, is given by

d\ 3, 3
167r2u—£ = 123 — 3X2(3¢9% + ¢”) + §g“ + Z(g2 +¢7%)% + 12097 — 12y} + A,  (3.15)

where A = 202 + 2(X3 +’)\4)2 +2X2 > 0. When we fix the coupling normalization by
miM = v/ Asuv, the SM RGE for \gy/ is obtained by substituting Agps and y7™ to g and
y: in eq. (3.15) and neglecting the A term in the RHS. Thus the difference is only in the
existence of the positive term A in eq. (3.15). This term works to improve the stability of
vacuum to some extent, and the lower bound is expected to be reduced in the 2HDM.

Next we see the case of the mixing regime (M = 100 GeV ~ m,), where the heavy
Higgs masses are realized only by the large A;’s (i = 1 — 5) and their mixing. In this
~ case, the data from the low energy experiment strongly constrain the model. The contour
plots for each A on my-tan 3 plane in Model I and Model II are shown in figs. 3.4(a) and
3.4(b), respectively. We can see in figs. 3.4(a) and 3.4(b) that there is an allowed region
for A = 10 GeV in Model I, while the largest A is less than 10* GeV in Model II because
the b — s measurement gives a strong constraint for Model II 2HDM. Note that the
allowed region in fig. 3.4(a) lies around mjy, ~ mz (~ M) for large tan 8. This is because
that, in the region of M2 < \yv?, the mass of the lighter CP-even Higgs boson h comes
from My, ~ M and the heavier Higgs boson H has the mass of My; ~ 4/A2v. On the other
hand, in the decoupling regime, the situation is reversed and the h boson has the mass of
My ~ v/ Agu.

We repeated the above analysis for various values of M and obtained the upper and
lower bounds of the lightest CP-even Higgs boson masses for various cut-off scales, which
are shown in the contour plots in the m;-M plane in figs. 3.5, (a) and (b) for Model I and
I1, respectively. In fig 3.5(a), the qualitative behavior of the allowed region is understood
from the above argument on the mass matrix. For the region of M? < A;v?, the allowed
region of my, lies around my, ~ M, and that becomes along 1/Av and no longer depends
on M for M? > Xv?. Though there are the upper bounds of m; for each A, my, is not
bounded from below by our condition. Our results at M = 0 are consistent to those in

[23]. If we take account of the experimental result of b — s , my, is bounded from below
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Figure 3.4: The allowed region of the lightest CP even Higgs boson mass as a function
of tan 3 for different values of A for M = 100 GeV in the Model I (a) and Model II (b)
2HDM. The top mass is taken to be 175 GeV. For the Model II lines for A = 1000 and
3000 GeV are shown.
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in the case of Model II as seen in fig. 3.5(b) because the small M region (M < 350 GeV)
necessarily corresponds to the light charged Higgs boson mass and is excluded by the
b— s constraint.’

Finally, we show the figure in which the results in the SM and the 2HDM (Model I and
IT) are combined on my-M plane (fig. 3.6). For a reference, the upper and lower bounds
of the lightest CP-even Higgs mass in the MSSM are also given for the case that the stop
mass is 1 TeV. These lines are calculated by a similar method described in ref. [7]: namely
we use the SUSY relation for Higgs self-coupling constants at the 1 TeV scale and use the
2HDM RGE between 1 TeV and M, and the SM RGE between M and my, scale. In this
figure, M is the CP-odd Higgs boson mass in the case of the MSSM. It is easy to observe
from this figure that the difference of the bounds among the SM, the 2HDM(I) and the
2HDM(II). We here choose, as an example, A = 10'® GeV for the results in the SM and
the 2HDM at m; = 175 GeV. While the upper bounds in these models are all around 175
GeV, the lower bounds‘ are completely different; about 145 GeV in the SM, about 100
GeV in the Model II and no bound in Model 1.

In order to see the top quark mass dependence of the above results, we have repeated
the analysis for m; = 170 GeV and 180 GeV. It turns out that the lower bound has sizable
dependence of the top mass whereas the upper bound does not change very much. For
example, the lower line for A = 10'® GeV in the 2HDM shown in fig. 3.6 shiﬁs to lower
(upper) by 9 GeV for m; = 170 (180) GeV at M = 1000 GeV, but the corresponding shift
for the upper line is about 3 (4) GeV. In Table 1, we list the m,; dependence of the lightest
CP-even Higgs mass bounds for each value of A in the SM and the 2HDM for M = 1000
GeV and for M = 200 GeV (Model I). In the mixing regime of Model II, for smaller m;,
the b— s constraint is relaxed and the lower bound is reduced further.

We élso comment on a question how much our results are improved if a higher order/

analysis is made in the effective potential method. In the SM, the next-to-leading order

S5For the estimation of theoretical uncertainties we added in quadratures the errors from the various
input parameters. If we use more conservative way to add theoretical uncertainties for the b — s
evaluation, the bound on the charged Higgs boson or on the M in Model II becomes rather smaller(32].
The lower bound of m; due to the b — s constraint is then reduced by a few GeV according to the

change of the allowed region of M.
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Figure 3.6: The upper and the lower bounds of the lightest CP even Higgs boson mass in
the Model I and II 2HDM and the SM Higgs boson mass for A = 10'® GeV. The upper
and lower bounds of the lightest CP even Higgs boson mass in the MSSM are also shown
for the case that stop mass is 1 TeV. In this case M corresponds to the CP-odd Higgs
boson mass in the MSSM.
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Table 3.1: A list of the lower and upper bounds of the lightest CP-even Higgs mass in
GeV for each m; (170, 175, 180 GeV) and A (= 10'%, 10, 103, 10°, 107, 10* GeV) in
the SM as well as the 2HDM for M = 1000 GeV and for M = 200 GeV (Model I). Model
I and II give the same bounds for M = 1000 GeV.

A (GeV) |ms = 170 GeV | m, = 175 GeV | m, =180 GeV
Standard Model ; 133 -172 143 - 175 153 - 179
9HDM (M = 1000GeV) | 10%° 93 - 172 102 - 175 111-179
2HDM I (M = 200GeV) 79- 171 84-175 91 - 179
133 - 180 142 - 182 152 - 186
106 89 - 180 96 - 183 104 - 186
73-179 | 80-182 85 - 185
132 - 192 141 - 194 150 - 197
1013 85 - 193 90 - 195 97 - 197
68 - 191 72 - 193 77 - 195
129 - 215 138 - 216 147 - 217
101 85 - 216 89 - 216 93 - 218
64 - 208 67 - 208 70 - 207
122 - 264 130 - 264 138 - 264
- 107 84 - 266 88 - 266 93 - 265
| 64 - 238 67 - 241 69 - 241
101 - 460 107 - 458 113 - 458
104 84 - 480 88 - 430 92 - 478
© 63- 343 66 - 342 68 - 342
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analysis of the effective potential shows that the lower bound reduces by about 10 GeV
(A = 10" GeV) [33]. It may be then expected that a similar reduction of the lower bound
would occur in the 2HDM by doing such higher order analysis.

3.3 Summary of 2HDM analysis

By the similar method as used in the SM, we have analyzed the upper and the lower
bounds of the lightest CP-even Higgs boson mass in the 2HDM with a softly-broken
discrete symmetry. While the upper bound has been found to be almost the same as in
the SM, the lower bound turns out to be much reduced. In particular in the decoupling
regime, both Model I and Model II give the lower bounds of about 100 GeV for A = 10*°
GeV, which is lower by 40 GeV than the SM result. In this regime, the properties of
the lightest Higgs boson such as the production cross section and the decay branching
ratios are almost the same as the SM Higgs boson. In this analysis, we have not explicitly
considered constraint from the Higgs boson search at LEP II, but if the Higgs boson is
discovered with the mass around 100 GeV at Tevatron or LHC experiment in near future
and its property is quite similar to the SM Higgs boson, the 2HDM with very high cut-off
scale is another candidate of models which predict such light Higgs boson along with the
MSSM of which mass upper bound is less than 120 GeV, and its extensions.
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Chapter 4

Phenomenology of Higgs bosons in

the Ziee-Model

In this chapter the Higgs boson mass bounds for the Zee-Model is investigated [11]. From
the observations of atmospheric and solar neutrinos, there are increasing evidences for
neutrino oscillations [34]. If this is a correct interpretation, the SM has to be extended to
incorporate the small masses of the neutrinos suggested by data. There have been several
ideas proposed in literature to generate small neutrino masses. The Zee-model is one of
such attempts [12, ‘35, 36, 37, 38]. In this model, the three different flavor neutrinos are
massless at the tree level, and their small masses are induced radiatively through one-loop
diagrams. For such a mass-generation mechanism to work, it is necessary to exteﬁd the
Higgs sector of the SM to contain at least two‘weak-doublet fields and one weak-singlet
charged scalar field [12]. Although many studies have been done to examine the interaction
of the leptons and the Higgs bosons in the Zee-model [39], the scalar (Higgs) sector of the
model remains unexplored in detail. In this chapter we study the Higgs sector of the Zee-
model to clarify its impact on the Higgs search experiments, either at the CERN LEP-II,
the Run-II of the Fermilab Tevatron, the- CERN Large Hadron Collider (LHC), or future
linear colliders (LC’s).

The Higgs sector of the Zee-model is similar to that of the 2HDM except for the
existence of an additional weak-singlet charged Higgs field, so that the physical scalar-

bosons include two CP-even, one CP-odd and two pairs of charged Higgs bosons. In this
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chapter, we shall first determine the upper and lower bounds for the lightest CP-even Higgs
boson mass (my,) as a function of the cut-off scale A of the Zee-model, using RGE’s.! We
show that the upper and lower mass bounds for h are almost the same as those in the
2HDM. We also study the possible range of the Higgs-boson self-coupling constants at
the electroweak scale as a function of A. By using these results, we examine effects of
the additional loop contribution of the singlet charged Higgs boson to the partial decay
width of h — . We show that, by taking A = 10! GeV, the deviation of the decay
width from the SM prediction can be about -20% or nearly +10% for mj, between 125
GeV and 140 GeV when the mass of the isospin singlet charged Higgs boson is taken
to be around 100 GeV. The magnitude of the deviation becomes larger for lower cutoff
scales and smaller masses of the singlet charged Higgs boson. If we choose A = 10* GeV
and the singlet charged Higgs boson mass to be 100 GeV, the positive deviation can be
greater than +30% (+40% ) for m; = 125 GeV (140 GeV). Such a deviation from the
SM prediction could be tested at the LHC and the  option of LC [41, 42, 43]. We also
discuss phenomenology of the singlet charged Higgs boson at present and future collider
experiments, which is found to be completely different from that of the ordinary 2HDM-
like charged Higgs bosons. To detect such a charged Higgs boson at LEP-II experiments,
experimentalists have to search for their data sample with e* or u* plus missing energy,
in contrast to the usual detection channels: either 7v or cs decay modes.. ‘

This chapter is organized as follows. In Sec. 4.1, we introduce the Higgs sector of the
Zee-model and review the neutrino masses and mixing in this model which are consistent
with the atmospheric and solar neutrino observations. Numerical results on the possible
range of the mass and coupling constants of the Higgs bosons are given in Sec. 4.2. In
Sec. 4.3, we discuss the one-loop effect of the extra-Higgs bosons in the Zee-model to
the partial decay width of h — and its impacts on the neutral Higgs-boson search at
high-energy colliders. The phenomenology of the charged Higgs boson that comes from
the additional singlet field is discussed in Sec. 4.4.

1For the model with see-saw mechanism for neutrino mass generation the Higgs mass bound has been

studied as a function of cut-off scale in Ref. [40].
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4.1 Zee-model

To generate small neutrino mass radiatively, the Zee-model contains a SU(2). singlet
charged scalar field w™, in addition to two SU(2); doublet fields ¢, and ¢2. The Zee-

Model Lagrangian is written as:

L= £k’zln + Ellw + [:Yuk:a,wa - V(¢1a ¢2a w_) ) (41)

where

Liin = |Dupr|* +|Dpugal® + ‘D“w_,yz
+iq, *Dygq, + 485 *Dyuy, +id, *Dud,
+il, *D,l, +ie; *Dye,
_ ) L et

4w
a=SU(8),SU(2),U(1)

(4.2)

—. - —C,.
Lo = fiiliy (im2) (1) w™ + fisly (im)lj 0™, (4.3)
where i,j (= 1,2,3) are the generation indices, and

Vaeo (b1, d2,w0™) = 2 |nf* +m3 |gal? +m3 ||
—m($lgs + $h1) — ur irafaw + pdima wt
F il + S ol + 2s 6
Pl + 32 [ (812)" + (6161)]
+oy lw'|2 |61]% + 02 |w'|2 |a|® + iag |w—|4 . (49)

In the above equations, gz, is the left-handed quark doublet with an implicit generation
index while ug and dgr denote the right-handed singlet quarks. Similarly, I; and er denote
the left-handed and right-handed leptons in three generations. The charge conjugation
of a fermion field is defined as ¢ = C—T, where C is the charge conjugation matrix
(C1 #C = — *#T) with the super index T indicating the transpose of a matrix. Also,
(4

Prm

and ¢, = (i9) ¢r, with m = 1,2. Without loss of generality, we have

Pm
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taken the anti-symmetric matrix f;; and the coupling p to be real in the equations (4.3)
and (4.4). In order to suppress flavor changing neutral current (FCNC) at the tree level, a
discrete symmetry, with ¢, — ¢y, o — —p, Wt - +w, is imposed to the Higgs sector
of the Lagrangian, which is only broken softly by the m2 term and the y term. Under the

discrete symmetry there are two possible Yukawa-interactions; that is, for Model-1

LYukawa—I = a—_ (yD VCKM) ¢2 qL + Uy Up, (yu)m ¢2qL + e (yE )u ¢2 + h.c., (45)

and for ModeLII,

EYukawa-—-II = d— (yDVCKM) ¢1 qL + U, Up (yu)n ¢2qL + € €r (yE)n ¢1 + h.c. ) (46)

where y,,,y,,,y, are diagonal Yukawa matrices and Vi is the Cabibbo-Kobayashi-Maskawa,
(CKM) matrix. Later, we shall only keep the top Yukawa coupling constants y; = (v, )33
in our numerical evaluation of the RGE’s.2 In that case, there is no difference between
the Yukawa couplings of the Model-I and the Model-II models. Finally, for simplicity, we
assume that all \; and m? are real parameters.

Let us now discuss the Higgs sector. The SU(2); x U(1l)y symmetry is broken to
U(1)em by (¢1) and (¢2), the vacuum expectation values of ¢; and ¢,. (They are assumed
to be real so that there is no spontaneous CP violation.) The number of physical Higgs
bosons are two CP-even Higgs bosons (H,h), one CP-odd Higgs boson (A) and two pairs
of charged Higgs boson (Sif, Si). We take a convention of my > my and mg, > mg,.
In the basis where two Higgs doublets are rotated by the angle 3, with tan 8 = %ﬁ% the

¢0 b
mass matrices for the physical states of Higgs bosons are given by

(/\1 cos® B +Xgsint 8 +-’% sin? 2,3) v2  (Agsin®B. Apcos® B+Acos2p) %@vz

M]%’ = . 2 ? (4'7)
(A2sin?B. A cos? B+ cos23) 28,2 M2+ (M +Ag. 2X) 52 28,2
for CP-even Higgs bosons,
M2 = M? — M0, (4.8)
for CP-odd Higgs boson, and ;
2 _ +A v ‘
—i m2 + (121 cos? 8 + 2 sin® ﬁ) v? -

2Qur analysis will thus be valid in the cases where the effect of the bottom Yukawa, coupling sufficiently

small; i.e. in the region of not too large tan .
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for charged Higgs bosons. Here, A = A3+ Ay + X5 and M? = m2/sin 3 cos 3. The vacuum
expectation value v (~ 246 GeV) is equal to v/21/(#9)2 + (#3)2. Mass eigenstates for the
CP-even and the charged Higgs bosons are obtained by diagonalizing the mass matrices
(4.7) and (4.9), respectively. The original Higgs boson fields, ¢1, ¢2, w™, can be expressed
in terms of the physical states and the Nambu-Goldstone modes (G° and G*) as

¢ = % (vcosﬁ+Hcosa — hsina + i(G° cos 8 — Asin,B)), (4.10)
¢7 = G cosf — (Sy cosx — Sg sinx)sin g, (4.11)

S = -\}5 (vsinﬂ-}—Hsina—i—hcosa+i(G°sinﬁ+Acosﬁ)), (4.12)
¢; = G sinfB+ (Sy cosx — S sin x) cos 3, (4.13)
w~ = Sysiny+ S5 cosy, - (4.14)

where the angle a and x are defined from the matrices which diagonalize the 2 x 2 matrices

M?% and M2, respectively. Namely,

cos(a. B) sin(fa. B) M2 cos(a. B) . sin(a. ,8)\ _ [ m% o €4.15)‘
. sin(fe. B) cos(a. ) sin(a. B) cos(a. B) ) m?

cosx sin cosx . sin \ m% 0
X X M2 X X _ S 4,16)
. siny cosy “siny cosy / 0 mgvz

where m} > m}, and m%, > m%, . The mixing angles a and x then satisfy

2 2
tan%a — M (As+ A+ )\52) v — tan2p0, (4.17)
M? — (A1 cos® B — Az sin® B) ios |

—V2u
M? —mj — ()‘4+)\5+010052,8+0'281n2,8) % ’

tan2y = (4.18)

which show that a and x approaches to 8 — 7 and zero, respectively®, when M? is much
greater than v?, u? and mg; i.e., in the decoupling regime, where the massive Higgs bosons
from the extra Wea.k—doublet are very heavy due to the large M so that they are decoupled
from the low energy observables. | ‘

Although neutrinos in this model are massless at the tree level, the loop diagrams

involving charged Higgs bosons, as shown in Fig. 4.1, can generate the Majorana mass

3Recall that we assumed my > m,,.
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Figure 4.1: A representative diagram that generates the neutrino mass. For Model-I,

i=1, 7 =2, and for Model-1I1, i = 2, j = 1.

terms for all three-flavor neutrinos. It was shown [12] that at the one loop order, the
neutrino mass matrix is real and symmetric with vanishing diagonal elements, in the basis
where the charged lepton Yukawa-coupling constants are diagonal in the lepton flavor

space. More explicitly, we have

0 myz ma3
Mu= mig 0 moag y (419) '

mz mes 0

with
1 1 In m3,
1672 m3, —m3, m3,

where m,, (i = 1,2, 3) is the charged lepton mass for Model-I. For Model-I1, cot 3 should

mi; = fij (mg]_ — mzi )ﬂ cot ,3 (420)

be replaced by tan 3. Note that Eq. (4.20) is valid for mg, > m,,;.

The phenomenological analysis of the above mass matrix in the Zee-model was given in
Ref. 36, 37]. It was concluded that, in the Zee-model, the bi-maximal mixing is the only
possibility to reconcile the atmospheric and the solar neutrino data. Here we gave a brief
summary of their results, for completeness. Let us denote the three eigenvalues for the
neutrino mass matrix, cf. Eq. (4.19), as m,,, m,, and m,,, which satisty m,, +m,, +m,, =
0. The possible pattern of the neutrino mass spectrum which is allowed in the Zee-model is -

= Am?

solar?

M, | 22 [mu,| > |mu,|, with m2, —m2, >~ m2 —m2, = Am32,,, and lm,z,1 —m2,

= 0(1073) eV? from the atmospheric neutrino data, and Am?2,,,. = O(107°)

where Am2,,,

39




eV? (MSW large angle solution) or O(1071%) eV? (vacuum oscillation solution) from the

solar neutrino data.* Thus, we have |m,, | =~ |m,,| ~ \/Am2,,, (m,, ~ —m,,) and |m,,| ~

2—‘—3—2&@"— The approximate form of the neutrino mass matrix is given by
Matm

Ml/ = :t |my1mu2' 0 _mul _ m,,2 ; (4.21)
:F

m,,lm.,z
Bl om0

where the upper (lower) sign corresponds to my, < 0 (> 0) case, and the corresponding
Maki-Nakagawa-Sakata (MNS) matrix[44], which dia,gonalizes the neutrino mass matrix,
is .

( |m,,2! ‘mull 0 \
lmull'l"ml/zl lmu1|+lmu2|

— 1 / Im-q' 1 / ) 1
U - —ﬁ My + Myy —ﬁ mul + Myy . ﬁ (4.22)
|m"1' 1
\ W lm,,ll+lm.,2| \/§ Myy + Moy W

In the above equations, we took the limiting case where Uj3 = 0 and Usy = Uz = %.5

From Egs. (4.20) and (4.21), we obtain
Sz

m2

—T ~3x10?%, 4.23)
f13 m2 (423)
fis V2 V2am?,, 10? (for the MSW large angle solusion) (4.24)
fas Amlye, 107 (for the vacuum oscillation solusion) .

Therefore, the magnitudes of the three coupling constants should satisfy the relation
|fiz| > |fis| > |fes]. This hierarchy among the couplings f;; is crucial for our later
discussion on the phenomenology of the singlet charged Higgs bosons.

For a given value of the parameters mg,, mg,, tan § and p, the coupling constants f;; -
can be calculated from Eq. (4.20). For example, for mg, = 500 GeV, mg, = 100 GeV,
tanB = 1, and p = 100GeV and mis = 3 x 1072eV, we obtain |fiz| ~ 3 x 107%. As
in this example, when ST is rather heavy and the lighter charged Higgs boson Sy is

4Due to the structure of the mass matrix, cf. Eq. (4.19), only the hierarchy pattern |m,,| ~ |m,,| >

|mu,|, rather than |m,, | ~ |m,,| < |m,,), is realized in the Zee-model [36, 37].
5This limit corresponds to 62 = § and 63 =0 in the notation of Ref. [44].
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almost a weak singlet, i.e. the mixing angle x approaches to zero, it is unlikely to have
an observable effect from the Zee-model to the low energy data[39]; e.g., the muon life--
time, the universality of tau decay into electron or muon, the rare decay of u — e, the
universality of W-boson decay into electron, muon or tau, and the decay width of Z boson.
When |f;;| are small, we do not expect a large rate in the lepton flavor violation decay of
a light neutral Higgs boson, such as h — p*e¥ (the largest one), h — e*77, or h — p*r¥
(the smallest one). On the contrary, as to be discussed in Section 4.3, the decay width of
h — 7 can significantly deviate from the SM value.

Finally, the phenomenological constraints on fi» were derived in Ref. [38]. From the

consistency of the muon decay rate and electroweak precision test they found

2
f_% <7x107%Gp, (4.25)
M .
where G is the Fermi constant, and
.2 2
__1_2 _ s1n2 X cos2 x. (4.26)
M mS1 mSz

This means that the f;; cannot be O(1) unless the charged Higgs boson masses are at the

order of 10 ’TeV.

4.2 Higgs boson mass and couplings through RGE’s

In this section, we determine the bounds on the mass of the lightest CP-even Higgs boson
as a function of the cut-off scale of the Zee-model by analyzing the set of RGE’s. We also
stﬁdy the allowed ranges of the coupling constants, especially 07 and g3 in Eq. (4.4). In
Sec. 4.3, they will be used to evaluate how much the partial decay width of h — vy can
deviate from its SM value due to the one-loop contribution from the singlet charged Higgs
boson.

The mass bounds are determined in the foilowing manner. For each set of parameters
defined at the electroweak scale, the running coupling constants are calculated numerically
through RGE’s at the one-loop level. We require that any of the dimensionless coupling
constants does hot blow up below a given cut-off scale A, and the coupling constants satisfy

~ the vacuum stability condition, to be discussed later. We vary the input parameters at the
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electroweak scale and determine the possible range of the lightest CP-even Higgs boson
mass as a function of A. In a similar manner, we can also study the allowed ranges
of various Higgs boson self-coupling constants at the electroweak scale as well as the
correlation between the size of the Higgs boson mass and of the sélf—coupling constants.

We derived the one-loop RGE’s for the Zee-model, and listed them in the Appendix B
for reference. For simplicity, in the RGE’s, we have neglected all the Yukawa coupling
constants (Yu, Y4, Ye) but the top Yukawa coupling v;.6 Although we have kept the
new coupling constants f;; in the RGE’s given in the Appendix B, we have neglected
fij in the numerical calculation, because the magnitudes of these coupling constants are
numerically small and do not affect the results unless the singlet-charged scalar-boson
mass is larger than a few TeV [ cf. Eq. (4.25) ]. The dimensionless coupling constants
relevant to our numerical analysis are the three gauge—coupling constants g1, gs, g3, the
top Yukawa-coupling constant y,, and eight scalar self-coupling constants, X; (i = 1 — 5)
and o; (¢ =1 —3). There are five dimensionful parameters in the Higgs potential, namely
m?, m2, m%, m? and p. Instead of m2, m2, m2, we take v, tan 3, and M? = m3/sin 3 cos 3,
as independent parameters, Where v (~ 246 GeV) characterizes the weak scale and M the
soft-breaking scale for the discrete symmetry.

In the actual numerical calculation we first fix tan 3 and M. For a given mass (my)
for the lightest CP-even Higgs boson, we solve one of );, which is chosen to be A3 here,
in terms of other )\;. We then numerically evaluate all dimensionless coupling constants
according to the RGE’s. From mj, to M we use the SM RGE’s, which are matched to the
Zee-model RGE'’s at the soft-breaking scale M. 7

We requires the following two conditions to be satisfied for each scale Q@ up to a given

cut-off scale A.

1. Applicability of the perturbation theory implies

6In the model with the type-II Yukawa interaction, the bottom-quark Yukawa interaction can become

important for a large tan g3. .
"The parameter mgo and  are only relevant to the charged scalar mass matrix. In principle, the

numerical results depend on these parameters through the renormalization of various coupling constants
between my, and the charged scalar mass scale. Since these effects are expected to be small, we calculate

the RGE’s as if all the scalar-bosons except for h decouple at the scale M.
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X(Q) <8m, ai(@) <8m  y(Q) <4r. (4.27)

2. The vacuum stability conditions must be satisfied. The requirement that quartic
terms of the scalar potential do not have a negative coefficient in any direction leads

to the following conditions at each renormalization scale Q:

(a)
A(Q) >0, X(Q)>0, o3(Q)>0. . (4.28)

(b)
o1(Q) + 5%‘5@ >0, (4.29)
02(Q) + 52—(4@20—3(62—) >0, (4.30)

X@ + M@ %@ >0, - (431)

where A(Q) = A3(Q) +min (0, Ay(Q) + Xs(Q), M(Q) — As(Q))-
(c) If 01(Q) < 0 and 02(Q) < 0, then

- 2 M(Q) 03(Q) \ (22(Q) 05(Q) L
A(Q>+03(Q){\/(l o —a%(Q)) (%—ag@))—al@m(@)}w. (432)

If 51(Q) < 0 and X(Q) < 0, then

1 o) (22(Q) 73(Q) >
2@+ 375 {\/ (M@ 2@ -X (@) (——1—-—-2——3— - o%(Q)) ~01(Q) /\(Q)} >0. (4.33)

If 02(Q) < 0 and A(Q) < 0, then

7@+ 55 {\/ (n@2@-7@) (292D - 53@)) - @ X(Q)} >0. (43

[ When all of 0,(Q), 02(Q) and X(Q) are negative, above three conditions are

equivalent. ]
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Figure 4.2: The allowed mass range of the lightest CP-even Higgs boson for M = 1000
GeV. A is the cut-off scale.

In addition to the above conditions, we also demand local stability of the potential at
the electroweak scale, namely, we caléulate the mass spectrum of all scalar fields at the
extremum of the potential and make sure that all eigenvalues of the scalar-mass-squared
are positive. We scan the remaining seven-dimensional space of ); and o; and examine
whether a given mass of the lightest CP-even Higgs boson is allowed under the above -
conditions. In this way we obtain the allowed range of the mass of h in the space of tan 3
and M for each value of the cut-off scale A.

First, we discuss our result in the decoupling case, in which the soft-breaking scale M
is much larger than the electroweak scale ~ v, and the masses of all the Higgs bosons but h

are at the order of M.8 In Fig. 4.2, the allowed range of m;, is shown as a function of tan 8

8In the decoupling regime (M — oo, which leads to @ — 8 — % and x — 0), the masses of h and S
are dominated by the (1 1) component of the mass matrix in Eq. (4.7) and the (2 2) component of that -
in Eq. (4.9) respectively. The mass of h is determined by the self-coupling constants A;, while that of So
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for M = 1000 GeV. (We take the pole mass of top quark m; = 175 GeV, as(mz) = 0.118
for numerical calculation.) The allowed ranges are shown as contours for six different
values of A, i.e. A =10, 10'6,10'3,10'%,107 and 10* GeV. For most values of tan 3 except
for small tan B region, the upper bound of m;, is about 175 GeV and the lower bound is
between 110 GeV and 120 GeV for the cut-off scale A to be near the Planck scale. The
numerical values in this figure are very close to those in the corresponding figure for the
2HDM discussed in Chapter 2 [10]. Compared to the corresponding lower mass bound
in the SM, which is 145 GeV when using the one-loop RGE’s, the lower mass bound in
this model is reduced by about 30 GeV to 40 GeV. The reason is similar to the 2HDM
case: the lightest CP-even Higgs boson mass is essentially determined by the value of )
| for tan 8 to be larger than about 2 , where )\; plays the role of the unique self-coupling
constant of the Higgs potential in the SM®. On the right-hand side of the RGE for A, cf.
Eq. (B.5), there are additional positive-definite terms 125 (A2 + (A3 + As)> + A2 +03) as
compared to the RGE for the Higgs self-coupling constant in the SM. These additional
terms can improve vacuum stability, and allow lower values of my,. Therefore, one of the
features of the model is to have a different mass range for the lightest CP-even Higgs boson
as compared to the SM Higgs boson, for a given cut-off scale.

Next, we show our result for M to be around v. In Fig. 4.3, we present the m,, bound
for M = 100 GeV. In this case, the allowed range of m;, is reduced as compared to that
in the decoupling case, and lies around m;, ~ M for large tan 3. Notice that we have
not included phenomenological constraints from the b — s , p parameter and the direct
Higgs boson search experiment at LEP. As mentioned before, the mass bounds obtained
from the RGE analysis are the same for the Model-1 and Model-II models without these

phenomenological constraints. However, it was shown in Section 3.2 [10] that the b — s

depends not only on the self-coupling constants ¢; but also on the free mass parameter mgy. As noticed
in the footnote 7, from my to M, the SM RGE are used in our analysis, even if the mass S9 is smaller
than M. The effect of S on the mass bound of h is expected to be small, because at the one-loop level
the primary effect is through the running of g, whose contribution to the right-handed side of the RGE

for the Higgs-self coupling constant is small.
9However, tan’8 cannot be too large to ignore the contribution of the bottom quark in the case with

the type-II Yukawa interaction.
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Figure 4.3: The allowed mass range of the lightest CP-even Higgs boson for M = 100
GeV.
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Figure 4.4: The allowed ranges of the lightest CP-even Higgs boson mass as a function of

M for various A values.

data can put a strong constraint on the allowed range of the Higgs boson mass for M < 200
- 400 GeV in the Model-IT 2HDM, whereas there is no appreciable effect in the Model-1
model. This is because a small M implies a light charged Higgs boson in the 2HDM which
can induce a large decay branching ratio for b — sy in the Model-II model.’® We expect
a similar constraint from the b — sy data on the Model-II Zee-model, when M is small.
In Fig. 4.4, we show the upper and lower bounds of my, as a function of M for various
values of A. For fixed M, we scan a range of tan 3 for 1 < tan 3 < 16v/2 (=~ 22.6). We ﬁhd
that the obtained m; bounds are almost the same as those for the 2HDM?!!. The primary

0In addition, it has been known that the R data also give strong constraints on the charged Higgs

bosons in the Model-I 2HDM [45].
1For the type-Il 2HDM, the constraint from the b — sy data should be included.

47




reason for this is that the new coupling constants oy, o2 and o3 do not appear directly in
‘the mass formula of my,, and therefore, do not induce large effects on the bouhds of my,.
We also investigate the allowed range of coupling constants oy, o2 and o3. For this
purpose, we fix o7 (or o2, 03) as well as tan 3 and M to evaluate the upper and the lower
bounds of my, for each A value. In this way, we determine‘ the possible range of oy (or o2,
o3) under the condition that the theory does not break down below the cut-off scale A. In
Fig. 4.5, we present the allowed range of oy and my, for different choice of A in the case
of M = 1000 GeV and tan 3 = /2 or 164/2. A similar figure is shown for the possible
range of o9 in Fig. 4.6. We see that the maximal value of o, and oy is around 0.7 for
my, = 110 — 170 GeV if we take the cut-off scale to be 10*® GeV. For smaller value of A
the allowed ranges of ¢o; becomes larger. For example, o; can exceed 1 for A = 1013 GeV.
We have calculated for other value of tan 8 and checked that these figures does not change
greatly between tan 8 = 1.4 and 161/2. We also present the allowed range in o; and o9
space for a fixed value of my, in Fig. 4.7 (m;, = 125 GeV) and in Fig. 4.8 (my, = 140 GeV).
For either value of my, with tan ,Bv = 16+/2, both o, and o, can be as large as 0.5 (2) for
A = 10" (107) GeV. The allowed range of o3 and my, for various values of A is given in
Fig. 4.9. As shown, o3 has to be larger than zero, which is due to the vacuum stability
condition. The maximal value of o3 is about 1 (3) for A = 10° (107 ) GeV and M = 1000
GeV. The impact of these new coupling constants to collider phenomenologies is given in

the next section.

4.3 Two-photon decay width of the neutral Higgs bo-
son

In this section, we study the phenomenological consequences of the Higgs boson mass and
- the coupling constants derived in the previous section. The important feature of the Higgs
sector of the Zee-model is that there are additional weak doublet and singlet Higgs fields.
The physical states of the Higgs particles are two CP-even Higgs bosons, one CP-odd Higgs
boson and two pairs of cha,fged Higgs bosons. Therefore, the Higgs phenomenology is quite

close to the ordinary two Higgs doublet model. One unique difference is the existence of
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Figure 4.5: The allowed range of o7 and my, for various A values.
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the additional weak-singlet charged Higgs boson. The effect of this extra charged Higgs
boson is especially important when M is much larger than the Z boson mass, i.e. in the
~ decoupling regime. In such a case, the heavier CP-even Higgs boson, the CP-odd Higgs
boson as well as one of the charged Higgs bosons have masses approximately equal to M,
-and these heavy states are decoupled from low energy observables. (Note that the condition
of the applicability of the perturbation theory forbids the couplings among Higgs bosons
to become too large. Hence, in the limit of large M, the heavy Higgs bosons decouple
from the low energy effective theory. ) The remaining light states are the lighter CP-even
Higgs boson h and the lighter charged Higgs boson S; which mainly comes from the weak-
singlet. In the previous section, we show that even in the decoupling case, there can be
large difference in the allowed range of m; between the Zee-model and the SM. Similarly,
we expect that even in the decoupling case, the presence of the additional weak-singlet
charged Higgs boson can give interesting effects in the Higgs phenomenology.

Since the lighter charged Higgs boson S; can couple to Higgs bosons and leptons, it
can affect the phenomenology of the decay and the production of the neutral Higgs bosons
at colliders through radiative corrections. In the following, we consider the decay width
of h — as an example. For a SM Higgs boson, the partial decay width (or branching
ratio) of h —  is small: ~ 9.2 KeV (or 2.2 x 10~%) for m, = 125 GeV, and ~ 15.4
KeV (or 1.9 x 1073) for my, = 140 GeV, with a 175 GeV top quark. Nevertheless, it is an
important discovery mode of the Higgs boson at the LHC experiments for my, less than
about twice of the W-boson mass. Needless to say that a change in the branching ratio
of h —  would lead to a different production rate of pp — hX —  X. At future ete™
LC’s, the branching ratio of h —  can be determined via the reaction efe~ — ¢qg and
ete” — U  with a 16-22% accuracy [42]. At the photon-photon collision option of the
future LC’s, the partial decay width of h —  can be precisely fested by measuring the
inclusive production rate of the Higgs boson h, and a change in the partial decay width of
h —  will lead to a different production rate of h. In the Zee-model, such a change is
expected after taking into account the 10015 contribution of the extra charged Higgs boson.
We find that the deviation from the SM prediction can be sizable, and can be tested at
the LHC and the LC.
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The partial decay width of h —  is calculated at the one loop order. Similar to our
previous discussion, we limit ourselves to the parameter space in which tan 8 < 16v/2,
“and only keep top quark contribution from fermionic loop diagrams. Including the loob
contributions from the W boson and the charged Higgs bosons S; and S2 together with

the top quark loop contribution, we obtain[17]

2

(amy)?
o _ Il 4.35
( - ) 25672 sin? 0Wm%V i=S1%,t,W ( )
with
I.S'l = Rsl FO(ri) ’
Isz = RSgFO(Ti) ’
4 cosa
L= 3 sinﬁ) Firalri)

IW = sm(ﬂ — a)Fl(ri) ;

4m?2

where r; = R?f and m; is the mass of the internal lines in the loop diagram. Rs, and Rg,

are given by
02
Rs, = —— [cos2 X {—)\1 sin a sin? B cos B + g cos a sin G cos? 3
2 mg,
1 ,
+A3 (cosasin3 B — sin a cos® ,3) - 5()\4 + Xs) cos(a + B) sin 2,8}

+sin? x {—0; sin & cos B + 0 cos asin B} + v/2sin x cos x% sin(a — ,8)](4.36)
o2

Rs, = 5 [sin2 X {—-)\1 sin asin? B cos B + Ay cos asin B cos® 8
S2

+A3 (cos asin® 8 — sin a cos® ,8) - %()u; + As) cos(a + B) sin Zﬂ}

+ cos? x {—o1 sin & cos B + 0 cos asin 8} — v/2sin x cos x% sin(a — ﬁ)](4.37)

and
Fo(r) = r(1—rf(r), (4.38)
Fip(r) = =2r(1+(1-r)f(r), (4.39)
Fi(r) = 243 +3r(2—r) f(r), | (4.40)
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with

2
. _1 .
sin™ (4/1/r) ifr>1
f(r) = [ ) (1+ 1_r] 2 . (4.41)
-1 [ln —-I_J—*’l_r - zw] ifr<l1
In the decoupling case of the model, namely M? >> A\;v?, the above formulae are greatly
simplified. This limit corresponds to o — 8 — Z and x — 0, so that the light charged
Higgs boson Sj is identical to the weak-singlet Higgs boson w*. Thus, we have

’02

1 .
Rg, — —é—m—«%z (01 cos’ B + 0y sin’ ﬂ) ! (4.42)

and the top-quark and W boson loop contributions reduce to the SM value. We like to
stress that the weak-singlet Higgs boson does not directly couple to the quark fields in
the limit of x — 0. Therefore, it does not affect the decay rate of b — s at the one-loop
order. Similarly, being a weak singlet, it also gives no contribution to the p parameter.
Hence the low-energy constraint from either the b — sy decay or the p parameter on the
Zee-model in the limit of x — 0 is similar to effects of that on the 2HDM.

Let us look at the one-loop effect of the weak-singlet charged Higgs boson on the
decay width of h — vy in the decoupling case. Recall that in Fig. 4.8, the size of the
new couplings o7 and oy can be as large as 2 simultaneously, if the cut-off scale is at
the order of 107 GeV. For the Zee-model to be a valid low energy effective theory up to
10" GeV, o1 and o3 can not be much larger than 0.6 either for tan8 = 1.4 or 22.6. To
illustrate the implications of this result, we show in Fig. 4.10 (a) and Fig. 4.10 (b) the
ratio (r) of the h — 77 width predicted in the Zee-model to that in the SM, r = ['zee(h —
77)/Tsm(h — ), as a function of the coupling constant o, and the charged Higgs boson
mass mg,. Here, for simplicity, we have set o; = g5 so thafc the tan 8 dependence drops in
the decoupling case, cf. Eq. (4.42). For illustrations, we consider two cases for the mass
of the lighter CP-even Higgs boson: my = 125 GeV and my, = 140 GeV. As shown in the
figures, the ratio r can be around 0.8 for o1 = 02 = 0 =~ 0.5 and mg, =~ 100 GeV. This
reduction is due to the cancellation between the contribution from the S,-boson loop and
the W-boson loop contributions. To have a similar reduction rate in I'zee(h — 77) for a
heavier 53, the coupling constant o, (and o) has to be larger. Next, as is shown in Figs. 7
- and 8, 0; and 03 do not have to have the same values in general, and they can be less than

zero. In the cases with the negative values of o; and 09, the contribution of the Sy-loop
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Figure 4.10: (a) The ratio r as a function of the charged Higgs boson mass mg,, for various

values of the coupling constants o; = 0y = o and m;, = 125 GeV. The two smaller o’s are

consistent with the cut-off scales A = 10'® GeV and A = 10'¢ GeV, respectively. The two
larger o’s are allowed for A = 10* GeV. (b) A similar plot with m;, = 140 GeV.
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Figure 4.11: (a) The ratio r as a function of the charged Higgs boson mass mg, for negative
values of the coupling constants o, with my, = 125 GeV, o, = 0 and tan 8 = 164/2. The
value oo = —0.2, —0.5 or —0.8 is consistent with the cut-off scale A = 10'°, 107 or 10*
GeV, respectively. (b) A similar plot with m;, = 140 GeV, o; = 0 and tan 8 = 16+/2. The
value o5 = —0.25, —0.6 or —1 is consistent with the cut-off scale A = 10'°, 107 or 10*

GeV, respectively.
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diagram and that of the W-loop diagram have the same sign, so that r can be larger than
1. Such an example is shown in Fig. 4.11 (a), where the ratio r for m, = 125 GeV is
shown as a function of mg, at various negative o9 values with o; = 0 and tan g = 16v/2.
We consider the case with g, = —0.2, —0.5 or —0.8, which is consistent with the cut-off
scale A = 10'°, 107 or 10* GeV, respectively. In the case of A = 10'° GeV (10* GeV),
the deviation from the SM prediction can be about +6% (+30%) for mg, = 100 GeV. In
Fig. 4.11 (b), the similar plot of the ratio r is shown for m;, = 140 GeV with 01 =0 and
tan 8 = 16v/2. Each case with g, = —0.25, —0.6 or —1 is consistent with A = 109, 107
or 10 GeV, respectively. The correction is larger in the case with m;, = 140 GeV than
in the case with my, = 125 GeV for a given A. The deviation from the SM prediction can
amount to about +8% (+40%) for A = 10" GeV (10* GeV) when mg = 100 GeV. Largér
positive corrections are obtained for smaller mg values. Such a deviation from the SM
prediction can be tested at the LHC and the LC.

Before concluding this section, we remark that if my, is larger than 2mg, such that
the decay mode h — S5 S5 is open, then the total decay width of h can be largely
modified from the SM prediction for large 012. In terms of Rg,, the partial decay width
of h — SF S5 is given by

cv? 4mZ,

Db — SF87) = g 1= (4.43)

where & = (2m, Rs, /v?)?. In Fig. 4.12 (a), we show the partial decay width I'(h — S5 S5)
for mg, = 80,100, 150,200 GeV with g, = 0, = 1, cf. Eq. (4.42), for the allowed range
of my, from 100 GeV to 500 GeV. In Fig. 4.12 (b), the total width (Tt*!) of the SM
Higgs boson is shown as a function of m;, for each value of mg,. This is to illustrate the
possible size of the difference between the total width of the lightest CP-even Higgs boson
~ h in the Zee-model and that of the SM Higgs boson!2. Clearly, the impact of the S Sy
decay channel is especially large in the small m;, region. We note that ['°*2(SM) can
be determined to the accuracy of 10-20% at the LHC and the LC if m;, < 2m,, and to

that of a couple of per cents if my > 2m, [46]. (m is the mass of the Z boson.) Hence,

12T doing this analysis, we have in mind a low cut-off scale A = 104 GeV, which allows a wide range

of values for o’s, mg, and my.
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Figure 4.12: (a) The partial decay width ['(h — S& Sy) for mg, = 80,100, 150,200 GeV

with oy = 09 = 1 for the allowed range of m;, from 100 GeV to 500 GeV. The total decay
width of the SM Higgs boson is given in (b) just for comparison.
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measuring the total decay width of the lightest neutral Higgs boson can provide further
test of the Zee-model for my > 2myg,. The change in the total width of h also modifies
the decay branching rétio of h — ZZ, hence the Zee-model will predict. a different rate
of h » ZZ — p*u~putu~ for a given my,. (In the SM, the branching ratio of h — ZZ is
about 1/3 for m;, > 200 GeV.) Needless to say that for m; > 2myg,, the production mode
of h — S5 S5 — £+¢'~ Br can also be useful for testing the Zee-model. Further discussion

for this possibility will be given in Chapter 5.

4.4 Phenomenology of charged-Higgs bosons

In the Zee-model, two kind of charged Higgs bosons appear. If there is no mixing between
them (x = 0), the mass eigenstates S and S correspond to the 2HDM-like charged
. Higgs and the singlet Higgs w®, respectively. The case with x = 0 occurs in the limit
of M? > v?, u? and m2; i.e. in the decoupling limit. The detection of S can be a
clear indication of the Zee-model. As to be shown later, its phenomenology is found to
be drastically different from that of the 2HDM-like charged Higgs bosons Si[47). Here,
we discuss how the effect of this extra charged boson can be explored experimentally.
Thrbughout this section we consider only cases with x =0, for simplicity.

The S, boson decays into a lepton pair e U, with the coupling constant f;;. The

partial decay rate, I‘fj’ =T'(S7 — €;7,), is calculated as

m m2 \?
rse=_—"52¢.2 1_ | 4.44
27 47(' f] m?g2) ( )
and the total decay width is given by
s 2\ s
Diotal = Z Fij?' (4.45)

ij=1
The life time of S5, 7, is then given by the inverse of I':2,. By taking into account the

hierarchy pattern of f;; in Egs. (4.23) and (4.24) and by assuming mg, = 100 GeV and
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| fiz] = 3 x 107*, the total decay width and the life time can be estimated as'

2, ~ I'?4T52~ 1.6KeV, ' (4.46)
T ~ 1/T3% ~ 107 8sec. (4.47)

This corresponds that S3 decay after traveling a distance of ~ 1071° m, which is signifi-
cantly shorter than the detector scale. Therefore, S§ decays promptly after its production,
and can be detected at collider experiments.

The main production channel at the LEP-II experiment may be the pair production
process ete™ — S S5, similar to the production of the 2HDM-like charged Higgs boson

ST. The matrix-element squares for the S;"S;” production (i = 1,2) are calculated as

_ 2 Qe 1 (I3 — s%,Q.)g2 ) .
lM(eL(R)eE(L) — 578 )‘ = { s —C—%;(Ig‘ — sy Qs,) . _v:nzz ( $°B3,sin® 6,
(4.48)
where Q. = —1 and I? = —1 (0) for the incoming electron e (eg); @s, = —land I3 = —1

(0) for i =1 (2); Bs, = Wa sw = sin By, cw = cos By, and O is the scattering
- angle of S in the e*e~ center-of-mass (CM) frame whose energy is /s. For the other
electron-positron helicity states (e;ef and egef;), the cross sections are zero. Thus the
total cross section for the S5 S5 pair production is given by |

_ _ 1 1 s2 1\ (1 /1 1 1 )
olete” — SFS;) = %e‘wgzs l —+~—W——-——2) + {— - (—2~ —S%V) T_"""z’} }4.49) f

s cys—mg s cly s —m

Hence, the production rates of S; and S; are different. We note that the ratio of cross
sections for S7 Sy and S S; production, o(ete™ — S S5 )/o(ete” — STST), is 0.8
at /s = 210 GeV assuming that the masses of S and S are the same. This ratio is
independent of the masses of Sy and S for a fixed CM energy. (Only the difference
between Si S; Z and S5 S5 Z coupling constants determines this ratio. )

The lower mass bound of the 2‘HDM-like charged boson Sit can be obtained by studying
its 7v and cs decay modes, completely in the same way as the charged Higgs boson

search in the minimal supersymmetric standard model (MSSM) [48]. Similar experimental

13The size of the decay width depend on the value of fi2. If we take mgs, > 500 GeV or p < 100
GeV, fi2 can become one order of magnitude larger than 3 x 104, while still being consistent with the

phenomenological bounds discussed in Sec. 4.1.

62




constraints may be obtained for the extra charged bosons Si. The situation, however,
turns out to be fairly different from the Sit case. First of all, decays of S5 are all leptonic’.

Secondly, the branching ratios of various S5 decays are estimated as

B(S; — e Br) ~ 0.5, (4.50)

B(Sy — u~Br) ~ 0.5, (4.51)
4

B(S; » 7 Br) ~ O %)Nlm”, (4.52)

where we have used the relation Egs. (4.23) and (4.24). Clearly, the branching ratio into
the 7~ By mode is very small, so that it is not useful for detecting Si at all. This is
different from the case of detecting the ordinary 2HDM-like charged Higgs boson, which
preferentially decays into heavy fermion pairs (e.g. 7v and cs). Instead of the decay
into 7¥1¢, the decay into e*1° and p*v° can provide a strong constraint for the Si
mass. In fact, the branching ratio for S — ¢~Hr (¢7: e~ and p~) is almost 100 %,
so that we have oete™ — S§Sy — £H0-Hr ) ~ o(etem — S58S5), where £~ (£)
represents e~ and p~ (not 77). Let us compare this with the cross section o(ete™ —
WHW= — ('~ Br) =o(ete” » WW™). B(W~ — £~ Er)?, where B(W" — (" Hr)=
B(W~- — e Br )+ B(W- — u~Hr ) ~ 21%. As seen in Fig. 4.13, the cross section
olete” — S§S; — LY~ Hr ) is comparable with o(ete™ — W*W~ — (t0~Fr ).
Therefore, by examining the LEP-II data for (¢~ FEp (£*¢'~ = eTe™, e*uFand ptu~,
in contrast to 7+ 7~ for the S case), the experimental lower bound for the S5 boson can
be determined. We may examine such mass lower bound from the smuon search results
at the LEP experiments[49, 50] with massless neutralinos. For example, from the data of
the final state u*u~ Br accumulated at the experiments up to /s = 202 GeV[50], we can
conclude that the lower mass bound of Sy is likely to be 80-85 GeV for the x = 0 cases. |
We note that the right-handed smuon (ji£) in the MSSM carries the same SU(2) x U(1)
quantum number as the weak-singlet charged Higgs boson (S5 for x* ~0). ]

Finally, we comment on Si-production processes at hadron colliders and future LC’s.
At hadron colliders, the dominant production mode is the pair production through the
Drell-Yan-type process. The cross sections for pp — S5 S5 at the Tevatron Run-II energy

(v/s =2 TeV) and pp — S5 S5 at the LHC energy (/s = 14 TeV) are shown as a function
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Figure 4.13: The cross section of the leptonic decay process ete™ — Sf Sy — (¢ Hr
(€(¢") = e and u) at /s = 190, 200, 210 GeV. The process etet — WHW~ — £t Er

at /s = 210GeV is shown for comparison.
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Figure 4.14: The total cross sections of pp — S5 S5 at /s = 2 TeV (solid curve) and
pp — S5 S5 at Vs = 14 TeV (dotted curve) as a function of mg,.

of mg, in Fig. 4.14 for x = 0. At future LC’s, the S boson may be discovered through the
above-discussed pair-production process from the electron-positron annihilation if \/s/2 >
ms,. In Fig. 4.15, we show the total cross section of ete~ — S5 S5 for x = 0 as a function

of mg, for /s = 300, 500, and 1000 GeV.

4.5 Summary of Zee model analysis

In this chaptér, the Higgs sector of the Zee-model has been investigated, in which neutrino

masses are generated radiatively. This model contains extra weak-doublet Higgs field and
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Figure 4.15: The total cross section of ete™ — S5 S5 as a function of mg, at /s = 300,
500 and 1000 GeV.
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singlet charged Higgs field.

We have studied indirect effects of these extra Higgs bosons on the theoretical ma,és
bounds of the lightest CP-even Higgs boson, which are obtained from the requirement
that the running coupling constants neither blow up to a very large value nor fall down'
to a negative value, up to a high-energy cut-off scale A. For A = 10'® GeV, the upper
bound of mh is given by 175 GeV, which is almost the same value as the SM prediction.
In the decoupling regime (M > my), the lower bound is found to be about 100 GeV for
A = 10" GeV, which is much smaller than the lower bound in the SM, and is almost the
same as that in the 2HDM. For smaller A values, the bounds are more relaxed, similar
to that of the SM. We have also investigated the allowed range of the coupling constants
relevant to the weak-singlet Higgs field.

The most striking feature of the Zee-model Higgs sector is the existence of the weak-
singlet charged Higgs boson. We have examined the possible impact of the singlet charged-
Higgs boson on the neutral Higgs boson search through radiative corrections. We found
that its one-loop contributions to the h — v width can be sizable. In the allowed range
of the coupling constants, the deviation from the SM prediction for this decay width can
be +20% or near +10%, for mg, = 100 GeV and A = 10'°, depending on the sign of the
coupling constants o;. The magnitude of the deviation is larger for lower A values or for
my = 125 — 140 GeV, mg, = 100 GeV, and A = 10* GeV.

In the decoupling limit (i.e. when M? > v2, so that o — S — 7/2 and x — 0), we
expect that the production cross section for gg — h, efe~ — vwh and ete™ — Z% in
the Zee-model are the same as those in the SM. However, a sizable change in the decay
branching ratio of h — 7y can alter the production rate of pp (or pp) — hX — fy’)"X at
the LHC, where this production rate can be determined with a relative error of 10-15%
[41]. Also, such a deviation in the branching ratio of A — ~y directly affects the cross
section of ete™ — vwh (and Z°h)— vTyy, which can be measured with an accuracy of
16-22% at the LHC and the e*e~ LC (with /s = 500 GeV and the integrated luminosity
of 1 ab™') [42]. Therefore, the Zee-model with low cut-off scales can be tested through
the h — 7y process at the LHC and the ete™ LC’s. At the future photon colliders, the

enhancement (or reduction) of the A — v partial decay rate will manifest itself in the
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different production rate of h from the SM prediction. A few per cent of the deviation in

['(h — 47) - B(h — bb) can be detected at photon collider [43], so that the effects of the

singlet charged Higgs boson can be tested even if the cut-off scale A is at the Planck scale.

The collider phenomenology of the singlet charged Higgs boson has turned out to be
completely different from that of the 2HDM-like charged Higgs boson. The singlet charged
Higgs boson mainly decays into ¢*Er (with ¢* = e* or p*), while the decay mode By
is almost negligible, because of the relation |fi2| > |fis| > |fzs|. This hierarchy among
the coupling constants f;; results from demanding bi-maximal mixings in the neutrino
mass matrix of the Zee-model to agree with the neutrino oscillation data. On the other
hand, the 9HDM-like charged Higgs boson decays mainly into either the 7v mode or the
cs mode, through the usual Yukawa-interactions. Hence, to probe this singlet charged
Higgs boson using the LEP-II data, experimentalists should examine their data sample
with ete~ By, etu~Er, pte"Br or utu~ Br, while the experimental lower mass bound
of the 2HDM-like charged Higgs boson is obtained from examining the 7741 , THr 75
and jjjj events. Using the published LEP-II constraints on the MSSM smuon production

(assuming the lightest neutrinos to be massless), we estimate the current lower mass bound

for this singlet charged Higgs boson to be about 80-85 GeV. The Tevatron Run-II, LHC
and future LC’s can further test this model.

Finally, we comment on a case in which the singlet charged Higgs boson (S5 for x = 0)
is the lightest of all the Higgs bosons. For my/2 > mg, > mz, the Higgs sector of the
Zee-model can be further tested by measuring the production rate of pp (or pp) — hX —
S8y X — ¢+¢'~Br X. The branching ratio for h — S5 S; — £"¢"Hr can be large.
For instance, for m;, = 210 GeV and mg = 100 GeV, this branching ratio is about 12%
for each ¢t¢'~ = ete™, etp~, pTe™ or utp~. Moreover, the total decay width of h can
be largely modified when the decay channel A — S4 Sy is open. In this case, the decay
branching ratios of h — WtW~, ZZ are also different from the SM predictions.

In conclusion, the distinguishable features of the Zee-model from the SM and the 2HDM
can be tested by the data from LEP-II, the Tevatron Run-II and future experiments at
LHC and LC’s.
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Chapter 5
Conclusion

We have analyzed properties of the Higgs bosons in the various extensions of the SM, so
that when the Higgs boson is discovered, we can test the models for the physics beyond
the SM. |

For each model, the allowed range of the Higgs boson mass is obtained by requiring
that the running coupling constants neither blow up nor cause vacuum unstableness below
A. In the.SM, the allowed range of the Higgs boson mass is calculated as 143 - 175 GeV,
if the cut-off scale is taken as the Planck scale (10'°® GeV) and m; = 175 GeV. For the
MSSM the mass upper bound is less than 120 GeV. In ;he 2HDM, with a softly-broken
discrete syminetry, while the upper bound has been found to be almost the same as in the
SM, the lower bound turns out to be much reduced, because of the interaction between
many Higgs fields. In the decoupling regime, the lower bounds is about 100 GeV for
A = 10" GeV, which is lower by 40 GeV than the SM result. In the mixing regime, my, is
no longer bounded from below. The Higgs boson mass bounds of the Zee-model in which
neutrino masses are generated radiatively, are almost same as those of the 2HDM. If the
Higgs boson is discovered with the mass around 100 GeV at Tevatron or LHC experiment
in near future and its property is quite similar to the SM Higgs boson, the 2HDM and
Zee-model with very high cut-off scale are candidates of models which predict such light
Higgs boson along with the MSSM and its extensions.

For the Zee-Model, the singlet charged Higgs boson can significantly modify the partial

decay width of h — -y via radiative corrections, and its collider phenomenology can also
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be drastically different from that of the charged Higgs bosons in the usual 2HDMs.
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Appendix A

One-loop RGE’S‘ for dimensionless

coupling constants in the SM and

the 2HDM

In the SM, the Higgs self-coupling constant Agys, is given by

dX 3, 3
167 dZM :24>\§M—3>~5M(392+g’2)+194+—(92+g'2)2+12/\5Mny2-—6ny4- (A1)

8
The RGE’s for the 2HDM Higgs couplings are [21]
d\ ’ . 3 3
167r2u@1 = 12XF + 40] + 403 + 203 + 202 — 3\ (88% + ¢%) + §g4 + Z(g2 +9%)%(A.2)

d)\ ' 3 3,
167r2ud—; = 1222 + 202 + 2(\3 + A\g)? + 202 — 3Xo(3¢% + ¢7) + -2—g4 + Z(g2 + ¢'%)?

+12X0y7 — 12y, (A.3)
16720822 = (0 + A9)(6)s + 2) N poN2 4202 2gt 4 S 32
udu_(1+ 2)(6A3 + 2X4) + 423 + 2X] + 5+4g +49 599
~3X3(39% + ¢"%) + 62335, (A4)
dA
167r2u—d—i = 2(A1 + A2)As +4(2h3 + M) As + 822 + 392" — 304(39% + ¢™%) + 6)4y7, (A5)
16288 = x {200 + A ‘,\ A 249" + 697 A6
Wiy = 5 {200 + A2) + 8 + 1204 — 3(3¢% + ¢) + 692} . - (A6)

The RGE’s for the gauge-coupling constants and the top-Yukawa-coupling constants are
given in ref. [21]. ‘

d 1 20 1 .
N_c-i;gl = T6r2 <3Ng + ENH) 9% , (A.7)
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d 1,22 4. 1 |
L = —(—Z 42N, 4Ny ) 2 A8
Fau? 167r2( 3 T3V "G H)92 (A4.8)
d 1 4
—ga = - —N,}q¢3 A9
H a9 167r2( H+3 -")93 (8.9)
d 1 17, 9, 2) 9 3}
¥ = 16r2 { (1291 392+ 805 )y ¥ o

where, N, is the number of flavor and Ny is the number of the Higgs doublet.
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Appendix B

One-loop RGE’s for dimensionless

coupling constants in the Zee-Model

Here, we summarize the relevant RGE’s to our study. For the gauge coupling constants,

we have
d 1 22,
—_— — B.1
o 52 g i (B.1)
d 1
H@gz 1672 (-3) 93 (B.2)
d 1
M@Q:a 1672 (=7) g3 (B.3)
The RGE'’s for the Higgs-self-coupling constants of the doublets are calculated at one-loop
level as
d 1 2 2 2 2 2
bgh = o {1223 + % + D) + 223 + 2)F + 203
3 3 9
- (302 +99) X + (i + 5otk + 70d)} (B4)
d 1
= {1203 + 003 + 4As) + 2] + 22 + 203 + 12970, — 124
3 3 9
- (3 +90) e+ (Jot+ 50t +708)} (85)
d 1 2 2 2 2
/,L-C-i—/;)\3 =. 1672 {2 (Al + )\2) (3)\3 + )\4) + 4)\3 + 2)\4 + 2)\5 + 20‘10’2 + Gyt /\3
3 3 9
— (303 +908) 2o + (01 - Sadk+ 398) } (B.6)
d 1
“Ziﬁ)“‘ = 73 {2 (A + A2) Ay +4 (203 + M) Ag + 802 + 6y2 ),
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- (3gf +99%) M+ 36303} (B.7)
d
M@)\g, = ]_6 — {2)\1 +2X2 4+ 8)3 + 1224 + 6yt

— (307 +993) } s (B.3)

and those with respect to the additional singlet charged Higgs are given by

d—d-al = i% {40% + 20103 + 6A101 + (4As3 + 2A4) 02 + 83 fijou
(12591 + g-gg) o1 + 3g;‘} (B.9)
u-;%az = = 61 > {403 + 20203 + 6Xa02 + (4)s + 20) 01 + 6yf02 + 8f3; fij0
- (‘1;91 + 292) o2 + 391} (B.10)
u%as = 16 — {801 + 802 + 503 + 16f;; fijos — 128tr ft
~12g%03 + 2491} (B.11)

Finally, the RGE’s for the Yukawa-type coupling constants are obtained at one-loop level

as
d 1 17, 9, ., 9,
— = il = B.12
e 6 { (1291 + 792+ 893) Y + 2yt} (B.12)
—d 1 324 +4 4 B.13
Mdufij 1672 {-— (591 + 592) fij + Afafufi — fikfklflj} (B.13)
where

trft = >  fiifinFatus

ik =1—3
it

> fiifij-

i,j=1-3
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Appendix C

Vacuum Stability in the Zee-Model

Higgs potential

Higgs potential (¢* term) is written as follows.

V(“)=1\21X2+f\§2-Y2+%Z2+)\_3XY+01XZ+02YZ
where,
X;E)\3+min(0,)\4—)\5,)\4+)\5),
2
X=|pf, Y=g, 2= 0|
Using
X =rsinfsinp
p:0—3
Y =rsinfcosyp 2
6:0-7%

Z =rcosf

this potential is also written as,

2
v = %— {Al sin® @ sin®  + Ay sin® @ cos®  + -023 cos® 6

(1)

+2)3 sin? 8 sin ¢ cos  + 20 sin 6 cos fsin ¢ + 20, sin & cos 6 cos cp} (C.2)

76



Vacuum stability condition

The vacuum stability conditions is satisfied, if the quartic terms of the scalar potential do

not have a negative coefficient in any direction,
V@ (r,6,p) > 0. (C.3)

By classifying into some case, we lead formulae those are independent of r, 8, ¢.

1.

In the case that all of the o1, 02, )3 are positive, the requirement that V) should be
positive in the direction (cos @ = 0, cos ¢ = 0) implies A\; > 0. For the direction (cos§ = 0,
sin ¢ = 0), the condition Ay > 0 is lead, and for the direction (siné = 0), the condition
o3 > 0 is lead. Namely, the vacuum stability condition is lead as follows.
A1 >0
01>0,00>0, A3 >0: A2 >0 (C.4)

o3>0

2.

Next, we study the case that one of the oy, dz, s is negative and others are positive. For
example, we treat “oy > 0, 02 > 0, A3 < 0” case. The V4 is rewritten as

2 — 2 A—? . !
ve = % {)\1 sinfsiny + % sin 6 cos cp) + (Ag — —5\3—) sin? 0 cos? ¢

+% cos® @ + 20, sin 6 cos 8 sin ¢ + 20 sin 6 cos & cos <p} >0 (C.5)

The requirement that V) is positive for the direction (cos = 0, cosy = 0) lead the

condition- A\; > 0. for the direction (cosf = 0, siny + %coscp = 0), the condition

Ag — % > O\is lead, and for the direction (sinf = 0), the condition o3 > 0 is lead.
Namely, the vacuum stabﬂity condition is lead as follows.
A1>0

01>0,00>0, 23 <0: )\2——%\5;>0 - (C6)

a3 >0
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By the same way, in the case “oy > 0, 02 < 0, A3 > 07, the vacuum stability condition is

lead as follows.

. )\1>0
0'1>0,0'2<0,—)—\;>01' As >0 \\ (C7)

a3 g% 0
2—)\2>

In the case “o;y <0, 03 > 0, A3 > 0”, the vacuum stability condition is lead as follows.

M >0
01<0,09>0,23>0: Ay >0 (C.8)

3.

Next, we study the case that two of the oy, 02, A3 is negative and the other is positive.

For example, we pick up “o; > 0, 03 < 0, A3 < 0” case. The V) is rewritten as

9 =2 ‘ — 2
v = T Al—)‘i sin® @sin® p + Ao Sinﬁcoscp+2\ésin03incp+g—20050
2 )\2 )\2 )\2 i
g3 Ug 2 )\_30'2 . . :
+ ——=]cos’0+2 09— ——|sinfcosfsinp; >0 (C.9)
2 X A2

This case further classified into two cases as o3 — A?\%z is positive or negative.

3-1.

[}

First, we study o1 — %2 > 0 case. For the direction (cos@ = 0, cosp + %sincp = 0),

E‘I

the vacuum stability condition A\; — XA—E—; > 0 is lead, the direction (cosd = 0, sinp = 0),
the condition Ay > 0 is lead. For the direction (sin6cosy + % cos# = 0, sinp = 0), the
vacuum stability condition % — g\% > 0 is lead. Namely, the vacuum stability condition is

as follows.
o A — % >0
)\30’2

0'1>0,0'2<0,_X;<0,0'1—‘>\—>01 A2 >0 (C].O)
2
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3-2.

Second, for the case o7 — g/\% < 0, we transform V) as

— 2

v = T Al—)‘i sinGsin<p+1—'—:’\_"’Tcose
%
2

— 2
A
+X; sinfcosp + —3$inﬁsin<p+ ggcose)

)\2 /\2
-— 2
4 fé_ﬁ_g—l;jz) cos?6 p > 0. (C.11)
2 A\ )\1_)\7\3_
2

For the direction (cosé = 0, cosp + % sinp = 0), the vacuum stability condition

AL — %; > 0 is lead. For the direction (cos@ = 0, sin ¢ = 0), the condition Ay > 0 is lead.

2392 —
For the direction (sin #sin ¢ + Ul—ki%— cosf =0, sinfcosp + f\\§ sin @ sin ¢ + $2 cos § = 0),
Ag—53-

A2
. g (n-32) " L
the condition % — = — =— >01is lead. Namely, vacuum stability condition is lead
/\1—7\32—
as follows.
4 X—Q
AL — —5\32— >0
— A0
1>0,03<0, 85 <0, 01— 32 g, | A>0 o, (C.12)
AQ Azo2
. 0.2 (2 S by
§-H - >0
. 2 A —2a_
\ 1 Ao

By the same way, for the case “o; < 0, g3 > 0, A3 < 0”, the vacuum stability condition

is lead.

____ AL >0
<~ )\30’1 X 2
al<0,02>0,A3<0,02—T>0: )\2_%\31_>0 (C.13)
1
F-%>0
')\1>0
— 3 _ X
61<0,05>0, %<0, 05— 2 <. -k >0 (C.14)
, A 2 op—23%1
% _ % _ 1 >0
2 A1 5_3_
\ )‘2‘,\1
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For the case “oy < 0, 03 < 0, A3 > 0, the vacuum stability condition is lead.

Al_?_‘ﬁ>0
— 9 s
01 <0, 03 <0, X3 >0, Xg— 2292 ¢ ,\2_27"3§>0 (C.15)
g3 ’
o3 >0
4 22
)\1—%>0 .
_ — 2 Na—2o1o2 ’ '
01<0,0<0, X5 >0~ 22 <0: ¢ N2 7w 5 (C.16)
g3 g ,\1__%31.
o3>0

4.

If all of 0y, 09, A3 are negative, the vacuum stability condition is lead by the same way as
in one of above three case that two of 07, 02, A3 are negative, i.e. “oy >0, g2 <0, A3 < 07,
“g1 <0, 03 >0, A3 < 0” or “o01 <0, 02 <0, A3 > 0”. The conditions from above three

ways are identical.

The formulae of vacuum stability condition

Collecting those conditions, the vacuum stability condition at energy scale @) in the Zee-

model is rewritten as follows.

MQ) >0, (@) >0, 03(@)>0. (C.17)

(C.18)

gl(Q)+1/il_(_Q)20‘_3(Q) >0,
03(Q) + \/Mgﬁ‘@ >0, (C.19)
MQ) + V(@) X2(Q) >0, (C.20)
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where A(Q) = A3(Q) + min (0, A(Q) + Xs5(Q), M(Q) — Xs(Q)).

3. If 01(Q) < 0 and 02(Q) < 0, then

< 2 M(@Q)os(@Q) 2(@)o3(@Q) _ o (O)o
XQ)+ {J 25D _ ) A2 30)) - @ 2(Q>} >0,

(C.21)
If 71(Q) < 0 and A(Q) < 0, then
1 12 M(@)os(Q) N
W@+ 1 N (m@x@-Y@) 2E2D - 50) - @) A(Q)} >0.
(C.22)
If 05(Q) < 0 and A(Q) < 0, then
1 y2 A(Q)os(@) _ , 5\
01(Q) + PW(a) {J (M@ 1@ -X(@) —Tg’— - Uz(Q)) —02(Q) )\(Q)} >0.
» (C.23)
- [ When all of 01(Q), 02(Q) and A(Q) are negative, above three conditions are equiv-
alent. |
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