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Analyses of symmetry enhancement in F-theory

geometries and gauge theories
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X B Analyses of symmetry enhancement in F-theory from geometries and gauge
theories '

In 1996, Vafa propo‘sed‘ F-theory, which is .a non-perturbative description of
conipactified typ_e IIB superstring theory with 7-branes. Type IIB superstring theory
has self. Thisis a stro'ng'weak duality since roughly speaking, S-duality map a coupling
constant g to 1/g. S-duality in type IIB superstring theory plays a central role in the
construction of F-theory. ‘ _

S-duality appears in various places in physics. Historically, S-duality is first

found in N=4 SU(N) supersymmetric Yang-Mills (SYM) theory by Montonen and Olive.
. N=2 SYM theory also exhi‘bits S-duality. The duality also plays an importapt role in
Seiberg-Wiiten theory, which is characterized by Seiberg-Witten curve. The relation
between Seiberg-Wiiten theory and F-theory is discussed.

Type IIB superstring theory includes two scalars, the Ramond-Ramond (RR) 0-
form and the dilaton. Combining the 0-form and the dilaton, we can define the axio-
dilaton field. The S-duality transformation converts < to {a t +b)/(c r +d), where a,b,c,d
are integers and ad-be=1, which is SL(2,7) transformation. The transformation is
identical to the modular transformation of the torus. In this senée, we can give a.
geometric interpretation to type IIB superstring theo:m;y, that is, we identify the axio-
dilaton with the complex structure moduli of the torus. This is F-theory. The
configuration space of the axio-dilaton filed correspbnds to the moduli space of the
torus, which is similar to Seiberg-Witten theory. In Seiberg-Witten theory, the axio-
dilaton that is identified to the moduli of the torus is a function of the Coulomb branch
parameter. ‘ '

It is sometimes said that F-thedry is the twelve-dimensional theory. However, the
extra two dimensions are virtual dimensions. This is in contrast to M-theory. In the
case of M-theory, the extra one dimension is the eleventh real space. Indeed, the extra
two dimensions in F-theory do not have the Kahler moduli. One emphasize that F-
theory is a geometric representation that provide the definition of some
compactifications of type IIB superstring fheory.

The concrete description of F-theory is established as follows: We consider the
torus with thé complex moduli that depends on the coordinates of a compact subspace
B of the ten-dimensional space-time. Combining $B$ with the torus, the total manifold

‘ Y is described by the elliptic fibration: We call it the compactification of F-theory on Y.

When B is n-dimensional compllex manifold, we denote as B_n, Y becomes (n+1) complex



manifold, we denote as Y_{n+1}. In the language of type IIB superstring theory, it is
the compa'ctification on the manifold B_n with the non-trivial axio-dilaton background
‘field that depends on the coordinates of B_n. Supersymmetry requires that the first
Chern class of Y_{n+1} needs to vanish, which means that Y_{n+1} is a Calabi'Yé.u
"manifold. For example, the base “space. B_nis P*1 when Y _{n+1} is a K3 manifold.

The existence of the axio-dilaton background field, which is the complex scalar
field, implies the existence of 7-branes. Due to S-duality, 7-branes have not only RR
charges but also Neveu-Schwarz-Neveu-Schwarz (NSNS) charges. The axio-dilaton .
field has non-trivial monodromies around singular points, which correspond to the
positions of 7-branes. In the context of F-theory, the'positions are poini:s where the
fibered torus shrinks. When we place 7-branes in dlfferent pomts the torus becomes
singular, but the total space Y_{n+1} is not singular. ,

When some 7-branes make a stack, not only the fibered torus but also total space
becomes singular. The gauge symmetry enhances on the world-volume of the 7-brane
stack. Information of the gauge symmetry is translated to the fiber type of the
codimension-one singularities in F-theory. Such singularities are classified by Kodaira.
In pari:icular, the fiber types of IV¥, I11* and II* are remarkable since the corresponding
gauge symmetries are E_6, E_T and E_8, respectively. If we have only D-branes (and
orientifoldlplanes), such exceptional groups do not appear. Indeed, we cannot construct
the exceptional groups in type IIB compactifications. It is one of the advantagés of F-
theory that we can realiie the exceptional groups. _

In this thesis, we will review the relation between enhancement of the gauge
symmetries and singularities of geometry. The fiber type of a codimension-one
singularity can be labeled by the SL(2,Z) monodromy around the fiber. It was show that
all types of Kodaira fibers can be represented by some product of monodromies of a
basie set of 7-branes: A=[1,0]-brane, B=[1,1]-brane and C=[1,-1]-brane, where a [p,ql-
brane is a 7-brane with p RR charges and g NSNS charges. The gauge symmetry on a-
coalescence of 7-branes has been clearly explained by using string junctions. Strmg
junctions are also useful to describe chiral matter, non-simply laced Lie algebras, i.e.,
B_n,Cn,F 4and G_2 typ‘es of simple Lie algebra, the Mordell-Weil lattice of a rational
elliptic surface and deformations of algebraic varieties. '

An elliptic fibration K3 manifold or a rational elliptic surface is defined by the
Weierstrass equation, y*2=x*3+fx+g, where f and g depend on the coordinates of the
base space P~1. The positions of 7-branes are given by the discriminat locus, A =0,
where A=4f"3+27g"2. One of the purposes of this thesis is that one investigates the
role of the locus of =0 and g=0. We will identify the loci with the two kinds of critical
points of a d’essin d'enfant of Grothendieck. The base spéce P~1 is divided into several
cell regions bounded by some domain walls extending from these planes and D-branes.
This corresponds to drawing a dessin ‘Witil a canonical triangulation. We also study

how the locus of f=0 and g=0 and the cell regions depend on monodromies.



Perhaps the field of string phenomenology is the best place where F-theory fulfills
potential. One readily realize the SU(5) grand unified theory (GUT), which can
né.turally explain the apparently complicated assignment of hypercharges to quarks
and leptons, in F-theory. Moreover, F-theory also has good compatibility to the GUT
with the exceptional gauge groups since the exceptioﬁal gauge groups, e.g. E_6,
ﬁaturally emerge in F-theory as we saw above. , ‘

In order to understand the relation between geometries and realized theories, we
need to go beyond the Kodaira classification that associates with codimension-one
singula‘rities. Let us consider a F-theory comﬁactification on an elliptic fibration
singular Calabi-Yau four-fold. This compacification prJovide us a four-dimensional
theory. The Calabi-Yau four-fold has not only codimension-one singularities but also
codimension-two and three singularities. As we saw, information of a gauge symmetry
is translated to the types of the codimension-one singularities. The data of the matter
representations in four dimensions are encoded to the codimeﬁsion-two singularities.
In a;idition, the codimension-three singularities correspond to the Yukawa coupling in
the four-dimensional theory. | o

' Unfortunately, there is no a complete claséification of the codimension-two and
three singularities. This is'a big problem in mathematics and physics. However, we can
analyze some specific cases. In this thesis, we will review the case of a Calabi-Yau
three-fold that is the elliptic fibration over the Hirzebruch surface. In this case, we can
classify the singularities by Tate's algorithm ' '

In ,addition,‘we can investigate resolutions of Calabi-Yau four-folds via the
Coulomb branch of three-dimensional N=2 SYM theories. This is motivated by the
duality between F-theory and M-theory. The Coulomb branch is separated into some’
phases, and each phase corresponds to the different resolutions. As an example, we will
analyze SU(5) gauge group, and we will obtain a network of the resolutions of the
Calabi-Yau four-fold. .

For Calabi-Yau three-folds,' the matters are the hypermultiplets in six-dimensions,
which localize at the condimension-two singularities. The hypermultiple‘ts are typically
full-hypers, but in special cases half-hypers. When the enhancements of the
éymmetries are SU(6) 1:6 E.6, SO(12) to E_7 and E_7 to E_8, we obtain the half-hypers
under some conditions. We will consider the resolutions of such ‘singular Calabi-Yau
three-folds. The first case was pérformed by Morrison and Taylor. In the first case, we
do not need small resolutions when we have the half-hypers. This is called the
incompléte resolution. We focus on the second and third cases. We will fi1_1d the same -
structure from the explicit resolutions of SO(12) to E_7 and E_7 to E_8. '



Results of the doctoral thesis screening
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