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Abstract

We establish a systematic way to estimate flavor and CP violating observ-

ables within the Standard Model Effective Field Theory (SMEFT), which describes

high energy phenomena beyond the electroweak symmetry breaking (EWSB) scale.

Based on the established SMEFT approach, we investigate the SMEFT effects on

low-scale observables such as ∆F = 2 observables and nucleon electric dipole mo-

ments (EDMs). For that purpose, we provide one-loop matching formulae at the

EWSB scale for ∆F = 2 transitions, and discuss ∆F = 2 observables of down-type

quark within the framework of the SMEFT. In addition, we study new physics (NP)

contributions to the nucleon EDMs in the SMEFT. Similar to the case for ∆F = 2,

we provide the one-loop formulae for ∆F = 0 transitions relevant for the nucleon

EDMs and discuss correlations of these effects with ∆F = 2 observables such as ϵK

and ∆MBd . As the result, we conclude that the SMEFT approach is quantitatively

and qualitatively essential to evaluate the NP effects on the low-scale observables

when the NP scale is much higher than the EWSB one.
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Chapter

1
Introduction

1.1 Overview

The standard model (SM) of the particle physics is a theory which describes nature very well.

In 2012, the last missing piece of the SM, the Higgs boson was observed by the Large Hadron

Collider (LHC) experiments [1, 2]. This great discovery was a culmination of the success of the

SM. However, some unsolved problems, such as the hierarchy problem and an identity of the

dark matter are remained in the SM. Thus, the discovery is also a beginning of searching for

new physics (NP).

Without a fine-tuning between the observed Higgs mass and the bare mass of the Higgs

boson, a mass of NP particle coupling to the Higgs boson is implied as ∼ 100 GeV–1 TeV. In

addition, if weakly interacting massive particles (WIMPs) dominate a energy density of cold

non-baryonic matter in the universe, Ωh2 ≃ 0.1
(
⟨σv⟩/10−26 cm2/s

)−1
[3], it is expected that

the mass of the WIMPs is around ∼ 100 GeV–1 TeV. In particular, these unsolved problems

indicate that the NP scale is not far from the electroweak symmetry breaking (EWSB) scale

and give us a guideline for the energy scale at which the human race must aim.

However, by the LHC experiment, the NP particles with a few TeV mass have not been

detected yet [4]. At this stage, the experimental facts indicate that the NP consists either

very weakly coupled particles or heavy ones well above the EWSB scale. In particular, in the

second scenario which we focus in this thesis, indirect searches for the NP become important,

because FCNCs and CP violating observables are sensitive to physics at the high energy scale.

Many obsevable quantities in the flavor-changing processes are precisely determined in both

of theoretical calculations and experimental data. In the near future, the precisions in the

flavor experiments will be further improved, and theoretical precise calculations become more

important [5, 6]. Besides, in the flavor-conserving processes, several experiments are proposed

to measure nucleon EDMs, whose sensitivities would be improved by 2−3 orders of magnitudes

in near future [7–9]. Although EDMs are flavor-conserving processes, they have a sensitivity to

flavor violations through the W -boson interactions. Thus, NP effects on quark flavor-changing

neutral currents can contribute to quark EDMs simultaneously by exchanging the W boson.



Chapter 1. Introduction

Since the EDMs are very sensitive to NP, they can also prove flavor-changing contributions to

NP.

In conventional evaluations of CP and flavor violating observables, heavy degree of freedom,

such as NP particles and the heavy SM particles including the top quark and the EW gauge

boson (W,Z,H), are simultaneously decoupled. Then, the NP model is matched onto the low

energy effective field theory (LEFT), which is described by the light SM particles without the

top quark and EW gauge boson. For example, the kaon ∆S = 2 observables are described by

following effective Hamiltonian only including the down and strange quarks:

H∆S=2
eff = (C1)12(d̄γ

µPLs)(d̄γµPLs)

+ (C2)12(d̄PLs)(d̄PLs) + (C3)12(d̄
αPLs

β)(d̄βPLs
α)

+ (C4)12(d̄PLs)(d̄PRs) + (C5)12(d̄
αPLs

β)(d̄βPRs
α)

+ (C ′
1)12(d̄γ

µPRs)(d̄γµPRs)

+ (C ′
2)12(d̄PRs)(d̄PRs) + (C ′

3)12(d̄
αPRs

β)(d̄βPRs
α), (1.1)

where α, β are color indices. The LEFT are eventually compared with experimental data.

However, in the current perspective, this procedure for the evaluations of the CP and flavor

violating observables is broken down. A class of the NP models where both of NP and SM

particles appear simultaneously in a loop diagram, makes this point clear. As mentioned before,

the NP particles are likely to be much heavier than the SM ones. When there is a large mass

hierarchy among the particles in a loop diagram, higher order corrections of the perturbation

cannot be negligible. Then, corrections of the dynamical top quark to the low-scale effective

operators can be relevant, because the top quark has a large Yukawa coupling and mass. In

particular, in the conventional evaluations, it is not clear that “in which energy scale the top

quark mass (or the top Yukawa coupling) is evaluated.” We call this problem as “matching

scale uncertainty” in this thesis. In addition, since the LEFT does not include the W boson

as a dynamical degree of freedom, it is difficult to analyze correlations between observables

with the FCNC observables and the EDMs through a model independent way. In evaluation of

CP and flavor violating observables, integrating out both of NP and SM particles is no longer

appropriate because of the much high NP scale, and the conventional evaluations based on the

LEFT must be improved by an instead effective field theory in which the heavy SM degree of

freedoms are retained.

The Standard Model Effective Field Theory (SMEFT) [10–12] is one of the candidates for the

effective field theory above the EWSB scale. In the SMEFT, the higher dimensional operators are

invariant under the SM gauge symmetries, SU(3)C × SU(2)L ×U(1)Y, and all the SM particles,

particularly the electroweak bosons (W,Z,H) and the top quark (t), are dynamical degrees

of freedom. The NP diagrams are matched onto the SMEFT, and the renormalization group

- 2 -



1.1 Overview

equations (RGEs) in the SMEFT [13–15] are solved. At the EWSB scale, the SMEFT are also

matched onto the LEFT. By this procedure, we can escape the matching scale uncertainty.

In addition, we can analyze the correlations between the FCNC observables and the EDMs

without specifying a NP model because of the dynamical W boson in the SMEFT. In the

SMEFT procedure, the NP contributions are encoded at the NP scale, and evaluated at the

EWSB scale by solving the SMEFT RGEs. Concerning the Yukawa, gauge couplings and so on,

the anomalous dimensions of the SMEFT dimension six operators have already been calculated

at the one-loop level. On the other hand, the matching at the EWSB scale had not been

calculated at the one-loop level, which is needed to analyze the NP effects with the same order

perturbation calculations#1. In Chapter 5, the effects of one-loop matching formulae are also

discussed qualitatively.

Stimulated by the current situation in the evaluations of the low-scale observables, in this the-

sis, we provide the one-loop matching formulae relevant to the low-scale ∆F = 2 and 0 operators

with the top Yukawa couplings, and we establish a systematic way to estimate flavor and CP

violating observables in the SMEFT, which are the based on the works by the author [16, 17].

By using the one-loop matching formulae and solving the RGEs in the SMEFT, we investigate

whether the SMEFT effects are negligible or not. In the ∆F = 2 processes, we discuss the

scale uncertainty, which is reduced by the one-loop matching formulae and the SMEFT RGEs.

In addition, the one-loop matching formulae mediated by the Z boson contributes to ∆F = 1

processes, such as K → πνν̄ which is theoretical clean and sensitive to physics at high energy

scale. By using our matching formulae including the Z mediated corrections, we discuss cor-

relations between the ∆F = 2 observables and ∆F = 1 ones with particular emphasis on the

kaon system. We show that the constraint from ϵK is drastically changed by the right-handed

NP contributions in the Z mediated corrections. Besides, through the one-loop matching for-

mulae for ∆F = 0 processes, the SMEFT ∆F = 1 operators contribute to low-scale ∆F = 0

observables, such as the nucleon electric dipole moments (EDM). We discuss the nucleon EDMs

within the framework of the SMEFT.

By these investigations, it becomes clear that the SMEFT is essential to reduce the scale

uncertainty, the right-handed NP effects are tightly constrained in the Z mediated SMEFT

corrections, and the nucleon EDMs can provide an complementary information on the ∆F = 1

effective operators in future. As a result, we will conclude that the SMEFT effects are quan-

titatively and qualitatively essential in evaluations of the NP contributions to the low-scale

observables when the NP scale is much higher than the EWSB one.

#1A part of the one-loop matching formula is shown in Ref. [18]. We found that its result is inadequate because
the left-handed top quark contributions are missing, and thus, inconsistent with the SMEFT RGEs [19]. In
addition, the logarithmic scale dependence in Eqs. (4.24)-(4.26) of the journal version of Ref. [18] is inconsistent
with that from the RGEs, which are fixed in our result, Eqs. (3.16)-(3.18). The formula related to the SMEFT
quark-Higgs operators are given in Ref. [20] (see also Ref. [21]); the result is included in this paper.

- 3 -



Chapter 1. Introduction

1.2 Organization of this thesis

This thesis is organized as following.

In Chapter 2, we briefly review the SM and the standard model effective field theory

(SMEFT). In Section 2.1, in order to clarify an importance of indirect search of the NP, we

discuss flavor and CP violating effects in the SM. In Section 2.2, we briefly review the SMEFT

and we summarize the dimension-six operators in the SMEFT. In Section 2.3, we summarize

the flavor changing operators in the SMEFT relevant to ∆F = 2 and 0 processes at the one-loop

level.

In Chapter 3, we provide tree and one-loop matching formulae for the SMEFT ∆F = 1

operators, which contribute to the ∆F = 0 and 2 processes in a low scale. In Section 3.2, we

provide matching formulae contributing to the ∆F = 2 operators in the LEFT. Besides, in

Section 3.3, we provide matching formulae for the ∆F = 0 process. In Section 3.4, we discuss

that the SMEFT ∆F = 1 operators are mainly divided into two type, and we summarize

relations between the each operator and observables. Section 3.5 are devoted to the conclusion

in this chapter.

In Chapter 4, we briefly summarize ∆F = 0, 1 and 2 observables, which are used in this

thesis. Section 4.1 is devoted to the indirect CP violation in K0 −K0
oscillation, Section 4.2

the mass difference in Bd meson, Section 4.3 the nucleon EDMs, Section 4.4.1 the direct CP

violation of the K → ππ decays, Section 4.4.2 the decay processes, K+ → π+νν̄ and KL → π0νν̄

and Section 4.4.3 the decay processes, KL → µ+µ−.

In Chapter 5, focusing on ∆F = 2 observables, we study the SMEFT corrections above the

EWSB scale, paying particular attention to the dynamical top quark. In Section 5.1, we explain

the matching scale uncertainty in conventional evaluations and show our strategy for reducing

the scale uncertainty. In Section 5.2, we numerically analyze the scale uncertainty by a model

independent way. In Section 5.3, we focus on the left-right symmetric model and investigate the

effects of the scale uncertainty. Section 5.4 are devoted to the conclusion in this chapter.

In Chapter 6, we evaluate the SMEFT correction to ∆F = 2 observables, paying particular

attention to the Z mediated corrections. In Section 6.1, we discuss the scenario, the Z medi-

ated SMEFT corrections. In Section 6.2, we investigate the correlations between the ∆F = 2

observables and the ∆F = 1 ones by a model independent way. In Section 6.3, we focus on a

gluino mediated penguin in the MSSM and investigate the effects of the Z mediated SMEFT

corrections to the ∆F = 2 observables. Section 6.4 is devoted to the conclusion in this chapter.

In Chapter 7, we study the SMEFT ∆F = 1 operators effects on nucleon EDMs. In Sec-

tion 7.1, we briefly explain the flavor conserving processes induced by the ∆F = 1 SMEFT

operators. In Section 7.2, we numerically analyze the nucleon EDMs by a model independent

way within the framework of the SMEFT. Section 7.3 is devoted to the conclusion in this chapter.

Chapter 8 is devoted to the conclusion of this thesis.

- 4 -



Chapter

2
An Introduction to SMEFT Operator

In this chapter, we review the standard model (SM) of particles physics and

the standard model effective field theory (SMEFT) with particular emphasis

on flavor changing operators. In Section 2.1, in order to clarify an importance

of indirect searches of the NP, we discuss flavor and CP violating effects in the

SM. In Section 2.2, we review the SMEFT operators. In Section 2.3, ∆F = 2

and 0 SMEFT operators are summarized.

2.1 The Standard Model

The Standard Model (SM) of particle physics as the gauge theory consists of the electroweak

(EW), and strong interactions, which has been tested for a long time. In the SM, the gauge group

SU(3)C × SU(2)L × U(1)Y is imposed. The particle contents in the SM are listed inTable 2.1.

The Lagrangian of the SM is given as

Table 2.1: Particle contents in the SM.
Component fiels Gauge quantum numbers

SU(3)C SU(2)L U(1)Y(
uiL
diL

)
3 2 1/6

uiR 3 1 2/3
diR 3 1 −1/3(
νiL
eiL

)
1 2 −1/2

eiR 1 1 −1
gXµ 8 1 0

WA
µ 1 3 0

Bµ 1 1 0

H =

(
H+

H0

)
1 2 1/2

LSM = −1

4
GA

µνG
Aµν − 1

4
W I

µνW
Iµν − 1

4
BµνB

µν

+ (DµH)†(DµH) +m2H†H − 1

2
λ(H†H)2
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+ i
(
l̄γµDµl + ēγµDµe+ q̄γµDµq + ūγµDµu+ d̄γµDµd

)
−
(
l̄YeeH + q̄YuuH̃ + q̄YddH + h.c.

)
,

(2.1)

where l, q and H are the left-handed lepton, quark and Higgs SU(2)L doublets, respectively,

while the right-handed lepton and quark are denoted by e, u and d. Besides, H̃ i = ϵij(H
j)∗,

where ϵij is the totally antisymmetric tensor satisfying ϵ12 = +1. Flavor indices i, j, k, l run

1, 2, 3. Covariant derivatives are defined as

Dµ = ∂µ − ig1Y Bµ − ig2
τa

2
W a

µ − igsGA
µT

A, (2.2)

where Y is the hypercharge, τa are the Pauli matrices and TA = λA/2 with the Gell-Mann

matrices. The gauge field strength tensors are also defined as

GA
µν = ∂µG

A
ν − ∂νGA

µ + gsf
ABCGB

µG
C
ν , (2.3)

W I
µν = ∂µW

I
ν − ∂νW I

µ + g2ϵ
IJKW J

µW
K
ν , (2.4)

Bµν = ∂µBν − ∂νBµ, (2.5)

where fABC is the structure constant.

After the electroweak symmetry breaking, the Higgs doublet takes the vacuum expectation

value (VEV) v. Because of the freedom of SU(2)L rotations, the Higgs doublet can be expressed

as

H =

(
G+

(v + h0 + iG0)/
√
2

)
. (2.6)

Then, the mass of the SM Higgs and gauge bosons are obtained as

m2
h = λv2, (2.7)

m2
Z =

1

4
(g21 + g22)v

2, (2.8)

m2
W =

1

2
g22v

2. (2.9)

Besides, the covariant derivative after the EWSB is obtained as

Dµ = ∂µ − i
g2√
2

(
W+

µ I+ +W−
µ I−

)
− igZ

(
I3 −Q sin2 θW

)
Zµ − ieQAµ − igsGA

µT
A, (2.10)

where the charges, couplings and gauge bosons are defined as

Ia = τa/2, I± = I1 ± iI2, (2.11)

Q = I3 + Y, (2.12)

gZ = (g21 + g22)
1/2 = g2/ cos θW = g1/ sin θW , (2.13)

e = g1g2/gZ = g2 sin θW = g1 cos θW , (2.14)

Zµ =W 3
µ cos θW −Bµ sin θW , (2.15)

- 6 -



2.1 The Standard Model

Aµ =W 3
µ sin θW +Bµ cos θW , (2.16)

W±
µ =

(
W 1

µ ∓ iW 2
µ

)
/
√
2, (2.17)

For convenience, we show the Pauli matrices:

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (2.18)

The fermion field in the Lagrangian 2.1 are in the interaction eigenstates, where

q1 =

(
uL
d′L

)
, q2 =

(
cL
s′L

)
, q3 =

(
tL
b′L

)
, l1 =

(
νe

′
L

eL

)
, l2 =

(
νµ

′

L

µL

)
, l3 =

(
ντ

′
L

τL

)
,

(2.19)

 d′L
s′L
b′L

 = V

 dL
sL
bL

 ,

 νe
′

L

νµ
′

L

ντ
′

L

 = UPMNS

 ν1
ν2
ν3

 . (2.20)

Flavor changing interaction and GIM mechanism

Here, we focus on flavor changing interactions in the quark sector. In the SM, the flavor

changing interactions in the Feynman-’t Hooft gauge are obtained as

LSM ⊃
g2√
2

[
(V ∗)ij d̄jγ

µPLuiW
−
µ + Vij ūiγ

µPLdjW
+
µ

]
+

√
2

v
mui

[
(V ∗)ij d̄jLuiRG

− + Vij ūiRdjLG
+
]

−
√
2

v
mdj

[
(V ∗)ij d̄RjuiLG

− + Vij ūiLdRjG
+
]
, (2.21)

where the quark fields are the mass eigenstates. V is the CKM matrix, which is experimen-

tally determined unitary matrix [22]. In the Wolfenstein parametrization, the CKM matrix is

expressed by

V =

 1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4), (2.22)

where λ ≃ 0.23 is an expansion parameter and η corresponds to a CP violating phase. Focusing

the matrix elements, it is clear that

V †V = 1, (2.23)

ImVci ≃ 0, for i = d, s, b, (2.24)

|Vtd| ≪ |Vts| ≪ |Vtb|. (2.25)
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In particular, these properties are important to understand flavor changing processes. As the

results of Eq. (2.23), the GIM mechanism [23] occurs. Let us roughly estimate a following flavor

changing amplitude:

A =
∑

j=1,2,3

V ∗
jiVjkF (xj) for i ̸= j, (2.26)

where F (x) is a some loop function of xj ≡ m2
uj/m

2
W with the up type quark mass muj . In the

quark sector of the SM, there exists a large mass hierarchy, and except for a quark of the third

generation, xj takes a small value. Thus, F (xj) ≃ F (0) +∆F (x3)δj3 is approximately satisfied,

and A is roughly obtained as

A ∼ V ∗
tiVtk ·∆F (xt). (2.27)

This mechanism that flavor changing processes are suppressed because of the unitarity of the

CKM matrix is called as the GIM mechanism. In particular, the suppression is often called as

the GIM suppression, and light quarks contributions in loop diagrams are suppressed. Since,

the bottom quark is much lighter than the top quark, the effect of the GIM suppression in the

D meson systems becomes large. Thus, light quarks contributions are suppressed by the GIM

mechanism. However, for the K meson systems, it is noticed that the charm quark contributions

can become large because of small values of |Vtd| and |Vts|. Actually, in CP conserving processes,

the charm contributions dominate, and uncertainties in the SM prediction, such as in ∆MK

becomes large. On the other hand, in CP violating processes, the charm contributions are not

large because of Eq. (2.24).

For the B meson systems, the top quark contributions dominate by the GIM mechanism.

As the results, the SM contributions in the meson mixing processes become much small, and a

sensitivity to new physics becomes high. In the K, Bd and Bs meson systems, meson mixing

amplitudes are roughly proportional to |V ∗
tdVts|2 ≃ λ10, |V ∗

tdVtb|2 ≃ λ6 and |V ∗
tsVtb|2 ≃ λ4,

respectively. Thus, the sensitivity in the kaon system to the NP scale is roughly higher than Bd

and Bs systems by almost 102 TeV and 103 TeV, respectively.

2.2 The Standard Model Effective Field Theory

The SM describes nature very well. However, some unsolved problems, such as the hierarchy

problem and the identity of the dark matter, are remained in the SM. Thus, an existence of NP

which solves remained problems has been believed. In this sense, the SM is an effective field

theory valid up to the NP scale Λ, where new particles appear as dynamical degrees of freedom.

The effective field theory above the NP scale, Λ, must satisfies the following conditions [11,18]:

1. Its gauge group contains the SM gauge SU(3)C × SU(2)L ×U(1)Y,

2. All SM degrees of freedom are included as dynamical fields.
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2.2 The Standard Model Effective Field Theory

In addition to above conditions, it is often assumed that undiscovered weakly coupled light

particles, such as axions or sterile neutrinos do not exist [11,18]. However, the existence of weakly

coupled light particles is not important, unless we are interested in experiments at the resonance

energy of the new particles [24]. Below the NP scale, heavy new particles are decoupled, and

the NP contributions are encoded in higher-dimensional operators as

LSMEFT = LSM +
1

Λ2

∑
k

C
(6)
k O

(6)
k +O

(
1

Λ3

)
, (2.28)

where the first term is the SM Lagrangian at the renormalizable level , and the remaining terms

are higher dimensional operators#1. Because of the above conditions, the higher dimensional

operators are constructed by SU(3)C×SU(2)L×U(1)Y invariant operators consisting of the SM

fields. The non-redundant operator basis for the dimension-six are determined in [11], which

is called as the “Warsaw basis”#2. The independent operators O
(6)
n are listed in Table 2.2 and

2.3. The independence means that there does not exist linear combinations of the operators and

they are not equation of motion (EOM)-vanishing up to total derivatives.

Table 2.2: Dimension-six operators other than the four-fermion ones.

X3 H6 and H4D2 ψ2H3

OG fABCGAν
µ GBρ

ν GCµ
ρ OH (H†H)3 OeH (H†H)(l̄perH̃)

OG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ OH□ (H†H)□(H†H) OuH (H†H)(q̄purH̃)

OW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ OHD (H†DµH)∗(H†DµH) OdH (H†H)(q̄pdrH)

OW̃ ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2H2 ψ2XH ψ2H2D

OHG H†HGA
µνG

Aµν OeW (l̄pσ
µνer)τ

IHW I
µν O(1)

Hl (H†i
←→
D µH)(l̄pγ

µlr)

OHG̃ H†HG̃A
µνG

Aµν OeB (l̄pσ
µνer)HBµν Q

(3)
Hl (H†i

←→
D I

µH)(l̄pτ
Iγµlr)

OHW H†HW I
µνW

Iµν OuG (q̄pσ
µνTAur)H̃G

A
µν OHe (H†i

←→
D µH)(ēpγ

µer)

OHW̃ H†HW̃ I
µνW

Iµν OuW (q̄pσ
µνur)τ

IH̃W I
µν O(1)

Hq (H†i
←→
D µH)(q̄pγ

µqr)

OHB H†HBµνB
µν OuB (q̄pσ

µνur)H̃Bµν O(3)
Hq (H†i

←→
D I

µH)(q̄pτ
Iγµqr)

OHB̃ H†HB̃µνB
µν OdG (q̄pσ

µνTAdr)HG
A
µν OHu (H†i

←→
D µH)(ūpγ

µur)

OHWB H†τ IHW I
µνB

µν OdW (q̄pσ
µνdr)τ

IHW I
µν OHd (H†i

←→
D µH)(d̄pγ

µdr)

OHW̃B H†τ IHW̃ I
µνB

µν OdB (q̄pσ
µνdr)HBµν OHud i(H̃†←→D µH)(ūpγ

µdr)

The derivatives are defined as

H†
←→
DI

µH = H†τ IDµH − (DµH)† τ IH, (2.29)

where τ I is the SU(2)L generator.

#1The dimension-five Weinberg operator [25] related to neutrino masse, and we do not discuss in this thesis.
#2In [10], dimension-six terms have been listed. However, some of the operators include redundance. It took

almost twenty four years to reduce the redundance.
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Chapter 2. An Introduction to SMEFT Operator

Table 2.3: Four-fermion operators.

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Oll (l̄pγµlr)(l̄sγ
µlt) Oee (ēpγµer)(ēsγ

µet) Ole (l̄pγµlr)(ēsγ
µet)

O(1)
qq (q̄pγµqr)(q̄sγ

µqt) Ouu (ūpγµur)(ūsγ
µut) Olu (l̄pγµlr)(ūsγ

µut)

O(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt) Odd (d̄pγµdr)(d̄sγ

µdt) Old (l̄pγµlr)(d̄sγ
µdt)

O(1)
lq (l̄pγµlr)(q̄sγ

µqt) Oeu (ēpγµer)(ūsγ
µut) Oqe (q̄pγµqr)(ēsγ

µet)

O(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt) Oed (ēpγµer)(d̄sγ

µdt) O(1)
qu (q̄pγµqr)(ūsγ

µut)

O(1)
ud (ūpγµur)(d̄sγ

µdt) O(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

O(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt) O(1)

qd (q̄pγµqr)(d̄sγ
µdt)

O(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Oledq (l̄jper)(d̄sq
j
t ) Oduq ϵαβγϵjk[(d

α
p )

TCuβr ][(q
γj
s )TClkt ]

O(1)
quqd (q̄jpur)ϵjk(q̄

k
sdt) Oqqu ϵαβγϵjk[(q

αj
p )TCqβkr ][(uγs )TCet]

O(8)
quqd (q̄jpTAur)ϵjk(q̄

k
sT

Adt) Oqqq ϵαβγϵjnϵkm[(qαjp )TCqβkr ][(qγms )TClnt ]

O(1)
lequ (l̄jper)ϵjk(q̄

k
sut) Oduu ϵαβγ [(dαp )

TCuβr ][(u
γ
s )TCet]

O(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Within the above dimension-six operators, the one-loop anomalous dimension matrix for

the SM Higgs self coupling, gauge coupling and Yukawa coupling corrections were completely

calculated [13–15]. Since, in this thesis, we focus on the top quark corrections above the EWSB

scale, the anomalous dimension terms which depend on the top Yukawa and QCD couplings are

listed in Appendix A.1.

2.3 Relevant operator in ∆F = 2 and 0 process

In the previous section, we have summarized the SMEFT dimension-six operators. In this thesis,

we mainly focus on the ∆F = 1 SMEFT dimension-six operators, which contribute to ∆F = 2

and 0 processes. In particular, we investigate the flavor changing of down type quark induced by

the top quark corrections. For convenience, we summarize the ∆F = 1 SMEFT dimension-six

operators relevant for the low-scale ∆F = 2 and 0 processes of down type quark.

First, the dimension-six operators relevant for the low-scale ∆F = 2 processes are shown as

(O(1)
qq )ijkl = (qiγµq

j)(qkγµq
l), (2.30)

(O(3)
qq )ijkl = (qiγµτ

Iqj)(qkγµτ Iql), (2.31)

(O(1)
qd )ijkl = (qiγµq

j)(d
k
γµdl), (2.32)

(O(8)
qd )ijkl = (qiγµT

Aqj)(d
k
γµTAdl), (2.33)

(Odd)ijkl = (d
i
γµd

j)(d
k
γµdl), (2.34)
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(O(1)
Hq)ij = (H†i

←→
DµH)(qiγµqj), (2.35)

(O(3)
Hq)ij = (H†i

←→
DI

µH)(qiγµτ Iqj), (2.36)

(OHd)ij = (H†i
←→
DµH)(d

i
γµdj). (2.37)

The above operators are relevant at the one-loop level. In order to study NP effects at the higher

energy scales, the following dimension-six operators have to be additionally included:

(O(1)
qu )ijkl = (qiγµq

j)(ukγµul), (2.38)

(O(8)
qu )ijkl = (qiγµT

Aqj)(ukγµTAul), (2.39)

(Ouu)ijkl = (uiγµu
j)(ukγµul), (2.40)

(O(1)
ud )ijkl = (uiγµu

j)(d
k
γµdl), (2.41)

(O(8)
ud )ijkl = (uiγµT

Auj)(d
k
γµTAdl), (2.42)

(OHu)ij = (H†i
←→
DµH)(uiγµuj), (2.43)

(OH□)ij = (H†H)□(H†H), (2.44)

(OHD)ij = (H†DµH)∗(H†DµH), (2.45)

These operators contribute to the ∆F = 2 observables through the operator mixings during the

RG evolutions and the matching conditions at the EWSB scale (see Chapter 3).

Next, the dimension-six ∆F = 1 operators relevant for the low-scale ∆F = 0 processes are

shown as

(O(1)
qq )ijkl = (qiγµq

j)(qkγµq
l), (2.46)

(O(3)
qq )ijkl = (qiγµτ

Iqj)(qkγµτ Iql), (2.47)

(O(1)
qd )ijkl = (qiγµq

j)(d
k
γµdl), (2.48)

(O(8)
qd )ijkl = (qiγµT

Aqj)(d
k
γµTAdl), (2.49)

(Odd)ijkl = (d
i
γµd

j)(d
k
γµdl), (2.50)

(O(1)
Hq)ij = (H†i

←→
DµH)(qiγµqj), (2.51)

(O(3)
Hq)ij = (H†i

←→
DI

µH)(qiγµτ Iqj), (2.52)

(OHd)ij = (H†i
←→
DµH)(d

i
γµdj), (2.53)

(O(1)
qu )ijkl = (q̄iγµq

j)(ūkγµul), (2.54)

(O(8)
qu )ijkl = (q̄iγµT

Aqj)(ūkγµTAul), (2.55)

(O(1)
ud )ijkl = (uiγµu

j)(d
k
γµdl), (2.56)

(O(8)
ud )ijkl = (uiγµT

Auj)(d
k
γµTAdl). (2.57)

These operators contribute to the ∆F = 0 observables through the RGEs and matching condi-

tions at the EWSB scale (see Chapter 3).
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In Chapter 3, the matching conditions for the ∆F = 2 and 0 processes at the EWSB scale

are discussed. The SMEFT RGEs relevant for these operators are listed in Appendix A.1.

Phenomenology of the ∆F = 2 operators are discussed in Chapter 5 and 6, and that of the

∆F = 0 processes are in Chapter 7. In Chapter 5, the ∆F = 2 processes induced by OHd and

O(1,3)
Hq are discussed with paying attention to correlations between ∆F = 2 and 1 observables.

Chapter 5 are devoted to phenomenology of the ∆F = 0 operators.
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Chapter

3
Matching Formula

This chapter is based on the works by the author [16, 17] . In this chap-

ter, we provide tree and one-loop matching formulae for the SMEFT which

contribute to the ∆F = 2 and 0 processes in a low-energy scale. At the elec-

troweak symmetry breaking (EWSB) scale, the SMEFT ∆F = 1 operators of

down-type quark are matched onto the conventional low-scale ∆F = 2 and 0

operators by the one-loop matching formulae.

3.1 Introduction of one-loop matching formula

The experimental data indicate that the NP scale is much higher than the EWSB scale. Then,

the NP contributions are encoded in the SMEFT rather than the low-scale effective field theory

(LEFT), which is described by the light SM particles. The LEFT for ∆F = 2 processes are

defined as [26]

H∆F=2
eff = (C1)ij(diγ

µPLdj)(diγµPLdj)

+ (C2)ij(diPLdj)(d̄iPLdj) + (C3)ij(d
α
i PLd

β
j )(d

β
i PLd

α
j )

+ (C4)ij(diPLdj)(diPRdj) + (C5)ij(d
α
i PLd

β
j )(d

β
i PRd

α
j )

+ (C ′
1)ij(diγ

µPRdj)(diγµPRdj)

+ (C ′
2)ij(diPRdj)(d̄iPRdj) + (C ′

3)ij(d
α
i PRd

β
j )(d

β
i PRd

α
j ), (3.1)

where i, j (i ̸= j) are flavor indices, and α, β are color ones. Besides, the LEFT for EDMs are

defined as

LCPV =
∑

a=1,2,4,5

∑
i

Ci
aOi

a + C3O3 +
∑
a=1,2

∑
i ̸=j

C̃ij
a Õij

a +
1

2

∑
a=3,4

∑
i ̸=j

C̃ij
a Õij

a , (3.2)

where i, j are quark-flavor indices. The effective operators are defined as#1

Oi
1 = −

i

2
mdi d̄ieQd(F · σ)γ5di, (3.3)

Oi
2 = −

i

2
mdi d̄igs(G · σ)γ5di, (3.4)

O3 = −
1

6
gsf

ABCϵµνρσGA
µλG

B
ν
λ
GC

ρσ, (3.5)

#1 Besides, there is a strong CP phase, θ̄. In this thesis, we assume θ̄ = 0, for simplicity.
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Oi
4 = (d̄αi d

α
i )(d̄

β
j iγ5d

β
j ), (3.6)

Oi
5 = (d̄αi σ

µνdαi )(d̄
β
j iσµνγ5d

β
j ), (3.7)

Õij
1 = (d̄αi d

α
i )(d̄

β
j iγ5d

β
j ), (3.8)

Õij
2 = (d̄αi d

β
i )(d̄

β
j iγ5d

α
j ), (3.9)

Õij
3 = (d̄αi σ

µνdαi )(d̄
β
j iσµνγ5d

β
j ), (3.10)

Õij
4 = (d̄αi σ

µνdβi )(d̄
β
j iσµνγ5d

α
j ), (3.11)

where α, β are color indices, and Fµν (GA
µν) is the electromagnetic (gluon) field strength. We

define F · σ = Fµνσ
µν , G · σ = GA

µνσ
µνTA and G̃A

µν = 1
2ϵµνρσG

Aρσ
with σµν = i

2 [γ
µ, γν ] and

ϵ0123 = +1. Also, fABC is the structure constant, and mq is a mass for quark q. At the EWSB

scale, the SMEFT operators are matched onto the LEFT and they are eventually compared

with experimental data.

In this chapter, we provide the one-loop matching formulae, which contribute to the ∆F = 2

and 0 processes in a low-energy scale. In Section 3.2 and 3.3, it is found that the SMEFT

∆F = 1 operators listed in Section 2.3 contribute to the operators in Eq. (3.1) and (3.11) by

the one-loop correction with top quark. In Section 3.4, we discuss importances of the one-loop

matching formulae. Section 3.5 is devoted to a conclusion of this chapter.

3.2 Formula for ∆F = 2 process

In this section, we provide the formulae for the SMEFT corrections at the one-loop level which

contribute to the ∆F = 2 LEFT operators in Eq. (3.1).

At the tree level, they are related to the SMEFT operators as

(C1)
tree
ij = −

[
(C(1)

qq )ijij + (C(3)
qq )ijij

]
, (3.12)

(C ′
1)

tree
ij = −(Cdd)ijij , (3.13)

(C4)
tree
ij = (C

(8)
qd )ijij , (3.14)

(C5)
tree
ij = 2(C

(1)
qd )ijij −

1

Nc
(C

(8)
qd )ijij , (3.15)

where the Wilson coefficients in the left-handed side are defined in the low-scale basis, Eq. (3.1),

and those in the right-handed side are defined in the SMEFT, Eq. (2.28). Both of them are

evaluated as a weak scale, µ = µW . The other low-scale ∆F = 2 coefficients are zero at this

level.

Radiative corrections from the top quark can be sizable because of the large Yukawa coupling.

Combined with the SM bosons, they contribute to flavor-changing transitions of the down-type

quarks. In particular, the SMEFT ∆F = 1 operators can induce the ∆F = 2 amplitudes through

the RGEs and the one-loop matchings at the weak scale, which are exhibited in Fig. 3.1. The
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dj di

djdi

tR tR

W ± , G±

(a)

dj di

djdi

tL tL

W ± , G±

(b)

dj di

djdi

dm
W ± , G±

t

(c)

dj di

djdi

W ± , G±

t

Z 0

(d)

dj di

djdi

W ± , G±

t

G± , W ±

(e)

dj di

djdi

W ± , G±

t

W ± , G±

t

(f)

Figure 3.1: Feynman diagrams for the one-loop matchings onto the ∆F = 2 operators (i ̸= j).

one-loop matching conditions in the Feynman-’t Hooft gauge are obtained as

(C1)
1–loop
ij =

αλijt
4πs2W

[(
−2 + 2

Nc

)
(C(8)

qu )ij33 − 4(C(1)
qu )ij33 + 4(C

(1)
Hq)ij

]
I1(xt, µW )

− 2αλijt
πs2W

[
(C(1)

qq )ij33 + (C(1)
qq )33ij − (C(3)

qq )ij33 − (C(3)
qq )33ij + 2(C(3)

qq )3ji3 + 2(C(3)
qq )i33j

]
J(xt)

+
α

2πs2W

3∑
m=1

[
λimt

(
(C(1)

qq )mjij + (C(1)
qq )ijmj + (C(3)

qq )mjij + (C(3)
qq )ijmj

)
+ λmj

t

(
(C(1)

qq )imij + (C(1)
qq )ijim + (C(3)

qq )imij + (C(3)
qq )ijim

)]
K(xt, µW )

− αλijt
πs2W

(C
(3)
Hq)ijI2(xt, µW ) +

αλijt
4πs2W

3∑
m=1

[
λimt (C

(3)
Hq)mj + (C

(3)
Hq)imλ

mj
t

]
S0(xt), (3.16)

(C4)
1–loop
ij =

αλijt
πs2W

(C
(8)
ud )33ijI1(xt, µW ) +

2αλijt
πs2W

(C
(8)
qd )33ijJ(xt)

− α

2πs2W

3∑
m=1

[
λimt (C

(8)
qd )mjij + λmj

t (C
(8)
qd )imij

]
K(xt, µW ), (3.17)

(C5)
1–loop
ij =

2αλijt
πs2W

[
(C

(1)
ud )33ij −

1

2Nc
(C

(8)
ud )33ij − (CHd)ij

]
I1(xt, µW )

+
4αλijt
πs2W

[
(C

(1)
qd )33ij −

1

2Nc
(C

(8)
qd )33ij

]
J(xt)

− α

πs2W

3∑
m=1

[
λimt

(
(C

(1)
qd )mjij −

1

2Nc
(C

(8)
qd )mjij

)
+ λmj

t

(
(C

(1)
qd )imij −

1

2Nc
(C

(8)
qd )imij

)]
K(xt, µW ), (3.18)
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where the parameters are defined as

xt ≡
m2

t

M2
W

, λijt ≡ V ∗
tiVtj . (3.19)

Here, Vij is the CKM matrix, and sW = sin θW with the Weinberg angle θW . The loop functions

are given as

I1(x, µ) =
x

8

[
ln

µ

MW
− x− 7

4(x− 1)
− x2 − 2x+ 4

2(x− 1)2
lnx

]
, (3.20)

I2(x, µ) =
x

8

[
ln

µ

MW
+

7x− 25

4(x− 1)
− x2 − 14x+ 4

2(x− 1)2
lnx

]
, (3.21)

J(x) =
x

16

(
1− 2 lnx

x− 1

)
, (3.22)

K(x, µ) =
x

8

[
ln

µ

MW
+

3(x+ 1)

4(x− 1)
− x(x+ 2)

2(x− 1)2
lnx

]
, (3.23)

S0(x) =
x

4

[
x2 − 11x+ 4

(x− 1)2
+

6x2

(x− 1)3
lnx

]
. (3.24)

In the result, the Wilson coefficients in the left-handed side are in the low-scale basis, and those

in the right-handed side are in the SMEFT. Both of them are evaluated at the weak scale,

µ = µW . The other low-scale ∆F = 2 operators do not receive one-loop corrections through the

top quark decoupling.

The contributions from O(1,8)
qu and O(1,8)

ud , in which the W and NG bosons that couple to vir-

tual top quarks are exchanged, are shown in Fig. 3.1(a) and give a loop function I1(x, µ). Those

from O(1,3)
qq and O(1,8)

qd are shown in Fig. 3.1(b) and give J(x). Those with the K(x, µ) function

come from flavor-changing self-energy corrections to the down-type quarks in the effective oper-

ators [Fig. 3.1(c)], where the top quark is exchanged. The results for the quark–Higgs operators,

O(1,3)
Hq and OHd [Fig. 3.1(d–f)], are consistent with those in Refs. [20,21] and give loop functions

I1(x, µ), I2(x, µ) and S0(x). The loop functions, I1(x, µ), I2(x, µ) and K(x, µ), depend on the

matching scale µ explicitly, whereas J(x) seems to be independent of it. The scale-dependent

term associated with Fig. 3.1(b) is proportional to O(g2) and neglected in our approximation.#2

We checked that this logarithmic dependence is consistent with the anomalous dimensions in

Ref. [13–15]. As a result, the logarithmic dependence on µW cancels out by taking account of

the RGEs in the leading-logarithmic limit.#3 This is expected because this dependence in the

#2 Such a divergence is canceled in the SM due to the GIM mechanism. In Fig. 3.1(b), the GIM mechanism

does not work because O(1,3)
qq and O(1,8)

qd depend on the up-type quark flavor.
#3 Focusing on the top-Yukawa terms, we checked the following relations in the leading-logarithmic limit,

∂(C1,4,5)ij
∂ lnµW

=
∂(C1,4,5)

tree
ij

∂ lnµW
+

∂(C1,4,5)
1-loop
ij

∂ lnµW
= 0. (3.25)
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3.3 Formula for ∆F = 0 process

matching conditions has the same origin as the beta functions in calculating loop diagrams (see

Ref. [21]).#4 #5

After matching onto the low-scale operators, they are evolved by the RGEs as usual. Then,

the results are compared with the experimental data, i.e., the K0–K0 and B0
q–B

0
q (q = d, s)

oscillations.

3.3 Formula for ∆F = 0 process

In this section, we provide formulae for evaluating the EDMs induced by flavor-changing oper-

ators. At the EWSB scale, they are matched to the LEFT operators. We provide the one-loop

matching formulae between the SMEFT ∆F = 1 operators listed in Section 2.3 and the LEFT

∆F = 0 CP -violating operators in Eq. (3.2).

The matching conditions are derived by integrating out SM heavy degrees of freedom, such

as W,Z,H and t. At the tree level, we obtain the conditions,

(C̃ij
1 )tree =

i

4

[
(C

(8)
qd )jiij − (C

(8)
qd )ijji

]
, (3.26)

(C̃ij
2 )tree =

i

4

[
2
(
(C

(1)
qd )jiij − (C

(1)
qd )ijji

)
− 1

Nc

(
(C

(8)
qd )jiij − (C

(8)
qd )ijji

)]
, (3.27)

where the Wilson coefficients are evaluated at the EWSB scale, µ = µW . The other LEFT

operators are not induced at the tree level.

In addition, the SMEFT ∆F = 1 operators can generate ∆F = 0 amplitudes through the

one-loop matching conditions at the EWSB scale. We focus on the contributions from the loop

diagrams with the top quark and the W boson. The conditions in the Feynman-’t Hooft gauge

are obtained as

(C̃ij
1 )1–loop =− α

2πs2W
Im
[
λjit (C

(8)
ud )33ij

]
I1(xt, µW )− α

πs2W
Im
[
λjit (C

(8)
qd )33ij

]
J(xt)

+
α

4πs2W

3∑
m=1

{
Im
[
λjmt (C

(8)
qd )miij

]
+ Im

[
λmi
t (C

(8)
qd )jmij

]}
K(xt, µW ), (3.28)

(C̃ij
2 )1–loop =− α

πs2W
Im
{
λjit

[
(C

(1)
ud )33ij −

1

2Nc
(C

(8)
ud )33ij − (CHd)ij

]}
I1(xt, µW )

− 2α

πs2W
Im
{
λjit

[
(C

(1)
qd )33ij −

1

2Nc
(C

(8)
qd )33ij

]}
J(xt)

+
α

2πs2W

3∑
m=1

{
Im
[
λjmt

[
(C

(1)
qd )miij −

1

2Nc
(C

(8)
qd )miij

]]
+ Im

[
λmi
t

[
(C

(1)
qd )jmij −

1

2Nc
(C

(8)
qd )jmij

]]}
K(xt, µW ). (3.29)

#4 The logarithmic scale dependence in Eqs. (4.24)–(4.26) of Ref. [18] is inconsistent with that in the RGEs.
#5 In Appendix C, we also checked that double-penguin contributions to ∆F = 2 operators vanish when

the gauge bosons of the SM unbroken gauge symmetries are exchanged. This justifies our one-loop matching
conditions.
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Chapter 3. Matching Formula

All the Wilson coefficients are evaluated at the EWSB scale, µ = µW . The other LEFT operators

for the EDMs do not receive one-loop corrections at this scale.

Similar to the LEFT ∆F = 2 operators, below the EWSB scale, that of ∆F = 0 are evolved

by the RGEs in Appendix A. Then, the EDMs are evaluated around the hadron scale.

3.4 Discussions

In evaluations based on the SMEFT, the NP particles and the heavy SM particles such as

the top-quark and the EW gauge boson are integrated out at different energy scales. The

NP particles are decoupled at the NP scale, which are encoded into the SMEFT. Then, the

heavy SM particles are decoupled at the EWSB scale, which are encoded into the LEFT. Since

the NP effects in the conventional LEFT evaluations are at the one-loop level, the one-loop

matching formulae at the EWSB scale are essential to reproduce the same order calculation of

the conventional estimations. This is the qualitative reason why the one-loop matching formula

is needed.

By the tree-level matching, terms including logMNP/µW appear and become dominant con-

tributions if the NP scale is much larger than the EWSB scale. Then, finite terms coming

from the one-loop matching formulae are O(10)% compared with the tree-level contributions.

Therefore, the one-loop matching formulae are essential to evaluate the low-scale observables

with high precision.

3.5 Conclusion of matching formula

In this chapter, we provided tree and one-loop matching formulae for the SMEFT, which con-

tribute to the ∆F = 2 and 0 LEFT operators. In order to evaluate the low-scale observables,

the operator matching needs to be performed at the one-loop level. This is because the NP

contributions often appear together with the heavy SM particles at the one-loop level. By the

one-loop matching formulae, the LEFT Wilson coefficients at the EWSB scale are changed by

O(10)% compared with the tree-level matching contributions. We conclude that the one-loop

matching formulae are essential qualitatively and quantitatively.
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Chapter

4
Observables

In this chapter, we summarize low-scale observables such as ∆F = 0, 1 and

2 observables which are discussed in this thesis. In Section 4.1, the indirect CP

violation inK0−K0
oscillation are summarized, Section 4.2 the mass difference

in Bd meson, Section 4.3 the nucleon EDMs. In Section 4.4, flavor changing

observables relevant for Z mediated corrections discussed in Chapter 6 are

summarized. In Section 4.4.1, the direct CP violation of the K → ππ decays

are summarized, Section 4.4.2 decay processes K → πνν̄ and Section 4.4.3 a

decay rate of KL → µ+µ−.

4.1 ϵK

The indirect CP violation of the neutral kaon system, ϵK , includes the SM and NP contributions,

ϵK = eiϕϵ
(
ϵSMK + ϵNP

K

)
, (4.1)

with ϕϵ = (43.51± 0.05)◦. The SM prediction is estimated as [27]

ϵSMK = (2.035± 0.178)× 10−3, (4.2)

where Vcb is determined by the inclusive semileptonic B decays. The NP contribution is repre-

sented as

ϵNP
K =

κ̃ϵ√
2(∆MK)exp

[
Im (MK

12)
NP
]
, (4.3)

where κ̃ϵ = 0.94 [28, 29] and (∆MK)exp = 3.483 × 10−15 GeV [30] are used. Also, MK
12 =

⟨K0|H∆S=2
eff |K̄0⟩/2MK with MK = 0.4976 GeV [30]. The Wilson coefficients are evaluated with

the NLO-QCD RGEs [31], and hadron matrix elements in Ref. [32] are used. On the other hand,

the experimental result is [30]

|ϵexpK | = (2.228± 0.011)× 10−3. (4.4)

From Eqs. (4.2) and (4.4), we obtain the bound on the NP contribution as

−0.16× 10−3 < ϵNP
K < 0.55× 10−3, (4.5)

at the 2σ level.
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4.2 ∆MBd

Both the SM and NP affect to the mass difference of the neutral B0
d meson, The SM and NP

contributions are represented as

∆MBd = 2
∣∣∣(MBd

12 )SM + (MBd
12 )NP

∣∣∣ ≡ ∆MSM
Bd

+∆MNP
Bd
, (4.6)

where MBd
12 = ⟨B0|H∆B=2

eff |B̄0⟩/2MBd with MBd = 5.27958 GeV [30]. The first term in the

right-hand side denotes the SM contribution, which is estimated as [33]

∆MSM
d = (4.21± 0.34)× 10−13GeV. (4.7)

The Wilson coefficients are evaluated with the NLO-QCD RGEs [31], and hadron matrix ele-

ments in Ref. [33] are used. On the other hand, the experimental result is obtained as [30]

∆M exp
d = (3.3338± 0.0125)× 10−13GeV. (4.8)

Thus, the NP contribution is required to satisfy,

0.20× 10−13 < ∆MNP
d < 1.56× 10−13, (4.9)

at the 2σ level.

4.3 Nucleon EDMs

Contributions of Õds
1 and Õsd

1 are evaluated by the effective chiral Lagrangian technique [34].

Those operators generate CP -violating baryon-meson interactions through vacuum-expectation

values (VEVs) of pseudoscalar mesons. Then, from baryon-meson loop diagrams, we obtain#1

dn
e
∼
(
−0.026C̃ds

1 + 0.169C̃sd
1

)
GeV−1, (4.10)

dp
e
∼
(
0.023C̃ds

1 − 0.149C̃sd
1

)
GeV−1, (4.11)

where the Wilson coefficients are estimated at the hadron scale, µ = 1GeV. Here and hereafter,

we set θ̄ = 0 for simplicity#2. The derivations of Eqs. (4.10) and (4.11) are given in Appendix F.

Four-quark operators, Õdb and Õbd, involve the bottom quark. In order to derive their

contributions to the neutron EDM, we follow the strategy explored in Refs. [36–38]. The result

becomes

dn
e
∼ 4.2× 10−4

(
C̃bd + 0.75C̃db

)
GeV−1, (4.12)

#1 The nucleon EDMs are also induced by baryon-meson diagrams at the tree level [35]. However, we confirmed
that they are sub-dominant.

#2 The Peccei-Quinn (PQ) mechanism is not assumed for realizing θ̄ = 0. It is straightforward to extend the
case for θ̄ ̸= 0. Then, the PQ mechanism is introduced to avoid the strong CP problem. The following conclusions
do not change qualitatively.
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4.4 Flavor changing observable in Z mediated correction

dp
e
∼ 6.1× 10−4

(
C̃bd + 0.75C̃db

)
GeV−1, (4.13)

where the Wilson coefficients are estimated at the hadron scale, µ = 1GeV. Here, the contribu-

tion to the proton EDM, Eq. (4.13), is derived by multiplying a ratio of the magnetic moments,

µp/µn, to that of the neutron EDM, Eq. (4.12) (cf., Ref. [38]). On the other hand, Õsb and Õbs

are much less constrained by the EDMs, because they do not depend on the down quark.

Let us summarize the current experimental limits and future prospects. The current bounds

are obtained as [39,40]

|dn| < 3.0× 10−26 e cm, [90% C.L.] (4.14)

|dp| < 2.1× 10−25 e cm. (4.15)

In future, experiments are projected to achieve the sensitivities of |dn| ∼ 10−28 e cm [7] and

|dp| ∼ 10−29 e cm [9].

4.4 Flavor changing observable in Z mediated correction

In this section, we summarize low-scale flavor changing observables relevant for Z mediated

corrections, which are discussed in Chapter 6. As we will discuss in Chapter 6, the ∆F = 2

observables are correlated with the various ∆F = 1 ones through the Z boson. In this section,

the ∆F = 1 observables are summarized.

4.4.1 ϵ′/ϵK

The direct CP violation of the K → ππ decays, includes the SM and NP mediated by Z-penguin

contributions,

(ϵ′/ϵK) = (ϵ′/ϵK)SM + (ϵ′/ϵK)NP. (4.16)

The latter contribution is approximated to be (cf., Ref. [41])

(ϵ′/ϵK)NP = −B(3/2)
8 (mc)

[
5.91× 107GeV2Im

(
(C(1)Hq)12 + (C(3)Hq)12

)
+1.97× 108GeV2Im(CHd)12

]
, (4.17)

where the Wilson coefficients are estimated at the Z-boson mass scale, µ = mZ . By using

lattice simulations [42–44], B
(3/2)
8 (mc) = 0.76 ± 0.05 is obtained [45, 46]. Here, ϵK in the de-

nominator is evaluated by the experimental value. The right-handed contribution is amplified

by c2W /s
2
W ≃ 3.33 compared to the left-handed one. Currently, the SM prediction deviates from

the experimental result at the 2.8 σ level. In this thesis, the discrepancy of ϵ′/ϵK is required to

be explained within the 1 σ range,

7.78× 10−4 < (ϵ′/ϵK)NP < 14.4× 10−4, (4.18)

where Ref. [47] is used for the SM prediction at the NLO level.
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4.4.2 K → πνν̄

The decay processes, K+ → π+νν̄ and KL → π0νν̄, are induced by NP mediated by the Z-

penguin contributions, which are theoretical clean#3. They are expressed as [41,46]

B
(
K+ → π+νν̄

)
= κ+

[(
ImXeff

λ5

)2

+

(
Reλc
λ

Pc(X) +
ReXeff

λ5

)2
]
, (4.19)

B
(
KL → π0νν̄

)
= κL

[
ImXeff

λ5

]2
, (4.20)

where λ = |Vus|, λc = V ∗
cdVcs, κ+ = (5.157± 0.025) × 10−11(λ/0.225)8, κL = (2.231 ± 0.013) ×

10−10(λ/0.225)8, and the charm contribution gives Pc(X) = (9.39±0.31)×10−4/λ4+(0.04±0.02).
In terms of CHqand CHd, Xeff is approximated to be (cf., Ref. [21])

ReXeff = −4.83× 10−4 − 5.62× 106GeV2ReCH+, (4.21)

ImXeff = 2.12× 10−4 + 5.62× 106GeV2ImCH+, (4.22)

where the first terms in the right-hand sides are the SM contributions in each equation, and

CH+ = (C
(1)
Hq)12 + (C

(3)
Hq)12 + (CHd)12. (4.23)

The Wilson coefficients are estimated at the Z-boson mass scale.

The SM predictions are known to be [21]

B
(
K+ → π+νν̄

)SM
= (8.4± 1.0)× 10−11, (4.24)

B
(
KL → π0νν̄

)SM
= (3.00± 0.30)× 10−11, (4.25)

while the experimental results#4 are [48,50]

B
(
K+ → π+νν̄

)exp
< 1.85× 10−10 [90% C.L.], (4.26)

B
(
KL → π0νν̄

)exp
< 3.0× 10−9. [90% C.L.] (4.27)

These experimental values will be improved in the near future. The NA62 experiment at CERN

has already started the physics run and aims to measure B (K+ → π+νν̄) with a precision of

10% relative to the SM prediction [51]. The KOTO experiment at J-PARC aims to measure

B
(
KL → π0νν̄

)
around the SM sensitivity by 2021 [52,53].

#3In particular, KL → π0νν̄ is CP violating process, where the charm loop contribution is suppressed.
#4The NA62 experiment has been running in 2016-2018, and the 2016-2017 dataset was analised. In addition

to 7 event candidates at the E787 and E949 experiments [48, 49], three candidate events were reported in the
2016-2017 dataset.
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4.4.3 KL → µ+µ−

The decay rate of KL → µ+µ−, which is a CP -conserving process#5, is sensitive to a real

component of the flavor-changing Z couplings. There are large theoretical uncertainties from

a long-distance (LD) contribution, because of huge long-distance contributions through KL →
γ∗γ∗ → µ+µ−#6. In addition, an unknown sign of A (KL → γγ) conceals a relative sign be-

tween the LD and a short-distance (SD) amplitudes. One can, therefore, estimate only the SD

branching ratio, which is expressed as [41,100,101]

B
(
KL → µ+µ−

)
SD

= κµ

(
Reλc
λ

Pc(Y ) +
ReYeff
λ5

)2

, (4.28)

where κµ = (2.01 ± 0.02) × 10−9(λ/0.225)8, and the charm-quark contribution is Pc(Y ) =

(0.115± 0.018)× (0.225/λ)4. Here, Yeff is approximately given as (cf., Ref. [21])

ReYeff = −3.07× 10−4 − 5.62× 106GeV2ReCH−, (4.29)

where the first term in the right-hand side is the SM contribution, and

CH− = (C
(1)
Hq)12 + (C

(3)
Hq)12 − (CHd)12. (4.30)

The Wilson coefficients are estimated at the Z-boson mass scale.

The SM value is obtained as [21]

B
(
KL → µ+µ−

)SM
SD

= (0.83± 0.10)× 10−9. (4.31)

It is challenging to extract the SD contribution from the experimental value. An upper bound

is estimated as [57]

B
(
KL → µ+µ−

)exp
SD

< 2.5× 10−9. (4.32)

Since the constraint is much weaker than the SM uncertainties, we simply impose a bound,

−1.81× 10−10 (GeV)−2 < ReCH− < 4.85× 10−11 (GeV)−2. (4.33)

Note that the electron mode KL → e+e− is suppressed by m2
e/m

2
µ, and the detector sensitivity

to electrons in the LHCb is also weaker than the muon one.

#5KL is an almost CP -odd state, which decays to l̄γ5l through S-wave (J = 0, L = 0, S = 0) processes.
#6Note that there is no single photon exchange, because of pµ

K0(l̄γµl) = (p + q)µ(ū(p)γµv(q)) = 0. As the
result, the SD contribution is comparable to the dominant LD contribution, and KL → µ+µ− becomes sensitive
to physics at high energy scale.
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4.4.4 KS → µ+µ−

The decay, KS → µ+µ−, proceeds via LD CP conserving P-wave and SD CP violating S-wave

processes. Since the decay rate is dominated by the former, whose uncertainty is large, the

sensitivity to the imaginary component of the flavor-changing Z couplings is diminished [54,55,

57]. Interestingly, the SD contribution is enhanced through an interference between the KL and

KS states in the neutral kaon beam#7 [56]. The effective branching ratio of KS → µ+µ− after

including the interference is expressed as (cf., Ref. [56])

B(KS → µ+µ−)eff = B(KS → µ+µ−) +D · B(KS → µ+µ−)int, (4.35)

where a dilution factor D is an initial asymmetry between the numbers of K0 and K0,

D =
(
N(K0)−N(K0)

)
/
(
N(K0) +N(K0)

)
. (4.36)

In the right-hand side, the branching ratio is approximated to be

B(KS → µ+µ−) = 4.99× 10−12 + 3.30× 108GeV4
[
2.39× 10−11GeV−2 + Im CH−

]2
, (4.37)

where the first and second terms in the right-hand side come from the LD and SD contributions,

respectively. Here, the Wilson coefficients are estimated at the Z-boson mass scale. On the

other hand, the interference contribution is given as#8

B(KS → µ+µ−)int =


−7.69× 107GeV4

[
2.39× 10−11GeV−2 + Im CH−

]
×
[
1.73× 10−9GeV−2 − Re CH−

]
, (ηA = +)

7.69× 107GeV4
[
2.39× 10−11GeV−2 + Im CH−

]
×
[
1.86× 10−9GeV−2 +Re CH−

]
. (ηA = −)

(4.39)

The Wilson coefficients are estimated at the Z-boson mass scale. The unknown relative sign be-

tween the LD and SD contributions inKL → µ+µ− gives two different predictions of B (KS → µ+µ−)int,

#7The decay intensity of the neutral kaon beam into f states is expressed as

I(t) = (1 +D)
∣∣∣⟨f |H∆S=1

eff |K0(t)⟩
∣∣∣2 /2 + (1−D)

∣∣∣⟨f |H∆S=1
eff |K0

(t)⟩
∣∣∣2 /2

=
1

2
|A(KS → f)|2 e−ΓSt +

1

2
|A(KL → f)|2 e−ΓLt +DRe

[
e−i∆MKtA(KS → f)∗A(KL → f)

]
e−(ΓS+ΓL)t/2.

(4.34)

Because of ΓS + ΓL ≃ ΓS , an interference term proportional to D contributes to the KS → µ+µ− mode in the
LHCb detector.

#8Here, the interference effect is expressed as∑
spin

A(KL → µ+µ−)∗A(KS → µ+µ−)

=
16iG4

FM
4
WF 2

KM2
Km2

µ sin
2 θW

π3
Im[λt]y

′
7A

{
AµLγγ − 2π sin2 θW

(
Re[λt]y

′
7A +Re[λc]yc

)}
, (4.38)

where AµLγγ is the dominant LD and a prefactor Im[λt]y
′
7A is the direct CP violating effect. Thus, the the direct

CP violating effect is enhanced by the dominant LD effects.
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which are expressed by ηA, (see Ref. [56, 58])

ηA = sgn
[
Aµ

Lγγ

]
. (4.40)

The SM prediction depends on D and ηA, which are determined by experiments. For D = 0,

it is obtained as [54,56,57]

B(KS → µ+µ−)SM = (5.18± 1.50)× 10−12, (4.41)

while for D = 1 and ηA = −1, the SM prediction becomes [56]

B(KS → µ+µ−)SMeff = (8.59± 1.50)× 10−12. (4.42)

On the other hand, the current experimental bound based on the LHCb Run-1 result using the

integrated luminosity 3 fb−1 is [59]

B(KS → µ+µ−)exp < 0.8× 10−9. [90% C.L.] (4.43)

The experimental sensitivity is expected to reach B(KS → µ+µ−) = O(10−11) by the end of the

LHCb Run-2, and the Run-3 project is aiming to achieve the sensitivity as precise as the SM

level [60].
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Chapter

5
SMEFT top-quark effects on ∆F = 2 observables

This chapter is based on the work by the author [16]. We evaluate ∆F = 2

observables with particular emphasis on a scale uncertainty coming from the

large hierarchy between the NP scale and EWSB one. By using the match-

ing formulae in Chapter 3, we calculate ∆F = 2 Wilson coefficients of the

LEFT at the EWSB scale, mW , and study the matching scale uncertainty in

the coefficients. In Section 5.1, we explain the matching scale uncertainty in

conventional evaluations. In Section 5.2, we numerically analyze the scale un-

certainty in a model independent way. In Section 5.3, we focus on the left-right

symmetric model and investigate the effects of the scale uncertainty. We show

that the magnitude of the scale uncertainty much depend on whether the tree-

level contributions exist or not at the NP scale. The scale uncertainty can be

O(1− 100%), which is reduced by the SMEFT.

5.1 Scale Uncertainty

In this section, we explain the matching scale uncertainty in conventional evaluations and provide

our strategy for reducing the uncertainty. First of all, let us consider the conventional evaluations

of the Wilson coefficients at the EWSB scale. The NP models are matched onto the low-scale

operators by integrating out the heavy degrees of freedom, such as NP particles and heavy

SM particles, W,Z,H and t, simultaneously. We call the matching scale as “EW matching

scale”. The EW matching scale should be somewhere between the EWSB scale and the NP

one. Since, however, absent discoveries of new particles at the LHC push the NP scale much

higher than the EWSB one [4], an uncertainty of choosing the EW matching scale becomes

large. The uncertainty of choosing the EW matching scale is the “matching scale uncertainty”

in conventional evaluations. If the NP scale is not much far from the EWSB scale, the scale

uncertainty does not become problem. Behind the conventional evaluations, it is assumed that

the NP appear near the EWSB scale. However, experimental data may indicate much higher

NP scale than the EWSB scale [4]. In the current perspective, it is important to investigate

effects of the scale uncertainty.

The scale uncertainty mainly causes two problems. One is breaking down of the perturbation

by the large, logMNP/µEW. Because of this large log coming from the hierarchy between the

NP scale, MNP, and the EWSB one, µEW, one-loop calculations including the NP particles and
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the SM ones become inappropriate, and higher order corrections of the perturbation cannot be

negligible. Let us focus on the loop function K(xt, µEW) in Chapter 3, where µEW is the EW

matching scale. The ratio of the loop function between the EWSB scale, µEW ≃ 80 GeV, and

the high energy scale, MNP = 10 TeV, is estimated as K(xt, 10 TeV)/K(xt, µEW) ≃ 40. This

O(10) value mainly results from the large log in the loop function, K(xt,MNP). This large

logarithm should be resummed by evolving the RGEs from MNP to µEW.

Another problem is scale uncertainties in coupling constants such as the top Yukawa cou-

pling and the QCD coupling. By the matching scale uncertainty, it is not clear in which energy

scale the top mass and QCD coupling are evaluated. For example, the ratio of the top Yukawa

coupling between the EWSB scale, µEW = 80 GeV, and the high energy scale, MNP = 10 TeV,

is estimated as y2t (80 GeV)/y2t (10 TeV) ≃ 2 in the MS scheme, which increases the scale uncer-

tainty#1.

Next, we move to our strategy for removing the scale uncertainty. In a word, our strategy is

solving the renormalization group equations (RGEs) of the SMEFT [13–15] and using the one-

loop matching formulae in Chapter 3. The above two problems coming from the EW matching

scale uncertainty are resolved by the RGEs and the one-loop matching. Our strategy is divided

into three processes. We describe the details for the each processes below.

1. Matching at the NP scale.— At the NP scale, the heavy NP particles are decoupled,

and the NP models are matched onto the SMEFT. Without a hierarchy of mass scales

between the NP particles, there does not exist uncertainty in the matching scale. Since,

the hierarchy much depends on NP models, we do not discuss this effect in this thesis.

2. Solving the RGEs in the SMEFT.— The RGEs of the SMEFT are solved from the NP

scale to the EWSB one. As results of the RGEs, the large logMNP/µEW is resumed and

the scale uncertainties in couplings disappear.

3. Matching at the EWSB scale.— At the EWSB scale, the heavy SM particles, such as

W,Z,H and t, are decoupled, and the SMEFT are matched onto the LEFT summarized

in Chapter 3. The EW matching scale dependences are also cancelled between the one-

loop matching conditions and the SMEFT RGEs. Because of a small hierarchy of mass

scales between the heavy SM particles, the uncertainty in this matching scale is small. See

Chapter. 3 for the details.

Through these processes, the EW matching scale uncertainty is reduced, and two problems

coming from the matching scale uncertainty are solved.

#1This kind of uncertainty quite depends on the NP models. As discuss later, in the left-right symmetric model,
this uncertainty of a leading contribution is accidentally cancelled by QCD RGEs in four-quark operators.
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5.2 Scale Uncertainty in General Model

In this section, we investigate the EW matching scale uncertainty without specifying models.

Based on the procedure in Sec. 5.1, we numerically analyze the EWmatching scale uncertainty in

the Wilson coefficients at the EWSB scale, mW . Here, we emphasize that the EWmatching scale

uncertainty depends on the NP models. In general, Wilson coefficients at the NP scale depend

on the top Yukawa and the QCD coupling, and the dependence is determined by specifying a NP

model. Therefore, the scale uncertainty coming from evaluation scale of the coupling constants

can not be included in this section. However, this model independent discussions are meaningful

to understand effects of quantum corrections coming from the top Yukawa coupling above the

EWSB scale.

Since, we are interested in estimations of ∆F = 2 observables, we focus on the Wilson

coefficients (C4)ij(mW ). In this section, we numerically investigate the EW matching scale un-

certainty in the Wilson coefficients (C4)ij at the EWSB scale, mW . As discussed in Chapter. 3,

the NP contributions to (C4)ij are expressed by the SMEFT coefficients, (C
(8)
qd )ijij , (C

(8)
ud )33ij ,

(C
(8)
qd )33ij , (C

(8)
qd )mjij and (C

(8)
qd )imij , for m = 1, 2, 3. Here, it is noticed that at the EWSB scale,

the SMEFT ∆F = 2 coefficient, (C
(8)
qd )ijij , generates the low-scale one, (C4)ij , by the tree-level

matching, and the others by the one-loop level one. Therefore, for a case that (C
(8)
qd )ijij is

generated at the NP scale, the top Yukawa corrections to (C4)ij(mW ) are sub-leading contri-

butions. On the other hand, for not the case, the top Yukawa corrections to (C4)ij(mW ) are

leading contributions, and the EW matching scale uncertainty becomes large. For simplicity,

we consider a case where only one of the SMEFT coefficients takes a non-zero value at the NP

scale, and the others are zero. In addition, we assume that the each SMEFT coefficient is set

as (CSMEFT) = i/(MNP)
2. We evaluate the Wilson coefficients (C4)ij(mW ) by following three

ways;

1. SMEFT with RGEs.— At the NP scale,MNP, the SMEFT coefficient is set as (CSMEFT) =

i/(MNP)
2, and the RGEs are solved. At the W -boson mass scale mW , the SMEFT coeffi-

cients are matched onto the Wilson coefficients (C4)ij .

2. Conventional estimation 1.— At the top quark mass scale mt, the SMEFT coefficient is

set as (CSMEFT) = i/(MNP)
2, which is matched onto the Wilson coefficients (C4)ij without

the RGEs of the SMEFT. The QCD RGEs are solved from the top quark mass, mt, to the

W -boson one, mW , and the Wilson coefficients (C4)ij(mW ) is estimated.

3. Conventional estimation 2.— At the NP scale, MNP, the SMEFT coefficient is set as

(CSMEFT) = i/(MNP)
2, which is matched onto the Wilson coefficient (C4)ij without the

RGEs of the SMEFT. The QCD RGEs are solved from the NP scale,MNP to theW -boson

one, mW , and the Wilson coefficients (C4)ij(mW ) is estimated.

Comparing these three estimations, we numerically analyze the EW matching scale uncertainty.
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In Figs. 5.1-5.3, the Wilson coefficient, (C4)13(mW ), is displayed as a function of the NP

scale, MNP, for each SMEFT coefficient. In the case for the Wilson coefficient (C
(8)
qd )1313, the

top Yukawa corrections are sub-leading, and the scale uncertainty is also small. In order to

investigate the differences of the SMEFT with RGEs from the Conventional estimation 1,2

quantitatively, we define the difference as

difference (C4) ≡
C4(mW )SMEFT − C4(mW )conventional

C4(mW )SMEFT
, (5.1)

and the sub-leading top Yukawa corrections for (C
(8)
qd )1313 is displayed in the left panel of

Figs. 5.2, which shows that the EWmatching scale is O(1%) for (C
(8)
qd )1313. The magnitude of the

scale uncertainty roughly results from a form of the top Yukawa corrections, y2t /(4π)
2 logMNP/mW .

In the other cases, the top Yukawa corrections are leading contributions to the ∆F = 2

process, and the scale uncertainty is large. Fig. 5.2 and Fig. 5.3 show that the EW matching

scale uncertainty is O(100%). This is because ∆F = 1 SMEFT operators contribute to the

∆F = 2 processes only through the top Yukawa corrections. As the results, the magnitude of

the scale uncertainty is roughly expressed as a form, K(xt,MNP)/K(xt,mW ) ≃ 40. Here, we

emphasize that this large scale uncertainty represents the quantitative importance of the one-

loop matching formulae. In the large NP scale than the EW one, the loop function coming from

the matching formulae such as K(xt, µW ) is dominated by the large logarithm, which is also

regarded as contributions from the tree-level matching. Therefore, the large scale uncertainty

shows that the one-loop matching formulae quantitatively change evaluations based on the tree-

level ones by O(10)%. Besides, some of plots show that (C4)13 for the SMEFT with RGEs can

be zero because of an interference between the tree-level matching effects and the one-loop ones.

We numerically confirmed that this behavior results from the RGEs effects.

5.3 Scale Uncertainty in the Left-Right Symmetric Models

In this section, as an application of our matching formulae, we investigate the EW match-

ing scale uncertainty in the left-right symmetric models. In this model, at the tree-level, the

SMEFT ∆F = 1 flavor changing operators are generated, and the one-loop matching formulae

in Chapter 3 are essential in the ∆F = 2 processes at the EWSB scale.

5.3.1 Left-Right Symmetric Models

In this section, let us study left-right symmetric models to demonstrate the SMEFT corrections

of the dynamical top quark as explored in Chapter. 3. In particular, we focus on the effects of

the SMEFT ∆F = 1 operators for the ∆F = 2 transitions.

The left-right extension of the SM implements the parity violation in the weak interaction

by spontaneously breaking the SU(3)C×SU(2)L×SU(2)R×U(1)B−L gauge symmetries [61–65].
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Figure 5.1: For the SMEFT coefficients, (C
(8)
qd )1113 (left) and (C

(8)
qd )1213 (right), the Wilson

coefficient (C4)ij(mW ) for ∆MBd are shown as a function of the NP scale,MNP. Green, magenta
and blue solid lines correspond to the three ways, SMEFT with RGEs, Conventional estimation
1, and Conventional estimation 2, respectively.

The new right-handedW boson generates FC charged currents in addition to the SM left-handed

W boson. The quark interactions of the left- and right-handed W bosons are

Lint =
gL√
2
(VL)ij ūiγµPLdjW

µ
L +

gR√
2
(VR)ij ūiγµPRdjW

µ
R + h.c., (5.2)

where the first term is for the SM W boson. The right-handed W boson, WR, is obtained by

replacing L↔ R, in the second term. Here, the new coupling gR and the mixing matrix VR are

introduced for WR similarly to WL.

The gauge symmetries are broken to SU(3)C ×U(1)em by Higgs vacuum expectation values

(VEVs). In the minimal setup, the VEV of the Higgs field, ∆R, whose charges are

(SU(2)L,SU(2)R,U(1)B−L) = (1, 3,−2), breaks the left-right symmetry, SU(2)L × SU(2)R ×
U(1)B−L, to SU(2)L × U(1)Y . The VEV of the Higgs bi-doublet, Φ ∈ (2, 2, 0), enables EWSB.

On the other hand, the VEV of ∆L ∈ (3, 1, 2) is assumed to be suppressed. The particle contents

in the left-right symmetric model with charge symmetry are listed in Table 5.1

Their components are expressed as

∆i =

[
∆+

i /
√
2 ∆++

i

∆0
i −∆+

i /
√
2

]
(i = L,R), Φ =

[
ϕ01 ϕ+2
ϕ−1 ϕ02

]
. (5.3)

The spontaneous symmetry breaking is achieved by the VEVs,

⟨∆L,R⟩ =
1√
2

[
0 0

vL,R 0

]
, ⟨Φ⟩ = 1√

2

[
v cosβ 0

0 v sinβ eiα

]
. (5.4)
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Figure 5.2: For the SMEFT coefficients, (C
(8)
qd )1313 (left) and (C

(8)
qd )2313 (right), the Wilson

coefficient (C4)ij(mW ) for ∆MBd are shown as a function of the NP scale,MNP. Green, magenta
and blue solid lines correspond to the three ways, SMEFT with RGEs, Conventional estimation
1, and Conventional estimation 2, respectively.

Table 5.1: Particle contents in the left-right symmetric model with charge symmetry.

Component fiels Gauge quantum numbers
SU(3)C SU(2)L SU(2)R U(1)B−L

qiL 3 2 2 1/3
qciR 3̄ 1 2 −1/3
liL 1 2 1 −1
lciR 1 1 2 1
Φ 1 2 2 0

∆L 1 3 1 2
∆R 1 1 3 −2

We impose a hierarchy among the Higgs VEVs, vR ≫ v cosβ, v sinβ ≫ vL, in order to be

consistent with observed phenomena and to avoid fine-tunings in the scalar potential [66, 67].

An angle α is a spontaneous CP -violating phase. In addition to the QCD θ term, α induces the

strong CP phase [68]#2, which is severely constrained by the neutron electric dipole moment [39].

As we will see below, the following analysis is independent of α. The masses of the left and

right-handed W bosons are approximately given by

M2
WL
≃
g2L
4
v2, M2

WR
≃
g2R
2
v2R, (5.5)

for vR ≫ v with v ≃ 246GeV.

#2 See discussions in Refs. [69–71] for the strong CP problem with a generalized parity invariance P.
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Figure 5.3: For the SMEFT coefficients, (C
(8)
qd )3313 (left) and (C

(8)
ud )3313 (right), the Wilson

coefficient (C4)ij(mW ) for ∆MBd are shown as a function of the NP scale,MNP. Green, magenta
and blue solid lines correspond to the three ways, SMEFT with RGEs, Conventional estimation
1, and Conventional estimation 2, respectively.

In addition to the W bosons, heavy Higgs bosons, H0 and H±, have FC couplings as

−Lint ≃
√
2

v cos 2β

[
d̄(V †

LMuVR)PRdH
0 + d̄(V †

RMuVL)PLd (H
0)∗

+ ū(MuVR)PRdH
+ + d̄(V †

RMu)PLuH
−
]
, (5.6)

with H0 = cosβϕ02 − sinβeiα
(
ϕ01
)∗

and H+ = cosβϕ+2 + sinβeiαϕ+1 . Here, vR ≫ v is assumed,

and the up-type quark masses is Mu = diag(mu,mc,mt). The masses of the heavy Higgs

bosons, MH ≡
√
α3vR/

√
2 cos 2β, are almost proportional to vR. The parameter α3 comes from

the Higgs potential. The Higgs potential in the limit of vR ≫ v is given in Appendix B.1.

The right-handed W boson and the heavy neutral Higgs boson, as well as the SM (left-

handed) W boson, induce ∆F = 2 transitions [72, 73]. They are severely constrained by the

observed meson oscillations. First of all, let us briefly overview the conventional approach. In

literature, the Wilson coefficients of the low-scale operators in Eq. (3.1) are set by integrating

out WR and H0 as well as WL and the up-type quarks [74,75]:

(C4)
H–tree
ij = −2

√
2GF

cos2 2β

∑
k,l

mukmul

M2
H

(λLR)ijk (λ
RL)ijl , (5.7)

(C4)
WL–WR
ij =

g2Lg
2
R

16π2

∑
k,l

mukmul

M2
WL
M2

WR

(λLR)ijk (λ
RL)ijl FA(xk, xl, β), (5.8)

(C4)
H–s.e.
ij = −

g2Lg
2
R

128π2

∑
k,l

mukmul

M2
WL
M2

WR

(λLR)ijk (λ
RL)ijl FB(τL, τR), (5.9)
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(C4)
H–vert.
ij = −

g2Lg
2
R

16π2

∑
k,l

mukmul

M2
WL
M2

WR

(λLR)ijk (λ
RL)ijl FC(τk, τl, τL, τR), (5.10)

where the parameters are defined as

(λLR)ijk ≡ (V ∗
L )ki(VR)kj , xk ≡

m2
uk

M2
WL

,

β ≡
M2

WL

M2
WR

, τL ≡
M2

WL

M2
H

, τR ≡
M2

WR

M2
H

, τk ≡
m2

uk

M2
H

, (5.11)

and (λRL)ijk is given by replacing L ↔ R in (λLR)ijk . Here, the indices k, l are the up-type

quark flavor, and the definitions of the loop functions FA, FB and FC are summarized in

Appendix B.2.#3

Among the Wilson coefficients, the tree-level contribution, (C4)
H–tree, is obtained by ex-

changing the heavy neutral Higgs boson. The one-loop contributions, (C4)
H–s.e. and (C4)

H–vert.,

are given by self-energy (s.e.) and vertex (vert.) corrections to the tree-level heavy neutral Higgs

diagram, respectively. Here, the on-shell renormalization scheme is applied [74]. On the other

hand, the one-loop contribution (C4)
WL–WR comes from a box diagram where both the left- and

right-handed W bosons as well as the up-type quarks are exchanged.#4 It is impoartant that

(C4)
WL–WR itself depends on a choice of the gauge fixing. Here and hereafter, the Feynman-’t

Hooft gauge is used. The gauge invariance of the transition amplitude is guaranteed by adding

the one-loop neutral Higgs contributions, (C4)
H–s.e. and (C4)

H–vert. [74, 76–78].

In the conventional calculation (Ref. [75] as a representative case), after the above Wilson

coefficients are set, the RGEs for the low-scale operators are solved [31]. However, it is noticed

that the one-loop diagrams include the left-handed W boson and the up-type quarks, which

are much lighter than the right-handed W and heavy Higgs bosons for, e.g., the LHC con-

straints [4, 79]. Hence, it is uncertain in which energy scale the Wilson coefficients should be

input. Moreover, the heavy charged Higgs boson contributes to the ∆F = 2 transitions through

box diagrams with the SM W boson and the up-type quarks. Although the contribution is often

neglected in the literature (see Ref. [78] for an early work), it may be comparable to (C4)
H–s.e.

and (C4)
H–vert.. Since the SM W boson and the up-type quarks are much lighter than the

heavy charged Higgs boson, the scale uncertainty problem arises similarly to the above. In the

next section, we study the ∆F = 2 processes in left-right symmetric models by the procedure

explored in Chapter. 3.
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Figure 5.4: Schematic figure for the SMEFT framework in the left-right symmetric model.

5.3.2 Matching Scale Uncertainty

In this section, we focus on the top quark contribution coming from the one-loop matching

conditions in Chapter 3. First of all, let us summarize the analysis procedure in Fig. 5.4. At

the decoupling scale of the left-right symmetry (µLR), the Wilson coefficients in the SMEFT are

evaluated. In addition to the ∆F = 2 operators (the red colored diagrams in Fig. 5.4), there

are ∆F = 1 top-quark operators which eventually contribute to the ∆F = 2 transitions (the

blue colored diagrams). After solving the SMEFT RGEs, they are matched onto the low-scale

operators at the EWSB scale, where we need to take account of the one-loop level matching

condition. Below the EWSB scale, we follow the standard procedure for the ∆F = 2 observables.

First, let us consider the matching condition of the SMEFT at µ = µLR (the first line in

the Fig. 5.4). At the tree level, one obtains the following ∆F = 1 SMEFT operators at the

dimension six after integrating out WR,

(C
(8)
ud )

tree
33ij = −

g2R
M2

WR

(V †
R)i3(VR)3j , (5.12)

(C
(1)
ud )

tree
33ij =

1

2Nc
(C

(8)
ud )33ij . (5.13)

#3 Our results in Eqs. (5.9) and (5.10) are smaller than the result of Ref. [75] by a factor of 2.
#4 If WR and H are sufficiently heavier than WL, the WR–WR box contribution is much smaller than the

WL–WR box one.
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In addition, by exchanging the heavy neutral and charged Higgs bosons, we obtain the following

∆F = 1 operators,

(C
(8)
qd )tree33ij = −

2
√
2GF

cos2 2β

m2
t

M2
H

(V †
R)i3(VR)3j , (5.14)

(C
(1)
qd )tree33ij =

1

2Nc
(C

(8)
qd )33ij . (5.15)

The details of the calculations are found in Appendix B.1. On the other hand, the ∆F = 2

SMEFT operators are derived at the tree level from the exchange of the heavy neutral Higgs

bosons as

(C
(8)
qd )treeijij = −2

√
2GF

cos2 2β

m2
t

M2
H

(λLR)ijt (λ
RL)ijt , (5.16)

(C
(1)
qd )treeijij =

1

2Nc
(C

(8)
qd )ijij . (5.17)

All the above tree-level Wilson coefficients are evaluated at µ = µLR.

As for the one-loop level matching, the self-energy and vertex corrections of the heavy neutral

Higgs discussed above contribute to the ∆F = 2 Wilson coefficients. Besides, in discussing the

WL–WR box contributions, one needs to avoid double counting from the one-loop contribution

with (C
(8)
ud )33ij , where the top-quark loop is enclosed by the SMW boson. The result is obtained

as

(C
(8)
qd )1–loopijij =

g2Lg
2
Rm

2
t

16π2M2
WL
M2

WR

(λLR)ijt (λ
RL)ijt

[
FA(xt, xt, β)−

1

8
FB(τL, τR)−FC(τt, τt, τL, τR)

]
+

g2Lg
2
R

4π2M2
WR

(λLR)ijt (λ
RL)ijt I1(xt, µLR), (5.18)

(C
(1)
qd )1–loopijij =

1

2Nc
(C

(8)
qd )ijij , (5.19)

where the second term of C
(8)
qd stands for the subtraction to avoid the double counting. We can

see that the µLR dependence in (C
(8)
qd )1–loopijij is dropped when the scale is set to be µLR =MWR

.

In addition, the one-loop matching condition that comes from the H± and WL box diagrams is

obtained as

(C
(8)
qd )1-loopijij =

√
2GF

π2
g2L

cos2 2β

m2
t

M2
H

(λLR)ijt (λ
RL)ijt

[
1

16
FD (xt, xt, τL) + J(xt)

]
, (5.20)

(C
(1)
qd )1-loopijij =

1

2Nc
(C

(8)
qd )ijij , (5.21)

where the loop function FD defined in Appendix B.2 comes from H±–WL box diagrams, whose

result is consistent with that in Ref. [78]. The contribution J(xt) is from the subtraction to

avoid the double counting in similar to the WR case. All the above Wilson coefficients for the

one-loop level matching conditions are evaluated at µ = µLR.
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Figure 5.5: The low-scale Wilson coefficients C4(MWL
) (left) and C5(MWL

) (right) for ∆MBs in
comparison with the conventional results. In the conventional approach, the Wilson coefficients,
(5.7)–(5.10), are input at µ = MWR

(blue) and mt (magenta). The dashed lines do not include
the contribution from the heavy charged Higgs boson.

After setting the Wilson coefficients for the dimension-six SMEFT operators at the scale

µ = µLR, the SMEFT RGEs are solved to the EWSB scale, for which we choose µ =MWL
(the

second line in the Fig. 5.4. The one-loop level RGEs are summarized in Appendix A.1. At the

EWSB scale, the SMEFT operators are matched onto the low-scale ones (the third line). The

tree-level and one-loop level matching conditions are found in Eqs. (3.12)–(3.15) and Eqs. (3.16)–

(3.18), respectively. After the EWSB matching, the calculations are performed as usual, i.e., in

the same way as the conventional approach, which was defined in the previous section.

The differences of our analysis from the conventional one are the SMEFT top-quark effects

and the heavy charged Higgs boson contributions. In order to investigate their effects quantita-

tively, we consider the ∆B = 2 process, ∆MBs
#5. Similar to the previous section, let us define

the difference as

difference (X) ≡ XSMEFT −Xconventional

XSMEFT
for X = Ci(MWL

), ∆MBs , (5.22)

where Ci(MWL
) is the low-scale Wilson coefficients at the EWSB scale for ∆MBs , i.e., i = 3

and j = 2 in Eq. (3.1). XSMEFT and Xconventional represent the SMEFT with RGEs and the

Conventional estimation 1,2, respectively. In the numerical analysis, we take tanβ = mb/mt,

#5In the left-right symmetric models with the generalized charge symmetry C, CP conserving mixing observables,
such as ∆MK and ∆MBq play important role. This is because, when additional phases θi for i = u, , c, t, d, s, b
become zero, the coefficient C4 takes real value, which escape from constraints from the CP violating observables,
such as ϵK , SψKS and Sψϕ.
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Figure 5.6: ∆MBs in comparison with the conventional results at µ = MWR
(blue) and mt

(magenta). The dashed lines do not include the contribution from the heavy charged Higgs
boson.

which naturally gives the fermion mass hierarchy mt ≫ mb. The mass and scale are set as

MH = 6MWR
and µLR =MWR

, respectively. Also, we impose a generalized charge conjugation

symmetry C, which leads to gR = gL and VR = KuV
∗
LKd and Ku = diag(eiθu , eiθc , eiθt), Kd =

diag(eiθd , eiθs , eiθb) [68, 75, 79]. In the evaluation of ∆MBs , the lattice results [33] are applied

for B-parameters. We also use the RunDec program [80] for evaluating the running top quark

masses.

In Fig. 5.5(a), the difference of C4(MWL
) is shown. The magenta and blue solid lines cor-

respond to the Conventional estimation 1 and 2, respectively, where choices of the input scale

of the Wilson coefficients are different. Since it is uncertain in which energy scale the Wilson

coefficients should be input, we set Eqs. (5.7)–(5.10) at µ =MWR
(blue) or at µ = mt (magenta),

and then, perform the low-scale RGEs to the lower scale. For instance, µ = mt is chosen in

Ref. [75]. It is found that the difference is less than three percents#6 below µLR = 100TeV.

Although µ = mt seems to be favored for the conventional result, the deviation is enhanced as

µLR increases. Since the left-right symmetric model corresponds to the case where the tree-level

#6In the left-right symmetric model, the coefficient, C4 is proportional to a square of the top quark mass,
and it seems that the scale uncertainty coming from the top Yukawa coupling becomes O(100 %). However, a
cancellation between the QCD RGEs of C4 and the top Yukawa QCD running occurs, and the scale uncertainty
becomes small.
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matching contributions at the NP scale, this numerical results are consistent with the previous

ones.

Our analysis include both the top-quark effect and the heavy charged Higgs boson contri-

bution. In order to investigate them individually, we show the results without introducing the

latter contribution (dashed lines). Hence, in Fig. 5.5(a), the deviations of the dashed lines from

zero are due to the SMEFT top-quark effects explored in Chapter. 3. It is found that the effects

are less than four percents for µLR < 100TeV. Also, the difference between the solid and dashed

lines comes from the the heavy charged Higgs contribution. We confirm that it is about one

percent level and is comparable to the one-loop contributions, (C4)
H–s.e. and (C4)

H–vert., in the

Feynman-’t Hooft gauge. The difference between the lines is insensitive to MWR
, because the

box contribution in Eq. (5.20), i.e., the FD term, dominates the total charged Higgs effects.

In Fig. 5.5(b), C5(MWL
) is displayed. The magenta and blue solid lines correspond to

µ = MWR
and µ = mt for the conventional approach, respectively. In this case, C5 is zero at

the input scale and generated by C4 through the RGEs down to µ =MWL
. The dependence of

C5 on MWR
is thus from that of C4. The conventional analyses are compared with our SMEFT

and H± results (green). The difference between the solid and dashed lines comes from the

heavy charged Higgs boson, which is shown to be sub-leading similarly to the above case of C4.

We found that C5(MWL
) depends heavily on MWR

and can be deviated from the conventional

results by hundred percents. The result of the SMEFT deviates from the conventional cases by

O(100%) because of the RGEs evolution.#7.

In Fig. 5.6, the difference of ∆MBs is shown. Since it is dominated by C4 at lower scales

quantitatively, the result becomes similar to the one in Fig. 5.5(a). It is seen that the SMEFT

and charged Higgs effects are less than five percents for µLR < 100TeV and are enhanced in

larger µLR. We also checked that these results are unchanged by a choice of θq. Also, we can

derive the same conclusions for ∆MBd as ∆MBs .

Before closing this section, let us comment on the charm-quark contribution. In the analysis,

we focused on the top-quark contributions in the box diagrams and kept the charm-quark ones

aside. This approximation is appropriate in the Bs,d meson system. However, they are dominant

in the K meson system, e.g., for ϵK in the left-right symmetric model [75]. Then, the SMEFT

and charged Higgs corrections explored in this thesis become necessary, and long-distance effects

should be taken into account. This topic will be studied in the future.

5.4 Conclusion of Matching Scale Uncertainty

Since the experimental constraints push the NP scale higher, the NP particle masses are likely

to be much larger than the SM ones, i.e., the EWSB scale. Then, FCNC amplitudes should

be investigated in the framework of the SMEFT rather than the LEFT. In a class of the NP

#7We confirmed that this behavior of the curve does not occur within the leading-log approximation.
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models, both of the NP and SM particles contribute to a loop diagram simultaneously. In order

to reduce the uncertainty of the input scale of the Wilson coefficients particularly in such models,

we studied the SMEFT corrections, paying attention to the top-quark effects. For the FCNC

observables, the operator matching needs to be performed at the one-loop level, because the

NP contributions are evaluated at the one-loop level. By using the complete one-loop matching

formula for ∆F = 2 transitions in Chapter 3, we discuss the matching scale uncertainty in the

Wilson coefficients for ∆F = 2 processes. We found that if the top Yukawa correction is a

sub-leading contribution, the scale uncertainty is O(1)%, and otherwise, that is O(100)%. As

mentioned in Section 5.2, these results represent that the one-loop matching formulae change the

tree-level matching evaluations by O(10)%, which show quantitative importance of the one-loop

matching formulae.

Besides, we investigated ∆MBs in the left-right symmetric models. The right-handed W

boson generates the flavor transitions similarly to the left-handed one in the SM. The SMEFT

corrections are studied and compared with the conventional results. We found that the Wilson

coefficient C4 is affected byO(1)% and C5 byO(100)%. Since the observable ∆MBs is dominated

by the former quantitatively, the SMEFT effects for ∆MBs become comparable to the result

in C4. In addition to the SMEFT effects, we discussed the contribution of the heavy charged

Higgs boson. Although it can be comparable to the one-loop corrections to the heavy neutral

Higgs boson contribution, which are necessary for the gauge invariance, the effect has often been

neglected in the literature. It was found that the relative contribution is about one percent level

and almost independent of MWR
.

Although the difference between our and conventional results becomes smaller if µ = mt is

chosen for ∆MBs in the left-right symmetric models, the deviation becomes enhanced as µLR

increases. In order to clarify in which energy scale the Wilson coefficients should be input, it is

important to take account of the SMEFT RGEs and matching conditions for the NP models in

high scales.

The results of this chapter show that the SMEFT evaluations based on the one-loop matching

formulae provided in Chapter 3 are qualitatively and quantitatively essential in order to reduce

the scale uncertainty.
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Chapter

6
Z mediated correction to flavor changing observable

This chapter is based on the work by the author [16, 81]. We evaluate the

SMEFT corrections to flavor changing observables with particular emphasis

on the Z mediated corrections. Through the Z boson, ∆F = 2 observables

are correlated with ∆F = 1 ones. In Section 6.1, we explain the Z mediated

SMEFT corrections. In Section 6.2, as an application of the scenario, we inves-

tigate the correlations between the ∆S = 2 observables and the ∆S = 1 ones in

a model independent way. In Section 6.3, we focus on a specific scenario in the

MSSM and investigate the effects of the Z mediated SMEFT corrections to the

∆S = 2 observables. We show that the Z mediated SMEFT corrections by the

right-handed NP effects generated by OHd can make experimental constraints

coming from the ∆S = 2 observables significantly severer.

6.1 Z mediated SMEFT correction

In this Chapter, we focus on the phenomenology of the SMEFT ∆F = 1 operators, especially

O(1,3)
Hq and OHd. These operators include the Z boson in the covariant derivative, and ∆F = 1

and 2 observables are correlated each other by mediating the Z boson. Since, in particular,

the ∆F = 2 processes are generated at the one-loop level, it is important to carefully evaluate

the gauge invariance in the processes. In fact, it was proved that the gauge invariance in the

∆F = 2 processes are retained by including contributions from the Nambu-Goldstone boson of

the SMEFT operators [20]. Therefore, in order to evaluate the NP effects in ∆F = 2 processes

mediated by the Z boson, it is qualitatively essential to follow the SMEFT framework. This

Chapter is devoted to investigate quantitative importances of the Z mediated SMEFT correc-

tions. In this section, we define the Z mediated SMEFT corrections, which are appropriately

included in our matching formulae in Chapter 3.

Let us focus on the ∆F = 1 SMEFT operators:

(O(1)
Hq)ij = (H†i

←→
D µH)(q̄iγµqj), (6.1)

(O(3)
Hq)ij = (H†i

←→
D I

µH)(q̄iγµτ Iqj), (6.2)

(OHd)ij = (H†i
←→
D µH)(d̄iγµdj). (6.3)

Above the EWSB scale, NP contributions are encoded to the following interactions:

LSMEFT ⊃ (C
(1)
Hq)ij(O

(1)
Hq)ij + (C

(3)
Hq)ij(O

(3)
Hq)ij + (CHd)ij(OHd)ij . (6.4)
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After the EWSB, they generate the flavor-changing Z interactions of down-type quark:

LSMEFT ⊃ ∆NP
L,ij

[
Zµ +

1

mZ
∂µG

0 − ig

2mWmZ
G−←→∂ µG

+ − g

mZ

(
W−

µ G
+ +W+

µ G
−) ](d̄iγµPLd

j)

+ (L↔ R) + h.c. (6.5)

where G0,± is the Nambu-Goldstone boson, and the coefficients are defined as

∆NP
L,ij =

gZ
2
v2
(
C

(1)
Hq + C

(3)
Hq

)
ij
, (6.6)

∆NP
R,ij =

gZ
2
v2 (CHd)ij , (6.7)

with gZ =
√
g22 + g21. Thus, after the EWSB, the SMEFT operators, (O(1)

Hq)ij , (O(3)
Hq)ij and

(OHd)ij , generate the Z mediated NP effects. In this thesis, we call their effects as “Z mediated

SMEFT corrections”.

As discussed in Chapter 3, by decoupling W , Z, H and t, the SMEFT ∆F = 1 operators

contribute to ∆F = 2 processes as following

(C1)
1−loop
ij =

αλijt
πs2W

(C
(1)
Hq)ijI1(xt, µW )

− αλijt
πs2W

(C
(3)
Hq)ijI2(xt, µW ) +

αλijt
4πs2W

3∑
m=1

[
λimt (C

(3)
Hq)mj + (C

(3)
Hq)imλ

mj
t

]
S0(xt), (6.8)

(C5)
1−loop
ij = −2αλijt

πs2W
(CHd)ijI1(xt, µW ). (6.9)

These matching formulae correspond to the Z mediated SMEFT corrections to ∆F = 2 pro-

cesses, which are consistent with [20,21]. These effects were overlooked in the literature [41,82–

84]. Here, it is notice that the loop function, I1(xt, µW ), includes the logarithm, lnµW /mW .

Therefore, by choosing the matching scale, µ as the NP scale, MNP, we can include the leading

SMEFT RGEs effects.

6.2 SMEFT correction in general Z model

In this section, we investigate the Z mediated SMEFT corrections to ∆F = 2 observables

without specifying a model. Based on the formulae in Sec. 6.1, we numerically estimate the

∆F = 2 observables with particular emphasis on the kaon system. We also discuss correlations

between the ∆S = 2 observables and the ∆S = 1 ones within the framework of the SMEFT.

For simplicity, we consider the following three scenarios,

1. C
(1)
Hq scenario.— The coefficients, C

(3)
Hq and CHd, are set as zero. At the NP scale, MNP =

1 TeV, the coefficient C
(1)
Hq is set as C

(1)
Hq = C/(1 TeV)2, and the dimensionless complex

parameter C is scanned. In this scenario, the Z mediated correction generates the (C1)ij

operator below the EWSB scale.
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2. C
(3)
Hq scenario.— The coefficients, C

(1)
Hq and CHd are set as zero. At the NP scale, MNP =

1 TeV, the coefficient C
(3)
Hq is set as C

(3)
Hq = C/(1 TeV)2, and the dimensionless complex

parameter C is scanned. Similar to the C
(1)
Hq scenario, the coefficient, (C1)ij is generated

below the EWSB scale.

3. CHd scenario.— The coefficients, C
(1)
Hq and C

(3)
Hq are set as zero. At the NP scale, MNP =

1 TeV, the coefficient CHd is set as CHd = C/(1 TeV)2, and the dimensionless complex

parameter C is scanned. In this scenario, the Z mediated correction generate the (C5)ij

operator below the EWSB scale.

In this Chapter, by choosing µW as MNP = 1 TeV, we consider the leading SMEFT RGEs

effects.

For the each scenario, we study correlations between a ∆S = 2 observable and ∆S = 1

ones in the kaon system. As the ∆S = 2 and ∆S = 1 observables, we consider ϵK , ϵ′/ϵK ,

B(KL → π0νν̄), B(K+ → π+νν̄), B(KL → µ+µ−) and B(KS → µ+µ−). In Fig. 6.1 and

Fig. 6.2, the correlations are shown. In Fig. 6.1, the observables are displayed by contour plots

on Re C− Im C plane, where the left and right panels correspond to the C
(1)
Hq and C

(3)
Hq scenario,

respectively. Although both of the C
(3)
Hq and C

(1)
Hq scenarios generate only the (C1)12 operator,

the coefficient C
(3)
Hq is more severely constrained from ϵK than the C

(1)
Hq. This is because a ratio

of the loop function |I2(xt, µW )/I1(xt, µW )| ≃ 4. In both of the above scenarios, the constraint

from ϵK is smaller than the ∆S = 1 observables. Similarly, in Fig. 6.2, the CHd scenario is

displayed. The black and red dotted contours represent B(KL → π0νν̄)/B(KL → π0νν̄)SM

and B(K+ → π+νν̄)/B(K+ → π+νν̄)SM, respectively. In all scenarios, the constraints from

B(KS → µ+µ−) is weaker than the others, and the entire parameter regions in Fig. 6.1 and

Fig. 6.2 are allowed. Besides, it becomes clear that the constraint from ϵK is not negligible in

all scenarios. In particular, in the CHd scenario, the constraint is essential because of the chiral

enhancement. Here, it is remarkable that the constraint from ϵK is appropriately taken into

account by the one-loop matching conditions in Chapter 3, and the NP effects encoded in CHd

are severely constrained. This is one of the result that the SMEFT effects is not negligible.

Although, in this section, we discussed the Z mediated corrections in the kaon system, those

in the B meson systems were also discussed in [20].

6.3 Z mediated correction in the Minimal Supersymmetric Stan-
dard Model

In this section, as an application of the SMEFT corrections in the general Z models, we inves-

tigate the Z mediated corrections in the Minimal Supersymmetric Standard Model (MSSM).

In order to understand the importance of the Z mediated corrections, we focus on a specific

scenario in the MSSM, where the Z mediated corrections dominate the ∆F = 2 observables.
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Figure 6.1: The correlations of observables through Z mediation in (C
(1)
Hq)12 (left panel) and

(C
(3)
Hq)12 (right panel). The blue, green and orange regions are allowed by the experiments of

ϵK , ϵ′/ϵK and B(KL → µ+µ−), respectively. The black and red dotted contours represent
B(KL → π0νν̄)/B(KL → π0νν̄)SM and B(K+ → π+νν̄)/B(K+ → π+νν̄)SM, respectively.

6.3.1 MSSM

In this section, let us study the MSSM to demonstrate the SMEFT Z mediation corrections as

explored in the previous section. The MSSM include many particles, which are the super-partner

of the SM particles. The particle contents in the MSSM are listed in Table 6.3.1. In the MSSM,

many CP violating parameters are included in following soft SUSY breaking terms [85,86]:

Lsoft = −V2 − V3 + LG, (6.10)

V2 = m2
H1
H∗

1aH
a
1 +m2

H2
H∗

2aH
a
2 −

(
m2

3ϵabH
a
1H

b
2 + h.c.

)
+ Q̃∗

iLa(m
2
Q̃
)ijQ̃

a
jL + L̃∗

iLa(m
2
L̃
)ijL̃

a
jL

+ ũiR(m
2
Q̃
)ij ũ

∗
jR + d̃iR(m

2
d̃
)ij d̃

∗
jR + ẽiR(m

2
ẽ)ij ẽ

∗
jR, (6.11)

V3 = ϵab

[
(TE)ijH

a
1 L̃

b
iLẽ

∗
jR + (TD)ijH

a
1 Q̃

b
iLd̃

∗
jR + (TU )ijH

b
2Q̃

a
iLũ

∗
jR

]
+ h.c., (6.12)

LG =
1

2

(
M1b̃b̃+M2w̃

Aw̃A +M3g̃
X g̃X

)
+ h.c., (6.13)

where indices A runs 1, 2, 3, and X = 1, · · · , 8. Besides, the superpotential of the MSSM is

obtained as

W = ϵab

[
(YE)ijH

a
1L

b
i Ēj + (YD)ijH

a
1Q

b
iD̄j + (YU )ijH

b
2Q

a
i Ūj − µHa

1H
b
2

]
, (6.14)
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Figure 6.2: The correlations of observables through Z mediation in (CHd)12. The blue, green
and orange regions are allowed by the experiments of ϵK , ϵ′/ϵK and B(KL → µ+µ−), respectively.
The black and red dotted contours represent B(KL → π0νν̄)/B(KL → π0νν̄)SM and B(K+ →
π+νν̄)/B(K+ → π+νν̄)SM, respectively.

where indexes a, b run 1, 2, and i, j = 1, 2, 3. After the EWSB, Higgs vacuum expectation values

(VEVs) are obtained as

⟨H0
i ⟩ =

vi√
2
. (6.15)

The Higgs VEVs satisfy the following relations:

v2 = v21 + v22 =
1√
2GF

≃ (246 GeV)2 (6.16)

m2
Z =

1

4

(
g21 + g22

)
v2, (6.17)

m2
W =

1

4
g22v

2. (6.18)

After the EWSB, mass terms of the quarks are expressed as

Lmass
q = − v2√

2
ucRY

T
U uL −

v1√
2
dcRY

T
D dL + h.c. (6.19)

The mass matrix of the quarks are diagonalized as U †
uY T

U Vu =
√
2diag (mu,mc,mt) /v2 and

U †
dY

T
D Vd =

√
2diag (md,ms,mb) /v1. Besides, mass terms of the squarks are expressed as

Lmass
q̃ = −Φ†

uM2
ũΦu − Φ†

dM
2
d̃
Φd, (6.20)
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Table 6.1: Superfields and particle contents.

Superfields Component fiels Gauge quantum numbers
Fermions Bosons SU(3)C SU(2)L U(1)Y

Qi =

(
Ui

Di

) (
uiL
diL

)
Q̃iL =

(
ũiL
d̃iL

)
3 2 1/6

Ūi (uiR)
C = (uC)iL ũ∗iR 3̄ 1 −2/3

D̄i (diR)
C = (dC)iL d̃∗iR 3̄ 1 1/3

Li =

(
Ni

Ei

) (
νiL
eiL

)
L̃iL =

(
ν̃iL
ẽiL

)
1̄ 2 −1/2

Ēi (eiR)
C = (eC)iL ẽ∗iR 1̄ 1 1

GX g̃X gXµ 8 1 0

WA w̃A WA
µ 1 3 0

B b̃ Bµ 1 1 0

H1 =

(
H0

1

H−
1

)
h̃1 =

(
h̃1
h̃−1

)
H1 =

(
H0

1

H−
1

)
1 2 −1/2

H2 =

(
H+

2

H0
2

)
h̃1 =

(
h̃+2
h̃2

)
H2 =

(
H+

2

H0
2

)
1 2 1/2

where Φu =
(
ũL, c̃L, t̃L, ũR, c̃R, t̃R

)T
and Φd =

(
d̃L, s̃L, b̃L, d̃R, s̃R, b̃R

)T
. The squark mass ma-

trices are obtained as

M2
ũ =

(
VCKMm̂

2
Q̃
V †
CKM +M2

u + cos 2βM2
Z

(
1
2 −

2
3s

2
W

)
1 v2√

2
T̂ †
U − µMu cotβ

v2√
2
T̂U − µ∗Mu cotβ m̂2

ũ +M2
u + cos 2βM2

Z
2
3s

2
W1

)
,

(6.21)

M2
d̃
=

(
m̂2

Q̃
+M2

d + cos 2βM2
Z

(
−1

2 + 1
3s

2
W

)
1 v1√

2
T̂ †
D − µMd tanβ

v1√
2
T̂D − µ∗Md tanβ m̂2

d̃
+M2

d + cos 2βM2
Z

1
3s

2
W1

)
, (6.22)

where m̂2
Q̃
= V †

dm
2
Q̃
Vd, m̂

2
ũ = U †

u(m2
ũ)

TUu, m̂
2
d̃
= U †

d(m
2
d̃
)TUd, T̂U = U †

uT T
U Vu and T̂D = U †

dT
T
DVd,

which are diagonalized as RuM2
ũR

†
u = diag

(
m2

ũ1
,m2

ũ2
,m2

ũ3
,m2

ũ4
,m2

ũ5
,m2

ũ6

)
and RdM2

d̃
R†

d =

diag
(
m2

d̃1
,m2

d̃2
,m2

d̃3
,m2

d̃4
,m2

d̃5
,m2

d̃6

)
. Hereafter, the flavor violations are discussed in the basis

where the Yukawa matrix of the quark is diagonalized.

In particular, the gaugino and matter interaction in the MSSM can contribute to the ∆F = 2

observables through box type diagrams. As an example, we focus on the gluino contributions.

The gluino-squark-quark interaction is obtained as

Lint = −
√
2gs

3∑
i=1

6∑
j=1

d̃∗j g̃
X
(λX/2)

(
(Γd

L)jiPL + (Γd
R)jiPR

)
di + h.c. (6.23)

The couplings (Γd
L,R)ji are defined as

(Γd
L)ji =

3∑
k=1

(Rd)jk(Vd)ki, (6.24)
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(Γd
R)ji = −

3∑
k=1

(Rd)j,k+3(Ud)ki. (6.25)

The gluino and down-type squarks induce ∆F = 2 transitions. They are severely constrained

by the observed meson oscillations. First of all, let us consider the box diagram contributions.

In literature [87], the Wilson coefficients of the LEFT in Eq. (3.1) are set by integrating out g̃

and d̃:

(C1)
Box
ij =

α2
s

m2
g̃

(Γd
L)rj(Γ

d
L)

∗
ri(Γ

d
L)sj(Γ

d
L)

∗
si

[
1

9
B0(xr, xs) +

11

36
B2(xr, xs)

]
, (6.26)

(C ′
1)

Box
ij =

α2
s

m2
g̃

(Γd
R)rj(Γ

d
R)

∗
ri(Γ

d
R)sj(Γ

d
R)

∗
si

[
1

9
B0(xr, xs) +

11

36
B2(xr, xs)

]
, (6.27)

(C2)
Box
ij =

α2
s

m2
g̃

(Γd
L)rj(Γ

d
R)

∗
ri(Γ

d
L)sj(Γ

d
R)

∗
si

[
17

18
B0(xr, xs)

]
, (6.28)

(C ′
2)

Box
ij =

α2
s

m2
g̃

(Γd
R)rj(Γ

d
L)

∗
ri(Γ

d
R)sj(Γ

d
L)

∗
si

[
17

18
B0(xr, xs)

]
, (6.29)

(C3)
Box
ij =

α2
s

m2
g̃

(Γd
L)rj(Γ

d
R)

∗
ri(Γ

d
L)sj(Γ

d
R)

∗
si

[
− 1

6
B0(xr, xs)

]
, (6.30)

(C ′
3)

Box
ij =

α2
s

m2
g̃

(Γd
R)rj(Γ

d
L)

∗
ri(Γ

d
R)sj(Γ

d
L)

∗
si

[
− 1

6
B0(xr, xs)

]
, (6.31)

(C4)
Box
ij =

α2
s

m2
g̃

{
(Γd

L)rj(Γ
d
L)

∗
ri(Γ

d
R)sj(Γ

d
R)

∗
si

[
7

3
B0(xr, xs)−

1

3
B2(xr, xs)

]

+ (Γd
L)rj(Γ

d
R)

∗
ri(Γ

d
R)sj(Γ

d
L)

∗
si

[
− 11

18
B2(xr, xs)

]}
, (6.32)

(C5)
Box
ij =

α2
s

m2
g̃

{
(Γd

L)rj(Γ
d
L)

∗
ri(Γ

d
R)sj(Γ

d
R)

∗
si

[
1

9
B0(xr, xs) +

5

9
B2(xr, xs)

]

+ (Γd
L)rj(Γ

d
R)

∗
ri(Γ

d
R)sj(Γ

d
L)

∗
si

[
− 5

6
B2(xr, xs)

]}
, (6.33)

where xr,s = m2
d̃r,s

/m2
g̃. The loop functions are defined as

B0(x, y) =
x lnx

(x− y)(x− 1)2
+

y ln y

(y − x)(y − 1)2
+

1

(x− 1)(y − 1)
, (6.34)

B2(x, y) =
x2 lnx

(x− y)(x− 1)2
+

y2 ln y

(y − x)(y − 1)2
+

1

(x− 1)(y − 1)
. (6.35)

From the SUSY scale µSUSY to the hadron scale, the QCD RGEs are solved and ∆F = 2

observables are estimated. In the conventional calculation, the interference effects between the

SM and SUSY contributions, OHd and O
(1,3)
Hq , are not included.

When the squark (quark) flavor is violated by scalar trilinear soft-breaking parameters, the

above box diagrams are controlled by the squark mixing parameter, (δD)ij = (TD)ijv cosβ/m
2
Q̃
.
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For examples, the Wilson coefficient, C1, C
′
1 and C4, are roughly expressed as

(C1)12 ∼ [(δD)
∗
13(δD)23]

2 /m2
Q̃
, (6.36)

(C ′
1)12 ∼ [(δD)31(δD)

∗
32]

2 /m2
Q̃
, (6.37)

(C4)12 ∼ (δD)
∗
13(δD)23(δD)31(δD)

∗
32/m

2
Q̃
. (6.38)

The contribution of (C4)12 dominates the ∆F = 2 observable ϵK because of the chiral enhance-

ment. In a specific case where (δD)
∗
13(δD)23 ∼ 0, the dominant contribution coming from (C4)12

vanishes, and the constraint from ϵK becomes weak. However, as explained in the next section,

the Z mediated SUSY contribution drastically change this situation.

6.3.2 Z mediated SUSY corrections

Let us study the Z mediated correction in the MSSM. At the one-loop level, the SMEFT

operators OHd and O
(1,3)
Hq are generated by gluino loops in the MSSM. When the squark (quark)

flavor is violated by scalar trilinear soft-breaking parameters, the dominant contributions are

calculated from Fig. 6.3 as

(C(1)Hq)12 = −
αs

12π

cos2 β

m4
g̃

(TD)
∗
13(TD)23 Z(xL1, xL2, xR3), (6.39)

(C(3)Hq)12 = −
αs

12π

cos2 β

m4
g̃

(TD)
∗
13(TD)23 Z(xL1, xL2, xR3), (6.40)

(CHd)12 =
αs

6π

cos2 β

m4
g̃

(TD)31(TD)
∗
32 Z(xR1, xR2, xL3), (6.41)

with xi = m2
d̃i
/m2

g̃. Here, md̃L(R)i
is the left- (right-) handed squark soft mass for the i-th

generation, mg̃ is the gluino mass, and TD is the scalar trilinear coupling of the down-type

squarks. The Wilson coefficients are set at the SUSY scale.#1 The loop function is defined as

Z(x, y, z) = − x2 lnx

(x− 1)(x− y)(x− z)2
+

y2 ln y

(y − 1)(x− y)(y − z)2

− z

(z − 1)(x− z)(y − z)
+

(2xy − yz − xz − xyz + z3)z ln z

(z − 1)2(x− z)2(y − z)2
. (6.42)

In the limit of y, z → x, it becomes

Z(x) =
2 + 3x− 6x2 + x3 + 6x lnx

6x(x− 1)4
. (6.43)

In addition, these LEFT ∆F = 2 operators are generated by the ∆F = 1 ones in the SMEFT

through the one-loop matchings at the weak scale [18]. The conditions for CHq and CHd at the

#1 If the trilinear couplings (TD)13,23,31,32 are set in a scale higher than the SUSY scale, the flavor-violating
squark soft masses (md̃L(R)

)12,21 are generated via RG corrections. They can be sizable and contribute to the

kaon FCNCs when the input scale is much higher than the SUSY scale.
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Figure 6.3: Feynman diagrams relevant for the matchings onto the operators (OHd)12, where the
external gauge bosons are attached to each of the cross marks. Diagrams (a)–(d) are the one-loop
gluino contributions, and (e)–(j) are the diagrams in the SMEFT. The diagrams contributing

to (O
(1,3)
Hq )12 are similarly obtained.

scale µW are approximated as [20,21]

(C1)ij =
α[λt]ij
πs2W

[
(C

(1)
Hq)ij I1(xt, µW )− (C

(3)
Hq)ij I2(xt, µW )

]
, (6.44)

(C5)
(1)
ij = −2α[λt]ij

πs2W
(CHd)ij I1(xt, µW ), (6.45)

with xt = m2
t /m

2
W . These results are gauge-independent.

By using the squark mixing parameter (δD)ij , the Wilson coefficients (C
(1,3)
Hq )ij and (CHd)ij

are roughly expressed as

(C1)ij ∼ (λt)ij(δD)
∗
i3(δD)j3/m

2
Z , (6.46)

(C5)ij ∼ (λt)ij(δD)3i(δD)
∗
3j/m

2
Z . (6.47)

As explained in the previous section, the conventional contributions from the box diagrams are

suppressed, if we focus on the specific scenario (δD)
∗
13(δD)23 ∼ 0. Even if this scenario, the

coefficient (C5)ij coming from the SMEFT Z mediated contribution is remained and becomes a
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Figure 6.4: Contour plots of ϵK on the MSUSY − TD plane in the case
[(+/−)TD, iTD, (+/−)TD, TD] (left/right). The experimental allowed regions of the con-
ventional box contributions are shown in blue regions, and that of the SMEFT Z mediated
contributions with box ones are shown in red regions.

dominant effect in ϵK , because of the chiral enhancement. In particular, this contribution is not

suppressed by the SUSY mass scale if the squark mixing parameter is fixed, and the SMEFT Z

mediated contribution becomes important in the high SUSY scale.

Next, we numerically analyze the SMEFT Z mediated contribution in ϵK and discuss some

correlations between flavor changing observables. For simplicity, we focus on a simplified sce-

nario, where the scalar trilinear coupling are parameterized as [(TD)13, (TD)23, (TD)31, (TD)32] =

[±TD, iTD,±TD, TD]. In Fig. 6.4, contour plots of ϵK on the MSUSY − TD plane are displayed.

In the left and right plot, the cases [+TD, iTD,+TD, TD] and [−TD, iTD,−TD, TD] are shown,

respectively. In the both plots, the experimentally allowed regions at the 2σ level of the con-

ventional box contributions are shown in blue regions, and that of the SMEFT Z mediated

contributions with box ones are shown in red regions. The allowed regions of the box contribu-

tions are not changed much. However, the relative sign of the SMEFT Z mediated contributions

and the box one becomes opposite#2. The plots show that the SMEFT Z mediated corrections

may make the constraint for the SUSY scale be changed by O(100%). Focusing on contour lines

of ϵK , in large SUSY scale regions, the corrections becomes large. This is because, on the con-

tour lines, the squark mixing parameter δD roughly takes fixed value, and the box contributions

are suppressed by the SUSY scale as m−2
Q̃

.

#2The contribution of the box diagrams is roughly expressed as ∼ i(TD)
4v4/m10

Q̃
. On the other hand, the Z

mediated contribution is expressed as ∼ ±(λt)12(TD)
2v2/m2

Zm
4
Q̃
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Figure 6.5: Correlations between ϵK , ϵ′/ϵK , B(K → πνν̄) and B(B̄ → Xd,sγ) on a MSUSY−TD
plane in the case [0, 0, TD, iTD](left/right). The right handed side of the red and green line
are allowed by B(K+ → π+νν̄) and B(KL → π0νν̄), respectively with 90% confidence level.
Similarly, the right handed side of the red, orange and pink regions are allowed by ϵK , B(B̄ →
Xsγ) and B(B̄ → Xdγ), respectively at the 2σ level. The dotted lines are contour line of ϵ′/ϵK
corresponding to 10−2, 10−3, 10−4, 10−5 and 10−6.

Through the SMEFT Z mediated contributions, there exist correlations between ∆F = 2 and

1 observables. In the MSSM, additional observables such as B(B̄ → Xd,sγ) also correlate with

ϵK . For simplicity, we numerically show the correlations for the case [0, 0, TD, iTD], where the

conventional box diagram contributions from ϵK become negligible and the SMEFT Z mediated

contributions become important. In Fig. 6.5, the correlations between ϵK , ϵ′/ϵK , K → πνν and

B(B̄ → Xd,sγ) are displayed on the MSUSY − TD plane. The experimentally allowed regions

from B(K+ → π+νν̄) and B(KL → π0νν̄) are right handed sides of red and green colored lines,

respectively. Besides, the right handed side of the red, orange and pink regions are allowed

regions from ϵK , B(B̄ → Xsγ) and B(B̄ → Xdγ), respectively. The blue dotted lines are

contours of ϵ′/ϵK . Since B(B̄ → Xd,sγ) is roughly expressed as (δD)13,23/mQ̃, the constraints

from B(B̄ → Xd,sγ) are severe in small SUSY scale regions. In this scenario [0, 0, TD, iTD], the

SMEFT Wilson coefficients take imaginary values, and the constraints from B(KL → µ+µ−)

are negligible. Figure. 6.5 shows that the constraints from ϵK generated by the SMEFT Z

mediated contributions can become much severe even though the conventional box contributions

are negligible.

Finally, we mention that in the gluino mediated scenario, there also exist parameter regions

of the scalar trilinear coupling where the experimental data of ϵ′/ϵK can be explained. For

- 51 -



Chapter 6. Z mediated correction to flavor changing observable

simplicity, we restrict the parameter space such that two of (TD)13,23,31,32 are real. When

(TD)23,32 are real, we checked that wide parameter regions to explain the discrepancy of ϵ′/ϵK

are tightly excluded by B(B̄ → Xd,sγ). Therefore, we consider the cases when (TD)13,31 are real.

The scalar trilinear coupling are parameterized as

[(TD)13, (TD)23, (TD)31, (TD)32] = [γL, αL + iβL, γR, αR + iβR], (6.48)

where αi, βi and γi are real parameters. Then, one obtains

Im [C(1,3)HQ ]12 ∝ −Im [(TD)
∗
13(TD)23] = −βLγL, (6.49)

Im [CHD]12 ∝ +Im [(TD)31(TD)
∗
32] = −βRγR. (6.50)

The L variables contribute to the left-handed Wilson coefficients, and the R variables to the

right-handed ones. In order to evaluate the observables, we scan the whole parameter region

of αi, βi, and γi where the vacuum stability conditions are satisfied.#3 The vacuum stability

conditions are discussed in Appendix E.

When βLγL > 0 and βRγR > 0, the SUSY contribution to ϵ′/ϵK , is maximized, because the

left-handed contribution, CHQ, constructively interferes with the right-handed one, CHD. In this

case, B(KL → π0νν̄) cannot exceed the SM prediction, because positive βLγL and βRγR tends

to decrease the branching ratio, as can be seen from Eq. (4.22). In contrast, ϵ′/ϵK , cannot be

accommodated with the result (4.18) for βLγL < 0 and βRγR < 0. When either βLγL or βRγR is

negative, the discrepancy of ϵ′/ϵK , can also be explained. Because the right-handed contribution

to ϵ′/ϵK , is larger than the left-handed one, βRγR > 0 is favored to amplify ϵ′/ϵK .

Before proceeding to the analysis, let us summarize assumptions on model parameters. Since

the vacuum stability condition is relaxed by large mA, the heavy Higgs bosons are supposed

to be decoupled. The squark masses are set to be degenerate, mQ̃ ≡ mQ̃,1 = mQ̃,2 = mQ̃,3 =

mD̃,1 = mD̃,2 = mD̃,3, for simplicity. The Higgsino mass parameter is also equal to mQ̃, though

dependences of the observables on it are weak. We take tanβ = 5, though the following results

are insensitive to the choice, because the observables as well as the vacuum stability condition

depend on it dominantly in a combination of TD cosβ.

In Fig. 6.6, the maximal values of the SUSY contributions to ϵ′/ϵK are shown for βLγL > 0

and βRγR > 0 as a function of mQ̃. There is a peak structure for each line. In smaller

squark mass regions, the maximal value is determined by B(B̄ → Xdγ). Defining the squark

mixing parameter, δD = (TD)ijv cosβ/m
2
Q̃
, the SUSY contributions to ϵ′/ϵK ,depend on it as

(ϵ′/ϵK)SUSY ∼ δ2D, whereas those to B(B̄ → Xdγ) is ∼ δD/mQ̃, where mg̃ ∼ mQ̃ is supposed.

Thus, the maximal value of ϵ′/ϵK , increases asmQ̃ becomes larger. In larger squark mass regions,

the maximal value is determined by ϵK , B(B̄ → Xsγ) and the vacuum stability condition as well

as B(B̄ → Xdγ). In particular, the gluino box contribution to ϵK depends on δD as ∼ δ4D/m
2
Q̃
,

#3 We checked that the constraint from B(KL → µ+µ−) is weaker than the other constraints in the parameter
region of our interest.
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Figure 6.6: The maximal gluino contributions to ϵ′/ϵK ,as a function of mQ̃. The parameters
are γR/βR = γL/βL = 1 and mg̃/mQ̃ = 1 on the black line. In the left plot, γR/βR = γL/βL =
0.6, 0.8, 1.2 with mg̃/mQ̃ = 1 from left to right of the red lines. In the right plot, mg̃/mQ̃ =
1.8, 1.4, 0.8 with γR/βR = γL/βL = 1 from left to right of the green lines.

whereas the SUSY contributions via CHQ and CHD are not suppressed by mQ̃, i.e., behaves as

∼ λtδ
2
D/m

2
Z . When mQ̃ is small, the latter contribution can be canceled enough by the former

one. However, asmQ̃ increases, the cancellation becomes weaker in the parameter region allowed

by the other constraints. Hence, the bounds on the trilinear couplings become severer to satisfy

the constraint of ϵK . Consequently, the maximal value of ϵ′/ϵK decreases.

In the figures, γi/βi or mg̃/mQ̃ is also varied. On the black line, γR/βR = γL/βL = 1 and

mg̃/mQ̃ = 1 are chosen. In the left plot, γR/βR = γL/βL = 0.6, 0.8, 1.2 with mg̃/mQ̃ = 1 from

left to right of the red lines. On the other hand, mg̃/mQ̃ = 1.8, 1.4, 0.8 with γR/βR = γL/βL = 1

from left to right of the green lines in the right plot. The maximum value increases when γi/βi

is small and mg̃/mQ̃ is large. Also, it is found that the current discrepancy of ϵ′/ϵK can be

explained if the squark mass is smaller than 5.6 TeV.

6.4 Conclusion of Z mediated correction to ∆F = 2 observable

The SMEFT framework is qualitatively essential to retain the gauge invariance in the NP effects

of ∆F = 2 processes mediated by the Z boson. The one-loop matching formulae in Chapter 3

appropriately include the Z mediated correction to ∆F = 2. In this chapter, we investigated

the quantitative importance of the Z mediated SMEFT corrections. In the general Z model, we

showed that the right-handed NP effects coming from (CHd)12 are enhanced by hadron matrix

elements, and the constraints from ϵK are severe. Besides, the SMEFT corrections provide

various correlations between ∆F = 1 and 2 observables by the dynamical Z boson. Compared

with the ∆S = 1 observables such as ϵ′/ϵK , B(KL → µ+µ−), it was shown that ϵK provides an
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complementary information on the ∆S = 1. In addition, we also discussed the SUSY effects in

the Z mediated SMEFT corrections. In the MSSM, we showed that there exists the case where

the Z mediated corrections dominate ϵK , and constraints of the SUSY scale can be changed by

O(100%). In the MSSM, we also discussed correlations between ϵK and ∆F = 1 observables such

as ϵ′/ϵK , K → πνν and B(B̄ → Xd,sγ). We found that there exist parameter regions where the

constraints from the ∆F = 2 and 1 observables are satisfied even if the squark mass is smaller

than 5.6 TeV. As these results, we conclude that the SMEFT corrections are quantitatively

essential to discuss the correlations between flavor changing observables.
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Chapter

7
Nucleon EDM from SMEFT flavor-changing operator

This chapter is based on the work by the author [17]. We investigate

flavor changing operators effects on nucleon electric dipole moments (EDM)

within the framework of the SMEFT. We focus on contributions of dimension-

six ∆F = 1 operators of the down-type quarks to nucleon EDMs with particular

emphasis on the top quark effects. It is found that some of the SMEFT oper-

ators are already excluded for the NP scale MNP ≲ 100 GeV by the neutron

EDM, and future experiments may be able to probe those inMNP ≲ 2−10 TeV.

In addition, we show that the EDMs and ∆F = 2 observables will reveal al-

lowed parameter regions of the SMEFT operators complementarily.

7.1 Flavor conserving process by flavor changing operators

Electric dipole moments (EDMs), which are CP -violating observables, are one of the most

sensitive observables. Currently, the experimental bound of the neutron is [39]

|dn| < 3.0× 10−26 e cm, (7.1)

at the 90% confidence level. On the other hand, the indirect limit on the proton EDM is derived

from 199Hg [88,89] as [40]

|dp| < 2.1× 10−25 e cm. (7.2)

In future, several experiments aim to improve the sensitivity by two orders of magnitudes for

the neutron EDM [7, 8]. Also, a storage ring experiment is projected to measure the proton

EDM at the level of 10−29 e cm [9].

As we have mentioned in Chapter 3, although the EDMs are flavor-conserving observables,

flavor-violating interactions can contribute to them. In the SM, theW -boson interactions change

quark flavors. Thus, a class of NP can induce EDMs through quark flavor-changing interactions

by exchanging the W boson. Such contributions are represented by the SMEFT [10–12]. Here,

all the SM particles including the W,Z,H and the t are retained. Above the EWSB, NP

contributions to flavor and CP violations are encoded in higher dimensional operators in the

SMEFT. At the EWSB scale, they are matched onto the effective operators in the LEFT by

integrating out W , Z, H and t. Low-scale observables such as the EDMs are evaluated by using

the LEFT.
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In this Chapter, we study the neucleon EDMs from SMEFT flavor-changing operators. They

are induced by ∆F = 1 operators through radiative corrections of the W boson. In particular,

we will focus on top-quark loop contributions, because they tend to be large due to the large

top quark mass (cf. Chapter 5). The radiative corrections are taken into account by solving the

renormalization group equations (RGEs) in the SMEFT [13–15], which are listed in Appendix F.

In addition, the SMEFT operators are matched onto those in the LEFT at the EWSB scale. The

one-loop matching conditions are necessary, because the contributions of the ∆F = 1 operators

to EDMs are induced by radiative corrections. The one-loop formulae were already provided

in Chapter 3. Theses operators also contribute to ∆F = 2 observables such as ϵK and ∆Md

through the W -boson loops. Since these observables are sensitive to NP contributions, we will

discuss correlation between the contributions to the EDMs and the ∆F = 2 observables.

7.2 Numerical analysis of EDM

In this section, we study contributions of the SMEFT ∆F = 1 operators to the nucleon EDMs

and ∆F = 2 observables, ϵK and ∆MBd . In Fig. 7.1, the neutron and proton EDMs are

estimated. On each line, one of the Wilson coefficients is set to be Ci = i/M2
NP at the NP

scale, MNP. The other coefficients are zero. The effective operators missing in the list do not

contribute to the EDMs as well as the ∆F = 2 observables.#1 Once the operator is set, the

RGEs are solved, and the matching conditions are taken into account. In the top panels, the

four-quark operators mix the first two generations of the down-type quark. On the other hand,

the operators in the bottom panels include the bottom quark. In low MNP regions, it is found

that the nucleon EDMs are suppressed, where the loop functions defined in Chapter 3, I1 and

K, vanish.

In the plots, the horizontal red and blue dotted lines correspond to the current experimental

bound and the future sensitivity, respectively. For the latter, we quote |dn| = 10−28 e cm

and |dp| = 10−29 e cm. Currently, the EDM constraints are weak. The NP contributions are

excluded only for MNP ≲ 100GeV of (C
(1,8)
ud )3312 and (C

(1)
qd )3312. The sensitivities are expected

to be improved greatly. The neutron and proton EDMs can probe the NP scale up to 2–10TeV.

On the other hand, the contributions to the EDMs are suppressed for the operators including

the bottom quark. This is because the hadron matrix elements of such operators are small (see

Eq. (4.12)). Currently, the constraint is weaker than MNP ≲ 100GeV according to the bottom

panel of the figure, and the sensitivity may reach at most 3TeV in future.

Let us study correlations between the EDMs and the ∆F = 2 observables. The results

depend on the SMEFT operators. The ∆S = 1 operators of (C
(1,8)
qd )3312, (C

(1,8)
ud )3312 and (CHd)12

contribute to the EDMs and ϵK via radiative corrections. Similarly, the ∆B = 1 operators of

#1 There are operators which can contribute to the EDMs through self-energy corrections. The matching
conditions are provided in Section ??, and it is straightforward to analyze them.
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Figure 7.1: The neutron and proton EDMs are estimated for the SMEFT ∆F = 1 operators
of the down and strange quarks with the top quarks in the top panels. Those for the down and
bottom quarks are shown in the bottom panels. The Wilson coefficients are i/M2

NP at the NP
scale MNP. The red and blue dotted lines are the current experimental limit and the future
sensitivity.

(C
(1,8)
qd )3313, (C

(1,8)
ud )3313 and (CHd)13 affect ∆MBd as well as the EDMs. In Figs. 7.2–7.6, the

EDMs and the ∆F = 2 observables are estimated for each operator. Here, the real and imaginary

parts of each Wilson coefficient are varied at the NP scale of 1TeV, while the other coefficients

are set to be zero at this scale. In the plots, the current limits from ϵK and ∆MBd are drawn by

the blue band, where the region inside the band is allowed at the 2σ level. On the other hand,

contours of the neutron and proton EDM are shown by the bands with different colors.

Currently, all the parameter regions are allowed by the EDMs (see also Fig. 7.1). In future,

the EDMs can be sizable for the ∆S = 1 operators. It is noticed that, since the parameter

dependence of the EDMs is different from that of ϵK , they provide an independent information

on the effective operators. For some of the ∆B = 1 operators especially (C
(8)
qd )3313 and (C

(8)
ud )3313,

future measurements of the proton EDMs will also be able to compete with the constraint from
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Figure 7.2: Contours of the EDMs and ϵK (left) and ∆MBd (right). Outside regions of the
red and light green bands are probed by the future experiment in the left panel. On the other
hand, the deep green region in the right panel corresponds to |dn| < 10−30 e cm, which is below
the future sensitivity. In the left panel, the blue region is allowed by ϵK at the 2σ level, and the
region in the right panel is allowed by ∆MBd at the 2σ level.

∆MBd .

Next, let us consider C
(1,3)
qq , C

(1,8)
qu , and (C

(1)
Hq)12,13. We found that they do not contribute to

the EDMs because of the Lorentz structures of these operators. In fact, they generate only the

vector-type operators of the four quarks below the EWSB scale, which do not violate the CP

symmetry.

Similarly, the operators of (C
(3)
Hq)12,13 do not contribute to the EDMs through the four-quark

operators. Let us consider another contribution. It is noticed that these operators include W

boson interactions by taking the Higgs VEV as

(H†i
←→
D I

µH)(q̄iγµτ Iqj) = iv2
[
(ūiγµPLd

j)

(√
2

v
∂µG

+ − i g2√
2
W+

µ

)
+ (d̄iγµPLu

j)

(
−
√
2

v
∂µG

− − i g2√
2
W−

µ

)]
+ . . . (7.3)

in the Feynman-’t Hooft gauge, where G± is the NG bosons. Here, all the quark fields are left-

handed in these interactions. Then, they seem to generate the electric and chromoelectric dipole

moments through penguin diagrams of the W boson loops. However, it can be checked that

such contributions vanish by paying attention to the chirality structure of the quark. Hence,

the operators of (C
(3)
Hq)12,13 do not contribute to the nucleon EDMs.
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Figure 7.3: Same as Fig. 7.2, but the green region in the right panel corresponds to |dn| <
10−29 e cm, which is one order of magnitude weaker than the future sensitivity.

Finally, let us comment on Cdd. This operator can also contribute to the EDMs through the

RGEs and matching conditions. However, these contributions are found to be very small, and

we do not discuss them anymore.

7.3 Conclusion of nucleon EDM from SMEFT flavor-changing
operator

We studied the nucleon EDMs induced by the SMEFT ∆F = 1 operators and their correlations

with the ∆F = 2 observables. In the conventional LEFT evaluations, the correlations are

not clear, because the heavy SM particles such as W and t are not dynamical. On the other

hand, the SMEFT operators generate the correlations through the W boson loops because

of the dynamical heavy SM particles. Therefore, the SMEFT effects on the nucleon EDMs are

qualitatively important when we consider the correlations between the nucleon EDMs and flavor

changing observables.

It was found that some of the operators are already excluded for MNP ≲ 100GeV by the

neutron EDM, and future experiments may be able to probe those in MNP ≲ 2–10TeV. Com-

pared with ϵK , it was shown that the nucleon EDMs can provide an complementary information

on the ∆S = 1 effective operators in future, though the EDMs from the ∆B = 1 operators are

tiny and cannot compete with the constraints from ∆MBd .

In addition, similar to the evaluations of ∆F = 2 observables discussed in Chapter 5, the
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Figure 7.4: Same as Fig. 7.2, but the pink region in the left panel corresponds to |dn| <
10−29 e cm, which is one order of magnitude weaker than the future sensitivity. Besides, the
deep green region in the right panel is |dn| < 10−31 e cm, which is much smaller than the future
sensitivity.

SMEFT framework can reduce the scale uncertainty in the nucleon EDMs. As a result, we

conclude that the SMEFT are quantitatively and qualitatively essential to investigate the NP

effects on the nucleon EDMs.
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Figure 7.5: Same as Fig. 7.2, but the purple and green regions in the left panel correspond to
< 10−30 e cm, which are weaker than the future sensitivities. Also, the deep green region in the
right panel is |dn| < 10−31 e cm.
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Figure 7.6: Same as Fig. 7.2, but the deep green region in the right panel is |dn| < 10−31 e cm.





Chapter

8
Conclusion

The standard model of the particle physics describes nature very well. Nevertheless, there are

some unsolved problems within the SM. Although, the unsolved problems in the SM make the

NP scale near the EWSB one be fascinating, we face the possibility that the NP scale is much

higher than the EWSB scale because of still no evidence for the new particle production at the

end of run 2 of the LHC experiment. At the current stage, indirect searches of the NP with

flavor and CP violating observables become more important.

In the flavor-changing processes, many observables have been precisely determined in both of

theoretical calculations and experimental data. In future, the precisions in the flavor experiments

will be further improved, and theoretical precise calculations become more important. Besides,

in the flavor-conserving CP violating processes, several experiments are proposed to measure

nucleon EDMs, whose sensitivities would be improved by 2–3 orders of magnitudes in near

future. Although the EDMs are flavor-conserving processes, they have a sensitivity to flavor

violations through the W -boson interactions. Thus, NP effects on quark flavor-changing neutral

currents can contribute to quark EDMs simultaneously by exchanging the W boson. Since the

EDMs are very sensitive to NP, they can also probe flavor-changing contributions to the NP.

In conventional evaluations of the low-scale observables related to the flavor and/or CP

violation, heavy degrees of freedom, such as NP particles and heavy SM particles are simul-

taneously decoupled, and the NP model is matched onto the LEFT. Because of a hierarchy

between the NP scale and the EWSB one, the conventional approach is broken down, and some

problems occur. For example, the matching scale uncertainty at the EWSB scale appears in

the conventional LEFT approach. Besides, in the NP effects of ∆F = 2 processes mediated by

the Z boson, the gauge invariance is not retained, because the NP contributions are encoded

in the LEFT without quantum corrections from the NG boson. In addition, flavor-changing

operators in the LEFT can not correlate to the EDMs without specifying a NP model because

of no W boson. In order to resolve these problems, an effective field theory in which the heavy

SM degrees of freedom are retained is needed. The SMEFT is one of the promising effective

field theories above the EWSB scale: this effective field theory includes all the SM particles

as dynamical degrees of freedom. In the SMEFT approach, the NP effects are encoded in the



Chapter 8. Conclusion

SMEFT at the NP scale. After evaluating the SMEFT RGEs, the SMEFT are matched onto

the LEFT at the EWSB scale, and the low-scale observables are calculated by using the LEFT.

By this approach, the matching scale uncertainty can be eliminated. Besides, thanks to the

dynamical heavy SM particles in the SMEFT, the gauge invariance in the NP effects of ∆F = 2

processes mediated by the Z boson, and the correlations between the nucleon EDMs and flavor

changing observables are restored. Although the important points of the SMEFT approach are

the SMEFT RGEs and matching at the EWSB scale, the one-loop matching at the EWSB scale

had not been calculated. Since the NP effects in the conventional LEFT evaluations are at the

one-loop level, the one-loop matching formulae at the EWSB scale are also essential in order to

realize the high precision calculations in the SMEFT.

In this thesis, we established a systematic way to estimate flavor and/or CP violating ob-

servables within the SMEFT by providing the one-loop matching formulae. By the established

SMEFT approach, we investigated the scale uncertainty in ∆F = 2 processes, Z mediated

SMEFT correction in the ∆F = 2 processes, and the SMEFT ∆F = 1 operators effects on the

nucleon EDMs.

In Chapter 3, we have studied the one-loop matching conditions related to the SMEFT

∆F = 1 operators. We found that the SMEFT ∆F = 1 operators contribute to both of ∆F = 2

and 0 processes by decoupling W , Z, H and the top quark t. Besides, it was found that by the

one-loop matching formulae, the LEFT Wilson coefficients at the EWSB scale are changed by

O(10)% compared with the tree-level matching contributions.

In Chapter 5, we have studied the scale uncertainty in ∆F = 2 processes with the one-

loop matching formulae. By a model independent approach, we found that the magnitude of

the scale uncertainty in the LEFT Wilson coefficient is O(1–100)%. As an application of this

approach, we also investigated ∆MBs in the left-right symmetric model and confirmed that

the scale uncertainty is O(1)%. These scale uncertainty in ∆F = 2 processes are removed by

adopting the SMEFT approach. Therefore, the SMEFT approach enables us to evaluate the

NP contributions to the low-scale observables relevant for the flavor and/or CP violation with

high precision by eliminating the matching scale uncertainty.

In Chapter 6, we have investigated the Z mediated SMEFT corrections to ∆F = 2 observ-

ables in the kaon system. Although they were overlooked so far, we showed that the SMEFT

corrections make experimental constraints coming from ϵK drastically change. By a model inde-

pendent approach, we found that the right-handed NP effects encoded in (CHd)12 are enhanced,

and the constraint from ϵK becomes severer. Besides, the SMEFT corrections provide vari-

ous correlations between ∆F = 1 and 2 observables by the dynamical Z boson. Compared

with the ∆S = 1 observables such as ϵ′/ϵK , B(KL → µ+µ−), it was shown that ϵK provides

an complementary information on the ∆S = 1. As an application of this approach, we also

considered Z mediated gluino contributions. In a simplified scenario, it was found that the
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Z mediated SMEFT corrections may make the constraint for the SUSY scale be changed by

O(100%) compared with the conventional box diagram contributions. Besides, we found that the

gluino mediated contributions are consistent with the experimental data such as ϵK , ϵ′/ϵK and

B(B̄ → Xd,sγ), if the squark mass is smaller than 5.6 TeV. Therefore, the SMEFT approach

enables us to take into account the various correlations between flavor changing observables,

especially the severe constraints from ϵK in CHd.

In Chapter 7, we have also studied the SMEFT ∆F = 1 operators contributions to the

nucleon EDMs. We studied flavor changing operators effects on the nucleon EDMs within the

framework of the SMEFT. In particular, we focused on the SMEFT ∆F = 1 operators, and

discussed the contributions of those operators to ∆F = 0 and 2 observables through the top

quark decoupling. It was found that NP scale is larger than 100 GeV by the current EDMs

experiments, and the future experiments may achieve a sensitivity of 2–10 TeV. Therefore, the

SMEFT approach enables us to investigate the correlations between the nucleon EDMs and the

∆F = 2 observables without specifying the NP model.

As a result, we conclude that the SMEFT approach is quantitatively and qualitatively essential

to evaluate the NP effects on the low-scale observables when the NP scale is much higher than

the EWSB one.

- 65 -





Chapter

A
Quantum Corrections

A.1 Renormalization group equations of SMEFT

In this appendix, we summarize the SMEFT RGEs which are relevant for the ∆F = 2 observables

at the one-loop level. We focus on the anomalous dimensions which depend on the top-Yukawa

or QCD couplings. In the following expressions, we define

Ċa ≡ (4π)2
dCa

d lnµ
, Xt ≡

πα

s2W
xt. (A.1)

The anomalous dimensions atO(y2t ) andO(g2s) are obtained as (see Refs. [13–15] for the complete

one-loop formula of the SMEFT RGEs):

(Ċ
(1)
Hq)pr = Xt

[
λprt (CH□ + CHD)− 2λprt (CHu)33 + 3λptt (C

(1)
Hq)tr + 3λtrt (C

(1)
Hq)pt

− 9λptt (C
(3)
Hq)tr − 9λtrt (C

(3)
Hq)pt

+ 2λtst

(
6(C(1)

qq )prst + 6(C(1)
qq )stpr + (C(1)

qq )ptsr + (C(1)
qq )srpt + 3(C(3)

qq )ptsr + 3(C(3)
qq )srpt

)
− 12λkkt (C(1)

qu )pr33 + 12λkkt (C
(1)
Hq)pr + λptt (C

(1)
Hq)tr + λtrt (C

(1)
Hq)pt

]
, (A.2)

(Ċ
(3)
Hq)pr = Xt

[
− λprt CH□ − 3λptt (C

(1)
Hq)tr − 3λtrt (C

(1)
Hq)pt + λptt (C

(3)
Hq)tr + λtrt (C

(3)
Hq)pt

− 2λtst

(
6(C(3)

qq )prst + 6(C(3)
qq )stpr + (C(1)

qq )ptsr + (C(1)
qq )srpt − (C(3)

qq )ptsr − (C(3)
qq )srpt

)
+ 12λkkt (C

(3)
Hq)pr + λptt (C

(3)
Hq)tr + λtrt (C

(3)
Hq)pt

]
, (A.3)

(ĊHd)pr = Xt

[
− 12λkkt (C

(1)
ud )33pr + 12λtst (C

(1)
qd )stpr + 12λkkt (CHd)pr

]
, (A.4)

(ĊHu)pr = Xt

[
− 2λkkt δp3δ3r(CH□ + CHD)− 4λtst δp3δ3r(C

(1)
Hq)st + 6λkkt δp3(CHu)3r + 6λkkt δ3r(CHu)p3

− 4λkkt

(
3(Cuu)pr33 + 3(Cuu)33pr + (Cuu)p33r + (Cuu)3rp3

)
+ 12λtst (C

(1)
qu )stpr + 12λkkt (CHu)pr + 2λkkt δp3(CHu)3r + 2λkkt δr3(CHu)p3

]
, (A.5)
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ĊH□ = Xt

[
− 2
(
− 6λsrt (C

(1)
Hq)rs + 18λsrt (C3

Hq)rs + 6λkkt (CHu)33

)
+ 24λkkt CH□

]
, (A.6)

ĊHD = Xt

[
− 2
(
− 24λsrt (C

(1)
Hq)rs + 24λkkt (CHu)33

)
+ 24λkkt CHD

]
, (A.7)

(Ċuu)prst = Xt

[
− 2λkkt δp3δ3r(CHu)st − 2λkkt δs3δ3t(CHu)pr

− 2λwv
t δr3δp3(C

(1)
qu )vwst − 2λwv

t δt3δs3(C
(1)
qu )vwpr

+
1

3
λwv
t δp3δr3(C

(8)
qu )vwst +

1

3
λwv
t δs3δt3(C

(8)
qu )vwpr

− λwv
t δs3δ3r(C

(8)
qu )vwpt − λwv

t δt3δp3(C
(8)
qu )vwsr

+ 2λkkt δp3(Cuu)3rst + 2λkkt δs3(Cuu)pr3t + 2λkkt δr3(Cuu)p3st + 2λkkt δt3(Cuu)prs3

]
+ 4παs

[
1

3
(C(8)

qu )wwptδrs +
1

3
(C(8)

qu )wwsrδpt −
1

3Nc
(C(8)

qu )wwstδpr −
1

3Nc
(C(8)

qu )wwprδst

+
1

3
(Cuu)pwwtδrs +

1

3
(Cuu)swwrδpt +

1

3
(Cuu)wtpwδrs +

1

3
(Cuu)wrswδpt

− 1

3Nc
(Cuu)pwwrδst −

1

3Nc
(Cuu)swwtδpr −

1

3Nc
(Cuu)wrpwδst

− 1

3Nc
(Cuu)wtswδpr +

1

6
(C

(8)
ud )ptwwδrs +

1

6
(C

(8)
ud )srwwδpt −

1

6Nc
(C

(8)
ud )prwwδst

− 1

6Nc
(C

(8)
ud )stwwδpr + 6(Cuu)ptsr −

6

Nc
(Cuu)prst

]
, (A.8)

(Ċ
(1)
ud )prst = Xt

[
− 4λkkt δp3δ3r(CHd)st − 4λwv

t δp3δr3(C
(1)
qd )vwst + 2λkkt δp3(C

(1)
ud )3rst + 2λkkt δr3(C

(1)
ud )p3st

]
+ 3

(
N2

c − 1

N2
c

)
4παs(C

(8)
ud )prst, (A.9)

(Ċ
(8)
ud )prst = Xt

[
− 4λwv

t δr3δp3(C
(8)
qd )vwst + 2λkkt δp3(C

(8)
ud )3rst + 2λkkt δr3(C

(8)
ud )p3st

]
+ 4παs

[
4

3
(Cuu)pwwrδst +

4

3
(Cuu)wrpwδst +

4

3
(Cdd)swwtδpr +

4

3
(Cdd)wtswδpr

+
4

3
(C(8)

qu )wwprδst +
4

3
(C

(8)
qd )wwstδpr

+
2

3
(C

(8)
ud )prwwδst +

2

3
(C

(8)
ud )wwstδpr − 12

1

Nc
(C

(8)
ud )prst + 12(C

(1)
ud )prst

]
, (A.10)

(Ċ(1)
qu )prst = Xt

[
4

3
λwr
t δs3

(
(C(1)

qu )pw3t +
4

3
(C(8)

qu )pw3t

)
+

4

3
λpvt δt3

(
(C(1)

qu )∗rv3s +
4

3
(C(8)

qu )∗rv3s

)
+ 2λprt (CHu)st − 4λkkt δs3δ3t(C

(1)
Hq)pr +

1

3

(
2λpvt δs3(C

(1)
qu )vr3t + 2λvrt δ3t(C

(1)
qu )pvs3

)
− 1

9

(
λpvt δs3(C

(8)
qu )vr3t + λvrt δ3t(C

(8)
qu )pvs3

)
− 2

3

(
λvwt δs3δ3t(C

(1)
qq )pvwr + λwv

t δs3δ3t(C
(1)
qq )pwvr + λprt (Cuu)3ts3 + λprt (Cuu)3ts3

)
− 2
(
λvwt δs3δ3t(C

(3)
qq )pvwr + λwv

t δs3δ3t(C
(3)
qq )pwvr

)

- 68 -



A.1 Renormalization group equations of SMEFT

+
(
λpvt δs3(C

(8)
qu )vr3t + λvrt δ3t(C

(8)
qu )pvs3

)
− 8λwv

t δs3δ3t(C
(1)
qq )prvw − 4λprt (Cuu)33st

+ λpvt (C(1)
qu )vrst + 2λkkt δs3(C

(1)
qu )pr3t + λvrt (C(1)

qu )pvst + 2λkkt δt3(C
(1)
qu )prs3

]
− 3

(
N2

c − 1

N2
c

)
4παs(C

(8)
qu )prst, (A.11)

(Ċ(8)
qu )prst = Xt

[
8λwr

t δs3

(
(C(1)

qu )pw3t +
4

3
(C(8)

qu )pw3t

)
+ 8λpvt δt3

(
(C(1)

qu )∗rv3s +
4

3
(C(8)

qu )∗rv3s

)
− 2

3

(
λpvt δs3(C

(8)
qu )vr3t + λvrt δ3t(C

(8)
qu )pvs3

)
− 4
(
λvwt δs3δ3t(C

(1)
qq )pvwr + λwv

t δs3δ3t(C
(1)
qq )pwvr − λpvt δs3(C(1)

qu )vr3t − λvrt δ3t(C(1)
qu )pvs3

)
− 4
(
λprt (Cuu)3ts3 + λprt (Cuu)3ts3

)
− 12

(
λvwt δs3δ3t(C

(3)
qq )pvwr + λwr

t δs3δ3t(C
(3)
qq )pwvr

)
+ λpvt (C(8)

qu )vrst + 2λkkt δs3(C
(8)
qu )pr3t + λvrt (C(8)

qu )pvst + 2λkkt δt3(C
(8)
qu )prs3

]
+ 4παs

[
4

3
(C(1)

qq )pwwrδst +
4

3
(C(1)

qq )wrpwδst + 4(C(3)
qq )pwwrδst + 4(C(3)

qq )wrpwδst

+
2

3
(C(8)

qu )prwwδst +
2

3
(C

(8)
qd )prwwδst +

4

3
(C(8)

qu )wwstδpr

+
2

3
(C

(8)
ud )stwwδpr +

4

3
(Cuu)swwtδpr +

4

3
(Cuu)wtswδpr

− 6

(
Nc −

2

Nc

)
(C(8)

qu )prst − 12(C(1)
qu )prst

]
, (A.12)

(Ċ(1)
qq )prst = Xt

[
λprt (C

(1)
Hq)st + λstt (C

(1)
Hq)pr

+
1

6

(
λprt (C(8)

qu )st33 + λstt (C
(8)
qu )pr33

)
− 1

4

(
λptt (C(8)

qu )sr33 + λsrt (C(8)
qu )pt33

)
− λprt (C(1)

qu )st33 − λstt (C(1)
qu )pr33

+ λpvt (C(1)
qq )vrst + λsvt (C(1)

qq )prvt + λvrt (C(1)
qq )pvst + λvtt (C(1)

qq )prsv

]
+ 4παs

[
3(C(1)

qq )ptsr + 9(C(3)
qq )ptsr −

6

Nc
(C(1)

qq )prst

+
1

6
(C(1)

qq )swwrδpt +
1

6
(C(1)

qq )pwwtδrs +
1

6
(C(1)

qq )wrswδpt +
1

6
(C(1)

qq )wtpwδrs

− 1

3Nc
(C(1)

qq )pwwrδst −
1

3Nc
(C(1)

qq )swwtδpr −
1

3Nc
(C(1)

qq )wrpwδst −
1

3Nc
(C(1)

qq )wtswδpr

+
1

2
(C(3)

qq )swwrδpt +
1

2
(C(3)

qq )pwwtδrs +
1

2
(C(3)

qq )wrswδpt +
1

2
(C(3)

qq )wtpwδrs

− 1

Nc
(C(3)

qq )pwwrδst −
1

Nc
(C(3)

qq )swwtδpr −
1

Nc
(C(3)

qq )wrpwδst −
1

Nc
(C(3)

qq )wtswδpr

+
1

12
(C(8)

qu )srwwδpt +
1

12
(C(8)

qu )ptwwδrs −
1

6Nc
(C(8)

qu )prwwδst −
1

6Nc
(C(8)

qu )stwwδpr

+
1

12
(C

(8)
qd )srwwδpt +

1

12
(C

(8)
qd )ptwwδrs −

1

6Nc
(C

(8)
qd )prwwδst −

1

6Nc
(C

(8)
qd )stwwδpr

]
,

(A.13)
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(Ċ(3)
qq )prst = Xt

[
− λprt (C

(3)
Hq)st − λ

st
t (C

(3)
Hq)pr −

1

4

(
λptt (C(8)

qu )sr33 + λsrt (C(8)
qu )pt33

)
+ λpvt (C(3)

qq )vrst + λsvt (C(3)
qq )prvt + λvrt (C(3)

qq )pvst + λvtt (C(3)
qq )prsv

]
+ 4παs

[
− 3(C(3)

qq )ptsr −
6

Nc
(C(3)

qq )prst + 3(C(1)
qq )ptsr

+
1

6
(C(1)

qq )pwwtδrs +
1

6
(C(1)

qq )swwrδpt +
1

6
(C(1)

qq )wtpwδrs +
1

6
(C(1)

qq )wrswδpt

+
1

2
(C(3)

qq )pwwtδsr +
1

2
(C(3)

qq )swwrδpt +
1

2
(C(3)

qq )wtpwδrs +
1

2
(C(3)

qq )wrswδpt

+
1

12
(C(8)

qu )ptwwδrs +
1

12
(C(8)

qu )srwwδpt +
1

12
(C

(8)
qd )ptwwδrs +

1

12
(C

(8)
qd )srwwδpt

]
,

(A.14)

(Ċdd)prst = 4παs

[
6(Cdd)ptsr −

6

Nc
(Cdd)prst

+
1

3
(Cdd)pwwtδrs +

1

3
(Cdd)wtpwδrs +

1

3
(Cdd)wrswδpt −

1

3Nc
(Cdd)pwwrδst

− 1

3Nc
(Cdd)swwtδpr −

1

3Nc
(Cdd)wtswδpr −

1

3Nc
(Cdd)wrpwδst

+
1

3
(C

(8)
qd )wwsrδpt +

1

3
(C

(8)
qd )wwptδrs −

1

3Nc
(C

(8)
qd )wwprδst −

1

3Nc
(C

(8)
qd )wwstδpr

+
1

6
(C

(8)
ud )wwptδrs +

1

6
(C

(8)
ud )wwsrδpt −

1

6Nc
(C

(8)
ud )wwprδst −

1

6Nc
(C

(8)
ud )wwstδpr

]
,

(A.15)

(Ċ
(1)
qd )prst = Xt

[
2λprt (CHd)st − 2λprt (C

(1)
ud )33st + λpvt (C

(1)
qd )vrst + λvrt (C

(1)
qd )pvst

]
− 3

(
N2

c − 1

N2
c

)
4παs(C

(8)
qd )prst, (A.16)

(Ċ
(8)
qd )prst = Xt

[
− 2λprt (C

(8)
ud )33st + λpvt (C

(8)
qd )vrst + λvrt (C

(8)
qd )pvst

]
+ 4παs

[
4

3
(C(1)

qq )pwwrδst +
4

3
(C(1)

qq )wrpwδst + 4(C(3)
qq )pwwrδst + 4(C(3)

qq )wrpwδst

+
2

3
(C(8)

qu )prwwδst +
2

3
(C

(8)
qd )prwwδst +

4

3
(C

(8)
qd )wwstδpr +

2

3
(C

(8)
ud )wwstδpr

+
4

3
(Cdd)swwtδpr +

4

3
(Cdd)wtswδpr − 6

(
Nc −

2

Nc

)
(C

(8)
qd )prst − 12(C

(1)
qd )prst

]
.

(A.17)

A.2 QCD RGEs for EDMs

In this section, we summarize the RGEs of flavor-conserving effective operators for the CP

violation in QCD [105]. The RGEs for the Wilson coefficients of these operators are given as

µ
∂C

∂µ
= CΓ, (A.18)
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where the Wilson coefficients are written in a column vector as

C =
(
Cq
1 , C

q
2 , C3, C

q
4 , C

q
5 , C̃

q′q
1 , C̃q′q

2 , C̃qq′

1 , C̃qq′

2 , C̃q′q
3 , C̃q′q

4

)
. (A.19)

The anomalous matrix is calculated at one-loop level as

Γ =


αs
4πγs 0 0
1

(4π)2
γsf

αs
4πγf 0

1
(4π)2

γ′sf 0 αs
4πγ

′
f

 (A.20)

where

γs =

+8CF 0 0
+8CF +16CF − 4N 0

0 +2N N + 2nf + β0

 , (A.21)

γf =

(
−12CF + 6 + 1

N −
1
2

+48
N + 24 +4CF + 6

)
, (A.22)

γ′f =



−12CF 0 0 0 + 1
N −1

−6 + 6
N 0 0 −1

2 −CF + 1
2N

0 0 −12CF 0 + 1
N −1

0 0 −6 + 6
N −1

2 −CF + 1
2N

+24
N −24 +24

N −24 +4CF 0
−12 −24CF + 12

N −12 −24CF + 12
N +6 −8CF − 6

N

 , (A.23)

γsf =

(
+4 +4 0

−32N − 16 −16 0

)
, (A.24)

and

γ′sf =



0 0 0
0 0 0
0 0 0
0 0 0

−16N mq′
mq

Qq′
Qq

0 0

−16mq′
mq

Qq′
Qq

−16mq′
mq

0


, (A.25)

where CF = (N2 − 1)/(2N) is the Casimir constant of the fundamental representation, N(= 3)

is the number of the color, nf is the number of light flavor quarks, and β0 = 11/3×N−2/3×nf
is the leading-order beta function of strong coupling constant.
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B
Left-right symmetric models

B.1 Higgs sector in left-right symmetric models

In this section, we briefly review the Higgs sector in the left-right symmetric models. After the

left-right symmetry is broken, the scalar potential with vL = 0 [67] is

V = − µ21Tr
(
Φ†Φ

)
− µ22

[
Tr
(
Φ̃Φ†

)
+Tr

(
Φ̃†Φ

)]
+ λ1

[
Tr
(
Φ†Φ

)]2
+ λ2

{[
Tr
(
Φ̃Φ†

)]2
+
[
Tr
(
Φ̃†Φ

)]2}
+ λ3Tr

(
Φ̃Φ†

)
Tr
(
Φ̃†Φ

)
+ λ4Tr

(
Φ†Φ

) [
Tr
(
Φ̃Φ†

)
+Tr

(
Φ̃†Φ

)]
+ α1Tr

(
Φ†Φ

)
Tr
(
⟨∆†

R⟩⟨∆R⟩
)
+ α2

[
eiδTr

(
Φ̃†Φ

)
+ e−iδTr

(
Φ̃Φ†

)]
+ α3Tr

(
Φ†Φ⟨∆R⟩⟨∆†

R⟩
)
, (B.1)

where Φ̃ = σ2Φ
∗σ2. Under this scalar potential, the Higgs bi-doublet Φ obtains complex VEVs

as Eq. (5.4) and the spontaneous CP -violating phase α emerges at the EWSB vacuum.

In the limit of vR ≫ v, the following linear combinations diagonalize the neutral and charged

Higgs mass matrices,

H0 = cosβϕ02 − sinβeiαϕ0∗1 , (B.2)

h0 = sinβe−iαϕ02 + cosβϕ0∗1 , (B.3)

H+ = cosβϕ+2 + sinβeiαϕ+1 , (B.4)

G+ = sinβϕ+2 − cosβeiαϕ+1 , (B.5)

where H0 (H+) is the heavy neutral (charged) Higgs, G+ the NG boson, and h0 includes SM

Higgs and NG boson components. The heavy Higgs masses are obtained as

M2
H0 =M2

H± =
α3v

2
R

2 cos 2β
≡M2

H . (B.6)

The Yukawa interactions in the gauge eigenstate basis are

−LY = QL

(
Y Φ+ Ỹ Φ̃

)
QR + h.c.
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⊃ ULS
u
LMUS

u†
R UR +DLS

d
LMDS

d†
R DR + h.c.

≡ uLMUuR + dLMDdR + h.c., (B.7)

with the mass matrices,

Su
LMUS

u†
R =

v√
2

(
Y cosβ + Ỹ sinβe−iα

)
, (B.8)

Sd
LMDS

d†
R =

v√
2

(
Y sinβeiα + Ỹ cosβ

)
. (B.9)

Here, uL,R and dL,R represent the quark mass eigenstates with MU = diag(mu,mc,mt) and

MD = diag(md,ms,mb). The unitary matrices Su,d
L,R satisfy

VL = Su†
L S

d
L, VR = Su†

R S
d
R. (B.10)

From Eq. (B.8) and (B.9), Y and Ỹ are written as

Y =

√
2

v cos 2β

(
cosβSu

LMUS
u†
R − sinβe−iαSd

LMDS
d†
R

)
,

Ỹ =

√
2

v cos 2β

(
− sinβeiαSu

LMUS
u†
R + cosβSd

LMDS
d†
R

)
. (B.11)

Then, the Yukawa interactions are represented in the mass eigenstate basis as

−LY =QL

(
Y Φ+ Ỹ Φ̃

)
QR + h.c.

=uLS
u†
L

(
Y ϕ01 + Ỹ ϕ0∗2

)
Su
RuR + dLS

d†
L

(
Y ϕ02 + Ỹ ϕ0∗1

)
Sd
RdR

+ uLS
u†
L

(
Y ϕ+2 − Ỹ ϕ

+
1

)
Sd
RdR + dLS

d†
L

(
Y ϕ−1 − Ỹ ϕ

−
2

)
Su
RuR + h.c.

=

√
2

v
uLS

u†
L

[
Su
LMUS

u†
R h

∗ +
1

cos 2β

(
Sd
LMDS

d†
R − sin 2βeiαSu

LMUS
u†
R

)
H0∗

]
Su
RuR

+

√
2

v
dLS

d†
L

[
Sd
LMDS

d†
R h+

1

cos 2β

(
Su
LMUS

u†
R − sin 2βe−iαSd

LMDS
d†
R

)
H0

]
Sd
RdR

+

√
2

v
uLS

u†
L

[
e−iαSd

LMDS
d†
R G

+ +
1

cos 2β

(
Su
LMUS

u†
R − sin 2βe−iαSd

LMDS
d†
R

)
H+

]
Sd
RdR

+

√
2

v
dLS

d†
L

[
−eiαSu

LMUS
u†
R G

− − 1

cos 2β

(
Sd
LMDS

d†
R − sin 2βeiαSu

LMUS
u†
R

)
H−
]
Su
RuR + h.c.

=

√
2

v
uL

[
MUh

∗ +
1

cos 2β

(
VLMDV

†
R − sin 2βeiαMU

)
H0∗

]
uR

+

√
2

v
dL

[
MDh+

1

cos 2β

(
V †
LMUVR − sin 2βe−iαMD

)
H0

]
dR

+

√
2

v
uL

[
e−iαVLMDG

+ +
1

cos 2β

(
MUVR − sin 2βe−iαVLMD

)
H+

]
dR

+

√
2

v
dL

[
−eiαV †

LMUG
− − 1

cos 2β

(
MDV

†
R − sin 2βeiαV †

LMU

)
H−
]
uR + h.c.. (B.12)
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Therefore, the heavy Higgs interactions with quarks become

−LY ≃
√
2muk

v cos 2β
di(V

†
L)ik(VR)kjPRdjH

0 +

√
2muk

v cos 2β
di(V

†
R)ik(VL)kjPLdjH

0∗

+

√
2muk

v cos 2β
uk(VR)kiPRdiH

+ +

√
2muk

v cos 2β
di(V

†
R)ikPLukH

−, (B.13)

where the terms proportional to tan 2β are dismissed, because tan 2β = O(mb/mt).

After integrating out the heavy charged Higgs boson, one obtains the effective operator,

Leff ≃
2
√
2GF

cos2 2β

m2
t

M2
H±

(V †
R)i3(VR)3j(d̄iPLt)(t̄PRdj)

= −
√
2GF

cos2 2β

m2
t

M2
H±

(V †
R)i3(VR)3j(t̄αγ

µPLtβ)(d̄i,βγµPRdj,α), (B.14)

where α, β denote color indices. By rearranging the colors, the Wilson coefficients become

(C
(8)
qd )tree33ij

∣∣
q=u

= −2
√
2GF

cos2 2β

m2
t

M2
H±

(V †
R)i3(VR)3j , (B.15)

(C
(1)
qd )tree33ij

∣∣
q=u

=
1

2Nc
(C

(8)
qd )33ij

∣∣
q=u

. (B.16)

for q = u. The Wilson coefficients for q = d is generated by the heavy neutral Higgs exchange.

After integrating out the heavy neutral Higgs boson, one obtains

Leff ≃
2
√
2GF

cos2 2β

m2
t

M2
H0

(V †
R)i3(VL)3k(V

†
L)l3(VR)3j(d̄iPLdk)(d̄lPRdj)

= −
√
2GF

cos2 2β

m2
t

M2
H0

(V †
R)i3(VL)3k(V

†
L)l3(VR)3j(d̄l,αγ

µPLdk,β)(d̄i,βγµPRdj,α). (B.17)

In the mass eigenstate basis, the SU(2)L quark double is shown as q = (uL, VLdL)
T . Thus, the

Wilson coefficients for q = d become

(C
(8)
qd )tree33ij

∣∣
q=d

= −2
√
2GF

cos2 2β

m2
t

M2
H

(V †
R)i3(VR)3j , (B.18)

(C
(1)
qd )tree33ij

∣∣
q=d

=
1

2Nc
(C

(8)
qd )33ij

∣∣
q=d

. (B.19)

Consequently, Eqs. (5.14) and (5.15) are obtained.

B.2 Loop functions

The loop functions which are necessary for the ∆F = 2 transition amplitudes in the left-right

model are summarized. They are defined as

FA(xi, xj , β) =

(
1 +

xixjβ

4

)
I1(xi, xj , β)−

1 + β

4
I2(xi, xj , β), (B.20)
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FB(τL, τR) = (τ2L + τ2R + 10τLτR + 1) I3(τL, τR)

+ (τ2L + τ2R + 10τLτR − 2τL − 2τR + 1) I4(τL, τR), (B.21)

FC(τi, τj , τL, τR) = 2(τL + τR) I3(τL, τR)−
[

τi
√
τLτR

τi − 4
√
τLτR

I5(τi, τL, τR) + (i→ j)

]
, (B.22)

FD(xi, xj , τL) =xixjI1 (xi, xj , τL)− I2 (xi, xj , τL) . (B.23)

The functions, I1–I5, are denoted by the Passarino-Veltman functions as [102]

I1(xi, xj , β) = −M2
WL
M2

WR
D0(0, 0, 0, 0; 0, 0;mui ,muj ,MWL

,MWR
), (B.24)

I2(xi, xj , β) = −4M2
WR

D00(0, 0, 0, 0; 0, 0;mui ,muj ,MWL
,MWR

), (B.25)

I3(τL, τR) = B0(0;MWL
,MWR

)− Re[B0(M
2
H ;MWL

,MWR
)], (B.26)

I4(τL, τR) =M2
H

2∑
n=0

Re
[
Cn(M

2
H , 0,M

2
H ;MWL

,MWR
,MWR

)
]
, (B.27)

I5(τi, τL, τR) =M2
H

{
C0(0, 0, 0;MWL

,mui ,MWR
)

− Re

[
C0

(
M2

H

4
,
M2

H

4
,M2

H ;MWL
,mui ,MWR

)]}
, (B.28)

where we follow the notation of Refs. [103, 104]. The absorptive parts in the loop functions are

discarded [75]. We also obtain the following analytical formulae:

I1(xi, xj , β) =
xi lnxi

(1− xi)(1− xiβ)(xi − xj)
+ (i↔ j)− β lnβ

(1− β)(1− xiβ)(1− xjβ)
, (B.29)

I2(xi, xj , β) =
x2i lnxi

(1− xi)(1− xiβ)(xi − xj)
+ (i↔ j)− lnβ

(1− β)(1− xiβ)(1− xjβ)
, (B.30)

I3(τL, τR) = −1 +
1

2

[
τL − τR −

τL + τR
τL − τR

]
ln
τL
τR

(B.31)

−
√

(1− τL − τR)2 − 4τLτR
2

ln
1− τL − τR −

√
(1− τL − τR)2 − 4τLτR

1− τL − τR +
√

(1− τL − τR)2 − 4τLτR
,

I4(τL, τR) = 1− τL − τR
2

ln
τL
τR

(B.32)

+
(τL − τR)2 − (τL + τR)

2
√

(1− τL − τR)2 − 4τLτR
ln

1− τL − τR −
√
(1− τL − τR)2 − 4τLτR

1− τL − τR +
√
(1− τL − τR)2 − 4τLτR

,

I5(τi, τL, τR) =
τi(τR − τL) ln τi + τL(τi − τR) ln τL + τR(τL − τi) ln τR

(τR − τL)(τL − τi)(τi − τR)

− Re

{
ln
τLτR
τ2i

+
1

4τi − 2τL − 2τR + 1

×
[
8κ

(
1

4
, τi, τL

)
ln
κ
(
1
4 , τi, τL

)
+ τi + τL − 1

4

2
√
τiτL

+ (L→ R)

− 4κ(1, τL, τR) ln
κ(1, τL, τR) + τL + τR − 1

2
√
τLτR

]}
, (B.33)
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B.2 Loop functions

with

κ(x, y, z) =
√
x2 + y2 + z2 − 2(xy + yz + zx). (B.34)

When the relation, m2
ui , M

2
WL
≪M2

WR
≪M2

H , are satisfied, one can use the following approxi-

mations:

I3(τL, τR) ≃ −1 + (1− τR) ln
(

1

τR
− 1

)
≈ −1− ln τR, (B.35)

I4(τL, τR) ≃ 1 + τR ln

(
1

τR
− 1

)
≈ 1, (B.36)

I5(τi, τL, τR) ≃
τi ln (τi/τR)− τL ln (τL/τR)

τR(τi − τL)
, (B.37)

which are consistent with Ref. [75]. Numerically, the second term of I5 in Eq. (B.33), Re{· · · },
is much smaller than the first term for MH ≫MWR

.
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Chapter

C
Double penguin contributions

In this section, we apply the one-loop matching conditions in Sec. ?? to double-penguin diagrams,

where ∆F = 2 processes are generated by exchanging the SM gauge bosons with FC interactions.

When vector bosons of the unbroken gauge symmetries, i.e., those of SU(3)C and U(1)em in

the SM, are exchanged, such double-penguin contributions should vanish because of the gauge

invariance. In fact, form factors of their FC penguin vertices should be proportional to q2, i.e.,

vanish in the limit of q2 → 0 for the gauge invariance, where q is the momentum transfer. Then,

∆F = 2 double-penguin diagrams depend on q4 × 1/q2, where 1/q2 represents the propagator

of the unbroken gauge boson. Hence, they disappear in the limit of q2 → 0.

In our formula, this gauge invariance is confirmed by observing the cancellations among the

Wilson coefficients. Once ∆F = 1 operators (and ∆F = 2 ones if necessary) are generated

by the penguin diagrams at the NP scale, we will see that ∆F = 2 contributions cancel out

below the EWSB scale, if the diagrams are mediated by the gauge bosons of the unbroken gauge

symmetries. Here, the one-loop matching conditions are necessary. These results justify our

one-loop matching conditions in Sec. ??.

We will focus on the double-penguin diagrams with exchanging the gauge bosons associated

with the unbroken gauge symmetries. At the NP scale, penguin-type ∆F = 1 contributions are

generated by exchanging them. The effective Lagrangian from the massless B, W 3 and gluon

can be written as

LB =
α

4πc2W

(
CB
L,ij d̄iγ

µPLdj + CB
R,ij d̄iγ

µPRdj
)
(YuL ūkγµPLuk + YuR ūkγµPRuk)

+
α

4πc2W

(
CB
L,ij d̄iγ

µPLdj + CB
R,ij d̄iγ

µPRdj
) (
YdL d̄kγµPLdk + YdR d̄kγµPRdk

)
=
α

4π

(
CB
L,ij d̄iγ

µPLdj + CB
R,ij d̄iγ

µPRdj
)
Quūkγµuk

− αZ

4π
s2W
(
CB
L,ij d̄iγ

µPLdj + CB
R,ij d̄iγ

µPRdj
) (
I3u −Qus

2
W

)
ūkγµuk

+
α

4π

(
CB
L,ij d̄iγ

µPLdj + CB
R,ij d̄iγ

µPRdj
)
Qdd̄kγµdk

− αZ

4π
s2W
(
CB
L,ij d̄iγ

µPLdj + CB
R,ij d̄iγ

µPRdj
) (
I3d −Qds

2
W

)
d̄kγµdk, (C.1)
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LW 3
=

α

4πs2W
CW 3

L,ij

(
d̄iγ

µPLdj
) (
I3uūkγµPLuk

)
+

α

4πs2W
CW 3

L,ij

(
d̄iγ

µPLdj
) (
I3d d̄kγµPLdk

)
=
α

4π
CW 3

L,ij

(
d̄iγ

µPLdj
)
Quūkγµuk +

αZ

4π
c2WC

W 3

L,ij

(
d̄iγ

µPLdj
) (
I3u −Qus

2
W

)
ūkγµuk

+
α

4π
CW 3

L,ij

(
d̄iγ

µPLdj
)
Qdd̄kγµdk +

αZ

4π
c2WC

W 3

L,ij

(
d̄iγ

µPLdj
) (
I3d −Qds

2
W

)
d̄kγµdk, (C.2)

Lg =
αs

4π

(
Cg
L,ij d̄iγ

µPLT
Adj + Cg

R,ij d̄iγ
µPRT

Adj

) (
ūkγµT

Auk + d̄kγµT
Adk

)
, (C.3)

where Yf is the hypercharge, I3f the SU(2)L charge, and Qf the U(1)em charge. Also, αs and α

are the gauge couplings of SU(3)C and U(1)em, respectively. The coefficients, CV
c,ij (V = B,W 3, g

and c = L,R), are generated by integrating out the NP particles. In the second lines of LB and

LW 3
, the effective Lagrangians are divided into the would-be γ- and Z-penguin contributions,

which are proportional to αQf and αZ (I3f − Qfs
2
W ), respectively. Here, αZ = α/(c2W s

2
W ). In

terms of the SMEFT operators, the above operators are represented as

(C(1)qq )ijkk =(C(1)qq )kkij

=− αs

16Ncπ
Cg
L,ij +

α

8π
Yq

(
CB
L,ij + CW 3

L,ij

)
+
αZ

8π
s2WYq

(
s2WC

B
L,ij − c2WCW 3

L,ij

)
, (C.4)

(C(1)qq )ikkj =(C(1)qq )kjik =
αs

32Ncπ
(Nc − 2)Cg

L,ij , (C.5)

(C(3)qq )ijkk =(C(3)qq )kkij

=− α

16π

(
CB
L,ij + CW 3

L,ij

)
+
αZ

16π
c2W

(
s2WC

B
L,ij − c2WCW 3

L,ij

)
, (C.6)

(C(3)qq )ikkj =(C(3)qq )kjik =
αs

32π
Cg
L,ij , (C.7)

(C(1)ud )kkij =
α

4π
QuC

B
R,ij −

αZ

4π
s2WC

B
R,ij

(
−s2WQu

)
, (C.8)

(C(8)ud )kkij =
αs

4π
Cg
R,ij , (C.9)

(C(1)qu )ijkk =
α

4π
Qu

(
CB
L,ij + CW 3

L,ij

)
− αZ

4π

(
s2WC

B
L,ij − c2WCW 3

L,ij

) (
−s2WQu

)
, (C.10)

(C(8)qu )ijkk =
αs

4π
Cg
L,ij , (C.11)

(C(1)qd )kkij =
α

4π
QqC

B
R,ij −

αZ

4π
s2WC

B
R,ij

(
I3q − s2WQq

)
, (C.12)

(C(8)qd )ijkk =
αs

4π
Cg
L,ij , (C.13)

(C(8)qd )kkij =
αs

4π
Cg
R,ij . (C.14)

In addition, one has to include ∆F = 2 contributions which come from the diagram in

Fig. C.1. They are generated at the NP scale. The di → dj transitions are induced by the

penguin vertices of the NP contribution in one side and those of the SM contribution in another

side, where the up-type quarks, especially the top quark, and the W boson are exchanged. The

Wilson coefficients of the SMEFT operators are represented as

(C(1)qq )ijij =(C(3)qq )ijij

=− α2λijt
8π2s2W

(
CB
L,ij + CW 3

L,ij

){
QG+

xt
8
L(xt, µW ) +QG+

1

4
M(xt)−

1

8
[2− 6L(xt, µW )]

}

- 80 -



dj di

djdi

W ± , G±

t
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γ

Figure C.1: Feynman diagram for the one-loop contribution to ∆F = 2 operators at the NP
scale.

+
ααZλ

ij
t

8π2s2W

(
s2WC

B
L,ij − c2WCW 3

L,ij

){
(IG

+ − s2WQG+
)
xt
8
L(xt, µW )

+ (−s2WQG+)
1

4
M(xt)−

1

8
c2W [2− 6L(xt, µW )]

}
(C.15)

=− α2λijt
8π2s2W

(
CB
L,ij + CW 3

L,ij

)
K(xt, µW )

− ααZλ
ij
t

8π2s2W

(
s2WC

B
L,ij − c2WCW 3

L,ij

)[xt
16
L(xt, µW ) +

1

4
M(xt)− c2WK(xt, µW )

]
, (C.16)

(C(1)qd )ijij =−
α2λijt
4π2s2W

CB
R,ij

{
QG+

xt
8
L(xt, µW ) +QG+

1

4
M(xt)−

1

8
[2− 6L(xt, µW )]

}
+
ααZλ

ij
t

4π2s2W

(
s2WC

B
R,ij

){
(IG

+ − s2WQG+
)
xt
8
L(xt, µW ) + (−s2WQG+)

1

4
M(xt)

− 1

8
c2W [2− 6L(xt, µW )]

}
(C.17)

=− α2λijt
4π2s2W

CB
R,ijK(xt, µW )

− ααZλ
ij
t

4π2
CB
R,ij

[
xt
16
L(xt, µW ) +

1

4
M(xt)− c2WK(xt, µW )

]
, (C.18)

where QG+ = 1 and IG
+
= 1/2. Here, the GIM mechanism is used to reduce the results, and

the loop functions are given as

L(x, µ) = ln
µ

MW
+

3x− 1

4(x− 1)
− x2 lnx

2(1− x)2
, (C.19)

M(x) =
x

1− x
+

x2 lnx

(1− x)2
. (C.20)

For the gluon double-penguin contributions, one obtains the low-scale ∆F = 2 operators

through the one-loop matching conditions, Eqs. (3.16)–(3.18), from the SMEFT ∆F = 1 oper-

ators in Eqs. (C.4)–(C.14) as

(C1)ij = (C1)
1–loop
ij
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= − αλijt
4πs2W

αs

4π

2(Nc − 1)

Nc
Cg
L,ij [I1(xt, µW ) + 2J(xt)−K(xt, µW )]

= 0, (C.21)

(C4)ij = (C4)
1–loop
ij

=
αλijt
πs2W

αs

4π
Cg
R,ij [I1(xt, µW ) + 2J(xt)−K(xt, µW )]

= 0, (C.22)

(C5)ij = (C5)
1–loop
ij

= −αλ
ij
t

πs2W

αs

4π

1

Nc
Cg
R,ij [I1(xt, µW ) + 2J(xt)−K(xt, µW )]

= 0. (C.23)

Since all these Wilson coefficients are proportional to the function, I1(xt, µW ) + 2J(xt) −
K(xt, µW ), which is identical to zero, there are no contributions to the ∆F = 2 operators.

Hence, the gluon double-penguin contributions vanish, as expected from the gauge invariance.

Next, for the γ double-penguin contributions, the low-scale ∆F = 2 operators are generated

from the SMEFT ∆F = 2 operators in Eqs. (C.16) and (C.18) through the tree-level matching

as well as the ∆F = 1 ones in Eqs. (C.4)–(C.14) through the one-loop matching conditions,

Eqs. (3.16)–(3.18). In total, the low-scale ∆F = 2 coefficients are

(C1)ij =(C1)
tree
ij + (C1)

1–loop
ij

=
αλijt
πs2W

α

4π

(
CB
L,ij + CW 3

L,ij

)
K(xt, µW )

− αλijt
πs2W

α

4π

(
CB
L,ij + CW 3

L,ij

){
Qu[I1(xt, µW ) + 2J(xt)]−QdK(xt, µW )

}
=0, (C.24)

(C5)ij =(C5)
tree
ij + (C5)

1–loop
ij

=− 2αλijt
πs2W

α

4π
CB
R,ijK(xt, µW )

+
2αλijt
πs2W

α

4π
CB
R,ij

{
Qu[I1(xt, µW ) + 2J(xt)]−QdK(xt, µW )

}
=0, (C.25)

and other Wilson coefficients do not receive contributions. It is noticed that (C1)ij and (C5)ij

are proportional to the function which is identical to zero, because Qd = Qu − 1. Hence,

the γ double-penguin contributions also vanish, as expected from the gauge invariance, and it

guarantees our one-loop matching conditions.#1

#1 The Z double-penguin contributions also vanish in the limit of the gauge invariance of the SU(2)L ×U(1)Y
symmetry. Non-zero contributions due to the SU(2)L×U(1)Y breaking are encoded into the ∆F = 1 effective op-
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erators, (O(1)
Hq)ij , (O

(3)
Hq)ij and (OHd)ij , in a gauge-invariant manner [20,21] (see also Ref. [81] for a supersymmetric

study).
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Chapter

D
b → dγ and b → sγ

In this section, we consider flavor-violations in the scalar trilinear couplings. They contribute

to the decays of b → diγ (di = d, s) at the one-loop level.#1 The decays are described by the

effective Hamiltonian,

Heff = −4GF√
2
[λt]i3

[
C7γO7γ + C8gO8g

]
+ (L↔ R), (D.1)

where the effective operators are defined as

O7γ =
e

16π2
mb d̄iσ

µνPRb Fµν , O8g =
g3

16π2
mb d̄iσ

µνT aPRbG
a
µν , (D.2)

where e > 0 and g3 > 0, and the covariant derivatives for the quark and squark follow the same

sign convention as Eq. (??). At the one-loop level, the gluino contributions are obtained as

C7γ =

√
2παs

4GF [λt]i3m2
g̃

[
Rd∗

riRd
r3

(
8

9
D1(xr)

)
− mg̃

mb
Rd∗

riRd
r6

(
8

9
D2(xr)

)]
, (D.3)

C8g =

√
2παs

4GF [λt]i3m2
g̃

[
Rd∗

riRd
r3

(
1

3
D1(xr)− 3D3(xr)

)
− mg̃

mb
Rd∗

riRd
r6

(
1

3
D2(xr)− 3D4(xr)

)]
, (D.4)

where xr = m2
d̃r
/m2

g̃, and the loop functions are defined to be

D1(x) =
−x3 + 6x2 − 3x− 2− 6x lnx

6(1− x)4
, (D.5)

D2(x) =
x2 − 1− 2x lnx

(1− x)3
, (D.6)

D3(x) =
2x3 + 3x2 − 6x+ 1− 6x2 lnx

6(1− x)4
, (D.7)

#1 They also contribute to the (CP -violating) Bd,s mixings. In the parameter regions of our interest, gluino
box contributions to them are smaller than the current experimental and theoretical uncertainties. Also, the
CP -violating scalar trilinear couplings can contribute to the electric dipole moments (EDMs) e.g., of the neutron.
Since the CP phases are introduced in the flavor off-diagonal components, the gluino contributions to the EDMs
satisfy the experimental limits.
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D4(x) =
3x2 − 4x+ 1− 2x2 lnx

(1− x)3
. (D.8)

Also, C′7γ and C′8g are obtained by flipping the chirality of Rd(∗)
ri in C7γ and C8g, respectively.

In the analysis, an approximation formula in Ref. [?] is used to estimate the SUSY contribu-

tions to the branching ratio of b→ sγ, where the Wilson coefficients are set at µb = 4.8GeV. For

B(B̄ → Xdγ), the formula in Refs. [?,?] is used, where the SUSY contributions to the Wilson

coefficients at the top-mass scale are needed. The latest results of the SM values are [?]

B(B̄ → Xsγ)
SM = (3.36± 0.23)× 10−4, (D.9)

B(B̄ → Xdγ)
SM = (1.73+0.12

−0.22)× 10−5, (D.10)

for Eγ > 1.6GeV. On the other hand, the experimental results are [?,?,?]

B(B̄ → Xsγ)
exp = (3.32± 0.15)× 10−4, (D.11)

B(B̄ → Xdγ)
exp = (1.41± 0.57)× 10−5, (D.12)

for Eγ > 1.6GeV. In the analysis, the theoretical prediction including the SM and SUSY

contributions is required to be consistent with the experimental result at the 2σ level.
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Chapter

E
Vacuum stability

The Wilson coefficients in Eqs. (6.39)–(6.41) are enhanced by large off-diagonal trilinear cou-

plings, (TD)i3 and (TD)3i (i = 1, 2). Such large trilinear couplings tend to generate dangerous

charge and color breaking (CCB) global minima in the scalar potential [119]. Hence, they are

limited by the vacuum (meta-)stability condition: the lifetime of the EW vacuum must be longer

than the age of the Universe. In this section, we will investigate the vacuum stability conditions

of (TD)i3 and (TD)3i.

The vacuum decay rate per unit volume is represented by Γ/V = A exp (−SE), where SE
is the Euclidean action of the bounce solution [120]. CosmoTransition 2.0.2 [121] is used to

estimate SE at the semiclassical level. The prefactor A cannot be determined unless radiative

corrections are taken into account [122, 123]. We adopt an order-of-magnitude estimation, A ∼
(100GeV)4. By requiring (Γ/V )1/4 to be smaller than the current Hubble parameter, the lifetime

of the EW vacuum becomes longer than the age of the Universe. The condition corresponds to

SE ≳ 400. In this paper, thermal effects and radiative corrections to the vacuum transitions are

discarded.

The bounce solution and SE are determined by the scalar potential. The potential relevant

for the vacuum decay generated by (TD)13 and/or (TD)31 is

V =
1

2
m2

11 h
2
d +

1

2
m2

22 h
2
u −m2

12 hdhu

+
1

2
m2

Q̃,1
d̃2L +

1

2
m2

Q̃,3
b̃2L +

1

2
m2

D̃,1
d̃2R +

1

2
m2

D̃,3
b̃2R

+
1√
2
[(TD)33 hd − ybµhu] b̃Lb̃R +

1√
2
(TD)13 hdd̃Lb̃R +

1√
2
(TD)31 hdb̃Ld̃R

+
1

4
y2b (b̃

2
Lb̃

2
R + b̃2Lh

2
d + b̃2Rh

2
d)

+
1

24
g23(d̃

2
L + b̃2L − d̃2R − b̃2R)2 +

1

32
g22(h

2
u − h2d + d̃2L + b̃2L)

2

+
1

32
g2Y

(
h2u − h2d +

1

3
d̃2L +

1

3
b̃2L +

2

3
d̃2R +

2

3
b̃2R

)2

, (E.1)
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Figure E.1: The upper bound on |(TD)i3| for i = 1, 2 from the vacuum stability condition as
a function of mQ̃. Here, tanβ = 5, 10, 30, 50 are taken. The solid lines are in the case of
mA = mQ̃,i = mD̃,3 ≡ mQ̃, while the dashed lines represent the decoupling limit of the heavy
Higgs multiplets, mA ≫ mQ̃,i = mD̃,3 ≡ mQ̃.

where the coefficients are

m2
11 = m2

A sin2 β − 1

2
m2

Z cos 2β, (E.2)

m2
22 = m2

A cos2 β +
1

2
m2

Z cos 2β, (E.3)

m2
12 =

1

2
m2

A sin 2β. (E.4)

Here, hd, hu, d̃L, b̃L, d̃R, b̃R are real scalar fields with ⟨hd⟩ = v cosβ and ⟨hu⟩ = v sinβ at the

EW vacuum. In this potential, all coefficients can be rotated to be real by rephasing the fields.

The terms proportional to light flavor Yukawas are discarded, because those contributions are

negligible. The scalar potential for s̃L, s̃R is obtained by substituting d̃L,R → s̃L,R, (TD)13 →
(TD)23, and (TD)31 → (TD)32.

Let us first consider the vacuum stability condition when only (TD)13 is large. The scalar

potential is simplified to be

V =
1

2
m2

11 h
2
d +

1

2
m2

22 h
2
u −m2

12 hdhu +
1

2
m2

Q̃,1
d̃2L +

1

2
m2

D̃,3
b̃2R +

1√
2
(TD)13 hdd̃Lb̃R (E.5)

+
1

4
y2b b̃

2
Rh

2
d +

1

24
g23(d̃

2
L − b̃2R)2 +

1

32
g22(h

2
u − h2d + d̃2L)

2 +
1

32
g2Y

(
h2u − h2d +

1

3
d̃2L +

2

3
b̃2R

)2

.

When mA ∼ mQ̃,1 ∼ mD̃,3, CCB vacua appear around a hd–d̃L–b̃R plane. In Fig. E.1, the

solid lines show upper bounds on |(TD)13| for tanβ = 5, 10, 30, and 50. We assumed mA =

mQ̃,1 = mD̃,3. It is shown that the upper bounds are proportional to mQ̃. Also, the results

depend on tanβ slightly. This is because the scalar potential is stabilized by a quartic coupling

y2b b̃
2
Rh

2
d ∼

(
2m2

b/v
2
)
tan2 βb̃2Rh

2
d, when tanβ is large.
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Figure E.2: The vacuum stability condition of |(TD)i3| for i = 1, 2 as a function of mA. Here,
mQ̃,i = mD̃,3 = 10TeV, and tanβ = 5 and 30 are taken.

When mA is larger than mQ̃,1 ∼ mD̃,3, the position of the CCB vacuum approaches to a

H–d̃L–b̃R plane, where H includes the SM-like Higgs boson, H = hSM + v. In Fig. E.2, the mA

dependence of the upper bound is shown. Here, tanβ = 5 and 30 are taken. We found that the

vacuum stability condition is relaxed for large mA.

In the decoupling limit of the heavy Higgs bosons (m2
A ≫ m2

Z , α → β − π/2), the scalar

potential can be expressed by H, d̃L, and b̃R as

V = −1

4
m2

Z cos2 2β H2 +
1

2
m2

Q̃,1
d̃2L +

1

2
m2

D̃,3
b̃2R +

1√
2
(TD)13 cosβ Hd̃Lb̃R

+
1

4
y2b b̃

2
RH

2 cos2 β +
1

24
g23(d̃

2
L − b̃2R)2 +

1

32
g22(H

2 cos 2β − d̃2L)2

+
1

32
g2Y

(
H2 cos 2β − 1

3
d̃2L −

2

3
b̃2R

)2

. (E.6)

The upper bounds on |(TD)13| are shown by the dashed lines in Fig. E.1.#1 Again, they are

proportional to mQ̃. In contrast to the case of mA ∼ mQ̃, the result is almost proportional

to tanβ. This is understood by cosβ associated to (TD)13. A fitting formula of the vacuum

stability condition in the large mA limit with mQ̃,1 = mD̃,3 ≡ mQ̃ is derived as

|(TD)13|
tanβ

≲ −0.186TeV + 1.675mQ̃, (E.7)

where the phase of (TD)i3 is taken into account. This formula works well for mQ̃ > 1TeV.

#1 In this scalar potential, the SM-like Higgs boson is lighter than 125GeV. The vacuum stability condition can
be evaluated naively by adding top-stop radiative corrections,

(
g22 + g2Y

)
δ
(t)
H sin4 βH4/8, [124–127] to Eq. (E.6) in

order to achieve the 125GeV SM-like Higgs boson at the EW vacuum. We found that Eq. (E.7) is barely changed.
Dedicated studies are needed to fully include the radiative corrections (see Ref. [123]).
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Let us next turn on (TD)23 in addition to (TD)13. The scalar trilinear term becomes

V ⊃ 1√
2

[
(TD)13 d̃L + (TD)23 s̃L

]
b̃Rhd. (E.8)

Here, (TD)13,23 are taken to be real by rephasing the scalar fields. By mixing d̃L and s̃L, one

can obtain

V ⊃ 1√
2

[
(TD)

2
13 + (TD)

2
23

]1/2
d̃′Lb̃Rhd, (E.9)

where d̃L = d̃′L cos θ − s̃′L sin θ and s̃L = d̃′L sin θ + s̃′L cos θ with tan θ = (TD)23 / (TD)13. When

m2
Q̃,1

= m2
Q̃,2
≡ m2

Q̃
, the scalar potential of d̃′L is obtained from that of d̃L by substituting

(TD)13 →
[
(TD)

2
13 + (TD)

2
23

]1/2
as well as d̃L → d̃′L. Therefore, the vacuum stability condition

(E.7) is extended to be√
| (TD)13 |2 + | (TD)23 |2

tanβ
≲ −0.186TeV + 1.675mQ̃, (E.10)

where the phases of (TD)13,23 are taken into account appropriately. The formula is valid when

mQ̃ ≡ mQ̃,1 = mQ̃,2 = mD̃,3 > 1TeV and mA is decoupled.#2

When only (TD)31 is large, the potential becomes

V =
1

2
m2

11 h
2
d +

1

2
m2

22 h
2
u −m2

12 hdhu +
1

2
m2

Q̃,3
b̃2L +

1

2
m2

D̃,1
d̃2R +

1√
2
(TD)31 hdb̃Ld̃R (E.11)

+
1

4
y2b b̃

2
Lh

2
d +

1

24
g23(b̃

2
L − d̃2R)2 +

1

32
g22(h

2
u − h2d + b̃2L)

2 +
1

32
g2Y

(
h2u − h2d +

1

3
b̃2L +

2

3
d̃2R

)2

.

By repeating the above procedure, one can obtain quantitatively the same fitting formula for

(TD)3i as Eq. (E.10),√
| (TD)31 |2 + | (TD)32 |2

tanβ
≲ −0.186TeV + 1.675mQ̃, (E.12)

where mQ̃ ≡ mQ̃,3 = mD̃,1 = mD̃,2 > 1TeV and mA is decoupled.

#2 We have validated the formula (E.10) explicitly by analyzing the bounce action of the scalar potential of H,
d̃L, s̃L, and b̃R.
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Chapter

F
Neutron and proton EDM with chiral Lagrangian

technique

In this section, we provide contributions of four-quark operators to the neutron and proton EDM

with the chiral Lagrangian technique through a procedure in [106]. We focus on CP violating

interactions through meson condensation by four-quark operators Õq′q
1 .

At parton level, CP violating interactions with Õq′q
1 are rewritten as

LCPV ⊃
∑

q′ ̸=q,q,q′=u,d,s

C̃q′q
1 Õ

q′q
1

=
∑

i,j,k,l=u,d,s

[
iCLRLR

ijkl (q̄iPRqj)(q̄kPRql) + iCRLLR
ijkl (q̄iPLqj)(q̄kPRql)

]
− (L↔ R), (F.1)

where the coefficients are defined as

CLRLR
ijkl = CRLLR

ijkl ≡
∑
q ̸=q′

C̃q′q
1 δi,q′δj,q′δk,qδl,q. (F.2)

Under rotations, U(3)L × U(3)R, we impose a following transformation:

PLqi → (L)ijPLqj , (F.3)

PRqi → (R)ijPRqj , (F.4)

CLRLR
ijkl →

∑
m,n,o,p

(L)im(L)koC
LRLR
mnop (R†)nj(R

†)pl, (F.5)

CRLLR
ijkl →

∑
m,n,o,p

(R)im(L)koC
RLLR
mnop (L†)nj(R

†)pl, (F.6)

where L ∈ U(3)L and R ∈ U(3)R. Then, right-hand side of Eq. (F.1) is invariant under the

above transformation. Reflecting this symmetry in the meson chiral Lagrangian at order O(p2),
CP violating terms is written as

Lmeson
CPV =

F 2
π

4
Tr
[
(DµU)†DµU + χ(U + U †)

]
+
F 2
0 − F 2

π

12
Tr
[
UDµU

†
]
Tr
[
U †DµU

]
+ a0Tr

[
lnU − lnU †

]2
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+
∑

i,j,k,l=u,d,s

[
iCLRLR

ijkl

(
c1[U ]ji[U ]lk − c1[U †]ji[U

†]lk + c2[U ]li[U ]jk − c2[U †]li[U
†]jk

)
(F.7)

+ iCRLLR
ijkl

(
c3[U

†]ji[U ]lk − c3[U ]ji[U
†]lk

)]
,

where U and χ are given by

U = exp

[
2i√
6
η0I3 +

2i

Fπ
Π

]
, Π ≡


1
2π

0 + 1
2
√
3
η8

1√
2
π+ 1√

2
K+

1√
2
π− −1

2π
0 + 1

2
√
3
η8

1√
2
K0

1√
2
K− 1√

2
K̄0 − 1√

3
η8

 (F.8)

I3 ≡ diag (1, 1, 1) , (F.9)

χ = 2B0diag (mu,md,ms) . (F.10)

Here, the mesons matrix-valued field transforms as U → RUL† under U(3)L × U(3)R, Fπ

is the pion decay constant, F0 is the decay constant for η0. We approximate as F0 ≃ Fπ,

B0 ≃ m2
π/(mu +md) and 48a0/F

2
0 ≃ m2

η +m2
η′ − 2m2

K . Besides, by naive dimensional analysis,

we estimate unknown low energy constants, c1, c2 and c3 as

c1 ∼ c2 ∼ c3 ∼
(4πFπ)

6

(4π)4
. (F.11)

Scalar potential with neutral mesons π0, η8 and η0 in Eq. (F.8) is extracted as

V (π0, η8, η0) = F 2
πB0

(
mu cos

(
π0

Fπ
+

η8√
3Fπ

+
2η0√
6F0

)
+md cos

(
−π

0

Fπ
+

η8√
3Fπ

+
2η0√
6F0

)

+ms cos

(
− 2η8√

3Fπ

+
2η0√
6F0

))
− 24

a0
F 2
0

(η0)
2

+ 2c1

((
C̃ud
1 + C̃du

1

)
sin

(
2η8√
3Fπ

+
4η0√
6F0

)
+
(
C̃us
1 + C̃su

1

)
sin

(
π0

Fπ
− η8√

3Fπ

+
4η0√
6F0

)

+
(
C̃ds
1 + C̃sd

1

)
sin

(
−π

0

Fπ
− η8√

3Fπ

+
4η0√
6

))

+ 2c3

((
C̃ud
1 − C̃du

1

)
sin

(
−2π0

Fπ

)
+
(
C̃us
1 − C̃su

1

)
sin

(
−π

0

Fπ
−
√
3η8
Fπ

)

+
(
C̃ds
1 − C̃sd

1

)
sin

(
π0

Fπ
−
√
3η8
Fπ

))
. (F.12)

If C̃ud
1 , C̃du

1 , C̃us
1 and C̃su

1 takes zero, non-zero small meson VEVs coming from C̃ds
1 and C̃sd

1 ,

⟨π0⟩, ⟨η8⟩ and ⟨η0⟩ of the above potential Eq. (F.12) are given as

⟨π0⟩
Fπ
≃−

(
C̃ds
1 + C̃sd

1

) c1
B0F 2

π

B0F
2
πmums + 8a0(md + 2ms)

B0F 2
πmumdms + 8a0(mumd +mdms +msmu)

- 92 -



+
(
C̃ds
1 − C̃sd

1

) c3
B0F 2

π

B0F
2
πmsmu − 8a0(md − 2(mu +ms))

B0F 2
πmumdms + 8a0(mumd +mdms +msmu)

, (F.13)

⟨η8⟩
Fπ
≃−

(
C̃ds
1 + C̃sd

1

) c1√
3B0F 2

π

B0F
2
πmu(2md −ms) + 24a0md

B0F 2
πmumdms + 8a0(mumd +mdms +msmu)

−
(
C̃ds
1 − C̃sd

1

) c3√
3B0F 2

π

B0F
2
π (2md +ms)mu + 24a0(md + 2mu)

B0F 2
πmumdms + 8a0(mumd +mdms +msmu)

, (F.14)

⟨η0⟩
F0
≃
(
C̃ds
1 + C̃sd

1

) √
2c1√

3B0F 2
π

B0F
2
π (md +ms)mu

B0F 2
πmumdms + 8a0(mumd +mdms +msmu)

+
(
C̃ds
1 − C̃sd

1

) √
2c3√

3B0F 2
π

B0F
2
π (md −ms)mu

B0F 2
πmumdms + 8a0(mumd +mdms +msmu)

. (F.15)

By the meson condensations, CP violating interactions are generated by the baryon chiral

Lagrangian at O(p2):

Lbaryons = Tr
[
B̄iγµ (∂µB + [Γµ, B])−MBB̄B

]
− D

2
Tr
[
B̄γµγ5{ξµ, B}

]
− F

2
Tr
[
B̄γµγ5[ξµ, B]

]
− λ

2
Tr [ξµ] Tr

[
B̄γµγ5B

]
+ bDTr

[
B̄{χ+, B}

]
+ bFTr

[
B̄[χ+, B]

]
+ b0Tr [χ+] Tr

[
B̄B

]
+ · · · , (F.16)

where baryons matrix-valued field B is defined as

B =


1√
2
Σ0 + 1√

6
Λ0 Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ0 n

Ξ− Ξ0 − 2√
6
Λ0

 , (F.17)

ξL,R are defined as U = ξRξ
†
L, where ξR = ξ†L.

Besides, MB is the baryon mass, a covariant derivative for baryons Γµ, fields consisting

mesons ξµ and χ+ consisting quark masses are defined as

Γµ ≡
1

2
ξ†R (∂µ − irµ) ξR +

1

2
ξ†L (∂µ − ilµ) ξL, (F.18)

ξµ ≡ iξ†R (∂µ − rµ) ξR − iξ†L (∂µ − ilµ) ξL, (F.19)

χ+ ≡ 2B0ξ
†
Ldiag (mu,md,ms) ξR + 2B0ξ

†
Rdiag (mu,md,ms) ξL. (F.20)

By inserting meson VEVs ⟨π0⟩, ⟨η8⟩ and ⟨η0⟩ into the baryon chiral Lagrangian Eq. (F.16), CP

violating interactions are given as

Lbaryons ⊃ ḡnpπ− n̄pπ− + ḡnΣK+Σ+pK+

+ ḡπ+npp̄nπ
+ + ḡK+Λpp̄ΛK

+ + ḡK+Σ0pp̄Σ
0K+, (F.21)

where the coupling constants are given by

ḡnΣK+ =
B0

Fπ
(bD − bF )

[
− 1√

2
(3mu +ms)

⟨π0⟩
Fπ

+
1√
6
(−mu + 5ms)

⟨η8⟩
Fπ
− 4√

3
(mu +ms)

⟨η0⟩
F0

]
,

(F.22)
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ḡπ+np =
B0

Fπ
(bD + bF )

[√
2(md −mu)

⟨π0⟩
Fπ
− 2
√
2√
3
(mu +md)

⟨η8⟩
Fπ
− 4√

3
(mu +md)

⟨η0⟩
F0

]
,

(F.23)

ḡK+Λp =
B0

Fπ
(bD + 3bF )

[
1

2
√
3
(ms + 3mu)

⟨π0⟩
Fπ

+
1

6
(mu − 5ms)

⟨η8⟩
Fπ

+
2
√
2

3
(mu +ms)

⟨η0⟩
F0

]
,

(F.24)

ḡK+Σ0p =
B0

Fπ
(bD − bF )

[
− 1

2
(ms + 3mu)

⟨π0⟩
Fπ
− 1

2
√
3
(mu − 5ms)

⟨η8⟩
Fπ
− 2

√
2

3
(mu +ms)

⟨η0⟩
F0

]
.

(F.25)

These couplings contribute to the neutron and proton EDMs through baryon-meson loop dia-

gram as followings [115]:

dn ∼ −
e

8π2Fπ

[
ḡnpπ−
√
2

(D + F )

(
1 + ln

m2
π

m2
N

)
− ḡnΣK+√

2
(D − F )

(
1 + ln

m2
K+

m2
N

+
π(mΣ− −mn)

mK+

)]
,

(F.26)

dp ∼ −
e

8π2Fπ

[
−
ḡnpπ−
√
2

(D + F )

(
1 + ln

m2
π

m2
N

)
+
ḡK+Λp

2
√
3

(D + 3F )

(
1 + ln

m2
K+

m2
N

+
π(mΛ −mn)

mK+

)
−
ḡK+Σ0p

2
(D − F )

(
1 + ln

m2
K+

m2
N

+
π(mΣ0 −mn)

mK+

)]
, (F.27)

where we include only leading order terms of the baryon-meson loops. Divergent terms and a

mass scale coming from the dimensional regularization are set as zero-value and the nucleon

mass mN , respectively.

By substituting the meson VEVs into Eq. (F.26) and Eq. (F.27), and using the pion decay

constant Fπ = 86.8 MeV [116], measured meson-baryon couplings from hyperon β decays D =

0.804 and F = 0.463 [117], low-energy-constants (LECs) determined from the baryon octet mass

splittings bD = 0.161 GeV−1 and bF = −0.502 GeV−1 [118] and the quark masses mu(1 GeV) =

2.699 MeV,md(1 GeV) = 5.868 MeV and ms(1 GeV) = 117 MeV which are evaluated by the

QCD four-loop RGEs [80], mud(2 GeV) = 3.373 MeV and ms(2 GeV) = 92.0 MeV, the neutron

and proton EDMs are approximated as

dn ∼ e ·
[
−0.026C̃ds

1 + 0.169C̃sd
1

]
GeV−1, (F.28)

dp ∼ e ·
[
0.023C̃ds

1 − 0.149C̃sd
1

]
GeV−1. (F.29)
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