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Abstract

We establish a systematic way to estimate flavor and C'P violating observ-
ables within the Standard Model Effective Field Theory (SMEFT), which describes
high energy phenomena beyond the electroweak symmetry breaking (EWSB) scale.
Based on the established SMEFT approach, we investigate the SMEFT effects on
low-scale observables such as AF = 2 observables and nucleon electric dipole mo-
ments (EDMs). For that purpose, we provide one-loop matching formulae at the
EWSB scale for AF = 2 transitions, and discuss AF = 2 observables of down-type
quark within the framework of the SMEFT. In addition, we study new physics (NP)
contributions to the nucleon EDMs in the SMEFT. Similar to the case for AF = 2,
we provide the one-loop formulae for AF = 0 transitions relevant for the nucleon
EDMs and discuss correlations of these effects with AF = 2 observables such as ex
and AMp, . As the result, we conclude that the SMEFT approach is quantitatively
and qualitatively essential to evaluate the NP effects on the low-scale observables
when the NP scale is much higher than the EWSB one.
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Introduction

1.1 Overview

The standard model (SM) of the particle physics is a theory which describes nature very well.
In 2012, the last missing piece of the SM, the Higgs boson was observed by the Large Hadron
Collider (LHC) experiments [1,2]. This great discovery was a culmination of the success of the
SM. However, some unsolved problems, such as the hierarchy problem and an identity of the
dark matter are remained in the SM. Thus, the discovery is also a beginning of searching for
new physics (NP).

Without a fine-tuning between the observed Higgs mass and the bare mass of the Higgs
boson, a mass of NP particle coupling to the Higgs boson is implied as ~ 100 GeV—-1 TeV. In
addition, if weakly interacting massive particles (WIMPs) dominate a energy density of cold
non-baryonic matter in the universe, Qh? ~ 0.1 ((ov)/10720 CmQ/s.)f1 [3], it is expected that
the mass of the WIMPs is around ~ 100 GeV-1 TeV. In particular, these unsolved problems
indicate that the NP scale is not far from the electroweak symmetry breaking (EWSB) scale
and give us a guideline for the energy scale at which the human race must aim.

However, by the LHC experiment, the NP particles with a few TeV mass have not been
detected yet [4]. At this stage, the experimental facts indicate that the NP consists either
very weakly coupled particles or heavy ones well above the EWSB scale. In particular, in the
second scenario which we focus in this thesis, indirect searches for the NP become important,
because FCNCs and C'P violating observables are sensitive to physics at the high energy scale.
Many obsevable quantities in the flavor-changing processes are precisely determined in both
of theoretical calculations and experimental data. In the near future, the precisions in the
flavor experiments will be further improved, and theoretical precise calculations become more
important [5,6]. Besides, in the flavor-conserving processes, several experiments are proposed
to measure nucleon EDMs, whose sensitivities would be improved by 2 — 3 orders of magnitudes
in near future [7-9]. Although EDMs are flavor-conserving processes, they have a sensitivity to
flavor violations through the W-boson interactions. Thus, NP effects on quark flavor-changing

neutral currents can contribute to quark EDMs simultaneously by exchanging the W boson.



Chapter 1. Introduction

Since the EDMs are very sensitive to NP, they can also prove flavor-changing contributions to
NP.

In conventional evaluations of C'P and flavor violating observables, heavy degree of freedom,
such as NP particles and the heavy SM particles including the top quark and the EW gauge
boson (W, Z, H), are simultaneously decoupled. Then, the NP model is matched onto the low
energy effective field theory (LEFT), which is described by the light SM particles without the
top quark and EW gauge boson. For example, the kaon AS = 2 observables are described by

following effective Hamiltonian only including the down and strange quarks:

M= = (C1)12(dy" Pps)(dvuPLs)

(C)12(dPrs)(dPrLs) + (C3)12(d*Prs”)(d° Pps®)
(Cy)12(dPrs)(dPrs) + (Cs)12(d* Prs®)(d° Prs®)

(C1)12(d" Prs)(dyuPrs)
(Cn2(dPrs)(dPgs) + (Ci)h2(d* Prs”)(d” Prs®), (1.1)

where «, 3 are color indices. The LEFT are eventually compared with experimental data.
However, in the current perspective, this procedure for the evaluations of the C'P and flavor
violating observables is broken down. A class of the NP models where both of NP and SM
particles appear simultaneously in a loop diagram, makes this point clear. As mentioned before,
the NP particles are likely to be much heavier than the SM ones. When there is a large mass
hierarchy among the particles in a loop diagram, higher order corrections of the perturbation
cannot be negligible. Then, corrections of the dynamical top quark to the low-scale effective
operators can be relevant, because the top quark has a large Yukawa coupling and mass. In
particular, in the conventional evaluations, it is not clear that “in which energy scale the top
quark mass (or the top Yukawa coupling) is evaluated.” We call this problem as “matching
scale uncertainty” in this thesis. In addition, since the LEFT does not include the W boson
as a dynamical degree of freedom, it is difficult to analyze correlations between observables
with the FCNC observables and the EDMs through a model independent way. In evaluation of
CP and flavor violating observables, integrating out both of NP and SM particles is no longer
appropriate because of the much high NP scale, and the conventional evaluations based on the
LEFT must be improved by an instead effective field theory in which the heavy SM degree of

freedoms are retained.

The Standard Model Effective Field Theory (SMEFT) [10-12] is one of the candidates for the
effective field theory above the EWSB scale. In the SMEFT, the higher dimensional operators are
invariant under the SM gauge symmetries, SU(3)c x SU(2), x U(1)y, and all the SM particles,
particularly the electroweak bosons (W, Z, H) and the top quark (t), are dynamical degrees
of freedom. The NP diagrams are matched onto the SMEFT, and the renormalization group

9.



1.1 Overview

equations (RGEs) in the SMEFT [13-15] are solved. At the EWSB scale, the SMEFT are also
matched onto the LEFT. By this procedure, we can escape the matching scale uncertainty.
In addition, we can analyze the correlations between the FCNC observables and the EDMs
without specifying a NP model because of the dynamical W boson in the SMEFT. In the
SMEFT procedure, the NP contributions are encoded at the NP scale, and evaluated at the
EWSB scale by solving the SMEFT RGEs. Concerning the Yukawa, gauge couplings and so on,
the anomalous dimensions of the SMEFT dimension six operators have already been calculated
at the one-loop level. On the other hand, the matching at the EWSB scale had not been
calculated at the one-loop level, which is needed to analyze the NP effects with the same order
perturbation calculations#!. In Chapter 5, the effects of one-loop matching formulae are also

discussed qualitatively.

Stimulated by the current situation in the evaluations of the low-scale observables, in this the-
sis, we provide the one-loop matching formulae relevant to the low-scale AF = 2 and 0 operators
with the top Yukawa couplings, and we establish a systematic way to estimate flavor and CP
violating observables in the SMEFT, which are the based on the works by the author [16,17].
By using the one-loop matching formulae and solving the RGEs in the SMEFT, we investigate
whether the SMEFT effects are negligible or not. In the AF = 2 processes, we discuss the
scale uncertainty, which is reduced by the one-loop matching formulae and the SMEFT RGEs.
In addition, the one-loop matching formulae mediated by the Z boson contributes to AF =1
processes, such as K — 7wv which is theoretical clean and sensitive to physics at high energy
scale. By using our matching formulae including the Z mediated corrections, we discuss cor-
relations between the AF = 2 observables and AF = 1 ones with particular emphasis on the
kaon system. We show that the constraint from ex is drastically changed by the right-handed
NP contributions in the Z mediated corrections. Besides, through the one-loop matching for-
mulae for AF = 0 processes, the SMEFT AF = 1 operators contribute to low-scale AF = 0
observables, such as the nucleon electric dipole moments (EDM). We discuss the nucleon EDMs
within the framework of the SMEFT.

By these investigations, it becomes clear that the SMEFT is essential to reduce the scale
uncertainty, the right-handed NP effects are tightly constrained in the Z mediated SMEFT
corrections, and the nucleon EDMs can provide an complementary information on the AF =1
effective operators in future. As a result, we will conclude that the SMEFT effects are quan-
titatively and qualitatively essential in evaluations of the NP contributions to the low-scale
observables when the NP scale is much higher than the EWSB one.

#1 A part of the one-loop matching formula is shown in Ref. [18]. We found that its result is inadequate because
the left-handed top quark contributions are missing, and thus, inconsistent with the SMEFT RGEs [19]. In
addition, the logarithmic scale dependence in Egs. (4.24)-(4.26) of the journal version of Ref. [18] is inconsistent
with that from the RGEs, which are fixed in our result, Egs. (3.16)-(3.18). The formula related to the SMEFT
quark-Higgs operators are given in Ref. [20] (see also Ref. [21]); the result is included in this paper.

-3



Chapter 1. Introduction

1.2 Organization of this thesis

This thesis is organized as following.

In Chapter 2, we briefly review the SM and the standard model effective field theory
(SMEFT). In Section 2.1, in order to clarify an importance of indirect search of the NP, we
discuss flavor and C'P violating effects in the SM. In Section 2.2, we briefly review the SMEFT
and we summarize the dimension-six operators in the SMEFT. In Section 2.3, we summarize
the flavor changing operators in the SMEFT relevant to AF = 2 and 0 processes at the one-loop
level.

In Chapter 3, we provide tree and one-loop matching formulae for the SMEFT AF = 1
operators, which contribute to the AF = 0 and 2 processes in a low scale. In Section 3.2, we
provide matching formulae contributing to the AF = 2 operators in the LEFT. Besides, in
Section 3.3, we provide matching formulae for the AF = 0 process. In Section 3.4, we discuss
that the SMEFT AF = 1 operators are mainly divided into two type, and we summarize
relations between the each operator and observables. Section 3.5 are devoted to the conclusion
in this chapter.

In Chapter 4, we briefly summarize AF = 0, 1 and 2 observables, which are used in this
thesis. Section 4.1 is devoted to the indirect C'P violation in K0 — K" oscillation, Section 4.2
the mass difference in B; meson, Section 4.3 the nucleon EDMs, Section 4.4.1 the direct CP
violation of the K — 7 decays, Section 4.4.2 the decay processes, Kt — nTvv and K — nvi
and Section 4.4.3 the decay processes, K — utu™.

In Chapter 5, focusing on AF = 2 observables, we study the SMEFT corrections above the
EWSB scale, paying particular attention to the dynamical top quark. In Section 5.1, we explain
the matching scale uncertainty in conventional evaluations and show our strategy for reducing
the scale uncertainty. In Section 5.2, we numerically analyze the scale uncertainty by a model
independent way. In Section 5.3, we focus on the left-right symmetric model and investigate the
effects of the scale uncertainty. Section 5.4 are devoted to the conclusion in this chapter.

In Chapter 6, we evaluate the SMEFT correction to AF = 2 observables, paying particular
attention to the Z mediated corrections. In Section 6.1, we discuss the scenario, the Z medi-
ated SMEFT corrections. In Section 6.2, we investigate the correlations between the AF = 2
observables and the AF = 1 ones by a model independent way. In Section 6.3, we focus on a
gluino mediated penguin in the MSSM and investigate the effects of the Z mediated SMEFT
corrections to the AF = 2 observables. Section 6.4 is devoted to the conclusion in this chapter.

In Chapter 7, we study the SMEFT AF = 1 operators effects on nucleon EDMs. In Sec-
tion 7.1, we briefly explain the flavor conserving processes induced by the AF = 1 SMEFT
operators. In Section 7.2, we numerically analyze the nucleon EDMs by a model independent
way within the framework of the SMEFT. Section 7.3 is devoted to the conclusion in this chapter.

Chapter 8 is devoted to the conclusion of this thesis.



An Introduction to SMEFT Operator

In this chapter, we review the standard model (SM) of particles physics and
the standard model effective field theory (SMEFT) with particular emphasis
on flavor changing operators. In Section 2.1, in order to clarify an importance
of indirect searches of the NP, we discuss flavor and C'P violating effects in the
SM. In Section 2.2, we review the SMEFT operators. In Section 2.3, AF = 2
and 0 SMEFT operators are summarized.

2.1 The Standard Model

The Standard Model (SM) of particle physics as the gauge theory consists of the electroweak
(EW), and strong interactions, which has been tested for a long time. In the SM, the gauge group
SU(3)c x SU(2)r, x U(1)y is imposed. The particle contents in the SM are listed inTable 2.1.
The Lagrangian of the SM is given as

Table 2.1: Particle contents in the SM.

Component fiels | Gauge quantum numbers
SUB)c | SU@)L | ULy
Uil
() | s [ 2 | w
UiR 3 1 2/3
dir 3 1 -1/3
( Vil ) 1 2 ~1/2
€iL
€iR 1 1 -1
g 8 1 0
wit 1 3 0
B, 1 1 0
Ht
H= < 70 ) 1 2 1/2

1 1 1
Lsm = —ZGf}Z,GA*“’ — ZWJVWIHV — B B"

1
+ (D, H)Y(D*H) + m*H'H — §A(HTH)2
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+4 (l_yuDul +evDye+ gy Dyuq + ay' Dyu + Jv“D#d) — (l_YeeH + qYyuH + qYydH + h.c.) )
(2.1)

where [, ¢ and H are the left-handed lepton, quark and Higgs SU(2); doublets, respectively,
while the right-handed lepton and quark are denoted by e, v and d. Besides, H = €ij (H7)*,
where ¢;; is the totally antisymmetric tensor satisfying e€jo = +1. Flavor indices 4, j,k,l run
1,2, 3. Covariant derivatives are defined as

a

D, =08, —ipYB, — ng%W,‘j — g GATA, (2.2)

where Y is the hypercharge, 7@ are the Pauli matrices and T4 = \4 /2 with the Gell-Mann

matrices. The gauge field strength tensors are also defined as

Gh, = 0.G;) — 0,G + g fAPCGRGY (2.3)
ley =9,W] — ayW,{ + ng”KW;] Wk, (2.4)
B;w = a,uBz/ - auB,ua (2'5)

where f4BC is the structure constant.
After the electroweak symmetry breaking, the Higgs doublet takes the vacuum expectation

value (VEV) v. Because of the freedom of SU(2)y, rotations, the Higgs doublet can be expressed

as
+
i = ( (Hhofz’GO)/\/i ) ' (26)
Then, the mass of the SM Higgs and gauge bosons are obtained as
mi = \v?, (2.7)
my = %(gf + g3, (2.8)
miy = 39302 (2.9)

Besides, the covariant derivative after the EWSB is obtained as

. g2 - . . . .
D, =9, — Z\ﬁ (W:I-;- + W, I_) —igz (I3 — Qsin? HW) Z, —ieQA, — zgSGﬁTA, (2.10)
where the charges, couplings and gauge bosons are defined as

I =792, Iy =1 tils, (2.11)

RQ=1I3+Y, (2.12)

9z = (g7 + g3)"/? = g2/ cos Oy = g1/ sin O, (2.13)

e = q192/9z = g2 sin by = g1 cos Oy, (2.14)

Z, =W} cos Oy — Bysinfy, (2.15)

-6 -



2.1 The Standard Model

A, = WS sin 6y + B,, cos Oy, (2.16)
W= (Wi FiW?) /V2, (2.17)

For convenience, we show the Pauli matrices:

71:<(1)(1)>,T2:<? _()i>,73:<(1) 01>. (2.18)

The fermion field in the Lagrangian 2.1 are in the interaction eigenstates, where

( ug [ cr (L B 1/2/ - yg/ - Vz,
CJ1—<d/L>7Q2—<S,L>,Q3—<b/L>,l1—<eL>,l2—(uL , I3 = ")

(2.19)
3 dr, v E’, "
s | =V | sL |, v | =Upuns | 2 |- (2.20)
blL bL VE, V3

Flavor changing interaction and GIM mechanism
Here, we focus on flavor changing interactions in the quark sector. In the SM, the flavor
changing interactions in the Feynman-'t Hooft gauge are obtained as
Lom D L2 [(V*)iydy" PowsW, + Vigtiy" Prd; W]
SM \/5 ij Ay LU I ijWi”y LLaj m

2 _
+ {mul [(V*)ijdjLuiRG_ + Vz‘jﬂZ‘RdjLG—i_]

V2 T _ _
— =, M4 [(V*)ijdrjuir G~ + Vijuirdr;GT ], (2.21)

where the quark fields are the mass eigenstates. V is the CKM matrix, which is experimen-
tally determined unitary matrix [22]. In the Wolfenstein parametrization, the CKM matrix is

expressed by

1— 3\ A AN (p — inm)
V= -2 1—Ix2 AN? + O\, (2.22)
AN(1—p—in) —AN? 1

where A ~ (.23 is an expansion parameter and 7 corresponds to a C'P violating phase. Focusing

the matrix elements, it is clear that

vViv =1, (2.23)
ImV,; ~ 0, for i =d,s,b, (2.24)
Vid| < [Vis| < |Vl (2.25)

-7
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In particular, these properties are important to understand flavor changing processes. As the
results of Eq. (2.23), the GIM mechanism [23] occurs. Let us roughly estimate a following flavor

changing amplitude:

A= )" ViViF () for i # j, (2.26)
j=12,3
where F'(x) is a some loop function of z; = m%j /m%, with the up type quark mass my;. In the
quark sector of the SM, there exists a large mass hierarchy, and except for a quark of the third
generation, x; takes a small value. Thus, F(z;) ~ F(0) + AF(x3)d;3 is approximately satisfied,
and A is roughly obtained as

A~ ViiVie - AF (). (2.27)

This mechanism that flavor changing processes are suppressed because of the unitarity of the
CKM matrix is called as the GIM mechanism. In particular, the suppression is often called as
the GIM suppression, and light quarks contributions in loop diagrams are suppressed. Since,
the bottom quark is much lighter than the top quark, the effect of the GIM suppression in the
D meson systems becomes large. Thus, light quarks contributions are suppressed by the GIM
mechanism. However, for the K meson systems, it is noticed that the charm quark contributions
can become large because of small values of |V;4| and |Vis|. Actually, in C'P conserving processes,
the charm contributions dominate, and uncertainties in the SM prediction, such as in AMg
becomes large. On the other hand, in C'P violating processes, the charm contributions are not
large because of Eq. (2.24).

For the B meson systems, the top quark contributions dominate by the GIM mechanism.
As the results, the SM contributions in the meson mixing processes become much small, and a
sensitivity to new physics becomes high. In the K, B; and Bs meson systems, meson mixing
amplitudes are roughly proportional to |V5Vis|? ~ MO Vil ~ A% and ViVi? =~ A4,
respectively. Thus, the sensitivity in the kaon system to the NP scale is roughly higher than By
and B, systems by almost 10?> TeV and 10% TeV, respectively.

2.2 The Standard Model Effective Field Theory

The SM describes nature very well. However, some unsolved problems, such as the hierarchy
problem and the identity of the dark matter, are remained in the SM. Thus, an existence of NP
which solves remained problems has been believed. In this sense, the SM is an effective field
theory valid up to the NP scale A, where new particles appear as dynamical degrees of freedom.
The effective field theory above the NP scale, A, must satisfies the following conditions [11,18]:

1. Its gauge group contains the SM gauge SU(3)c x SU(2)1, x U(1)y,

2. All SM degrees of freedom are included as dynamical fields.

- 8-



2.2 The Standard Model Effective Field Theory

In addition to above conditions, it is often assumed that undiscovered weakly coupled light
particles, such as axions or sterile neutrinos do not exist [11,18]. However, the existence of weakly
coupled light particles is not important, unless we are interested in experiments at the resonance
energy of the new particles [24]. Below the NP scale, heavy new particles are decoupled, and

the NP contributions are encoded in higher-dimensional operators as
1 (6) ()
LsverT = Lsm + 2 Zk: C,O0.7+0 A3 (2.28)

where the first term is the SM Lagrangian at the renormalizable level , and the remaining terms
are higher dimensional operators#!. Because of the above conditions, the higher dimensional
operators are constructed by SU(3)c x SU(2)y, x U(1)y invariant operators consisting of the SM
fields. The non-redundant operator basis for the dimension-six are determined in [11], which
is called as the “Warsaw basis”#2. The independent operators 07(16) are listed in Table 2.2 and
2.3. The independence means that there does not exist linear combinations of the operators and

they are not equation of motion (EOM)-vanishing up to total derivatives.

Table 2.2: Dimension-six operators other than the four-fermion ones.

X3 HY and H1D? V2 H?
Oc | FAPCGIGPG" | oy (HTH)? Ocn (H'H)(Ipe, H)
On | FABCGIGIPGH" | Opp | (HYH)OH'H) | Oun (H'H)(qyu, H)
Ow | EWIrwPw | Oyp | (H'D*H)*(H'D,H) | Oun (H'H)(gyd, H)
Oy 6IJKW/{:/WVJprKu
XZH? VEXH V2H?D
Onc HIHGA,GM | Oy | (oe)r'HW], | O4) (HTzD LH) (L)
Oy HYHGL,G* | O (L,o"e,)HB,,, G (1 DL (I,
Ouw HYHW], Wi Ouwe | (o™ Tu)HGY, | One (HTzD JH) (Eyier)
O | HUHWLW™ | Ouy | (go*u )T AWL, | O (HTzD H) (G qr)
Ougp HYHBB" | Ous | (@o"™u)HB, | O | (H'DLH)(g""q)
Oup HYHB,,B" O | (ot TAd,)HGE, | Omy (H%D WH) (@ Ty 1)
Onwp | HITTHW!,B"™ | Ogw | (go"d.)T"HW], | Ona (HTZD JH) (dpytd,)
Opwp | HIFTHWLBY | Opp | (30" d)HBu | Onua (HTﬁMH)( i)

The derivatives are defined as
HTSEH = H'v'D,H — (D, H) 7' H, (2.29)

where 77 is the SU(2), generator.

#1The dimension-five Weinberg operator [25] related to neutrino masse, and we do not discuss in this thesis.
#21n [10], dimension-six terms have been listed. However, some of the operators include redundance. Tt took
almost twenty four years to reduce the redundance.
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Table 2.3: Four-fermion operators.

(LL)(LL) (RR)(RR) (LL)(RR)
Ou (Lpyuly) (LsyHly) Oee (epyuer)(Esyter) Ope (Lpyplr) (€sv*er)
0% | @) @"e) | Ow | (@) @ytu) | Ow | Gyl (@ u)
01(13) (@7’ a4 ) (@777 q) | Oua (dpyyudy ) (dsy*dy) Oua (Lpvulr ) (dsytdy)
Oz(;) (LpVulr) (@57 qt) Oeu (Epyper) (s ug) Oge (Gpyuar)(Esyter)
O | Gy )@ 7' a) | Oca | (epmen)(dtd) | O | (Gypte) (57 ue)
O [ @) drrd) | OF) | (@uT ar) (@ Tu)
O | @y Thu)(dey?TAdr) | OL) | (Gruar) (deyty)
O | (@ 4q:) (dey*Tdy)
(LR)(RL) and (LR)(LR) B-violating
Oledq (Bher) (dsal) Oduq @B k[(da)TCur][( IOl
oW 1 (@ur)en(@d) | Ogqu e [(g57)T Ol (ud) T Cey)
Oqi)qd (q_ZTA“T)GJk’( TAdt) Oqqq a’gvemékm[( )TCC] H(qgm)TCl?]
o | @Beem(@u) | Ouuu B1](d2)T Cuf][(ud)T Ce]
02 | Bouwer)epn(@dior u)

Within the above dimension-six operators, the one-loop anomalous dimension matrix for

the SM Higgs self coupling, gauge coupling and Yukawa coupling corrections were completely

calculated [13-15]. Since, in this thesis, we focus on the top quark corrections above the EWSB

scale, the anomalous dimension terms which depend on the top Yukawa and QCD couplings are

listed in

Appendix A.1.

2.3 Relevant operator in AF =2 and 0 process

In the previous section, we have summarized the SMEFT dimension-six operators. In this thesis,

we mainly focus on the AF =1 SMEFT dimension-six operators, which contribute to AF = 2

and 0 processes. In particular, we investigate the flavor changing of down type quark induced by

the top quark corrections. For convenience, we summarize the AF = 1 SMEFT dimension-six

operators relevant for the low-scale AF = 2 and 0 processes of down type quark.

First, the dimension-six operators relevant for the low-scale AF = 2 processes are shown as

=(q
= (
= (7",
= (
=(d

7@ (@4,
T @) (@,
Tr.d ) (d A d),

T TA I (d A TAd,

d'yd?) (@),

- 10 -




2.3 Relevant operator in AF = 2 and 0 process

(OG0 = (H'iD, H) @A ¢),
(O = (H'DLH) ')
(Ona)i; = (H'iD, H)(@ A d).

The above operators are relevant at the one-loop level. In order to study NP effects at the higher

energy scales, the following dimension-six operators have to be additionally included:

Jijk

)ijk
(OUU)ijkl =

)

)

)ij
(Omn)ij =
)ij

(Z
(Z

H’L

(
= (u
= (u
= (H
(
= (

T
7
2
i

¢) @ ),
uTA )(uk’Y“TAUZ)v
wud ) (@l
i) (d ),
’fyMTAu])(d APTAGD,
zﬁH (@y*ul),
HYH)O(H'H),
H'D,H)*(H'D"H),

2.38
2.39
2.40
241
2.42
2.43
2.44

(
(
(
(
(
(
(
(2.45

)
)
)
)
)
)
)
)

These operators contribute to the AF = 2 observables through the operator mixings during the

RG evolutions and the matching conditions at the EWSB scale (see Chapter 3).

Next, the dimension-six AF = 1 operators relevant for the low-scale AF = 0 processes are

shown as
(OS))ijn = @ @) (@ ud),
(O = @) @7 d),
(OW)ijwt = @yud) (@ A1d,
(O ija = @3 T ¢ d T4,
(Oaa)iji = (@7 ) (d vPdl),
(04 = (HiD,H)(@y"¢’).
(), = (H'D ) @',
(Ona)ij = (H zﬁH dfy“dj)
(OS5 ijn = (@) (@ ul),
(O8N igi = (@I ) (@ AT,
(OS)igw = (@) (@ d),
(O))iju = (@, TAw9) @A+ TAL).

These operators contribute to the AF = 0 observables through the RGEs and matching condi-

tions at the EWSB scale (see Chapter 3).

11 -
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In Chapter 3, the matching conditions for the AF = 2 and 0 processes at the EWSB scale
are discussed. The SMEFT RGEs relevant for these operators are listed in Appendix A.1.
Phenomenology of the AF = 2 operators are discussed in Chapter 5 and 6, and that of the
AF = 0 processes are in Chapter 7. In Chapter 5, the AF = 2 processes induced by Oy and
ng) are discussed with paying attention to correlations between AF = 2 and 1 observables.
Chapter 5 are devoted to phenomenology of the AF = (0 operators.

- 12 -



Matching Formula

This chapter is based on the works by the author [16,17] . In this chap-
ter, we provide tree and one-loop matching formulae for the SMEFT which
contribute to the AF = 2 and 0 processes in a low-energy scale. At the elec-
troweak symmetry breaking (EWSB) scale, the SMEFT AF = 1 operators of
down-type quark are matched onto the conventional low-scale AF = 2 and 0
operators by the one-loop matching formulae.

3.1 Introduction of one-loop matching formula

HE =2 = (C1)ij(diy" Ppd;) (div, Prd;)

+ (Co)ij (i Pod;) (di Prdy) + (Cs)ig (&5 Prd?)(d] Prdg)

+ (C)ij (d: Prd;) (di Prd;) + (Cs)ij (d; Prd’)(d] Prd?)

+ (C1)ij (div* Prd;) (div, Prd;)

+ (Ch)ij (i Prd;)(di Prdy) + (C5)ii (A Prd?)(d; Prds),

Lepy = Z z:C”OZ + C503 + Z Zcij@ij+ Z Zcz’j@z’j

a=1,245 1 a=1,2 i#£j a3417é]

where 4, j are quark-flavor indices. The effective operators are defined as#!

‘ i -
01 = —;my,dieQa(F - 0)vsd;,

2
. 7 _
Oy = —5ma;digs(G - o) 5,
1 A
03 _ _EgszBCequoGZl)\GB Ggav

#1 Besides, there is a strong CP phase, 6. In this thesis, we assume 6 = 0, for simplicity.

The experimental data indicate that the NP scale is much higher than the EWSB scale. Then,
the NP contributions are encoded in the SMEFT rather than the low-scale effective field theory
(LEFT), which is described by the light SM particles.
defined as [26]

The LEFT for AF = 2 processes are

(3.1)

where 7,5 (i # j) are flavor indices, and «, 8 are color ones. Besides, the LEFT for EDMs are

(3.2)
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O = (d2d)(d]ivsd)), (3.6)
O = (d2 o™ df)(d}io,usd)), (3.7)
Of = (d2d2)(d]ivsdy), (3.8)
OF = (d2d])(d]ivsd3), (3.9)
OF = (d7o™ ) (d}iow5d)), (3.10)
Of = (d2otd})(d) oy 5d3), (3.11)

where o, 3 are color indices, and F),, (Gﬁy)
define F' -0 = F 0", G-0 = GA o" T4 and GA = LeupeGA” with o® = L[y*,4"] and
9123 — 41, Also, f4BC is the structure constant, and myg is a mass for quark ¢q. At the EWSB

scale, the SMEFT operators are matched onto the LEFT and they are eventually compared

is the electromagnetic (gluon) field strength. We

with experimental data.

In this chapter, we provide the one-loop matching formulae, which contribute to the AF = 2
and 0 processes in a low-energy scale. In Section 3.2 and 3.3, it is found that the SMEFT
AF = 1 operators listed in Section 2.3 contribute to the operators in Eq. (3.1) and (3.11) by
the one-loop correction with top quark. In Section 3.4, we discuss importances of the one-loop

matching formulae. Section 3.5 is devoted to a conclusion of this chapter.

3.2 Formula for AF = 2 process

In this section, we provide the formulae for the SMEFT corrections at the one-loop level which
contribute to the AF = 2 LEFT operators in Eq. (3.1).
At the tree level, they are related to the SMEFT operators as

(€0 = = (@i + (CEisis] (
(Cy)ikee = —(Caa)ijij (3.
(Ca)%e = (C))ijis. (
( : (

)ij
)ij
)
Cs)iree = 2(C)igij — E(Céfl))ijija
where the Wilson coefficients in the left-handed side are defined in the low-scale basis, Eq. (3.1),
and those in the right-handed side are defined in the SMEFT, Eq. (2.28). Both of them are
evaluated as a weak scale, y = pupy. The other low-scale AF = 2 coefficients are zero at this
level.

Radiative corrections from the top quark can be sizable because of the large Yukawa coupling.
Combined with the SM bosons, they contribute to flavor-changing transitions of the down-type
quarks. In particular, the SMEFT AF = 1 operators can induce the AF' = 2 amplitudes through
the RGEs and the one-loop matchings at the weak scale, which are exhibited in Fig. 3.1. The

- 14 -



3.2 Formula for AF = 2 process

dj\/ i dj di 4 d
\®/ -
IR R 39 1 dm
+ &3 + &3 t
di e d Ve d  d di
(a) (b) (c)
dj d; dj d; dj d;
Z() !
w*, G* G, w* w*, G* w*, G*
;’WV\,{V{ G*
t t t
d; dy  d dy  d d;
(d) (e) ()

Figure 3.1: Feynman diagrams for the one-loop matchings onto the AF = 2 operators (i # 7).

one-loop matching conditions in the Feynman-'t Hooft gauge are obtained as

oo a9 2
(Cl)'}jl P=—1 [(‘2 + N) (C®)ijas — ACS)ijas + 4(022,)4 I (¢, pow)
C

20\
- mzt [(Céfll))ij:as + (Cg))z&j - (ng))ij?ﬁ} - (Cég))?»sij + 2(052))33'13 + 2(052))i33j] J(x¢)
W
3
Q im
+ onsd > [/\t ((Céé))mm + (C&)igms + (C)mjis + (052))ijmj>
m=1

+ A ((C(gclz))imm + (C5Digim + (CSVimij + (chg))ijim):| K (x4, pw)

a/\ij 3 Oé)\ij & im 3 3 mj
— S (Cihalan )+ 15 > N Chmg + (Chin T | Sofae).  (3.16)
w Wz
oo a\d 20\
(Ca)ij P = 82:: (CENasis I (e, pw) + mzt (Céz))iﬁijj(xt)
w w
o 3 i 8 i ~(8
~ et 2 [/\im(céd))mﬂj + A (Céd))imij:|K (@, i), (3.17)
W m=1
. 20\ 1
1-loop _ t (DY oas GO N y
(Cs);; = 72, [(Cud )33i 2Nc(cud )33ij (CHd)zg] Iy (x4, pw)
404)\? (1) 1 (8)
+ 72, [(qu )33ij — TNc(qu )33ij | J (1)
« im (o) Loo®y
- ”Slzxv Zl [)‘t <(qu Jmi 2N, (qu )mm>
mj 1 1 8
+ )‘t ! ((Céd )zmz] 2Nc (Céd))zmm):| K((IZt, MW)7 (318)
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where the parameters are defined as
2

m i yrx
Ty = Miév N = ViV (3.19)

Here, V;; is the CKM matrix, and sy = sin 6y with the Weinberg angle 0y,. The loop functions

are given as

=% [m - 4(9;__71) - x;(; ix;)rf lnx] , (3.20)
b =5 [m o Z(wx __215) _ ”“’22(;1%”; ; 1 lnx] , (3.21)
J(z) = 1% <1 - i{”i) , (3.22)
K(wp) =3 [111 ]\;LW igiﬂ; - 2””((;”12))2 lnx] , (3.23)
So(z) = % [3’2(; l_lff)j 4 (366_3”21)3 lnx} (3.24)

In the result, the Wilson coefficients in the left-handed side are in the low-scale basis, and those
in the right-handed side are in the SMEFT. Both of them are evaluated at the weak scale,
i = pyw. The other low-scale AF = 2 operators do not receive one-loop corrections through the
top quark decoupling.

The contributions from (’)(g}js) and (’)781’8), in which the W and NG bosons that couple to vir-
tual top quarks are exchanged, are shown in Fig. 3.1(a) and give a loop function I3 (x, u). Those
from 032’3) and Oéb’g) are shown in Fig. 3.1(b) and give J(x). Those with the K (x, 1) function
come from flavor-changing self-energy corrections to the down-type quarks in the effective oper-
ators [Fig. 3.1(c)], where the top quark is exchanged. The results for the quark—Higgs operators,
(’)g’qg) and Oy [Fig. 3.1(d-f)], are consistent with those in Refs. [20,21] and give loop functions
Ii(z,p), I(z, ) and So(x). The loop functions, Iy (z, u), I2(x,n) and K(z,pn), depend on the
matching scale u explicitly, whereas J(z) seems to be independent of it. The scale-dependent
term associated with Fig. 3.1(b) is proportional to O(g?) and neglected in our approximation.”?2
We checked that this logarithmic dependence is consistent with the anomalous dimensions in
Ref. [13-15]. As a result, the logarithmic dependence on pyp cancels out by taking account of
the RGEs in the leading-logarithmic limit.#3 This is expected because this dependence in the

#2 Such a divergence is canceled in the SM due to the GIM mechanism. In Fig. 3.1(b), the GIM mechanism
does not work because 0§§*3> and Oé;‘g) depend on the up-type quark flavor.
#3 Focusing on the top-Yukawa terms, we checked the following relations in the leading-logarithmic limit,
A(Cras)i;  O(Cras)ie 8(01,4,5)51001)

= =0. 2
Oln uw Oln uw + Oln uw 0 (3.25)

- 16 -
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matching conditions has the same origin as the beta functions in calculating loop diagrams (see
Ref. [21]).74 #°

After matching onto the low-scale operators, they are evolved by the RGEs as usual. Then,
the results are compared with the experimental data, i.e., the K°-K° and BS—ES (g = d,s)

oscillations.

3.3 Formula for AF = 0 process

In this section, we provide formulae for evaluating the EDMs induced by flavor-changing oper-
ators. At the EWSB scale, they are matched to the LEFT operators. We provide the one-loop
matching formulae between the SMEFT AF = 1 operators listed in Section 2.3 and the LEFT
AF = 0 CP-violating operators in Eq. (3.2).

The matching conditions are derived by integrating out SM heavy degrees of freedom, such
as W, Z, H and t. At the tree level, we obtain the conditions,

~ij\tree i

(CY)ree = 1 [(Cé?)m - (Cé{f{))z’jji}a (3.26)
gy tr i 1 1 1 8 8

(C)tree = 1 [2<(C(§d))jiij - (Céd))ijji> N ((Cq(d))jiij - (Céd))z‘jjiﬂ, (3.27)

where the Wilson coefficients are evaluated at the EWSB scale, u = pw. The other LEFT
operators are not induced at the tree level.

In addition, the SMEFT AF = 1 operators can generate AF = 0 amplitudes through the
one-loop matching conditions at the EWSB scale. We focus on the contributions from the loop
diagrams with the top quark and the W boson. The conditions in the Feynman-"t Hooft gauge

are obtained as

~ij\1-loo ji a ji
(G = — Im P\i (Cgl))?)?)ij]ll(xtaﬂW) - —om W (C(gi))sm‘j} J(x+)

271'812/1/ 2
3
@ jm mi
t s > {Im [/\i (Céz))m“j} +Im [)‘t (Céi))jmz‘j} }K (ze, pw),  (3.28)
W m=1
~ij\1-loo « i 1 1 8
(C )t oop = — -y Im{Ai [(Cid))%ij - TNC(Cde))?,sij - (CHd)z‘j] }Il(xt,ﬂw)
20 Gi [ [ (D) L)
_ Trs%/‘/lm{)\t |:(qu )33ij - TM<qu )33ij:| }J(gjt)
3
@ m [ (1) IR
e 3 (o8- ]
W m=1 c
. 1
+Im [A?” [(Cé(li))jmij - TNC(CS))MUH }K(:rt, ). (3.29)

#4 The logarithmic scale dependence in Eqs. (4.24)—(4.26) of Ref. [18] is inconsistent with that in the RGEs.

#5 In Appendix C, we also checked that double-penguin contributions to AF = 2 operators vanish when
the gauge bosons of the SM unbroken gauge symmetries are exchanged. This justifies our one-loop matching
conditions.

17 -



Chapter 3. Matching Formula

All the Wilson coefficients are evaluated at the EWSB scale, 4t = py. The other LEFT operators
for the EDMs do not receive one-loop corrections at this scale.

Similar to the LEFT AF = 2 operators, below the EWSB scale, that of AF = 0 are evolved
by the RGEs in Appendix A. Then, the EDMs are evaluated around the hadron scale.

3.4 Discussions

In evaluations based on the SMEFT, the NP particles and the heavy SM particles such as
the top-quark and the EW gauge boson are integrated out at different energy scales. The
NP particles are decoupled at the NP scale, which are encoded into the SMEFT. Then, the
heavy SM particles are decoupled at the EWSB scale, which are encoded into the LEFT. Since
the NP effects in the conventional LEFT evaluations are at the one-loop level, the one-loop
matching formulae at the EWSB scale are essential to reproduce the same order calculation of
the conventional estimations. This is the qualitative reason why the one-loop matching formula
is needed.

By the tree-level matching, terms including log Mxp/uw appear and become dominant con-
tributions if the NP scale is much larger than the EWSB scale. Then, finite terms coming
from the one-loop matching formulae are O(10)% compared with the tree-level contributions.
Therefore, the one-loop matching formulae are essential to evaluate the low-scale observables

with high precision.

3.5 Conclusion of matching formula

In this chapter, we provided tree and one-loop matching formulae for the SMEFT, which con-
tribute to the AF = 2 and 0 LEFT operators. In order to evaluate the low-scale observables,
the operator matching needs to be performed at the one-loop level. This is because the NP
contributions often appear together with the heavy SM particles at the one-loop level. By the
one-loop matching formulae, the LEFT Wilson coefficients at the EWSB scale are changed by
O(10)% compared with the tree-level matching contributions. We conclude that the one-loop

matching formulae are essential qualitatively and quantitatively.
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Observables

In this chapter, we summarize low-scale observables such as AF = 0, 1 and
2 observables which are discussed in this thesis. In Section 4.1, the indirect C' P
violation in K° —FO oscillation are summarized, Section 4.2 the mass difference
in B4 meson, Section 4.3 the nucleon EDMs. In Section 4.4, flavor changing
observables relevant for Z mediated corrections discussed in Chapter 6 are
summarized. In Section 4.4.1, the direct C'P violation of the K — 77 decays
are summarized, Section 4.4.2 decay processes K — wvv and Section 4.4.3 a
decay rate of Ky — putpu~.

4.1 ERK
The indirect C'P violation of the neutral kaon system, ek, includes the SM and NP contributions,
ex = ' (G%M + 61}?) , (4.1)
with ¢ = (43.51 +0.05)°. The SM prediction is estimated as [27]
M = (2.035 £ 0.178) x 1073, (4.2)

where V;, is determined by the inclusive semileptonic B decays. The NP contribution is repre-

sented as

AP ﬁ(AiZ@ [Tm (M), (4.3)
exp

where &. = 0.94 [28,29] and (AMK)exp = 3.483 x 10715 GeV [30] are used. Also, ME =
(KOIHEP=2 K®) /2M ¢ with Mg = 0.4976 GeV [30]. The Wilson coefficients are evaluated with
the NLO-QCD RGEs [31], and hadron matrix elements in Ref. [32] are used. On the other hand,

the experimental result is [30]
€5P] = (2.228 £ 0.011) x 107°. (4.4)
From Egs. (4.2) and (4.4), we obtain the bound on the NP contribution as
—0.16 x 1072 < el < 0.55 x 1073, (4.5)

at the 20 level.
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4.2 AMsp,

Both the SM and NP affect to the mass difference of the neutral Bg meson, The SM and NP

contributions are represented as
B B
AMp, =2 |(MpH)™ + (MY = AMBY + AMEY, (4.6)

where M4 = (BOH4P=2|B%) /2Mp, with Mp, = 5.27958 GeV [30]. The first term in the
right-hand side denotes the SM contribution, which is estimated as [33]

AMSM = (4.21 +0.34) x 10713 GeV. (4.7)

The Wilson coefficients are evaluated with the NLO-QCD RGEs [31], and hadron matrix ele-

ments in Ref. [33] are used. On the other hand, the experimental result is obtained as [30]
AMS? = (3.3338 £0.0125) x 107 GeV. (4.8)
Thus, the NP contribution is required to satisfy,
0.20 x 10713 < AMY?Y < 1.56 x 10713, (4.9)

at the 20 level.

4.3 Nucleon EDMs

Contributions of @fs and @fd are evaluated by the effective chiral Lagrangian technique [34].
Those operators generate C' P-violating baryon-meson interactions through vacuum-expectation

values (VEVs) of pseudoscalar mesons. Then, from baryon-meson loop diagrams, we obtain™!

dn, ~ ~ _

e (—0.0260{“ + 0.169C’fd> GeV™!, (4.10)
d 5 3

2~ (0.0230{15 - 0.149Cfd) GeV1, (4.11)

where the Wilson coefficients are estimated at the hadron scale, u = 1 GeV. Here and hereafter,
we set @ = 0 for simplicity”2. The derivations of Egs. (4.10) and (4.11) are given in Appendix F.

Four-quark operators, O% and O%, involve the bottom quark. In order to derive their
contributions to the neutron EDM, we follow the strategy explored in Refs. [36-38]. The result

becomes

dy 4 (A ~ _
2 ~a2x107! (de + 0.750db) GeVL, (4.12)

#1 The nucleon EDMs are also induced by baryon-meson diagrams at the tree level [35]. However, we confirmed
that they are sub-dominant.

#2 The Peccei-Quinn (PQ) mechanism is not assumed for realizing § = 0. It is straightforward to extend the
case for § # 0. Then, the PQ mechanism is introduced to avoid the strong C'P problem. The following conclusions
do not change qualitatively.

- 90 -



4.4 Flavor changing observable in Z mediated correction

d . )
L~ 61x 107 (cbd + o.75cdb) GeV!, (4.13)

where the Wilson coefficients are estimated at the hadron scale, u = 1 GeV. Here, the contribu-
tion to the proton EDM, Eq. (4.13), is derived by multiplying a ratio of the magnetic moments,
{ip/ tin, to that of the neutron EDM, Eq. (4.12) (cf., Ref. [38]). On the other hand, O** and O%
are much less constrained by the EDMs, because they do not depend on the down quark.

Let us summarize the current experimental limits and future prospects. The current bounds
are obtained as [39,40]

|d| < 3.0x 1072 ecm, [90% C.L.] (4.14)
|dpy| < 2.1 x 107% ecm. (4.15)

In future, experiments are projected to achieve the sensitivities of |d,| ~ 1072® ecm [7] and
|dy| ~ 1072 ecm [9].

4.4 Flavor changing observable in 7 mediated correction

In this section, we summarize low-scale flavor changing observables relevant for Z mediated
corrections, which are discussed in Chapter 6. As we will discuss in Chapter 6, the AF = 2
observables are correlated with the various AF = 1 ones through the Z boson. In this section,

the AF = 1 observables are summarized.

4.4.1 €'/ex

The direct C'P violation of the K — 7w decays, includes the SM and NP mediated by Z-penguin

contributions,
(€ /ex) = (¢ /ex)™ + (€ Jex)". (4.16)

The latter contribution is approximated to be (cf., Ref. [41])

(€ fex)NP = —B? (m) [5.91 x 107GeV2Im ((C“)Hq)u + (C<3)Hq)12>

+1.97 x 108GeV21m(CHd)1g], (4.17)

where the Wilson coefficients are estimated at the Z-boson mass scale, y = myz. By using
lattice simulations [42-44], Bé3/2) (m¢) = 0.76 = 0.05 is obtained [45,46]. Here, ex in the de-
nominator is evaluated by the experimental value. The right-handed contribution is amplified
by C%V / 512/1/ ~ 3.33 compared to the left-handed one. Currently, the SM prediction deviates from
the experimental result at the 2.8 o level. In this thesis, the discrepancy of € /ek is required to

be explained within the 1 ¢ range,
7.78 x 1074 < (€ /ex)NF < 14.4 x 1074, (4.18)

where Ref. [47] is used for the SM prediction at the NLO level.
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4.4.2 K — wvo

The decay processes, KT — nTvv and K; — 7'vp, are induced by NP mediated by the Z-

penguin contributions, which are theoretical clean”3. They are expressed as [41,46]

_ ImXer \?  /Re. ReXogr | 2
B(K* — ntvp) = ry [(J) + ( 3 P.(X)+ 35 H) ] , (4.19)
ImX.¢]2
B (KL — 71'0w7) =KL [ G ﬁ] , (4.20)

where A = |Vis|, Ae = ViVes, ke = (5.157 £0.025) x 10711(1/0.225)8, k1, = (2.231 £ 0.013) x
10719(1/0.225)8, and the charm contribution gives P.(X) = (9.3940.31) x 10~*/X\*4(0.0440.02).
In terms of Cygand Cpq, Xeg is approximated to be (cf., Ref. [21])

ReXeg = —4.83 x 1074 — 5.62 x 10GeVZReCp 4, (4.21)
ImXeg = 2.12 x 107% + 5.62 x 10°GeV2ImCyy (4.22)

where the first terms in the right-hand sides are the SM contributions in each equation, and
Crro — (O o C 4,93
H+ = (Cyohz + (Cppiz + (Cra)iz- (4.23)

The Wilson coefficients are estimated at the Z-boson mass scale.

The SM predictions are known to be [21]

B(K* — ntwp)™ = (844 1.0) x 10711, (4.24)
B (K, — %)™ = (3.00 £ 0.30) x 10711, (4.25)

while the experimental results?* are [48,50]

B(Kt — ntvw)™ < 1.85 x 1071 [90% C.L.], (4.26)
B (K — 7)™ < 3.0 x 107°. [90% C.L.] (4.27)

These experimental values will be improved in the near future. The NA62 experiment at CERN
has already started the physics run and aims to measure B (K* — nTvi) with a precision of
10% relative to the SM prediction [51]. The KOTO experiment at J-PARC aims to measure
B (K — 7vi) around the SM sensitivity by 2021 [52,53].

#31n particular, Kz — n°vi is C'P violating process, where the charm loop contribution is suppressed.

#4The NA62 experiment has been running in 2016-2018, and the 2016-2017 dataset was analised. In addition
to 7 event candidates at the E787 and E949 experiments [48,49], three candidate events were reported in the
2016-2017 dataset.
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4.43 Ky — ptp~

The decay rate of K;, — ptp~, which is a C'P-conserving process”®, is sensitive to a real
component of the flavor-changing Z couplings. There are large theoretical uncertainties from
a long-distance (LD) contribution, because of huge long-distance contributions through Kj —
y*y* — pTp~ 70, In addition, an unknown sign of A (K7 — ) conceals a relative sign be-
tween the LD and a short-distance (SD) amplitudes. One can, therefore, estimate only the SD
branching ratio, which is expressed as [41,100,101]

_ Rel.
B(KL—p'p )SD_K'#< h\ P(Y) +

(4.28)

ReYer \
A5 ’

where x, = (2.01 £ 0.02) x 1079(1/0.225)%, and the charm-quark contribution is P.(Y) =
(0.115 4 0.018) x (0.225/\)*. Here, Y. is approximately given as (cf., Ref. [21])

ReYog = —3.07 x 1074 — 5.62 x 10GeV?ReCy_, (4.29)
where the first term in the right-hand side is the SM contribution, and

Cu- = (Cg;)lz + (053)12 = (Cua)2. (4.30)

The Wilson coefficients are estimated at the Z-boson mass scale.
The SM value is obtained as [21]

SM

ap = (0.83+0.10) x 1077 (4.31)

B (KL — ,uﬂz_)

It is challenging to extract the SD contribution from the experimental value. An upper bound

is estimated as [57]

B(Kp— ptp)gy <2.5x 1077 (4.32)

Since the constraint is much weaker than the SM uncertainties, we simply impose a bound,
—1.81 x 10719 (GeV)™2 < ReCp_ < 4.85 x 1071 (GeV) ™2 (4.33)

Note that the electron mode K — e*e™ is suppressed by m?2/ mi, and the detector sensitivity

to electrons in the LHCD is also weaker than the muon one.

#5 K, is an almost C'P-odd state, which decays to Iys! through S-wave (J = 0,L = 0, S = 0) processes.

#6Note that there is no single photon exchange, because of Provul) = (p+ Q" (@(p)vuv(q)) = 0. As the
result, the SD contribution is comparable to the dominant LD contribution, and K — u 1~ becomes sensitive
to physics at high energy scale.
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4.4.4 Kg— ptp~

The decay, Kg — u™p~, proceeds via LD CP conserving P-wave and SD CP violating S-wave
processes. Since the decay rate is dominated by the former, whose uncertainty is large, the
sensitivity to the imaginary component of the flavor-changing Z couplings is diminished [54,55,
57]. Interestingly, the SD contribution is enhanced through an interference between the K and
Kg states in the neutral kaon beam™” [56]. The effective branching ratio of Kg — pu*u~ after

including the interference is expressed as (cf., Ref. [56])
B(Ks = p ™ )ep = B(Ks = p p7) + D - B(Ks = p pi” Jint, (4.35)
where a dilution factor D is an initial asymmetry between the numbers of K° and K,
D = (N(K°) — N(K%) / (N(K®) + N(K?)). (4.36)
In the right-hand side, the branching ratio is approximated to be
B(Ks — ptu) = 4.99 x 10712 4 3.30 x 10° GeV* [2.39 x 107 GeV ™2 +TmCy_]°, (4.37)

where the first and second terms in the right-hand side come from the LD and SD contributions,
respectively. Here, the Wilson coefficients are estimated at the Z-boson mass scale. On the

other hand, the interference contribution is given as#®

—7.69 x 107 GeV* [2.39 x 107 GeV ™2 + Im Cpy_]|
x [1.73x107°GeV 2 —ReCy—|, (na=-+)
7.69 x 107 GeV* [2.39 x 1071 GeV 2 + Im Cpy_|
x [1.86 x 1079 GeV 2+ ReCp—]. (na=-)
(4.39)

B(Ks — ptpu i =

The Wilson coeflicients are estimated at the Z-boson mass scale. The unknown relative sign be-

tween the LD and SD contributions in K7, — p*pu~ gives two different predictions of B (Kg — u ™)

int?

#7The decay intensity of the neutral kaon beam into f states is expressed as

1) = (14 D) | (FIHASR @) 2+ (1 - D) [(ra= RO o) /2
- % JA(Ks — f)[Pe st + % (KL = )P e " + DRe [e M A(Ks — )" A(KL — f)] e Tt
(4.34)

Because of I's + I'r, ~ I's, an interference term proportional to D contributes to the Ks — ,uﬂf mode in the
LHCDb detector.
#8Here, the interference effect is expressed as

D AKL = pt ) A(Ks — ptan)
spin
_ 16iGE My, Fi Mim?, sin® 0w

3

Im[\]yra {A‘LL,W — 27 sin® 0w (Re[Ad]yra + Re[AcJyc) }, (4.38)

where A7 __ is the dominant LD and a prefactor Im[A;]y74 is the direct C'P violating effect. Thus, the the direct
C P violating effect is enhanced by the dominant LD effects.
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which are expressed by 14, (see Ref. [56,58])

14 = sgn [A’gw} : (4.40)

The SM prediction depends on D and 74, which are determined by experiments. For D = 0,
it is obtained as [54,56,57]

B(Ks — ptp™ )™M = (5.18 £1.50) x 10712, (4.41)
while for D =1 and n4 = —1, the SM prediction becomes [56]
B(Ks — ptp™)SH = (8.59 £1.50) x 10712, (4.42)

€

On the other hand, the current experimental bound based on the LHCb Run-1 result using the
integrated luminosity 3 fb=! is [59]

B(Ks — pT ™)™ <0.8x107%. [90% C.L.] (4.43)

The experimental sensitivity is expected to reach B(Kg — u*pu~) = O(10711) by the end of the
LHCb Run-2, and the Run-3 project is aiming to achieve the sensitivity as precise as the SM
level [60].
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SMEFT top-quark effects on AF = 2 observables

This chapter is based on the work by the author [16]. We evaluate AF = 2
observables with particular emphasis on a scale uncertainty coming from the
large hierarchy between the NP scale and EWSB one. By using the match-
ing formulae in Chapter 3, we calculate AF = 2 Wilson coefficients of the
LEFT at the EWSB scale, my,, and study the matching scale uncertainty in
the coefficients. In Section 5.1, we explain the matching scale uncertainty in
conventional evaluations. In Section 5.2, we numerically analyze the scale un-
certainty in a model independent way. In Section 5.3, we focus on the left-right
symmetric model and investigate the effects of the scale uncertainty. We show
that the magnitude of the scale uncertainty much depend on whether the tree-
level contributions exist or not at the NP scale. The scale uncertainty can be
O(1 — 100%), which is reduced by the SMEFT.

5.1 Scale Uncertainty

In this section, we explain the matching scale uncertainty in conventional evaluations and provide
our strategy for reducing the uncertainty. First of all, let us consider the conventional evaluations
of the Wilson coefficients at the EWSB scale. The NP models are matched onto the low-scale
operators by integrating out the heavy degrees of freedom, such as NP particles and heavy
SM particles, W, Z, H and t, simultaneously. We call the matching scale as “EW matching
scale”. The EW matching scale should be somewhere between the EWSB scale and the NP
one. Since, however, absent discoveries of new particles at the LHC push the NP scale much
higher than the EWSB one [4], an uncertainty of choosing the EW matching scale becomes
large. The uncertainty of choosing the EW matching scale is the “matching scale uncertainty”
in conventional evaluations. If the NP scale is not much far from the EWSB scale, the scale
uncertainty does not become problem. Behind the conventional evaluations, it is assumed that
the NP appear near the EWSB scale. However, experimental data may indicate much higher
NP scale than the EWSB scale [4]. In the current perspective, it is important to investigate
effects of the scale uncertainty.

The scale uncertainty mainly causes two problems. One is breaking down of the perturbation
by the large, log Mxp/purw. Because of this large log coming from the hierarchy between the
NP scale, Mnp, and the EWSB one, pygw, one-loop calculations including the NP particles and
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the SM ones become inappropriate, and higher order corrections of the perturbation cannot be
negligible. Let us focus on the loop function K (x¢, ugw) in Chapter 3, where ugpw is the EW
matching scale. The ratio of the loop function between the EWSB scale, ugw ~ 80 GeV, and
the high energy scale, Myxp = 10 TeV, is estimated as K (z¢,10 TeV)/K (x4, upw) =~ 40. This
O(10) value mainly results from the large log in the loop function, K(z:, Mxp). This large
logarithm should be resummed by evolving the RGEs from Myp to ugw.

Another problem is scale uncertainties in coupling constants such as the top Yukawa cou-
pling and the QCD coupling. By the matching scale uncertainty, it is not clear in which energy
scale the top mass and QCD coupling are evaluated. For example, the ratio of the top Yukawa
coupling between the EWSB scale, ugw = 80 GeV, and the high energy scale, Myp = 10 TeV,
is estimated as y2(80 GeV)/y?(10 TeV) ~ 2 in the MS scheme, which increases the scale uncer-
tainty™!.

Next, we move to our strategy for removing the scale uncertainty. In a word, our strategy is
solving the renormalization group equations (RGEs) of the SMEFT [13-15] and using the one-
loop matching formulae in Chapter 3. The above two problems coming from the EW matching
scale uncertainty are resolved by the RGEs and the one-loop matching. Our strategy is divided

into three processes. We describe the details for the each processes below.

1. Matching at the NP scale.— At the NP scale, the heavy NP particles are decoupled,
and the NP models are matched onto the SMEFT. Without a hierarchy of mass scales
between the NP particles, there does not exist uncertainty in the matching scale. Since,

the hierarchy much depends on NP models, we do not discuss this effect in this thesis.

2. Solving the RGEs in the SMEFT.— The RGEs of the SMEFT are solved from the NP
scale to the EWSB one. As results of the RGEs, the large log Myp/ugpw is resumed and

the scale uncertainties in couplings disappear.

3. Matching at the EWSB scale— At the EWSB scale, the heavy SM particles, such as
W, Z,H and t, are decoupled, and the SMEFT are matched onto the LEFT summarized
in Chapter 3. The EW matching scale dependences are also cancelled between the one-
loop matching conditions and the SMEFT RGEs. Because of a small hierarchy of mass
scales between the heavy SM particles, the uncertainty in this matching scale is small. See
Chapter. 3 for the details.

Through these processes, the EW matching scale uncertainty is reduced, and two problems

coming from the matching scale uncertainty are solved.

#1This kind of uncertainty quite depends on the NP models. As discuss later, in the left-right symmetric model,
this uncertainty of a leading contribution is accidentally cancelled by QCD RGEs in four-quark operators.
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5.2 Scale Uncertainty in General Model

In this section, we investigate the EW matching scale uncertainty without specifying models.
Based on the procedure in Sec. 5.1, we numerically analyze the EW matching scale uncertainty in
the Wilson coefficients at the EWSB scale, myy. Here, we emphasize that the EW matching scale
uncertainty depends on the NP models. In general, Wilson coefficients at the NP scale depend
on the top Yukawa and the QCD coupling, and the dependence is determined by specifying a NP
model. Therefore, the scale uncertainty coming from evaluation scale of the coupling constants
can not be included in this section. However, this model independent discussions are meaningful
to understand effects of quantum corrections coming from the top Yukawa coupling above the
EWSB scale.

Since, we are interested in estimations of AF = 2 observables, we focus on the Wilson
coeflicients (C4);j(mw ). In this section, we numerically investigate the EW matching scale un-
certainty in the Wilson coefficients (Cy);; at the EWSB scale, myy. As discussed in Chapter. 3,
the NP contributions to (Cy);; are expressed by the SMEFT coefficients, (C;Z))Z-jij, (C’ii))ggij,
(C;g))ggij, (Céz))mjij and (C;fl))imij, for m = 1,2, 3. Here, it is noticed that at the EWSB scale,
the SMEFT AF = 2 coefficient, (Céz))ijija generates the low-scale one, (C4);j, by the tree-level
matching, and the others by the one-loop level one. Therefore, for a case that (Cétgi))ijij is
generated at the NP scale, the top Yukawa corrections to (Cy);j(mw) are sub-leading contri-
butions. On the other hand, for not the case, the top Yukawa corrections to (Cy);;(mw) are
leading contributions, and the EW matching scale uncertainty becomes large. For simplicity,
we consider a case where only one of the SMEFT coefficients takes a non-zero value at the NP
scale, and the others are zero. In addition, we assume that the each SMEFT coefficient is set
as (Csmerr) = i/(Mnp)?. We evaluate the Wilson coefficients (Cy);;(my) by following three

ways;

1. SMEFT with RGEs.— At the NP scale, Myp, the SMEFT coefficient is set as (Csyprr) =
i/(Mxp)?, and the RGEs are solved. At the W-boson mass scale myy, the SMEFT coeffi-

cients are matched onto the Wilson coefficients (Cy);;.

2. Conventional estimation 1.— At the top quark mass scale m;, the SMEFT coefficient is
set as (CsmprT) = 4/(Myp)?, which is matched onto the Wilson coefficients (Cy4)i; without
the RGEs of the SMEFT. The QCD RGEs are solved from the top quark mass, m, to the

W-boson one, myy, and the Wilson coefficients (Cy);;(mw) is estimated.

3. Conventional estimation 2.— At the NP scale, Myp, the SMEFT coefficient is set as
(Csmerr) = i/(Myp)?, which is matched onto the Wilson coefficient (C4)j without the
RGEs of the SMEFT. The QCD RGEs are solved from the NP scale, Myp to the W-boson

one, myy, and the Wilson coefficients (Cy4);;(mw ) is estimated.

Comparing these three estimations, we numerically analyze the EW matching scale uncertainty.
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In Figs. 5.1-5.3, the Wilson coefficient, (Cy)13(my ), is displayed as a function of the NP
scale, Myp, for each SMEFT coefficient. In the case for the Wilson coefficient (Céz))lglg, the
top Yukawa corrections are sub-leading, and the scale uncertainty is also small. In order to
investigate the differences of the SMEFT with RGEs from the Conventional estimation 1,2

quantitatively, we define the difference as

Cy (mW)SMEFT —Cy (mW)Conventional
Cy (mW)SMEFT )

difference (Cy) = (5.1)
and the sub-leading top Yukawa corrections for (Céi))lglg is displayed in the left panel of
Figs. 5.2, which shows that the EW matching scale is O(1%) for (Céfl))lglg. The magnitude of the
scale uncertainty roughly results from a form of the top Yukawa corrections, y?/(47)? log Mxp /myy .
In the other cases, the top Yukawa corrections are leading contributions to the AF = 2
process, and the scale uncertainty is large. Fig. 5.2 and Fig. 5.3 show that the EW matching
scale uncertainty is O(100%). This is because AF = 1 SMEFT operators contribute to the
AF = 2 processes only through the top Yukawa corrections. As the results, the magnitude of
the scale uncertainty is roughly expressed as a form, K(z;, Mnp)/K (x¢, my) ~ 40. Here, we
emphasize that this large scale uncertainty represents the quantitative importance of the one-
loop matching formulae. In the large NP scale than the EW one, the loop function coming from
the matching formulae such as K(z¢, uw) is dominated by the large logarithm, which is also
regarded as contributions from the tree-level matching. Therefore, the large scale uncertainty
shows that the one-loop matching formulae quantitatively change evaluations based on the tree-
level ones by O(10)%. Besides, some of plots show that (Cy4)13 for the SMEFT with RGEs can
be zero because of an interference between the tree-level matching effects and the one-loop ones.

We numerically confirmed that this behavior results from the RGEs effects.

5.3 Scale Uncertainty in the Left-Right Symmetric Models

In this section, as an application of our matching formulae, we investigate the EW match-
ing scale uncertainty in the left-right symmetric models. In this model, at the tree-level, the
SMEFT AF =1 flavor changing operators are generated, and the one-loop matching formulae

in Chapter 3 are essential in the AF = 2 processes at the EWSB scale.

5.3.1 Left-Right Symmetric Models

In this section, let us study left-right symmetric models to demonstrate the SMEFT corrections
of the dynamical top quark as explored in Chapter. 3. In particular, we focus on the effects of
the SMEFT AF = 1 operators for the AF = 2 transitions.

The left-right extension of the SM implements the parity violation in the weak interaction
by spontaneously breaking the SU(3), x SU(2), x SU(2) , x U(1) 5_; gauge symmetries [61-65].
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Figure 5.1:  For the SMEFT coefficients, (Céz))nlgg (left) and (C(gfl))lglg (right), the Wilson
coefficient (Cy);;j(mw ) for AMp, are shown as a function of the NP scale, Myp. Green, magenta
and blue solid lines correspond to the three ways, SMEFT with RGFEs, Conventional estimation
1, and Conventional estimation 2, respectively.

The new right-handed W boson generates FC charged currents in addition to the SM left-handed
W boson. The quark interactions of the left- and right-handed W bosons are

%(VL)ijai'yppLdjWE + %(VR)ijai’YuPRdjWg + h.C., (5.2)

where the first term is for the SM W boson. The right-handed W boson, Wpg, is obtained by

replacing L <+ R, in the second term. Here, the new coupling gr and the mixing matrix Vp are

»Cint =

introduced for Wg similarly to W7p.

The gauge symmetries are broken to SU(3). x U(1),,, by Higgs vacuum expectation values
(VEVs). In the minimal setup, the VEV of the Higgs field, Ag, whose charges are
(SU(2);,SU(2)z, U(1)5_;) = (1,3,—2), breaks the left-right symmetry, SU(2); x SU(2)p x
U(1)g_;, to SU(2), x U(1)y. The VEV of the Higgs bi-doublet, ® € (2,2,0), enables EWSB.
On the other hand, the VEV of Ay € (3,1, 2) is assumed to be suppressed. The particle contents
in the left-right symmetric model with charge symmetry are listed in Table 5.1

Their components are expressed as

AF/VZ AT ] . [cbo ﬂ
A= |0 ! =L,R), &=|1 721, 5.3
7 Al imnm e= [ >3
The spontaneous symmetry breaking is achieved by the VEVs,
1 0 O 1 Jvcosp 0
O A IR | el A § (5.4)
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Figure 5.2: For the SMEFT coefficients, (Céz))lglg, (left) and (C;i))leg (right), the Wilson

coefficient (Cy);;(mw) for AMp, are shown as a function of the NP scale, Myp. Green, magenta
and blue solid lines correspond to the three ways, SMEFT with RGFEs, Conventional estimation
1, and Conventional estimation 2, respectively.

Table 5.1: Particle contents in the left-right symmetric model with charge symmetry.

Component fiels Gauge quantum numbers
| SUB)e | SUQ)L | SU@R | UMW)t
0 3 2 2 1/3
q% 3 1 2 -1/3
¢ 1 2 1 —1
15 1 1 2 1
P 1 2 2 0
Ap 1 3 1 2
AR 1 1 3 -2

We impose a hierarchy among the Higgs VEVs, vg > wvcosf,vsin8 > vr, in order to be

consistent with observed phenomena and to avoid fine-tunings in the scalar potential [66,67].

An angle « is a spontaneous C P-violating phase. In addition to the QCD 6 term, « induces the

strong C' P phase [68]72, which is severely constrained by the neutron electric dipole moment [39].

As we will see below, the following analysis is independent of «. The masses of the left and

right-handed W bosons are approximately given by
gi

2
2 2 2 _9Rr 2
My, ~ =20, My, ~ = tvg,

| : (5.5)

for vg > v with v ~ 246 GeV.

#2 Qee discussions in Refs. [69-71] for the strong C'P problem with a generalized parity invariance P.
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Figure 5.3: For the SMEFT coefficients, (Céz))3313 (left) and (Cﬁ))g;ﬂg (right), the Wilson
coeflicient (Cy);;j(mw ) for AMp, are shown as a function of the NP scale, Myp. Green, magenta
and blue solid lines correspond to the three ways, SMEFT with RGFEs, Conventional estimation
1, and Conventional estimation 2, respectively.

In addition to the W bosons, heavy Higgs bosons, H® and H*, have FC couplings as
V2

—kLint =
vcos2f

[ (V] M, Vi) Prd H® + d(V}i M, V;) Ppd (HO)*
+ w(M,Vg)Prd H + d(V}iM,) PLu H—] : (5.6)

with H? = cos 8¢ — sin Be’® (¢(1))* and H' = cos 6453 + sin ﬂeiaéf. Here, vg > v is assumed,
and the up-type quark masses is M, = diag(my, me,my). The masses of the heavy Higgs
bosons, My = \/azvr/ V2 cos2f3, are almost proportional to vg. The parameter a3 comes from
the Higgs potential. The Higgs potential in the limit of vg > v is given in Appendix B.1.

The right-handed W boson and the heavy neutral Higgs boson, as well as the SM (left-
handed) W boson, induce AF = 2 transitions [72,73]. They are severely constrained by the
observed meson oscillations. First of all, let us briefly overview the conventional approach. In
literature, the Wilson coefficients of the low-scale operators in Eq. (3.1) are set by integrating
out Wx and H? as well as W, and the up-type quarks [74,75]:

. 2V/2G My, M
C H—tree _ uk Ul /\LR i /\RL ij 5.7
( 4)2] cos2 23 Z ) ( ) ( )
2.2
Wr-Wr _ 9L9R MMy, My LR\ijyRL\j
2
H-se. _ ngR MMy My LR\ij (yRL\ij
(Colse = - 1252 2 1, kM; AERYTAELYY F (7, 7R), (5.9)
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(Cy) Hverts — _ 919k Doy (\LRYG(\RLYT T (ry 7, 71, 7R) (5.10)
i 2 2 M b ) M N
J 1672 o My, My,

where the parameters are defined as

MY = (Vi (VR)kj, ok = M;k :
Wi
M2 M2 M2 m2
IBE I;VL, TL = M;L, TREing, TkEiu;, (511)
MWR MH MH MH

and ()\RL)Z is given by replacing L + R in (ALR)Z. Here, the indices k,l are the up-type
quark flavor, and the definitions of the loop functions F4, Fp and F¢ are summarized in
Appendix B.2.#3

Among the Wilson coefficients, the tree-level contribution, (Cy)" ¢, is obtained by ex-
changing the heavy neutral Higgs boson. The one-loop contributions, (Cy)7~5¢ and (Cy)Hvert:,
are given by self-energy (s.e.) and vertex (vert.) corrections to the tree-level heavy neutral Higgs
diagram, respectively. Here, the on-shell renormalization scheme is applied [74]. On the other
hand, the one-loop contribution (Cy)"2 W& comes from a box diagram where both the left- and
right-handed W bosons as well as the up-type quarks are exchanged.”* It is impoartant that
(C4)Wr~Wr itself depends on a choice of the gauge fixing. Here and hereafter, the Feynman-'t
Hooft gauge is used. The gauge invariance of the transition amplitude is guaranteed by adding
the one-loop neutral Higgs contributions, (Cy) 5 and (Cy)HVert [74,76-78].

In the conventional calculation (Ref. [75] as a representative case), after the above Wilson
coefficients are set, the RGEs for the low-scale operators are solved [31]. However, it is noticed
that the one-loop diagrams include the left-handed W boson and the up-type quarks, which
are much lighter than the right-handed W and heavy Higgs bosons for, e.g., the LHC con-
straints [4,79]. Hence, it is uncertain in which energy scale the Wilson coefficients should be
input. Moreover, the heavy charged Higgs boson contributes to the AF = 2 transitions through
box diagrams with the SM W boson and the up-type quarks. Although the contribution is often
neglected in the literature (see Ref. [78] for an early work), it may be comparable to (Cy)H 5
and (Cyq)H Vet Since the SM W boson and the up-type quarks are much lighter than the
heavy charged Higgs boson, the scale uncertainty problem arises similarly to the above. In the
next section, we study the AF = 2 processes in left-right symmetric models by the procedure

explored in Chapter. 3.
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Figure 5.4: Schematic figure for the SMEFT framework in the left-right symmetric model.

5.3.2 Matching Scale Uncertainty

In this section, we focus on the top quark contribution coming from the one-loop matching
conditions in Chapter 3. First of all, let us summarize the analysis procedure in Fig. 5.4. At
the decoupling scale of the left-right symmetry (urr), the Wilson coefficients in the SMEFT are
evaluated. In addition to the AF = 2 operators (the red colored diagrams in Fig. 5.4), there
are AF = 1 top-quark operators which eventually contribute to the AF = 2 transitions (the
blue colored diagrams). After solving the SMEFT RGEs, they are matched onto the low-scale
operators at the EWSB scale, where we need to take account of the one-loop level matching
condition. Below the EWSB scale, we follow the standard procedure for the AF = 2 observables.

First, let us consider the matching condition of the SMEFT at pu = prr (the first line in
the Fig. 5.4). At the tree level, one obtains the following AF = 1 SMEFT operators at the

dimension six after integrating out Wg,

2
ree g
(ClDss = —M§ (Vhis(VR)s;, (5.12)
Wr
ree 1
(C&z))gsij = 5N, (Ci?)gsij- (5.13)
Cc

#3 Our results in Egs. (5.9) and (5.10) are smaller than the result of Ref. [75] by a factor of 2.
#4 If Wr and H are sufficiently heavier than Wy, the Wr-Wgr box contribution is much smaller than the
Wr-Wgr box one.
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In addition, by exchanging the heavy neutral and charged Higgs bosons, we obtain the following
AF =1 operators,

(8)\tr . 2\[GF mt T
D\ tr 1 8
(Céd))gfiezi ~ 9N, (C( ))3321 (5.15)

The details of the calculations are found in Appendix B.1. On the other hand, the AF = 2
SMEFT operators are derived at the tree level from the exchange of the heavy neutral Higgs

bosons as
(8)\tree __ QWGF mt LR z] RL
N 1
(Céil))zj(;; = 2N, (szl))zjz] (5.17)

All the above tree-level Wilson coefficients are evaluated at p = prpr.

As for the one-loop level matching, the self-energy and vertex corrections of the heavy neutral
Higgs discussed above contribute to the AF = 2 Wilson coefficients. Besides, in discussing the
Wir—Wg box contributions, one needs to avoid double counting from the one-loop contribution
with (C( ))3313, where the top-quark loop is enclosed by the SM W boson. The result is obtained

as
(C®)Lloor — __ILIRME LRy (3R [ Fy 5y 21, 8) — A Fp (i 7) — Fe(mm o, )
qd /ijig 167T2M2 M2 ’ ) ] ) s 1ty 5
ngR LR\ij (yRL\Gj
) A I 5.18
+ 4772M5VR( )i N (@, por), (5.18)
1)\1-1 1 8
(Céd))iﬁfop = W(Céd))ijijv (5.19)

(8)

where the second term of C' o stands for the subtraction to avoid the double counting. We can

1-loop -
ijij
In addition, the one-loop matching condition that comes from the H* and W, box diagrams is

see that the urr dependence in (0(8)) is dropped when the scale is set to be prr = Myy,.

obtained as

8)y1doop _ V2GF g% i\ LpyijyRLyi | L

(C )WJ T2 cog2 283 Mg{ (A )t (A ) E}—D (xey e, 1) + J(240) | S (5.20)
1)\1-1 1 8

( (gd))zlji(])'op = TNC(C;d))ijz‘ja (5.21)

where the loop function Fp defined in Appendix B.2 comes from H*- W}, box diagrams, whose
result is consistent with that in Ref. [78]. The contribution J(x:) is from the subtraction to
avoid the double counting in similar to the Wr case. All the above Wilson coefficients for the

one-loop level matching conditions are evaluated at p = puppg.
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Figure 5.5: The low-scale Wilson coefficients Cy(Myy, ) (left) and Cs(Myy, ) (right) for AMp, in
comparison with the conventional results. In the conventional approach, the Wilson coefficients,
(5.7)—(5.10), are input at p = My, (blue) and m; (magenta). The dashed lines do not include
the contribution from the heavy charged Higgs boson.

After setting the Wilson coefficients for the dimension-six SMEFT operators at the scale
p = pirr, the SMEFT RGEs are solved to the EWSB scale, for which we choose y = My, (the
second line in the Fig. 5.4. The one-loop level RGEs are summarized in Appendix A.1. At the
EWSB scale, the SMEFT operators are matched onto the low-scale ones (the third line). The
tree-level and one-loop level matching conditions are found in Egs. (3.12)—(3.15) and Egs. (3.16)—
(3.18), respectively. After the EWSB matching, the calculations are performed as usual, i.e., in
the same way as the conventional approach, which was defined in the previous section.

The differences of our analysis from the conventional one are the SMEFT top-quark effects
and the heavy charged Higgs boson contributions. In order to investigate their effects quantita-
tively, we consider the AB = 2 process, AMp_#°. Similar to the previous section, let us define
the difference as

XSMEFT _ yconventional

difference (X) = ~SMEFT for X =C;(Mw,), AMp,, (5.22)

where C;(Myy,) is the low-scale Wilson coefficients at the EWSB scale for AMp,_, ie., i = 3
and j = 2 in Eq. (3.1). XSMEFT anq xconventional ropresent the SMEFT with RGEs and the

Conventional estimation 1,2, respectively. In the numerical analysis, we take tan 5 = my/mq,

#5In the left-right symmetric models with the generalized charge symmetry C, C'P conserving mixing observables,
such as AMk and AMg, play important role. This is because, when additional phases ¢; for i = u,,c,t,d,s,b
become zero, the coefficient C4 takes real value, which escape from constraints from the C'P violating observables,
such as ex, Syxg and Syg.
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Figure 5.6: AMp, in comparison with the conventional results at p = My, (blue) and my
(magenta). The dashed lines do not include the contribution from the heavy charged Higgs

boson.

which naturally gives the fermion mass hierarchy m; > my;. The mass and scale are set as
My = 6Myy, and purr = My, respectively. Also, we impose a generalized charge conjugation
symmetry C, which leads to gr = g7, and Vg = K,V/K; and K, = diag(e'fu, e i), K, =
diag(e®a, s i) [68,75,79]. In the evaluation of AMp_, the lattice results [33] are applied
for B-parameters. We also use the RunDec program [80] for evaluating the running top quark
masses.

In Fig. 5.5(a), the difference of Cy(Myy, ) is shown. The magenta and blue solid lines cor-
respond to the Conventional estimation 1 and 2, respectively, where choices of the input scale
of the Wilson coefficients are different. Since it is uncertain in which energy scale the Wilson
coefficients should be input, we set Eqgs. (5.7)-(5.10) at u = My, (blue) or at ;1 = m; (magenta),
and then, perform the low-scale RGEs to the lower scale. For instance, 4 = m; is chosen in
Ref. [75]. It is found that the difference is less than three percents®® below purzr = 100 TeV.
Although p = m; seems to be favored for the conventional result, the deviation is enhanced as

i1 increases. Since the left-right symmetric model corresponds to the case where the tree-level

#5In the left-right symmetric model, the coefficient, C4 is proportional to a square of the top quark mass,
and it seems that the scale uncertainty coming from the top Yukawa coupling becomes O(100 %). However, a
cancellation between the QCD RGEs of C4 and the top Yukawa QCD running occurs, and the scale uncertainty

becomes small.
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matching contributions at the NP scale, this numerical results are consistent with the previous
ones.

Our analysis include both the top-quark effect and the heavy charged Higgs boson contri-
bution. In order to investigate them individually, we show the results without introducing the
latter contribution (dashed lines). Hence, in Fig. 5.5(a), the deviations of the dashed lines from
zero are due to the SMEFT top-quark effects explored in Chapter. 3. It is found that the effects
are less than four percents for upr < 100 TeV. Also, the difference between the solid and dashed
lines comes from the the heavy charged Higgs contribution. We confirm that it is about one
percent level and is comparable to the one-loop contributions, (Cy) ¢ and (Cy)" Ve in the
Feynman-t Hooft gauge. The difference between the lines is insensitive to Myy,, because the
box contribution in Eq. (5.20), i.e., the Fp term, dominates the total charged Higgs effects.

In Fig. 5.5(b), C5(Myy,) is displayed. The magenta and blue solid lines correspond to
p = Myw, and u = m; for the conventional approach, respectively. In this case, C5 is zero at
the input scale and generated by Cy through the RGEs down to u = My, . The dependence of
Cs on My, is thus from that of Cy. The conventional analyses are compared with our SMEFT
and H7T results (green). The difference between the solid and dashed lines comes from the
heavy charged Higgs boson, which is shown to be sub-leading similarly to the above case of Cj.
We found that Cs(Myy, ) depends heavily on My, and can be deviated from the conventional
results by hundred percents. The result of the SMEFT deviates from the conventional cases by
O(100%) because of the RGEs evolution.”".

In Fig. 5.6, the difference of AMp, is shown. Since it is dominated by C4 at lower scales
quantitatively, the result becomes similar to the one in Fig. 5.5(a). It is seen that the SMEFT
and charged Higgs effects are less than five percents for urr < 100 TeV and are enhanced in
larger prr. We also checked that these results are unchanged by a choice of 6,. Also, we can
derive the same conclusions for AMp, as AMp,.

Before closing this section, let us comment on the charm-quark contribution. In the analysis,
we focused on the top-quark contributions in the box diagrams and kept the charm-quark ones
aside. This approximation is appropriate in the B, ;4 meson system. However, they are dominant
in the K meson system, e.g., for ex in the left-right symmetric model [75]. Then, the SMEFT
and charged Higgs corrections explored in this thesis become necessary, and long-distance effects

should be taken into account. This topic will be studied in the future.

5.4 Conclusion of Matching Scale Uncertainty

Since the experimental constraints push the NP scale higher, the NP particle masses are likely
to be much larger than the SM ones, i.e., the EWSB scale. Then, FCNC amplitudes should
be investigated in the framework of the SMEFT rather than the LEFT. In a class of the NP

#"We confirmed that this behavior of the curve does not occur within the leading-log approximation.
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models, both of the NP and SM particles contribute to a loop diagram simultaneously. In order
to reduce the uncertainty of the input scale of the Wilson coefficients particularly in such models,
we studied the SMEFT corrections, paying attention to the top-quark effects. For the FCNC
observables, the operator matching needs to be performed at the one-loop level, because the
NP contributions are evaluated at the one-loop level. By using the complete one-loop matching
formula for AF = 2 transitions in Chapter 3, we discuss the matching scale uncertainty in the
Wilson coefficients for AF = 2 processes. We found that if the top Yukawa correction is a
sub-leading contribution, the scale uncertainty is O(1)%, and otherwise, that is O(100)%. As
mentioned in Section 5.2, these results represent that the one-loop matching formulae change the
tree-level matching evaluations by O(10)%, which show quantitative importance of the one-loop
matching formulae.

Besides, we investigated AMp, in the left-right symmetric models. The right-handed W
boson generates the flavor transitions similarly to the left-handed one in the SM. The SMEFT
corrections are studied and compared with the conventional results. We found that the Wilson
coefficient C} is affected by O(1)% and C5 by O(100)%. Since the observable AMp, is dominated
by the former quantitatively, the SMEFT effects for AMp, become comparable to the result
in C4. In addition to the SMEFT effects, we discussed the contribution of the heavy charged
Higgs boson. Although it can be comparable to the one-loop corrections to the heavy neutral
Higgs boson contribution, which are necessary for the gauge invariance, the effect has often been
neglected in the literature. It was found that the relative contribution is about one percent level
and almost independent of Myy,,.

Although the difference between our and conventional results becomes smaller if y = m, is
chosen for AMp, in the left-right symmetric models, the deviation becomes enhanced as prr
increases. In order to clarify in which energy scale the Wilson coefficients should be input, it is
important to take account of the SMEFT RGEs and matching conditions for the NP models in
high scales.

The results of this chapter show that the SMEFT evaluations based on the one-loop matching
formulae provided in Chapter 3 are qualitatively and quantitatively essential in order to reduce

the scale uncertainty.
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Z mediated correction to flavor changing observable

This chapter is based on the work by the author [16,81]. We evaluate the
SMEFT corrections to flavor changing observables with particular emphasis
on the Z mediated corrections. Through the Z boson, AF = 2 observables
are correlated with AF = 1 ones. In Section 6.1, we explain the Z mediated
SMEFT corrections. In Section 6.2, as an application of the scenario, we inves-
tigate the correlations between the AS = 2 observables and the AS = 1 ones in
a model independent way. In Section 6.3, we focus on a specific scenario in the
MSSM and investigate the effects of the Z mediated SMEFT corrections to the
AS = 2 observables. We show that the Z mediated SMEFT corrections by the
right-handed NP effects generated by Op4 can make experimental constraints
coming from the AS = 2 observables significantly severer.

6.1 7 mediated SMEFT correction

In this Chapter, we focus on the phenomenology of the SMEFT AF = 1 operators, especially
ng) and Opgg. These operators include the Z boson in the covariant derivative, and AF = 1
and 2 observables are correlated each other by mediating the Z boson. Since, in particular,
the AF = 2 processes are generated at the one-loop level, it is important to carefully evaluate
the gauge invariance in the processes. In fact, it was proved that the gauge invariance in the
AF = 2 processes are retained by including contributions from the Nambu-Goldstone boson of
the SMEFT operators [20]. Therefore, in order to evaluate the NP effects in AF = 2 processes
mediated by the Z boson, it is qualitatively essential to follow the SMEFT framework. This
Chapter is devoted to investigate quantitative importances of the Z mediated SMEFT correc-
tions. In this section, we define the Z mediated SMEFT corrections, which are appropriately
included in our matching formulae in Chapter 3.
Let us focus on the AF =1 SMEFT operators:

(O = (YD JH) (@), (6.1)
(O = (HUDLH) (@' ), (6.2)
(Ona)iy = (HY'D ,H) (@), (6.3)

Above the EWSB scale, NP contributions are encoded to the following interactions:

Lsmprr O (C)i (04 + (CHNi (OS5 + (Ca)ij (Ona)ij. (6.4)
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After the EWSB, they generate the flavor-changing Z interactions of down-type quark:

1 g _ g _ _ - 4

NP 0 + + + i
LsMEFT D AL,ij ZM + mizauG - WG 0 HG - miz (WH GT + W# G ) (d ")/’uPLdj)
4 (L R)+he. (6.5)

where G%% is the Nambu-Goldstone boson, and the coefficients are defined as

NP _ 9Z 2 [ ~(1) (3)
AN = 5 (Clay + Oy - (6.6)
9z
AIJ\%IEJ' = ?UQ (CHd)ij ) (6.7)

with gz = /g3 + ¢g?. Thus, after the EWSB, the SMEFT operators, (Og;)ij, (Og’;)ij and

(Oma)ij, generate the Z mediated NP effects. In this thesis, we call their effects as “Z mediated
SMEFT corrections”.
As discussed in Chapter 3, by decoupling W, Z, H and t, the SMEFT AF = 1 operators
contribute to AF = 2 processes as following
ij
3]._10013 - :;\%fv (Cg;)ijll (¢, pw)
oz/\ij

(3)
-y (Crpiil2(@e, pw) +

(C1)

ij
QMg

2
47TSW

3
> N CEDm + (CDimA | So(r),  (6.8)

m=1

1—loop 205)\?
i =2 (Cra)ijh (e, pw)- (6.9)
w

(C5)
These matching formulae correspond to the Z mediated SMEFT corrections to AF = 2 pro-
cesses, which are consistent with [20,21]. These effects were overlooked in the literature [41,82—
84]. Here, it is notice that the loop function, Ij(z, uw ), includes the logarithm, In uy /myy .
Therefore, by choosing the matching scale, 1 as the NP scale, Mnp, we can include the leading

SMEFT RGEs effects.

6.2 SMEFT correction in general Z model

In this section, we investigate the Z mediated SMEFT corrections to AF = 2 observables
without specifying a model. Based on the formulae in Sec. 6.1, we numerically estimate the
AF = 2 observables with particular emphasis on the kaon system. We also discuss correlations
between the AS = 2 observables and the AS = 1 ones within the framework of the SMEFT.

For simplicity, we consider the following three scenarios,

1. C’}(LIIC)I scenario.— The coefficients, C’SC)I and Cpyg, are set as zero. At the NP scale, Myp =

1 TeV, the coefficient Cj(ql()] is set as Cg; = C/(1 TeV)?, and the dimensionless complex
parameter C' is scanned. In this scenario, the Z mediated correction generates the (C1);;

operator below the EWSB scale.
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2. CSC)I scenario.— The coefficients, Cg; and Cpq are set as zero. At the NP scale, Myp =

1 TeV, the coefficient CS; is set as C’g’; = C/(1 TeV)?, and the dimensionless complex
parameter C' is scanned. Similar to the C’g; scenario, the coefficient, (C1);; is generated

below the EWSB scale.

3. Cyq scenario.— The coefficients, Cl(ql; and C’g’; are set as zero. At the NP scale, Mnp =
1 TeV, the coefficient Cpq is set as Crrg = C/(1 TeV)?, and the dimensionless complex
parameter C' is scanned. In this scenario, the Z mediated correction generate the (Cj);;

operator below the EWSB scale.

In this Chapter, by choosing uy as Myp = 1 TeV, we consider the leading SMEFT RGEs
effects.

For the each scenario, we study correlations between a AS = 2 observable and AS = 1
ones in the kaon system. As the AS = 2 and AS = 1 observables, we consider ex, € /e,
B(K, — 7%ww), B(KT — ntvp), B(K, — pTp~) and B(Ks — pTp~). In Fig. 6.1 and
Fig. 6.2, the correlations are shown. In Fig. 6.1, the observables are displayed by contour plots
on Re C' —Im C plane, where the left and right panels correspond to the Cg; and Cg; scenario,
respectively. Although both of the CS’; and Cg; scenarios generate only the (C1)i2 operator,
the coeflicient C’SC)I is more severely constrained from ex than the C’gg

of the loop function |Iy(x¢, puw)/I1 (x4, uw)| ~ 4. In both of the above scenarios, the constraint

. This is because a ratio

from ep is smaller than the AS = 1 observables. Similarly, in Fig. 6.2, the Cp4 scenario is
displayed. The black and red dotted contours represent B(K; — 7'vi)/B(K; — mvi)sm
and B(KT — 7tvw)/B(KT — wtvi)sy, respectively. In all scenarios, the constraints from
B(Ks — pu*pu~) is weaker than the others, and the entire parameter regions in Fig. 6.1 and
Fig. 6.2 are allowed. Besides, it becomes clear that the constraint from ex is not negligible in
all scenarios. In particular, in the Cgq4 scenario, the constraint is essential because of the chiral
enhancement. Here, it is remarkable that the constraint from ex is appropriately taken into
account by the one-loop matching conditions in Chapter 3, and the NP effects encoded in C'pq4
are severely constrained. This is one of the result that the SMEFT effects is not negligible.
Although, in this section, we discussed the Z mediated corrections in the kaon system, those

in the B meson systems were also discussed in [20].

6.3 7 mediated correction in the Minimal Supersymmetric Stan-
dard Model

In this section, as an application of the SMEFT corrections in the general Z models, we inves-
tigate the Z mediated corrections in the Minimal Supersymmetric Standard Model (MSSM).
In order to understand the importance of the Z mediated corrections, we focus on a specific

scenario in the MSSM, where the Z mediated corrections dominate the AF = 2 observables.
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Figure 6.1: The correlations of observables through Z mediation in (023)12 (left panel) and

(C}(r?;)12 (right panel). The blue, green and orange regions are allowed by the experiments of
€x, € /ex and B(Kp — ptp™), respectively. The black and red dotted contours represent

B(Kp — n%vp)/B(Kr — 1)y and B(KT — 7ntvo)/B(K+T — ntvp)su, respectively.

6.3.1 MSSM

In this section, let us study the MSSM to demonstrate the SMEFT Z mediation corrections as
explored in the previous section. The MSSM include many particles, which are the super-partner
of the SM particles. The particle contents in the MSSM are listed in Table 6.3.1. In the MSSM,
many C'P violating parameters are included in following soft SUSY breaking terms [85, 86]:

Esoft = _VQ - ‘/3 + EG: (610)
Vo = mly, Hi, H + m3y, Hy, HY — <m§eabeH§ + h.c.)
+ Q?La(m%)ijQ?L + E?La(m%ﬁjiﬁ
+ @ir(m)iji; g + din(m3)ijdig + Eir(m3)ii€;p, (6.11)
V3 = €ap [(TE)infE?Lé;R + (Tp) i HY QU dip + (TU)Z']'HQQ?L&;R} + h.c, (6.12)
1 .
o=y <M1bb + Myd A + M3§X§X) the, (6.13)

where indices A runs 1,2,3, and X = 1,---,8. Besides, the superpotential of the MSSM is

obtained as

W= e [(YEMH%L?E]- (Vo) HEQUD; + (Yu)y HEQST, — pheHS|, (6.14)
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Figure 6.2: The correlations of observables through Z mediation in (Cpg4)12. The blue, green
and orange regions are allowed by the experiments of e, € /e and B(K — pu+u™), respectively.
The black and red dotted contours represent B(K; — nvv)/B(K — n%vp)sm and B(KT —
mtvw) /B(KT — 7wt vi)gu, respectively.

where indexes a,brun 1,2, and 7,7 = 1,2, 3. After the EWSB, Higgs vacuum expectation values
(VEVs) are obtained as

Vs
(HY) = ﬁ (6.15)
The Higgs VEVs satisfy the following relations:
I S SR By (246 GeV)? (6.16)
1 2 \/QGF
1
my = 7 (91 +93) v*, (6.17)
1
miy = Zg%v2. (6.18)
After the EWSB, mass terms of the quarks are expressed as
mass V2 — T V1 =2 T

The mass matrix of the quarks are diagonalized as UJYUT V, = V/2diag (m., me, ms) /vo and
U;Yg Vy = v/2diag (mg, ms, mp) /v1. Besides, mass terms of the squarks are expressed as

L = —f M2D, — i M2Dy, (6.20)
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Table 6.1: Superfields and particle contents.

Superfields Component fiels Gauge quantum numbers
Fermions Bosons SUB)c | SU2), | U(l)y
_ (U UiL, 5 Ui
Qi = ( D; > diy > Qir = < i > 3 2 1/6
UZ' (uiR)C = (uc)iL ’lsz 3 1 —2/3
D; (dir)¢ = (d9);ig dp 3 1 1/3
o N; Vi, Foo_ viL T .
O 7 T P 0 I (R gy
Ei (eiR)C = (6 )iL é;-kR i 1 1
GX R g 8 1 0
w4 WA wit 1 3 0
B b B, 1 1 0
HY = h1 HY
=L ) (i) e /
_( H P _( H

- - - - . - \T
where &, = (&L,EL,tL,aR,éR,tR)T and & ; = (dL,§L,bL,dR,§R,bR> . The squark mass ma-

trices are obtained as

M — Veruil Vo + M+ cos 28M3 (5 — 3sy) 1 2T — M, cot B
v %TU — p* M, cot 8 mZ + M2 + cos 26M%%512/V1 ’
(6.21)
M2 — mé + Mg + cos 25]\/[% (—% + %S%V) 1 %TIB — uMytan g8 (6.22)
d %TD — pw*Mgtan 8 m§+M§ +Cos2ﬂM%%s%V1 '
where %) = ijévd, 2 = Ul(m2)TU,, m2 = UY(m2)TU,, Ty = UITEV, and Tp = USTEV,,
which are diagonalized as Ru./\/l%RT diag (mul,m32,mi3,m34,m2 m ) and RdMQRT =

diag (m mz ,mfl ,mfl ,mi ,mz ) Hereafter, the flavor violations are discussed in the basis
where the Yukawa matrix of the quark is diagonalized.

In particular, the gaugino and matter interaction in the MSSM can contribute to the AF = 2
observables through box type diagrams. As an example, we focus on the gluino contributions.

The gluino-squark-quark interaction is obtained as

b= V20,3 8T O ((C8)Ps + (Th)iPr) di + hc. (6.23)

i=1 j=1

The couplings (FdL7 r)ji are defined as
3
Z Ra) ik (Va)ki, (6.24)
k=1
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3
(TR)ji = — Y (Ra)jk+3(Ud)ki- (6.25)
k=1

The gluino and down-type squarks induce AF = 2 transitions. They are severely constrained

by the observed meson oscillations. First of all, let us consider the box diagram contributions.

In literature
and d:

where z, ; =

[87], the Wilson coefficients of the LEFT in Eq. (3.1) are set by integrating out §

Q
® o

(OO = D MDD Aol + s Balera| . (020)

R lozsw

11
Bo(zy,xs) + %Bg(xr,xs)} , (6.27)

Q

(5 = 25 (T (TR R 5

» N ngw

(C)Box = 25 (1), (P2, (1) oy (T, -NBo(fUmiUs)} (6.28)

Q

*J 18

(17
]BBO(xraxs)] ) (629)

3
@

Q
)

(02)BOX = (Fd )7“] (Pd) (Pd )SJ (Fd)

3
Q@i

(" = 2 (T (TR Th | - g Baton ). (6.30)

Q
® o

v

3
Q@i

Q
® o

(O = S (TR DT~ ol ). (6.31)

"’QM tmsw

(B = {<r%>rj<r%>:i<r%>sj<r%>; Dol ) = Balar, )|

3
Q@i

+ (T (TG)5(Th) ,(rdL);[—iéBg(wT,xS)]}, (6.32)
2
(Co)B = ‘;{(rd) (L) (T (T80 g Bar, ) + 5 oo

+(Fd) (rd) (rd) (FdL)zi[—ng(xr,xs)}}, (6.33)

mfi / m%. The loop functions are defined as

- xlnx ylny 1
S Er T | L R R i [ (039
2 2
Bo(z,y) = x*lnx y“Iny 1 (6.35)

@—E—12 G-n)y-12 @-Dy-1)

From the SUSY scale ugysy to the hadron scale, the QCD RGEs are solved and AF =
observables are estimated. In the conventional calculation, the interference effects between the
SM and SUSY contributions, Og4 and ng), are not included.

When the squark (quark) flavor is violated by scalar trilinear soft-breaking parameters, the

above box diagrams are controlled by the squark mixing parameter, (6p);; = (ITp)i;v cos B/ m%
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For examples, the Wilson coefficient, C;, C] and C4, are roughly expressed as

(Ciz ~ [(6p)i3(0p)2s]” /i, (6.36)
(Cihiz ~ [(60)31(0p)3)” /ms, (6.37)
(Ca)12 ~ (6p)13(6p)23(3p)31(0p) 32/ . (6.38)

The contribution of (Cy)12 dominates the AF = 2 observable e¢x because of the chiral enhance-
ment. In a specific case where (0p)i3(dp)23 ~ 0, the dominant contribution coming from (Cy)i2
vanishes, and the constraint from ex becomes weak. However, as explained in the next section,

the Z mediated SUSY contribution drastically change this situation.

6.3.2 7 mediated SUSY corrections

Let us study the Z mediated correction in the MSSM. At the one-loop level, the SMEFT

operators Og4 and ng)

are generated by gluino loops in the MSSM. When the squark (quark)
flavor is violated by scalar trilinear soft-breaking parameters, the dominant contributions are

calculated from Fig. 6.3 as

ag cos’

Cyy = == 28 BTy 1a(Tp)as Z : 6.39
(Crgr2 2r (T'p)13(Tp)23 Z(xr1, w12, TR3), (6.39)
2
C)py = =05 OB e Y0 7 6.40
(Crrgi2 125 md (T'p)13(Tp)2s Z(xr1, T L2, ZR3), (6.40)
2
Qs COS .
(CHda)12 = 67745(TD)31(TD)32 Z(TR1,TR2,TL3), (6.41)
Y mg

with x; = mg /mg. Here, m du i is the left- (right-) handed squark soft mass for the i-th
generation, mg is the gluino mass, and Tp is the scalar trilinear coupling of the down-type

squarks. The Wilson coefficients are set at the SUSY scale.#! The loop function is defined as

_ 2?lnzx y?Iny
2002 = " e g T - D)~ 2°
B z (2zy —yz — w2z —2yz + 2%)zln 2
G DE-9w-9 G122 (6.42)

In the limit of y, z — x, it becomes

Z(x) 243z —622+ 23 +6zlnx
€T ey
6x(x —1)*

(6.43)

In addition, these LEFT AF = 2 operators are generated by the AF = 1 ones in the SMEFT
through the one-loop matchings at the weak scale [18]. The conditions for Cy, and Cpg at the

#1 If the trilinear couplings (Tp)13,23,31,32 are set in a scale higher than the SUSY scale, the flavor-violating
squark soft masses (md"L(R))12721 are generated via RG corrections. They can be sizable and contribute to the

kaon FCNCs when the input scale is much higher than the SUSY scale.
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Figure 6.3: Feynman diagrams relevant for the matchings onto the operators (Op4)12, where the
external gauge bosons are attached to each of the cross marks. Diagrams (a)—(d) are the one-loop
gluino contributions, and (e)—(j) are the diagrams in the SMEFT. The diagrams contributing

to (02213))12 are similarly obtained.

scale uy are approximated as [20,21]

alA 7
(Ch)ij = isé] ’ (Cﬁ};)ij (g, pw) — (Cﬁf’;)ij (e, pw) | (6.44)
W
2a[ A i
(Cs)y)) = — [;] L (Cra)ij I (w4, pw ), (6.45)
J TSy

with z; = m?/ m%V These results are gauge-independent.
By using the squark mixing parameter (6p);;, the Wilson coefficients (Cgf))ij and (Cra)ij

are roughly expressed as

(C1)ij ~ (\)ij(6D)53(0p) j3/m,
(Cs)ij ~ (A)ij(6p)3i(0p)3;/m-

(6.46)
(6.47)

As explained in the previous section, the conventional contributions from the box diagrams are
suppressed, if we focus on the specific scenario (0p)i5(dp)2s ~ 0. Even if this scenario, the

coefficient (C5);; coming from the SMEFT Z mediated contribution is remained and becomes a
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Figure 6.4: Contour plots of €x on the Msysy — TIp plane in the case

[(+/=)Tp,iTp,(+/—)Tp,Tp] (left/right). The experimental allowed regions of the con-
ventional box contributions are shown in blue regions, and that of the SMEFT Z mediated
contributions with box ones are shown in red regions.

dominant effect in ex, because of the chiral enhancement. In particular, this contribution is not
suppressed by the SUSY mass scale if the squark mixing parameter is fixed, and the SMEFT Z
mediated contribution becomes important in the high SUSY scale.

Next, we numerically analyze the SMEFT Z mediated contribution in ex and discuss some
correlations between flavor changing observables. For simplicity, we focus on a simplified sce-
nario, where the scalar trilinear coupling are parameterized as [(Tp)13, (Tp)23, (TD)s31, (Tp)s2] =
[+Tp,iTp,+Tp,Tp]. In Fig. 6.4, contour plots of ex on the Mgysy — Tp plane are displayed.
In the left and right plot, the cases [+1p,iTp,+Tp,Tp] and [—Tp,iTp,—Tp,Tp] are shown,
respectively. In the both plots, the experimentally allowed regions at the 20 level of the con-
ventional box contributions are shown in blue regions, and that of the SMEFT Z mediated
contributions with box ones are shown in red regions. The allowed regions of the box contribu-
tions are not changed much. However, the relative sign of the SMEFT Z mediated contributions
and the box one becomes opposite?2. The plots show that the SMEFT Z mediated corrections
may make the constraint for the SUSY scale be changed by O(100%). Focusing on contour lines
of €x, in large SUSY scale regions, the corrections becomes large. This is because, on the con-
tour lines, the squark mixing parameter dp roughly takes fixed value, and the box contributions

are suppressed by the SUSY scale as mg.

#2The contribution of the box diagrams is roughly expressed as ~ i(TD)4v4/mg. On the other hand, the Z

mediated contribution is expressed as ~ :I:(/\t)lg(TD)2v2/m2Zmé~?
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Figure 6.5: Correlations between e, € /ex, B(K — mvi) and B(B — Xas7v) on a Msysy —Tp
plane in the case [0,0,Tp,iTp|(left/right). The right handed side of the red and green line
are allowed by B(K*t — ntvw) and B(K; — 7'v), respectively with 90% confidence level.
Similarly, the right handed side of the red, orange and pink regions are allowed by e, B(B —
X7) and B(B — Xg7), respectively at the 20 level. The dotted lines are contour line of ¢ /ex
corresponding to 1072, 1073, 1074, 107> and 1076.

Through the SMEFT Z mediated contributions, there exist correlations between AF = 2 and
1 observables. In the MSSM, additional observables such as B(B — Xa,s7) also correlate with
ex. For simplicity, we numerically show the correlations for the case [0,0,Tp,iTp], where the
conventional box diagram contributions from ex become negligible and the SMEFT Z mediated
contributions become important. In Fig. 6.5, the correlations between e, € /ex, K — mvv and
B(B — Xas7v) are displayed on the Msysy — Tp plane. The experimentally allowed regions
from B(KT — mTvv) and B(K[ — nvv) are right handed sides of red and green colored lines,
respectively. Besides, the right handed side of the red, orange and pink regions are allowed
regions from ex, B(B — Xyy) and B(B — Xg7), respectively. The blue dotted lines are
contours of € /ex. Since B(B — X457) is roughly expressed as (dp)1323 /mg, the constraints
from B(B — Xgq7) are severe in small SUSY scale regions. In this scenario [0,0,7p,iTp], the
SMEFT Wilson coefficients take imaginary values, and the constraints from B(Kp — putpu™)
are negligible. Figure. 6.5 shows that the constraints from ex generated by the SMEFT Z
mediated contributions can become much severe even though the conventional box contributions

are negligible.

Finally, we mention that in the gluino mediated scenario, there also exist parameter regions

of the scalar trilinear coupling where the experimental data of € /ex can be explained. For
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simplicity, we restrict the parameter space such that two of (Tp)is2331,32 are real. When
(Tp)23 32 are real, we checked that wide parameter regions to explain the discrepancy of € /ex
are tightly excluded by B(B — Xa,s7). Therefore, we consider the cases when (Tp)13,31 are real.

The scalar trilinear coupling are parameterized as

[(Tp)13, (Tp)23, ()31, (Tp)32] = [yL, L +iBL, YR, @R + iBR] (6.48)

where «;, B; and ~; are real parameters. Then, one obtains

Im [ng)hz o« —Im [(Tp)i3(Tp)23] = —Brr, (6.49)
Im [Cpli2 o< +Im [(Tp)31(TD)32) = —BrYR- (6.50)

The L variables contribute to the left-handed Wilson coefficients, and the R variables to the
right-handed ones. In order to evaluate the observables, we scan the whole parameter region
of o, Bi, and ~; where the vacuum stability conditions are satisfied.”3 The vacuum stability
conditions are discussed in Appendix E.

When Sy > 0 and Bgryr > 0, the SUSY contribution to € /ex, is maximized, because the
left-handed contribution, Cpq, constructively interferes with the right-handed one, Cyyp. In this
case, B(K[, — mvp) cannot exceed the SM prediction, because positive 31y, and Bryr tends
to decrease the branching ratio, as can be seen from Eq. (4.22). In contrast, € /ex, cannot be
accommodated with the result (4.18) for ryr, < 0 and Bryr < 0. When either 517, or SryrR is
negative, the discrepancy of € /eg, can also be explained. Because the right-handed contribution
to € /ek, is larger than the left-handed one, Bryg > 0 is favored to amplify €' /eg.

Before proceeding to the analysis, let us summarize assumptions on model parameters. Since
the vacuum stability condition is relaxed by large m, the heavy Higgs bosons are supposed
to be decoupled. The squark masses are set to be degenerate, me = Mg, = MG o = MG3 =
Mp 1 =Mpo="Mp 3, for simplicity. The Higgsino mass parameter is also equal to me, though
dependences of the observables on it are weak. We take tan 5 = 5, though the following results
are insensitive to the choice, because the observables as well as the vacuum stability condition
depend on it dominantly in a combination of T cos 3.

In Fig. 6.6, the maximal values of the SUSY contributions to € /ex are shown for Sry; > 0
and Bryr > 0 as a function of meg. There is a peak structure for each line. In smaller
squark mass regions, the maximal value is determined by B(B — Xg7v). Defining the squark
mixing parameter, op = (Tp);;v cos B/m%, the SUSY contributions to € /ex,depend on it as
(¢ /ex)SUSY ~ 62, whereas those to B(B — Xgv) is ~ op/mg, where mg ~ mg is supposed.
Thus, the maximal value of € /e, increases as me becomes larger. In larger squark mass regions,
the maximal value is determined by ex, B(B — X7v) and the vacuum stability condition as well

as B(B — Xg7v). In particular, the gluino box contribution to ex depends on dp as ~ (525/77127

#3 We checked that the constraint from B(Ky — ptp™) is weaker than the other constraints in the parameter
region of our interest.
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Figure 6.6: The maximal gluino contributions to € /e ,as a function of mgs. The parameters
are Yr/Br = v1/Br = 1 and mg/mQ = 1 on the black line. In the left plot, yr/Br = v1/5L =
0.6,0.8,1.2 with mg/mé2 = 1 from left to right of the red lines. In the right plot, mg/mé2 =
1.8,1.4,0.8 with ygr/Br = v1/Br, = 1 from left to right of the green lines.

whereas the SUSY contributions via Cyg and Cyp are not suppressed by meg, ie., behaves as
~ )\té% / m2Z When me is small, the latter contribution can be canceled enough by the former
one. However, as me increases, the cancellation becomes weaker in the parameter region allowed
by the other constraints. Hence, the bounds on the trilinear couplings become severer to satisfy
the constraint of ex. Consequently, the maximal value of € /ex decreases.

In the figures, v;/3; or mg/mé2 is also varied. On the black line, yr/Sr = v1/6r, = 1 and
mg/mé2 = 1 are chosen. In the left plot, yr/Sr = v/ = 0.6,0.8,1.2 with mg/mé2 =1 from
left to right of the red lines. On the other hand, mg/mQ =1.8,1.4,0.8 with yg/Br =v1/BL =1
from left to right of the green lines in the right plot. The maximum value increases when ~;/f;
is small and mg /md2 is large. Also, it is found that the current discrepancy of € /ex can be

explained if the squark mass is smaller than 5.6 TeV.

6.4 Conclusion of 7 mediated correction to AF = 2 observable

The SMEFT framework is qualitatively essential to retain the gauge invariance in the NP effects
of AF = 2 processes mediated by the Z boson. The one-loop matching formulae in Chapter 3
appropriately include the Z mediated correction to AF = 2. In this chapter, we investigated
the quantitative importance of the Z mediated SMEFT corrections. In the general Z model, we
showed that the right-handed NP effects coming from (Cr4)12 are enhanced by hadron matrix
elements, and the constraints from ey are severe. Besides, the SMEFT corrections provide
various correlations between AF = 1 and 2 observables by the dynamical Z boson. Compared

with the AS = 1 observables such as €'/ex, B(K — upu™), it was shown that ex provides an
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complementary information on the AS = 1. In addition, we also discussed the SUSY effects in
the Z mediated SMEFT corrections. In the MSSM, we showed that there exists the case where
the Z mediated corrections dominate €, and constraints of the SUSY scale can be changed by
O(100%). In the MSSM, we also discussed correlations between ex and AF = 1 observables such
as € /ex, K — mvv and B(B — X47). We found that there exist parameter regions where the
constraints from the AF = 2 and 1 observables are satisfied even if the squark mass is smaller
than 5.6 TeV. As these results, we conclude that the SMEFT corrections are quantitatively

essential to discuss the correlations between flavor changing observables.
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Nucleon EDM from SMEFT flavor-changing operator

This chapter is based on the work by the author [17]. We investigate
flavor changing operators effects on nucleon electric dipole moments (EDM)
within the framework of the SMEFT. We focus on contributions of dimension-
six AF' = 1 operators of the down-type quarks to nucleon EDMs with particular
emphasis on the top quark effects. It is found that some of the SMEFT oper-
ators are already excluded for the NP scale Myp < 100 GeV by the neutron

~

EDM, and future experiments may be able to probe those in Myp < 2—10 TeV.
In addition, we show that the EDMs and AF = 2 observables will reveal al-
lowed parameter regions of the SMEFT operators complementarily.

7.1 Flavor conserving process by flavor changing operators

Electric dipole moments (EDMs), which are CP-violating observables, are one of the most

sensitive observables. Currently, the experimental bound of the neutron is [39]
\dy| < 3.0 x 10720 ecm, (7.1)

at the 90% confidence level. On the other hand, the indirect limit on the proton EDM is derived
from 99Hg [88,89] as [40]

|dp| < 2.1 x107% ecm. (7.2)

In future, several experiments aim to improve the sensitivity by two orders of magnitudes for
the neutron EDM [7,8]. Also, a storage ring experiment is projected to measure the proton
EDM at the level of 1072 ecm [9].

As we have mentioned in Chapter 3, although the EDMs are flavor-conserving observables,
flavor-violating interactions can contribute to them. In the SM, the W-boson interactions change
quark flavors. Thus, a class of NP can induce EDMs through quark flavor-changing interactions
by exchanging the W boson. Such contributions are represented by the SMEFT [10-12]. Here,
all the SM particles including the W, Z, H and the t are retained. Above the EWSB, NP
contributions to flavor and C'P violations are encoded in higher dimensional operators in the
SMEFT. At the EWSB scale, they are matched onto the effective operators in the LEFT by
integrating out W, Z, H and t. Low-scale observables such as the EDMs are evaluated by using
the LEFT.



Chapter 7. Nucleon EDM from SMEFT flavor-changing operator

In this Chapter, we study the neucleon EDMs from SMEFT flavor-changing operators. They
are induced by AF = 1 operators through radiative corrections of the W boson. In particular,
we will focus on top-quark loop contributions, because they tend to be large due to the large
top quark mass (cf. Chapter 5). The radiative corrections are taken into account by solving the
renormalization group equations (RGEs) in the SMEFT [13-15], which are listed in Appendix F.
In addition, the SMEFT operators are matched onto those in the LEFT at the EWSB scale. The
one-loop matching conditions are necessary, because the contributions of the AF = 1 operators
to EDMs are induced by radiative corrections. The one-loop formulae were already provided
in Chapter 3. Theses operators also contribute to AF = 2 observables such as ex and AMy
through the W-boson loops. Since these observables are sensitive to NP contributions, we will

discuss correlation between the contributions to the EDMs and the AF = 2 observables.

7.2 Numerical analysis of EDM

In this section, we study contributions of the SMEFT AF = 1 operators to the nucleon EDMs
and AF = 2 observables, ex and AMpg,. In Fig. 7.1, the neutron and proton EDMs are
estimated. On each line, one of the Wilson coefficients is set to be C; = i/MZp at the NP
scale, Mnp. The other coefficients are zero. The effective operators missing in the list do not
contribute to the EDMs as well as the AF = 2 observables.”! Once the operator is set, the
RGEs are solved, and the matching conditions are taken into account. In the top panels, the
four-quark operators mix the first two generations of the down-type quark. On the other hand,
the operators in the bottom panels include the bottom quark. In low Myp regions, it is found
that the nucleon EDMs are suppressed, where the loop functions defined in Chapter 3, I; and
K, vanish.

In the plots, the horizontal red and blue dotted lines correspond to the current experimental
bound and the future sensitivity, respectively. For the latter, we quote |d,| = 1072 ecm
and |dp| = 107 ecm. Currently, the EDM constraints are weak. The NP contributions are
excluded only for Myp < 100 GeV of (C&l’s))gglg and (Cé(li));;glg. The sensitivities are expected
to be improved greatly. The neutron and proton EDMs can probe the NP scale up to 2-10TeV.
On the other hand, the contributions to the EDMs are suppressed for the operators including
the bottom quark. This is because the hadron matrix elements of such operators are small (see
Eq. (4.12)). Currently, the constraint is weaker than Myp < 100 GeV according to the bottom
panel of the figure, and the sensitivity may reach at most 3 TeV in future.

Let us study correlations between the EDMs and the AF = 2 observables. The results
depend on the SMEFT operators. The AS = 1 operators of (C;}i’s))%m, (C(Z’S));J,gm and (Cgq)12

U

contribute to the EDMs and e via radiative corrections. Similarly, the AB = 1 operators of

#1 There are operators which can contribute to the EDMs through self-energy corrections. The matching
conditions are provided in Section ?7?, and it is straightforward to analyze them.
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Figure 7.1: The neutron and proton EDMs are estimated for the SMEFT AF = 1 operators
of the down and strange quarks with the top quarks in the top panels. Those for the down and
bottom quarks are shown in the bottom panels. The Wilson coefficients are 4 /1\413IP at the NP
scale Myp. The red and blue dotted lines are the current experimental limit and the future
sensitivity.

(C;}i’g))gglg, (05278))3313 and (Cpq)13 affect AMp, as well as the EDMs. In Figs. 7.2-7.6, the
EDMs and the AF = 2 observables are estimated for each operator. Here, the real and imaginary
parts of each Wilson coefficient are varied at the NP scale of 1 TeV, while the other coefficients
are set to be zero at this scale. In the plots, the current limits from ex and AMp, are drawn by
the blue band, where the region inside the band is allowed at the 20 level. On the other hand,
contours of the neutron and proton EDM are shown by the bands with different colors.
Currently, all the parameter regions are allowed by the EDMs (see also Fig. 7.1). In future,
the EDMs can be sizable for the AS = 1 operators. It is noticed that, since the parameter
dependence of the EDMs is different from that of ex, they provide an independent information
on the effective operators. For some of the AB = 1 operators especially (Cé?)gglg and (C,(uz))gglg,

future measurements of the proton EDMs will also be able to compete with the constraint from
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Figure 7.2: Contours of the EDMs and ex (left) and AMp, (right). Outside regions of the
red and light green bands are probed by the future experiment in the left panel. On the other
hand, the deep green region in the right panel corresponds to |d,| < 1073 e cm, which is below
the future sensitivity. In the left panel, the blue region is allowed by e at the 20 level, and the
region in the right panel is allowed by AMp, at the 20 level.

AMp,.

Next, let us consider 055’3), éi’g), and (023)12713. We found that they do not contribute to
the EDMs because of the Lorentz structures of these operators. In fact, they generate only the
vector-type operators of the four quarks below the EWSB scale, which do not violate the C P
symmetry.

Similarly, the operators of (C’g’;)u’lg do not contribute to the EDMs through the four-quark
operators. Let us consider another contribution. It is noticed that these operators include W

boson interactions by taking the Higgs VEV as

. . . . 0
(HTiﬁfLH)(qlfy“quj) = iv? {(u”y“PLdJ) (%GNG“' - Z%WJ—)

i j V2 g2

d'vPpu’)| — —9,GT —i==W 7.3
arra) (- Do —iZw )| 4 @)
in the Feynman-"t Hooft gauge, where G* is the NG bosons. Here, all the quark fields are left-
handed in these interactions. Then, they seem to generate the electric and chromoelectric dipole
moments through penguin diagrams of the W boson loops. However, it can be checked that
such contributions vanish by paying attention to the chirality structure of the quark. Hence,

the operators of (053)12’13 do not contribute to the nucleon EDMs.
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Figure 7.3: Same as Fig. 7.2, but the green region in the right panel corresponds to |d,| <
10722 ecm, which is one order of magnitude weaker than the future sensitivity.

Finally, let us comment on Cyg. This operator can also contribute to the EDMs through the
RGEs and matching conditions. However, these contributions are found to be very small, and

we do not discuss them anymore.

7.3 Conclusion of nucleon EDM from SMEFT flavor-changing
operator

We studied the nucleon EDMs induced by the SMEFT AF = 1 operators and their correlations
with the AF = 2 observables. In the conventional LEFT evaluations, the correlations are
not clear, because the heavy SM particles such as W and t are not dynamical. On the other
hand, the SMEFT operators generate the correlations through the W boson loops because
of the dynamical heavy SM particles. Therefore, the SMEFT effects on the nucleon EDMs are
qualitatively important when we consider the correlations between the nucleon EDMs and flavor
changing observables.

It was found that some of the operators are already excluded for Myp < 100 GeV by the
neutron EDM, and future experiments may be able to probe those in Myp < 2-10TeV. Com-
pared with ey, it was shown that the nucleon EDMs can provide an complementary information
on the AS =1 effective operators in future, though the EDMs from the AB = 1 operators are
tiny and cannot compete with the constraints from AMp,.

In addition, similar to the evaluations of AF = 2 observables discussed in Chapter 5, the
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Figure 7.4: Same as Fig. 7.2, but the pink region in the left panel corresponds to |d,| <
1072° ecm, which is one order of magnitude weaker than the future sensitivity. Besides, the
e cm, which is much smaller than the future

deep green region in the right panel is |d,| < 1

sensitivity.

0—31

SMEFT framework can reduce the scale uncertainty in the nucleon EDMs. As a result, we

conclude that the SMEFT are quantitatively and qualitatively essential to investigate the NP

effects on the nucleon EDMs.
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Figure 7.5: Same as Fig. 7.2, but the purple and green regions in the left panel correspond to
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Conclusion

The standard model of the particle physics describes nature very well. Nevertheless, there are
some unsolved problems within the SM. Although, the unsolved problems in the SM make the
NP scale near the EWSB one be fascinating, we face the possibility that the NP scale is much
higher than the EWSB scale because of still no evidence for the new particle production at the
end of run 2 of the LHC experiment. At the current stage, indirect searches of the NP with
flavor and C'P violating observables become more important.

In the flavor-changing processes, many observables have been precisely determined in both of
theoretical calculations and experimental data. In future, the precisions in the flavor experiments
will be further improved, and theoretical precise calculations become more important. Besides,
in the flavor-conserving C'P violating processes, several experiments are proposed to measure
nucleon EDMs, whose sensitivities would be improved by 2-3 orders of magnitudes in near
future. Although the EDMs are flavor-conserving processes, they have a sensitivity to flavor
violations through the W-boson interactions. Thus, NP effects on quark flavor-changing neutral
currents can contribute to quark EDMs simultaneously by exchanging the W boson. Since the
EDMs are very sensitive to NP, they can also probe flavor-changing contributions to the NP.

In conventional evaluations of the low-scale observables related to the flavor and/or C'P
violation, heavy degrees of freedom, such as NP particles and heavy SM particles are simul-
taneously decoupled, and the NP model is matched onto the LEFT. Because of a hierarchy
between the NP scale and the EWSB one, the conventional approach is broken down, and some
problems occur. For example, the matching scale uncertainty at the EWSB scale appears in
the conventional LEFT approach. Besides, in the NP effects of AF = 2 processes mediated by
the Z boson, the gauge invariance is not retained, because the NP contributions are encoded
in the LEFT without quantum corrections from the NG boson. In addition, flavor-changing
operators in the LEFT can not correlate to the EDMs without specifying a NP model because
of no W boson. In order to resolve these problems, an effective field theory in which the heavy
SM degrees of freedom are retained is needed. The SMEFT is one of the promising effective
field theories above the EWSB scale: this effective field theory includes all the SM particles
as dynamical degrees of freedom. In the SMEFT approach, the NP effects are encoded in the
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SMEFT at the NP scale. After evaluating the SMEFT RGEs, the SMEFT are matched onto
the LEFT at the EWSB scale, and the low-scale observables are calculated by using the LEFT.
By this approach, the matching scale uncertainty can be eliminated. Besides, thanks to the
dynamical heavy SM particles in the SMEFT, the gauge invariance in the NP effects of AF = 2
processes mediated by the Z boson, and the correlations between the nucleon EDMs and flavor
changing observables are restored. Although the important points of the SMEFT approach are
the SMEFT RGEs and matching at the EWSB scale, the one-loop matching at the EWSB scale
had not been calculated. Since the NP effects in the conventional LEFT evaluations are at the
one-loop level, the one-loop matching formulae at the EWSB scale are also essential in order to

realize the high precision calculations in the SMEFT.

In this thesis, we established a systematic way to estimate flavor and/or C'P violating ob-
servables within the SMEFT by providing the one-loop matching formulae. By the established
SMEFT approach, we investigated the scale uncertainty in AF = 2 processes, Z mediated
SMEFT correction in the AF = 2 processes, and the SMEFT AF = 1 operators effects on the
nucleon EDMs.

In Chapter 3, we have studied the one-loop matching conditions related to the SMEFT
AF =1 operators. We found that the SMEFT AF = 1 operators contribute to both of AF = 2
and 0 processes by decoupling W, Z, H and the top quark ¢. Besides, it was found that by the
one-loop matching formulae, the LEFT Wilson coefficients at the EWSB scale are changed by
O(10)% compared with the tree-level matching contributions.

In Chapter 5, we have studied the scale uncertainty in AF = 2 processes with the one-
loop matching formulae. By a model independent approach, we found that the magnitude of
the scale uncertainty in the LEFT Wilson coefficient is O(1-100)%. As an application of this
approach, we also investigated AMp, in the left-right symmetric model and confirmed that
the scale uncertainty is O(1)%. These scale uncertainty in AF = 2 processes are removed by
adopting the SMEFT approach. Therefore, the SMEFT approach enables us to evaluate the
NP contributions to the low-scale observables relevant for the flavor and/or C'P violation with
high precision by eliminating the matching scale uncertainty.

In Chapter 6, we have investigated the Z mediated SMEFT corrections to AF = 2 observ-
ables in the kaon system. Although they were overlooked so far, we showed that the SMEFT
corrections make experimental constraints coming from ex drastically change. By a model inde-
pendent approach, we found that the right-handed NP effects encoded in (C4)12 are enhanced,
and the constraint from ex becomes severer. Besides, the SMEFT corrections provide vari-
ous correlations between AF = 1 and 2 observables by the dynamical Z boson. Compared
with the AS = 1 observables such as € /ex, B(K — p"up~), it was shown that ex provides
an complementary information on the AS = 1. As an application of this approach, we also

considered Z mediated gluino contributions. In a simplified scenario, it was found that the
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Z mediated SMEFT corrections may make the constraint for the SUSY scale be changed by
O(100%) compared with the conventional box diagram contributions. Besides, we found that the
gluino mediated contributions are consistent with the experimental data such as ex, €' /ex and
B(B — Xg4s7), if the squark mass is smaller than 5.6 TeV. Therefore, the SMEFT approach
enables us to take into account the various correlations between flavor changing observables,
especially the severe constraints from ex in C'yy.

In Chapter 7, we have also studied the SMEFT AF = 1 operators contributions to the
nucleon EDMs. We studied flavor changing operators effects on the nucleon EDMs within the
framework of the SMEFT. In particular, we focused on the SMEFT AF = 1 operators, and
discussed the contributions of those operators to AF = 0 and 2 observables through the top
quark decoupling. It was found that NP scale is larger than 100 GeV by the current EDMs
experiments, and the future experiments may achieve a sensitivity of 2—10 TeV. Therefore, the
SMEFT approach enables us to investigate the correlations between the nucleon EDMs and the

AF = 2 observables without specifying the NP model.

As a result, we conclude that the SMEFT approach is quantitatively and qualitatively essential
to evaluate the NP effects on the low-scale observables when the NP scale is much higher than
the EWSB one.
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Quantum Corrections

A.1 Renormalization group equations of SMEFT

In this appendix, we summarize the SMEFT RGEs which are relevant for the AF' = 2 observables
at the one-loop level. We focus on the anomalous dimensions which depend on the top-Yukawa

or QCD couplings. In the following expressions, we define

. dCy, T
2 _
Ca = (4 ) I Xt = 732 Tt. (Al)

The anomalous dimensions at O(y?) and O(g?) are obtained as (see Refs. [13-15] for the complete
one-loop formula of the SMEFT RGEs):

(€ = X5 M (Core + ) = 27 (Coralaa + 33 (CHfr + 3 (Chi
3 r 3
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A.2 QCD RGEs for EDMs

In this section, we summarize the RGEs of flavor-conserving effective operators for the CP
violation in QCD [105]. The RGEs for the Wilson coefficients of these operators are given as

0C

W — CT, (A.18)
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where the Wilson coefficients are written in a column vector as
C-= (C{f No:No Ne; Mo No L Ne LN Lo N/ &) ég’q) . (A.19)
The anomalous matrix is calculated at one-loop level as
g—;fys 0 0
D= | @V w7 0 (A.20)
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Vsf = <—32N— 16 —16 0)’ (A-24)
and
0 0 0
0 0 0
/ 0 0 0
Vof = 0 0 of, (A.25)
SN g g
m /qQ /q m,s
—1650 5 16-< 0

where Cr = (N? — 1)/(2N) is the Casimir constant of the fundamental representation, N (= 3)
is the number of the color, ny is the number of light flavor quarks, and Sy = 11/3x N —2/3 xny

is the leading-order beta function of strong coupling constant.
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B.1 Higgs sector in left-right symmetric models

In this section, we briefly review the Higgs sector in the left-right symmetric models. After the

left-right symmetry is broken, the scalar potential with vy = 0 [67] is
V= 2Tr (qﬂcb) _y [Tr (ci)<I>T> Ty ((i)“l))}

2 - 2 - 2
+ 2 [T (2fe)] +)\2{[Tr (307)] + | (1) }
+ 2Tr (901) T (&10) + AyTx (270) [Tr (B01) + Tr (o) |
+aqTr (CDT<I>> Tr <<A2)<AR)) + an {ei‘sTr (&)J“I)) + e 0Ty (Cf)CI)Tﬂ
+agTr (@T@<AR><AE>) , (B.1)
where ® = go®*0y. Under this scalar potential, the Higgs bi-doublet ® obtains complex VEVs
as Eq. (5.4) and the spontaneous C P-violating phase a emerges at the EWSB vacuum.
In the limit of v > v, the following linear combinations diagonalize the neutral and charged
Higgs mass matrices,
H = cos 3¢9 — sin Be™¢}*, (B
h? = sin Be™*¢Y + cos BV, (B.
H™ = cos 3¢5 + sin ﬁemqbf, (B
Gt = sin 8¢5 — cos ﬂemqbf, (B
where H? (HT) is the heavy neutral (charged) Higgs, G* the NG boson, and h° includes SM
Higgs and NG boson components. The heavy Higgs masses are obtained as

2
pr— 1\/2 . B-6
2cos2p3 H (B.6)

Mo = M. =
The Yukawa interactions in the gauge eigenstate basis are

Ly =0, (Y(I) + ?cﬁ) Qg +h.c.
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D) ULS%/MUS;TUR + bLSgMDS?DR + h.c.

EELMUUR—FELMDC[R—i-h.C., (B.7)

with the mass matrices,
SYMy S = % (Y cos B+ ¥ sin ﬁe—ia) : (B.8)
SgMDSg = % (Y sin e’ + Y cos B) . (B.9)

Here, ur g and dj p represent the quark mass eigenstates with My = diag(my, me,m;) and

Mp = diag(mg, ms, mp). The unitary matrices Sz’% satisfy
Vi = SSE, Vg = S4SE. (B.10)

From Eq. (B.8) and (B.9), Y and Y are written as

2 .
Y = V2 (cosﬁngUs;;T—sinﬁe—mngDSj?),

v cos2f3
¥ \/i : ia qu U d d
Y = vcos 28 <— sin fe SLMUSRT + cos 5SLMDSRT> . (B.11)

Then, the Yukawa interactions are represented in the mass eigenstate basis as

Ly =0, (Y@ n ?é) Qg + h.c.
= SUT(Y 0 f/ 0*>Su a dt Y 0 }N/ 0 dd
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+ i, 8u (Y¢2+ - %f) Shdp +dp S (Y¢; - 17¢>5) Shug + h.c.
1
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+ £dL MDh + w38 (VTMUVR — sin2Be” WMD> HO} dp
2 T 1
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Y2l eeviMy G - i (MDVT — sin 2ﬁemvTMU) H] ug +he. (B.12)
v
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Therefore, the heavy Higgs interactions with quarks become

\[mu \[mu "
—Ly ~ Edi(V])ir(VR)kj Prd; HO + & di(V)in(Vi)w; Prd; HC
vcos 28 s20
V2my, + \/5 Moy, t -
U ) 1 5 B1
2o 2ﬁ (VR)k Prd;H + Bd (VR) v PrupH ( 3)

where the terms proportional to tan 2/ are dismissed, because tan 28 = O(my/my).

After integrating out the heavy charged Higgs boson, one obtains the effective operator,

QﬁGF m%
cos? 28 M3,
V2GE m?

- — i3(VR)3i (Fay* Prt5)(d; 57, Prd; B.14
cos? 23 Mzi (VR)zi%( R)3J( oV Prig)(digvuPr J,a)a ( )

off = (Vi)is(Vi)sj (di Prt) (EPrdy)

where «, 8 denote color indices. By rearranging the colors, the Wilson coefficients become

Q\fGF m?

8 ree
(Céd))gsz’j =u " cos228 e (VD) is(VR)s;, (B.15)
N 1
(Cé;))g?g? =u TNC(C(S))B?,M‘(]:U- (B.16)

for ¢ = u. The Wilson coefficients for ¢ = d is generated by the heavy neutral Higgs exchange.

After integrating out the heavy neutral Higgs boson, one obtains

2\/§GF m% t i — _
of = 398 M2, (Vr)i3(VL)3k (V] )13(VRr)3;(di Prdy ) (di Prd;)

. \/iGF m% t + - u =
=—— 5 (Vr)is(VL)3k(VL)i3(VR)3j (dia" Prdy. ) (di g7 Prdj ) - (B.17)
cos® 23 Mz,

In the mass eigenstate basis, the SU(2); quark double is shown as q¢ = (ur, Vzdy)T. Thus, the

Wilson coefficients for ¢ = d become

8)\tree

(Céd))gdw q:d 0082 26 M2 (VT>Z3(VR)3J7 (B18)
1)\tree 1 8

(Céd))g?n] =4 = 3N, (Céd))33ij‘q:d- (B.19)

Consequently, Egs. (5.14) and (5.15) are obtained.

B.2 Loop functions

The loop functions which are necessary for the AF = 2 transition amplitudes in the left-right

model are summarized. They are defined as

fA(xiwx]‘wB) = (1 + (I:ZZ]IB) Il(x“x],ﬁ) ! ZﬁIQ(mivxj7B)7 (B20)
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.;EB(TL,TR) :(7‘% +7’12%+ 1077 + 1)Ig(TL,TR)

+ (rﬁ —1—7123—1— 107p7R — 27 — 27R + 1) Z4(71, TR), (B.21)

Tin/TLTR o
Folri, im0, 7R) =2 To(rp, ) — | — VTR 7y S, B.22
c(7i, 75,7, TR) =2(71 + TR) I3(7L, TR) = A 5(Ti, L, TR) + (1 = J) (B.22)
Fp(xi,xj, 1) = 2wy (x4, 25, 71) — Lo (24,25, 7L) - (B.23)

The functions, Z;-Z5, are denoted by the Passarino-Veltman functions as [102]

Ty (i, 25, B) = — My, My, Do(0,0,0,0;0,0; my,, mu,, My, , Mw,), (B.24)
To(wi, x5, B) = =AMy, Doo(0,0,0, 050, 05 e, mu;, My, , Miwy,), (B.25)
I3(TL7 TR) = BO(O MWLa MWR) - RG[BO(M?{7 MWLa MWR)]7 (B26)
Tu(Tr, TR) = MHZRe W(ME,0, M3 My, , My, M) (B.27)

Zs(7, 70, TR) = MIQJ{CO(Ou 0,0; My, , my,, Mw,)

M2 M%

— Re |:CO <4 T MH7MWL7mU7,7MWR>:| }, (B28)

where we follow the notation of Refs. [103,104]. The absorptive parts in the loop functions are

discarded [75]. We also obtain the following analytical formulae:

I (zi, ), B) = = xl_)uxih;j;)(% o + (i > j) — a=Aa fl:;g)(l —2.8)’ (B.29)
22 nx; . . In
Bet10) = T e ) T T s e B0
Z3(1L, TR) — 14l rp—rp— LR TE (B.31)
2 T, — TR TR
B V(=7 —TR)2 — 41 7R lnl—TL—TR— V(=7 —TR)2 — 41 7R
2 1_TL_7'R+\/(1—TL—TR)2—4TLTR’
Ty(tr,R) =1 — L TRy, :—; (B.32)
n (t0 — Tr)? — (70 + TR) In 1—71 —7Rp — \/(1 — 7L —TR)? —ATLTR

2\/(1 —TL—TR)2 —4TLTR l—7 -1+ \/(1 —TL —TR)2 —4TLTR’
Ti(tR — o) InT + 70.(7s — TR) InTL, + TR(TL, — ) InTR
(TR — 1) (11, — Ti)(T5 — TR)

TLTR 1
—Re} 1
e{n 72 +4Ti_2TL_2TR+1

T
1 K l,T',T +1i4T— L
X |8k | =, 7,7 | In (& 70,7) + 7 14+ (L—-R)
4 2\/TiTL
k1,70, 7R) + 17+ TR — 1
2VTLTR ’

I5(7-i; TL, TR) =

- 4%(1,TL,TR) In (B33)
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B.2 Loop functions

with

Kz, y,2) = Vo2 +y2 + 22 — 2(zy + yz + 2x). (B.34)

When the relation, mii, MI%VL < MI%VR < M?{, are satisfied, one can use the following approxi-

mations:
1
Is(rr,TR) ~ =1+ (1 —7p)In (—1> ~ —1—In7g, (B.35)
TR
1
Iy(rp,7R) = 1+ TRIn ( — 1> ~ 1, (B.36)
TR
n (7 1
Z5(7iy T, TR) =~ riln (n/7R) = 71 H(TL/TR)a (B.37)

TrR(Ti — 1)

which are consistent with Ref. [75]. Numerically, the second term of Z5 in Eq. (B.33), Re{---},
is much smaller than the first term for My > Myy,.
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Double penguin contributions

In this section, we apply the one-loop matching conditions in Sec. 77 to double-penguin diagrams,
where AF' = 2 processes are generated by exchanging the SM gauge bosons with FC interactions.
When vector bosons of the unbroken gauge symmetries, i.e., those of SU(3), and U(1),,, in
the SM, are exchanged, such double-penguin contributions should vanish because of the gauge
invariance. In fact, form factors of their FC penguin vertices should be proportional to ¢?, i.e.,
vanish in the limit of ¢> — 0 for the gauge invariance, where ¢ is the momentum transfer. Then,
AF = 2 double-penguin diagrams depend on ¢* x 1/¢?, where 1/¢? represents the propagator
of the unbroken gauge boson. Hence, they disappear in the limit of ¢*> — 0.

In our formula, this gauge invariance is confirmed by observing the cancellations among the
Wilson coefficients. Once AF = 1 operators (and AF = 2 ones if necessary) are generated
by the penguin diagrams at the NP scale, we will see that AF = 2 contributions cancel out
below the EWSB scale, if the diagrams are mediated by the gauge bosons of the unbroken gauge
symmetries. Here, the one-loop matching conditions are necessary. These results justify our

one-loop matching conditions in Sec. 77.

We will focus on the double-penguin diagrams with exchanging the gauge bosons associated
with the unbroken gauge symmetries. At the NP scale, penguin-type AF = 1 contributions are
generated by exchanging them. The effective Lagrangian from the massless B, W3 and gluon

can be written as

a 1 i a1 —
ﬁB :m (Cgud@’}/“PLdj + C}%,'Ljdf}/MPRdj) (YuLuk"YﬂPLuk + YuRuk’Y/LPRuk)

+ (6%
4drc?
W
a 7 7 —
i (CgideMPLdj + Cg,z‘jdﬂ“PRdj) QulgY g
« — _

- ﬁsaf (CLidin" Prdj + CR 1;div" Prdy) (I — Qusiy) vt
g
47
az

— ES%/V (CgijJiVMPLdj + Cg’ijcii’y“PRdj) (Ig — QdSIQ/V) Czk")/'udk, (Cl)

(CﬁijJiV”PLdj + Cg,ijcfm“PRdj) (YdLJk'Y,uPLdk + YdRCZk’YuPde>

+ (CgijJiV“PLdj + Cg,ijfiz"Y”PRdj) QadkYudy
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3 - - a
LY = 47r WCL i (i Prd;) (B, Prug) + ins?,
CL i (ny“PLdj) Qulk Y uk + ym cWC’L i (ny“PLdj) (IS — Qus%,v) UkY Uk

CL i (Ji’Y“PLd ) Qadiyud + CWC'L i (dz’y Prd;) (I3 — Qasty) diyudy, (C.2)

L9 :E (Cgij diy" PLTAd; + Cl’g,ijdwupRTAd» (w7 T g + gy TAdy,) (C.3)

CZVZ (div*Prd;) (IgdiyuPrdy)

where Y} is the hypercharge, IJ:Z’ the SU(2), charge, and @ the U(1),,, charge. Also, a; and «
respectively. The coefficients, CV.. (V = B,W3, g

c,ij

are the gauge couplings of SU(3) and U(1),,,,,
and ¢ = L, R), are generated by integrating out the NP particles. In the second lines of £” and
EWS, the effective Lagrangians are divided into the would-be «- and Z-penguin contributions,
which are proportional to a Qy and oz (I? — Qfs%/v), respectively. Here, ay = a/(clz,vs%V). In
terms of the SMEFT operators, the above operators are represented as

(CD)igure =(CS8 ks

Qs

« 3 (654 3
= — 1O+ oY (OF + O ) + S2shYy (SO — Ol ) ()
c

(Cé;))ikzkj :(C(Eé))kﬂk = 32?\;0 (Ne —2)C1 45, (C.5)
(Cc([;))ijkk Z(C(3))kkij

- (CL i+ CF ”) féz 2 (s%VCEij 2, U) (C.6)
(Cég))ikkj :(Céq))kjik = 304730% i (C.7)
(Cq(iz))kkij :%Quclg,ij ZZ sivCh, ij (—sirQu) , (C.8)
CoDwis =3-Chye (C.9)
(CO)ighn Z%Qu (Cﬁij + CZVZ) - % (3%/0513‘ - C%VCKRQ) (—sivQu) , (C.10)
(C)igwr =72C4 15 (C.11)
€SV = 40;62«1 hij %: wCR i (ID — sivQq) , (C.12)
(Céfl))i]kk Z%;Cﬁﬂ-], (C.13)
(€ i —%C’%M (C.14)

In addition, one has to include AF = 2 contributions which come from the diagram in
Fig. C.1. They are generated at the NP scale. The d; — d; transitions are induced by the
penguin vertices of the NP contribution in one side and those of the SM contribution in another
side, where the up-type quarks, especially the top quark, and the W boson are exchanged. The

Wilson coefficients of the SMEFT operators are represented as

(C)igig =(C)iis
2 AU 1

« T 1
= — 5 (O + CE) § Qa3 Las i) + Qar 7 M (@) — £ [2 = 6L (e, o)
8m2s?, 8 4 8
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Figure C.1: Feynman diagram for the one-loop contribution to AF = 2 operators at the NP
scale.

OéOéZ)\ij 2 B { G+ 2 Gt Tt
siyCri — cwClaj) s U wQ™ ) L(xe, pw)
87725%,[, ( J J) 8
1 1
+ (=58 Qa) M)~ gy 2 OL(ar )] | (C.15)

244
a“ 3
- m (Cﬁij + C[V/[,/ij> K(x¢, pw)

aaz)\ij Ty 1
- B 2t (812/1/052] CWCL 2]) L(J}t, :uW) -+ M($t> C%VK(xtv MW) ) (016)
825, 16 4

a2\ T 1 1
(Cézz))ijij == ﬁcg,ij {QG+ gtL($taNW) + Qc+ ZM(l‘t) - g [2 - GL(SUt’MW)}}
w

aag\9 T 1
+ 2920 (2, CB ) 1T — Q) Liwe, pw) + (— 3 Qe ) 7 M ()
47 Sty 8 4
1
— < 2 6L ) } (C.17)
/\? CB . K (x4, pw)
= R,ij ty UW
47T2 %/V J
o )\
4Z2 [16L($t>uw)+ 4M($t) — Gy Kz, pw) | (C.18)

where Qg+ = 1 and 16" = 1/2. Here, the GIM mechanism is used to reduce the results, and

the loop functions are given as

W 3x —1 z?lnx
MW+4@—Q_2Q—@?
x 2?lnz
1—z " (1—x)%

L(z,pu) =In (C.19)

M(z) = (C.20)

For the gluon double-penguin contributions, one obtains the low-scale AF = 2 operators
through the one-loop matching conditions, Egs. (3.16)—(3.18), from the SMEFT AF = 1 oper-
ators in Egs. (C.4)-(C.14) as

(Ch)ij = (C1);; P

vy
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L a? as 2(Ne —
~ dmsiAm N
=0, (C.21)
—loo
(Ca)ij = (Cu);; P

j
_aN as

1)021']' [ (e, pw) +2J (2) — K (2, pw )]

g
~ sy, 1 Crag (L (@, pow) + 2 () — K (2t pow )]

=0, (C.22)
(05)” — (05),};1001)
a\d ag 1
= st g , Cha (1 pw) 27 ) = K (s )]
=0. (C.23)

Since all these Wilson coefficients are proportional to the function, Ij(x¢, uw) + 2J(z) —
K (x4, uw), which is identical to zero, there are no contributions to the AF = 2 operators.
Hence, the gluon double-penguin contributions vanish, as expected from the gauge invariance.

Next, for the v double-penguin contributions, the low-scale AF = 2 operators are generated
from the SMEFT AF = 2 operators in Egs. (C.16) and (C.18) through the tree-level matching
as well as the AF = 1 ones in Eqs. (C.4)—(C.14) through the one-loop matching conditions,
Egs. (3.16)—(3.18). In total, the low-scale AF = 2 coefficients are

(€ =(CO5 + (€L

ij

Oé)\;] @ B w3
= —(CP.. +C7 VK
TS, 47r< Lij + Lﬂ]) (z¢, pw)
Oé)\;j o B w3
_ —(CP..+ V. wld , 27 — QuK (z,
sty 47( Lij * L’”) {Q L1 (e, pw) + 2J (2)] — QK (w4 MW)}
D (C.24)
ree “loo
(C5)ij =(C5)5° + (C5);; P
2@/\? a g
=— " —C5..K
WSIQ/V 47TCR,1] (:L‘b/'LW)
2(1)\? a g
—CFR.:30QulT , 2] — QUK (x4,
+ ms2, A R,z]{Q [ (e, pw) + 2J (20)] — Qak (¢ MW)}
- (C.25)

and other Wilson coefficients do not receive contributions. It is noticed that (C1);; and (Cs);;
are proportional to the function which is identical to zero, because @y = @, — 1. Hence,
the ~ double-penguin contributions also vanish, as expected from the gauge invariance, and it

guarantees our one-loop matching conditions.?!

#1 The Z double-penguin contributions also vanish in the limit of the gauge invariance of the SU(2), x U(1),
symmetry. Non-zero contributions due to the SU(2), x U(1),. breaking are encoded into the AF' = 1 effective op-
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erators, (Og;)ij, (OS;)” and (Ona)ij, in a gauge-invariant manner [20,21] (see also Ref. [81] for a supersymmetric
study).
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Chapter

b — dvyand b — sy

In this section, we consider flavor-violations in the scalar trilinear couplings. They contribute
to the decays of b — d;y (d; = d,s) at the one-loop level.#! The decays are described by the

effective Hamiltonian,

4G
Hett = _TQF[)‘t]iS [CMOW + 689089] + (L < R), (D-1)

where the effective operators are defined as

e - _
Oy = 75=5Mb 0" Prb Fiu,  Osg = %mb ;o T Pb G, (D.2)

where e > 0 and g3 > 0, and the covariant derivatives for the quark and squark follow the same

sign convention as Eq. (??7). At the one-loop level, the gluino contributions are obtained as

— S >|< _D - _ _g d* d _D . D'
C?’Y 4GF[)\t]z3m§ |:R'rz Rr3 (9 1(.’1‘ )> mme RTG (9 2(.1? )) :|7 ( 3)
V2ma dsad 1
__V2Amas Apdepd (Lp )~ 3Dy
CSg 4GF[)\t]z3m§ |:R'rz Rr3 (3 1(1' ) 3 3(.’1? )>
Mg deyd (1
- BoRaR (302t 304600 ) | (D.4)
my 3

where z, = m?z / m%, and the loop functions are defined to be

—23 4622 -3z —-2—6xlnzx

Dl(x) = 6(1 _ 1’)4 ) (D5)
22 —1-2zlnz
20 4+ 322 —6x+1—622Inz

Dj(z) = 6 o) , (D.7)

#1 They also contribute to the (CP-violating) By, mixings. In the parameter regions of our interest, gluino
box contributions to them are smaller than the current experimental and theoretical uncertainties. Also, the
C P-violating scalar trilinear couplings can contribute to the electric dipole moments (EDMs) e.g., of the neutron.
Since the C'P phases are introduced in the flavor off-diagonal components, the gluino contributions to the EDMs
satisfy the experimental limits.
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_ 322 —dz+1—22%Inx

D) 1—2z)?

(D.8)

Also, Cé,y and Cég are obtained by flipping the chirality of Rf(*)

;~ in C7y and Cgg, respectively.

In the analysis, an approximation formula in Ref. [?] is used to estimate the SUSY contribu-
tions to the branching ratio of b — sv, where the Wilson coefficients are set at p, = 4.8 GeV. For
B(B — Xg7), the formula in Refs. [?,?] is used, where the SUSY contributions to the Wilson

coefficients at the top-mass scale are needed. The latest results of the SM values are [?]

B(B = X,v)™™ = (3.36 £ 0.23) x 1074, (D.9)
B(B — Xgv)®™ = (1.7375:12) x 1077, (D.10)

for E, > 1.6 GeV. On the other hand, the experimental results are [?,7,7]

B(B — Xy)™P = (3.32+0.15) x 1074, (D.11)
B(B — Xgv)®P = (1.41 £ 0.57) x 10~°, (D.12)

for £, > 1.6GeV. In the analysis, the theoretical prediction including the SM and SUSY

contributions is required to be consistent with the experimental result at the 20 level.

- 86 -



Vacuum stability

The Wilson coefficients in Eqs. (6.39)-(6.41) are enhanced by large off-diagonal trilinear cou-
plings, (Tp);3 and (Tp)s; (¢ = 1,2). Such large trilinear couplings tend to generate dangerous
charge and color breaking (CCB) global minima in the scalar potential [119]. Hence, they are
limited by the vacuum (meta-)stability condition: the lifetime of the EW vacuum must be longer
than the age of the Universe. In this section, we will investigate the vacuum stability conditions
of (Tp);z and (Tp)s;-

The vacuum decay rate per unit volume is represented by I'/V = Aexp (—Sg), where Sg
is the Euclidean action of the bounce solution [120]. CosmoTransition 2.0.2 [121] is used to
estimate Sg at the semiclassical level. The prefactor A cannot be determined unless radiative
corrections are taken into account [122,123]. We adopt an order-of-magnitude estimation, A ~
(100 GeV)*. By requiring (I'/V')'/4 to be smaller than the current Hubble parameter, the lifetime
of the EW vacuum becomes longer than the age of the Universe. The condition corresponds to
SgE 2 400. In this paper, thermal effects and radiative corrections to the vacuum transitions are
discarded.

The bounce solution and Sg are determined by the scalar potential. The potential relevant

for the vacuum decay generated by (Tp),5 and/or (Tp)s; is

1 1
V = 2m11 h‘d + 2m%2 h2 m%z hdhu
1, » 1 1 1y -
+§mQ,1dL 9 Q3b 9 Dld ) ng

1 1
+ (TD) 33 ha — Yppthul brbr + —= (In)13 hadrbr + —= (Ip) 3, habrdr
f f
L 1 L
+ —g2(d% + b2 — d% —bR)* + 37292(h — hZ+d +b%)?

V2
+%y (b20% + b2 b2 + bhh2)
1
9493
1
32

2
2 2 72
hZ — h2 d b d b E.1
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. . . . . . . .
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Figure E.1: The upper bound on |(7p),s| for i = 1,2 from the vacuum stability condition as
a function of meg- Here, tan 8 = 5, 10, 30, 50 are taken. The solid lines are in the case of
ma =mg,; = Mpg = Mgy, while the dashed lines represent the decoupling limit of the heavy
Higgs multiplets, m 4 > me,; =Mp g =Mg.

where the coefficients are

1
m3, = m? sin® § — §m22 cos 23, (E.2)
1
m3, = m? cos® B+ imQZ cos 23, (E.3)
1
miy = imi sin 2/3. (E.4)

Here, hg, hu, dr., b, dg, br are real scalar fields with (hg) = vcos B and (h,) = vsin 5 at the
EW vacuum. In this potential, all coefficients can be rotated to be real by rephasing the fields.
The terms proportional to light flavor Yukawas are discarded, because those contributions are
negligible. The scalar potential for §7,, §r is obtained by substituting dNL,R — 3., (Tp)13 —
(TD)23, and (Tp)3; — (ID)so-

Let us first consider the vacuum stability condition when only (Tp),5 is large. The scalar
potential is simplified to be
L

1 1 - -
2m22 h2 m12 hahy + m d 2 D 3 b \/5 (TD)13 hqgdrbr (E5)

1 2-,\2
h2 — h2 + d? W a2 %) .
B o )+ g (2 3+ 57

V= mllhd—i-

- 1 o -
pRG + 23 (d — bR)® +

t 24 * 3%

When my ~ meay ~ Mp g, CCB vacua appear around a ha-dr—bg plane. In Fig. E.1, the
solid lines show upper bounds on |(Tp),4| for tan 8 = 5, 10, 30, and 50. We assumed my =
mg, = Mp 3. It is shown that the upper bounds are proportional to meg. Also, the results
depend on tan 8 slightly. This is because the scalar potential is stabilized by a quartic coupling
yggfzhg ~ (2mg/v2) tan? ﬁl;%hfl, when tan f3 is large.
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Figure E.2: The vacuum stability condition of |(Tp),;s| for i = 1,2 as a function of m4. Here,
mg; =Mpg = 10TeV, and tan 8 = 5 and 30 are taken.

When my4 is larger than meaq ~ Mp g, the position of the CCB vacuum approaches to a
H—d;-bgr plane, where H includes the SM-like Higgs boson, H = hgy + v. In Fig. E.2, the mgy
dependence of the upper bound is shown. Here, tan § = 5 and 30 are taken. We found that the
vacuum stability condition is relaxed for large m 4.

In the decoupling limit of the heavy Higgs bosons (m?% > m%,a — 8 — 7/2), the scalar
potential can be expressed by H, dr, and bp as

1 1 1 - -
V= —EmQZ cos® 26 H? + 3 é,ld 2 ng \@ (Tp)y5cos B Hdrbr
1 _ .
+ ybb H? cos? B+— 2(d2 — b%)2+§g%(ﬂ20082ﬁ—d%)2
1 N2
32gy <H2 cos23 — d2 Bb%,z) . (E.6)

The upper bounds on |(7p),5| are shown by the dashed lines in Fig. E.1.#! Again, they are
proportional to meg. In contrast to the case of my ~ me, the result is almost proportional
to tan 3. This is understood by cos 8 associated to (Ip),5. A fitting formula of the vacuum

stability condition in the large m4 limit with me, =Mp g = Mg is derived as

’(jD)li‘)’
229l < (0.186 TeV + 1.675m 4 E.7
tanB ev @ (E.7)

where the phase of (Tp);s is taken into account. This formula works well for mg > 1TeV.

#1 In this scalar potential, the SM-like Higgs boson is lighter than 125 GeV. The vacuum stability condition can
be evaluated naively by adding top-stop radiative corrections, (g% + g%) 62) sint 6H4/8, [124-127] to Eq. (E.6) in
order to achieve the 125 GeV SM-like Higgs boson at the EW vacuum. We found that Eq. (E.7) is barely changed.
Dedicated studies are needed to fully include the radiative corrections (see Ref. [123]).
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Let us next turn on (Tp),s in addition to (7p);5. The scalar trilinear term becomes
(E.8)

1 - -
V5 —= [(To)igdy + (Tp)ay 51| brha.
ﬁ(D)lgL (Tp)g3 51| brha
Here, (Tp),3 93 are taken to be real by rephasing the scalar fields. By mixing dy and 5, one
can obtain
1 2 2 112 5 5
Vo = [(To) + (To)y| - dibrha, (E.9)
V2
where d, = L0089 §) sin6 and 3, = d sin@ + &) cos 0 with tan® = (Tp)ys / (Tp);3. When
m% L= % = Q’ the scalar potential of dL is obtained from that of dj by substituting
’ 1/2 - N
(Tp)ys — [(TD)13 + (TD)§3:| as well as d;, — d;. Therefore, the vacuum stability condition
(E.7) is extended to be
(E.10)

T 2 T 2
VITD)13]? + 1 (Tn)s < —0.186 TeV + 1.675myg,
tan 8
where the phases of (Tp)4 95 are taken into account appropriately. The formula is valid when

MG = Mg, = Mgo = Mp 3 > 1TeV and my is decoupled.#?
When only (7p)4; is large, the potential becomes

1 1 1 o
V= §m%1 h2 + 2me2 h2 — m2y hahy + 2m b2 +5 Dld 7 (Tp)s; habrdr (E.11)
2 1 2 72 2 1 72 2 1 2 2 1~2 2 72 ?

By repeating the above procedure, one can obtain quantitatively the same fitting formula for

(Tp)s; as Eq. (E.10),
T 2 T 2
VIT0)gt 2+ 1 (Th)sy| < —0.186 TeV + 1.675my, (E.12)
tan 3
Ho > 1TeV and m 4 is decoupled.

where mg=me s =mp, =m

We have validated the formula (E.10) explicitly by analyzing the bounce action of the scalar potential of H

CZL, §L, and ER.
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Neutron and proton EDM with chiral Lagrangian
technique

In this section, we provide contributions of four-quark operators to the neutron and proton EDM
with the chiral Lagrangian technique through a procedure in [106]. We focus on C'P violating
interactions through meson condensation by four-quark operators (7);1/'1.

At parton level, C'P violating interactions with @glq are rewritten as
['CPV D) Z éi],q@({q
q'#4,9,94' =u,d,s

= Y |iCH M (aiPraj) (@ Pra) + iCH (@ Praj) (@ Prat) | — (L < R),  (F.1)
i,5,k,l=u,d,s

where the coefficients are defined as

CHR =CfiH =" CTU5; 6 O O (F.2)
qa#q’

Under rotations, U(3), x U(3)g, we impose a following transformation:

Prg; — (L) Prgj,

Prg; — (R)ijPRij (F.4)
CLHR = D (D) im(L)koCbd (R i (R i,
m,n,o0,p
CHER 5 Y (R)im(L)koCRELE (L) 0 (R, (F.6)
m,n,o,p

where L € U(3)r and R € U(3)g. Then, right-hand side of Eq. (F.1) is invariant under the
above transformation. Reflecting this symmetry in the meson chiral Lagrangian at order O(p?),

CP violating terms is written as

F2

meson _ 11” Tr [(DU) DU+ x(U + U] + [UD vt| T [otpru]

+ agTr [m U—Tn UT}
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- 2 [ CHEER (10101 = er[UM3U e + eoUTalUT i = e2[U 1l )

i,5,k,l=u,d,s
(F.7)
+iCi " <C3[UT]ji[U]lk —c3 [U]j,-[UT]lk) ]
where U and y are given by

1.0, 1 g 1 7+

21 2i 2" T 23" 1 ?W 1 ?Ko
U=exp [77013 + H} , U= il —3™ T oM K (F.8)

V6 Fr g 10 VA

V2 V2 3B
= diag(1,1,1), (F.9)
X = 2Bodiag (muy, ma, ms) . (F.10)

Here, the mesons matrix-valued field transforms as U — RUL' under U(3);, x U(3)r, Fx
is the pion decay constant, Fy is the decay constant for 79. We approximate as Fy ~ Fp,
By ~m2/(my +mq) and 48ag/F§ ~ m + mi, — 2m?.. Besides, by naive dimensional analysis,

we estimate unknown low energy constants, c1,co and cg as

A F,)0
“ NCQNC?’”((ZLW;Q- (F.11)
Scalar potential with neutral mesons 7%, 7g and 79 in Eq. (F.8) is extracted as
V(7 ng,mo) = F2Bo | my cos (WO il 210 > + mg cos (-WO L 210 )
s 118 s u \[F \fF() F7r \/gFﬂ_ \/6F0

mon (- + ) ) o

e () )= )
+< Ods 4 sd Sm< 7T7r %}72))
+ 203< (C —Cf ) sin <2F7;0> + (élus — C’f“) sin (;i - \/F§;78>
+ (€ = 637 sin (;Z - \/;;78) ) (F.12)

If Cpd, O, s and C§* takes zero, non-zero small meson VEVs coming from Cf* and C§¢

(7%), (ng) and (ng) of the above potential Eq. (F.12) are given as

(™)
=

c1 BoF2m,ms + 8ag(mg + 2my)
BoF? BoF2mymgms + 8ag(mymg + mgms + mgmy,)

~ (04 0p)
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N <(de B C’Sd> 3 BoF2mgm., — 8ag(mg — 2(my + my)) (F.13)
! V') BoF2 ByF2mymgms + 8ag(maymg + mams + mgmy,)’
<778> o~ (éds n Cvsd) C1 B()F,%mu(de - ms) + 24a0md
FE. ! ! V3BoE2 BoF2mymams + 8ag(mumaq + magms + mgm.,)
B (éds B ésd) 3 BoF2(2mg + mg)m,, + 24ag(mg + 2m,,) (F.14)
! ! \/gBQFg BOFygmumdms + 8ag (mumd + mgms + msmu) ’
) _ Gids | Grsd V2 BoFZ (ma + ms)my,
b\t V') /3By F2 BoF2mymams + 8ao(mymg + mgms + mgmy,)
oL 7 POL g Ty TTedlits 0Ty TTq dts sy
+ (e - ) V2 Bol'eoma — s (F.15)
1 1 V3ByF2 BoF2mymgms + 8ag(mymg + mgms + mgmy,)

By the meson condensations, C'P violating interactions are generated by the baryon chiral

Lagrangian at O(p?):
Luaryons = Tr [Bin* (0,B + [Ty, B]) — MpBB]

_ gTr [BY"v5{€u, B} — gTr [By#ys[€,., B]] — %Tr [€,] Tr [By"y5B]
+bpTr [B{x+, B} + brTr [Blxy, B]] + boTr [x4] Tr [BB] + - - -, (F.16)

where baryons matrix-valued field B is defined as

1 50 1 1 AO +
\/52 + \/EA 1 by 1 D
B = 3 _EZO + %AO n R (Fl?)
B~ =0 —2 A0

&1, r are defined as U = 5352, where £ = ’ij;'
Besides, Mp is the baryon mass, a covariant derivative for baryons I',, fields consisting

mesons §, and x4 consisting quark masses are defined as

1 1
Ty= 5512, (Ou —irp) Er + 552 (O = i) Eis (F.18)
& = ik (O — 1) Er — i€} (O — il) €L, (F.19)
X+ = 2Bo€} diag (mu, ma, ms) € + 2BoE hdiag (my, ma, ms) &L (F.20)

By inserting meson VEVs (7%), (ns) and (o) into the baryon chiral Lagrangian Eq. (F.16), CP

violating interactions are given as

ﬁbaryons > gnpﬂ*ﬁpﬂ-i + gnZKﬂLﬁp-Kv+

+ Gt + Grer ApPAK Y + Grer0,pS KT (F.21)

where the coupling constants are given by

7T0
Ink+ = Z(:(bD —br)| - %(Smu +ms) <Fﬂ> + \}é(mu + 5ms)<;77,i> - jg(mu + ms)ﬁ? ,
(F.22)
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70 0
(F.23)
70 0
IK+Ap = ?:(bp + 3bp) [2\1/§(mS + 3my,) <F7r> + é(m“ — 5ms)<jl7i> + 2\3/§(mu + m5)<7}770>]’
(F.24)
70 0
IK+x0p = Z(:(bp —br) [ — %(ms + 3my,) <F7r> — 2\1/3(77% — 5m8)<;i> _ 2\/3(77% 4 ms)<7}770>]'
(F.25)

These couplings contribute to the neutron and proton EDMs through baryon-meson loop dia-

gram as followings [115]:

- 9 _ 2
e Gnpr— msi Tns K+ My m(myg- —my)
dy ~ ———— D+F)[14+1 — D—-—F)l14+1
n 87T2F7T_\/§( + )<+n > ( )<+nm2+ y

mi V2 N MK+
(F.26)
. 9 _ 2
€ Inpr— mi 9K+Ap Myt 7T(WLA - mn)
dy ~ — - D+F)(1+In—2 D+3F) (141
p ST2FL | ﬂ( +)<+nm%v>+2\/§( + )<+nm?v+ p—
— 2 _
_ I oy <1 1 M Tmse m")> ] : (F.27)
2 my Mg+

where we include only leading order terms of the baryon-meson loops. Divergent terms and a
mass scale coming from the dimensional regularization are set as zero-value and the nucleon
mass my, respectively.

By substituting the meson VEVs into Eq. (F.26) and Eq. (F.27), and using the pion decay
constant F = 86.8 MeV [116], measured meson-baryon couplings from hyperon 3 decays D =
0.804 and F' = 0.463 [117], low-energy-constants (LECs) determined from the baryon octet mass
splittings bp = 0.161 GeV ! and bp = —0.502 GeV~! [118] and the quark masses m,, (1 GeV) =
2.699 MeV,mg(1 GeV) = 5.868 MeV and ms(1 GeV) = 117 MeV which are evaluated by the
QCD four-loop RGEs [80], m,q(2 GeV) = 3.373 MeV and m4(2 GeV) = 92.0 MeV, the neutron

and proton EDMs are approximated as

dyp ~e- [—0.0260{“ + 0.1696‘fd} GeV!, (F.28)

dy~ e [0.023@?8 - 0.149(3;"1} Gevl. (F.29)
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