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Abstract

Optics Aberrations of colliding beam dymanics at the interaction point (IP) is one
of most important topics for recent colliders. There is no alternative component for
complicated beam–beam effects due to the beam collision. In addition, especially for
the circular type collider, cumulative effects of the beam–beam collision is developed in
turn by turn. The objective of this research is the X–Y betatron coupling of the second
order aberration at the IP for KEK SuperB–Factory (SuperKEKB). SuperKEKB is an
asymmetric energy electron–positron circular collider. It is the luminosity upgrade
accelerator from KEK B–Factory (KEKB) of the worldrecord holder inthe highest
luminosity for the lepton collider. The achievement target of design SuperKEKB is
40 times of the achieved luminosity of KEKB by using new collision method called
nano–beam scheme and high beam current upgrade. The nano–beam scheme consists
of large crossing-angle and extremely low beta function and low emittance. The final
focusing superconducting magnets system (QCS) is newly designed and installed for
the nano–beam scheme. Phase-2 of SuperKEKB beam commissioning was tested
after BELLE-II detector installed, and then it was ovserved that the first collision
and the paircreation, after that IP collision tuning was traind with beta squeezing
step by step. Studying for the effects of the QCS on the IP beam dynamics is also
so important since the final focusing system optimized for nano–beam scheme is
first operation in the world. Beam optics for global XY coupling and dispersion is
corrected by newly installed Non–interleaved sextupoels system, which can be fine
tunable system for them separately. The Non-Interleaved sextupole system consists
of a pair of sextupole magnets and dispersion or X–Y coupling can be selectively
applied globally by exciting two magnetic fields symmetrically or antisymmetrically.
The skew quadrupole field is adjusted effectively by exciting the skew quadrupole
auxiliary coil provided in each sextupole magnet. During repetition of collision tuning
in the beam commissioning, the global X–Y coupling correction could not effectively
optimize the effect on the beam property with a low beta function at the IP. Therefore
I proposed local coupling correction near the IP in interaction region (IR). The global
coupling values of the entire ring were measured by beam position monitors (BPM)
and they were sufficiently corrected. It was possible that the symmetric error of the
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magnet in the IR is the error source of the IP optics aberration. The effect of the
magnetic field on both sides of the IP was calculated by the transfer matrix using
accelerator calculation code called SAD, in order to perform the correction by locally
confining the X–Y coupling in the IR. By determining the specific value of the optics
aberration at the IP as a relationship with the skew qadrupole component of the QCS,
the possibility of actual adjustment was examined. The IP coupling parameters was
determined by a peak detecting method using a luminosity monitor. Global XY
coupling by skew quadrupoles out of IR could be corrected r1, r3, and r4 parameters
enough. However globally tunable range did not reach r2 error value, I proposed the
IP locally correction method for r2 correction by using QCS skew quadrupoles adding
to traditional global correction method. As the result of new correcting method, all
linear XY coupling parameters were well corrected and luminosity was much improved
as twice. Following three items are suggested as new results of this study. First, It
is shown that the X-Y coupling at the IP is a very important adjustment task in the
extremely low beta function and the focusing magnet system to achieve thier target.
Second, X–Y coupling adjustment for the nanobeam scheme cannot be completely
adjusted only by a globally correcting the coupling coefficient over the entire ring,
and it is critically important to use the skew corrector coils of the final focusing
magnet. Third, we obtained results that greatly contributed to the future progress
of the collider, as the first work to study the IP coupling in the collider from both
theoretical and experimental aspects.
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Chapter 1

Introduction

1.1 Circular Lepton Accelerators
Historically, the particle accelerator has been closely related to many of the achieve-
ments of modern science[1, 2, 3, 4]. The x-rays that are generated by accelerators have
attracted the attention of researchers working in various fields since the first paper
regarding X-rays was submitted by Wilhelm Röntgen in 1895. A report concerning an
experiment involving a certain type of x-ray had already been presented by William
Morgan in 1785, but this was only concerned with the physical phenomena. However,
it is conceivable to consider that the race to build modern particle accelerators began
in 1911, when Rutherford discovered the nucleus by scattering α-particles. Modern
scientists continue to use accelerators regardless of their field, as accelerators are used
in many applications such as nuclear and particle physics, industrial applications such
as ion implantation and lithography, biological and medical research that uses syn-
chrotron light sources, and the material and medical sciences using neutron sources,
among others. Our accelerator, “SuperKEKB", is contributing to the field of particle
physics by producing mainly B-mesons.

Technological improvements to accelerators have involved many branches of sci-
ence, including electromagnetism, solid-state physics, atomic physics, superconduc-
tivity, nonlinear dynamics, plasma physics, and quantum physics. These advances in
technology have induced a significant increase in the energy and luminosity that is
available for the study of fundamental physics. In terms of high energy, the progress
made was measured in MeVs in the 1930s and in TeVs by the 1990s. Similar progress
has been made in terms of high luminosity, which is sometimes called high intensity
in pulse-operated colliders, with 109 particles per pulse in the 1950s and 1014 par-
ticles per pulse in the 1990s. Since 1970, high energy and high luminosity colliders
have become basic tools that are commonly used in nuclear and particle physics re-

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Summary of the historical development of the lepton collider. Red and
green markers denote the achievements and design of individual colliders, respectively.

search. The developments made in the lepton collider are summarized in the chart in
Figure 1.1.

1.2 An Overview of SuperKEKB

1.2.1 The Upgrade from KEKB to SuperKEKB

Experimental Motivation

The KEKB B-Factory has been in operation since 1999, carrying out a collision
experiment (known as the Belle experiment), mainly with a Υ(4S) resonance. KEKB
consists of two rings; an 8-GeV electron ring (HER) and a 3.5-GeV positron ring
(LER), both with a circumference of 3016 m and located in a tunnel 11 m below
ground level. The highest luminosity recorded as a result of the collision of these two
beams was L = 2.1× 1034cm−2s−1, which was recorded in 2009. The peak luminosity
was realized by the smaller β∗

y (6 mm vs. 10 mm) horizontal betatron, which was tuned
closer to a half integer (LER: 0.505/ HER: 0.511) with crab crossing. This experiment
produced important results for B-Physics and CP-violation, among others. The Belle
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experiment was designed and optimized for the observation of CP-violation in the B-
meson system. In 2001, Belle was used to observe large CP-asymmetries in B-decays,
which were expected and consistent with the theoretical proposals of Kobayashi and
Maskawa.

Scientists are currently hoping to use such systems in order to find new physics
(NP). There are two conceivable approaches to finding NP with particle colliders;
reaching the energy frontier and the luminosity frontier, which are the direct results of
improvements to the precision. To find deviations from the predictions made using the
Standard Model, it is necessary to precisely measure the reactions of known particles
close to the luminosity frontier. The Belle II detector aims to search for the charged
Higgs particle by using B → τν and B → D(∗)τν decays, radiative and electroweak
penguin decays, and to measure φ1 and φ2 [5]. To conduct these types of experiments,
SuperKEKB is required to provide extremely high luminosity. A comparison of the
parameters used in KEKB and SuperKEKB is given in Table 1.1[6]. Improvements
that have been made as a result of the development of SuperKEKB include the nano
beam scheme, which provides a new collision method and higher beam current that
is nearly 1.5 times higher than that of KEKB.

Hardware Upgrades

The main objective of the new collider is increasing the luminosity, for which two
major approaches are conceivable; improving the collision method and operating at
a high current. These two methods are generally independent of each other; thus
improvements can be made in both methods simultaneously in order to achieve the
luminosity required[7].

In the injector linac, it is necessary that the beam satisfies all steps of the commis-
sioning plan. To reduce the emittance and reshape the bunches, a positron damping
ring (DR) is installed in the positron injector linac[8]. The whole DR system, includ-
ing the infra-structure, was newly constructed for the SuperKEKB upgrade; thus,
the commissioning of the DR was carried out during operation of the SuperKEKB
Phase-2 testing[9]. Most of the specifications for the DR were satisfied via the re-
quest values used for injection, and the further improvement of beam conditions such
as emittance have continued, even during SuperKEKB Phase-3 and the physics run.
The photocathode RF electron gun was newly developed for SuperKEKB in order
to produce electron and positron beams with high charge and low emittance. The
beam parameters required are 4 nC with 20 mm mrad and 4 nC with 6 mm mrad for
the electron and positron beams, respectively. A thermal cathode DC gun was used
in KEKB; however, the DC gun cannot produce beams with such low emittance[10].
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KEKB SuperKEKB
LER HER LER HER Units

Beam energy E 3.5 8.0 4.0 7.007 GeV
Circumference C 3016.262 3016.315 m
Half crossing angle θx 0(crab) 41.5 mrad
Piwinski angle φPwi 0 0 24.6 19.3 rad
Horizontal emittance εx 18 24 1.9 4.4 nm
Vertical emittance εy 150 150 8.64 12.9 pm
Coupling εy/εx 0.83 0.62 0.27 0.28 %
Beta function at IP β∗

x|β∗
y 1200|5.9 1200|5.9 32|0.27 25|0.30 mm

Horizontal beam size at IP σ∗
x 147 170 10.1 10.7 µm

Vertical beam size at IP σ∗
y 940 940 48 62 nm

Horizontal betatron tune νx 45.506 44.511 44.530 45.530
Vertical betatron tune νy 43.561 41.585 46.570 43.570
Momentum compaction αc 3.3 3.4 3.2 4.55 10−4

Energy spread σδ 7.3 6.7 7.53 6.3 10−4

Beam current I 1.64 1.19 3.6 2.6 A
Number of bunches nb 1584 2500
Particles/bunch N 6.47 4.72 9.04 6.53 1010

Energy loss/turn U0 1.64 3.48 1.76 2.43 MeV
Long. damping time τs 21.5 23.2 22.8 29.0 msec
RF frequency fRF 508.9 508.9 MHz
Total cavity voltage Vc 8.0 13.0 9.4 15.0 MV
Total beam power Pb 3 4 8.3 7.5 MW
Synchrotron tune νs −0.0246 −0.0209 −0.0245 −0.0280
Bunch length σz 7 7 4.7 4.9 mm
Horizontal B-B param. ξx 0.127 0.102 0.0028 0.0012
Vertical B-B param. ξy 0.129 0.090 0.088 0.081

Table 1.1: Machine Parameters of KEKB and SuperKEKB without intrabeam scat-
tering.

Research and development is currently being carried out using this system in order
to produce beams with the quality required by the design. The components in the
storage ring have also been improved in order to produce beams with the SuperKEKB
design parameters. Many sub-systems of the SuperKEKB accelerator need to be up-
graded in order to achieve the required luminosity that is 40 times higher than that
of KEKB. The most important part is the vertical beam size, which is significantly
narrowed as shown in Figure 1.2.

• The existing tunnel, infrastructure, and accelerator components from KEKB
were reused wherever possible and were also improved and modified when nec-
essary[7].
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• For the design of the new optics, many of the magnets and the power supplies
for the magnets needed to be replaced, re-arranged, and added, although the
original cell structures in the arc sections have basically been retained in both
rings[11, 12].

• The power supplies for the new QCS main magnets (2 kA, 10 V of DC) and
corrector magnets (±60 A,±5 V of DC) were newly developed to meet require-
ments[13].

• Some of the power supplies were improved to satisfy the requirements of the
optical design, and some were replaced with new power supplies. For example,
the arrangement of the wiggler magnets in SuperKEKB is different from that
of KEKB, meaning that the new power supplies for the wiggler magnets had to
be newly manufactured[14].

• The requirements for upgrading the vacuum system comes from the higher
beam currents in both rings. The synchrotron radiation and photon density are
both high, especially in the wiggler sections. The beam impedance of various
vacuum components also had to be minimized in order to suppress the excitation
of HOM. Effective countermeasures are required to reduce the electron density
in the beam pipes[15].

• Antechamber beam pipes have been adopted to reduce both the SR power
density at the beam pipe walls and the beam impedance[16].

• The RF systems used with the ARES cavities and SCCs in KEKB are reused as
much as possible, with necessary reinforcements. One ARES cavity is powered
by one klystron.

• A new low-level RF (LLRF) control system, which is composed of µTCA-
platform FPGA boards with embedded experimental physics and industrial
control system input-output controllers, was developed for higher accuracy and
flexibility. The new LLRF system was installed in 9 of the 22 RF stations for
the ARES cavities, replacing the existing system[17].

1.2.2 Advantages of New Collision Scheme and Upgrades

To achieve the target luminosity of 8 × 1035 cm−2s−1, which is 40 times as high as
the peak luminosity of KEKB, the vertical beta function at the interaction point (IP)
needs to be decreased to 1/20 and the beam current needs to be increased to twice



CHAPTER 1. INTRODUCTION 6

Figure 1.2: The beam size comparison between crab cavity collision of KEKB(left)
and nano-beam shceme collision of SuperKEKB (right).

that of KEKB, while maintaining the same beam–beam parameters in the vertical
direction. Prediction of the beambeam limit is difficult because the phenomenon has
nonlinear effects and involves the interaction of many particles.

The vertical beta function at the IP is reduced to 270− 300 µm, while the bunch
length is 5 − 6 mm long. In order to avoid degradation in the luminosity from the
hourglass effect, the “nano-beam scheme" that was proposed by P. Raimondi was
adopted for use in SuperKEKB. New final focusing quadrupole magnets (QCS) were
developed and located nearer to the IP than in KEKB; this is because the collision
scheme was changed from a crab crossing scheme to a nano-beam scheme[18].

In first proposing the idea for the nano-beam scheme, a luminosity of = 0.8×1036

is given for the multi turn, with crab focusing on the vertical plane that is close to
the SuperKEKB design parameters[19]. It was suggested that the advantages of the
new crab waist collision scheme are the reduced ‘hourglass’ effect, the higher geomet-
rical luminosity, and the greatly reduced beam-beam effect. The crab waist collision
scheme consists of a large crossing angle collision and the crab waist in vertical beta.
However, the original idea includes two powerful key methods, and handling the beam
becomes extremely complicated with either method. When crab sextupoles were in-
stalled in the SuperKEKB rings, severe dynamic aperture degradation that was due
to strong nonlinearity at the interaction region (IR) was confirmed by the lattice
calculation of SAD. Therefore, the crab waist is not used in SuperKEKB[20].

The nano–beam scheme consists of a large crossing angle, low emittance, and a
low beta. The important point of this scheme is that the beams collide at a large
crossing angle. Figure ?? is a schematic comparison of the standard bunch, the crab
crossing (KEKB), and the large crossing angle (SuperKEKB). As can be seen from
Figure ??, the large crossing angle has a much smaller region of overlap than the
other methods used for collision. The detailed calculation of the nano–beam scheme
with a large crossing angle is discussed in Section 2.2.2.
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1.2.3 The Final Focusing System

The collider is provided with a final focusing magnet system so that the beam is only
squeezed at the interaction point (IP). The beam size in 6-dimensional space is given
by:

σx,y,z =
√
βx,y,zεx,y,z, (1.1)

σpx,py ,pz =

√
εx,y,z
βx,y,z

, (1.2)

where β is the β-function of the Courant-Snyder twiss parameter and ε is the emit-
tance. The emittance εx,y,z is normally constant within the storage ring, meaning
that the β has to be squeezed in order to achieve a small beam size.

The role of the quadrupole magnet is to focus the charged particles, in the same
manner as a lens focuses light, acting on the β-function. As the collision scheme of
SuperKEKB is based on the crab waist collision scheme, the original idea of final
focusing using the quadrupoles is only a minor change from the design of the SuperB
interaction region.

In order to correct the X-Y coupling at the IP, new sextupole magnets with
variable tilting angle are installed on the tilting tables in the LER ring, which can be
remotely controlled from the central operation room[?].

1.3 Beam-Beam Effects

1.3.1 The General Overview of the beam–beam effect

The effect of the beam–beam interaction is one of the most important issues concern-
ing particle colliders and can lead to significant limits to the performance in terms of
luminosity. Beam–beam interaction has therefore attracted interest at both the design
and the operational stages of a colliding beam facility. A particle beam is a collection
of a large number of charged particles that represents an electromagnetic potential
to other particles, therefore exerting forces both on itself and on other beams. These
forces are most important when high-density beams with high intensities and small
beam sizes are produced, and are the key to producing high luminosity.
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1.4 Perspective of this thesis
This thesis consists of three main chapters. In Chapter 2, beam–beam interactions
and luminosity formulae are discussed, together with several boundary conditions. In
Chapter 3, the effect of optical aberrations on the interaction point is discussed. This
study is an evaluation of the luminosity produced by a machine with imperfections in
the beam properties at the crossing region of colliding bunches. This thesis is therefore
mainly concerned with the theoretical degradation in luminosity that is caused by
linear optical aberrations at the IP. Details of the studies conducted for this paper
are given in Chapter 4; in addition to the correction of linear optical aberrations at
the IP, an evaluation of the methods used for the analysis of the data describing the
beam-position for IP coupling, and a newly proposed method for identifying errors
are described. The data analyzed in these studies were measured during the Phase-2
and Phase-3 commissioning of SuperKEKB.



Chapter 2

Beam-beam effects

2.1 Introduction of the Beam–Beam Effect

2.1.1 Toy Model of the Bunch–Bunch Collision

Luminosity is the most important parameter affecting the performance of a collider
in terms of producing the required number of interactions. The luminosity is defined
as the proportionality factor between the number of collisions per second dR/dt and
the reaction cross-section σp:

dR

dt
= L · σp, (2.1)

From the dimensional analysis, the unit used to describe luminosity is [cm−2s−1].
In this section, a toy model is used to discuss the concept of the luminosity. In

this step, a rectangular cross sectional area is used to represent the colliding bunches.
The schematic of this idea is shown in Fig. 2.1. In the case illustrated in the figure,
the probability of a collision dR/dt between a particle and a bunch containing N
particle is dR/dt = Nσp/S, where the bunch has a cross sectional area of S = σx ·σy.
When such bunches collide in a circular collider with a revolution frequency of f and
the number of particles within the target bunch and the colliding bunch are denoted
by N+ and N−, respectively, Eq. (2.1) can be modified to:

dR

dt
=
N+N−

σxσy
f · σp, (2.2)

= Lσp. (2.3)

9
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The cross–sectional area S is therefore generally the integral of the transverse particle
distributions. If the transverse beam sizes of both beams are the same, the luminosity
is written as

L =

∫∫
dxdy{∆L} =

N+N−

4πσ∗
xσ

∗
y

f, (2.4)

where σ∗
x and σ∗

y are the horizontal and vertical beam sizes at the interaction point
and the standard deviations of the Gaussian distribution in each direction.

Figure 2.1: Schematic of rectangular bunches that are colliding head-on

2.1.2 Beam–beam effects

Beam-Beam Force

The interaction between two particles is described using the Lorentz force equation.
The Lorentz force in a Lorentz boosted frame ~F is given by

~F = q( ~E + ~c× ~B), (2.5)

which satisfies

E‖ = E ′
‖, E⊥ = γE ′

⊥,
~B = ~β ×

~E

c
. (2.6)

It is generally assumed that bunches are Gaussian in distribution, which is de-
scribed in Cartesian coordinates as

ρ(x, y) =
Nq

(2π)
3
2σxσy

exp

(
− x2

2σ2
x

− y2

2σ2
y

)
. (2.7)

In a transverse plane, the electrostatic potential for an electric charge distribution
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U(x, y) is the solution of the Poisson equation:

U(x, y) =
1

ε0

∫
dx′dy′

{
ρ(x′, y′)

4π|x− x′| · |y − y′|

}
(2.8)

=
Nq

4πε0

∫ ∞

o

dt

exp ( x2

2σ2
x+t

+ y2

2σ2
y+t

)− 1√
2σ2

x + t
√
2σ2

y + t

 . (2.9)

Equation (2.8) can be derived using the Green function method. A detailed procedure
performed with these equations is provided in the Appendix ??. The kick forces
can be calculated from the electrostatic potential with the effective temporal region
−∆t

2
≤ t ≤ ∆t

2
as follows:

∆x′ =

∫ ∆t
2

−∆t
2

dt {Fx} = q

∫ ∆t
2

−∆t
2

dt {Ex} = e
∂U

∂x
, (2.10)

∆y′ =

∫ ∆t
2

−∆t
2

dt {Fy} = q

∫ ∆t
2

−∆t
2

dt {Ey} = e
∂U

∂y
. (2.11)

In the case of a flat beam where σx � σy, the formulae for the kick force is provided
by M. Basseti and G. A. Erskin using the complex error function (Faddeeva function)
: w(x) = e−x2

elfc(−ix)[21] leading to:

∆x′ = −iNre
γ

√
2π

σ2
x − σ2

y

Im(W), (2.12)

∆y′ =
Nre
γ

√
2π

σ2
x − σ2

y

Re(W), (2.13)

(2.14)

where W is the term of error function:

W =

w
 x+ iy√

2(σ2
x − σ2

y)

− exp

(
− x2

2σ2
x

− y2

2σ2
y

)
w

 σy

σx
x+ iσx

σy
y√

2(σ2
x − σ2

y)

 . (2.15)

In the vicinity of the bunch center x � σx, y � σy, these formulae become very
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simple form:

∆x′ =
Nre
γ

x

2πσx(σx + σy)
, (2.16)

∆y′ =
Nre
γ

y

2πσy(σx + σy)
, (2.17)

using a linear approximation for x and y.
In a cylindrical (axisymmetrical) coordinate system with round Gaussian beams,

the beam–beam force is given by

Fr(r, s, t) = −Ne
2(1 + β2)√
8π3ε0rσs

{1− exp (− r2

2σ2
)}{exp (−(s+ vt)2

2σ2
2

)}. (2.18)

In a similar manner to Cartesian coordinates, the beam–beam kick in cylindrical
coordinates is given by

∆r′ =
1

mcβγ

∫ ∆t
2

−∆t
2

dt{Fr(r, s, t)}. (2.19)

Figure 2.2 shows the 1D beam–beam kick force as a function of x. The effect of the
beam–beam kick can work as a thin quadrupole linear kick in the range of 1 � /xσx,
outside of which it behaves in a nonlinear manner. This linear approximation is a
critical factor for discussing the beam–beam tune shift.

The Linear Beam–Beam Tune Shift

The matrix describing one turn matrix of the storage ring with betatron tune : ν is
given by

M =

cos 2πν + α sin 2πν β sin 2πν

−γ sin 2πν cos 2πν − α sin 2πν

 = I cos 2πν + J sin 2πν

where I is the unit matrix and

J =

 α β

−γ −α

 , J2 = −I



CHAPTER 2. BEAM-BEAM EFFECTS 13

Figure 2.2: Beam–beam force as a function of the amplitude of round beams which
are normalized using the beam size σ.

is a matrix with zero trace and a unit determinant, and these (α, β, and γ) are
Courant-Snyder Twiss parameters[22]. It was discussed in Section 2.1.2 that the
beam–beam kick works as if it were a quadrupole field with a small amplitude of
x/σ. Therefore, we can assume that the effect of a beam–beam collision can be
approximated as a linear thin focus lens , forming a a simple collision model that can
be used to describe collision.

The Courant-Snyder Twiss parameters at the IP are α(0) = 0 and β(0) = β∗, thus
the one turn matrix becomes:

M0 =

 cos 2πν0 β∗
0 sin 2πν0

− 1
β∗
0
sin 2πν0 cos 2πν0.


. As the thin lens model of a quadrupole is given as

Kq(k) =

 1 0

−k 1

 ,

where k is the strength of a quadrupole, the new one turn matrix with the center of
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the thin lens of the beam–beam kick force can be obtained by

Mbb = Kq(∆r
′)M0Kq(∆r

′) (2.20)

=

 1 0

−∆r′ 1


 cos 2πν0 β∗

0 sin 2πν0

− 1
β∗
0
sin 2πν0 cos 2πν0


 1 0

−∆r′ 1

 (2.21)

=


cos 2πν0 −∆r′β∗

0 sin 2πν0 β∗
0 sin 2πν0(

(∆r′)2β∗
0 − 1

β∗
0

)
sin 2πν0 − 2∆r′ cos 2πν0 −∆r′β∗

0 cos 2πν0.

 (2.22)

On the other hand, the new one turn matrix can also be written as the same Courant–
Snyder Twiss matrix, thus the one turn matrix with beam–beam effect approximated
to a quadrupole field is written as

Mbb =

 cos 2πνbb β∗
bb sin 2πνbb

− 1
β∗
bb
sin 2πνbb cos 2πνbb

 , (2.23)

where 2πνbb is the new betatron tune with beam–beam effect. When 1 � ∆rβ∗
0 is

assumed, this can result in the eigenvalue problem seen in Eq. (2.20) and Eq. (2.23).
From the relationship between components (1,1) and (1,2), factors of the betatron

function with beam–beam effect are represented by
cos 2πνbb = cos 2πν0 −∆r′β∗

0 sin 2πν0,

β∗
bb

β∗
0

= sin 2πν0
sin 2πνbb

.

(2.24)

The upper part of Eq. (2.24) yields the value of beam–beam tune shift. The detailed
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transformation of Eq. (2.24) in form of the tune shift is given by

cos 2πνbb =
√

1 + (∆r′β∗
0)

2 cos{2π(ν0 +∆ν)} (2.25)

' cos{2π(ν0 +∆ν)},

∆ν =
tan−1 (∆r′β∗

0)

2π
' ∆r′β∗

0

2π
, (2.26)

from the linear approximation of ∆rβ∗
0 . The lower part of Eq. (2.24) describes the

change in the β-function, which is known as Dynamic-β and is associated with phe-
nomena called β-beats. The strength of the linear quadrupole effect of the beam–beam
force are sometimes expressed in terms of the beam–beam parameter. The beam–
beam parameter is defined by

ξ = −β
∗
0

4π
∆p′|0 =

β∗
0

4π

∆r′

2
. (2.27)

This parameter is defined to each direction of x and y. Then the tune shift is given
simply by

∆ν ≈ ξ, (2.28)

for tunes far from an integer or half–integer resonance. Substituting ∆r′ for ξ of y
direction, ξy can be expressed by

ξy± =
re

2πγ±

β∗
y±N∓

σ∗
y∓(σ

∗
x∓ + σ∗

y∓)
. (2.29)

This beam–beam parameter is the important parameter to discuss the luminosity and
the beam–beam effect for the beam physics in the collider.

The Hourglass Effect

The β-function, when focused to β∗ in the drift space, is given by

βx,y(s) = β∗
x,y +

s2

β∗
x,y

(2.30)

as a function of the position at point of β∗. This relationship can be adopted at the
point of collision. As bunched beams are of finite bunch lengths, the transverse beam
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size behaves as the β-distribution in Eq. (2.30) even in both are in the same bunch.
If the cross section includes an effective part of the β-distribution, bunches that are
within large beams collide at different points to the IP.

L =
N+N−

4πσ∗
xσ

∗
y

fRL (2.31)

ξy± =
re

2πγ±

β∗
y±N∓

σ∗
y∓(σ

∗
x∓ + σ∗

y∓)
rξ∓ (2.32)

where rξ is the geometrical factor of the beam-beam parameter.
Combining Eq. (2.31) and (2.32), the luminosity can be represented by

L = (1 +
σ∗
y±

σ∗
x±

)
γ±
2ere

ξy±I±
β∗
y±

RL

rξ
. (2.33)

Figure 2.3: An example of the beam size distribution as a function of distance from
the IP s.
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2.2 Luminosity of the Circular Collider
In the case where two beams collide, both beams act as the collision target and the
IP simultaneously. As we discussed in Section 2.1, the spatial 3-D distribution and
the relation of the distance between the IP and the bunches are the most important
factors affecting collision[23, 24, 25]. Figure 2.4 is a schematic view of two colliding
beams, demonstrating several parameters. The distance from the two beams to the
central collision point s0 = ct acts as a time variable; thus, the luminosity is given by
the 4-D integral. The general Luminosity formula describing luminosity is therefore
represented by[26]

L =
N1N2

Sb

K
∫∫∫∫ ∞

−∞
dxdydsds0{ρ1(x, y, s,−s0)ρ2(x, y, s,−s0)}, (2.34)

(2.35)

where K is a kinetic factor defined by:

K =

√
(~v1 − ~v2)2 −

(
~v1 × ~v2

c

)2

. (2.36)

In Eq. (2.34), ρ1 and ρ2 are the time-dependent beam density distribution functions,
and N1 and N2 are the number of particles in a bunch within beam #1 and beam
#2, respectively. As the beams are moving towards each other, Eq. (2.36) has to be
multiplied by the luminosity formula, producing a kinetic factor.

In the case of head-on collisions (~v1 = −~v2), where there is no correlations between
the planes, the density distribution can be separated into each direction. Then, the
luminosity is written by:

L = 2N1N2fNb

∫∫∫∫ ∞

−∞
dxdydsds0{ρ1x(x)ρ1y(y)ρ1s(s− s0)ρ2x(x)ρ2y(y)ρ2s(s+ s0)},

(2.37)

where Nb is the number of bunches in each ring, f is the revolution frequency, and
the relationship v/Sb = vNb/c = fNb is satisfied. In the following sections, the
luminosity model is used only in the head-on region, and not for long-range collisions,
because the calculation of long-range effect are significantly more complicated.
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Figure 2.4: Schematic of head-on colliding bunches of rectangular shape

2.2.1 No Angle Collision Model

The most simplified model that can be used to describe beam collision is Gaussian
Head-on Collision. An example of the this is given in Figure 2.5. The bunches can
be described as Gaussian ellipsoids with:

ρ ∝ exp

(
−
(
x2

2σ2
x

+
y2

2σ2
y

+
z2

2σ2
z

))
, (2.38)

where σ{x,y,z} is the beam size for several of the axes. The actual expression describing
the Gaussian profiles in all dimensions is denoted by

ρik(l) =
1

σk
√
2π

exp

(
− l2

2σ2
k

)
, (2.39)

ρs(s± s0) =
1

σs
√
π
exp

(
−(s± s0)

2

2σ2
s

)
, (2.40)

where subscriptions are i = {1, 2}, k = {x, y, s}, and l = {x, y, s ± s0}, respectively.
Using Eq. (2.37) and (2.39), the luminosity formula is obtained as the first integral:

L =
2N1N2fNb

8π3σ2
sσ

2
xσ

2
y

∫∫∫∫
dxdydsds0

{
e
− x2

σ2
x e

− y2

σ2
y e

− s2

σ2
s e

− s20
σ2
s

}
. (2.41)
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By using the Gaussian integral for each direction, the simple formula for the lumi-
nosity is obtained as:

L =
2N1N2fNb

8π2σ2
xσ

2
y

∫∫
dxdy{e−

x2

σ2
x e

− y2

σ2
y } (2.42)

=
N1N2fNb

4πσxσy
. (2.43)

Equation (2.43) is the standard expression for the luminosity of two Gaussian beams
colliding head-on.

However, it is more likely that the two beams will be of different sizes. In the case
where: σ1x 6= σ2x, σ1y 6= σ2y, σ1s ≈ σ2s, the luminosity formula is modified to

L =
N1N2fNb

2π
√
(σ2

1x + σ2
2x)(σ

2
1y + σ2

2y)
. (2.44)

Figure 2.5: Schematic of a head-on collision with no crossing angle or beam offset,
meaning that both trajectories have same coordinates in the IR (x1 = x2, y1 = y2, s1 =
−s2).

2.2.2 No Angle Collision with Hourglass effect Model

More details concerning the information in Section 2.1.2 are discussed in this section.
The relationship between the β, beam sizes σ, and the emittance ε follows

βx,y = β∗
x,y +

s2

β∗
x,y

= β∗
x,y

{
1 +

s2

β∗2
x,y

}
, (2.45)

σx,y(s) =
√
εx,yβx,y(s). (2.46)
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where the β-function vicinity of the IP is changed as in Eq. (2.45). This is an impor-
tant relationship for calculating the luminosity with the hourglass effect as the model
includes long–range and the head-on interactions.

In addition, the Gaussian distribution in Eq. (2.39) is modified by the hourglass
effect near the IP:

ρil(s) =
1

σ∗
il

√
2π
(
1 + s2

β∗2
il

) exp

(
− l2

2σ∗2
il (1 +

s2

β∗2
il
)

)
, (2.47)

where subscriptions are i = {1, 2} and k = {x, y}.
The luminosity formula is also changed by following the modified distribution

Eq. (2.47), and the substitution and integrals are calculated step by step:

L =
N1N2fNb

2π

1

πσ1sσ2s

∫∫ ∞

−∞
dsds0

exp
(
−{ (s−s0)2

2σ2
1s

+ (s−s0)2

2σ2
2s

}
)

√
(σ2

1x + σ2
2x)(σ

2
1y + σ2

2y)

 (2.48)

=
N1N2fNb

2π

1

πσ1sσ2s

∫∫ ∞

−∞
dsds0

exp
(
−{ (s−s0)2

2σ2
1s

+ (s−s0)2

2σ2
2s

}
)

Σ

 (2.49)

=
N1N2fNb

2π

1

πσ1sσ2s

∫ ∞

−∞
ds


√

2

π(σ2
1s + σ2

2s)

exp
(
− s2

σ2
1s+σ2

2s

)
Σ

 (2.50)

=
N1N2fNb

2π
√

(σ∗2
1x + σ∗2

2x)(σ
∗2
1y + σ∗2

2y)

1√
π

∫ ∞

−∞
dt

 e−t2√
(1 + t2

t2x
)(1 + t2

t2y
)

 (2.51)

≈ N1N2fNbtye
1
2
t2y√

4π3(σ∗2
1x + σ∗2

2x)(σ
∗2
1y + σ∗2

2y)
·K0

(
1

2
t2y

)
, (2.52)

where K0 is the modified Bessel function of the second kind. Between Eq. (2.48)
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and (2.49), the Σ is defined by:

Σ =

√{
σ∗2
1x

(
1 +

s2

β∗2
1x

)
+ σ∗2

2x

(
1 +

s2

β∗2
2x

)}{
σ∗2
1y

(
1 +

s2

β∗2
1y

)
+ σ∗2

2y

(
1 +

s2

β∗2
2y

)}
.s

(2.53)

Between Eq. (2.49) and (2.50), Gaussian integral is applied to the equation as:

1

πσ1sσ2s

∫ ∞

−∞
ds0

{
exp

(
−
[
(s− s0)

2

2σ2
1s

+
(s− s0)

2

2σ2
2s

])}
(2.54)

=
1

πσ1sσ2s

√
π

(2σ1s)−2 + (2σ2s)−2
exp

(
(σ−2

1s − σ−2
2s )

2s2 − 2(σ−2
1s + σ−2

2s )
2s2

2(σ−2
1s + σ−2

2s )

)
(2.55)

=

√
2

π(σ2
1s + σ2

2s)
exp

(
− 2s2

σ2
1s + σ2

2s

)
. (2.56)

Between Eq. (2.50) and (2.51), following relations are used for each nonation of t,
tx, and ty:

t ≡

√
2

σ2
1s + σ2

2s

· s, (2.57)

t2x =
2(σ∗2

1x + σ∗2
2x)

(σ∗2
1s + σ∗2

2s)(
σ∗2
1x

β∗2
1x

+
σ∗2
2x

β∗2
2x
)
, (2.58)

t2y =
2(σ∗2

1y + σ∗2
2y)

(σ∗2
1s + σ∗2

2s)(
σ∗2
1y

β∗2
1y

+
σ∗2
2y

β∗2
2y
)
. (2.59)

Between Eq. (2.51) and (2.52), assuming tx ≤ ty, the integral for t is approximated
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as:

1√
π

∫ ∞

−∞
dt

 e−t2√
(1 + t2

t2x
)(1 + t2

t2y
)

 ≈ 1√
π

∫ ∞

−∞
dt

 e−t2√
1 + t2

t2y

 (2.60)

=
1√
π
tye

1
2
t2yK0(

1

2
t2y), (2.61)

by linear approximation of Taylor series for t where 1 � ty/tx, and then the K0 is
the integral of the cosine expressed by:

K0(x) =

∫ ∞

0

dt{cos (x sinh (t))} =

∫ ∞

0

dt

{
cos (xt)√
t2 + 1

}
. (2.62)

2.2.3 Crossing Angle Collision with the Hourglass effect Model

As discussed in Section 2.1.2, crossing angle collision is one of approaches that can
be used to avoid the beam–beam limit caused by the hourglass effect. In the case
of the crossing angle collision, the coordinates in the equation of motion are also the
difference between the two beams[27]. Figure 2.6 shows a schematic illustration of
the coordinate relationship between the two beams. As the beam axis is tilted in the
x−s plane by the rotation matrix of angle θ/2, the coordinates of both beams satisfy

x1 = x0 cos
θ
2
− s0 sin

θ
2

s1 = s0 cos
θ
2
+ x0 sin

θ
2

, (2.63)


x2 = x0 cos

θ
2
+ s0 sin

θ
2

s2 = s0 cos
θ
2
− x0 sin

θ
2

, (2.64)

where (x, s) is the reference coordinates of collision center.
The relative velocities are different from cases where there is no crossing angle
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Figure 2.6: Coordinates with crossing angle θ (red and blue lines) and reference
coordinates(dotted lines)

case: |~v1| = |~v2| = v, and the kinematic factor Eq. (2.36) is modified to

K =

√
(~v1 − ~v2)2 −

(~v1 × ~v22)
2

c2
(2.65)

=

√
(2v cos

θ

2
)2
v4

c2
sin2 θ (2.66)

= 2v cos
θ

2

√
1− v2

c2
sin2 θ

2
(2.67)

≈ 2v cos2
θ

2
, (2.68)

where the approximation between Eq. (2.66) and (2.68) can occur under conditions
where v/c ' 1, as seen in lepton colliders. Using Eq. (2.66) and (2.68), the luminosity
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formula can be applied to the crossing angle collision:

L =
8π3A
cos θ

2

√
1− v2

c2
sin2 θ

2

∫∫∫∫ ∞

−∞
dxdydsds0

{∏
i,k

ρik(ki)ρis(si ∓ s0)

}
(2.69)

≈ 8π3A
∫∫∫∫ ∞

−∞
dxdydsds0

{∏
i,k

ρik(ki)ρis(si ∓ s0)

}
(2.70)

= A
∫∫∫∫ ∞

−∞
dxdydsds0

∏
i,k

exp (− k2i
2σ2

ik(si)
)

σik(si)

exp (− (si∓s0)2

2σ2
is

)

σis

 (2.71)

= A
∫∫∫ ∞

−∞
dxdsds0


√

2π∑
i σ

2
iy(si)

∏
i

exp (− x2
i

2σ2
ix(si)

)

σix(si)

exp (− (si∓s0)2

2σ2
is

)

σis

 (2.72)

= A
∫∫ ∞

−∞
dxds

 2π exp (− (
∑

i si)
2

2(
∑

i σ
2
is)
)√

(
∑

i σ
2
iy(si))(

∑
i σ

2
is)

∏
i

exp (− x2
i

2σ2
ix(si)

)

σix(si)

 (2.73)

= A
∫∫ ∞

−∞
dxds


2π exp (− (

∑
i si)

2

2(
∑

i σ
2
is)
)√(∑

i σ
∗2
iy (1 +

s2i
β∗2
iy
)
)
(
∑

i σ
2
is)

∏
i

exp (− x2
i

2σ∗2
ix (1+

s2i
β∗2ix

)
)

σ∗
ix

√
1 +

s2i
β∗2
ix

 , (2.74)

where {i = 1, 2} and {k = x, y}, then the sign ∓ = {−,+} of s0 corresponds to
{i = 1, 2}, respectively. The coefficient A ≡ 2N1N2fNb cos

2 θ
2
/8π3. Furthermore,

Eq. (2.74) can be separated into an IP constant factor and a collision condition
factor, which is also known as the geometric factor. Now we define the parameter R
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as a collision condition factor. Then Eq. (2.74) can be rewritten as

L =
N1N2fNb

2π
√
σ∗2
1x + σ∗2

2x

√
σ∗2
1y + σ∗2

2y

· RHθ, (2.75)

RHθ =
cos2 θ

2

∏
k

√∑
i σ

∗2
ik

π
√∑

i σ
∗2
is

(2.76)

×
∫∫ ∞

−∞
dxds


exp

(
− (

∑
i si)

2

2(
∑

i σ
2
is)

)
√∑

i σ
∗2
iy

(
1 +

s2i
β∗2
iy

) ·
∏

i={1,2}

exp

(
− x2

i

2σ∗2
ix

(
1+

s2i
β∗2ix

)
)

σ∗
ix

√
1 +

s2i
β∗2
ix


,

where Hθ of RHθ is equal to the geometric factor of the luminosity for the Gaussian
crossing angle collision with the hourglass effect.

Equation (3.78) is the standard formula used for crossing angles with the hourglass
effect. The estimated luminosity of design parameter is calculated on the basis of this
formulae as the geometric luminosity, which is the ideal luminosity. In the actual
situation, several type of the luminosity degradation is affected by the linear optics
aberration, the nonlinear effect , and the beam–beam effect caused by collisions. In
the next subsection, the influence of beam–beam effect on parameters of the single
beam motion will be discussed. In the next section, the degradation model under
existence of linear optics aberration is discussed.
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2.3 The Beam–Beam Tune Shift
The source of beam-beam tune shift is a result of the electromagnetic interaction
between two particles[28, 29]. As discussed in Sec. 2.1.2, one approach used for
evaluating the effect of a beam–beam kick is calculating the kick force under several
assumptions. The general conditions underlying the relationship between the two
coordinates of the incoming beams are given in Fig. 2.7. The coulomb force of the
reference bunch affects the test particle at the IR. Typically, in the case of a lepton
collider, the coordinates are transformed via a Lorentz boost from the perspective of
the laboratory system. The transformation of these coordinates is as follows:

x1 = x2 cos θ + s2 sin θ

s1 = s2 cos θ − x2 sin θ

(2.77)


x2 = x1 cos θ − s1 sin θ

s2 = s1 cos θ + x1 sin θ

(2.78)

Assuming a Gaussian distribution for a bunch in three-dimensional space and no
hourglass effect, the electrostatic potential at the beam coordinates is described by

U(~̃r1) =
1

4πε0

∫
d~̃r′1

{
ρ1(~̃r

′
1)

|~̃r1 − ~̃r′1|

}
(2.79)

ρ1(x̃1, ỹ1, s̃1) =
N1e1√

2π
3
σ1x̃σ1ỹσ1s̃

exp

(
− x̃21
2σ2

1x̃

− ỹ21
2σ2

1ỹ

− s̃21
2σ2

1s̃

)
(2.80)

where ~̃r1 = (x̃1, ỹ1, s̃1) is the position vector of the reference bunch from the crossing
point and the tilde indicates the same quantity at the normal beam coordinates.

The integral function of Eq. (2.79) can be represented as a type of definite integral.
Following the Green function method in Appendix ??, which is equal to Eq. (2.8),
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Figure 2.7: Relationship of coordinated between reference bunch and an incoming
particle with crossing angle θ.

Eq. (2.79) can be rewritten:

U(x̃1, ỹ1, s̃1) =
1

4
√
π
3
ε0

∫ ∞

0

dt

{
1

√
t
3

∫
d~̃r′1

{
ρ1(~̃r

′
1) exp

(
−|~̃r1 − ~̃r′1|2

t

)}}
(2.81)

=
N1e1

8
√
2π3ε0σ1x̃σ1ỹσ1s̃

(2.82)

×
∫ ∞

0

dt

 1
√
t
3

∏
k={x,y,s}

[∫ ∞

−∞
dk̃′1

{
exp

(
− k̃

′2
1

2σ2
1k̃

− (k̃1 − k̃′1)
2

t

)}]

=
N1e1

4
√
π
3
ε0

∫ ∞

0

dt


∏

k={x,y,s}

exp
(
− k̃21

2σ2
1k̃

+t

)
√
2σ2

1k̃
+ t


 (2.83)
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The Lorentz Transformation

The relationship between non-relativistic coordinates and relativistic coordinates is
described by 

x̄ = x, σ̄x = σx

ȳ = y, σ̄y = σy

s̄ = γ(s− cτ), σ̄s = γσs

(2.84)

, which is known as the Lorentz transformation. For relativistic particles, the beam–
beam kick potential in Eq. (2.83) is transformed to

U(x̃1, ỹ1, s̃1) =
N1e1

4
√
π
3
ε0

∫ ∞

0

dt


exp

(
−γ2

1(k̃1−cτ)2

2γ2
1σ

2
1s̃+t

)
√

2γ21σ
2
1s̃ + t

∏
k={x,y}

exp
(
− k̃21

2σ2
1k̃

+t

)
√
2σ2

1k̃
+ t



(2.85)

by using Eq. (2.84). The electromagnetic fields of the beam–beam kick can thus be
derived as

E1x =− γ1
∂U

∂x1
(2.86)

=
γ1N1e1x1
2πε0

√
π

∫ ∞

0

dt


exp

(
−γ2

1(k̃1−cτ)2

2γ2
1σ

2
1s̃+t

)
(2σ2

1s̃ + t)
√
2γ21σ

2
1s̃ + t

∏
k={x,y}

exp
(
− k̃21

2σ2
1k̃

+t

)
√
2σ2

1k̃
+ t


 (2.87)

E1y =− γ1
∂U

∂y1
(2.88)

=
γ1N1e1y1
2πε0

√
π

∫ ∞

0

dt


exp

(
−γ2

1(k̃1−cτ)2

2γ2
1σ

2
1s̃+t

)
(2σ2

1s̃ + t)
√
2γ21σ

2
1s̃ + t

∏
k={x,y}

exp
(
− k̃21

2σ2
1k̃

+t

)
√

2σ2
1k̃

+ t


 (2.89)
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and

B1x =− 1

c
E1y (2.90)

B1y =
1

c
E1x (2.91)

.

Transformation of the coordinates of a test particle to the reference bunch

Generally, the coordinates of a test particle and a reference bunch are different, as seen
in Fig. 2.7, meaning that the coordinates of the test particle require transformation.
The relationship is 

x1(t) = x2cosθ + (s1 − cτ) sin θ

y1(t) = y2

s1(t) = (s2 − cτ) cos θ − x− sin θ

(2.92)

from which the relationship with velocity is found via:

v1x = −c sin θ

v1y = 0

v1s = −c cos θ

(2.93)

where v2 ∼ c because relativistic conditions are assumed. The transformation of
the test particle is then considered, as transforming the kick force is easier than
transforming relativistic fields; thus, this transformation is used because it yields the
same result as the transformation of a reference bunch. The Lorentz force ~F1 =
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(F1x, F1y, F1s) of the transformed system is described by

F1x = e2(E1x − v1sB1y) = e2E1x(1 + cos θ)

F1y = e2(E1y + v1sB1x) = e2E1y(1 + cos θ)

F1s = e2v1xB1y) = −e2E1x sin θ

(2.94)

. The impact of a beam–beam kick force on a test particle is equal to the kick force
that is projected back towards the coordinates of the test particle:

F2x = F1x cos θ − F1s sin θ

F2y = F1y

F2s = F1x sin θ + F1s cos θ

(2.95)

. The deviation in the momentum of the test particle in each direction is obtained
from the integral of the kick force on τ :

∆p2x =
∆p2x
p2

=
1

p2x0

∫ ∞

−∞
dτ{F2x} (2.96)

∆p2y =
∆p2x
p2

=
1

p2x0

∫ ∞

−∞
dτ{F2y} (2.97)

By using Eq. (2.96) and (2.97), the tune shift formula from the perturbation theory
is expressed as

ξ2x =− β2x
4πp2x0

∫ ∞

−∞
dτ{∂F2x

∂x2
} (2.98)

ξ2y =− β2y
4πp2y0

∫ ∞

−∞
dτ{∂F2y

∂y2
} (2.99)
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To substitute (F2x, F2y) as the actual form, we transform Eq. (2.94) into

F2x = F1x =e2(1 + cos θ)
γ1N1e1[x2 cos θ + (s2 − cτ) sin θ]

2πε0
√
π

×
∫ ∞

0

dt

exp ( [x2 cos θ+(s2−cτ) sin θ]2

2σ2
1x+t

− y22
2σ2

1y+t
− γ2

1 [(s2−cτ) cos θ−x2 sin θ−cτ ]2

2γ2
1σ1s+t

)

(2σ1x + t)
√
(2σ2

1x + t)(2σ2
1y + t)(2γ1σ2

1s + t)


(2.100)

F2y = F1y =e2(1 + cos θ)
γ1N1e1y2
2πε0

√
π

×
∫ ∞

0

dt

exp ( [x2 cos θ+(s2−cτ) sin θ]2

2σ2
1x+t

− y22
2σ2

1y+t
− γ2

1 [(s2−cτ) cos θ−x2 sin θ−cτ ]2

2γ2
1σ1s+t

)

(2σ1y + t)
√

(2σ2
1x + t)(2σ2

1y + t)(2γ1σ2
1s + t)


(2.101)

with the derivatives

∂F2x

∂x2
= e2(1+ cos θ)

γ1N1e1
2πε0

√
π

×
∫ ∞

0

dt

{{
cos θ + [x2 cos θ + (s2 − cτ) sin θ]

−2 cos θ[x2 cos θ + (s2 − cτ) sin θ]

2σ2
1x + t

+[x2 cos θ + (s2 − cτ) sin θ]
2γ21 sin θ[(s12− cτ) cos θ − x2 sin θ − cτ ]

2γ21σ
2
1s + t

}

×
exp ( [x2 cos θ+(s2−cτ) sin θ]2

2σ2
1x+t

− y22
2σ2

1y+t
− γ2

1 [(s2−cτ) cos θ−x2 sin θ−cτ ]2

2γ2
1σ1s+t

)

(2σ1x + t)
√

(2σ2
1x + t)(2σ2

1y + t)(2γ1σ2
1s + t)


(2.102)

∂F2y

∂y2
= e2(1+ cos θ)

γ1N1e1
2πε0

√
π

(
1− 2y22

2σ2
1y + t

)

×
∫ ∞

0

dt

exp ( [x2 cos θ+(s2−cτ) sin θ]2

2σ2
1x+t

− y22
2σ2

1y+t
− γ2

1 [(s2−cτ) cos θ−x2 sin θ−cτ ]2

2γ2
1σ1s+t

)

(2σ2
1y + t)

√
(2σ2

1x + t)(2σ2
1y + t)(2γ1σ2

1s + t)


(2.103)

The case of β2x = β2y = const.

if it is assumed that β2x = β2y = const., a different parametrization can be used to
improve clarity. The horizontal beam–beam parameter of a constant beta-function
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at the collision point is represented by

ξ2x =
N1reβ2x

2π

∫ ∞

0

dt

 e
− y22

2σ2
1y+t√

2σ2
1y + t

× 1

(2σ2
1s tan

2 θ
2
+ 2σ1x + t+ t

γ2
1
tan2 θ

2
)3/2

× exp

(
− (s2 sin θ + (1 + cos θx2))

2

(1 + cos θ)2(2σ2
1s tan

2 θ
2
+ 2σ2

1x + t+ t
γ2
1
tan2 θ

2
)

)

×

{
1− 2(s2 sin θ + (1 + cos θ)x2)

2

(1 + cos θ)2(2σ2
1s tan

2 θ
2
+ 2σ2

1x + t+ t
γ2
1
tan2 θ

2
)

}}
, (2.104)

where p0 = γ2m0c, re = e2/(4πε0m0c
2), and e1 = e2 = e for each parameter. On the

other hand, the vertical beam–beam parameter is∫ ∞

−∞
dt

{
∂F2y

∂y2

}
=e2(1 + cos θ)

γ1N1e1
2π3/2ε0c

×
∫ ∞

−∞
dt

{(
1− 2y22

2σ2
1y + t

)

×
exp (− y22

2σ2
1y+t

)

(2σ2
1y + t)

√
(2σ2

1x + t)(2σ2
1y + t)(2γ21σ

2
1s + t)


×
∫ ∞

−∞
d(cτ)

{
exp

(
−(C +Dcτ)2

H
− γ21(F +G+ cτ)2

I

)}
.

(2.105)

The complete integral for cτ in Eq. (2.105) can thus be written as

∫ ∞

−∞
d(cτ)

{
exp

(
−(C +Dcτ)2

H
− γ21(F +G+ cτ)2

I

)}
=

exp
(
−γ2

1(DF−CG)2

D2I+G2Hγ1
HI

√
π
)

√
HI(D2I +G2Hγ21)

=

√
π

γ1(1 + cos θ)

√
(2σ2

1y + t)(2γ21σ
2
1s + t)√

2σ2
1s tan

2 θ
2
+ 2σ2

1x + t+ t
γ2
1
tan2 θ

2

× exp− (s2 sin θ + (1 + cos θ)x2)
2

(1 + cos θ)2(2σ2
1s tan

2 θ
2
+ 2σ2

1x + t+ t
γ2
1
tan2 θ

2
)
. (2.106)
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As a result, the vertical beam-beam parameter is represented by

ξ2y =
N1reβ2y
2πγ2

∫ ∞

−∞
dt

 exp− y22
2σ2

1y+t

(2σ2
1y + t)3/2

×
exp

(
− [s2 sin θ+(1+cos θ)x2]2

(1+cos θ)2(2σ2
1s tan

2 θ
2
+2σ2

1x+t+ t

γ21
tan2 θ

2
)

)
√

2σ2
1s tan

2 θ
2
+ 2σ2

1x + t+ t
γ2
1
tan2 θ

2

 . (2.107)

These two beam-beam parameters from Eq. (2.104) and (2.107) are formulae with-
out any approximation. Under the assumptions of several conditions, Eq. (2.104) and
(2.107) can be simplified, as seen in the following subsections.

2.3.1 Beam–Beam Tune Shift with x=y=s=0

The condition x = y = s = 0 points to means the situation in which there is zero
offset, which corresponds to the exact of the IP. Thus, Eq. (2.104) and (2.107)
becomes

ξ2x =
N1reβ2x
2πγ2

∫ ∞

0

dt

 1√
2σ2

1y + t(2σ2
1s tan

2 θ
2
+ 2σ2

1x + t+ t
γ2
1
tan2 θ

2
)3/2

 , (2.108)

ξ2y =
N1reβ2y
2πγ2

∫ ∞

0

dt

 1

(2σ2
1y + t)3/2

√
2σ2

1s tan
2 θ
2
+ 2σ2

1x + t+ t
γ2
1
tan2 θ

2

 , (2.109)

as x1 = x2 = 0 and y1 = y2 = 0 in each of the equations.
This tune shift representation is considered for only ideal situation. In the actual

operation, beam trajectory can be disturbed by several error source in the ring. In
that error case, independent discussion for each situation should be required.
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2.4 Numerical Simulations of Beam–Beam Inter-
action

2.4.1 Introduction of the Beam–Beam Simulation

With the simple formulae used for the beam dynamics in the storage ring, beam–beam
interactions are not considered useful for understanding global properties. However,
many of the issues that surround circular colliders are caused by beam–beam interac-
tions, including the growth of emittance and a reduction in the lifetime of the beams.
These problems are critical sources of the limitations in the luminosity of particle
colliders; it is therefore critical that the effects that beam–beam interaction have on
IP beam dynamics are calculated. To study the effects of machine imperfections and
beam–beam interactions, several simulations have been developed [30, 31, 30, 32].

In collider simulations, two beams that are moving in opposite directions are
represented by macroparticles, as shown in Fig 3.1. The macroparticles consist of
the same charge to mass ratio as the particles in the accelerator. Simulations of
collisions usually only deal with colliding bunches, so two important parameters that
are used to describe beam intensity are the number of particles within a bunch and
the revolution frequency. According to these two parameters and the assumed bunch
distribution, the charge ratio of a macroparticle can be estimated.

A six-dimensional bunch distribution is used to simulate the long-term evolution
of a beam. The transverse and longitudinal motions of the beam are simulated using
linear and nonlinear transfer maps. When the Hamiltonian can be written as the
sum of two terms, the transfer maps constructed by the splitting method are gener-
ally represented as an action of the Hamiltonian on which the Lie transformation is
applied, as follows:

e−L:H: = e−L:H1+H2: (2.110)
≈ e−L:H1:e−L:H2:, (2.111)

where L is the length of the component and H is the Hamiltonian of the component,
which can be represented by the sum of two terms; H = H1+H2. As an example, for
a sextupole magnet with one-degree of freedom, the Hamiltonian with a relativistic
limit γ0 −→ ∞ is given by

H = −
√
1− p2x +

1

6
k2x

3. (2.112)

Because this Hamiltonian can be written by splitting the representation into two
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Figure 2.8: An image of bunches that consist of macro particles moving in opposite
directions.

separate Hamiltonians:

H1 ≡ −
√

1− p2x (2.113)

H2 ≡
1

6
k2x

3, (2.114)

the Lie transformation e−L:H:, when applied to the physical variables of horizontal
motion, can be written as:

e−L:H:

(
x

px

)
≈ e−L:H1:e−L:H2:

(
x

px

)
(2.115)

= e−L:H1:

(
x

px − 1
2
k2Lx

2

)
(2.116)

=

(
x+ Lpx√

1−p2x

px − 1
2
k2Lx

2 − k2L2xpx√
1−p2x

− k2L3p2x
2(1−p2x)

)
. (2.117)

Within the linear transfer maps, the dynamic action of a particle can be represented
using a six-dimensional matrix. When nonlinear effects are considered in deriving the
result from a simulation of colliding beam, the representation of the Lie transforma-
tion produced by the splitting method is used as a substitute for the linear transfer
matrices.

2.4.2 Formulations in the Weak-Strong Simulation

The weak-strong model assumes that the “weak" beam is affected by both the head–
on collision and the long–range interactions of the beam–beam kick. On the other
hand, the “strong" beam is not affected by these factors. In other words, a bunch
distribution using only the “weak" beam effects is modified by beam–beam effects in
every collision.

If the weak bunch conditions can be preserved during the iteration of a weak–
strong model, the result can be considered as a simulation of a collision that is af-
fected by only the beam-optical design of the accelerator. Beam dynamics can be
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explained completely in six–dimensional phase space variables, so the situation at the
collision point is also determined by only the six–dimensional vector of each parti-
cle. If the difference between the laboratory and the beam coordinates is taken into
consideration, it is necessary to rotate the coordinates at the collision point, but the
basic model is the same as single particle dynamics in a fixed frame. The method
of dividing the bunch distribution into several macro particles and integrating the
action of each beam kick is used. If the distribution of the charge within a bunch
is Gaussian, the charge and shape of a macroparticle used for the calculation of the
actions of the electromagnetic field can be defined using the sliced Gaussian. The
interaction of each macroparticle at the collision point is obtained by integrating the
kick force received from the opposite beam. In the collision simulation, this calcula-
tion is performed for each revolution, meaning that all the actions that occur within
one revolution should be integrated around the collision point. In other words, the
core part of the simulation requires only the performance of an integral describing
the kick force from each direction as a function of time s.

The actual calculation process used in this study executes a loop of items 2-5 in
the following list:

1. Initialization

2. Calculation of the beam–beam kick

3. Produce a map illustrating one revolution of the ring

4. Calculate the radiation damping and quantum excitation

5. Calculate the transverse wake force and chromaticity

Initialization describes the generation of macroparticles with a Gaussian distribution
in six-dimensional phase space. The initial emittances of the beam are set to the
nominal values. The other effects are the same as above. The luminosity is then
calculated using:

L = f0

∫
dsdzdz′{

∫
dxdy{ρ+(x, y, s(z))ρ−(x, y,−s(z′))× δ(s− (z − z′)/2)}}

(2.118)

where ρ±(x, y, s) is the charge distribution density of the e± beam. The integration
is evaluated by summing the macroparticle density at each of the mesh points.
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Generally, the charge distribution of a bunch within the strong beam is fixed and
assumed to be Gaussian:

ρ =
Ne

(2π)3/2σxσyσs
exp

(
− x2

2σ2
x

− y2

2σ2
y

− s2

2σ2
s

)
, (2.119)

where the notation of each parameter is the same as that used in the previous sections.
In this distribution, the coordinates (x, y, and s) are the physical coordinates of the
rest frame in the strong beam. When only transverse beam dynamics are required, the
distribution of the particles in the bunch should be integrated along the longitudinal
direction, as ρ(x, y) =

∫
ds{ρ(x, y, s)}.

Only the longitudinal distribution is important for slicing a Gaussian bunch, which
is replaced with a summation of the weighted delta functions from Ns times as

ρ(x, y, s) ∝ ρ(s) =
exp (−s2/2σ2

s)√
2πσs

(2.120)

→ ρ̂(z) =
L∑

k=−L

wkδ(z − zk), (2.121)

where Ns ≡ 2L + 1 is the slice number within the bunch and
∑L

k=−Lwk = 1. There
are several slicing algorithms that may be used to produce macroparticles[33].

The first factor for consideration is the equal spacing of the slices. The location
of the beam–beam kicks is equally spaced with weights that are proportional to the
Gaussian density at sk:

sk
σs

=
2k

Ns − 1

(
1 +

Ns − 3

12

)
(2.122)

wk =
ρ̂(sk)∑L

m=−L ρ̂(sm)
, (2.123)

where k = 0, ±1, · · · , ±L, Ns ≥ 3.
The second factor for consideration is the use of slices of equal area. If the Gaus-

sian distribution is divided into Ns slices of equal area, the macroparticles will have
equal charge. The kicks are located at the center of the charge of each slice, which is
the same as the center of mass. The weight function is uniform, at wk = 1/Ns. The
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formula for the Gaussian slice is therefore described using the error function, as

sk
σs

=
√
2erf−1

(
2k

Ns

)
, (2.124)

where k is the same as that in Eq. (3.14).
Slicing the Gaussian distribution uses the same principles as the first and second

considerations mentioned above, but the kick locations are changed from the center
of the slice to the edge of the slice. The formula giving the kick location is

sk
σs

= Ns[ρ̂(lk)− ρ̂(lK+1)],(k = 1, · · · , L), (2.125)

(2.126)

where lk is the k–th position on the edge of the slice. Two slicing algorithms can thus
be combined:

sk
σk

=
1

wk

[ρ̂(lk)− ρ̂(lk+1)] (2.127)

The final consideration used in the production of a slicing algorithm is to select
values for sk and wk such that the area enclosed by the two functions

∫ s

0
ds′{ρ(s′)}

and
∫ s

0
ds′{ρ̂(s′)} is minimal. These requirements lead to a set of nonlinear values for

sk and wk in the algorithm “Combination method”, which is most easily solved by
iteration. Table 3.1 lists the values of zk and wk for five slicing patterns when Ns = 5.

# 1 # 2 # 3 # 4 # 5
z1 -1.167 -1.282 -1.400 -1.599 -1.442
z2 -0.584 -0.524 -0.532 -0.679 -0.676
z3 0.0 0.0 0.0 0.0 0.0
z4 0.583 0.524 0.532 0.679 0.636
z5 1.167 1.282 1.400 1.599 1.442
w1 0.137 0.2 0.2 0.174 0.149
w2 0.228 0.2 0.2 0.232 0.226
w3 0.270 0.2 0.2 0.261 0.247
w4 0.228 0.2 0.2 0.232 0.226
w5 0.137 0.2 0.2 0.174 0.149

Table 2.1: Comparison of the patterns produced by different Gaussian bunch slicing
methods

Next, the collision point is determined as a consequence of the assumptions listed
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in Table 3.1. Thus, it is assumed that the bunches move towards each other according
to s± = ±ct, so that t = 0 corresponds to the instant at which the central collision
occurs. If z+ and z− are the longitudinal position of a positron and an electron bunch,
respectively, then the s–coordinates of the colliding position in the positron beam (s+)
and the opposing electron beam (s−) at time t are s+ = ct+ z+ and s− = −ct− z−,
respectively. The point at which the positron and electron macroparticle collide
is determined by setting s+ = s− = sc, which implies that the collision point is
sc =

1
2
(z+ + z−). Transverse coordinates should also be defined for the center of the

macroparticle, as this is necessary for calculating the integrals of the beam–beam kick
force on the transverse plane. The transformation from the bunch center to the actual
collision point is a simple drift, as the detector solenoid field is well compensated for
by the solenoid canceler coils in the colliding beam.

The process used for calculating the beam–beam kick force has already been dis-
cussed in Sec. 2.1.2. The formula for the beam–beam kick is the same as that de-
scribed. The charge of the particle should then replace the macroparticle’, which is
discussed in this section. In the following, factors that are important for calculating
the beam–beam interaction are introduced as the physical meaning and the associated
formula. A bunch collision is depicted in Fig. 3.2.

Figure 2.9: Image showing the for Head-on and Long-range effects of a collision.

Some of the factors required for calculating the beam–beam effect are introduced
in this section. The required effects are selected according to the model used.
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Head-on collision

For beam–beam interaction, a rounded Gaussian distribution is assumed for the
charge distribution in the bunch. The effect of a head-on collision is given by

∆px =
2reNb

γ

x

r2

(
1− e−

r2

2σ2

)
, (2.128)

∆py =
2reNb

γ

y

r2

(
1− e−

r2

2σ2

)
, (2.129)

where σ ≡ σx = σy is the rms beam size at the IP. These equations will be replaced
with other formulae for other conditions, as discussed in Sec. 2.3.

Long range interaction

For the calculation of the long–range interaction, the effect of all parasitic collisions
that overlap each other around the IP during the time range under investigation are
integrated[?, ?]. The long–range interactions can be approximately expressed as a
beam–beam kick with a displacement from the IP coordinates, while the trajectory
slope at the IP remains unchanged. In the case of a horizontal crossing, the displace-
ments can be written as

∆x =− npar
2reNb

γ

[
px + θc
θ2t

(
1− e

− θ2t
2θ2x,y

)
− 1

θc

(
1− e

− θ2c
2θ2x,y

)]
(2.130)

∆y =− npar
2reNb

γ

py
θ2t

(
1− e

− θ2t
2θ2x,y

)
(2.131)

for the horizontal and vertical axis, respectively ,where θt ≡ [(px + θc)
2 + p2y]

1/2 and
θx,y is the rms beam divergence at the IP.

Triplet Nonlinearities

The integrated effect of the higher-order multipoles in the low-β quadrupoles can be
written in complex form. The nonlinear kick on the incoming side of the IP with
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horizontal crossing is given by

∆x =−KRe

{
nmax∑
n=3

× Gn

(
− 1

r0

)n−1
[(

x′ +
θc
2
+ iy′

)n−1

− (n− 1)

(
θc
2

)n−2

(x′ + iy′)−
(
θc
2

)n−1
]}

,

(2.132)

∆y =KIm

{
nmax∑
n=3

× Gn

(
− 1

r0

)n−1
[(

x′ +
θc
2
+ iy′

)n−1

− (n− 1)

(
θc
2

)n−2

(x′ + iy′)−
(
θc
2

)n−1
]}

,

(2.133)

Irwinbb1989, Herrbb1990(2.134)

where the complex coefficient Gn is the effective strength of an nth order multipole
kick.

Tune modulation

Tune modulation is described using a linear transport matrix in the form

Mtune =


cos∆φx β∗

x sin∆φx 0 0
−1
β∗
x
sin∆φx cos∆φx 0 0

0 0 cos∆φy β∗
y sin∆φy

0 0 −1
β∗
y
sin∆φy cos∆φy

 , (2.135)

where

∆φx = 2π∆Qx sin 2πfxt, (2.136)

∆φy = 2π∆Qy sin 2πfyt. (2.137)

where, ∆Qx,y and fx,y are the amplitude and frequency of the modulation, respec-
tively.
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Möbius insertion

A möbius transformation can be used in order to investigate the stabilization[34].
The Möbius twist is written in the simple form:

x

px

y

py


i

=


0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0



x

px

y

py


j

, (2.138)

where the indices labelled i and j denote the time before and after the application of
the twist. Because of the additional symmetry of a Möbius lattice, an independent
tune value is used.



Chapter 3

IP optics aberrations

3.1 Numerical Simulations of Beam–Beam Inter-
action

3.1.1 Introduction of the Beam–Beam Simulation

With the simple formulae used for the beam dynamics in the storage ring, beam–beam
interactions are not considered useful for understanding global properties. However,
many of the issues that surround circular colliders are caused by beam–beam interac-
tions, including the growth of emittance and a reduction in the lifetime of the beams.
These problems are critical sources of the limitations in the luminosity of particle
colliders; it is therefore critical that the effects that beam–beam interaction have on
IP beam dynamics are calculated. To study the effects of machine imperfections and
beam–beam interactions, several simulations have been developed [30, 31, 30, 32].

In collider simulations, two beams that are moving in opposite directions are
represented by macroparticles, as shown in Fig 3.1. The macroparticles consist of
the same charge to mass ratio as the particles in the accelerator. Simulations of
collisions usually only deal with colliding bunches, so two important parameters that
are used to describe beam intensity are the number of particles within a bunch and
the revolution frequency. According to these two parameters and the assumed bunch
distribution, the charge ratio of a macroparticle can be estimated.

A six-dimensional bunch distribution is used to simulate the long-term evolution
of a beam. The transverse and longitudinal motions of the beam are simulated using
linear and nonlinear transfer maps. When the Hamiltonian can be written as the
sum of two terms, the transfer maps constructed by the splitting method are gener-
ally represented as an action of the Hamiltonian on which the Lie transformation is

43
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applied, as follows:

e−L:H: = e−L:H1+H2: (3.1)
≈ e−L:H1:e−L:H2:, (3.2)

where L is the length of the component and H is the Hamiltonian of the component,
which can be represented by the sum of two terms; H = H1+H2. As an example, for
a sextupole magnet with one-degree of freedom, the Hamiltonian with a relativistic
limit γ0 −→ ∞ is given by

H = −
√
1− p2x +

1

6
k2x

3. (3.3)

Because this Hamiltonian can be written by splitting the representation into two
separate Hamiltonians:

H1 ≡ −
√

1− p2x (3.4)

H2 ≡
1

6
k2x

3, (3.5)

the Lie transformation e−L:H:, when applied to the physical variables of horizontal
motion, can be written as:

e−L:H:

(
x

px

)
≈ e−L:H1:e−L:H2:

(
x

px

)
(3.6)

= e−L:H1:

(
x

px − 1
2
k2Lx

2

)
(3.7)

=

(
x+ Lpx√

1−p2x

px − 1
2
k2Lx

2 − k2L2xpx√
1−p2x

− k2L3p2x
2(1−p2x)

)
. (3.8)

Within the linear transfer maps, the dynamic action of a particle can be represented
using a six-dimensional matrix. When nonlinear effects are considered in deriving the
result from a simulation of colliding beam, the representation of the Lie transforma-
tion produced by the splitting method is used as a substitute for the linear transfer
matrices.

3.1.2 Formulations in the Weak-Strong Simulation

The weak-strong model assumes that the “weak" beam is affected by both the head–
on collision and the long–range interactions of the beam–beam kick. On the other
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Figure 3.1: An image of bunches that consist of macro particles moving in opposite
directions.

hand, the “strong" beam is not affected by these factors. In other words, a bunch
distribution using only the “weak" beam effects is modified by beam–beam effects in
every collision.

If the weak bunch conditions can be preserved during the iteration of a weak–
strong model, the result can be considered as a simulation of a collision that is af-
fected by only the beam–optical design of the accelerator. Beam dynamics can be
explained completely in six–dimensional phase space variables, so the situation at the
collision point is also determined by only the six–dimensional vector of each parti-
cle. If the difference between the laboratory and the beam coordinates is taken into
consideration, it is necessary to rotate the coordinates at the collision point, but the
basic model is the same as single particle dynamics in a fixed frame. The method
of dividing the bunch distribution into several macro particles and integrating the
action of each beam kick is used. If the distribution of the charge within a bunch
is Gaussian, the charge and shape of a macroparticle used for the calculation of the
actions of the electromagnetic field can be defined using the sliced Gaussian. The
interaction of each macroparticle at the collision point is obtained by integrating the
kick force received from the opposite beam. In the collision simulation, this calcula-
tion is performed for each revolution, meaning that all the actions that occur within
one revolution should be integrated around the collision point. In other words, the
core part of the simulation requires only the performance of an integral describing
the kick force from each direction as a function of time s.

The actual calculation process used in this study executes a loop of items 2-5 in
the following list:

1. Initialization

2. Calculation of the beam–beam kick

3. Produce a map illustrating one revolution of the ring

4. Calculate the radiation damping and quantum excitation

5. Calculate the transverse wake force and chromaticity
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Initialization describes the generation of macroparticles with a Gaussian distribution
in six-dimensional phase space. The initial emittances of the beam are set to the
nominal values. The other effects are the same as above. The luminosity is then
calculated using:

L = f0

∫
dsdzdz′{

∫
dxdy{ρ+(x, y, s(z))ρ−(x, y,−s(z′))× δ(s− (z − z′)/2)}} (3.9)

where ρ±(x, y, s) is the charge distribution density of the e± beam. The integration
is evaluated by summing the macroparticle density at each of the mesh points.

Generally, the charge distribution of a bunch within the strong beam is fixed and
assumed to be Gaussian:

ρ =
Ne

(2π)3/2σxσyσs
exp

(
− x2

2σ2
x

− y2

2σ2
y

− s2

2σ2
s

)
, (3.10)

where the notation of each parameter is the same as that used in the previous sections.
In this distribution, the coordinates (x, y, and s) are the physical coordinates of the
rest frame in the strong beam. When only transverse beam dynamics are required, the
distribution of the particles in the bunch should be integrated along the longitudinal
direction, as ρ(x, y) =

∫
ds{ρ(x, y, s)}.

Only the longitudinal distribution is important for slicing a Gaussian bunch, which
is replaced with a summation of the weighted delta functions from Ns times as

ρ(x, y, s) ∝ ρ(s) =
exp (−s2/2σ2

s)√
2πσs

(3.11)

→ ρ̂(z) =
L∑

k=−L

wkδ(z − zk), (3.12)

where Ns ≡ 2L + 1 is the slice number within the bunch and
∑L

k=−Lwk = 1. There
are several slicing algorithms that may be used to produce macroparticles[33].

The first factor for consideration is the equal spacing of the slices. The location
of the beam–beam kicks is equally spaced with weights that are proportional to the
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Gaussian density at sk:

sk
σs

=
2k

Ns − 1

(
1 +

Ns − 3

12

)
(3.13)

wk =
ρ̂(sk)∑L

m=−L ρ̂(sm)
, (3.14)

where k = 0, ±1, · · · , ±L, Ns ≥ 3.
The second factor for consideration is the use of slices of equal area. If the Gaus-

sian distribution is divided into Ns slices of equal area, the macroparticles will have
equal charge. The kicks are located at the center of the charge of each slice, which is
the same as the center of mass. The weight function is uniform, at wk = 1/Ns. The
formula for the Gaussian slice is therefore described using the error function, as:

sk
σs

=
√
2erf−1

(
2k

Ns

)
, (3.15)

where k is the same as that in Eq. (3.14).
Slicing the Gaussian distribution uses the same principles as the first and second

considerations mentioned above, but the kick locations are changed from the center
of the slice to the edge of the slice. The formula giving the kick location is

sk
σs

= Ns[ρ̂(lk)− ρ̂(lK+1)],(k = 1, · · · , L), (3.16)

(3.17)

where lk is the k–th position on the edge of the slice. Two slicing algorithms can thus
be combined:

sk
σk

=
1

wk

[ρ̂(lk)− ρ̂(lk+1)] (3.18)

The final consideration used in the production of a slicing algorithm is to select
values for sk and wk such that the area enclosed by the two functions

∫ s

0
ds′{ρ(s′)}

and
∫ s

0
ds′{ρ̂(s′)} is minimal. These requirements lead to a set of nonlinear values

for sk and wk in the algorithm “Combination method”, which is most easily solved
by iteration. Table 3.1 shows the value of zk and wk for five slicing patterns when
Ns = 5.

Next, the collision point is determined as a consequence of the assumptions listed
in Table 3.1. Thus, it is assumed that the bunches move towards each other according
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# 1 # 2 # 3 # 4 # 5
z1 -1.167 -1.282 -1.400 -1.599 -1.442
z2 -0.584 -0.524 -0.532 -0.679 -0.676
z3 0.0 0.0 0.0 0.0 0.0
z4 0.583 0.524 0.532 0.679 0.636
z5 1.167 1.282 1.400 1.599 1.442
w1 0.137 0.2 0.2 0.174 0.149
w2 0.228 0.2 0.2 0.232 0.226
w3 0.270 0.2 0.2 0.261 0.247
w4 0.228 0.2 0.2 0.232 0.226
w5 0.137 0.2 0.2 0.174 0.149

Table 3.1: Comparison of the patterns produced by different Gaussian bunch slicing
methods

to s± = ±ct, so that t = 0 corresponds to the instant at which the central collision
occurs. If z+ and z− are the longitudinal position of a positron and an electron bunch,
respectively, then the s–coordinates of the colliding position in the positron beam (s+)
and the opposing electron beam (s−) at time t are s+ = ct+ z+ and s− = −ct− z−,
respectively. The point at which the positron and the electron macroparticle collide
is determined by setting s+ = s− = sc, which implies that the collision point is
sc =

1
2
(z+ + z−). Transverse coordinates should also be defined for the center of the

macroparticle, as this is necessary for calculating the integrals of the beam–beam kick
force on the transverse plane. The transformation from the bunch center to the actual
collision point is a simple drift, as the detector solenoid field is well compensated for
by the solenoid canceler coils in the colliding beam.

The process used for calculating the beam–beam kick force have already been
discussed in Sec. 2.1.2. The formula for the beam–beam kick is the same as that
described. The charge of the particle should then replace the Śmacroparticle’, which
is discussed in this section. In the following, factors that are important in calculating
the beam–beam interaction are introduced as the physical meaning and the associated
formula. A bunch collision is shown in Fig. 3.2.

Some of the factors required for calculating the beam–beam effect are introduced
in this section. The required effects are selected according to the model used.
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Figure 3.2: Image showing the for Head-on and Long-range effects of a collision.

Head-on collision

For beam–beam interaction, a rounded Gaussian distribution is assumed for the
charge distribution in the bunch. The effect of a head-on collision is given by

∆px =
2reNb

γ

x

r2

(
1− e−

r2

2σ2

)
, (3.19)

∆py =
2reNb

γ

y

r2

(
1− e−

r2

2σ2

)
, (3.20)

where σ ≡ σx = σy is the rms beam size at the IP. These equations will be replaced
with other formulae for other conditions, as discussed in Sec. 2.3.

As several type of application for the beam–beam simulation, following items
introduced in below sub–subsections can be considered.

Long range interaction

For the calculation of the long–range interaction, the effect of all parasitic collisions
that overlap each other around the IP during the time range under investigation are
integrated. The long–range interactions can be approximately expressed as a beam–
beam kick with a displacement from the IP coordinates, while the trajectory slope
at the IP remains unchanged. In the case of a horizontal crossing, the displacements
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can be written as:

∆x =− npar
2reNb

γ

[
px + θc
θ2t

(
1− e

− θ2t
2θ2x,y

)
− 1

θc

(
1− e

− θ2c
2θ2x,y

)]
(3.21)

∆y =− npar
2reNb

γ

py
θ2t

(
1− e

− θ2t
2θ2x,y

)
(3.22)

for the horizontal and vertical axis, respectively ,where θt ≡ [(px + θc)
2 + p2y]

1/2 and
θx,y is the rms beam divergence at the IP.

Triplet Nonlinearities

The integrated effect of the higher-order multipoles in the low-β quadrupoles can be
written in complex form. The nonlinear kick on the incoming side of the IP with
horizontal crossing is given by

∆x =−KRe

{
nmax∑
n=3

× Gn

(
− 1

r0

)n−1
[(

x′ +
θc
2
+ iy′

)n−1

− (n− 1)

(
θc
2

)n−2

(x′ + iy′)−
(
θc
2

)n−1
]}

,

(3.23)

∆y =KIm

{
nmax∑
n=3

× Gn

(
− 1

r0

)n−1
[(

x′ +
θc
2
+ iy′

)n−1

− (n− 1)

(
θc
2

)n−2

(x′ + iy′)−
(
θc
2

)n−1
]}

,

(3.24)

MF − AZBBSim1995(3.25)

where the complex coefficient Gn is the effective strength of a nth order multipole
kick.
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Tune modulation

Tune modulation is described using a linear transport matrix in the form

Mtune =


cos∆φx β∗

x sin∆φx 0 0
−1
β∗
x
sin∆φx cos∆φx 0 0

0 0 cos∆φy β∗
y sin∆φy

0 0 −1
β∗
y
sin∆φy cos∆φy

 , (3.26)

where

∆φx = 2π∆Qx sin 2πfxt, (3.27)

∆φy = 2π∆Qy sin 2πfyt. (3.28)

where, ∆Qx,y and fx,y are the amplitude and frequency of the modulation, respec-
tively.

Möbius insertion

A möbius transformation can be used in order to investigate the stabilization[34].
The Möbius twist is written in the simple form:

x

px

y

py


i

=


0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0



x

px

y

py


j

, (3.29)

where the indices labelled i and j denote the time before and after the application of
the twist. Because of the additional symmetry of a Möbius lattice, an independent
tune value is used.
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3.2 Different types of Optical Error

3.2.1 1st order: Closed Orbit Distortions

The COD and dispersion functions determine the central trajectory, and the focusing-
defocusing force causes oscillations in the betatron. The small vibration around the
central orbit is known as the betatron oscillation, which has the β-function of an en-
velope. The COD of a section is equivalent to the installation error of the components
in that section.

The effects that magnet imperfections have on the beam dynamics in a strong
focusing lattice has been an important field of investigation. The COD is caused
by dipole field error. Horizontal and vertical dipole errors cause perturbations in
the vertical and horizontal motion of a particle, respectively. The Hamiltonian for
vertical particle motion can be written as

H =
Jy

βy(s)
− q

P0

∆Bx(s)y, (3.30)

where q is the particle charge, P0 is the reference momentum, and ∆Bx is the hori-
zontal error of the dipole field as a function of its position along the ideal trajectory.
The coordinate y of a betatron oscillation in terms of the action–angle variables Jy

and φy is

y =
√
2βyJy cosφy, (3.31)

thus, the Hamiltonian becomes

H =
Jy

βy(s)
−
√

2βyJy
q

P0

∆Bx(s)(e
−iφy + eiφy). (3.32)

A particle motion that is affected by dipole error follows the canonical equation for
the Hamiltonian (Eq. (3.32)).

For uncorrelated misalignment of quadrupoles in a periodic lattice, the RMS closed
orbit distortion σCOD(s) at position (s) has been shown to be

σCOD(s) =

√
β(s)

√
〈β〉

2 sin (πνβ)

σq
|Lf |

√
N

2
, (3.33)

where σq is the transverse RMS quadrupole misalignment, Lf is the focal length of
the quadrupoles, and N is the number of quadrupoles. Generally, N/2 corresponds
to the number of identical FODO sections.
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Bending magnets are usually used to correct COD. These corrector magnets can
undertake both horizontal and vertical bend, and are therefore generally known as
"steering magnets". A steering magnet kicks the beam and changes the orbit of a
beam by a specific angle. Its COD is represented by

xCOD(s2) =

√
β(s2)β(s1)

2 sin(πν)
cos(πν − |µ(s2)− µ(s1)|)δθ(s1) (3.34)

where s2 is the monitor position and s1 is the kick position. COD should therefore
be eliminated by using steering magnets at monitoring positions:

xCOD(s1)

xCOD(s2)
...

xCOD(sn)

+


f11 f12 · · · f1n

f21 f22 · · · f2n
... ... ...
fn1 fn2 · · · fnn



δθ1

δθ2
...
δθn

 = 0 (3.35)

The fmn parameters correspond to Eq. (3.34) for several different combinations of
kick and monitor positions.

3.2.2 2nd order: Linear Optics Aberrations

Coupling Errors on unexpected skew quadrupoles

Coupling errors arise from unexpectedly skewed quadrupoles and solenoid fields,
which are discussed from the perspective of the thin lens approximation[35, 36, 37,
38, 39]. The components of a magnetic field in which the quadrupoles are skewed are

Bx =− (Bρ)k1x (3.36)
By =(Bρ)k1y (3.37)
Bz =0 (3.38)

where Bρ = P0/q is the magnetic rigidity (P0 is the reference momentum and q is
the charge of a particle) and k1 is the normalized gradient of the skewed quadrupole.
In the thin lens approximation, a skew quadrupole field is described using a six–
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dimensional transfer matrix:

Rsq =



1 0 0 0 0 0

0 1 −K 0 0 0

0 0 1 0 0 0

−K 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(3.39)

where K = k1L and L is the length of the skew quadrupole[40]. The physical meaning
of this action is very simple; the skew kick strength proportional to the coefficient K.
As block matrices, the first diagonal 4 × 4 block matrix denotes the transfer on the
transverse plane and the other diagonal 2 × 2 block matrix denotes the transfer on
the longitudinal axis. Other off–diagonal 2× 4 and 4× 2 block matrices correspond
to the coupling effect between the transverse and longitudinal motion. In linear
beam transportation, every property of the beam can be described using matrices
and vectors.

The transverse statistical property of a beam is described using a 4 × 4 sigma
covariance matrix. This transverse four–dimensional matrix can be separated to form
2× 2 of 2× 2 block matrices.

σ =



〈x〉 〈xpx〉 〈xy〉 〈xpy〉

〈pxx〉 〈px〉 〈pxy〉 〈pxpy〉

〈yx〉 〈ypx〉 〈y〉 〈ypy〉

〈pyx〉 〈pypx〉 〈pyy〉 〈py〉


(3.40)

This beam matrix can also be written as a block matrix in order to simplify the
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representation and verify the role of each component. The block matrix is

σ =

(
σx σxy

σyx σy

)
(3.41)

σx =


〈x〉 〈xpx〉

〈pxx〉 〈px〉



σy =


〈y〉 〈ypy〉

〈pyy〉 〈py〉





σxy =


〈xy〉 〈xpy〉

〈pxy〉 〈pxpy〉

 = tσyx,

σyx =


〈yx〉 〈ypx〉

〈pyx〉 〈pypx〉


where x and y are the horizontal and vertical coordinates of the BPMs and the
magnets, respectively, and px and py are the derivatives with respect to the longitu-
dinal coordinates. The matrixes σx and σy represent the pure U-mode and V-mode
projected beam sizes, respectively. The variables σxy = tσyx describe the coupling
correlation between the U-mode and the V-mode. If no x-y coupling occurs, or the
conditions are decoupled, σxy = 0.

The transformation from the normalized coordinates for individual eigenmodes to
betatron oscillation coordinates at s is described by


u(s)

pu(s)

v(s)

pv(s)

 =


√
βu(s) 0 0 0

− αu(s)√
βu(s)

1√
βu(s)

0 0

0 0
√
βv(s) 0

0 0 − αv(s)√
βv(s)

1√
βv(s)



uN(s)

puN(s)

vN(s)

pvN(s)

 (3.42)

=



√
2Juβu(s) cos (φu + φu0)

−αu(s)
√

2Ju

βu(s)
cos (φu + φu0)−

√
2Ju

βu(s)
sin(φu + φu0)

√
2Jvβv(s) cos (φv + φv0)

−αv(s)
√

2Jv

βv(s)
cos (φv + φv0)−

√
2Jv

βv(s)
sin (φv + φv0)


(3.43)

where β and α are the Courant-Snyder twiss parameters of the orthogonal betatron os-
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cillation, φ is the phase of the betatron oscillation, and 2J = ε is the Courant-Snyder
invariant, which is also an action variable. Most of these parameters are a function
of the longitudinal position s (without invariants). The normalized coordinates for
the individual betatron modes are

~uN(s) =


uN(s)

puN(s)

0

0

 =


√
2Ju cos (φu(s))

−
√
2Ju sin (φu(s))

0

0

 (3.44)

~vN(s) =


0

0

vN(s)

pvN(s)

 =


0

0√
2Jv cos (φv(s))

−
√
2Jv sin (φv(s))

 (3.45)

The normalized coordinates describe the circular motion with a radius of =
√
2J in

both U-mode and V-mode phase space.
The transformation from normalized coordinates to the coordinates of the is

RB =


r0 0 r4 −r2
0 r0 −r3 r1

−r1 −r2 r0 0

−r3 −r4 0 r0




√
βu 0 0 0

− αu√
βu

1√
βu

0 0

0 0
√
βv 0

0 0 − αv√
βv

1√
βv

 (3.46)

=



r0
√
βu 0 r2

αv√
βv

+ r4
√
βv −r2 1√

βv

−r0 αu√
βu

r0
1√
βu

−
(
r1

αv√
βv

+ r3
√
βv

)
r1

1√
βv

−r1
√
βu + r2

αu√
βu

−r2 1√
βu

r0
√
βv 0

−r3
√
βu + r4

αu√
βu

−r4 1√
βu

−r0 αv√
βv

r0
1√
βv


(3.47)

and the total expression describing the transverse motion of the physical coordinates
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is

~x =RB(~uN + ~vN ) (3.48)

RB~uN =



r0
√
2Juβu cos (φu)

−r0
(
αu

√
2Ju

βu
cos (φu(s)) +

√
2Ju

βu
sin (φu(s))

)
(−r1

√
2Juβu + r2αu

√
2Ju

βu
) cos (φu(s))− r2

√
2Ju

βu
sin (φu(s))

(−r3
√
2Juβu + r4αu

√
2Ju

βu
) cos (φu(s))− r4

√
2Ju

βu
sin (φu(s))


(3.49)

RB~vN =



(
r2αv

√
2Jv

βv
+ r4

√
2Jvβv

)
cos (φv(s)) + r2

√
2Jv

βv
sin (φv(s))

−
(
r1αv

√
2Jv

βv
+ r3

√
2Jvβv

)
cos (φv(s))− r1

√
2Jv

βv
sin (φv(s))

r0
√
2Jvβv cos (φv)

−r0
(
αv

√
2Jv

βv
cos (φv(s)) +

√
2Jv

βv
sin (φv(s))

)


(3.50)

This representation of the motion, which consists of several separate components of
the transformation of the coordinates, is one of most important for the theoretical
understanding of betatron coupling.

Intrinsic emittance

A 4–D symmetric beam matrix σ consists of ten parameters, four of which denote
betatron coupling factors. The projected beam emittances on the BPM–coordinates
εx and εy, are defined as the square root of the determinants of the on–diagonal 2× 2

submatrices, the (1,1) and (2,2) components. If one or more of the components in the
off–diagonal submatrices of σ have finite values and are nonzero, the orthogonal be-
tatron oscillations of the beam are coupled. This phenomenon is called X-Y coupling.
The relationship between the coordinates of the orthogonal betatron oscillations and
the laboratory coordinates is a rotational transformation. Especially, in the case of
the 4–D beam, the correlation matrix is represented by a diagonal betatron emittance
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matrix, the 4–D beam correlation matrix σ is given by

σ = RB(~x~xT)tBtR = RBσβtBtR = RB


εu 0 0 0

0 εu 0 0

0 0 εv 0

0 0 0 εv

 tBtR, (3.51)

where σβ is called the intrinsic betatron beam size, and εu and εv are called the intrin-
sic emittances of the U-mode and V-mode, respectively. The analysis and correction
of X-Y coupling involves measuring the beam matrix on the laboratory coordinates
in order to find the source of the errors causing the skew quadrupole effects. In the
linear coupling, the skew quadrupole strength corresponds to block diagonalizing or
the coordinate transformation from intrinsic to apparent emittances.

The Case in which only a Single Eigenmode is Excited

If only the U-mode oscillation is excited, it is necessary to consider the U-mode vector
Eq. (3.44) as the normalized beam property. The beam motion of individual modes
can then be expressed as

~x = RB~uN (3.52)

which is the same as Eq. (3.49) with an eigenmode frequency fu = 2πνu. Furthermore,
each component of ~x should be in harmonic oscillation with different amplitudes and
phase-offsets because the original oscillation is also a harmonic oscillation. According
to this physical logic, Eq. (3.52) becomes

~x =



x

px

y

py


=

∞∑
n=0



Ax,n cos (2πnνu + φx0)

Apx,n cos (2πnνu + φpx0)

Ay,n cos (2πnνu + φy0)

Apy,n cos (2πnνu + φpy0)


(3.53)

with sinusoidal wave properties. The necessity of summation via the matrix equation
comes from the Fourier series expansion. Equations (3.52) and (3.53) are physically
equivalent, thus each coefficient is derived using Fourier amplitudes and phases. When
representation of the beam motion is based on the motion of the x-axis, Eq. (3.53) is
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written as

~x =
∞∑
n=0



Ax,n cosφx,n

Apx,n{cosφx,n cos (φpx0 − φx0)− sinφx,n sin (φpx0 − φx0)}

Ay,n{cosφx,n cos (φy0 − φx0)− sinφx,n sin (φy0 − φx0)}

Apy,n{cosφx,n cos (φpy0 − φx0)− sinφx,n sin (φpy0 − φx0)}


, (3.54)

where φx,n = 2πnνu + φx0.
By using Eq. (3.54), the analysis of the Fourier transform can be clearly under-

stood. In later sections, this representation of particle motion is used to derive the
betatron coupling parameters via harmonic analysis.

3.2.3 3rd order: Nonlinear Kick

Introduction to the nonlinear effect on beam dynamics

Nonlinear effects are calculated in the equations for motion, meaning that each elec-
tromagnetic field should be rewritten as coefficients of the Hamiltonian. The beam
system within particle accelerators satisfies symplectic conditions; thus, it also satis-
fies Liouville’s theorem and can be dealt with via the conservative system for volume
in phase space. Generally, although the energy of the system is not conserved in the
storage rings for the electron/positron, it can be considered as an approximate energy
conservation system as the effect of RF acceleration and energy loss along the ring are
automatically equivalent. The Hamiltonian canonical equation therefore can clearly
be used to discuss beam motion even though beam dynamics is a many–body prob-
lem. The dynamics of charged particles obey classical relativistic electrodynamics in
Minkowski space M4 := E3 × R. The well-known Lorentz expression for force is

F = qE + qu×B (3.55)

where q ∈ R is the electric charge of a particle, u ∈ E3 is the velocity vector of that
particle, E := −∂ ~A/∂t−∇φ is the external electric field that comes from the electric
potential of the vector ~A and scalar φ, and B := ∇× ~A is the external magnetic field.
These potentials satisfy the Lorentz condition

∂φ

∂t
+∇A = 0 (3.56)
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and the Lorentz invariant wave field equation is given by

∂2φ

∂t2
−∇2φ = ρ

∂2φ

∂t2
−∇2A = J, (3.57)

where ρ is the charge and J is the current density of the matter, respectively. These
parameters obey the charge continuity relationship:

∂ρ

∂t
+∇J = 0. (3.58)

The nonlinear effect is calculated via the integral of the electromagnetic interaction
coming from the magnets, in the same manner as the beam–beam kick calculation.
Hamiltonian systems are suitable for integrating the interactions as the system of
the beam in the storage ring is approximately the same as conservative systems for
the volume factor of the phase space and the energy of the particles. The classical
Hamiltonian for a charged particle in an electromagnetic field is

H =
1

2m
(~p− q ~A)2 + qφ. (3.59)

The two most common issues concerning nonlinear effects in accelerators are the
fringe field and the higher order multipole field error. Details of these effects are
described below. The sextupole field is especially important, so it will be considered
separately from the higher order multipoles.

The Error of Higher Order Multipoles

In order to discuss the multipole fields clearly, magnetic fields in general form are
approximated by using an effectively finite number of terms in a Taylor series. The
effective number depends on the particle conditions considered. In the case of the
SuperKEKB conditions, sextupole fields are effective on the motion of particles at the
IP. This effective order of fields, which is sometimes in the form of the Hamiltonian,
can be evaluated by the results of the canonical equation of the Hamiltonian around
the ring. Table 3.2 gives the effective early terms of the Taylor series expansion for
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magnetic fields, in which

By + iBx =
∞∑
n=0

1

n!
fn(x+ iy)n, (3.60)

fn =
∂n+1By

∂xn+1
,

are listed. The multipole gradient in Eq. (3.60) is usually normalized using the
relationships

F (s)

|~v| · |~p|
=
q(~v × ~B)

|~v| · |~p|
, (3.61)

Kn =
q

|~p|
· fn, (3.62)

kn = 0.3
fn
|~p|

[T/mn]

[GeV/c]
, (3.63)

where the dimension of Kn is [1/mn+1].

Multipole order Bx By

Dipole 0 0 B0

Quadrupole 1 f1y f1x
Sextupole 2 f22xy f2(x

2 − y2)
Octupole 3 1

6
f3(3yx

2 − y3) 1
6
f3(x

3 − 3xy2)

Table 3.2: Taylor Series of the magnetic fields

The procedure used to evaluate the multipole errors is discussed using sextupole
field errors as an example. Let x(s), L, and M be the position of a particle, the
circumference of a ring, and the map of the circumnavigation of the ring, respectively.
The relationship between the parameters can be represented by

x(s+ L) = Mx(s). (3.64)

This map, which represents one revolution, can be transformed by using short distance
transfer maps with perturbations in the multipole. This transformation of the map
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is given by

M =
N−1∏
i=0

e−H(x,si)M(si, si+1) (3.65)

=

{
N−1∏
i=0

M−1(si, s)e
−H(x,si)M(si, s)

}
M(s) (3.66)

(3.67)

=

{
N−1∏
i=0

e−H(M(s,si)x,si)

}
M(s) (3.68)

(3.69)
≈e−

∮
ds′{H(M(s,s′)x,s′)}M(s) (3.70)

where M represents the transfer map without any perturbation. Therefore, only the
integral of the Hamiltonian is required in order to evaluate the effect of the field
errors. In the case of a sextupole field, the Hamiltonian of sextupoles corresponds to
the third order Hamiltonian following H1 +H2:

H1 =
K2

6
(x3 − 3xy2), (3.71)

H2 =
SK2

6
(3x2y − y3), (3.72)

where H1 and H2 denotes the Hamiltonian for a normal sextupole and skew sextupole,
respectively. The physical variables of Eq. (3.71) and (3.72) are those variables that
are present at the location of each magnet. In order to calculate the impact on the
beam motion at the IP, the variables must be transferred from the IP to each magnet
during every step of the calculation.

A calculation using twenty terms is required in order to evaluate the total effect
of the sextupoles. When unexpected skew sextupole fields are excited in a ring, the
terms y3, y2py, yp2y, p2y, x2y, xpxy, p2xy, x2py, xpxpy, and p2xpy are required to estimate
the effect of the error fields. Canonical equations that are used to estimate these
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effects and find the effective terms follow two pairs of Hamiltonian equations:
X̄ = X − ∂H

∂PX
,

P̄X = PX + ∂H
∂X
,

(3.73)


Ȳ = Y − ∂H

∂PY
,

P̄Y = PY + ∂H
∂Y
,

(3.74)

where Ā represents the gradient of A in each turn. The variables in capitals are
normalized by the square root of the betatron amplitudes as follows:

X = x∗√
β∗
x
,

PX =
√
β∗
xp

∗
x,

Y = y∗√
β∗
y
,

PY =
√
β∗
yp

∗
y.

. (3.75)

According to the definition of beam size σi =
√
εiβi, the envelope of the motion is

expected to be approximately √
εx,y. Each parameter used to calculate skew sextupole

terms in the design of SuperKEKB is given in table 3.3.

parameter LER HER√
εx 5.6× 10−5 6.78× 10−5

√
εy 2.94× 10−6 3.39× 10−6

Table 3.3: Square roots of emittances of SuperKEKB design parameters

The effect of unexpected multipole fields can be evaluated by using the integral of
the Hamiltonian around the ring. Consequently, the effective term for the field error
can be found by comparison with the envelope of the particle motion at approximately
ε for each parameter in the canonical equation.
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Figure 3.3: Model in which coupling parameters work as tilts for each variable in 2–D
phase space.

3.3 Luminosity Formulae with Betatron Coupling

3.3.1 The IP Transverse Rotation that is due to the Linear
X-Y Coupling

X–Y coupling is essentially a rotation of the coordinates of 4–D phase space. The
focus of this section is the behavior of the beam at the collision point, and formulation
of the luminosity in the presence of X–Y coupling is attempted.

Because SuperKEKB adopted the nano-beam scheme, beam collision is constructed
on the basis of a large crossing angle with the hourglass effect. It is also assumed that
the axis is rotated in transverse phase space. Two types of rotation model can there-
fore be considered. One is the relative coordinate rotation between the two beams,
and the other considers the projected cross section for the individual rotation of the
beam.

Figure 3.3 is a schematic illustration of a collision with a relative beam rotation.
The important point is that the actual area of the collision is treated as a relative
value.

Figure 3.4 is a schematic image of a collision in which the beam is rotated in-
dependently. In this collision model, the reduction in the collision area that is due
to the rotation is redefined as an independent beam size instead of being a relative
value.

Although methods in which the beam coordinates are rotated independently can
provide good visibility of the geometric beam size in the form of an equation, it is
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Figure 3.4: Coupling parameters as changed beam sizes in absolute coordinates.

necessary to discuss this as a relative difference in real conditions. In fact, due to the
properties of rotation in 4–D phase space, any rotation that is related to momentum
must be approached independently, and only the rotation of a projected plane in real
space (x, y) can be considered as a relative rotation. Because the inclination of the
4–D ellipsoid in the direction of momentum appears only as a projection in real space,
it is apparent that the emittance will be increased locally.

Next, the models illustrated in Fig. 3.3 and 3.4 are applied to derive the specific
luminosity and beam–beam parameters.

3.3.2 Luminosity and Beam–Beam Parameters

To derive a formula for specific luminosity, a consistent model with specific coordi-
nates and boundary conditions must be defined. First, derivation of the luminosity
formula has to be performed, summarizing the situation, the coordinate system, and
the boundary conditions. Second, the luminosity formula is introduced with the asso-
ciated conditions. Finally, a model for the beam–beam parameter is introduced using
a similar process.

The luminosity formula with linear X–Y coupling

Luminosity is a measure of the collisions that occur in an accelerator, and total
luminosity is therefore a result of the repeated revolutions that occur in a circular
collider. However, a simple model can be constructed in order to obtain geometric
luminosity, as the luminosity formula can be used to describe only the geometric
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factors without the cumulative effects of repeated beam–beam interactions. The
influence of X–Y coupling should be focused only on the deviation of phase space
at the collision point; thus, a vertical–horizontal rotation is applied to a horizontal–
longitudinal rotation with a finite crossing angle(0 < |φx| < ∞). Although the
formula appears complicated, the idea is simple.

The rotation using coupling parameters is applied to the projected plane of the
cross section with the presence of a crossing angle and the hourglass effect. As
the combination of the components of momentum is reflected in the geometry, it is
necessary to calculate the size of the beam from σ to emittance. The collision point
is therefore required to be a waist of the beta function, and α = 0 in the Twiss
parameter. 

σ1x =
√
r21,0β

∗
1xε1x + r21,4β

∗
1yε1y + r21,2

ε1x
β1x
,

σ1y =
√
r21,0β

∗
1yε1y − r21,1β

∗
1xε1x + r21,2

ε1x
β1x
,

(3.76)


σ2x =

√
r22,0β

∗
2xε2x + r22,4β

∗
2yε2y + r22,2

ε2x
β2x
,

σ2y =
√
r22,0β

∗
2yε2y − r22,1β

∗
2xε2x + r22,2

ε2x
β2x
,

(3.77)

This transformation corresponds to the model in Fig. 3.4.
Using this transformation to calculate the luminosity and its geometric factor,

L =
N1N2fNb

2π
√∑

i(r
2
i,0β

∗
ixεix + r2i,4β

∗
iyεiy + r2i,2

εix
βix

)

× 1√∑
i(r

2
i,0β

∗
iyεiy − r2i,1β

∗
ixεix + r2i,2

εix
βix

)
· RHθR, (3.78)
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and

RHθR =
cos2 θ

2

∏
k

√∑
i(r

2
i,0β

∗
ixεix + r2i,4β

∗
iyεiy + r2i,2

εix
βix

)

π
√∑

i σ
∗2
is

(3.79)

×
∫∫ ∞

−∞
dxds


exp

(
− (

∑
i si)

2

2(
∑

i σ
2
is)

)
√∑

i(r
2
i,0β

∗
iyεiy − r2i,1β

∗
ixεix + r2i,2

εix
βix

)
(
1 +

s2i
β∗2
iy

)

×
∏

i={1,2}

exp

(
− x2

i

2(r2i,0β
∗
ixεix+r2i,4β

∗
iyεiy+r2i,2

εix
βix

)

(
1+

s2i
β∗2ix

)
)

(r2i,0β
∗
ixεix + r2i,4β

∗
iyεiy + r2i,2

εix
βix

)
√
1 +

s2i
β∗2
ix


, (3.80)

respectively. The subscript HθR in the geometric factor RHθR therefore represents the
“hourglass”, “crossing angle”, and “X–Y coupling”. The coupling in the x direction
also affects the s direction. The coupling of r2 with px is effective for use with each
beam size via 1/

√
βx. As the emittance in the x and y directions has an isolation of

εy/εx = 0.01, the emittance in the y direction is 10 times higher than that of the x
direction. Therefore, if βx = 0.1 mm and βy = 0.002, a difference of 0.014 times is
apparent because the difference between x and y comes from

√
βy/βx. An emittance

ratio of 2.8× 10−4 was used in the design of SuperKEKB, and
√
βy/βx =

√
0.3/25 '

0.11, meaning that the r2 term differs by a total of 1.8 × 10−3-times in x and y.
Therefore, the effect of px in the x direction is negligible compared to that of the y
direction, and the effect of crossing angle on the s direction from the x direction is
also negligibly small.

The transformation of coordinates is a very complicated expression for a geometric
factor when transformation from the y direction to the s direction is considered.
The“betatron coordinates” of each beam are transformed first, followed by the relative
“collision coordinates” of both beams. This situation means that the coordinate
system of the collision is rotated using coordinates that have been inclined by X–Y
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coupling. Therefore, the relationship used for coordinate transformation is

R6×6 =



r0 0 r4 −r2 0 0

0 r0 −r3 r1 0 0

−r1 −r2 r0 0 0 0

−r3 −r4 0 r0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(3.81)

Θ6×6 =



cos θ 0 0 0 sin θ 0

0 cos θ 0 0 0 sin θ

0 0 1 0 0 0

0 0 0 1 0 0

− sin θ 0 0 0 cos θ 0

0 − sin θ 0 0 0 cos θ


(3.82)

and 

x′

p′x
y′

p′y
s′

δ′


= R6×6Θ6×6



x

px

y

py

s

δ


(3.83)

=



(r0x+ r4y − pyr2) cos θ + s sin θ

(r0px − r3y + r1py) cos θ + δ sin θ

r0y − r1x− r2px

r0py − r3x− r4px

s cos θ − (r0x+ r4y − r2py) sin θ

δ cos θ − (r0px − r3y + r1py) sin θ


. (3.84)

Because this relationship is used, the integration of y cannot be simplified. Thus,
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luminosity must be calculated using the quadruple integrals of the Gaussian beams:

L =
2N1N2fNb cos

2 θ
2

8π3

×
∫∫∫∫ ∞

−∞
dxdydsds0

{[
1

σ1x
exp

(
−([r0x1 + r4y1 − py1r2] cos θ − s1 sin θ)

2

2σ2
1x

)]
×
[

1

σ1y
exp

(
−(r0y1 − r1x1 − r2px1)

2

2σ2
1y

)]
×
[

1

σ1s
exp

(
−(s1 cos θ + [r0x1 + r4y1 − r2py1] sin θ − s0)

2

2σ2
1s

)]
×
[

1

σ2x
exp

(
−([r0x2 + r4y2 − r2py2] cos θ + s2 sin θ)

2

2σ2
2x

)]
×
[

1

σ2y
exp

(
−(r0y2 − r1x2 − r2px2)

2

2σ2
2y

)]
×
[

1

σ2s
exp

(
−(s2 cos θ − [r0x2 + r4y2 − r2py2] sin θ − s0)

2

2σ2
2s

)]}
, (3.85)

as the beam size of y depends on x.

3.3.3 Discussion of the factors that are included and ex-
cluded in IP coupling

When developing a luminosity formula, factors that require sequential calculation will
be lost. For example, coordinate rotation is defined in 4–D phase space; therefore,
the effect of the beam rotation on the momentum for the beam–beam kick cannot
be calculated if the model used calculates only the 2–D projection. This beam–beam
effect is one of reasons why simulation is essential for the calculation of luminosity.

It is therefore important to express luminosity with a single formula in simulations
because the influence that the beam–beam effect has on the transverse coordinate
rotation can be extracted. Of course, it should be noted that this is an incomplete
formula that cannot track the effect of changes in the momentum.

Here, the means by which the rotation of the momentum coordinate at the collision
point affects the beam dynamics is evaluated by comparing the luminosity calculation
that was derived from the formula with the luminosity calculated using the beam–
beam simulation.

First, the differences in the models will be discussed. Figure 3.5 depicts the
collision conditions that are included in the Luminosity formula, which does not
include rotation in a 2–D momentum space. On the other hand, Fig. 3.6 is the
collision model used in the simulation, in which the coordinates rotate in both 2–D
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position space and 2–D momentum space. As the position is coupled with momentum
while the direction of the position and the momentum are independent, the model
that is used to represent the entire rotation is constructed with rotation in 3–D space
(px, y, py). As a projected component, coordinate rotation occurs in 2–D space with
four combinations.

Figure 3.5: Illustration of the coupling model for the geometric factors in beam
collision.

Figure 3.6: The illustration of the coupling model for the iterative factor of beam
collision.

In the next subsection, the quantitative differences in X–Y coupling that are
included in the model are explicitly clarified by comparing the two luminosities (cal-
culated by formula and simulation) from the different models.
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3.4 Comparison of the luminosity calculated by
formula and beam–beam simulation

3.4.1 Conditions used for the calculations

A comparison of the luminosity calculated with the formula using X–Y coupling and
beam–beam simulation is carried out in this section. The luminosity formula is a
model that only takes the coordinate errors that occur in real space into account
because of the variables that are used in the formula. As the momentum changes
because of the error in the coordinates, it is applicable to assume that there may
be optical aberrations over the entire ring. However, as it is necessary to perform
sequential calculations in order to include each revolution, luminosity cannot be cal-
culated precisely using a single equation. By comparing the two calculations, it is
possible to determine the cumulative effect of the optical aberration at the IP with
respect to the beam–beam kick.

Before actually applying the calculation, the conditions used in the calculation
of luminosity must be determined. The parameters used are the conditions that
developed during commissioning in Phase-2 and Phase-3 of SuperKEKB in 2019. It
is clear that each β∗ is gradually squeezed. To avoid the influence of spreading in a
transverse direction via processes such as intra–bunch scattering and the Touschek
effect, which could occur because of the large number of particles within a bunch, the
calculations are performed in conditions of large emittance, regardless of the presence
or absence of optical aberration at the collision point. As there is a cumulative effect
at each turn in the simulation, which is affected by the operable region in the tune
diagram, it is important to understand the optical aberration at the IP in order
to avoid limitations that are due to beam–beam interaction[41, 42] when assuming
conditions of low beam emittance.

Table 3.4 lists the conditions used in the calculation with large emittance in each
β. In this situation, the results of the calculation are not affected by the upper limit
of the luminosity, and it is therefore easy to determine the influence that is solely
due to optical aberration. Table 3.5 shows the conditions used in the calculation
when emittance is set at a realistic value. Although this condition is close to that
of realistic operation, the luminosity is easily limited unless the tuning condition is
selected optimally. Therefore, even if all coupling parameters are zero, the specific
luminosity is decreased by an amount that depends on the current of the beam. This
problem is caused by the beam–beam limit and occurs because the beam current is
large compared to the luminosity, which does not increase. This problem is obviously
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different from the influence of optical aberration. However, when the same conditions
are used during actual operation, the value obtained is no better than that from
the simulation; it is therefore apparent that this value is of significant importance
in determining the upper limit of the conditions under which the accelerator can
operate.

HER LER
εx 4.6× 10−9 3.2× 10−9

εy 4.6× 10−11 16.0× 10−11

β∗
x 0.1 0.2
β∗
y 0.003 0.003

τ−1
x 1.7× 10−4 2.3× 10−4

τ−1
y 1.7× 10−4 2.53× 10−4

τ−1
z 3.4× 10−4 4.6× 10−4

ν−1
x 45.5275 44.561
ν−1
y 41.57 46.57
ν−1
s 0.026 0.0225
φc 0.0413

Table 3.4: Set parameters for Luminosity calculation #1

HER LER
εx 4.466× 10−9 1.64× 10−9

εy 16.2× 10−12 6.05× 10−12

β∗
x 0.1 0.2
β∗
y 0.003 0.003

τ−1
x 2.5× 10−4 1.67× 10−4

τ−1
y 2.5× 10−4 1.67× 10−4

τ−1
z 5.0× 10−4 3.33× 10−4

ν−1
x 45.5275 44.561
ν−1
y 41.57 46.06
ν−1
s 0.026 0.0225
φc 0.0413

Table 3.5: Set parameters for Luminosity calculation #2

3.4.2 Application of the beam–beam simulation

Figure 3.7- 3.10 shows the results of a beam–beam simulation without any optical
aberration. The beam currents used in the simulations are ×0.01, ×0.02, ×0.03,
×0.04, ×0.05, ×0.1, ×0.25, ×0.5, and ×1.0 for both beams.
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Figure 3.7: Specific luminosity from scanning the product of bunch current.

Figure 3.7 shows the specific luminosity per revolution. It seems that the distur-
bance increases as the beam current is increased; however, little change is seen in
the calculated value of Lsp. This result correlates well with the definition of spe-
cific luminosity. Figure 3.8 shows the size of the horizontal beam in each revolution.
Although there is an increase in emittance that depends on the beam current, this
enhanced emittance is not reflected in the luminosity. The reason for this phenomena
is theoretically that the large crossing angle at the IP has little impact on the effective
horizontal beam size at the IP. The simulation therefore reproduced the phenomena
observed when a large crossing angle is used with high accuracy. Figure 3.9 shows the
vertical beam size in each revolution. The size of the vertical beam is not changed by
collision. As this value does not depend on the beam current, this phenomena directly
reflects the luminosity. Furthermore, when no optical aberration is apparent, it can
be seen that collision affects no change in the corresponding emittance. In the case
of this simulation, the unchanged vertical beam size comes from a head-on collision.
Figure 3.10 shows the correlation between the x and y of a strong beam. This result
is important for evaluating the X–Y coupling conditions when optical aberration is
observed.

Figure ?? shows the results of a simulation in which the conditions surrounding
the strong and weak beams have been swapped. The effect of swapping the param-
eters of the beams is reflected in the increase in the vertical beam size. The beam
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Figure 3.8: Horizontal beam size from scanning the product of bunch current .

Figure 3.9: Vertical beam size from scanning the product of bunch current .
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Figure 3.10: Correlation between horizontal and vertical beam size from scanning the
product of bunch current .

that has been kicked has been reversed. As seen in this figure, it is necessary that
the appropriate beam to be kicked is pre-selected in order to set the Weak–Strong
simulations in line with reality. In other words, it is necessary to appropriately se-
lect a set of parameters that provide a state of equilibrium. Otherwise, as shown
in Fig. 3.11– 3.14, each of the calculated values changes from the geometric values
and shows behavior approaching the equilibrium state after repeated collisions. Con-
versely, it is possible to obtain the appropriate geometric values by iterating this
simulation, Therefore, the beam–beam simulation is useful for evaluating both the
operating parameters and the measured parameters.

Figure 3.15– 3.18 shows a simulation in which the vertical beam size is increased
by

√
2. The specific luminosity has been reduced by nearly 1/

√
2 times, as seen in

the corresponding value < yy >. This is an important result that shows there is
generally no change in behavior before and after beta squeezing, and that the specific
luminosity directly reflects any change in the parameters.

Figure 3.19 shows the result of a simulation using the parameters given in Tab. 3.5.
If a current is scanned under these conditions, the emittance increases in accordance
with the beam current, and the luminosity deteriorates significantly. It can be seen
that it is difficult to calculate the luminosity with any accuracy in order to simulate
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Figure 3.11: Specific luminosity with the weak and strong beams swapped.

realistic operating conditions unless each parameter is set optimally in accordance
with the current value. This is because there is no guarantee that each value that is
measured at low current during operation is retained when operation occurs under a
high current.
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Figure 3.12: Horizontal beam size with the weak and strong beams swapped.

Figure 3.13: Vertical beam size with the weak and strong beams swapped.
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Figure 3.14: Correlation of x and y with the weak and strong beams swapped.

Figure 3.15: Specific luminosity depending on iteration for collision with the vertical
beta doubled.
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Figure 3.16: Horizontal beam size depending on iteration for collision with the vertical
beta doubled.

Figure 3.17: Vertical beam size depending on iteration for collision with the vertical
beta doubled.
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Figure 3.18: Correlation of x and y depending on iteration for collision with the
vertical beta doubled.
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Figure 3.19: Beam–beam simulation result of condition in Tab. 3.5.



Chapter 4

Luminosity with Linear IP optics
aberrations

4.1 Optical correction and the beam diagnostics
system used at the IP of SuperKEKB

4.1.1 Tunable magnets to correct X–Y coupling at IP

SuperKEKB uses antechambers to counteract the electron–cloud instability that is
due to horizontal synchrotron radiation, while avoiding irradiation of the beam pipe
with vertical synchrotron radiation. Therefore, skew quadrupole-like corrector coils
have been newly installed in the sextupole magnets of SuperKEKB instead of a ver-
tical bump trajectory, in order to correct X–Y coupling and vertical dispersion.

The non-interleaved sextupole scheme[43] adopted in SuperKEKB can be used
as a magnet for adjusting the vertical dispersion and X–Y coupling independently
when a skew quadrupole magnetic field is excited. These types of sextupole magnets
are operated in pairs and are placed at positions where the betatron phases differ
from each other by π. By exciting the symmetrical quadrupole fields with the pair
of sextupoles, the vertical dispersions cancel each other and therefore do not leak
globally. On the other hand, as the X–Y coupling parameter is not canceled out,
it can be used as a tuning parameter for the global X–Y coupling, by changing the
strength of the skew quadrupole field. Inversely, when the skew quadrupole fields
are excited antisymmetrically, the X–Y coupling parameters cancel each other and
the vertical dispersion remains. In this case, it can be used as a vertical dispersion
tuning parameter. Global parameter controls are therefore relatively easily made for
the independent correction of X–Y coupling and vertical dispersion by determining

82
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the function of a pair of non-interleaved sextupoles. Beam parameters at the IP
require only a minimal amount of correction in order to keep the global parameters
stable, while the correction of the tuning parameters is more significant because of
the relationship in the betatron amplitude between the tunable magnets and the IP.
Therefore, it is difficult to compensate for the X–Y coupling parameters at the IP
using only global corrector magnets.

To alleviate this problem, we proposed a new local method for coupling the cor-
rection at the IP with the IR section by using skew corrector coils[44, 45, 46], which
are installed in the QCS magnets. By exciting the QCS corrector coils, the skew
quadrupole component SK1 of QCS magnets is changed by the pair of magnets at
both sides of the IP (left and right side), and the X–Y coupling parameters are ad-
justed locally at the IP. The advantage of correcting the IP optical aberrations in the
IR section is that the beta function is set to be significantly larger in preparation for
the extremely low beta function at the IP. Since the beta function is high at the lo-
cation of the QCS magnets, the effect of the magnetic field on the IP beam dynamics
can be applied strongly. This means that the X–Y coupling parameters at the IP can
be changed dramatically. As QCS corrector coils are not suitable for fine tuning, the
skew quadrupole corrector coils of the non-interleaved pair of sextupole magnets is
useful for precise tuning.

The luminosity peak is then obtained by scanning each parameter of the X–Y
coupling and the vertical dispersion.

4.1.2 Diagnostics system for IP beam dynamics

Important parameters that influence beam dynamics at the IP are the components of
the 6×6 beam matrix, which reveal information about a beam in 6-dimensional phase
space. As they can be defined at each point on the ring, the control system of the beam
over the entire ring handles a very large number of independent variables. However,
we need only 21 variables for the upper triangular components of an IP beam matrix
because the beam matrix is symmetrical at the IP. Diagonal components in the matrix
represent the principal components of each physical variable, and the off-diagonal
components represent the correlation or coupling variables. When the coordinates
are completely independent over the entire ring, the off–diagonal components are
zero. Generally, betatron and synchrotron oscillations are weakly coupled due to
the characteristics and misalignment of the lattice components, and the off–diagonal
components become non–zero. The important factor in this study is the off-diagonal
components in the transverse direction, which represent the so-called X–Y betatron
coupling.
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The beam diagnostic system of SuperKEKB consists of beam position monitors
(BPMs), which are provided for all the quadrupole magnets, and synchrotron radi-
ation monitors [47, 48, 49, 50, 51]. Three types of synchrotron radiation monitors
are used in SuperKEKB; synchrotron radiation interferometers (SRMs) [47, 52] and
streak cameras for visible light, X-ray beam profile monitors (XRMs) [53, 54], and
large angle beamstrahlung monitors (LABMs). LABMs are used to measure the rel-
ative offset and size ratio of the beams at the IP. XRMs are used to measure the
vertical emittance. SRMs are used to measure the horizontal emittance. Streak cam-
eras are used to measure the longitudinal bunch profile. BPMs are used to measure
the beam position. The location of the synchrotron light sources for the measurement
of the optics in the main ring of SuperKEKB is shown in Fig. 4.1.

Figure 4.1: location of the synchrotron light source for beam diagnostics in Su-
perKEKB
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LER has 438 BPMs in its BPM system, which is based on a 509 MHz narrow
band detector, and there are 460 BPMs in HER, which is based on a 1 GHz narrow
band detector[55]. All of the detectors are operated in an average mode. The average
mode is also usually used in the measurement of optics, at 0.25 Hz. This mode can be
used for the correction of the beam orbit and the alignment of a neighboring magnet.
Some of the BPMs can also be performed in gated turn–by–turn (TbT) mode.

4.1.3 The difference in the effect of X–Y coupling between
the positions of excitation and measurement

X–Y coupling is the difference in coordinates between the betatron oscillation and
components of the lattice such as BPMs or magnets. As a result, the difference
in the type of component with X–Y coupling (a measured (BPM) position and an
interacted (kicker) position) affects the behavior of different parts of the beam in the
measured data. The TbT measurement data is analyzed with the same sampling
frequency as that of revolution, and it is usually subjected to spectrum analysis by
Fourier transform. Since the eigenmodes of the betatron oscillation have individual
fractional tuning, each peak of the betatron tune always appears at a different position
in the Fourier spectrum. According to this property, the spectrum of the TbT data
shows different behavior depending on the coupling position.

For example, if there is an X–Y coupling at the kicked location, the kicking magnet
rotates slightly from the U- and V-axis of the betatron coordinates. When the dipole
kick Fx is rotated by angle θ, the kick force is decomposed into each eigenmode:Fu = Fx cos θ

Fv = Fx sin θ
, (4.1)

as shown in Fig. 4.2. Thus, the leakage of the kick force that corresponds to the
rotation angle occurs in the direction that should be orthogonal. As a result, the
X–Y coupling at the kicker location shows the peak of each eigenmode for both
directions in the spectrum. In other words, oscillations appear in two directions even
though a kicker excites in only one direction. On the other hand, when there is the
X–Y coupling at the measurement (monitoring) position, one eigenmode is measured
on both directions of the BPM coordinates. This is the decomposition of a betatron
oscillation into two directions. Fig. 4.3 shows the situation in which X–Y coupling
takes place at the position of the monitor.

This phenomenon appears in the Fourier spectrum as a clear demonstration of
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Figure 4.2: Kick force decomposition from physical coordinates to each betatron
eigenmode.

harmonic analysis. Figure 4.4 shows the Fourier amplitude spectrum for the x and
y direction of the BPM. The U-mode tune is colored green and the V-mode tune is
colored orange. The frequency component after the Fourier transform is a fractional
tune, which is the betatron or synchrotron frequency per revolution. For example,
if there is kick in the x direction with a dipole field, and peaks appear at the same
tune in the spectrum data of the x and y direction, there is a coupling at the monitor
position as one eigenmode appears in the measurement for both directions. On the
other hand, in the same situation, if a peak corresponding to the U-mode appears in
the x direction and a peak corresponding to the V-mode appears in the y direction,
there is a coupling at the kick position as the kick, which occurs only in one direction,
is decomposed into both modes. This property works very well with the harmonic
analysis that is discussed in a later section.
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Figure 4.3: Oscillation decomposition from betatron eigenmode to the physical vari-
ables of the BPMs.

Figure 4.4: The difference in a Fourier spectrum caused by two coupling positions.
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4.2 IP optical correction in Phase-2 Commission-
ing of SuperKEKB

4.2.1 The problem of optical aberrations at the IP in Phase-2
Commissioning

The collision method used in SuperKEKB is based on collision at a large crossing
angle, which is part of the crab waist method that was proposed by P. Raimondi[19].
Thus far, analysis of the beam–beam effect and evaluation of luminosity with a finite
crossing angle has been well modeled[56], and simulations of these collisions have
been performed several times. In the early days of the collider, the vertical beam size
was thought to be sufficiently unsqueezed because of the hourglass effect. One recent
idea is pinpointing the waist of the beta function by setting a large crossing angle.
Consequently, it is possible to expect a beam size that has effectively been sufficiently
squeezed. In SuperKEKB, the effect of squeezing the beam size can be verified at the
same time as sequential beam adjustments are made by squeezing the beta function
step by step. One aim of SuperKEKB is to succeed using method of collision for the
first time.

As the emittance must be preserved around the ring, the beam size at the collision
point has a one-to-one correspondence with the beta function of the IP. Therefore,
when the beta function is squeezed, the luminosity or specific luminosity should be
smaller by βbefore/βafter. However, no significant change was observed, even though
the beta function was squeezed. Figure 4.5 shows the change in luminosity that is
due to the change in βy, where the vertical axis is the specific luminosity and the
horizontal axis is the bunch current product. The different line colors in the plot
denote the different values of β∗

x and β∗
y . Although there is a clear difference between

the blue and orange plots , there are no significant differences between the Lsp of the
orange, red, and green plots. As can be seen in the figure, the specific luminosity was
not strong enough to squeeze the beta function at the IP for the smaller values of β∗

y

at 4 mm and 3 mm. This problem remained even after collision tuning was carried
out for first order aberrations.

It is thought that this occurred because the orbit was not properly adjusted at the
collision point . In SuperKEKB, a method for scanning luminosity scan is used to ad-
just the trajectory of the collision point. Luminosity scanning is performed by making
small successive changes to the trajectory in the transverse direction using steering
magnets. For a shift in the longitudinal direction, the colliding position is scanned
by changing the phase of the synchronized RF acceleration field (RF frequency).
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Figure 4.5: Specific luminosities for squeezing the beta function at IP

The systems used to measure Luminosity are LumiBelle2 (Luminosity Monitoring for
Belle–2) and ZDLM (Zero Degree Luminosity Monitoring)[57, 58, 59].

The results of the luminosity scan of the closed orbit tuning for the vertical be-
tatron waist function at the IP and RF phase tuning are shown in Fig. 4.6, 4.7, and
4.8, respectively. Correction of the orbit in a vertical (y) direction can be tuned by
vertical offset scanning. The error in the longitudinal (z) direction can be corrected
by tuning the RF phase via the synchronous phase of particles. The orbit in the hori-
zontal (x) direction is adjusted by tuning the waist position in the betatron function.
As shown in the Fig. 4.9, as the waist of the betatron function shifts, the betatron
waist is adjusted in order to correct errors in the x direction. The trajectory in the
x direction in real space does not dominate the projected beam size because of the
effects of the large crossing angle collisions. From the result of the orbit tuning shown
above, even when the first order error was adjusted sufficiently, the expected lumi-
nosity could not be obtained. Therefore, second order errors should be considered in
order to correct the degradation in luminosity.

The conditions under which the problem remains unsolved, even when the adjust-
ment for first order aberrations has been carried out, requires consideration. There
are several possible causes for this problem. One potential reason is that β∗

y is not set
properly. However, this can be avoided by measuring the beta function near the IP.
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Figure 4.6: Measurement of the luminosity with a vertical offset scan.

The reason is that the pair of BPMs (MQC1) in the monitoring system are closer to
the IP than the QC1, which is the final focusing quadrupole magnet that is located
nearest to the IP. Figure 4.10 shows the positional relationship of QC1 and MQC1.
As the interval between the IP and the MQC1 can almost be considered drift space,
there is no problem if changes in the measured beam sizes correspond to a change in
the betatron amplitudes before and after beta squeezing. The K–modulation method
can be used to measure the β function at the collision point[60].

Another candidate for the problem is the situation under which β∗
y is not effective.

This occurs when the effective beam size does not depend on β∗
y . As mentioned later,

it was found that this was the actual cause of the problem. A hint for solving this
problem can be found by investigating the relationship between the bunch current
and the specific luminosity.

Figure 4.11 is a plot of “bunch current product vs. specific luminosity" under low
luminosity. The blue and orange plots represent the specific luminosities that were
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Figure 4.7: Measurement of the luminosity with a β waist scan.

calculated from the measured luminosity and the emittance measured with the XRM,
respectively. This figure shows that there are two kinds of problem that can lead to
luminosity degradation. One is the dependency of specific luminosity on current, even
though specific luminosity is not supposed to depend on beam current, as indicated
by the red line in the figure. The other problem is that the effective vertical beam
size σ∗

y at the IP does not match the intrinsic beam size
√
β∗
vεv at the IP. The green

arrow in Fig. 4.11 indicates the presence of this issue. This problem can be seen in the
discrepancy between the emittance measured by X-ray monitor and the luminosity
measured using the luminosity monitor. In this study, we focused on the second
problem and researched the cause of the situation at the IP in order to solve it.

4.2.2 Strategy of the IP optics correction
First, the effective beam size was calculated. As discussed in Sec. 3.2.2, the effective
beam size is represented by Eq. (3.51), using the intrinsic emittance. The effective
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Figure 4.8: Measurement of the luminosity with a RF phase scan.

beam matrix is written as

R.B∗.~x.t~x.tB∗.tR (4.2)
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 ,

(4.3)

with Edward-Teng parametrization, where σ∗2
u = β∗

uεu, σ∗2
v = β∗

vεv, σ∗2
u′ = ε∗u/βu,

and σ∗2
v′ = ε∗v/βv. It is assumed that αi = 0 at the betatron waist of the IP. This

beam matrix is the same as the beam correlation matrix at the IP. The diagonal
components denote the expected beam size in each direction, and the off-diagonal
components denote the correlation in two-dimensional phase space.

The vertical beam size should be used in the evaluation of the effect of X–Y
coupling on the IP. The effect that this coupling has on the vertical components is
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Figure 4.9: Schematic of the relationship between a horizontal orbit error and a waist
in the beta function.

important to luminosity performance because the emittance ratio εv/εu equals 0.01

under SuperKEKB commissioning. As the effective beam size in each direction is
represented by the diagonal components, the effective vertical beam size is given by
the intrinsic emittance, as follows

σ∗2
y = r20β

∗
vεv − r21β

∗
uεu − r22

εu
β∗
u

(4.4)

σ∗2
py = r20

εv
β∗
v

+ r23β
∗
uεu + r24

εu
β∗
u

. (4.5)

It is apparent from this equation that r1 and r2 cause a blow up of the vertical
beam size, and r3 and r4 cause a blow up of the vertical momentum. Although a
single collision is not effective in creating vertical momentum, the beam properties
are affected by the accumulated beam–beam effects in a circular collider.

The effective vertical beam size is directly affected by r1 and r2 when X–Y coupling
occurs. r3 and r4 affect the momentum, and the beam–beam effect, together with
the effects from the revolution around the ring, will affect the cumulative beam blow-
up in the next revolution in a circular accelerator. Each coupling parameter can
be adjusted using skew quadrupole correction coils, either using sextupole magnets
outside the IR or QCS skew corrector coils inside the IR. Table 4.1 and 4.2 show
the name and positional relationship of each correction magnet of the non-interleaved
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Figure 4.10: Illustration of the positional relationship between QCS magnets and
their monitors.

sextupole of HER. In these tables, #1 and #2 are the index of the pair components
for each skew quadrupole (installed in the sextupole). As can be seen, there is a much
higher betatron amplitude at SLYTRE/LE than at other positions, so magnets that
are located in this position are most effective in changing the IP beam parameters.

4.2.3 Calculations of the effect of each magnet on IP beam
dynamics

The effect that the correction made by the corrector magnet at the IR and the QCS
has on the IP coupling parameters is calculated in this subsection. The model used
for this calculation is shown in Fig. 4.12. The optical aberration for the beam at a
particular location is calculated using the revolution matrix that was designed for this
purpose, which consists of the multiplied transfer matrixes for each cell on the beam
line. If the transfer matrix from the source to the destination is known, the revolution
matrix can be easily calculated, including the errors. It is important that the thin
lens approximation model is applied as an additional error in the transfer matrix in
order to calculate the revolution matrix with the associated errors included. As the
length of the component is neglected in the thin lens approximation model, the same
transfer matrix as that used to calculate the interval between the error source and
the transfer destination can be used to calculate the inverse matrix for a round trip.

For the development of a more realistic model, the complete form of a transfer
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Figure 4.11: Luminosity measurements to investigate the dependence of specific lu-
minosity on the bunch current before X–Y coupling correction is carried out at the
IP.

matrix should be used, Which includes the effective length; therefore it is necessary
to use a transfer matrix which depends on length. A model of an error matrix with an
effective length is shown in Fig. 4.13. It is difficult to define an accurate edge position
in this model, meaning that it becomes very complicated. Therefore, the thin lens
approximation model is adopted in this study.

The effect of the magnet located outside the IR on the IP can be calculated using
the transfer matrix of the SAD. Referring to Table 4.1 and 4.2, we find that there are
two major differences in the beam properties at the positions of the skew quadrupole
coils. One is the difference in the amplitudes of the beta functions. Apparently, the
beta function of SLYTLE / RE differs from that of the other magnets. For example,
the effects of the two magnets (#1 and #2) at SD3RE and SLYTRE on the IP are
calculated and compared, as shown below. The action of the magnet is converted
into a normalized beam matrix and rewritten as a Twiss parameter for evaluation. In
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Name s [m] (#1) s [m] (#2) βx (#1) βx (#2) βy (#1) βy (#2)
SF2OLE 2385.37194 2420.93347 30.1743 32.0504 9.68394 9.20193
SF4OLE 2461.04235 2496.60387 30.1743 32.0504 9.68394 9.20193
SF6OLE 2536.71275 2572.27428 30.1743 32.0504 9.68394 9.20193
SF8OTE 2612.80954 2663.39391 25.7300 28.6248 19.9147 18.7856
SD3OLE 2426.45925 2454.82056 7.36690 7.15343 20.2939 17.0478
SD5OLE 2502.12965 2530.49097 7.36690 7.15343 20.2939 17.0478
SD7OLE 2577.80006 2606.16138 7.36690 7.15343 20.2939 17.0478
SF6TRE 2703.92917 2739.49070 30.1743 32.0504 9.6839 9.2019
SF4TRE 2779.59958 2815.16111 30.1743 32.0504 9.6839 9.2019
SD7TRE 2669.3460 2697.7073 7.3668 7.1534 20.2939 17.0478
SD5TRE 2745.0164 2773.3778 7.3668 7.1534 20.2939 17.0478
SD3TRE 2820.6868 2849.0482 7.3668 7.1534 20.2939 17.0478
SLYTRE 2961.22187 2988.31336 12.6848 14.0985 187.7451 163.7934

Table 4.1: Non-interleaved sextupoles with tunable skew quadrupole coils on the
right-side of the IP for HER.

this example, the X–Y coupling parameters for each magnet are calculated using
r1 = −0.297kSD3RE

r2 = 1.499kSD3RE

r3 = −2145.1kSD3RE

r4 = −148.0kSD3RE


r1 = −1.183kSLYTRE

r2 = −5.61kSLYTRE

r3 = −10019.8kSLYTRE

r4 = −191.1kSLYTRE

. (4.6)

Table 4.3 lists the values of the coupling parameters at the IP by setting kname =

k#1,#2 = 1 for each component in Eq. (4.6). Although this result is trivial from
the above equations, the effect of SLYTRE is 5 times greater than that of SD3RE.
Many of the other components are similar to SD3RE, so tuning SLYTRE should be
performed carefully in order to avoid unexpected results.

The correction by the QCS can also be calculated using the transfer matrix of
SAD. The beta function at the QCS is particularly high around the ring, so the
effect of optical errors on the beam in the IR section is significant. Let the skew
errors of QC1 and QC2 be k1L/R and k2L/R, respectively. In this case, the formula for
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Name s [m] (#1) s [m] (#2) βx (#1) βx (#2) βy (#1) βy (#2)
SLYTLE 27.50208 54.39357 19.4207 18.7513 170.0203 167.5412
SD3TLE 164.75795 193.11927 7.3668 7.1534 20.2939 17.0478
SD5TLE 240.42836 268.78968 7.3668 7.1534 20.2939 17.0478
SD7TLE 316.09877 344.46008 7.3668 7.1534 20.2939 17.0478
SF4TLE 199.34105 234.90258 30.1743 32.0504 9.6839 9.2019
SF6TLE 275.01146 310.57298 30.1743 32.0504 9.6839 9.2019
SF8TNE 351.08329 400.73960 21.6101 24.5508 26.4936 24.5566
SD7NRE 406.6668 435.0281 7.3668 7.1534 20.2939 17.0478
SD5NRE 482.3372 510.6985 7.3668 7.1534 20.2939 17.0478
SD3NRE 558.0076 586.3689 7.3668 7.1534 20.2939 17.0478
SF6NRE 441.24990 476.8114 30.1743 32.0504 9.6839 9.2019
SF4NRE 516.92031 552.48184 30.1743 32.0504 9.6839 9.2019
SF2NRE 592.5907 628.1522 30.1743 32.0504 9.6839 9.2019

Table 4.2: Non-interleaved sextupoles with tunable skew quadrupole coils on the
left-side of the IP for HER.

kSD3.1/2 kSLY.1/2 r1 r2 r3 r4

1 0 −0.297 1.499 −2145.1 −148
0 1 −1.183 −5.61 −10019.8 −191.1

Table 4.3: Comparison of coupling parameters at IP by setting k=1 for SD3RE and
SLYRE.

estimating the effect of each magnet is:
r1 = −4.07k1L − 0.000719

r2 = −0.0137k1L − 0.0000795

r3 = −288k1L + 0.0732

r4 = −262k1L − 0.0555

(4.7)


r1 = −32.3k2L − 4.0× 10−6

r2 = −1.38k2L − 4.56× 10−7

r3 = −223k2L + 0.000453

r4 = −2235k2L − 0.000315

(4.8)

Table 4.4 shows the values of the coupling parameters at the IP that are obtained by
setting k1L = 1 or k2L = 1. The transfer matrix for the IR is symmetrical to that of
the IP; thus, the effect at the counter side (QC1RE and QC2RE) is the same as that
seen in Table 4.4.
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Figure 4.12: Schematic of the error transfer model for the IP beam property at each
location.

4.2.4 Numerical simulation of the effect of each coupling pa-
rameter on luminosity and IP beam parameters

As the conditions under which collision takes place cannot be directly measured,
beam–beam simulation is the only means by which it can be estimated by using
measurable information about the beam. Simulation is one of the most important
indicators used for collision tuning, as it can be used to estimate beam conditions
at the IP by calculating the luminosity response obtained using scanning parameters
that cannot be measured directly. By comparing between the simulated and the
measured luminosity, a reasonable model of the collision conditions can be obtained.

Two levels of the simulation for detail of the collision; strong–strong and weakŮstrong,
are introduced in Sec. 3.1. The strong–strong simulation, which includes the coher-
ent phenomenon, complicates the calculation. Thus, the weak–strong beam–beam
simulation is suitable for estimating the luminosity performance with several optical
errors without obtaining the wrong reason for the cause of degradation. This study
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Figure 4.13: Schematic of the error transfer model with finite magnet length for an
error component.

k1L k2L r1 r2 r3 r4

1 0 −4.072 −0.01378 −288.1 −262.1
0 1 −32.28 −1.378 −223.4 −2236

Table 4.4: The effect of thin skew components at QC1LE and QC2LE on the IP linear
coupling parameter.

discusses only beam–beam conditions with lattice imperfections within the incoher-
ent dynamics of the beams at the IP. In this step, several types of optical errors are
assumed in the beam–beam simulations, and the results of these simulations are used
as a reference to estimate the beam conditions during the operation of SuperKEKB
by using data analysis from the previous section (Sec. ??)

The important parameters in beam-beam simulations are the emittance, beta at
the IP, damping rate, bunch current, crossing angle, and the optical aberrations at
the IP. Table 4.5 lists these parameters for beam-beam simulations under several con-
ditions used in the operation of SuperKEKB in Phase-2 and Phase-3 commissioning.
Table 4.6 shows the list of beam-beam parameters and the tune shift for the results
of the simulation at the designed current.

Phase #2(HER) #2(LER) #3(HER) #3(LER) #3’(HER) #3’(LER)
εy 20.0 8.0 16.2 6.05 40 40
εx 5.0 2.2 4.466 1.64 4.49 1.93
β∗
y 3 3 2 2 2 2

β∗
x 100 200 80 80 80 80
νy 43.57 46.57 43.5835 46.606 43.583 46.605
νx 45.5275 44.561 45.5345 44.542 45.53 44542
νs 0.02717 0.02349 0.02717 0.02349 0.02717 0.02349

Table 4.5: Beam parameters for the simulation of SuperKEKB Phase–2 and –3 com-
missioning.
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Condition B–B param. of e− x/y B–B param. of e+ x/y tune shift of e− x/y
#2 0.4506/0.4936 1.599/1.3847 0.0048/0.0517
#3 0.4457/0.6905 1.5878/1.9446 0.0048/0.0727
#3’ 0.8967/3.6162 1.6582/2.3843 0.0049/0.2661

Table 4.6: beam-beam parameters and tune shift for the conditions used in each
beam–beam simulation at the designed current.

The simulations of several parameters are shown in Fig. 4.14 - 4.16, using scanning
coupling parameters (r1, r2, r3, r4). These figures suggest the impact of the coupling
parameters on the IP beam dynamics. Figure 4.14 shows the dependence of the beam
collision on these coupling parameters during Phase 2 commissioning.

Figure 4.14: Luminosity degradation for scanning coupling parameters of SuperKEKB
Phase-2 commissioning.

Figure 4.15 shows the response of luminosity to the scanning coupling parameters.
In Phase-3 commissioning, the beta function of the IP was (β∗

x, β
∗
y) = (100, 2) for

LER and (200, 4) for HER. This value is same as Phase-2.2 commissioning but the
luminosity degradation is a little different from that obtained using the Phase-2.2
condition, because the other parameters were changed.

Scanning is carried out in steps in order to investigate the luminosity degradation
on a linear scale. The effective scale used for each coupling parameter r1, r2, r3, and
r4 is in the order 0.01, 0.001, 1000, and 1000, respectively. In geometric terms, r1
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Figure 4.15: Luminosity degradation with the scanning coupling parameters of Su-
perKEKB Phase-3 commissioning version 1 (Phase-3.1 in Table 4.6).

and r2 directly enlarge the projected beam size of y. r3 and r4 enlarge the vertical
momentum, which is coupled with the horizontal beam size. The horizontal beam size
is coupled with the vertical beam size via the parameter r1. The physical meaning of
these scales is the transverse tilt of the bunches, affecting the beam size as follows:

r1 r2 r3 r4
∆σ∗

y 0 0 0 0

Table 4.7: Optical aberrations of the beam size corresponding to coupling parameters.

4.2.5 The result of the correction of IP X-Y coupling and
comparison with simulations

The coupling error at the IP was adjusted using r1 and r2 for the main adjustment.
The coupling parameters were adjusted to obtain the peak value of the scanned
luminosity using skew quadrupole corrector coils and luminosity monitors. The pa-
rameters r1, r3, and r4 could only be scanned sufficiently and on a global basis by
using the corrector magnets located outside the IR. Figure 4.17- 4.20 shows examples
of the scanned parameters. In the scan results of r1, r3, and r4, it is apparent that
the scanning covered a sufficient range in order to find the peak in luminosity. On
the other hand, regarding the r2 scan, it is thought that the peak in luminosity was
located outside the range of the scan. Thus, a means of changing the parameter r2
by a large amount is required.
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Figure 4.16: Luminosity degradation with the scanning coupling parameters of Su-
perKEKB Phase-3 commissioning version 2 (Phase-3.2 in Table 4.6).

Figure 4.17: Specific Luminosity measurements for scanning linear coupling parame-
ters.

The adjustment of r2 at the IP was corrected by using the skew collector coil at
QC1. A good collision can only be achieved if the optical errors are compensated
for, at least at the local point of the collision. In addition, the effect of the coupling
correction cannot be allowed to leak globally, in order to avoid complicating the
effect that other components have on the beams. Thus, coupling parameters must be
compensated for locally, in the immediate vicinity of the IP.

The effect of QC1 coupling parameters can be modeled as illustrated in Fig. 4.21.
This model is actually the same as the calculation of the error sources around the
IP that are shown in Fig. 4.50. The difference between the models in Fig. 4.21
and Fig. 4.50 is that the former model is only assumed to calculate the relationship
between the coupling parameters at the IP and the skew components at the QC1
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Figure 4.18: Specific Luminosity measurements for scanning linear coupling parame-
ters.

Figure 4.19: Specific Luminosity measurements for scanning linear coupling parame-
ters.

magnets. If QC1 is represented by a skewed thin quadrupole lens, the relationship
between its components k1l, k1r and the coupling parameters can be written

r1 = −14.9k1l − 14.9k1r (4.9)
r2 = 0.716k1l − 0.716k1r (4.10)
r3 = 487k1l − 487k1r (4.11)
r4 = −1156k1l − 1156k1r, (4.12)

and

r1 = −6.52k1l − 6.52k1r (4.13)
r2 = −0.136k1l + 0.136k1r (4.14)
r3 = −533k1l + 533k1r (4.15)
r4 = −483.9k1l − 483.9k1r, (4.16)



CHAPTER 4. LUMINOSITY WITH LINEAR IP OPTICS ABERRATIONS 104

Figure 4.20: Specific Luminosity measurements for scanning linear coupling parame-
ters.

for HER and LER, respectively. In the same manner as that used for calculating the
QC1 skew error, the combination of the QC1 and QC2 errors can be obtained via

r1

r2

r3

r4

 =


−14.9 −38.6 −14.9 −38.6

0.716 2.05 −0.716 −2.05

487 843 −487 −843

−1156 −3030 −1156 −3030



kl1

kl2

kr1

kr2

 (4.17)

and 
r1

r2

r3

r4

 =


−6.52 −13.6 −6.52 −13.6

−0.136 −0.421 −0.136 0.421

−533 −825 533 825

−483.9 −1034 −483.9 −1034



kl1

kl2

kr1

kr2

 (4.18)

for HER and LER, respectively. If the cause of the error comes only from QC1
(in fact, large global X–Y couplings are not observed in the practical operation of
SuperKEKB), the skew component must be symmetrical as k1r = −k1l, because the
error does not leak outside the IR. In this case, r1 = r4 = 0 is obtained by Eq. (4.9).
Thus, it seems that the coupling parameters r1 and r4 cannot be used effectively to
explain IP aberration. The parameters r3 and r4 affect the blow up of σx, as the
phase–space ellipse is tilted on a x− y(py) plane. Hence, r2 has the most effect on IP
coupling.

Figure 4.17- 4.20 shows the results of both the r2 parameter scan and the other
parameter settings. The scans of r1 and r2 were carried out on 15/June/2018, the
scanning of r3 was conducted on 17/June/2018, and the scanning of r4 was performed
on 18/June/2018. Beam–beam simulations of the scanned coupling parameters were
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Figure 4.21: The skewed error model of the QC1 magnet.

referred to in the process of scanning. The results of the luminosity scan indicate
that the parameter r2 had the largest effect on tuning. The results of the simulation
also indicated that r2 is the most sensitive. When k1r = −k1l = 0.0049, r1 = r4 = 0,
r2 = −0.007, and r3 = 4.76, the effective value of r3 is greater than 10.0.

Figures 4.22 and 4.23 show the specific luminosity before and after optimization of
the coupling parameters, respectively. Before tuning of the coupling parameters was
carried out, the specific luminosity was very low, and the beam size measured by the
luminosity monitor disagreed with that obtained as measured emittances by the X-ray
monitors. After the coupling parameters were tuned, specific luminosities gathered by
the two methods were found to agree. Consequently, the measured specific luminosity
in the high current operation is two times higher than that before correction, and the
luminosity tuning of linear X-Y coupling has been well established using this method.

4.3 Comparative investigation of the coupling anal-
ysis at the IP

4.3.1 The type of measurement and the data generated

The measurement of the X–Y coupling at the collision point is an interesting topic
in the field of particle colliders, and the method used for the derivation of accurate
coupling factors was adequately discussed in KEKB[61, 62]. The method of deriving
X–Y coupling by measurement is equivalent to obtaining four-dimensional phase space
coordinates at a specified position. The X–Y coupling, which describes the coupling



CHAPTER 4. LUMINOSITY WITH LINEAR IP OPTICS ABERRATIONS 106

Figure 4.22: The Specific luminosity calculated by measured luminosity (blue) and
by measured beam emittance using the X-ray monitor (orange) before the coupling
parameter optimized.

of betatron eigenmodes, can be analyzed via the behavior of the beam at a certain
point, because the beam can be considered a circle or ellipse with respect to the
oscillation of the betatron eigenmodes, in the manner proposed by E. D. Courant and
H. S. Snyder[22]. In other words, X-Y coupling is defined as the deviation of the BPM
coordinate system from the betatron coordinate system. Therefore, two methods can
be used to derive the coupling parameter: drawing an ellipse for each mode of the
betatron oscillation, or separating and analyzing the mode of betatron oscillation via
harmonic analysis. In this thesis, the former method is named the ellipsoid fitting
method or the orbit response analysis method, and the latter is the harmonic analysis
method.

In order to perform the ellipsoid fitting method, it is necessary to measure an exact
elliptic orbit without any perturbation. From the definition of betatron oscillation,
the motion of accelerated particles in the phase space at any position is characterized
by an ellipse in four-dimensional phase space with a conservation system for the emit-
tance. It is therefore necessary to initiate a kick in the direction of the eigenmode of
the betatron oscillation. The betatron phase at the point measured depends on the
kick position. An accurate ellipse can be drawn if the beam is kicked at different posi-
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Figure 4.23: Specific luminosity calculated from the measured luminosity (blue) and
the measured beam emittance using an X-ray monitor (orange) after the coupling
parameter is optimized.

tions with different betatron phase shifts between the IP and each of these positions.
This method is the same as the single kick COD measurement used in the measure-
ment and fitting of the beta function. The method utilizes a forced oscillation in the
direction of the kick using a dipole magnet (steering magnet) that is installed for use
in both a vertical and a horizontal direction. The single kick COD is expressed using
Eq. (3.34). In SuperKEKB, this single kick COD is measured in 6 different phases to
fit the beta function. Fitting an ellipse to the phase space obtained via a single kick
COD allows the evaluation of the betatron amplitude and phase advance, the tilt of
the U-mode plane (α), and the X-Y coupling parameters. As the X–Y coupling to
be calculated is the coupling at the point of measurement, it is necessary to consider
the case in which the oscillation of one eigenmode is measured on both coordinate
axes in the BPM coordinate system. Therefore, measurement of the X–Y coupling at
locations that are not measurement points is not preferable for calculating coupling
parameters because the kick affects the oscillation of the unexpected mode. Nor-
mally, unexpected kick forces are eliminated by correcting the global X–Y coupling,
the skewed steering magnet, which is an external force of the forced oscillation, can
be given a large coupled amplitude. It is therefore necessary to be more careful when
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Figure 4.24: Comparison of the measured luminosity between conditions of large X–Y
coupling (blue) and the same conditions under correction (orange).

correcting global optical errors in order to measure the IP coupling parameters.
In order to perform harmonic analysis, the bunch orbit in the phase space at

the measurement point must be in the form of an ellipse or spiral. The bunch po-
sition is acquired by carrying out sampling at every revolution in the ring via BPM
measurement in a turn–by–turn mode. In a circular accelerator, this condition is
automatically satisfied because tuning is not carried out with a half-integer multi-
plication when creating stability conditions, so that a half-integer resonance can be
avoided. The simplest method used for separation is the Fourier transform. The two
eigenmodes can remain separate as they are not degenerated because of the stability
of the betatron coupling. In such stable conditions, it is possible to find an operable
region in the fractional tune by plotting a tune diagram. Since the object of this study
is the coupled motion of the U-mode in the y direction, turn–by–turn measurement
can be performed using oscillation that is initiated by an injection kicker. In addition,
forced oscillation using a AC dipole magnet synchronized with the betatron phase of
the bunches is a powerful tool that can be used for analyzing betatron oscillation,
but it must be noted that the analysis becomes complicated because the additional
kick force is joined with a beam–beam kick at the IP and the injection kicker.
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4.3.2 Simulated Data from SAD

In order to prepare for analysis of the actual measured data, sample data were sim-
ulated using SAD [63]. By using the simulated data, verification of the logic used in
deriving coupling parameters from the measured data and the codes used in the anal-
ysis can be demonstrated. In addition, acceptable errors in the measured data can be
evaluated by scanning, using the standard deviation of the additional Gaussian noise
in the simulated data. Data simulated by SAD were therefore prepared for use in
a turn–by–turn mode and the averaging mode of the BPM system for the harmonic
analysis and performance of the orbit response method, respectively.

SAD simulation of the BPM Data using the Turn–by–Turn mode

SAD simulations of turn–by–turn mode BPM were performed by reading the lattice
model of SAD and changing the SK1 value of “QC1LE" and “QC1RE" manually. The
read lattice model is used in the actual operation of SuperKEKB. In the simulation
code, a particle that represents the center of a bunch is tracked. The beam positions
of the tracked trajectory at each monitor are then successively transferred to an
output file. The initial position is determined by a random seed that is placed inside
the envelope of the betatron oscillations in the equilibrium state of a beam. If we
want to match the simulations with the actual operation, the initial amplitude of the
betatron oscillation is determined by the measured amplitude and the initial position
of a particle is required in order to set it at the injection position of the storage ring.

SAD simulation of the BPM Data using the averaging mode

COD is simulated using the same turn–by–turn conditions in the simulation. For
COD, as the positional difference from the ideal orbit has to be obtained, the values
of “dx” and “dy” of the particle trajectory are calculated for a state of equilibrium .
The deviations of “dx” and “dy” in the SAD script can be derived using the “Twiss”
command. The results of the COD simulation can then be output collectively.

4.3.3 Ellipsoid fitting method

The method of fitting the measured phase space variables with an ellipse can be used
to derive the Courant–Snyder Twiss parameters[22] and the X–Y coupling parameters
in the Edwards-Teng parameterization[64] for the eigenmode of betatron oscillation.
The evaluation is performed by ordered fitting from the low–dimensional to the high–
dimensional relationships. To draw an ellipse (or circle) in normalized phase space,
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the derivation of the betatron amplitude and its phase advance are required, and the
Courant–Snyder invariant can then be obtained by two-dimensional fitting. Subse-
quently, the parameters α and r are obtained by three-dimensional fitting. To perform
fitting in three dimensions, no correlation can occur between y and py, so it can be
fitted only if the U-mode, which is the eigenmode in the x direction, is excited. In
the single kick COD measurement the dipole kicks in the direction of the eigenmode
which is to be measured; therefore, only a single mode can be excited if the coupling
at the steering magnet is negligible.

There are two possible means by which r parameters can be obtained from the
fitting. One is fitting the sample points onto the phase space by the least squares
method. The other is deriving a normal vector of the ellipse. The normal vector can
be obtained by arbitrarily selecting two vectors at the sample points. The normal
vectors are then averaged in order to reduce the errors in the measured data.

Cosine fitting for the Courant–Snyder invariant

When deriving the beta function from a single kick COD Eq. (3.34), the practical be-
tatron amplitude, the phase advance, and the Courant–Snyder invariant for the whole
ring are evaluated from the measured data. The derivation of the Courant–Snyder
invariant is determined by the horizontal and vertical position and the betatron phase
advances of the BPMs along the ring. For example, the relationship between the hor-
izontal betatron motion and the Courant-Snyder invariant can usually be represented
by

x(s) =
√

2Juβu(s) cos (φu + φu0) (4.19)

where (Ju, φu0) are the action-angle variables with the relationship W =
√
2Ju, which

is the Courant-Snyder Invariant. As Eq. (4.19) produces a simple sinusoidal wave, it
is easy to fit the data. The procedure to obtain Twiss parameters also includes the
least square method. It can be seen that the fitting function agrees with the measured
positional data well from Fig. 4.25. As the betatron phase is reset at the steering
magnet, there are two different fitting curves in the COD data.

The analyzed data for COD that has been kicked at different positions by the
steering magnets already includes x, βu, and φu is evaluated by finding the envelope
of the betatron oscillations. Thus x/

√
β has purely cosine behavior with an amplitude

of =
√
2Ju and it can be fitted via the least square method in the form

x√
β
= A cos (φ+B) (4.20)
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Figure 4.25: Detailed behavior of the motion from fitting curves at the position of
steering magnets.

where A =
√
2Ju and B = φu0 which is the phase jump that is due to the steering

kick. This method can be used to obtain a precise value for the Courant-Snyder
invariant.

Least square fitting for a phase space ellipsoid

By finding the Courant–Snyder invariant, the area of the ellipse on the phase space
was obtained. The Twiss and coupling parameters can be obtained by fitting the
elliptic function with the limit cycle in the phase space. Although the parameters to
be obtained are rotation angles in phase space, it should be noted that this is not
an isometric transformation such as that of an axis rotation. The reason is that the
off–diagonal components (r1, r2, r3, r4) in the Edwards-Teng parameterization are
independent of each other in terms of the relationship between the on–diagonal and
off–diagonal components.

For the U-mode oscillation, r1 and r2 describe the tilt in the y direction, and r3

and r4 represent the tilt in the py direction. Thus, the fittings for r1/2 and r3/4 are
performed independently. When α is obtained by fitting, it is important that the
ellipse fitting should be performed on a plane that is inclined in the y direction or
the py direction, instead of the fitting to the projected ellipse on the x− px plane.

To calculate the coupling factors, parameters are obtained by fitting on the x− y

plane and px − y plane. The relationship of the betatron coupling is written as
x

px

y

py

 =


µ 0 r4 −r2
0 µ −r3 r1

−r1 −r2 µ 0

−r3 −r4 0 µ



xβ

pxβ

yβ

pyβ

 . (4.21)

The tilts of the ellipse on the x− y, px − y, x− py, and px − py plane correspond to
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r1, r2, r3, and r4, respectively.

Deriving a normal vector of the ellipse

For deriving a normal vector of the ellipse, the projections of the normal vector onto
the x−y, px−y, x−py, and px−py planes correspond to the inverse of the tilt of the
ellipse on each plane. Consequently, the coupling parameters can be obtained from
the inverse of the tilts. The sample point on the Courant-Snyder ellipse in the phase
space conforms to a single-value function which corresponds to the betatron phase.
The betatron phases at the positions of the individual steering magnets are relatively
different from each other. Hence beam trajectories with different betatron phases
can be obtained via kicks carried out with different steering magnets. Figure 4.26
illustrates the method of deriving normal vectors. In this figure, six samples of the
COD data are illustrated as an example. Two arbitrary sample points are selected in
order to obtain a sample vector. The normal vector describing the ellipse is derived
from the cross–product of the two selected sample vectors. If there are six samples
included in the COD data, then there are a total of fifteen combinations possible
for the selection of the two sample vectors. The normal vector is averaged using the
fifteen combinations. The absolute value of the averaged normal vector is then used
to align the direction of surface of the ellipse.

Application to the measured data in Phase-2 Commissioning

As an example, Fig. 4.27 and 4.28 show the results of fitting the COD data in the
Phase-2 commissioning under two different coupling conditions. Figure 4.27 is the
case where r2 = −3 mm is produced by tilting the IP, and Fig. 4.28 is the case where
a tilt of r2 = −6 mm is produced by the QC1 skew corrector. The figure shows
the six cases of kicking using different steering magnets. The Curves in the figure
denote fit functions, where the points marked with a red "+" indicate the values used
for fitting the functions at each BPM position, and the blue dots are the measured
data of x/

√
β. The orange and green curves are the results fitted before and after

use of the steering kick, respectively. Important information (such as the name and
the position of the steering magnets, the phase of the steering kick position, and the
fitted values) is given in the legends of the following figures.
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Figure 4.26: Illustration of the average of the normal vectors for calculation of the
phase space ellipse.
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Figure 4.27: Fitting results for COD data at each BPM position (for IP Tilt r2 =
−3m). Vertical axis denotes x/

√
β[m1/2], and horizontal axis denotes betatron phase

advance[rad]
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Figure 4.28: Fitting results for COD data at each BPM position (for QC1 skew
corrector r2 = −6m). Vertical axis denotes x/

√
β in m1/2, and horizontal axis denotes

betatron phase advance in radian.
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Figure 4.29 shows the measured sample data for x, px, and y at MQC1LE (left
side) and the IP (right side). Each plot has six COD samples, which are obtained
when r2 = −3m. An ellipse like behavior can be seen in each plot of Fig. 4.29. The
ellipse is tilted in the x-y and px-y plane, although there is no correlation between the
y and (x, px) planes outside the IR. In order to derive the tilt in Fig .4.29, Courant–
Snyder Twiss parameters are calculated from the fitted COD data with the implicit
function of the phase space ellipses in each individual plot. The data therefore consists
of COD data at each BPM position. Thus px and py, which are at arbitrary positions,
are also transferred in the data of the nearest two BPMs. The transfer of physical
variables between two points is given by

x(s2)

px(s2)

y(s2)

py(s2)

 =


m11(s1, s2) m12(s1, s2) m13(s1, s2) m14(s1, s2)

m21(s1, s2) m22(s1, s2) m23(s1, s2) m24(s1, s2)

m31(s1, s2) m32(s1, s2) m33(s1, s2) m34(s1, s2)

m41(s1, s2) m42(s1, s2) m43(s1, s2) m44(s1, s2)



x(s1)

px(s1)

y(s1)

py(s1)

 (4.22)

The momentum derivation at a target point is constructed using the relationship
between the two inverse transfer matrixes:

x(s1)

px(s1)

y(s1)

py(s1)

 =


m11(s1, s2) m12(s1, s2) m13(s1, s2) m14(s1, s2)

m31(s1, s2) m32(s1, s2) m33(s1, s2) m34(s1, s2)

m11(s1, s3) m12(s1, s3) m13(s1, s3) m14(s1, s3)

m31(s1, s3) m32(s1, s3) m33(s1, s3) m34(s1, s3)


−1

x(s2)

y(s2)

x(s3)

y(s3)


(4.23)

where mij (i, j = 1, 2, 3, 4) are components of the transfer matrix from s2 and s3 to
s1 variables, respectively.

Figure 4.29: Phase space plots for (x[mm], px[mrad], y[mm]) plane.

The ellipse is not on the same plane as the unexcited V-mode oscillation, and it
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appears in the y direction because the steering magnet providing the kick possesses
the betatron coupling parameter. The inclination of the plane on which the ellipse lies
indicates the coupling at the monitor position, and the deviation of the sample from
the plane indicates the coupling at the kick position. By investigating this behavior,
it is possible to distinguish between the coupling at the kick position and the coupling
at the monitor position.

The fitting results for the coupling parameters are shown in Fig. 4.30 and Table 4.8.
Two types of fitting were attempted: the least square method for the tilted ellipse
and the derivation of the normal vectors at each sample point. In Fig. 4.30, as we
can see, it is not possible to fit both measured datasets with an ellipse. The cause of
this mis–fitting can be assumed to be the result of significant amounts of noise in the
y and py correlations. It seems that too few data samples are available in order to
reduce the noise and obtain the correct tilt in several of the phase space correlations.

Figure 4.30: Ellipse fitting for phase space correlations of the coupling condition:
r2 = 4mm(left) and r2 = 1mm(right). Orange ellipses are fitted by the least square
method and green ellipses are fitted by the averaging the normal vectors of each
measured point on the phase space. The dimensions of the axes are mm and mradian
for position and momentum, respectively.

Finally, a comparison of some of the conditions that occur involving these r2

parameters is shown in Fig. 4.31. These conditions change the r2 parameters as given
in the legends of the figure. It is apparent that coupling parameters that are close
to the IP have a significant effect, and the IP parameters, which are our objectives,
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r1[rad] r2[m] r3[1/m] r4[rad]
Least square for r2 = 4mm -0.0127 0.0124 -0.1194 -0.0286

Normal vector for r2 = 4mm -0.0374 0.0136 -0.1410 -0.0199
Least square for r2 = 1mm -0.0075 0.0138 -0.2976 -0.01196

Normal vector for r2 = 1mm -0.0135 0.0143 -0.3781 -0.0238

Table 4.8: Comparison between two methods and two conditions for evaluating cou-
pling parameters. Conditions are just before and after r2 changed

are much less than that seen in other positions. This situation makes it difficult to
calculate the IP coupling parameters exactly by fitting ellipses.

4.3.4 Harmonic analysis method

Harmonic analysis is commonly used in order to derive a coupling parameter which
can analyze the U-mode oscillation and V-mode oscillation separately by performing
mode separation via Fourier transform. The oscillation of the U-mode is expressed
by Eq. (3.49), and the V-mode is expressed by Eq. (3.50). It is important that the
Fourier amplitude and phase are obtained for the eigenmodes via mode separation
carried out with Fourier transform. Because data is measured in the x and y directions
independently, the coupling parameters are reflected in the spectrum in a form that
includes rotation errors in both the monitor and the kicker.

We are interested in IP beam dynamics, and therefore have to calculate phase
space variables at the IP from measured positions at monitors near the IP, in a
similar manner as the ellipsoid fitting method used for the measurement of COD.
Because both the Fourier transform and the matrix calculation are linear transforms,
they act commutatively in the analysis. Therefore, there are two options for the
order at which the coupling parameters are calculated; calculating the transfer to the
IP first, and calculating the mode separation by the Fourier transform first. Both
options were carried out in order to compare the derivation accuracy.

In the harmonic analysis method, turn–by–turn data from multiple rotations at a
single point is used. At least two sampling points are necessary for the turn–by–turn
monitoring, because the momentum parameters, (px, py), which are transferred from
the monitors near the IP, are required for the analysis. The turn–by–turn data from
the two different cases are introduced as examples and comparisons. The optical
conditions used for the turn–by–turn measurement are mostly the same as those used
for the ellipsoid fitting analysis.
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Figure 4.31: Comparison of the coupling parameters calculated by the least square
method for COD data among some r2 parameters in Phase-2 commissioning. In these
measurements, r1, r3, and r4 parameters are not focused for optical tuning, but these
coupling parameters are also important in collision and were therefore tuned carefully
following these measurements.
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Validation of the Procedure used for the Analysis and Estimation of the
Allowable Error

Figure 4.32 and 4.33 show the simulated BPM data from the turn-by-turn mode.
In Fig. 4.32, the orange and blue plots denote the position and momentum in the x-
direction, respectively. In Fig. 4.33, the orange and blue plots also denote the position
and momentum in the y-direction, respectively. In order to compare between data
from simulations carried out with and without the SK1 change in the QC1 magnets,
optics with no aberrations (upper plots) and with SK1 ±1.0×10−3 difference from the
referenced lattice model of SAD (lower plots) are given in each figure. As these plots
are produced using initial conditions that were determined by Gaussian random seeds,
the conditions of the SuperKEKB beam operation are not reflected in the results. The
reason why the simulations are not adapted to include the actual conditions is that
the objective of this simulation is to validate the procedure used for the evaluation
of the harmonic analysis by mode separation using Fourier transformation. Thus,
the simulated data has to include both the U and V modes as the arbitrary initial
conditions. The plots include Gaussian noise at σ = 3.0 × 10−6, for which the Box-
Muller method for producing white noise was used.

Figure 4.32: Simulated x-position and -momentum data of turn-by-turn mode BPM
readings for x and y direction.
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Figure 4.33: Simulated y-position and -momentum data of turn-by-turn mode BPM
reading in the x and y directions.

To check the calculation of the coupling parameters at the IP, directly measured
data concerning the four-dimensional physical variables at the IP are simulated ar-
tificially. Figure 4.34 and 4.35 show the results of the Fourier transformation of
the directly measured simulations for the position and momentum in the x- and y-
directions. Figure 4.34 shows the Fourier spectrum of the simulated data without any
aberration or noise. It can be seen that the U- and V-mode oscillations measured in
the x- and y-direction are excited by the Gaussian random seed when the revolving
beam was in an equilibrium state. Figure 4.35 shows the Fourier spectrum of the
simulated data with a SK1 change of ±1.0 × 10−3 for the QC1 from the reference
optics model and without any noise. The effect of the additional skew component
at the QC1 magnets on the measured coordinates of the beam at the IP can be ob-
served in the figure as the existing peaks in the U-mode on the y-direction spectrum.
The coupling parameters that were produced using the data from these figures are
summarized in table4.9. The ideal coupling value at the IP that was calculated using
the transfer matrix and the coupling matrix of the Edwards-Teng parametrization
and the analyzed coupling parameters that were calculated using the quasi measured
data at the IP in the turn-by-turn mode are compared in this table. The limit of
the evaluable order for each coupling parameter can also be found as the highest
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power of the parameters in the results of the analysis of this table. According to the
calculation for the simulation of quasi direct measurement at the IP, it is confirmed
that the analyzed results for r2 and r3 agree perfectly with the theoretical values.
This comparison of the turn-by-turn simulation with the theoretical calculation of
the coupling parameters can prove the reliability of the procedure used for analysis
that is described below.

Figure 4.34: Fourier spectrum for simulated four dimensional physical variables at
the IP with no change from reference lattice model.

r1[rad] r2[m] r3[1/m] r4[rad]
Before SK1 change (±0 for QC1)

IP(Theoretical) −2.0× 10−13 −8.0× 10−14 2.0× 10−11 5.0× 10−12

IP(Analytical) 2.6× 10−6 −5.3× 10−7 4.0× 10−4 1.3× 10−5

After SK1 change (±1.0× 10−3 for QC1)
IP(Theoretical) 6.0× 10−6 −1.8× 10−3 −1.555 6.0× 10−4

IP(Analytical) −3.6× 10−6 −1.8× 10−3 −1.588 1.4× 10−3

Table 4.9: Coupling parameters calculated by transfer matrix theoretically (upper)
and harmonic analysis of the turn-by-turn simulated data (lower).

Next, simulations of the measurement of BPMs located at both sides of the IP
are performed using the analysis procedure verified by the calculation of coupling
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Figure 4.35: Fourier spectrum for simulated four dimensional physical variables at
the IP with SK1 change of ±1.0× 10−3 from the reference lattice model.

parameters from the quasi direct measured data at the IP that was described in the
last paragraph. The conditions used in the simulation assume the following:

• The data is measured at MQC1LE and MQC1RE, which are the nearest BPMs
to the IP.

• The measured data consists of x and y displacements ±0.53 m away from the
IP.

• The 2048 samples are recorded in the analyzed data.

• A Gaussian noise of σ = 3.0× 10−6 is added to each measured position as the
measured error.

The Fourier spectrum of the BPM data simulated using the previous conditions is
given in Fig. 4.36 and 4.37. As reference data for comparison with Fig. 4.36 and
4.37, the noiseless data describing the individual figures are given in Fig. 4.38 and
4.39. In Fig. 4.38, the U-mode peaks can be seen clearly as the oscillation in the
x-direction; however, the V-mode peaks are difficult to see because of the noise. On
the other hand, in Fig. 4.39, the U-mode oscillation becomes visible as peaks in the
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y-direction. These U-mode peaks in the y-direction are affected by the additional
coupling at the QC1 magnets. The coupling parameters that were calculated using
the Fourier spectrum in Fig. 4.36 and 4.39 are summarized in Table 4.10. In this
table, the upper results were calculated from the simulated results with noiseless data
given in Fig. 4.38 and 4.39. The middle results are calculated from the simulated
results of the data with the measurement errors shown in Fig. 4.36 and 4.37. The
upper results agree completely with the results of the analysis (lower result in the
table) of the quasi-direct measurement at the IP. The individual parameters in the
middle results are slightly deflected.

Figure 4.36: Fourier spectrum for transferred physical variables at the IP from MQC1
BPMs with measurement errors, which is simulated using the unchanged lattice of
the original SAD model used for beam operation.

To evaluate the effect of the measurement error in Table 4.10, coupling parameters
with scanning dispersion values from the Gaussian noise are calculated. Figures 4.40 -
4.43 show the results of calculating the scanning dispersion. The statistical number of
trials is 1.0×104 for the individual data. Figures 4.40, 4.41, 4.42, and 4.43 describes
the calculation results for r1, r2, r3, and r4, respectively. The scanned values of the
dispersion are σ = 3.0×10−7, σ = 3.0×10−6, σ = 3.0×10−5, and σ = 3.0×10−4. The
histogram entries are estimated using individual simulations of the same simulation
data with different Gaussian dispersions. The orange curves show the fitted results
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Figure 4.37: Fourier spectrum for transferred physical variables at the IP from MQC1
BPMs with measurement errors, which is simulated using the lattice model of SK1
changed for QC1 magnets ±1.0 × 10−3 from the original SAD model used for beam
operation.

from the envelope of the histogram entries. According to the results of the error
evaluations for r1 and r2, the allowable threshold for error in the measurement is in
the order of 1.0 µm.

Analysis of the Practically Measured Data

In the last subsection, the analysis procedure is verified. In this subsection, the
coupling parameters from the practical measured data of the Phase-2 commissioning
under similar conditions to the simulation are analyzed, by changing the SK1 value of
the QC1 magnets. Figures 4.44 and 4.45 show plots of the raw data for the turn–by–
turn measurement at MQC1/2 and LE/RE. In Fig. 4.44 and Fig. 4.45, the measured
data for the x–direction and the y–direction are plotted, respectively. The upper two
plots of each figure are the data measured when r2 = 4mm, and the lower two plots
are the data measured when r2 = 1mm. The blue and orange lines in the figures
denote the data measured at MQC2 and MQC1, respectively.

From the above figures, it is verified that the measured data are suitable for anal-
ysis by confirming the ratio of the betatron amplitudes between the two BPMs sets.
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Figure 4.38: Fourier spectrum for transferred physical variables at the IP from MQC1
BPMs, which is simulated using the unchanged lattice of the original SAD model used
for the beam operation.

The betatron amplitudes at each of the monitors are summarized in Table 4.11. The
ratio of the amplitudes in the orange and blue plots of Fig. 4.44 and 4.45 match Ta-
ble 4.11 well. These results indicate that the BPMs measured the betatron oscillation
accurately in both directions.

The calculation order: Transfer -> mode separation

The detailed calculation follows the theoretical approaches in Sec. 3.2.2. The rela-
tionships on the x–px plane can be expressed using x(s)

px(s)

 =


r0
√
2Juβu(s) cos (φu + φu0)

−r0
√
2Ju

αu(s)√
βu(s)

cos (φu + φu0)− r0
√

2Ju
βu(s)

sin (φu + φu0)

 (4.24)

where the coefficients of the trigonometric functions correspond to the Fourier am-
plitude, and the phases correspond to the Fourier phase. The relationships of the y
and py with U-mode oscillation is a little different from that produced by Eq. (4.24).
According to the previous section, when only U–mode oscillation is initiated, the y
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Figure 4.39: Fourier spectrum for transferred physical variables at the IP from MQC1
BPMs, which is simulated using the lattice model of SK1 changed for QC1 magnets
±1.0× 10−3 from the original SAD model used for beam operation.

direction is given by

 y(s)

py(s)

 =


(−r1

√
2Juβu(s) + r2

√
2Ju

αu(s)√
βu(s)

) cos (φu + φu0)− r2
√

2Ju
βu(s)

sin (φu + φu0)

(−r3
√

2Juβu(s) + r4
√
2Ju

αu(s)√
βu(s)

) cos (φu + φu0)− r4
√

2Ju
βu(s)

sin (φu + φu0)


(4.25)

To apply this equation, the variables (x ∈ C) of the Fourier transform will be changed
to the form of an absolute and an argument. As an example, we consider the case
where there is a definite betatron coupling factor and only U–mode oscillation is ini-
tiated. By conducting the Fourier transformation and applying the transfer functions
M : ~x 7→ ~x∗ where ~x = (x1, y1, x2, y2)

T are independent, it is apparent that both are
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r1[rad] r2[m] r3[1/m] r4[rad]
Before SK1 change (±0 for QC1)

MQC1(without noise) 2.6× 10−6 −6.3× 10−7 3.9× 10−4 1.4× 10−5

MQC1(with noise) 5.8× 10−5 −1.3× 10−4 −8.0× 10−4 7.1× 10−4

IP(Analytical) 2.6× 10−6 −5.3× 10−7 4.0× 10−4 1.3× 10−5

After SK1 change (±1.0× 10−3 for QC1)
MQC1(without noise) −5.3× 10−6 −1.8× 10−3 −1.588 1.4× 10−3

MQC1(with noise) 1.6× 10−3 −2.1× 10−3 −1.586 6.9× 10−4

IP(Analytical) −3.6× 10−6 −1.8× 10−3 −1.588 1.4× 10−3

Table 4.10: Coupling parameters calculated from harmonic analysis of the turn-by-
turn simulated data (upper two data). As the reference, analyzed values from noiseless
data of quasi-direct measurement at the IP (lower).

Position |βx| [m1/2] νx |βy| [m1/2] νy
IP(start) 0.1 0.0 0.003 0.0
IP(end) 0.1 45.5399 0.003 43.608

MQC1LE 2.90874 0.22032 93.6286 0.24910
MQC1RE 2.90873 45.3196 93.6284 43.3589
MQC2LE 142.968 0.24102 291.140 0.24998
MQC2RE 190.713 45.2986 263.746 43.3579
MQLC3LE 26.9933 0.26170 7.67744 0.29538
MQLC3RE 34.9614 45.2833 25.6036 43.3323

Table 4.11: Betatron amplitude and phase advance from IP at each BPM in the IR

linear transformations. Thus, these transformations are commutative as follows:

~x∗(ω) =

∫ ∞

∞
dt{M~x(t)e−iωt} (4.26)

= M
∫ ∞

∞
dt{~x(t)e−iωt}. (4.27)

However, the order used to conduct these transformations for an ideal data set is
mathematically the same; the Fourier transformation should be applied first because
the actual data includes noise in the measurement. The theoretical preference for
calculation order in order to reduce the noise is easier to see in the signal processing
theory of transfer functions.

According to Eq. (4.26), the process for the estimation of the coupling factor is
carried out in the following steps.

1. Apply the composed transfer function to the measured variables
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Figure 4.40: Evaluation of the effect of error on r1 parameter the dispersion of Gaus-
sian which is scanned from σ = 3.0× 10−7 to σ = 3.0× 10−4 in order.

2. Calculate the Fourier transform for the transferred variables

3. Search for the peaks associated with Fourier amplitude

4. Calculate the coupling parameters (r1, r2) and (r3, r4) from the formulae for
the y and py components of the U-mode.

The important point in this method is to search for the exact frequency of the betatron
mode.

The physical variables at the IP are calculated using the transfer matrix. Fig-
ure 4.46 shows an example of the correlations among each of the variables in the
phase space. The diagonal histogram denotes the position–frequency plots. These
plots are the results of the calculation of step #1 in the above list for the measured
data in Fig. 4.44 and 4.45. If these correlations have obvious features indicating tilting
of the four–dimension ellipsoid, the coupling parameters can be determined.
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Figure 4.41: Evaluation of the effect of error on r2 parameter the dispersion of Gaus-
sian which is scanned from σ = 3.0× 10−7 to σ = 3.0× 10−4 in order.
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Figure 4.42: Evaluation of the effect of error on r3 parameter the dispersion of Gaus-
sian which is scanned from σ = 3.0× 10−7 to σ = 3.0× 10−4 in order.
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Figure 4.43: Evaluation of the effect of error on r4 parameter the dispersion of Gaus-
sian which is scanned from σ = 3.0× 10−7 to σ = 3.0× 10−4 in order.



CHAPTER 4. LUMINOSITY WITH LINEAR IP OPTICS ABERRATIONS 133

Figure 4.44: Raw data from the turn–by–turn measurement and comparison of the
amplitude for x-axis at QC1LE and QC2LE or QC1RE and QC2RE. The upper and
lower two plots denote r2 = 4mm and r2 = 4mm, respectively. The unit of the vertical
axis of each plot is µm.



CHAPTER 4. LUMINOSITY WITH LINEAR IP OPTICS ABERRATIONS 134

Figure 4.45: Raw data of turn–by–turn measurement and comparison of amplitude
for y-axis at QC1LE and QC2LE or QC1RE and QC2RE. The upper and lower two
plots denote r2 = 4mm and r2 = 4mm, respectively. The unit of the vertical axis of
each plot is µm.
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Figure 4.46: Example of scatter plots of the correlation matrix formed for the physical
variables at the IP.
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Because four physical variables exist for the IP, the Fourier spectrum must be
calculated for each variable. The mode separation is the process by which each peak
of the corresponding eigenmode in the Fourier spectrum is detected. The Fourier
amplitudes and phases correspond to the relationship between the coupling param-
eters and the oscillations of the excited eigenmodes. Coupling parameters that are
obtained via the above process with the measured data in Phase-2 commissioning are
shown in Table 4.12

Setting r1 [rad] r2 [m] r3 [1/m] r4 [rad]
r2 = 4mm (before SK1 change) 0.0512 −0.0043 −0.519 0.039
r2 = 1mm (after SK1 change) 0.0405 −0.0075 0.8123 0.0678

Table 4.12: Coupling parameters at the IP calculated by the method of applying
transfer matrix M first as Eq. (4.26).

The calculation order: Mode separation -> transfer

Next, the case Eq. (4.27), where the eigenmode separation is carried out first, is
discussed. The positions of each monitor near the IP are listed in Table 4.13. The
raw measured data at the individual BPMs and their Fourier spectra are shown in
Fig. 4.47 and 4.48. Figure 4.47 illustrates the plots where r2 = 4mm, and Fig. 4.48
are plots when r2 = 1mm. In the figures, the left and right side correspond to the
measured data in the time domain and frequency domain, respectively. The blue
lines denote the data in the x-direction, and the orange lines denote the data in the
y-direction. From the Fourier spectra plots, the U-mode peaks in the y-direction
cannot be seen in the MQLC3 data. Therefore, it can be assumed that the betatron
coupling is completely eliminated at MQLC3. The data measured at MQLC3 means
that the optical aberration coming from the IR can be estimated by using the BPMs
of MQLC3 as the coordinates of the BPMs are calibrated correctly with the coordi-
nates of the beam oscillation. If the rotation errors for the monitors at the reference
coordinates are negligible, we can focus on finding optical errors in the IR section for
beam aberrations at the IP. In addition, coupling at the kicker position, which is the
injection kicker in this case, is not observed in Fig. 4.47 and 4.48, so these conditions
were excellent for analyzing the effect of a horizontal oscillation on a vertical plane.
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HER Position [m] (Left) Position [m] (Right)
IP 0 3016.314

MQC1 0.53 3015.784
QC1L/RE inside edge 0.89 3015.404

QC1L/RE outside edge 1.9 3014.404
MQC2 2.25 3013.814

QC2L/RE inside edge 2.12 3014.074
QC2L/RE outside edge 3.2 3012.874

MQLC3 12.935 3003.380
MQLC7 27.272 2989.143

Table 4.13: The list of BPM positions near the IP. The values are distances from IP
in counterclockwise direction.
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Figure 4.47: Raw of BPM signals and their FFT amplitude in and near IR section
for r2 = −4mm set.
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Figure 4.48: Raw of BPM signals and their FFT amplitude in and near IR section
for r2 = −1mm set.
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The peaks obtained in the Fourier spectrum for each measured BPM are trans-
ferred to the IP from the positions of each BPM using the transfer matrix from the
SAD lattice model for M. In order to obtain four variables describing the phase
space at the IP, two data sets measured at both sides of the IP are used. The physi-
cal variables of the separated modes are calculated as complex variables. The complex
physical variables in complex form are then transformed to polar coordinates after the
transfer to the IP with the matrix M, and the coupling parameters are thus derived.
The coupling parameters obtained via Eq. (4.27) with the measured data in Phase-2
commissioning are listed in Table 4.14

Setting r1 [rad] r2 [m] r3 [1/m] r4 [rad]
r2 = 4mm (before SK1 change) 0.34 0.0038 −0.48 −0.023
r2 = 1mm (after SK1 change) 0.0069 0.0015 0.45 −0.042

Table 4.14: Coupling parameters at the IP calculated by the method of mode sepa-
ration first as Eq. (4.27).

4.3.5 Ellipsoid fitting vs. harmonic analysis

To compare the methods used to calculate the coupling parameter derivation men-
tioned above, the results of the analysis of the coupling parameters are summarized
in Table 4.15 for the data measured in the practical beam test. Comparison of the
method used for ellipsoid fitting and the harmonic analysis are shown in this table.
For the ellipsoid fitting method, #1 and #2 correspond to the least square method
and the derivation of the normal vector for fitting the Courant–Snyder ellipse onto
four–dimensional phase space, respectively. For the harmonic analysis method, #1
and #2 correspond to the initial application of the transfer matrix and the mode
separation, respectively. From this table, it is found that only harmonic analysis #2
reproduces the practical values of r2 of r2 = 4mm and r2 = 1mm. In this study, it
is therefore apparent that the harmonic analysis with mode separation carried out
first (Eq. (4.27)) has better reliability for obtaining coupling parameters from the
calculation by using turn–by–turn BPM data in SuperKEKB.
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Method r1 [rad] r2 [m] r3 [1/m] r4 [rad]
r2 = 4mm (before SK1 change)

Ellipsoid fitting #1 0.0127 −0.0124 −0.1194 0.0286
Ellipsoid fitting #2 0.0374 −0.0136 0.141 0.0199

Harmonic analysis #1 0.0512 −0.0043 −0.519 0.039
Harmonic analysis #2 0.34 0.0038 −0.48 −0.023

r2 = 1mm (after SK1 change)
Ellipsoid fitting #1 0.0075 −0.0138 0.2976 0.0196
Ellipsoid fitting #2 0.0135 −0.0143 0.3781 0.0238

Harmonic analysis #1 0.0405 −0.0075 0.8123 0.0678
Harmonic analysis #2 0.0069 0.0015 0.45 −0.042

Table 4.15: Summary of the deriving the coupling parameters by different methods
for the case of r2 = 4mm and r2 = 1mm optics setting.

4.4 Discovering the source of errors via the use of
a transfer matrix

4.4.1 Types of errors included in the data describing each
measurement

From the FFT plots of the raw BPM data, BPMs with small deviations were found
between the beam coordinates and the laboratory coordinates. As the calculation of
physical variables using the transfer matrix from the BPM with small deviations is
particularly suitable for evaluating the model, the reliable BPM data is used for the
calculation of the coupling at each point near the IP. If the real system and the model
system are different, the difference between the beam matrices transferred from the
two sets directly represents the error that is included in the interval. Two possible
models can lead to errors, as seen in Fig. 4.49.

4.4.2 Modelling thin skew quadrupoles to investigate addi-
tional errors

Illustration of the model

As error derivation is performed using two different sets of FFT data, BPM calibration
between combinations must be calculated. However, the issues surrounding BPM
errors are not discussed in this paper. Considering a model such as that illustrated
at the bottom of Fig. 4.49, it is necessary to compare the two means of finding the
source of the error by using two sets of BPMs with an error source in the interval.
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Figure 4.49: Illustration of two different models with errors leading to IP aberrations

As an example, consider that there is an error in the QC1 pair of the QCS system.
Assuming an additional error source inside the QC1 (IP side), information concerning
the two BPMs that are sandwiched between MQC1 and MQC2 is given in Table 4.13.
Figure 4.50 is similar to the bottom of Fig. 4.49, which is a model of this situation.

Using this model, several of the parameters of transfer matrices and skew compo-
nents are illustrated in Fig. 4.51. In this situation, there are two ways that coupling
parameters can be calculated, as follows:

1. To calculate coupling parameters (r1, r2, r3, r4) at IP, the relationship between
the revolution matrix and the error Mk, the coupling matrix R, and matrices
for several components are given in Fig. 4.51.

2. To calculate the true transfer matrix, the measured data at MQC1 and MQC2
are compared.

The relationship between the coupling matrix and the revolution matrix is de-
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Figure 4.50: The model of the method used for calculating IP beam parameters using
additional skew quadrupole errors.

scribed by

Mk = RM0R−1 (4.28)

. On the other hand, Mk can be calculated by using the additional skew error matrix
as follow:

Mk = TkRIPK1RT −1
kRIPM0TkLIPK1LT −1

kLIP (4.29)

.
Transferring the values of(x, y) that are measured by the MQC2 monitors to

the IP while including the effects of the additional skew components K1R/L, and the
transferred physical variables with additional skew errors can be written using

x∗

p∗x
y∗

p∗y


wE

=TkR/LIPK1R/LT2kR/LIP


xBM2R

yBM2R

xBM2L

yBM2L

 (4.30)

=T1R/LIP


xBM1R

yBM1R

xBM1L

yBM1L

 (4.31)

where subscript wE is a physical variable with additional skew errors, BM2R and
BM2L are beam positions measured by the right and left BM2 monitoring set, and
BM1R and BM1L are beam positions measured by the right and left BM1 monitor
set, respectively. TkR/LIP is a composed transfer matrix of TkRIP and TkLIP, K1R/L is a
composed transfer matrix of K1R and K1L, T2kR/LIP is a composed transfer matrix of
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T2kLIP and T2kRIP, and T1R/LIP is a composed transfer matrix of T1kLIP and T1kRIP.
On the other hand, if the real situation is almost same as the lattice model, the

additional skew components K1R and K1L become identity matrices. Since transferred
physical variables without additional skew errors can be written as

x∗

p∗x
y∗

p∗y


woE

= TkR/LIPT2R/LkR/L


xBM2R

yBM2R

xBM2L

yBM2L

 (4.32)

where subscription woE means physical variable without additional skew errors , then
the difference between the matrices with skew errors and without skew errors is

∆x∗

∆p∗x
∆y∗

∆p∗y

 =


x∗

p∗x
y∗

p∗y


wE

−


x∗

p∗x
y∗

p∗y


woE

(4.33)

=
(
TkR/LIPK1R/LT2kR/LIP − TkR/LIPT2R/LkR/L

)

xBM2R

yBM2R

xBM2L

yBM2L

 (4.34)

≡M∆


xBM2R

yBM2R

xBM2L

yBM2L

 (4.35)

where M∆ is defined as the pseudo transfer matrix for the physical variables of the
BM2 monitor set. In another representation, the same value can be obtained from
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Figure 4.51: several components used in this approach and the corresponding matri-
ces.

measured data:
∆x∗

∆p∗x
∆y∗

∆p∗y

 =


x∗

p∗x
y∗

p∗y


wE

−


x∗

p∗x
y∗

p∗y


woE

(4.36)

=
(
TkR/LIPK1R/LT2kR/LIP − TkR/LIPT2R/LkR/L

)

xBM2R

yBM2R

xBM2L

yBM2L

 (4.37)

This representation does not include the factors of the assumed additional skew errors;
thus, the value ∆~x∗ can be calculated exactly. From Eq. (4.34) and (4.37), the realistic
value of the additional skew factors kR and kL, and the combination of these with
Eq. (4.28) can be used to derive realistic coupling parameters in the interval.

To calculate the coupling parameters and the corresponding additional skew er-
rors, the measured data from the Phase-2 commissioning is used. Here, the skew
error of the QC1 magnets is considered as the target; therefore, BPM sets of the
MQC1 and MQC2 monitors are required. As seen in the discussion in the previous
section concerning harmonic analysis, the measured data is formed by the FFT and
adopted as Eq. (4.34), (4.37) and (4.28). As the matrix and Fourier transform (F)
are commutative, the relationship between the measured data and the quasi transfer
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matrix is written as:

∆~x∗ =M∆~xBM2R/L (4.38)

F(∆~x∗) = ~A∗
MQC1(νu)− ~A∗

MQC2(νu) (4.39)

=M∆
~AMQC2(νu) (4.40)

where ~A(ν) is the variable on the frequency domain of the peak value which is at
f = ν, and the others are same notations used in previous equations. Therefore, the
complete form of ~A(ν) is

~A∗
BM(ν) =


A∗

x(ν) cosφ
∗
x(ν)

A∗
px(ν) cosφ

∗
px(ν)

A∗
y(ν) cosφ

∗
y(ν)

A∗
py(ν) cosφ

∗
py(ν)


BM

= TBMIP
~ABM(ν) (4.41)

~ABM(ν) =


Ax(ν) cosφx(ν)

Ay(ν) cosφy(ν)

Ax(ν) cosφx(ν)

Ay(ν) cosφy(ν)

 (4.42)

where A is the Fourier amplitude, φ is the Fourier phase, and TBMIP is the pseudo
transfer matrix that consists of two transfer matrixes from both sides of the BPM,
from the BM to the IP.

Application for simulated BPM data of SAD simulation

Before applying the measured data from SuperKEKB commissioning, the method
used to discover these errors is applied to the simulation data of SAD, which is the
same data that was used in the previous section for verification of the method used for
coupling analysis. To check the procedure of this idea for discovering error sources,
the simulated turn-by-turn data without additional errors are used. Analyzed data
are prepared for the ideal lattice and the modulated lattice with the SK1 parameters
of the QC1 magnets ±1.0 × 10−3. In this test analysis, the analyzed result of the
differences in the r2 and r3 parameters in the SAD simulations should be the same
as the theoretical result calculated as the product of the transfer matrices. Analysis
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is carried out using the equation:

~A∗
qc1(νu)− ~A∗

qc2(νu) = (Merror −Mmodel) ~Aqc2(νu), (4.43)

where the subscript error denotes the matrix with the additional error and the sub-
script model denotes the matrix from the SAD model without any added errors.
The ~A∗

qc1(νu) and ~A∗
qc2(νu) are the U–mode value of the Fourier transform for mea-

sured data at the MQC1 monitors and MQC2 monitors, respectively. The results of
the Fourier spectrum of ~Aqc1(νu) and ~Aqc2(νu) are shown in Fig. 4.52. The value of
~A∗
qc1(νu) − ~A∗

qc2(νu) is calculated in Fig. 4.52. Figure 4.53 shows the Fourier trans-
forms of the simulated physical values at the IP. This figure represents the transferred
values at the IP that were calculated using the transfer matrix from the SAD model.
The additional error as the thin lens skew component is not included in this transfer
matrix in the manual.

The quasi transfer matrix of (Merror−Mmodel) is applied to the U–mode peak in the
lower plots of Fig. 4.52. In order to solve Eq. (4.43), an algebraic equation of at least
the eighth degree is required. In this study, the Durand–Kerner method (Weierstrass
method) with Aberth’s initial condition is adopted as the numerical solution. The
calculation used to derive additional skew value iterates the following equation for
the k–th step:

z
(k+1)
i = z

(k)
i − qn(z

(k)
i )∏n

j=1,j 6=i(z
(k)
i − z

(k)
j )

. (4.44)

The analyzed results are shown in Table ??. According to this table, similar values are
obtained from the analyzed result for r2 and r3, as a theoretical result. The minimal
difference between the two results of r2 and r3 comes from the difference in the error
source. Because the additional error source is set to the edge of the quadrupole
magnet, the position of the error has a finite distance from the practical position. In
order to improve this method, a means of detecting the most likely position of errors
should be developed in the future.

Application for SuperKEKB Phase-2

The case of applying the measured data in Phase-2 commissioning is discussed in
this paragraph. The analyzed data in the frequency domain is shown in Fig. 4.54.
Blue circles denote the U-mode and red circles denote the V-mode in each plot.
The important difference between the two conditions is the existence of the V-mode
peaks. Before changing r2, the V-mode peaks are visible, but these peaks cannot be
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r1[rad] r2[m] r3[1/m] r4[rad]
Before SK1 change (±0 for QC1)

IP (theoretical) −2.0× 10−13 −8.0× 10−14 2.0× 10−11 5.0× 10−12

IP (analytical) −1.3× 10−5 −2.0× 10−7 −1.2× 10−3 −9.8× 10−4

After SK1 change (±1.0× 10−3 for QC1)
IP (theoretical) 6.0× 10−6 −1.8× 10−3 −1.555 6.0× 10−4

IP (analytical) −1.8× 10−2 −1.6× 10−3 −2.9 1.4× 10−3

Table 4.16: The analytical value is reproduced by the method of additional error.
The theoretical value is calculated by SAD code.

seen after changing r2. When only the U-mode is analyzed, the difference between
the two conditions was difficult to see, but V-mode analysis can provide some hints
for identifying the origin of the errors. In the following sections, these behaviors are
discussed in detail.

4.4.3 A Model of partial rotation instead of misalignment

Illustration of the model

A rotation error is expressed in the relationship with an error angle θ and a transfer
matrix sandwiched by rotation matrices with the θ. In general, rotation errors of
the quadrupoles are shown in Fig. 4.55. The corresponding relationships between the
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six-dimensional physics variables for the situations seen in Fig. 4.55 are

M̃ =


cos θ sin θ 0 0 0 0

− sin θ cos θ 0 0 0 0

0 0 0 cos θ sin θ 0

0 0 0 − sin θ cos θ 0

M


cos θ − sin θ 0 0 0 0

sin θ cos θ 0 0 0 0

0 0 0 cos θ − sin θ 0

0 0 0 sin θ cos θ 0


(4.45)

M̃ =


cos θ 0 sin θ 0 0 0

− sin θ 0 cos θ 0 0 0

0 0 0 cos θ 0 sin θ

0 0 0 − sin θ 0 cos θ

M


cos θ 0 − sin θ 0 0 0

sin θ 0 cos θ 0 0 0

0 0 0 cos θ 0 − sin θ

0 0 0 sin θ 0 cos θ


(4.46)

M̃ =


0 cos θ sin θ 0 0 0

0 − sin θ cos θ 0 0 0

0 0 0 0 cos θ sin θ

0 0 0 0 − sin θ cos θ

M


0 cos θ − sin θ 0 0 0

0 sin θ cos θ 0 0 0

0 0 0 0 cos θ − sin θ

0 0 0 0 sin θ cos θ


(4.47)

for the left, center, and right figures, respectively, and where z is equal to s in the
previous notation.

When the magnetic field is symmetrical around the reference axis, the rotation
in the x-z and y-z planes can be ignored, and only the rotation in the x-y direction
needs to be considered. Fig. 4.56 shows the measured quadrupole magnetic field
distribution of QC1 and QC2 in SuperKEKB. Here, A2 and B2 are coefficients of the
quadrupole term and their equation is defined as

Re[V (x, y)] = −cp
e

n/2∑
m=0

(−1)m(An +Bn)
xn−2m

(n− 2m)!

y2m+1

(2m+ 1)!
(4.48)

Im[V (x, y)] = −cp
e

(n−1)/2∑
m=0

(−1)m(An −Bn)
xn−2m−1

(n− 2m− 1)!

y2m+1

(2m+ 1)!
(4.49)

where An and Bn are the coefficients of the scalar potential, and V is the scalar
potential of the electromagnetic interaction B = −∇V (x, y). The imaginary part is
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called the normal components and the real part is called the skew component of the
magnetic field. From the figure, it can be seen that the quadrupole magnetic field
component A2 and B2, which is the subject of this discussion, has good symmetry,
so that only rotation of the x-y plane needs to be considered for "x-y coupling".

The calculation sequence is exactly the same as that used previously (in the model
of additional skew components). Figure 4.57 shows the model for this situation. The
equation of this model is represented by

Mr = TkRIPR−θRMQC1RRθRT −1
kRIPM0TkLIPR−θLK1LRθLT −1

kLIP (4.50)

where Mr is the one-turn transfer matrix with rotation error, and R is the matrix of
the rotation around the z direction. This equation is essentially the same as Eq (4.29),
while replacing K with R−θMRθ. The following calculations are same as those in
the additional skew model.

The important point is that the results of the two models should be identical, as
the error parameters have the same dimension and the analyzed data is the same.
However, the boundary conditions of the error matrices are different, so comparing
the two methods is very useful for checking the accuracy of the result.

This model does not perform well at present. Thus, an improvement of this
rotation model should be developed in the future.
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Figure 4.52: Fourier spectrum of the simulated result for the case SK1± 1.0× 10−3

in the SAD lattice model. The upper plots show the Fourier spectrum of ~xqc1, and
the lower plots show the Fourier spectrum of ~xqc2.
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Figure 4.53: Fourier spectrum of the simulated data at the IP.
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Figure 4.54: Comparison of the two conditions on the frequency domain in the addi-
tional skew model

Figure 4.55: Illustration of several types of rotation errors
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Figure 4.56: A2 and B2 distributions of QC1 and QC2 longitudinal magnetic field.
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Figure 4.57: The model of the method used for calculating the IP beam parameters
with additional rotation error in the QC1 magnets.



Chapter 5

Summary

The IP beam dynamics of SuperKEKB requires careful adjustment as it is the first
machine that has adopted the nano-beam scheme. In this study, the X-Y betatron
coupling at the IP is investigated, which is a second-order error at the collision point,
and the local X-Y betatron coupling at the IP is corrected, which was a significant
problem in Phase-2 of SuperKEKB.

In the analysis of the X-Y coupling, the behavior of the coupling at the collision
point was investigated in detail from adjustments made to each magnetic field using
the C.O.D. measurement method and the Harmonic method of Turn-by-Turn BPM
data.

The QC1 skew corrector coil was used for the correction of errors, mainly in r2 at
the collision point, and a method was established for adjusting Linear X-Y coupling
after Phase-2. To investigate the cause of these errors, measurement-based error
models were used and research was carried out to establish a method in order to
identify the individual errors that were a result of the devised model.

In this study, luminosity of the SuperKEKB operation was compensated via tun-
ing betatron coupling parameters at the IP and evaluating the luminosity behavior,
which is performed by the beam–beam simulation, in the case of the linear optics
aberration existed. First, it is proved that the r1 and r2 of the betatron coupling pa-
rameter remarkably affect the impact of the degradation on the geometric luminosity
of the nano–beam scheme, which is calculated by the effect of optics aberration on
the beam dynamics at the IP in the model of Edward–Teng parametrization. Because
the iterative beam–beam effect is affected by r3 and r4 paraemters of the IP coupling,
evaluation of the collision simulation is required to find effective coupling paraemters
on the luminosity. For the SuperKEKB operation, we figured that the weak–strong
simulation is enough performed to simulate actual collision situation, since it was
observed that one side of colliding beam is scattered by the counter side of beam.

156
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To study about the behavior of the collision condition, bunch current dependency of
the specific luminosity was calculated by simulating the coupling parameter scanned
weak–strong beam–beam model. According to the simulation result, the degradation
of the equilibrium luminosity mainly depends on the degradation of the geometric
luminosity. It could be proved that the luminosity degradation caused by the cu-
mulative effect of beam–beam interaction was also effective. Regarding the betatron
coupling parameter, the r2 was the most sensitive parameter, and the r1 was the sec-
ond most sentsitive parameter. As the model of the collision with betatron coupling
error, r2 and r1 correspond to the tilt between y and px direction, and the tilt between
y and x direction, respectively. This illustration is much apodictic, since the beam
size of real space is extremely squeezed at the IP, and px and py is enlarged in response
to squeezed x and y. By using this result of evaluated coupling parameters, actual IP
optics tuning was performed in the SuperKEKB commissioning. As it is considered
that the r1 and the r2 are effective on the luminosity degradation in keeping with the
result of beam–beam simulations, the r1 and the r2 are selectively adjusted to com-
pensate the coupling parameter errors by using the non-interleaved sextupole system.
However, the problem that the tuning range for r2 is not sufficient to scan optimum
value to produce the best luminosity was occurred. The reason of this problem is
that the global coupling paraemters can not be modified such a large amount. In
order to solve this problem, it is proposed that the QCS skew corrector coils, which
are installed to correct the misalignment and characteristics of each magnet, is used
to compensate the IP X–Y coupling paraemters. The coupling parameter at the IP
is too large in case that the error source was located at the global component, and
the such a large coupling parameter is observed at only visinity of the IP locally are
the reason why skew corrector coils are used. Before skew corrector coils were used
to compensate the IP copupling parameters, the possibility and the estimated value
of skew components have been calculated in the system of transfer matrix of SAD
model. The parameters calculated by the transfer matrix was set to the optics condi-
tion of actual operation. The manually offset of r2 value equals to −6 mm to establish
the linear optics tuning method by using the non-interleaved sextpole system. The
establishment of the optics tuning method for compensating the IP X–Y coupling by
adding the manually tuned skew corrector coils to non-interleaved sextupole system
for correction of the global X–Y coupling is the main conclusion of this study.

As the next topic, the analysing method of the X–Y coupling parameters by
using the BPM system is studied to accurately correct the IP X–Y coupling errors.
In the preceding study, the harmonic analysis and the correlation matrix method
is powerful to calculate the IP coupling parameters. However, in the case of the
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SuperKEKB operation, the method of using correlation matrix is much difficult to
analyse IP parameters because the beam size at the IP is too small to calculate the
coupling parameters remaining in the real space. In the case of the harmonic analysis
method, the beam size in the real space is unrelated to analysing each parameter
since this method is analysing the data of betatron oscillations in the frequency space.
Nevertheless, it is important to calculate the effect of measurement noise on the result
of analysing the X–Y coupling parameters because the noise of monitors affects the
amplitude in the reciprocal space. In order to estimate the allowable noise level,
the simulated data with the noise by adding the Gaussian noise prodused by the
BoxMuller’s method to TbT mode BPM data produced by SAD simulations was
evaluated. And then, the actual measured data was analysed and the accuracy for
analysing the IP X–Y coupling was evaluated in reference to estimated value by using
changed amount of magnetic fields. Consequently, it is proved that the method of
mode separation first give better result to analysing the IP coupling parameters.
Furthermore, the new analysing method which uses the single kick COD trajectory of
the beam with scanning the betatron phase at the IP. This method is performed by
deriving the tilt of the Courant–Snyder ellipsoid in the 4–D phase space. However,
this analysing method much depends on measured noises. When plural eigenmodes
are included in the COD data, the derivation of the ellipsoid tilts becomes too hard.
This method is still under development by using the principle component analysis.

Finally, in order to specify the error source of actual optics in SuperKEKB, the
model to calculate the effect of the IP coupling parameters provided by the magnetic
field in the section delimited by the BPM is considered. The subject of this study
is the derivation of the true transfer matrix of the actual SuperKEKB operation,
which transfers the beam along the ring. To calculate the true transfer matrix, the
actual BPM data and the transfer matrix provided by the lattice model of SAD are
used. Since it is difficult to assume the small error matrix for every thin slices in the
delimited section, one error matrix of the thin lens approximation is installed at the
center of target component. By using the SAD simulation of TbT BPM discussed
above, the possibility of the analysis was evaluated. As the result, the similar value
to the theoretically calculated value of the SAD could be obtained. Nevertheless,
analysed values are not completely agreed with theoretical value. In order to improve
this model, it is inferred that the reproducibility becomes better by adjusting the
separation point of the transfer matrix to insert the additional error matrix. The
result of applications for the measured data shows the significant noise dependency
of the analysed error matrix. Therefore, the noise reduction is the most important
before applying the proposed model to obtain the true transfer matrix.



Appendix A

Methods for Data Analysis

A.1 Singular Value Decomposition
Singular Value Decomposition (SVD) is a fundamental method that uses linear alge-
bra to separate a matrix. The SVD is used in the processes PCA and ICA, so it is a
crucial technique for use in this study. The fundamental mechanism is explained by

X = UΣVT (A.1)

Figure A.1 is an illustration of the effects of each of the matrices in the SVD, and
several matrices are the same as those used in Eq.A.1. This process is therefore very
similar to transformation of the beam matrix.

Figure A.1: The effects of each matrix in the SVD method.
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A.2 Principal Component Analysis
An essential notation in principal component analysis is the linear combination of
variables.

y =
v∑

i=1

cixi == ~cT~x (A.2)

where y is the new variable defined by the linear combination of the original vari-
ables, and the vectors ~x = (x1, . . . , xv)

T and ~c = (c1, . . . , cv) are the variables and
coefficients of the analyzed system, respectively. Principal component analysis seeks
a linear combination of the original variables such that the usual sample variance in
the resulting values is at a maximum. The eigenvectors ~u1 provide the coefficients
that define the linear combination, while the resulting values are the projected points
yim. The sample variance of the projected points y1m gives the first eigenvalue e1.
The usual eigenvalue adopted is

∑
u11 = ~uT1 ~u = 1. Maximization of the variance of

the y1m subject to the given constraint leads to the eigenequation

(~V − e~I)~u = ~o (A.3)

where V denotes the within-group co-variance matrix. Let

~U = (~u1, . . . , ~uv) (A.4)

denotes the matrix of eigenvectors, and the diagonal matrix

~E = diag(e1, . . . , ev) (A.5)

denotes the matrix of the eigenvectors. The eigenequation thus becomes

~V = ~U ~E~UT =
v∑

i=1

e1~ui~u
T
i (A.6)

. These eigenvectors satisfy ~UT ~U = ~1. Since each successive principal component
accounts for a maximum amount of the variation, subject to being uncorrelated with
the previous components e1 > e2 > . . . > ev.
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Figure A.2: An example of ICA signal separation. The top figure shows the mixed
signals with random coupling coefficients, the middle figure shows the original signals,
and the bottom figure shows the estimated signals which are reproduced from the
original signals by the ICA using the mixed signals

A.3 Independent Component Analysis

A.3.1 Theoretical overview of the ICA

The aim of the Independent Component Analysis (ICA) is to verify the original
signals and the law of the mixing signals from the measured data. As an example
of signal separation, Fig. A.2 shows that original signals are predicted by the ICA
as test mixed signals with arbitrary signal coupling factors. According to theory, the
dimension predicted is equal to the number of test mixed signals.

The linear relationship between the m-dimensional observation vector ~x(t) and
the n-dimensional original signal vector ~s(t) is represented by

~x(t) = A~s(t) + ~N(t) (A.7)

where A ∈ Rm×n is the mixing matrix with m ≥ n, and ~N(t) is the noise vector,
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which is statistically independent of the original signal ~s(t).
Physical processes are generally assumed to consist of sufficient independent source

signals and to be correlated temporally. The law of temporal correlation is the most
important factor in analyzing measured data for the accurate explanation of several
phenomena or events. The methods used for separating the important original signal
from noise and physically meaningless signals has been well discussed so far by many
researchers. The ICA is one of the strongest tools and it is very well–known approach
in machine leaning and statistics.

Initially, the data sampled by the BPMs around the ring can be composed into a
matrix such as

X =


x1(1) x1(2) · · · x1(N)

x2(1) x2(2) · · · x2(N)
... ... . . . ...

xm(1) xm(2) · · · xm(N)

 (A.8)

where N is the total number of turns, and the subscript of each component represents
the number of BPMs in order. The arbitrary component xi(j) therefore denotes the
ith BPM on the jth turn.

The ICA algorithm can extract the mixing matrix A and the original signal ~s
from the composed matrix X . Because the original signals are independent of each
other, each signal ~si and its spatial distribution Ai is called a mode.

The signal that represents betatron oscillation in this study, which has a differ-
ent phase at each BPM, will appear as two modes. In the frequency spectrum, an
important property of betatron oscillation is the tune. When betatron oscillation is
written as

~u(t) = Au~su(t) +Av~sv(t) (A.9)

where ~su(t) and ~sv(t) are the U- and V-modes, which are assumed to be sine like and
cosine like modes, the betatron amplitude and its phase advance can be derived using

βi = a2(A2
u,i +A2

v,i) (A.10)

ψi = tan−1

(
Au,i

Av,i

)
(A.11)

where a is a constant depending on the initial conditions. The fractional tune of the
betatron oscillation can be obtained via Fourier transformation.
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